1 /* $NetBSD: intel_dpio_phy.c,v 1.2 2021/12/18 23:45:30 riastradh Exp $ */
2
3 /*
4 * Copyright © 2014-2016 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: intel_dpio_phy.c,v 1.2 2021/12/18 23:45:30 riastradh Exp $");
28
29 #include "display/intel_dp.h"
30
31 #include "intel_display_types.h"
32 #include "intel_dpio_phy.h"
33 #include "intel_sideband.h"
34
35 /**
36 * DOC: DPIO
37 *
38 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
39 * ports. DPIO is the name given to such a display PHY. These PHYs
40 * don't follow the standard programming model using direct MMIO
41 * registers, and instead their registers must be accessed trough IOSF
42 * sideband. VLV has one such PHY for driving ports B and C, and CHV
43 * adds another PHY for driving port D. Each PHY responds to specific
44 * IOSF-SB port.
45 *
46 * Each display PHY is made up of one or two channels. Each channel
47 * houses a common lane part which contains the PLL and other common
48 * logic. CH0 common lane also contains the IOSF-SB logic for the
49 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
50 * must be running when any DPIO registers are accessed.
51 *
52 * In addition to having their own registers, the PHYs are also
53 * controlled through some dedicated signals from the display
54 * controller. These include PLL reference clock enable, PLL enable,
55 * and CRI clock selection, for example.
56 *
57 * Eeach channel also has two splines (also called data lanes), and
58 * each spline is made up of one Physical Access Coding Sub-Layer
59 * (PCS) block and two TX lanes. So each channel has two PCS blocks
60 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
61 * data/clock pairs depending on the output type.
62 *
63 * Additionally the PHY also contains an AUX lane with AUX blocks
64 * for each channel. This is used for DP AUX communication, but
65 * this fact isn't really relevant for the driver since AUX is
66 * controlled from the display controller side. No DPIO registers
67 * need to be accessed during AUX communication,
68 *
69 * Generally on VLV/CHV the common lane corresponds to the pipe and
70 * the spline (PCS/TX) corresponds to the port.
71 *
72 * For dual channel PHY (VLV/CHV):
73 *
74 * pipe A == CMN/PLL/REF CH0
75 *
76 * pipe B == CMN/PLL/REF CH1
77 *
78 * port B == PCS/TX CH0
79 *
80 * port C == PCS/TX CH1
81 *
82 * This is especially important when we cross the streams
83 * ie. drive port B with pipe B, or port C with pipe A.
84 *
85 * For single channel PHY (CHV):
86 *
87 * pipe C == CMN/PLL/REF CH0
88 *
89 * port D == PCS/TX CH0
90 *
91 * On BXT the entire PHY channel corresponds to the port. That means
92 * the PLL is also now associated with the port rather than the pipe,
93 * and so the clock needs to be routed to the appropriate transcoder.
94 * Port A PLL is directly connected to transcoder EDP and port B/C
95 * PLLs can be routed to any transcoder A/B/C.
96 *
97 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
98 * digital port D (CHV) or port A (BXT). ::
99 *
100 *
101 * Dual channel PHY (VLV/CHV/BXT)
102 * ---------------------------------
103 * | CH0 | CH1 |
104 * | CMN/PLL/REF | CMN/PLL/REF |
105 * |---------------|---------------| Display PHY
106 * | PCS01 | PCS23 | PCS01 | PCS23 |
107 * |-------|-------|-------|-------|
108 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
109 * ---------------------------------
110 * | DDI0 | DDI1 | DP/HDMI ports
111 * ---------------------------------
112 *
113 * Single channel PHY (CHV/BXT)
114 * -----------------
115 * | CH0 |
116 * | CMN/PLL/REF |
117 * |---------------| Display PHY
118 * | PCS01 | PCS23 |
119 * |-------|-------|
120 * |TX0|TX1|TX2|TX3|
121 * -----------------
122 * | DDI2 | DP/HDMI port
123 * -----------------
124 */
125
126 /**
127 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
128 */
129 struct bxt_ddi_phy_info {
130 /**
131 * @dual_channel: true if this phy has a second channel.
132 */
133 bool dual_channel;
134
135 /**
136 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
137 * Otherwise the GRC value will be copied from the phy indicated by
138 * this field.
139 */
140 enum dpio_phy rcomp_phy;
141
142 /**
143 * @reset_delay: delay in us to wait before setting the common reset
144 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
145 */
146 int reset_delay;
147
148 /**
149 * @pwron_mask: Mask with the appropriate bit set that would cause the
150 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
151 */
152 u32 pwron_mask;
153
154 /**
155 * @channel: struct containing per channel information.
156 */
157 struct {
158 /**
159 * @channel.port: which port maps to this channel.
160 */
161 enum port port;
162 } channel[2];
163 };
164
165 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
166 [DPIO_PHY0] = {
167 .dual_channel = true,
168 .rcomp_phy = DPIO_PHY1,
169 .pwron_mask = BIT(0),
170
171 .channel = {
172 [DPIO_CH0] = { .port = PORT_B },
173 [DPIO_CH1] = { .port = PORT_C },
174 }
175 },
176 [DPIO_PHY1] = {
177 .dual_channel = false,
178 .rcomp_phy = -1,
179 .pwron_mask = BIT(1),
180
181 .channel = {
182 [DPIO_CH0] = { .port = PORT_A },
183 }
184 },
185 };
186
187 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
188 [DPIO_PHY0] = {
189 .dual_channel = false,
190 .rcomp_phy = DPIO_PHY1,
191 .pwron_mask = BIT(0),
192 .reset_delay = 20,
193
194 .channel = {
195 [DPIO_CH0] = { .port = PORT_B },
196 }
197 },
198 [DPIO_PHY1] = {
199 .dual_channel = false,
200 .rcomp_phy = -1,
201 .pwron_mask = BIT(3),
202 .reset_delay = 20,
203
204 .channel = {
205 [DPIO_CH0] = { .port = PORT_A },
206 }
207 },
208 [DPIO_PHY2] = {
209 .dual_channel = false,
210 .rcomp_phy = DPIO_PHY1,
211 .pwron_mask = BIT(1),
212 .reset_delay = 20,
213
214 .channel = {
215 [DPIO_CH0] = { .port = PORT_C },
216 }
217 },
218 };
219
220 static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private * dev_priv,int * count)221 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
222 {
223 if (IS_GEMINILAKE(dev_priv)) {
224 *count = ARRAY_SIZE(glk_ddi_phy_info);
225 return glk_ddi_phy_info;
226 } else {
227 *count = ARRAY_SIZE(bxt_ddi_phy_info);
228 return bxt_ddi_phy_info;
229 }
230 }
231
232 static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private * dev_priv,enum dpio_phy phy)233 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
234 {
235 int count;
236 const struct bxt_ddi_phy_info *phy_list =
237 bxt_get_phy_list(dev_priv, &count);
238
239 return &phy_list[phy];
240 }
241
bxt_port_to_phy_channel(struct drm_i915_private * dev_priv,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)242 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
243 enum dpio_phy *phy, enum dpio_channel *ch)
244 {
245 const struct bxt_ddi_phy_info *phy_info, *phys;
246 int i, count;
247
248 phys = bxt_get_phy_list(dev_priv, &count);
249
250 for (i = 0; i < count; i++) {
251 phy_info = &phys[i];
252
253 if (port == phy_info->channel[DPIO_CH0].port) {
254 *phy = i;
255 *ch = DPIO_CH0;
256 return;
257 }
258
259 if (phy_info->dual_channel &&
260 port == phy_info->channel[DPIO_CH1].port) {
261 *phy = i;
262 *ch = DPIO_CH1;
263 return;
264 }
265 }
266
267 WARN(1, "PHY not found for PORT %c", port_name(port));
268 *phy = DPIO_PHY0;
269 *ch = DPIO_CH0;
270 }
271
bxt_ddi_phy_set_signal_level(struct drm_i915_private * dev_priv,enum port port,u32 margin,u32 scale,u32 enable,u32 deemphasis)272 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
273 enum port port, u32 margin, u32 scale,
274 u32 enable, u32 deemphasis)
275 {
276 u32 val;
277 enum dpio_phy phy;
278 enum dpio_channel ch;
279
280 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
281
282 /*
283 * While we write to the group register to program all lanes at once we
284 * can read only lane registers and we pick lanes 0/1 for that.
285 */
286 val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
287 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
288 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
289
290 val = I915_READ(BXT_PORT_TX_DW2_LN0(phy, ch));
291 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
292 val |= margin << MARGIN_000_SHIFT | scale << UNIQ_TRANS_SCALE_SHIFT;
293 I915_WRITE(BXT_PORT_TX_DW2_GRP(phy, ch), val);
294
295 val = I915_READ(BXT_PORT_TX_DW3_LN0(phy, ch));
296 val &= ~SCALE_DCOMP_METHOD;
297 if (enable)
298 val |= SCALE_DCOMP_METHOD;
299
300 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
301 DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
302
303 I915_WRITE(BXT_PORT_TX_DW3_GRP(phy, ch), val);
304
305 val = I915_READ(BXT_PORT_TX_DW4_LN0(phy, ch));
306 val &= ~DE_EMPHASIS;
307 val |= deemphasis << DEEMPH_SHIFT;
308 I915_WRITE(BXT_PORT_TX_DW4_GRP(phy, ch), val);
309
310 val = I915_READ(BXT_PORT_PCS_DW10_LN01(phy, ch));
311 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
312 I915_WRITE(BXT_PORT_PCS_DW10_GRP(phy, ch), val);
313 }
314
bxt_ddi_phy_is_enabled(struct drm_i915_private * dev_priv,enum dpio_phy phy)315 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
316 enum dpio_phy phy)
317 {
318 const struct bxt_ddi_phy_info *phy_info;
319
320 phy_info = bxt_get_phy_info(dev_priv, phy);
321
322 if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
323 return false;
324
325 if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
326 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
327 DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
328 phy);
329
330 return false;
331 }
332
333 if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
334 DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
335 phy);
336
337 return false;
338 }
339
340 return true;
341 }
342
bxt_get_grc(struct drm_i915_private * dev_priv,enum dpio_phy phy)343 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
344 {
345 u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
346
347 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
348 }
349
bxt_phy_wait_grc_done(struct drm_i915_private * dev_priv,enum dpio_phy phy)350 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
351 enum dpio_phy phy)
352 {
353 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
354 GRC_DONE, 10))
355 DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
356 }
357
_bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)358 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
359 enum dpio_phy phy)
360 {
361 const struct bxt_ddi_phy_info *phy_info;
362 u32 val;
363
364 phy_info = bxt_get_phy_info(dev_priv, phy);
365
366 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
367 /* Still read out the GRC value for state verification */
368 if (phy_info->rcomp_phy != -1)
369 dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
370
371 if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
372 DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
373 "won't reprogram it\n", phy);
374 return;
375 }
376
377 DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
378 "force reprogramming it\n", phy);
379 }
380
381 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
382 val |= phy_info->pwron_mask;
383 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
384
385 /*
386 * The PHY registers start out inaccessible and respond to reads with
387 * all 1s. Eventually they become accessible as they power up, then
388 * the reserved bit will give the default 0. Poll on the reserved bit
389 * becoming 0 to find when the PHY is accessible.
390 * The flag should get set in 100us according to the HW team, but
391 * use 1ms due to occasional timeouts observed with that.
392 */
393 if (intel_wait_for_register_fw(&dev_priv->uncore,
394 BXT_PORT_CL1CM_DW0(phy),
395 PHY_RESERVED | PHY_POWER_GOOD,
396 PHY_POWER_GOOD,
397 1))
398 DRM_ERROR("timeout during PHY%d power on\n", phy);
399
400 /* Program PLL Rcomp code offset */
401 val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
402 val &= ~IREF0RC_OFFSET_MASK;
403 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
404 I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
405
406 val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
407 val &= ~IREF1RC_OFFSET_MASK;
408 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
409 I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
410
411 /* Program power gating */
412 val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
413 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
414 SUS_CLK_CONFIG;
415 I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
416
417 if (phy_info->dual_channel) {
418 val = I915_READ(BXT_PORT_CL2CM_DW6(phy));
419 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
420 I915_WRITE(BXT_PORT_CL2CM_DW6(phy), val);
421 }
422
423 if (phy_info->rcomp_phy != -1) {
424 u32 grc_code;
425
426 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
427
428 /*
429 * PHY0 isn't connected to an RCOMP resistor so copy over
430 * the corresponding calibrated value from PHY1, and disable
431 * the automatic calibration on PHY0.
432 */
433 val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
434 phy_info->rcomp_phy);
435 grc_code = val << GRC_CODE_FAST_SHIFT |
436 val << GRC_CODE_SLOW_SHIFT |
437 val;
438 I915_WRITE(BXT_PORT_REF_DW6(phy), grc_code);
439
440 val = I915_READ(BXT_PORT_REF_DW8(phy));
441 val |= GRC_DIS | GRC_RDY_OVRD;
442 I915_WRITE(BXT_PORT_REF_DW8(phy), val);
443 }
444
445 if (phy_info->reset_delay)
446 udelay(phy_info->reset_delay);
447
448 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
449 val |= COMMON_RESET_DIS;
450 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
451 }
452
bxt_ddi_phy_uninit(struct drm_i915_private * dev_priv,enum dpio_phy phy)453 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
454 {
455 const struct bxt_ddi_phy_info *phy_info;
456 u32 val;
457
458 phy_info = bxt_get_phy_info(dev_priv, phy);
459
460 val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
461 val &= ~COMMON_RESET_DIS;
462 I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
463
464 val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
465 val &= ~phy_info->pwron_mask;
466 I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
467 }
468
bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)469 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
470 {
471 const struct bxt_ddi_phy_info *phy_info =
472 bxt_get_phy_info(dev_priv, phy);
473 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
474 bool was_enabled;
475
476 lockdep_assert_held(&dev_priv->power_domains.lock);
477
478 was_enabled = true;
479 if (rcomp_phy != -1)
480 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
481
482 /*
483 * We need to copy the GRC calibration value from rcomp_phy,
484 * so make sure it's powered up.
485 */
486 if (!was_enabled)
487 _bxt_ddi_phy_init(dev_priv, rcomp_phy);
488
489 _bxt_ddi_phy_init(dev_priv, phy);
490
491 if (!was_enabled)
492 bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
493 }
494
495 static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)496 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
497 i915_reg_t reg, u32 mask, u32 expected,
498 const char *reg_fmt, ...)
499 {
500 struct va_format vaf;
501 va_list args;
502 u32 val;
503
504 val = I915_READ(reg);
505 if ((val & mask) == expected)
506 return true;
507
508 va_start(args, reg_fmt);
509 vaf.fmt = reg_fmt;
510 vaf.va = &args;
511
512 DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
513 "current %08x, expected %08x (mask %08x)\n",
514 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
515 mask);
516
517 va_end(args);
518
519 return false;
520 }
521
bxt_ddi_phy_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy)522 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
523 enum dpio_phy phy)
524 {
525 const struct bxt_ddi_phy_info *phy_info;
526 u32 mask;
527 bool ok;
528
529 phy_info = bxt_get_phy_info(dev_priv, phy);
530
531 #define _CHK(reg, mask, exp, fmt, ...) \
532 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
533 ## __VA_ARGS__)
534
535 if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
536 return false;
537
538 ok = true;
539
540 /* PLL Rcomp code offset */
541 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
542 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
543 "BXT_PORT_CL1CM_DW9(%d)", phy);
544 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
545 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
546 "BXT_PORT_CL1CM_DW10(%d)", phy);
547
548 /* Power gating */
549 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
550 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
551 "BXT_PORT_CL1CM_DW28(%d)", phy);
552
553 if (phy_info->dual_channel)
554 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
555 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
556 "BXT_PORT_CL2CM_DW6(%d)", phy);
557
558 if (phy_info->rcomp_phy != -1) {
559 u32 grc_code = dev_priv->bxt_phy_grc;
560
561 grc_code = grc_code << GRC_CODE_FAST_SHIFT |
562 grc_code << GRC_CODE_SLOW_SHIFT |
563 grc_code;
564 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
565 GRC_CODE_NOM_MASK;
566 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
567 "BXT_PORT_REF_DW6(%d)", phy);
568
569 mask = GRC_DIS | GRC_RDY_OVRD;
570 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
571 "BXT_PORT_REF_DW8(%d)", phy);
572 }
573
574 return ok;
575 #undef _CHK
576 }
577
578 u8
bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)579 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
580 {
581 switch (lane_count) {
582 case 1:
583 return 0;
584 case 2:
585 return BIT(2) | BIT(0);
586 case 4:
587 return BIT(3) | BIT(2) | BIT(0);
588 default:
589 MISSING_CASE(lane_count);
590
591 return 0;
592 }
593 }
594
bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder * encoder,u8 lane_lat_optim_mask)595 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
596 u8 lane_lat_optim_mask)
597 {
598 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
599 enum port port = encoder->port;
600 enum dpio_phy phy;
601 enum dpio_channel ch;
602 int lane;
603
604 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
605
606 for (lane = 0; lane < 4; lane++) {
607 u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
608
609 /*
610 * Note that on CHV this flag is called UPAR, but has
611 * the same function.
612 */
613 val &= ~LATENCY_OPTIM;
614 if (lane_lat_optim_mask & BIT(lane))
615 val |= LATENCY_OPTIM;
616
617 I915_WRITE(BXT_PORT_TX_DW14_LN(phy, ch, lane), val);
618 }
619 }
620
621 u8
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)622 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
623 {
624 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
625 enum port port = encoder->port;
626 enum dpio_phy phy;
627 enum dpio_channel ch;
628 int lane;
629 u8 mask;
630
631 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
632
633 mask = 0;
634 for (lane = 0; lane < 4; lane++) {
635 u32 val = I915_READ(BXT_PORT_TX_DW14_LN(phy, ch, lane));
636
637 if (val & LATENCY_OPTIM)
638 mask |= BIT(lane);
639 }
640
641 return mask;
642 }
643
644
chv_set_phy_signal_level(struct intel_encoder * encoder,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)645 void chv_set_phy_signal_level(struct intel_encoder *encoder,
646 u32 deemph_reg_value, u32 margin_reg_value,
647 bool uniq_trans_scale)
648 {
649 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
650 struct intel_digital_port *dport = enc_to_dig_port(encoder);
651 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
652 enum dpio_channel ch = vlv_dport_to_channel(dport);
653 enum pipe pipe = intel_crtc->pipe;
654 u32 val;
655 int i;
656
657 vlv_dpio_get(dev_priv);
658
659 /* Clear calc init */
660 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
661 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
662 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
663 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
664 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
665
666 if (intel_crtc->config->lane_count > 2) {
667 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
668 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
669 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
670 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
671 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
672 }
673
674 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
675 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
676 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
677 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
678
679 if (intel_crtc->config->lane_count > 2) {
680 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
681 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
682 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
683 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
684 }
685
686 /* Program swing deemph */
687 for (i = 0; i < intel_crtc->config->lane_count; i++) {
688 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
689 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
690 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
691 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
692 }
693
694 /* Program swing margin */
695 for (i = 0; i < intel_crtc->config->lane_count; i++) {
696 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
697
698 val &= ~DPIO_SWING_MARGIN000_MASK;
699 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
700
701 /*
702 * Supposedly this value shouldn't matter when unique transition
703 * scale is disabled, but in fact it does matter. Let's just
704 * always program the same value and hope it's OK.
705 */
706 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
707 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
708
709 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
710 }
711
712 /*
713 * The document said it needs to set bit 27 for ch0 and bit 26
714 * for ch1. Might be a typo in the doc.
715 * For now, for this unique transition scale selection, set bit
716 * 27 for ch0 and ch1.
717 */
718 for (i = 0; i < intel_crtc->config->lane_count; i++) {
719 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
720 if (uniq_trans_scale)
721 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
722 else
723 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
724 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
725 }
726
727 /* Start swing calculation */
728 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
729 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
730 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
731
732 if (intel_crtc->config->lane_count > 2) {
733 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
734 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
735 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
736 }
737
738 vlv_dpio_put(dev_priv);
739 }
740
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)741 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
742 const struct intel_crtc_state *crtc_state,
743 bool reset)
744 {
745 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
746 enum dpio_channel ch = vlv_dport_to_channel(enc_to_dig_port(encoder));
747 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
748 enum pipe pipe = crtc->pipe;
749 u32 val;
750
751 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
752 if (reset)
753 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
754 else
755 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
756 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
757
758 if (crtc_state->lane_count > 2) {
759 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
760 if (reset)
761 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
762 else
763 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
764 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
765 }
766
767 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
768 val |= CHV_PCS_REQ_SOFTRESET_EN;
769 if (reset)
770 val &= ~DPIO_PCS_CLK_SOFT_RESET;
771 else
772 val |= DPIO_PCS_CLK_SOFT_RESET;
773 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
774
775 if (crtc_state->lane_count > 2) {
776 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
777 val |= CHV_PCS_REQ_SOFTRESET_EN;
778 if (reset)
779 val &= ~DPIO_PCS_CLK_SOFT_RESET;
780 else
781 val |= DPIO_PCS_CLK_SOFT_RESET;
782 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
783 }
784 }
785
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)786 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
787 const struct intel_crtc_state *crtc_state)
788 {
789 struct intel_digital_port *dport = enc_to_dig_port(encoder);
790 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
791 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
792 enum dpio_channel ch = vlv_dport_to_channel(dport);
793 enum pipe pipe = crtc->pipe;
794 unsigned int lane_mask =
795 intel_dp_unused_lane_mask(crtc_state->lane_count);
796 u32 val;
797
798 /*
799 * Must trick the second common lane into life.
800 * Otherwise we can't even access the PLL.
801 */
802 if (ch == DPIO_CH0 && pipe == PIPE_B)
803 dport->release_cl2_override =
804 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
805
806 chv_phy_powergate_lanes(encoder, true, lane_mask);
807
808 vlv_dpio_get(dev_priv);
809
810 /* Assert data lane reset */
811 chv_data_lane_soft_reset(encoder, crtc_state, true);
812
813 /* program left/right clock distribution */
814 if (pipe != PIPE_B) {
815 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
816 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
817 if (ch == DPIO_CH0)
818 val |= CHV_BUFLEFTENA1_FORCE;
819 if (ch == DPIO_CH1)
820 val |= CHV_BUFRIGHTENA1_FORCE;
821 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
822 } else {
823 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
824 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
825 if (ch == DPIO_CH0)
826 val |= CHV_BUFLEFTENA2_FORCE;
827 if (ch == DPIO_CH1)
828 val |= CHV_BUFRIGHTENA2_FORCE;
829 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
830 }
831
832 /* program clock channel usage */
833 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
834 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
835 if (pipe != PIPE_B)
836 val &= ~CHV_PCS_USEDCLKCHANNEL;
837 else
838 val |= CHV_PCS_USEDCLKCHANNEL;
839 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
840
841 if (crtc_state->lane_count > 2) {
842 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
843 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
844 if (pipe != PIPE_B)
845 val &= ~CHV_PCS_USEDCLKCHANNEL;
846 else
847 val |= CHV_PCS_USEDCLKCHANNEL;
848 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
849 }
850
851 /*
852 * This a a bit weird since generally CL
853 * matches the pipe, but here we need to
854 * pick the CL based on the port.
855 */
856 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
857 if (pipe != PIPE_B)
858 val &= ~CHV_CMN_USEDCLKCHANNEL;
859 else
860 val |= CHV_CMN_USEDCLKCHANNEL;
861 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
862
863 vlv_dpio_put(dev_priv);
864 }
865
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)866 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
867 const struct intel_crtc_state *crtc_state)
868 {
869 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
870 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
871 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
872 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
873 enum dpio_channel ch = vlv_dport_to_channel(dport);
874 enum pipe pipe = crtc->pipe;
875 int data, i, stagger;
876 u32 val;
877
878 vlv_dpio_get(dev_priv);
879
880 /* allow hardware to manage TX FIFO reset source */
881 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
882 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
883 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
884
885 if (crtc_state->lane_count > 2) {
886 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
887 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
888 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
889 }
890
891 /* Program Tx lane latency optimal setting*/
892 for (i = 0; i < crtc_state->lane_count; i++) {
893 /* Set the upar bit */
894 if (crtc_state->lane_count == 1)
895 data = 0x0;
896 else
897 data = (i == 1) ? 0x0 : 0x1;
898 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
899 data << DPIO_UPAR_SHIFT);
900 }
901
902 /* Data lane stagger programming */
903 if (crtc_state->port_clock > 270000)
904 stagger = 0x18;
905 else if (crtc_state->port_clock > 135000)
906 stagger = 0xd;
907 else if (crtc_state->port_clock > 67500)
908 stagger = 0x7;
909 else if (crtc_state->port_clock > 33750)
910 stagger = 0x4;
911 else
912 stagger = 0x2;
913
914 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
915 val |= DPIO_TX2_STAGGER_MASK(0x1f);
916 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
917
918 if (crtc_state->lane_count > 2) {
919 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
920 val |= DPIO_TX2_STAGGER_MASK(0x1f);
921 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
922 }
923
924 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
925 DPIO_LANESTAGGER_STRAP(stagger) |
926 DPIO_LANESTAGGER_STRAP_OVRD |
927 DPIO_TX1_STAGGER_MASK(0x1f) |
928 DPIO_TX1_STAGGER_MULT(6) |
929 DPIO_TX2_STAGGER_MULT(0));
930
931 if (crtc_state->lane_count > 2) {
932 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
933 DPIO_LANESTAGGER_STRAP(stagger) |
934 DPIO_LANESTAGGER_STRAP_OVRD |
935 DPIO_TX1_STAGGER_MASK(0x1f) |
936 DPIO_TX1_STAGGER_MULT(7) |
937 DPIO_TX2_STAGGER_MULT(5));
938 }
939
940 /* Deassert data lane reset */
941 chv_data_lane_soft_reset(encoder, crtc_state, false);
942
943 vlv_dpio_put(dev_priv);
944 }
945
chv_phy_release_cl2_override(struct intel_encoder * encoder)946 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
947 {
948 struct intel_digital_port *dport = enc_to_dig_port(encoder);
949 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
950
951 if (dport->release_cl2_override) {
952 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
953 dport->release_cl2_override = false;
954 }
955 }
956
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)957 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
958 const struct intel_crtc_state *old_crtc_state)
959 {
960 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
961 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
962 u32 val;
963
964 vlv_dpio_get(dev_priv);
965
966 /* disable left/right clock distribution */
967 if (pipe != PIPE_B) {
968 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
969 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
970 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
971 } else {
972 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
973 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
974 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
975 }
976
977 vlv_dpio_put(dev_priv);
978
979 /*
980 * Leave the power down bit cleared for at least one
981 * lane so that chv_powergate_phy_ch() will power
982 * on something when the channel is otherwise unused.
983 * When the port is off and the override is removed
984 * the lanes power down anyway, so otherwise it doesn't
985 * really matter what the state of power down bits is
986 * after this.
987 */
988 chv_phy_powergate_lanes(encoder, false, 0x0);
989 }
990
vlv_set_phy_signal_level(struct intel_encoder * encoder,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)991 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
992 u32 demph_reg_value, u32 preemph_reg_value,
993 u32 uniqtranscale_reg_value, u32 tx3_demph)
994 {
995 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996 struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
997 struct intel_digital_port *dport = enc_to_dig_port(encoder);
998 enum dpio_channel port = vlv_dport_to_channel(dport);
999 enum pipe pipe = intel_crtc->pipe;
1000
1001 vlv_dpio_get(dev_priv);
1002
1003 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1004 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1005 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1006 uniqtranscale_reg_value);
1007 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1008
1009 if (tx3_demph)
1010 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1011
1012 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1013 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1014 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1015
1016 vlv_dpio_put(dev_priv);
1017 }
1018
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1019 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1020 const struct intel_crtc_state *crtc_state)
1021 {
1022 struct intel_digital_port *dport = enc_to_dig_port(encoder);
1023 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1024 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1025 enum dpio_channel port = vlv_dport_to_channel(dport);
1026 enum pipe pipe = crtc->pipe;
1027
1028 /* Program Tx lane resets to default */
1029 vlv_dpio_get(dev_priv);
1030
1031 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1032 DPIO_PCS_TX_LANE2_RESET |
1033 DPIO_PCS_TX_LANE1_RESET);
1034 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1035 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1036 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1037 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1038 DPIO_PCS_CLK_SOFT_RESET);
1039
1040 /* Fix up inter-pair skew failure */
1041 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1042 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1043 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1044
1045 vlv_dpio_put(dev_priv);
1046 }
1047
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1048 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1049 const struct intel_crtc_state *crtc_state)
1050 {
1051 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1052 struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
1053 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1054 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1055 enum dpio_channel port = vlv_dport_to_channel(dport);
1056 enum pipe pipe = crtc->pipe;
1057 u32 val;
1058
1059 vlv_dpio_get(dev_priv);
1060
1061 /* Enable clock channels for this port */
1062 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1063 val = 0;
1064 if (pipe)
1065 val |= (1<<21);
1066 else
1067 val &= ~(1<<21);
1068 val |= 0x001000c4;
1069 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1070
1071 /* Program lane clock */
1072 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1073 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1074
1075 vlv_dpio_put(dev_priv);
1076 }
1077
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1078 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1079 const struct intel_crtc_state *old_crtc_state)
1080 {
1081 struct intel_digital_port *dport = enc_to_dig_port(encoder);
1082 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1083 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1084 enum dpio_channel port = vlv_dport_to_channel(dport);
1085 enum pipe pipe = crtc->pipe;
1086
1087 vlv_dpio_get(dev_priv);
1088 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1089 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1090 vlv_dpio_put(dev_priv);
1091 }
1092