xref: /netbsd-src/external/bsd/flex/dist/src/dfa.c (revision 596f930c293ef11c72f1fc18967768d00c27abef)
1 /* dfa - DFA construction routines */
2 
3 /*  Copyright (c) 1990 The Regents of the University of California. */
4 /*  All rights reserved. */
5 
6 /*  This code is derived from software contributed to Berkeley by */
7 /*  Vern Paxson. */
8 
9 /*  The United States Government has rights in this work pursuant */
10 /*  to contract no. DE-AC03-76SF00098 between the United States */
11 /*  Department of Energy and the University of California. */
12 
13 /*  Redistribution and use in source and binary forms, with or without */
14 /*  modification, are permitted provided that the following conditions */
15 /*  are met: */
16 
17 /*  1. Redistributions of source code must retain the above copyright */
18 /*     notice, this list of conditions and the following disclaimer. */
19 /*  2. Redistributions in binary form must reproduce the above copyright */
20 /*     notice, this list of conditions and the following disclaimer in the */
21 /*     documentation and/or other materials provided with the distribution. */
22 
23 /*  Neither the name of the University nor the names of its contributors */
24 /*  may be used to endorse or promote products derived from this software */
25 /*  without specific prior written permission. */
26 
27 /*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
28 /*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
29 /*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
30 /*  PURPOSE. */
31 #include "flexdef.h"
32 __RCSID("$NetBSD: dfa.c,v 1.4 2018/12/23 16:27:17 christos Exp $");
33 
34 #include "tables.h"
35 
36 /* declare functions that have forward references */
37 
38 void	dump_associated_rules(FILE *, int);
39 void	dump_transitions(FILE *, int[]);
40 void	sympartition(int[], int, int[], int[]);
41 int	symfollowset(int[], int, int, int[]);
42 
43 
44 /* check_for_backing_up - check a DFA state for backing up
45  *
46  * synopsis
47  *     void check_for_backing_up( int ds, int state[numecs] );
48  *
49  * ds is the number of the state to check and state[] is its out-transitions,
50  * indexed by equivalence class.
51  */
52 
check_for_backing_up(int ds,int state[])53 void check_for_backing_up (int ds, int state[])
54 {
55 	if ((reject && !dfaacc[ds].dfaacc_set) || (!reject && !dfaacc[ds].dfaacc_state)) {	/* state is non-accepting */
56 		++num_backing_up;
57 
58 		if (backing_up_report) {
59 			fprintf (backing_up_file,
60 				 _("State #%d is non-accepting -\n"), ds);
61 
62 			/* identify the state */
63 			dump_associated_rules (backing_up_file, ds);
64 
65 			/* Now identify it further using the out- and
66 			 * jam-transitions.
67 			 */
68 			dump_transitions (backing_up_file, state);
69 
70 			putc ('\n', backing_up_file);
71 		}
72 	}
73 }
74 
75 
76 /* check_trailing_context - check to see if NFA state set constitutes
77  *                          "dangerous" trailing context
78  *
79  * synopsis
80  *    void check_trailing_context( int nfa_states[num_states+1], int num_states,
81  *				int accset[nacc+1], int nacc );
82  *
83  * NOTES
84  *  Trailing context is "dangerous" if both the head and the trailing
85  *  part are of variable size \and/ there's a DFA state which contains
86  *  both an accepting state for the head part of the rule and NFA states
87  *  which occur after the beginning of the trailing context.
88  *
89  *  When such a rule is matched, it's impossible to tell if having been
90  *  in the DFA state indicates the beginning of the trailing context or
91  *  further-along scanning of the pattern.  In these cases, a warning
92  *  message is issued.
93  *
94  *    nfa_states[1 .. num_states] is the list of NFA states in the DFA.
95  *    accset[1 .. nacc] is the list of accepting numbers for the DFA state.
96  */
97 
check_trailing_context(int * nfa_states,int num_states,int * accset,int nacc)98 void check_trailing_context (int *nfa_states, int num_states, int *accset, int nacc)
99 {
100 	int i, j;
101 
102 	for (i = 1; i <= num_states; ++i) {
103 		int     ns = nfa_states[i];
104 		int type = state_type[ns];
105 		int ar = assoc_rule[ns];
106 
107 		if (type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE) {	/* do nothing */
108 		}
109 
110 		else if (type == STATE_TRAILING_CONTEXT) {
111 			/* Potential trouble.  Scan set of accepting numbers
112 			 * for the one marking the end of the "head".  We
113 			 * assume that this looping will be fairly cheap
114 			 * since it's rare that an accepting number set
115 			 * is large.
116 			 */
117 			for (j = 1; j <= nacc; ++j)
118 				if (accset[j] & YY_TRAILING_HEAD_MASK) {
119 					line_warning (_
120 						      ("dangerous trailing context"),
121 						      rule_linenum[ar]);
122 					return;
123 				}
124 		}
125 	}
126 }
127 
128 
129 /* dump_associated_rules - list the rules associated with a DFA state
130  *
131  * Goes through the set of NFA states associated with the DFA and
132  * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
133  * and writes a report to the given file.
134  */
135 
dump_associated_rules(FILE * file,int ds)136 void dump_associated_rules (FILE *file, int ds)
137 {
138 	int i, j;
139 	int num_associated_rules = 0;
140 	int rule_set[MAX_ASSOC_RULES + 1];
141 	int *dset = dss[ds];
142 	int size = dfasiz[ds];
143 
144 	for (i = 1; i <= size; ++i) {
145 		int rule_num = rule_linenum[assoc_rule[dset[i]]];
146 
147 		for (j = 1; j <= num_associated_rules; ++j)
148 			if (rule_num == rule_set[j])
149 				break;
150 
151 		if (j > num_associated_rules) {	/* new rule */
152 			if (num_associated_rules < MAX_ASSOC_RULES)
153 				rule_set[++num_associated_rules] =
154 					rule_num;
155 		}
156 	}
157 
158 	qsort (&rule_set [1], (size_t) num_associated_rules, sizeof (rule_set [1]), intcmp);
159 
160 	fprintf (file, _(" associated rule line numbers:"));
161 
162 	for (i = 1; i <= num_associated_rules; ++i) {
163 		if (i % 8 == 1)
164 			putc ('\n', file);
165 
166 		fprintf (file, "\t%d", rule_set[i]);
167 	}
168 
169 	putc ('\n', file);
170 }
171 
172 
173 /* dump_transitions - list the transitions associated with a DFA state
174  *
175  * synopsis
176  *     dump_transitions( FILE *file, int state[numecs] );
177  *
178  * Goes through the set of out-transitions and lists them in human-readable
179  * form (i.e., not as equivalence classes); also lists jam transitions
180  * (i.e., all those which are not out-transitions, plus EOF).  The dump
181  * is done to the given file.
182  */
183 
dump_transitions(FILE * file,int state[])184 void dump_transitions (FILE *file, int state[])
185 {
186 	int i, ec;
187 	int out_char_set[CSIZE];
188 
189 	for (i = 0; i < csize; ++i) {
190 		ec = ABS (ecgroup[i]);
191 		out_char_set[i] = state[ec];
192 	}
193 
194 	fprintf (file, _(" out-transitions: "));
195 
196 	list_character_set (file, out_char_set);
197 
198 	/* now invert the members of the set to get the jam transitions */
199 	for (i = 0; i < csize; ++i)
200 		out_char_set[i] = !out_char_set[i];
201 
202 	fprintf (file, _("\n jam-transitions: EOF "));
203 
204 	list_character_set (file, out_char_set);
205 
206 	putc ('\n', file);
207 }
208 
209 
210 /* epsclosure - construct the epsilon closure of a set of ndfa states
211  *
212  * synopsis
213  *    int *epsclosure( int t[num_states], int *numstates_addr,
214  *			int accset[num_rules+1], int *nacc_addr,
215  *			int *hashval_addr );
216  *
217  * NOTES
218  *  The epsilon closure is the set of all states reachable by an arbitrary
219  *  number of epsilon transitions, which themselves do not have epsilon
220  *  transitions going out, unioned with the set of states which have non-null
221  *  accepting numbers.  t is an array of size numstates of nfa state numbers.
222  *  Upon return, t holds the epsilon closure and *numstates_addr is updated.
223  *  accset holds a list of the accepting numbers, and the size of accset is
224  *  given by *nacc_addr.  t may be subjected to reallocation if it is not
225  *  large enough to hold the epsilon closure.
226  *
227  *  hashval is the hash value for the dfa corresponding to the state set.
228  */
229 
epsclosure(int * t,int * ns_addr,int accset[],int * nacc_addr,int * hv_addr)230 int    *epsclosure (int *t, int *ns_addr, int accset[], int *nacc_addr, int *hv_addr)
231 {
232 	int     stkpos, ns, tsp;
233 	int     numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
234 	int     stkend, nstate;
235 	static int did_stk_init = false, *stk;
236 
237 #define MARK_STATE(state) \
238 do{ trans1[state] = trans1[state] - MARKER_DIFFERENCE;} while(0)
239 
240 #define IS_MARKED(state) (trans1[state] < 0)
241 
242 #define UNMARK_STATE(state) \
243 do{ trans1[state] = trans1[state] + MARKER_DIFFERENCE;} while(0)
244 
245 #define CHECK_ACCEPT(state) \
246 do{ \
247 nfaccnum = accptnum[state]; \
248 if ( nfaccnum != NIL ) \
249 accset[++nacc] = nfaccnum; \
250 }while(0)
251 
252 #define DO_REALLOCATION() \
253 do { \
254 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
255 ++num_reallocs; \
256 t = reallocate_integer_array( t, current_max_dfa_size ); \
257 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
258 }while(0) \
259 
260 #define PUT_ON_STACK(state) \
261 do { \
262 if ( ++stkend >= current_max_dfa_size ) \
263 DO_REALLOCATION(); \
264 stk[stkend] = state; \
265 MARK_STATE(state); \
266 }while(0)
267 
268 #define ADD_STATE(state) \
269 do { \
270 if ( ++numstates >= current_max_dfa_size ) \
271 DO_REALLOCATION(); \
272 t[numstates] = state; \
273 hashval += state; \
274 }while(0)
275 
276 #define STACK_STATE(state) \
277 do { \
278 PUT_ON_STACK(state); \
279 CHECK_ACCEPT(state); \
280 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
281 ADD_STATE(state); \
282 }while(0)
283 
284 
285 	if (!did_stk_init) {
286 		stk = allocate_integer_array (current_max_dfa_size);
287 		did_stk_init = true;
288 	}
289 
290 	nacc = stkend = hashval = 0;
291 
292 	for (nstate = 1; nstate <= numstates; ++nstate) {
293 		ns = t[nstate];
294 
295 		/* The state could be marked if we've already pushed it onto
296 		 * the stack.
297 		 */
298 		if (!IS_MARKED (ns)) {
299 			PUT_ON_STACK (ns);
300 			CHECK_ACCEPT (ns);
301 			hashval += ns;
302 		}
303 	}
304 
305 	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
306 		ns = stk[stkpos];
307 		transsym = transchar[ns];
308 
309 		if (transsym == SYM_EPSILON) {
310 			tsp = trans1[ns] + MARKER_DIFFERENCE;
311 
312 			if (tsp != NO_TRANSITION) {
313 				if (!IS_MARKED (tsp))
314 					STACK_STATE (tsp);
315 
316 				tsp = trans2[ns];
317 
318 				if (tsp != NO_TRANSITION
319 				    && !IS_MARKED (tsp))
320 					STACK_STATE (tsp);
321 			}
322 		}
323 	}
324 
325 	/* Clear out "visit" markers. */
326 
327 	for (stkpos = 1; stkpos <= stkend; ++stkpos) {
328 		if (IS_MARKED (stk[stkpos]))
329 			UNMARK_STATE (stk[stkpos]);
330 		else
331 			flexfatal (_
332 				   ("consistency check failed in epsclosure()"));
333 	}
334 
335 	*ns_addr = numstates;
336 	*hv_addr = hashval;
337 	*nacc_addr = nacc;
338 
339 	return t;
340 }
341 
342 
343 /* increase_max_dfas - increase the maximum number of DFAs */
344 
increase_max_dfas(void)345 void increase_max_dfas (void)
346 {
347 	current_max_dfas += MAX_DFAS_INCREMENT;
348 
349 	++num_reallocs;
350 
351 	base = reallocate_integer_array (base, current_max_dfas);
352 	def = reallocate_integer_array (def, current_max_dfas);
353 	dfasiz = reallocate_integer_array (dfasiz, current_max_dfas);
354 	accsiz = reallocate_integer_array (accsiz, current_max_dfas);
355 	dhash = reallocate_integer_array (dhash, current_max_dfas);
356 	dss = reallocate_int_ptr_array (dss, current_max_dfas);
357 	dfaacc = reallocate_dfaacc_union (dfaacc, current_max_dfas);
358 
359 	if (nultrans)
360 		nultrans =
361 			reallocate_integer_array (nultrans,
362 						  current_max_dfas);
363 }
364 
365 
366 /* ntod - convert an ndfa to a dfa
367  *
368  * Creates the dfa corresponding to the ndfa we've constructed.  The
369  * dfa starts out in state #1.
370  */
371 
ntod(void)372 void ntod (void)
373 {
374 	int    *accset, ds, nacc, newds;
375 	int     sym, hashval, numstates, dsize;
376 	int     num_full_table_rows=0;	/* used only for -f */
377 	int    *nset, *dset;
378 	int     targptr, totaltrans, i, comstate, comfreq, targ;
379 	int     symlist[CSIZE + 1];
380 	int     num_start_states;
381 	int     todo_head, todo_next;
382 
383 	struct yytbl_data *yynxt_tbl = 0;
384 	flex_int32_t *yynxt_data = 0, yynxt_curr = 0;
385 
386 	/* Note that the following are indexed by *equivalence classes*
387 	 * and not by characters.  Since equivalence classes are indexed
388 	 * beginning with 1, even if the scanner accepts NUL's, this
389 	 * means that (since every character is potentially in its own
390 	 * equivalence class) these arrays must have room for indices
391 	 * from 1 to CSIZE, so their size must be CSIZE + 1.
392 	 */
393 	int     duplist[CSIZE + 1], state[CSIZE + 1];
394 	int     targfreq[CSIZE + 1] = {0}, targstate[CSIZE + 1];
395 
396 	/* accset needs to be large enough to hold all of the rules present
397 	 * in the input, *plus* their YY_TRAILING_HEAD_MASK variants.
398 	 */
399 	accset = allocate_integer_array ((num_rules + 1) * 2);
400 	nset = allocate_integer_array (current_max_dfa_size);
401 
402 	/* The "todo" queue is represented by the head, which is the DFA
403 	 * state currently being processed, and the "next", which is the
404 	 * next DFA state number available (not in use).  We depend on the
405 	 * fact that snstods() returns DFA's \in increasing order/, and thus
406 	 * need only know the bounds of the dfas to be processed.
407 	 */
408 	todo_head = todo_next = 0;
409 
410 	for (i = 0; i <= csize; ++i) {
411 		duplist[i] = NIL;
412 		symlist[i] = false;
413 	}
414 
415 	for (i = 0; i <= num_rules; ++i)
416 		accset[i] = NIL;
417 
418 	if (trace) {
419 		dumpnfa (scset[1]);
420 		fputs (_("\n\nDFA Dump:\n\n"), stderr);
421 	}
422 
423 	inittbl ();
424 
425 	/* Check to see whether we should build a separate table for
426 	 * transitions on NUL characters.  We don't do this for full-speed
427 	 * (-F) scanners, since for them we don't have a simple state
428 	 * number lying around with which to index the table.  We also
429 	 * don't bother doing it for scanners unless (1) NUL is in its own
430 	 * equivalence class (indicated by a positive value of
431 	 * ecgroup[NUL]), (2) NUL's equivalence class is the last
432 	 * equivalence class, and (3) the number of equivalence classes is
433 	 * the same as the number of characters.  This latter case comes
434 	 * about when useecs is false or when it's true but every character
435 	 * still manages to land in its own class (unlikely, but it's
436 	 * cheap to check for).  If all these things are true then the
437 	 * character code needed to represent NUL's equivalence class for
438 	 * indexing the tables is going to take one more bit than the
439 	 * number of characters, and therefore we won't be assured of
440 	 * being able to fit it into a YY_CHAR variable.  This rules out
441 	 * storing the transitions in a compressed table, since the code
442 	 * for interpreting them uses a YY_CHAR variable (perhaps it
443 	 * should just use an integer, though; this is worth pondering ...
444 	 * ###).
445 	 *
446 	 * Finally, for full tables, we want the number of entries in the
447 	 * table to be a power of two so the array references go fast (it
448 	 * will just take a shift to compute the major index).  If
449 	 * encoding NUL's transitions in the table will spoil this, we
450 	 * give it its own table (note that this will be the case if we're
451 	 * not using equivalence classes).
452 	 */
453 
454 	/* Note that the test for ecgroup[0] == numecs below accomplishes
455 	 * both (1) and (2) above
456 	 */
457 	if (!fullspd && ecgroup[0] == numecs) {
458 		/* NUL is alone in its equivalence class, which is the
459 		 * last one.
460 		 */
461 		int     use_NUL_table = (numecs == csize);
462 
463 		if (fulltbl && !use_NUL_table) {
464 			/* We still may want to use the table if numecs
465 			 * is a power of 2.
466 			 */
467 			if (numecs <= csize && is_power_of_2(numecs)) {
468 				use_NUL_table = true;
469 			}
470 		}
471 
472 		if (use_NUL_table)
473 			nultrans =
474 				allocate_integer_array (current_max_dfas);
475 
476 		/* From now on, nultrans != nil indicates that we're
477 		 * saving null transitions for later, separate encoding.
478 		 */
479 	}
480 
481 
482 	if (fullspd) {
483 		for (i = 0; i <= numecs; ++i)
484 			state[i] = 0;
485 
486 		place_state (state, 0, 0);
487 		dfaacc[0].dfaacc_state = 0;
488 	}
489 
490 	else if (fulltbl) {
491 		if (nultrans)
492 			/* We won't be including NUL's transitions in the
493 			 * table, so build it for entries from 0 .. numecs - 1.
494 			 */
495 			num_full_table_rows = numecs;
496 
497 		else
498 			/* Take into account the fact that we'll be including
499 			 * the NUL entries in the transition table.  Build it
500 			 * from 0 .. numecs.
501 			 */
502 			num_full_table_rows = numecs + 1;
503 
504 		/* Begin generating yy_nxt[][]
505 		 * This spans the entire LONG function.
506 		 * This table is tricky because we don't know how big it will be.
507 		 * So we'll have to realloc() on the way...
508 		 * we'll wait until we can calculate yynxt_tbl->td_hilen.
509 		 */
510 		yynxt_tbl = calloc(1, sizeof (struct yytbl_data));
511 
512 		yytbl_data_init (yynxt_tbl, YYTD_ID_NXT);
513 		yynxt_tbl->td_hilen = 1;
514 		yynxt_tbl->td_lolen = (flex_uint32_t) num_full_table_rows;
515 		yynxt_tbl->td_data = yynxt_data =
516 			calloc(yynxt_tbl->td_lolen *
517 					    yynxt_tbl->td_hilen,
518 					    sizeof (flex_int32_t));
519 		yynxt_curr = 0;
520 
521 		buf_prints (&yydmap_buf,
522 			    "\t{YYTD_ID_NXT, (void**)&yy_nxt, sizeof(%s)},\n",
523 			    long_align ? "flex_int32_t" : "flex_int16_t");
524 
525 		/* Unless -Ca, declare it "short" because it's a real
526 		 * long-shot that that won't be large enough.
527 		 */
528 		if (gentables)
529 			out_str_dec
530 				("static const %s yy_nxt[][%d] =\n    {\n",
531 				 long_align ? "flex_int32_t" : "flex_int16_t",
532 				 num_full_table_rows);
533 		else {
534 			out_dec ("#undef YY_NXT_LOLEN\n#define YY_NXT_LOLEN (%d)\n", num_full_table_rows);
535 			out_str ("static const %s *yy_nxt =0;\n",
536 				 long_align ? "flex_int32_t" : "flex_int16_t");
537 		}
538 
539 
540 		if (gentables)
541 			outn ("    {");
542 
543 		/* Generate 0 entries for state #0. */
544 		for (i = 0; i < num_full_table_rows; ++i) {
545 			mk2data (0);
546 			yynxt_data[yynxt_curr++] = 0;
547 		}
548 
549 		dataflush ();
550 		if (gentables)
551 			outn ("    },\n");
552 	}
553 
554 	/* Create the first states. */
555 
556 	num_start_states = lastsc * 2;
557 
558 	for (i = 1; i <= num_start_states; ++i) {
559 		numstates = 1;
560 
561 		/* For each start condition, make one state for the case when
562 		 * we're at the beginning of the line (the '^' operator) and
563 		 * one for the case when we're not.
564 		 */
565 		if (i % 2 == 1)
566 			nset[numstates] = scset[(i / 2) + 1];
567 		else
568 			nset[numstates] =
569 				mkbranch (scbol[i / 2], scset[i / 2]);
570 
571 		nset = epsclosure (nset, &numstates, accset, &nacc,
572 				   &hashval);
573 
574 		if (snstods (nset, numstates, accset, nacc, hashval, &ds)) {
575 			numas += nacc;
576 			totnst += numstates;
577 			++todo_next;
578 
579 			if (variable_trailing_context_rules && nacc > 0)
580 				check_trailing_context (nset, numstates,
581 							accset, nacc);
582 		}
583 	}
584 
585 	if (!fullspd) {
586 		if (!snstods (nset, 0, accset, 0, 0, &end_of_buffer_state))
587 			flexfatal (_
588 				   ("could not create unique end-of-buffer state"));
589 
590 		++numas;
591 		++num_start_states;
592 		++todo_next;
593 	}
594 
595 
596 	while (todo_head < todo_next) {
597 		targptr = 0;
598 		totaltrans = 0;
599 
600 		for (i = 1; i <= numecs; ++i)
601 			state[i] = 0;
602 
603 		ds = ++todo_head;
604 
605 		dset = dss[ds];
606 		dsize = dfasiz[ds];
607 
608 		if (trace)
609 			fprintf (stderr, _("state # %d:\n"), ds);
610 
611 		sympartition (dset, dsize, symlist, duplist);
612 
613 		for (sym = 1; sym <= numecs; ++sym) {
614 			if (symlist[sym]) {
615 				symlist[sym] = 0;
616 
617 				if (duplist[sym] == NIL) {
618 					/* Symbol has unique out-transitions. */
619 					numstates =
620 						symfollowset (dset, dsize,
621 							      sym, nset);
622 					nset = epsclosure (nset,
623 							   &numstates,
624 							   accset, &nacc,
625 							   &hashval);
626 
627 					if (snstods
628 					    (nset, numstates, accset, nacc,
629 					     hashval, &newds)) {
630 						totnst = totnst +
631 							numstates;
632 						++todo_next;
633 						numas += nacc;
634 
635 						if (variable_trailing_context_rules && nacc > 0)
636 							check_trailing_context
637 								(nset,
638 								 numstates,
639 								 accset,
640 								 nacc);
641 					}
642 
643 					state[sym] = newds;
644 
645 					if (trace)
646 						fprintf (stderr,
647 							 "\t%d\t%d\n", sym,
648 							 newds);
649 
650 					targfreq[++targptr] = 1;
651 					targstate[targptr] = newds;
652 					++numuniq;
653 				}
654 
655 				else {
656 					/* sym's equivalence class has the same
657 					 * transitions as duplist(sym)'s
658 					 * equivalence class.
659 					 */
660 					targ = state[duplist[sym]];
661 					state[sym] = targ;
662 
663 					if (trace)
664 						fprintf (stderr,
665 							 "\t%d\t%d\n", sym,
666 							 targ);
667 
668 					/* Update frequency count for
669 					 * destination state.
670 					 */
671 
672 					i = 0;
673 					while (targstate[++i] != targ) ;
674 
675 					++targfreq[i];
676 					++numdup;
677 				}
678 
679 				++totaltrans;
680 				duplist[sym] = NIL;
681 			}
682 		}
683 
684 
685 		numsnpairs += totaltrans;
686 
687 		if (ds > num_start_states)
688 			check_for_backing_up (ds, state);
689 
690 		if (nultrans) {
691 			nultrans[ds] = state[NUL_ec];
692 			state[NUL_ec] = 0;	/* remove transition */
693 		}
694 
695 		if (fulltbl) {
696 
697 			/* Each time we hit here, it's another td_hilen, so we realloc. */
698 			yynxt_tbl->td_hilen++;
699 			yynxt_tbl->td_data = yynxt_data =
700 				realloc (yynxt_data,
701 						     yynxt_tbl->td_hilen *
702 						     yynxt_tbl->td_lolen *
703 						     sizeof (flex_int32_t));
704 
705 
706 			if (gentables)
707 				outn ("    {");
708 
709 			/* Supply array's 0-element. */
710 			if (ds == end_of_buffer_state) {
711 				mk2data (-end_of_buffer_state);
712 				yynxt_data[yynxt_curr++] =
713 					-end_of_buffer_state;
714 			}
715 			else {
716 				mk2data (end_of_buffer_state);
717 				yynxt_data[yynxt_curr++] =
718 					end_of_buffer_state;
719 			}
720 
721 			for (i = 1; i < num_full_table_rows; ++i) {
722 				/* Jams are marked by negative of state
723 				 * number.
724 				 */
725 				mk2data (state[i] ? state[i] : -ds);
726 				yynxt_data[yynxt_curr++] =
727 					state[i] ? state[i] : -ds;
728 			}
729 
730 			dataflush ();
731 			if (gentables)
732 				outn ("    },\n");
733 		}
734 
735 		else if (fullspd)
736 			place_state (state, ds, totaltrans);
737 
738 		else if (ds == end_of_buffer_state)
739 			/* Special case this state to make sure it does what
740 			 * it's supposed to, i.e., jam on end-of-buffer.
741 			 */
742 			stack1 (ds, 0, 0, JAMSTATE);
743 
744 		else {		/* normal, compressed state */
745 
746 			/* Determine which destination state is the most
747 			 * common, and how many transitions to it there are.
748 			 */
749 
750 			comfreq = 0;
751 			comstate = 0;
752 
753 			for (i = 1; i <= targptr; ++i)
754 				if (targfreq[i] > comfreq) {
755 					comfreq = targfreq[i];
756 					comstate = targstate[i];
757 				}
758 
759 			bldtbl (state, ds, totaltrans, comstate, comfreq);
760 		}
761 	}
762 
763 	if (fulltbl) {
764 		dataend ();
765 		if (tablesext) {
766 			yytbl_data_compress (yynxt_tbl);
767 			if (yytbl_data_fwrite (&tableswr, yynxt_tbl) < 0)
768 				flexerror (_
769 					   ("Could not write yynxt_tbl[][]"));
770 		}
771 		if (yynxt_tbl) {
772 			yytbl_data_destroy (yynxt_tbl);
773 			yynxt_tbl = 0;
774 		}
775 	}
776 
777 	else if (!fullspd) {
778 		cmptmps ();	/* create compressed template entries */
779 
780 		/* Create tables for all the states with only one
781 		 * out-transition.
782 		 */
783 		while (onesp > 0) {
784 			mk1tbl (onestate[onesp], onesym[onesp],
785 				onenext[onesp], onedef[onesp]);
786 			--onesp;
787 		}
788 
789 		mkdeftbl ();
790 	}
791 
792 	free(accset);
793 	free(nset);
794 }
795 
796 
797 /* snstods - converts a set of ndfa states into a dfa state
798  *
799  * synopsis
800  *    is_new_state = snstods( int sns[numstates], int numstates,
801  *				int accset[num_rules+1], int nacc,
802  *				int hashval, int *newds_addr );
803  *
804  * On return, the dfa state number is in newds.
805  */
806 
snstods(int sns[],int numstates,int accset[],int nacc,int hashval,int * newds_addr)807 int snstods (int sns[], int numstates, int accset[], int nacc, int hashval, int *newds_addr)
808 {
809 	int didsort = 0;
810 	int i, j;
811 	int newds, *oldsns;
812 
813 	for (i = 1; i <= lastdfa; ++i)
814 		if (hashval == dhash[i]) {
815 			if (numstates == dfasiz[i]) {
816 				oldsns = dss[i];
817 
818 				if (!didsort) {
819 					/* We sort the states in sns so we
820 					 * can compare it to oldsns quickly.
821 					 */
822 					qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp);
823 					didsort = 1;
824 				}
825 
826 				for (j = 1; j <= numstates; ++j)
827 					if (sns[j] != oldsns[j])
828 						break;
829 
830 				if (j > numstates) {
831 					++dfaeql;
832 					*newds_addr = i;
833 					return 0;
834 				}
835 
836 				++hshcol;
837 			}
838 
839 			else
840 				++hshsave;
841 		}
842 
843 	/* Make a new dfa. */
844 
845 	if (++lastdfa >= current_max_dfas)
846 		increase_max_dfas ();
847 
848 	newds = lastdfa;
849 
850 	dss[newds] = allocate_integer_array (numstates + 1);
851 
852 	/* If we haven't already sorted the states in sns, we do so now,
853 	 * so that future comparisons with it can be made quickly.
854 	 */
855 
856 	if (!didsort)
857           	qsort (&sns [1], (size_t) numstates, sizeof (sns [1]), intcmp);
858 
859 	for (i = 1; i <= numstates; ++i)
860 		dss[newds][i] = sns[i];
861 
862 	dfasiz[newds] = numstates;
863 	dhash[newds] = hashval;
864 
865 	if (nacc == 0) {
866 		if (reject)
867 			dfaacc[newds].dfaacc_set = NULL;
868 		else
869 			dfaacc[newds].dfaacc_state = 0;
870 
871 		accsiz[newds] = 0;
872 	}
873 
874 	else if (reject) {
875 		/* We sort the accepting set in increasing order so the
876 		 * disambiguating rule that the first rule listed is considered
877 		 * match in the event of ties will work.
878 		 */
879 
880 		qsort (&accset [1], (size_t) nacc, sizeof (accset [1]), intcmp);
881 
882 		dfaacc[newds].dfaacc_set =
883 			allocate_integer_array (nacc + 1);
884 
885 		/* Save the accepting set for later */
886 		for (i = 1; i <= nacc; ++i) {
887 			dfaacc[newds].dfaacc_set[i] = accset[i];
888 
889 			if (accset[i] <= num_rules)
890 				/* Who knows, perhaps a REJECT can yield
891 				 * this rule.
892 				 */
893 				rule_useful[accset[i]] = true;
894 		}
895 
896 		accsiz[newds] = nacc;
897 	}
898 
899 	else {
900 		/* Find lowest numbered rule so the disambiguating rule
901 		 * will work.
902 		 */
903 		j = num_rules + 1;
904 
905 		for (i = 1; i <= nacc; ++i)
906 			if (accset[i] < j)
907 				j = accset[i];
908 
909 		dfaacc[newds].dfaacc_state = j;
910 
911 		if (j <= num_rules)
912 			rule_useful[j] = true;
913 	}
914 
915 	*newds_addr = newds;
916 
917 	return 1;
918 }
919 
920 
921 /* symfollowset - follow the symbol transitions one step
922  *
923  * synopsis
924  *    numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
925  *				int transsym, int nset[current_max_dfa_size] );
926  */
927 
symfollowset(int ds[],int dsize,int transsym,int nset[])928 int symfollowset (int ds[], int dsize, int transsym, int nset[])
929 {
930 	int     ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
931 
932 	numstates = 0;
933 
934 	for (i = 1; i <= dsize; ++i) {	/* for each nfa state ns in the state set of ds */
935 		ns = ds[i];
936 		sym = transchar[ns];
937 		tsp = trans1[ns];
938 
939 		if (sym < 0) {	/* it's a character class */
940 			sym = -sym;
941 			ccllist = cclmap[sym];
942 			lenccl = ccllen[sym];
943 
944 			if (cclng[sym]) {
945 				for (j = 0; j < lenccl; ++j) {
946 					/* Loop through negated character
947 					 * class.
948 					 */
949 					ch = ccltbl[ccllist + j];
950 
951 					if (ch == 0)
952 						ch = NUL_ec;
953 
954 					if (ch > transsym)
955 						/* Transsym isn't in negated
956 						 * ccl.
957 						 */
958 						break;
959 
960 					else if (ch == transsym)
961 						/* next 2 */
962 						goto bottom;
963 				}
964 
965 				/* Didn't find transsym in ccl. */
966 				nset[++numstates] = tsp;
967 			}
968 
969 			else
970 				for (j = 0; j < lenccl; ++j) {
971 					ch = ccltbl[ccllist + j];
972 
973 					if (ch == 0)
974 						ch = NUL_ec;
975 
976 					if (ch > transsym)
977 						break;
978 					else if (ch == transsym) {
979 						nset[++numstates] = tsp;
980 						break;
981 					}
982 				}
983 		}
984 
985 		else if (sym == SYM_EPSILON) {	/* do nothing */
986 		}
987 
988 		else if (ABS (ecgroup[sym]) == transsym)
989 			nset[++numstates] = tsp;
990 
991 	      bottom:;
992 	}
993 
994 	return numstates;
995 }
996 
997 
998 /* sympartition - partition characters with same out-transitions
999  *
1000  * synopsis
1001  *    sympartition( int ds[current_max_dfa_size], int numstates,
1002  *			int symlist[numecs], int duplist[numecs] );
1003  */
1004 
sympartition(int ds[],int numstates,int symlist[],int duplist[])1005 void sympartition (int ds[], int numstates, int symlist[], int duplist[])
1006 {
1007 	int     tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1008 
1009 	/* Partitioning is done by creating equivalence classes for those
1010 	 * characters which have out-transitions from the given state.  Thus
1011 	 * we are really creating equivalence classes of equivalence classes.
1012 	 */
1013 
1014 	for (i = 1; i <= numecs; ++i) {	/* initialize equivalence class list */
1015 		duplist[i] = i - 1;
1016 		dupfwd[i] = i + 1;
1017 	}
1018 
1019 	duplist[1] = NIL;
1020 	dupfwd[numecs] = NIL;
1021 
1022 	for (i = 1; i <= numstates; ++i) {
1023 		ns = ds[i];
1024 		tch = transchar[ns];
1025 
1026 		if (tch != SYM_EPSILON) {
1027 			if (tch < -lastccl || tch >= csize) {
1028 				flexfatal (_
1029 					   ("bad transition character detected in sympartition()"));
1030 			}
1031 
1032 			if (tch >= 0) {	/* character transition */
1033 				int     ec = ecgroup[tch];
1034 
1035 				mkechar (ec, dupfwd, duplist);
1036 				symlist[ec] = 1;
1037 			}
1038 
1039 			else {	/* character class */
1040 				tch = -tch;
1041 
1042 				lenccl = ccllen[tch];
1043 				cclp = cclmap[tch];
1044 				mkeccl (ccltbl + cclp, lenccl, dupfwd,
1045 					duplist, numecs, NUL_ec);
1046 
1047 				if (cclng[tch]) {
1048 					j = 0;
1049 
1050 					for (k = 0; k < lenccl; ++k) {
1051 						ich = ccltbl[cclp + k];
1052 
1053 						if (ich == 0)
1054 							ich = NUL_ec;
1055 
1056 						for (++j; j < ich; ++j)
1057 							symlist[j] = 1;
1058 					}
1059 
1060 					for (++j; j <= numecs; ++j)
1061 						symlist[j] = 1;
1062 				}
1063 
1064 				else
1065 					for (k = 0; k < lenccl; ++k) {
1066 						ich = ccltbl[cclp + k];
1067 
1068 						if (ich == 0)
1069 							ich = NUL_ec;
1070 
1071 						symlist[ich] = 1;
1072 					}
1073 			}
1074 		}
1075 	}
1076 }
1077