xref: /netbsd-src/external/gpl2/groff/dist/src/libs/libgroff/geometry.cpp (revision 89a07cf815a29524268025a1139fac4c5190f765)
1 /*	$NetBSD: geometry.cpp,v 1.1.1.1 2016/01/13 18:41:48 christos Exp $	*/
2 
3 // -*- C++ -*-
4 /* Copyright (C) 1989, 1990, 1991, 1992, 2000, 2001, 2002, 2003, 2004
5    Free Software Foundation, Inc.
6      Written by Gaius Mulley <gaius@glam.ac.uk>
7      using adjust_arc_center() from printer.cpp, written by James Clark.
8 
9 This file is part of groff.
10 
11 groff is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 2, or (at your option) any later
14 version.
15 
16 groff is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
19 for more details.
20 
21 You should have received a copy of the GNU General Public License along
22 with groff; see the file COPYING.  If not, write to the Free Software
23 Foundation, 51 Franklin St - Fifth Floor, Boston, MA 02110-1301, USA. */
24 
25 
26 #include <stdio.h>
27 #include <math.h>
28 
29 #undef	MAX
30 #define MAX(a, b)  (((a) > (b)) ? (a) : (b))
31 
32 #undef	MIN
33 #define MIN(a, b)  (((a) < (b)) ? (a) : (b))
34 
35 
36 // This utility function adjusts the specified center of the
37 // arc so that it is equidistant between the specified start
38 // and end points.  (p[0], p[1]) is a vector from the current
39 // point to the center; (p[2], p[3]) is a vector from the
40 // center to the end point.  If the center can be adjusted,
41 // a vector from the current point to the adjusted center is
42 // stored in c[0], c[1] and 1 is returned.  Otherwise 0 is
43 // returned.
44 
45 #if 1
adjust_arc_center(const int * p,double * c)46 int adjust_arc_center(const int *p, double *c)
47 {
48   // We move the center along a line parallel to the line between
49   // the specified start point and end point so that the center
50   // is equidistant between the start and end point.
51   // It can be proved (using Lagrange multipliers) that this will
52   // give the point nearest to the specified center that is equidistant
53   // between the start and end point.
54 
55   double x = p[0] + p[2];	// (x, y) is the end point
56   double y = p[1] + p[3];
57   double n = x*x + y*y;
58   if (n != 0) {
59     c[0]= double(p[0]);
60     c[1] = double(p[1]);
61     double k = .5 - (c[0]*x + c[1]*y)/n;
62     c[0] += k*x;
63     c[1] += k*y;
64     return 1;
65   }
66   else
67     return 0;
68 }
69 #else
adjust_arc_center(const int * p,double * c)70 int printer::adjust_arc_center(const int *p, double *c)
71 {
72   int x = p[0] + p[2];	// (x, y) is the end point
73   int y = p[1] + p[3];
74   // Start at the current point; go in the direction of the specified
75   // center point until we reach a point that is equidistant between
76   // the specified starting point and the specified end point.  Place
77   // the center of the arc there.
78   double n = p[0]*double(x) + p[1]*double(y);
79   if (n > 0) {
80     double k = (double(x)*x + double(y)*y)/(2.0*n);
81     // (cx, cy) is our chosen center
82     c[0] = k*p[0];
83     c[1] = k*p[1];
84     return 1;
85   }
86   else {
87     // We would never reach such a point.  So instead start at the
88     // specified end point of the arc.  Go towards the specified
89     // center point until we reach a point that is equidistant between
90     // the specified start point and specified end point.  Place
91     // the center of the arc there.
92     n = p[2]*double(x) + p[3]*double(y);
93     if (n > 0) {
94       double k = 1 - (double(x)*x + double(y)*y)/(2.0*n);
95       // (c[0], c[1]) is our chosen center
96       c[0] = p[0] + k*p[2];
97       c[1] = p[1] + k*p[3];
98       return 1;
99     }
100     else
101       return 0;
102   }
103 }
104 #endif
105 
106 
107 /*
108  *  check_output_arc_limits - works out the smallest box that will encompass
109  *                            an arc defined by an origin (x, y) and two
110  *                            vectors (p0, p1) and (p2, p3).
111  *                            (x1, y1) -> start of arc
112  *                            (x1, y1) + (xv1, yv1) -> center of circle
113  *                            (x1, y1) + (xv1, yv1) + (xv2, yv2) -> end of arc
114  *
115  *                            Works out in which quadrant the arc starts and
116  *                            stops, and from this it determines the x, y
117  *                            max/min limits.  The arc is drawn clockwise.
118  */
119 
check_output_arc_limits(int x_1,int y_1,int xv_1,int yv_1,int xv_2,int yv_2,double c_0,double c_1,int * minx,int * maxx,int * miny,int * maxy)120 void check_output_arc_limits(int x_1, int y_1,
121 			     int xv_1, int yv_1,
122 			     int xv_2, int yv_2,
123 			     double c_0, double c_1,
124 			     int *minx, int *maxx,
125 			     int *miny, int *maxy)
126 {
127   int radius = (int)sqrt(c_0 * c_0 + c_1 * c_1);
128   // clockwise direction
129   int xcenter = x_1 + xv_1;
130   int ycenter = y_1 + yv_1;
131   int xend = xcenter + xv_2;
132   int yend = ycenter + yv_2;
133   // for convenience, transform to counterclockwise direction,
134   // centered at the origin
135   int xs = xend - xcenter;
136   int ys = yend - ycenter;
137   int xe = x_1 - xcenter;
138   int ye = y_1 - ycenter;
139   *minx = *maxx = xs;
140   *miny = *maxy = ys;
141   if (xe > *maxx)
142     *maxx = xe;
143   else if (xe < *minx)
144     *minx = xe;
145   if (ye > *maxy)
146     *maxy = ye;
147   else if (ye < *miny)
148     *miny = ye;
149   int qs, qe;			// quadrants 0..3
150   if (xs >= 0)
151     qs = (ys >= 0) ? 0 : 3;
152   else
153     qs = (ys >= 0) ? 1 : 2;
154   if (xe >= 0)
155     qe = (ye >= 0) ? 0 : 3;
156   else
157     qe = (ye >= 0) ? 1 : 2;
158   // make qs always smaller than qe
159   if ((qs > qe)
160       || ((qs == qe) && (double(xs) * ye < double(xe) * ys)))
161     qe += 4;
162   for (int i = qs; i < qe; i++)
163     switch (i % 4) {
164     case 0:
165       *maxy = radius;
166       break;
167     case 1:
168       *minx = -radius;
169       break;
170     case 2:
171       *miny = -radius;
172       break;
173     case 3:
174       *maxx = radius;
175       break;
176     }
177   *minx += xcenter;
178   *maxx += xcenter;
179   *miny += ycenter;
180   *maxy += ycenter;
181 }
182