xref: /llvm-project/clang/lib/Sema/SemaCast.cpp (revision d049db83627d164e4353f59a5f0b4f87dd74b138)
1 //===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for cast expressions, including
10 //  1) C-style casts like '(int) x'
11 //  2) C++ functional casts like 'int(x)'
12 //  3) C++ named casts like 'static_cast<int>(x)'
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTStructuralEquivalence.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/ExprCXX.h"
20 #include "clang/AST/ExprObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/PartialDiagnostic.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/SemaObjC.h"
27 #include "clang/Sema/SemaRISCV.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include <set>
31 using namespace clang;
32 
33 
34 
35 enum TryCastResult {
36   TC_NotApplicable, ///< The cast method is not applicable.
37   TC_Success,       ///< The cast method is appropriate and successful.
38   TC_Extension,     ///< The cast method is appropriate and accepted as a
39                     ///< language extension.
40   TC_Failed         ///< The cast method is appropriate, but failed. A
41                     ///< diagnostic has been emitted.
42 };
43 
44 static bool isValidCast(TryCastResult TCR) {
45   return TCR == TC_Success || TCR == TC_Extension;
46 }
47 
48 enum CastType {
49   CT_Const,       ///< const_cast
50   CT_Static,      ///< static_cast
51   CT_Reinterpret, ///< reinterpret_cast
52   CT_Dynamic,     ///< dynamic_cast
53   CT_CStyle,      ///< (Type)expr
54   CT_Functional,  ///< Type(expr)
55   CT_Addrspace    ///< addrspace_cast
56 };
57 
58 namespace {
59   struct CastOperation {
60     CastOperation(Sema &S, QualType destType, ExprResult src)
61       : Self(S), SrcExpr(src), DestType(destType),
62         ResultType(destType.getNonLValueExprType(S.Context)),
63         ValueKind(Expr::getValueKindForType(destType)),
64         Kind(CK_Dependent), IsARCUnbridgedCast(false) {
65 
66       // C++ [expr.type]/8.2.2:
67       //   If a pr-value initially has the type cv-T, where T is a
68       //   cv-unqualified non-class, non-array type, the type of the
69       //   expression is adjusted to T prior to any further analysis.
70       // C23 6.5.4p6:
71       //   Preceding an expression by a parenthesized type name converts the
72       //   value of the expression to the unqualified, non-atomic version of
73       //   the named type.
74       if (!S.Context.getLangOpts().ObjC && !DestType->isRecordType() &&
75           !DestType->isArrayType()) {
76         DestType = DestType.getAtomicUnqualifiedType();
77       }
78 
79       if (const BuiltinType *placeholder =
80             src.get()->getType()->getAsPlaceholderType()) {
81         PlaceholderKind = placeholder->getKind();
82       } else {
83         PlaceholderKind = (BuiltinType::Kind) 0;
84       }
85     }
86 
87     Sema &Self;
88     ExprResult SrcExpr;
89     QualType DestType;
90     QualType ResultType;
91     ExprValueKind ValueKind;
92     CastKind Kind;
93     BuiltinType::Kind PlaceholderKind;
94     CXXCastPath BasePath;
95     bool IsARCUnbridgedCast;
96 
97     SourceRange OpRange;
98     SourceRange DestRange;
99 
100     // Top-level semantics-checking routines.
101     void CheckConstCast();
102     void CheckReinterpretCast();
103     void CheckStaticCast();
104     void CheckDynamicCast();
105     void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization);
106     void CheckCStyleCast();
107     void CheckBuiltinBitCast();
108     void CheckAddrspaceCast();
109 
110     void updatePartOfExplicitCastFlags(CastExpr *CE) {
111       // Walk down from the CE to the OrigSrcExpr, and mark all immediate
112       // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE
113       // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched.
114       for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE)
115         ICE->setIsPartOfExplicitCast(true);
116     }
117 
118     /// Complete an apparently-successful cast operation that yields
119     /// the given expression.
120     ExprResult complete(CastExpr *castExpr) {
121       // If this is an unbridged cast, wrap the result in an implicit
122       // cast that yields the unbridged-cast placeholder type.
123       if (IsARCUnbridgedCast) {
124         castExpr = ImplicitCastExpr::Create(
125             Self.Context, Self.Context.ARCUnbridgedCastTy, CK_Dependent,
126             castExpr, nullptr, castExpr->getValueKind(),
127             Self.CurFPFeatureOverrides());
128       }
129       updatePartOfExplicitCastFlags(castExpr);
130       return castExpr;
131     }
132 
133     // Internal convenience methods.
134 
135     /// Try to handle the given placeholder expression kind.  Return
136     /// true if the source expression has the appropriate placeholder
137     /// kind.  A placeholder can only be claimed once.
138     bool claimPlaceholder(BuiltinType::Kind K) {
139       if (PlaceholderKind != K) return false;
140 
141       PlaceholderKind = (BuiltinType::Kind) 0;
142       return true;
143     }
144 
145     bool isPlaceholder() const {
146       return PlaceholderKind != 0;
147     }
148     bool isPlaceholder(BuiltinType::Kind K) const {
149       return PlaceholderKind == K;
150     }
151 
152     // Language specific cast restrictions for address spaces.
153     void checkAddressSpaceCast(QualType SrcType, QualType DestType);
154 
155     void checkCastAlign() {
156       Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange);
157     }
158 
159     void checkObjCConversion(CheckedConversionKind CCK) {
160       assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers());
161 
162       Expr *src = SrcExpr.get();
163       if (Self.ObjC().CheckObjCConversion(OpRange, DestType, src, CCK) ==
164           SemaObjC::ACR_unbridged)
165         IsARCUnbridgedCast = true;
166       SrcExpr = src;
167     }
168 
169     /// Check for and handle non-overload placeholder expressions.
170     void checkNonOverloadPlaceholders() {
171       if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload))
172         return;
173 
174       SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
175       if (SrcExpr.isInvalid())
176         return;
177       PlaceholderKind = (BuiltinType::Kind) 0;
178     }
179   };
180 
181   void CheckNoDeref(Sema &S, const QualType FromType, const QualType ToType,
182                     SourceLocation OpLoc) {
183     if (const auto *PtrType = dyn_cast<PointerType>(FromType)) {
184       if (PtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
185         if (const auto *DestType = dyn_cast<PointerType>(ToType)) {
186           if (!DestType->getPointeeType()->hasAttr(attr::NoDeref)) {
187             S.Diag(OpLoc, diag::warn_noderef_to_dereferenceable_pointer);
188           }
189         }
190       }
191     }
192   }
193 
194   struct CheckNoDerefRAII {
195     CheckNoDerefRAII(CastOperation &Op) : Op(Op) {}
196     ~CheckNoDerefRAII() {
197       if (!Op.SrcExpr.isInvalid())
198         CheckNoDeref(Op.Self, Op.SrcExpr.get()->getType(), Op.ResultType,
199                      Op.OpRange.getBegin());
200     }
201 
202     CastOperation &Op;
203   };
204 }
205 
206 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
207                              QualType DestType);
208 
209 // The Try functions attempt a specific way of casting. If they succeed, they
210 // return TC_Success. If their way of casting is not appropriate for the given
211 // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic
212 // to emit if no other way succeeds. If their way of casting is appropriate but
213 // fails, they return TC_Failed and *must* set diag; they can set it to 0 if
214 // they emit a specialized diagnostic.
215 // All diagnostics returned by these functions must expect the same three
216 // arguments:
217 // %0: Cast Type (a value from the CastType enumeration)
218 // %1: Source Type
219 // %2: Destination Type
220 static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
221                                            QualType DestType, bool CStyle,
222                                            CastKind &Kind,
223                                            CXXCastPath &BasePath,
224                                            unsigned &msg);
225 static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr,
226                                                QualType DestType, bool CStyle,
227                                                SourceRange OpRange,
228                                                unsigned &msg,
229                                                CastKind &Kind,
230                                                CXXCastPath &BasePath);
231 static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType,
232                                               QualType DestType, bool CStyle,
233                                               SourceRange OpRange,
234                                               unsigned &msg,
235                                               CastKind &Kind,
236                                               CXXCastPath &BasePath);
237 static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType,
238                                        CanQualType DestType, bool CStyle,
239                                        SourceRange OpRange,
240                                        QualType OrigSrcType,
241                                        QualType OrigDestType, unsigned &msg,
242                                        CastKind &Kind,
243                                        CXXCastPath &BasePath);
244 static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr,
245                                                QualType SrcType,
246                                                QualType DestType,bool CStyle,
247                                                SourceRange OpRange,
248                                                unsigned &msg,
249                                                CastKind &Kind,
250                                                CXXCastPath &BasePath);
251 
252 static TryCastResult
253 TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType,
254                       CheckedConversionKind CCK, SourceRange OpRange,
255                       unsigned &msg, CastKind &Kind, bool ListInitialization);
256 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
257                                    QualType DestType, CheckedConversionKind CCK,
258                                    SourceRange OpRange, unsigned &msg,
259                                    CastKind &Kind, CXXCastPath &BasePath,
260                                    bool ListInitialization);
261 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
262                                   QualType DestType, bool CStyle,
263                                   unsigned &msg);
264 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
265                                         QualType DestType, bool CStyle,
266                                         SourceRange OpRange, unsigned &msg,
267                                         CastKind &Kind);
268 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
269                                          QualType DestType, bool CStyle,
270                                          unsigned &msg, CastKind &Kind);
271 
272 ExprResult
273 Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
274                         SourceLocation LAngleBracketLoc, Declarator &D,
275                         SourceLocation RAngleBracketLoc,
276                         SourceLocation LParenLoc, Expr *E,
277                         SourceLocation RParenLoc) {
278 
279   assert(!D.isInvalidType());
280 
281   TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType());
282   if (D.isInvalidType())
283     return ExprError();
284 
285   if (getLangOpts().CPlusPlus) {
286     // Check that there are no default arguments (C++ only).
287     CheckExtraCXXDefaultArguments(D);
288   }
289 
290   return BuildCXXNamedCast(OpLoc, Kind, TInfo, E,
291                            SourceRange(LAngleBracketLoc, RAngleBracketLoc),
292                            SourceRange(LParenLoc, RParenLoc));
293 }
294 
295 ExprResult
296 Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind,
297                         TypeSourceInfo *DestTInfo, Expr *E,
298                         SourceRange AngleBrackets, SourceRange Parens) {
299   ExprResult Ex = E;
300   QualType DestType = DestTInfo->getType();
301 
302   // If the type is dependent, we won't do the semantic analysis now.
303   bool TypeDependent =
304       DestType->isDependentType() || Ex.get()->isTypeDependent();
305 
306   CastOperation Op(*this, DestType, E);
307   Op.OpRange = SourceRange(OpLoc, Parens.getEnd());
308   Op.DestRange = AngleBrackets;
309 
310   switch (Kind) {
311   default: llvm_unreachable("Unknown C++ cast!");
312 
313   case tok::kw_addrspace_cast:
314     if (!TypeDependent) {
315       Op.CheckAddrspaceCast();
316       if (Op.SrcExpr.isInvalid())
317         return ExprError();
318     }
319     return Op.complete(CXXAddrspaceCastExpr::Create(
320         Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
321         DestTInfo, OpLoc, Parens.getEnd(), AngleBrackets));
322 
323   case tok::kw_const_cast:
324     if (!TypeDependent) {
325       Op.CheckConstCast();
326       if (Op.SrcExpr.isInvalid())
327         return ExprError();
328       DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
329     }
330     return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType,
331                                   Op.ValueKind, Op.SrcExpr.get(), DestTInfo,
332                                                 OpLoc, Parens.getEnd(),
333                                                 AngleBrackets));
334 
335   case tok::kw_dynamic_cast: {
336     // dynamic_cast is not supported in C++ for OpenCL.
337     if (getLangOpts().OpenCLCPlusPlus) {
338       return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
339                        << "dynamic_cast");
340     }
341 
342     if (!TypeDependent) {
343       Op.CheckDynamicCast();
344       if (Op.SrcExpr.isInvalid())
345         return ExprError();
346     }
347     return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType,
348                                     Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
349                                                   &Op.BasePath, DestTInfo,
350                                                   OpLoc, Parens.getEnd(),
351                                                   AngleBrackets));
352   }
353   case tok::kw_reinterpret_cast: {
354     if (!TypeDependent) {
355       Op.CheckReinterpretCast();
356       if (Op.SrcExpr.isInvalid())
357         return ExprError();
358       DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
359     }
360     return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType,
361                                     Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
362                                                       nullptr, DestTInfo, OpLoc,
363                                                       Parens.getEnd(),
364                                                       AngleBrackets));
365   }
366   case tok::kw_static_cast: {
367     if (!TypeDependent) {
368       Op.CheckStaticCast();
369       if (Op.SrcExpr.isInvalid())
370         return ExprError();
371       DiscardMisalignedMemberAddress(DestType.getTypePtr(), E);
372     }
373 
374     return Op.complete(CXXStaticCastExpr::Create(
375         Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
376         &Op.BasePath, DestTInfo, CurFPFeatureOverrides(), OpLoc,
377         Parens.getEnd(), AngleBrackets));
378   }
379   }
380 }
381 
382 ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D,
383                                          ExprResult Operand,
384                                          SourceLocation RParenLoc) {
385   assert(!D.isInvalidType());
386 
387   TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType());
388   if (D.isInvalidType())
389     return ExprError();
390 
391   return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc);
392 }
393 
394 ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc,
395                                          TypeSourceInfo *TSI, Expr *Operand,
396                                          SourceLocation RParenLoc) {
397   CastOperation Op(*this, TSI->getType(), Operand);
398   Op.OpRange = SourceRange(KWLoc, RParenLoc);
399   TypeLoc TL = TSI->getTypeLoc();
400   Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc());
401 
402   if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) {
403     Op.CheckBuiltinBitCast();
404     if (Op.SrcExpr.isInvalid())
405       return ExprError();
406   }
407 
408   BuiltinBitCastExpr *BCE =
409       new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind,
410                                        Op.SrcExpr.get(), TSI, KWLoc, RParenLoc);
411   return Op.complete(BCE);
412 }
413 
414 /// Try to diagnose a failed overloaded cast.  Returns true if
415 /// diagnostics were emitted.
416 static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT,
417                                       SourceRange range, Expr *src,
418                                       QualType destType,
419                                       bool listInitialization) {
420   switch (CT) {
421   // These cast kinds don't consider user-defined conversions.
422   case CT_Const:
423   case CT_Reinterpret:
424   case CT_Dynamic:
425   case CT_Addrspace:
426     return false;
427 
428   // These do.
429   case CT_Static:
430   case CT_CStyle:
431   case CT_Functional:
432     break;
433   }
434 
435   QualType srcType = src->getType();
436   if (!destType->isRecordType() && !srcType->isRecordType())
437     return false;
438 
439   InitializedEntity entity = InitializedEntity::InitializeTemporary(destType);
440   InitializationKind initKind
441     = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(),
442                                                       range, listInitialization)
443     : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range,
444                                                              listInitialization)
445     : InitializationKind::CreateCast(/*type range?*/ range);
446   InitializationSequence sequence(S, entity, initKind, src);
447 
448   // It could happen that a constructor failed to be used because
449   // it requires a temporary of a broken type. Still, it will be found when
450   // looking for a match.
451   if (!sequence.Failed())
452     return false;
453 
454   switch (sequence.getFailureKind()) {
455   default: return false;
456 
457   case InitializationSequence::FK_ParenthesizedListInitFailed:
458     // In C++20, if the underlying destination type is a RecordType, Clang
459     // attempts to perform parentesized aggregate initialization if constructor
460     // overload fails:
461     //
462     // C++20 [expr.static.cast]p4:
463     //   An expression E can be explicitly converted to a type T...if overload
464     //   resolution for a direct-initialization...would find at least one viable
465     //   function ([over.match.viable]), or if T is an aggregate type having a
466     //   first element X and there is an implicit conversion sequence from E to
467     //   the type of X.
468     //
469     // If that fails, then we'll generate the diagnostics from the failed
470     // previous constructor overload attempt. Array initialization, however, is
471     // not done after attempting constructor overloading, so we exit as there
472     // won't be a failed overload result.
473     if (destType->isArrayType())
474       return false;
475     break;
476   case InitializationSequence::FK_ConstructorOverloadFailed:
477   case InitializationSequence::FK_UserConversionOverloadFailed:
478     break;
479   }
480 
481   OverloadCandidateSet &candidates = sequence.getFailedCandidateSet();
482 
483   unsigned msg = 0;
484   OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates;
485 
486   switch (sequence.getFailedOverloadResult()) {
487   case OR_Success: llvm_unreachable("successful failed overload");
488   case OR_No_Viable_Function:
489     if (candidates.empty())
490       msg = diag::err_ovl_no_conversion_in_cast;
491     else
492       msg = diag::err_ovl_no_viable_conversion_in_cast;
493     howManyCandidates = OCD_AllCandidates;
494     break;
495 
496   case OR_Ambiguous:
497     msg = diag::err_ovl_ambiguous_conversion_in_cast;
498     howManyCandidates = OCD_AmbiguousCandidates;
499     break;
500 
501   case OR_Deleted: {
502     OverloadCandidateSet::iterator Best;
503     [[maybe_unused]] OverloadingResult Res =
504         candidates.BestViableFunction(S, range.getBegin(), Best);
505     assert(Res == OR_Deleted && "Inconsistent overload resolution");
506 
507     StringLiteral *Msg = Best->Function->getDeletedMessage();
508     candidates.NoteCandidates(
509         PartialDiagnosticAt(range.getBegin(),
510                             S.PDiag(diag::err_ovl_deleted_conversion_in_cast)
511                                 << CT << srcType << destType << (Msg != nullptr)
512                                 << (Msg ? Msg->getString() : StringRef())
513                                 << range << src->getSourceRange()),
514         S, OCD_ViableCandidates, src);
515     return true;
516   }
517   }
518 
519   candidates.NoteCandidates(
520       PartialDiagnosticAt(range.getBegin(),
521                           S.PDiag(msg) << CT << srcType << destType << range
522                                        << src->getSourceRange()),
523       S, howManyCandidates, src);
524 
525   return true;
526 }
527 
528 /// Diagnose a failed cast.
529 static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType,
530                             SourceRange opRange, Expr *src, QualType destType,
531                             bool listInitialization) {
532   if (msg == diag::err_bad_cxx_cast_generic &&
533       tryDiagnoseOverloadedCast(S, castType, opRange, src, destType,
534                                 listInitialization))
535     return;
536 
537   S.Diag(opRange.getBegin(), msg) << castType
538     << src->getType() << destType << opRange << src->getSourceRange();
539 
540   // Detect if both types are (ptr to) class, and note any incompleteness.
541   int DifferentPtrness = 0;
542   QualType From = destType;
543   if (auto Ptr = From->getAs<PointerType>()) {
544     From = Ptr->getPointeeType();
545     DifferentPtrness++;
546   }
547   QualType To = src->getType();
548   if (auto Ptr = To->getAs<PointerType>()) {
549     To = Ptr->getPointeeType();
550     DifferentPtrness--;
551   }
552   if (!DifferentPtrness) {
553     auto RecFrom = From->getAs<RecordType>();
554     auto RecTo = To->getAs<RecordType>();
555     if (RecFrom && RecTo) {
556       auto DeclFrom = RecFrom->getAsCXXRecordDecl();
557       if (!DeclFrom->isCompleteDefinition())
558         S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete) << DeclFrom;
559       auto DeclTo = RecTo->getAsCXXRecordDecl();
560       if (!DeclTo->isCompleteDefinition())
561         S.Diag(DeclTo->getLocation(), diag::note_type_incomplete) << DeclTo;
562     }
563   }
564 }
565 
566 namespace {
567 /// The kind of unwrapping we did when determining whether a conversion casts
568 /// away constness.
569 enum CastAwayConstnessKind {
570   /// The conversion does not cast away constness.
571   CACK_None = 0,
572   /// We unwrapped similar types.
573   CACK_Similar = 1,
574   /// We unwrapped dissimilar types with similar representations (eg, a pointer
575   /// versus an Objective-C object pointer).
576   CACK_SimilarKind = 2,
577   /// We unwrapped representationally-unrelated types, such as a pointer versus
578   /// a pointer-to-member.
579   CACK_Incoherent = 3,
580 };
581 }
582 
583 /// Unwrap one level of types for CastsAwayConstness.
584 ///
585 /// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from
586 /// both types, provided that they're both pointer-like or array-like. Unlike
587 /// the Sema function, doesn't care if the unwrapped pieces are related.
588 ///
589 /// This function may remove additional levels as necessary for correctness:
590 /// the resulting T1 is unwrapped sufficiently that it is never an array type,
591 /// so that its qualifiers can be directly compared to those of T2 (which will
592 /// have the combined set of qualifiers from all indermediate levels of T2),
593 /// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers
594 /// with those from T2.
595 static CastAwayConstnessKind
596 unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) {
597   enum { None, Ptr, MemPtr, BlockPtr, Array };
598   auto Classify = [](QualType T) {
599     if (T->isAnyPointerType()) return Ptr;
600     if (T->isMemberPointerType()) return MemPtr;
601     if (T->isBlockPointerType()) return BlockPtr;
602     // We somewhat-arbitrarily don't look through VLA types here. This is at
603     // least consistent with the behavior of UnwrapSimilarTypes.
604     if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array;
605     return None;
606   };
607 
608   auto Unwrap = [&](QualType T) {
609     if (auto *AT = Context.getAsArrayType(T))
610       return AT->getElementType();
611     return T->getPointeeType();
612   };
613 
614   CastAwayConstnessKind Kind;
615 
616   if (T2->isReferenceType()) {
617     // Special case: if the destination type is a reference type, unwrap it as
618     // the first level. (The source will have been an lvalue expression in this
619     // case, so there is no corresponding "reference to" in T1 to remove.) This
620     // simulates removing a "pointer to" from both sides.
621     T2 = T2->getPointeeType();
622     Kind = CastAwayConstnessKind::CACK_Similar;
623   } else if (Context.UnwrapSimilarTypes(T1, T2)) {
624     Kind = CastAwayConstnessKind::CACK_Similar;
625   } else {
626     // Try unwrapping mismatching levels.
627     int T1Class = Classify(T1);
628     if (T1Class == None)
629       return CastAwayConstnessKind::CACK_None;
630 
631     int T2Class = Classify(T2);
632     if (T2Class == None)
633       return CastAwayConstnessKind::CACK_None;
634 
635     T1 = Unwrap(T1);
636     T2 = Unwrap(T2);
637     Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind
638                               : CastAwayConstnessKind::CACK_Incoherent;
639   }
640 
641   // We've unwrapped at least one level. If the resulting T1 is a (possibly
642   // multidimensional) array type, any qualifier on any matching layer of
643   // T2 is considered to correspond to T1. Decompose down to the element
644   // type of T1 so that we can compare properly.
645   while (true) {
646     Context.UnwrapSimilarArrayTypes(T1, T2);
647 
648     if (Classify(T1) != Array)
649       break;
650 
651     auto T2Class = Classify(T2);
652     if (T2Class == None)
653       break;
654 
655     if (T2Class != Array)
656       Kind = CastAwayConstnessKind::CACK_Incoherent;
657     else if (Kind != CastAwayConstnessKind::CACK_Incoherent)
658       Kind = CastAwayConstnessKind::CACK_SimilarKind;
659 
660     T1 = Unwrap(T1);
661     T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers());
662   }
663 
664   return Kind;
665 }
666 
667 /// Check if the pointer conversion from SrcType to DestType casts away
668 /// constness as defined in C++ [expr.const.cast]. This is used by the cast
669 /// checkers. Both arguments must denote pointer (possibly to member) types.
670 ///
671 /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers.
672 /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers.
673 static CastAwayConstnessKind
674 CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType,
675                    bool CheckCVR, bool CheckObjCLifetime,
676                    QualType *TheOffendingSrcType = nullptr,
677                    QualType *TheOffendingDestType = nullptr,
678                    Qualifiers *CastAwayQualifiers = nullptr) {
679   // If the only checking we care about is for Objective-C lifetime qualifiers,
680   // and we're not in ObjC mode, there's nothing to check.
681   if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC)
682     return CastAwayConstnessKind::CACK_None;
683 
684   if (!DestType->isReferenceType()) {
685     assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() ||
686             SrcType->isBlockPointerType()) &&
687            "Source type is not pointer or pointer to member.");
688     assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() ||
689             DestType->isBlockPointerType()) &&
690            "Destination type is not pointer or pointer to member.");
691   }
692 
693   QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType),
694            UnwrappedDestType = Self.Context.getCanonicalType(DestType);
695 
696   // Find the qualifiers. We only care about cvr-qualifiers for the
697   // purpose of this check, because other qualifiers (address spaces,
698   // Objective-C GC, etc.) are part of the type's identity.
699   QualType PrevUnwrappedSrcType = UnwrappedSrcType;
700   QualType PrevUnwrappedDestType = UnwrappedDestType;
701   auto WorstKind = CastAwayConstnessKind::CACK_Similar;
702   bool AllConstSoFar = true;
703   while (auto Kind = unwrapCastAwayConstnessLevel(
704              Self.Context, UnwrappedSrcType, UnwrappedDestType)) {
705     // Track the worst kind of unwrap we needed to do before we found a
706     // problem.
707     if (Kind > WorstKind)
708       WorstKind = Kind;
709 
710     // Determine the relevant qualifiers at this level.
711     Qualifiers SrcQuals, DestQuals;
712     Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals);
713     Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals);
714 
715     // We do not meaningfully track object const-ness of Objective-C object
716     // types. Remove const from the source type if either the source or
717     // the destination is an Objective-C object type.
718     if (UnwrappedSrcType->isObjCObjectType() ||
719         UnwrappedDestType->isObjCObjectType())
720       SrcQuals.removeConst();
721 
722     if (CheckCVR) {
723       Qualifiers SrcCvrQuals =
724           Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers());
725       Qualifiers DestCvrQuals =
726           Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers());
727 
728       if (SrcCvrQuals != DestCvrQuals) {
729         if (CastAwayQualifiers)
730           *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals;
731 
732         // If we removed a cvr-qualifier, this is casting away 'constness'.
733         if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals,
734                                              Self.getASTContext())) {
735           if (TheOffendingSrcType)
736             *TheOffendingSrcType = PrevUnwrappedSrcType;
737           if (TheOffendingDestType)
738             *TheOffendingDestType = PrevUnwrappedDestType;
739           return WorstKind;
740         }
741 
742         // If any prior level was not 'const', this is also casting away
743         // 'constness'. We noted the outermost type missing a 'const' already.
744         if (!AllConstSoFar)
745           return WorstKind;
746       }
747     }
748 
749     if (CheckObjCLifetime &&
750         !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals))
751       return WorstKind;
752 
753     // If we found our first non-const-qualified type, this may be the place
754     // where things start to go wrong.
755     if (AllConstSoFar && !DestQuals.hasConst()) {
756       AllConstSoFar = false;
757       if (TheOffendingSrcType)
758         *TheOffendingSrcType = PrevUnwrappedSrcType;
759       if (TheOffendingDestType)
760         *TheOffendingDestType = PrevUnwrappedDestType;
761     }
762 
763     PrevUnwrappedSrcType = UnwrappedSrcType;
764     PrevUnwrappedDestType = UnwrappedDestType;
765   }
766 
767   return CastAwayConstnessKind::CACK_None;
768 }
769 
770 static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK,
771                                                   unsigned &DiagID) {
772   switch (CACK) {
773   case CastAwayConstnessKind::CACK_None:
774     llvm_unreachable("did not cast away constness");
775 
776   case CastAwayConstnessKind::CACK_Similar:
777     // FIXME: Accept these as an extension too?
778   case CastAwayConstnessKind::CACK_SimilarKind:
779     DiagID = diag::err_bad_cxx_cast_qualifiers_away;
780     return TC_Failed;
781 
782   case CastAwayConstnessKind::CACK_Incoherent:
783     DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent;
784     return TC_Extension;
785   }
786 
787   llvm_unreachable("unexpected cast away constness kind");
788 }
789 
790 /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid.
791 /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime-
792 /// checked downcasts in class hierarchies.
793 void CastOperation::CheckDynamicCast() {
794   CheckNoDerefRAII NoderefCheck(*this);
795 
796   if (ValueKind == VK_PRValue)
797     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
798   else if (isPlaceholder())
799     SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
800   if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
801     return;
802 
803   QualType OrigSrcType = SrcExpr.get()->getType();
804   QualType DestType = Self.Context.getCanonicalType(this->DestType);
805 
806   // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type,
807   //   or "pointer to cv void".
808 
809   QualType DestPointee;
810   const PointerType *DestPointer = DestType->getAs<PointerType>();
811   const ReferenceType *DestReference = nullptr;
812   if (DestPointer) {
813     DestPointee = DestPointer->getPointeeType();
814   } else if ((DestReference = DestType->getAs<ReferenceType>())) {
815     DestPointee = DestReference->getPointeeType();
816   } else {
817     Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr)
818       << this->DestType << DestRange;
819     SrcExpr = ExprError();
820     return;
821   }
822 
823   const RecordType *DestRecord = DestPointee->getAs<RecordType>();
824   if (DestPointee->isVoidType()) {
825     assert(DestPointer && "Reference to void is not possible");
826   } else if (DestRecord) {
827     if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee,
828                                  diag::err_bad_cast_incomplete,
829                                  DestRange)) {
830       SrcExpr = ExprError();
831       return;
832     }
833   } else {
834     Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
835       << DestPointee.getUnqualifiedType() << DestRange;
836     SrcExpr = ExprError();
837     return;
838   }
839 
840   // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to
841   //   complete class type, [...]. If T is an lvalue reference type, v shall be
842   //   an lvalue of a complete class type, [...]. If T is an rvalue reference
843   //   type, v shall be an expression having a complete class type, [...]
844   QualType SrcType = Self.Context.getCanonicalType(OrigSrcType);
845   QualType SrcPointee;
846   if (DestPointer) {
847     if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
848       SrcPointee = SrcPointer->getPointeeType();
849     } else {
850       Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr)
851           << OrigSrcType << this->DestType << SrcExpr.get()->getSourceRange();
852       SrcExpr = ExprError();
853       return;
854     }
855   } else if (DestReference->isLValueReferenceType()) {
856     if (!SrcExpr.get()->isLValue()) {
857       Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue)
858         << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
859     }
860     SrcPointee = SrcType;
861   } else {
862     // If we're dynamic_casting from a prvalue to an rvalue reference, we need
863     // to materialize the prvalue before we bind the reference to it.
864     if (SrcExpr.get()->isPRValue())
865       SrcExpr = Self.CreateMaterializeTemporaryExpr(
866           SrcType, SrcExpr.get(), /*IsLValueReference*/ false);
867     SrcPointee = SrcType;
868   }
869 
870   const RecordType *SrcRecord = SrcPointee->getAs<RecordType>();
871   if (SrcRecord) {
872     if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee,
873                                  diag::err_bad_cast_incomplete,
874                                  SrcExpr.get())) {
875       SrcExpr = ExprError();
876       return;
877     }
878   } else {
879     Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class)
880       << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
881     SrcExpr = ExprError();
882     return;
883   }
884 
885   assert((DestPointer || DestReference) &&
886     "Bad destination non-ptr/ref slipped through.");
887   assert((DestRecord || DestPointee->isVoidType()) &&
888     "Bad destination pointee slipped through.");
889   assert(SrcRecord && "Bad source pointee slipped through.");
890 
891   // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness.
892   if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee, Self.getASTContext())) {
893     Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away)
894       << CT_Dynamic << OrigSrcType << this->DestType << OpRange;
895     SrcExpr = ExprError();
896     return;
897   }
898 
899   // C++ 5.2.7p3: If the type of v is the same as the required result type,
900   //   [except for cv].
901   if (DestRecord == SrcRecord) {
902     Kind = CK_NoOp;
903     return;
904   }
905 
906   // C++ 5.2.7p5
907   // Upcasts are resolved statically.
908   if (DestRecord &&
909       Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) {
910     if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee,
911                                            OpRange.getBegin(), OpRange,
912                                            &BasePath)) {
913       SrcExpr = ExprError();
914       return;
915     }
916 
917     Kind = CK_DerivedToBase;
918     return;
919   }
920 
921   // C++ 5.2.7p6: Otherwise, v shall be [polymorphic].
922   const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition();
923   assert(SrcDecl && "Definition missing");
924   if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) {
925     Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic)
926       << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange();
927     SrcExpr = ExprError();
928   }
929 
930   // dynamic_cast is not available with -fno-rtti.
931   // As an exception, dynamic_cast to void* is available because it doesn't
932   // use RTTI.
933   if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) {
934     Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti);
935     SrcExpr = ExprError();
936     return;
937   }
938 
939   // Warns when dynamic_cast is used with RTTI data disabled.
940   if (!Self.getLangOpts().RTTIData) {
941     bool MicrosoftABI =
942         Self.getASTContext().getTargetInfo().getCXXABI().isMicrosoft();
943     bool isClangCL = Self.getDiagnostics().getDiagnosticOptions().getFormat() ==
944                      DiagnosticOptions::MSVC;
945     if (MicrosoftABI || !DestPointee->isVoidType())
946       Self.Diag(OpRange.getBegin(),
947                 diag::warn_no_dynamic_cast_with_rtti_disabled)
948           << isClangCL;
949   }
950 
951   // For a dynamic_cast to a final type, IR generation might emit a reference
952   // to the vtable.
953   if (DestRecord) {
954     auto *DestDecl = DestRecord->getAsCXXRecordDecl();
955     if (DestDecl->isEffectivelyFinal())
956       Self.MarkVTableUsed(OpRange.getBegin(), DestDecl);
957   }
958 
959   // Done. Everything else is run-time checks.
960   Kind = CK_Dynamic;
961 }
962 
963 /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid.
964 /// Refer to C++ 5.2.11 for details. const_cast is typically used in code
965 /// like this:
966 /// const char *str = "literal";
967 /// legacy_function(const_cast\<char*\>(str));
968 void CastOperation::CheckConstCast() {
969   CheckNoDerefRAII NoderefCheck(*this);
970 
971   if (ValueKind == VK_PRValue)
972     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
973   else if (isPlaceholder())
974     SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get());
975   if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
976     return;
977 
978   unsigned msg = diag::err_bad_cxx_cast_generic;
979   auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg);
980   if (TCR != TC_Success && msg != 0) {
981     Self.Diag(OpRange.getBegin(), msg) << CT_Const
982       << SrcExpr.get()->getType() << DestType << OpRange;
983   }
984   if (!isValidCast(TCR))
985     SrcExpr = ExprError();
986 }
987 
988 void CastOperation::CheckAddrspaceCast() {
989   unsigned msg = diag::err_bad_cxx_cast_generic;
990   auto TCR =
991       TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg, Kind);
992   if (TCR != TC_Success && msg != 0) {
993     Self.Diag(OpRange.getBegin(), msg)
994         << CT_Addrspace << SrcExpr.get()->getType() << DestType << OpRange;
995   }
996   if (!isValidCast(TCR))
997     SrcExpr = ExprError();
998 }
999 
1000 /// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast
1001 /// or downcast between respective pointers or references.
1002 static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr,
1003                                           QualType DestType,
1004                                           SourceRange OpRange) {
1005   QualType SrcType = SrcExpr->getType();
1006   // When casting from pointer or reference, get pointee type; use original
1007   // type otherwise.
1008   const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl();
1009   const CXXRecordDecl *SrcRD =
1010     SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl();
1011 
1012   // Examining subobjects for records is only possible if the complete and
1013   // valid definition is available.  Also, template instantiation is not
1014   // allowed here.
1015   if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl())
1016     return;
1017 
1018   const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl();
1019 
1020   if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl())
1021     return;
1022 
1023   enum {
1024     ReinterpretUpcast,
1025     ReinterpretDowncast
1026   } ReinterpretKind;
1027 
1028   CXXBasePaths BasePaths;
1029 
1030   if (SrcRD->isDerivedFrom(DestRD, BasePaths))
1031     ReinterpretKind = ReinterpretUpcast;
1032   else if (DestRD->isDerivedFrom(SrcRD, BasePaths))
1033     ReinterpretKind = ReinterpretDowncast;
1034   else
1035     return;
1036 
1037   bool VirtualBase = true;
1038   bool NonZeroOffset = false;
1039   for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(),
1040                                           E = BasePaths.end();
1041        I != E; ++I) {
1042     const CXXBasePath &Path = *I;
1043     CharUnits Offset = CharUnits::Zero();
1044     bool IsVirtual = false;
1045     for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end();
1046          IElem != EElem; ++IElem) {
1047       IsVirtual = IElem->Base->isVirtual();
1048       if (IsVirtual)
1049         break;
1050       const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl();
1051       assert(BaseRD && "Base type should be a valid unqualified class type");
1052       // Don't check if any base has invalid declaration or has no definition
1053       // since it has no layout info.
1054       const CXXRecordDecl *Class = IElem->Class,
1055                           *ClassDefinition = Class->getDefinition();
1056       if (Class->isInvalidDecl() || !ClassDefinition ||
1057           !ClassDefinition->isCompleteDefinition())
1058         return;
1059 
1060       const ASTRecordLayout &DerivedLayout =
1061           Self.Context.getASTRecordLayout(Class);
1062       Offset += DerivedLayout.getBaseClassOffset(BaseRD);
1063     }
1064     if (!IsVirtual) {
1065       // Don't warn if any path is a non-virtually derived base at offset zero.
1066       if (Offset.isZero())
1067         return;
1068       // Offset makes sense only for non-virtual bases.
1069       else
1070         NonZeroOffset = true;
1071     }
1072     VirtualBase = VirtualBase && IsVirtual;
1073   }
1074 
1075   (void) NonZeroOffset; // Silence set but not used warning.
1076   assert((VirtualBase || NonZeroOffset) &&
1077          "Should have returned if has non-virtual base with zero offset");
1078 
1079   QualType BaseType =
1080       ReinterpretKind == ReinterpretUpcast? DestType : SrcType;
1081   QualType DerivedType =
1082       ReinterpretKind == ReinterpretUpcast? SrcType : DestType;
1083 
1084   SourceLocation BeginLoc = OpRange.getBegin();
1085   Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static)
1086     << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind)
1087     << OpRange;
1088   Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static)
1089     << int(ReinterpretKind)
1090     << FixItHint::CreateReplacement(BeginLoc, "static_cast");
1091 }
1092 
1093 static bool argTypeIsABIEquivalent(QualType SrcType, QualType DestType,
1094                                    ASTContext &Context) {
1095   if (SrcType->isPointerType() && DestType->isPointerType())
1096     return true;
1097 
1098   // Allow integral type mismatch if their size are equal.
1099   if ((SrcType->isIntegralType(Context) || SrcType->isEnumeralType()) &&
1100       (DestType->isIntegralType(Context) || DestType->isEnumeralType()))
1101     if (Context.getTypeSizeInChars(SrcType) ==
1102         Context.getTypeSizeInChars(DestType))
1103       return true;
1104 
1105   return Context.hasSameUnqualifiedType(SrcType, DestType);
1106 }
1107 
1108 static unsigned int checkCastFunctionType(Sema &Self, const ExprResult &SrcExpr,
1109                                           QualType DestType) {
1110   unsigned int DiagID = 0;
1111   const unsigned int DiagList[] = {diag::warn_cast_function_type_strict,
1112                                    diag::warn_cast_function_type};
1113   for (auto ID : DiagList) {
1114     if (!Self.Diags.isIgnored(ID, SrcExpr.get()->getExprLoc())) {
1115       DiagID = ID;
1116       break;
1117     }
1118   }
1119   if (!DiagID)
1120     return 0;
1121 
1122   QualType SrcType = SrcExpr.get()->getType();
1123   const FunctionType *SrcFTy = nullptr;
1124   const FunctionType *DstFTy = nullptr;
1125   if (((SrcType->isBlockPointerType() || SrcType->isFunctionPointerType()) &&
1126        DestType->isFunctionPointerType()) ||
1127       (SrcType->isMemberFunctionPointerType() &&
1128        DestType->isMemberFunctionPointerType())) {
1129     SrcFTy = SrcType->getPointeeType()->castAs<FunctionType>();
1130     DstFTy = DestType->getPointeeType()->castAs<FunctionType>();
1131   } else if (SrcType->isFunctionType() && DestType->isFunctionReferenceType()) {
1132     SrcFTy = SrcType->castAs<FunctionType>();
1133     DstFTy = DestType.getNonReferenceType()->castAs<FunctionType>();
1134   } else {
1135     return 0;
1136   }
1137   assert(SrcFTy && DstFTy);
1138 
1139   if (Self.Context.hasSameType(SrcFTy, DstFTy))
1140     return 0;
1141 
1142   // For strict checks, ensure we have an exact match.
1143   if (DiagID == diag::warn_cast_function_type_strict)
1144     return DiagID;
1145 
1146   auto IsVoidVoid = [](const FunctionType *T) {
1147     if (!T->getReturnType()->isVoidType())
1148       return false;
1149     if (const auto *PT = T->getAs<FunctionProtoType>())
1150       return !PT->isVariadic() && PT->getNumParams() == 0;
1151     return false;
1152   };
1153 
1154   // Skip if either function type is void(*)(void)
1155   if (IsVoidVoid(SrcFTy) || IsVoidVoid(DstFTy))
1156     return 0;
1157 
1158   // Check return type.
1159   if (!argTypeIsABIEquivalent(SrcFTy->getReturnType(), DstFTy->getReturnType(),
1160                               Self.Context))
1161     return DiagID;
1162 
1163   // Check if either has unspecified number of parameters
1164   if (SrcFTy->isFunctionNoProtoType() || DstFTy->isFunctionNoProtoType())
1165     return 0;
1166 
1167   // Check parameter types.
1168 
1169   const auto *SrcFPTy = cast<FunctionProtoType>(SrcFTy);
1170   const auto *DstFPTy = cast<FunctionProtoType>(DstFTy);
1171 
1172   // In a cast involving function types with a variable argument list only the
1173   // types of initial arguments that are provided are considered.
1174   unsigned NumParams = SrcFPTy->getNumParams();
1175   unsigned DstNumParams = DstFPTy->getNumParams();
1176   if (NumParams > DstNumParams) {
1177     if (!DstFPTy->isVariadic())
1178       return DiagID;
1179     NumParams = DstNumParams;
1180   } else if (NumParams < DstNumParams) {
1181     if (!SrcFPTy->isVariadic())
1182       return DiagID;
1183   }
1184 
1185   for (unsigned i = 0; i < NumParams; ++i)
1186     if (!argTypeIsABIEquivalent(SrcFPTy->getParamType(i),
1187                                 DstFPTy->getParamType(i), Self.Context))
1188       return DiagID;
1189 
1190   return 0;
1191 }
1192 
1193 /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is
1194 /// valid.
1195 /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code
1196 /// like this:
1197 /// char *bytes = reinterpret_cast\<char*\>(int_ptr);
1198 void CastOperation::CheckReinterpretCast() {
1199   if (ValueKind == VK_PRValue && !isPlaceholder(BuiltinType::Overload))
1200     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1201   else
1202     checkNonOverloadPlaceholders();
1203   if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1204     return;
1205 
1206   unsigned msg = diag::err_bad_cxx_cast_generic;
1207   TryCastResult tcr =
1208     TryReinterpretCast(Self, SrcExpr, DestType,
1209                        /*CStyle*/false, OpRange, msg, Kind);
1210   if (tcr != TC_Success && msg != 0) {
1211     if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1212       return;
1213     if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1214       //FIXME: &f<int>; is overloaded and resolvable
1215       Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload)
1216         << OverloadExpr::find(SrcExpr.get()).Expression->getName()
1217         << DestType << OpRange;
1218       Self.NoteAllOverloadCandidates(SrcExpr.get());
1219 
1220     } else {
1221       diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(),
1222                       DestType, /*listInitialization=*/false);
1223     }
1224   }
1225 
1226   if (isValidCast(tcr)) {
1227     if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1228       checkObjCConversion(CheckedConversionKind::OtherCast);
1229     DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange);
1230 
1231     if (unsigned DiagID = checkCastFunctionType(Self, SrcExpr, DestType))
1232       Self.Diag(OpRange.getBegin(), DiagID)
1233           << SrcExpr.get()->getType() << DestType << OpRange;
1234   } else {
1235     SrcExpr = ExprError();
1236   }
1237 }
1238 
1239 
1240 /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid.
1241 /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making
1242 /// implicit conversions explicit and getting rid of data loss warnings.
1243 void CastOperation::CheckStaticCast() {
1244   CheckNoDerefRAII NoderefCheck(*this);
1245 
1246   if (isPlaceholder()) {
1247     checkNonOverloadPlaceholders();
1248     if (SrcExpr.isInvalid())
1249       return;
1250   }
1251 
1252   // This test is outside everything else because it's the only case where
1253   // a non-lvalue-reference target type does not lead to decay.
1254   // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1255   if (DestType->isVoidType()) {
1256     Kind = CK_ToVoid;
1257 
1258     if (claimPlaceholder(BuiltinType::Overload)) {
1259       Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr,
1260                 false, // Decay Function to ptr
1261                 true, // Complain
1262                 OpRange, DestType, diag::err_bad_static_cast_overload);
1263       if (SrcExpr.isInvalid())
1264         return;
1265     }
1266 
1267     SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
1268     return;
1269   }
1270 
1271   if (ValueKind == VK_PRValue && !DestType->isRecordType() &&
1272       !isPlaceholder(BuiltinType::Overload)) {
1273     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
1274     if (SrcExpr.isInvalid()) // if conversion failed, don't report another error
1275       return;
1276   }
1277 
1278   unsigned msg = diag::err_bad_cxx_cast_generic;
1279   TryCastResult tcr =
1280       TryStaticCast(Self, SrcExpr, DestType, CheckedConversionKind::OtherCast,
1281                     OpRange, msg, Kind, BasePath, /*ListInitialization=*/false);
1282   if (tcr != TC_Success && msg != 0) {
1283     if (SrcExpr.isInvalid())
1284       return;
1285     if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1286       OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression;
1287       Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload)
1288         << oe->getName() << DestType << OpRange
1289         << oe->getQualifierLoc().getSourceRange();
1290       Self.NoteAllOverloadCandidates(SrcExpr.get());
1291     } else {
1292       diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType,
1293                       /*listInitialization=*/false);
1294     }
1295   }
1296 
1297   if (isValidCast(tcr)) {
1298     if (Kind == CK_BitCast)
1299       checkCastAlign();
1300     if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
1301       checkObjCConversion(CheckedConversionKind::OtherCast);
1302   } else {
1303     SrcExpr = ExprError();
1304   }
1305 }
1306 
1307 static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) {
1308   auto *SrcPtrType = SrcType->getAs<PointerType>();
1309   if (!SrcPtrType)
1310     return false;
1311   auto *DestPtrType = DestType->getAs<PointerType>();
1312   if (!DestPtrType)
1313     return false;
1314   return SrcPtrType->getPointeeType().getAddressSpace() !=
1315          DestPtrType->getPointeeType().getAddressSpace();
1316 }
1317 
1318 /// TryStaticCast - Check if a static cast can be performed, and do so if
1319 /// possible. If @p CStyle, ignore access restrictions on hierarchy casting
1320 /// and casting away constness.
1321 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr,
1322                                    QualType DestType, CheckedConversionKind CCK,
1323                                    SourceRange OpRange, unsigned &msg,
1324                                    CastKind &Kind, CXXCastPath &BasePath,
1325                                    bool ListInitialization) {
1326   // Determine whether we have the semantics of a C-style cast.
1327   bool CStyle = (CCK == CheckedConversionKind::CStyleCast ||
1328                  CCK == CheckedConversionKind::FunctionalCast);
1329 
1330   // The order the tests is not entirely arbitrary. There is one conversion
1331   // that can be handled in two different ways. Given:
1332   // struct A {};
1333   // struct B : public A {
1334   //   B(); B(const A&);
1335   // };
1336   // const A &a = B();
1337   // the cast static_cast<const B&>(a) could be seen as either a static
1338   // reference downcast, or an explicit invocation of the user-defined
1339   // conversion using B's conversion constructor.
1340   // DR 427 specifies that the downcast is to be applied here.
1341 
1342   // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
1343   // Done outside this function.
1344 
1345   TryCastResult tcr;
1346 
1347   // C++ 5.2.9p5, reference downcast.
1348   // See the function for details.
1349   // DR 427 specifies that this is to be applied before paragraph 2.
1350   tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle,
1351                                    OpRange, msg, Kind, BasePath);
1352   if (tcr != TC_NotApplicable)
1353     return tcr;
1354 
1355   // C++11 [expr.static.cast]p3:
1356   //   A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2
1357   //   T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1358   tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind,
1359                               BasePath, msg);
1360   if (tcr != TC_NotApplicable)
1361     return tcr;
1362 
1363   // C++ 5.2.9p2: An expression e can be explicitly converted to a type T
1364   //   [...] if the declaration "T t(e);" is well-formed, [...].
1365   tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg,
1366                               Kind, ListInitialization);
1367   if (SrcExpr.isInvalid())
1368     return TC_Failed;
1369   if (tcr != TC_NotApplicable)
1370     return tcr;
1371 
1372   // C++ 5.2.9p6: May apply the reverse of any standard conversion, except
1373   // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean
1374   // conversions, subject to further restrictions.
1375   // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal
1376   // of qualification conversions impossible. (In C++20, adding an array bound
1377   // would be the reverse of a qualification conversion, but adding permission
1378   // to add an array bound in a static_cast is a wording oversight.)
1379   // In the CStyle case, the earlier attempt to const_cast should have taken
1380   // care of reverse qualification conversions.
1381 
1382   QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType());
1383 
1384   // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly
1385   // converted to an integral type. [...] A value of a scoped enumeration type
1386   // can also be explicitly converted to a floating-point type [...].
1387   if (const EnumType *Enum = SrcType->getAs<EnumType>()) {
1388     if (Enum->getDecl()->isScoped()) {
1389       if (DestType->isBooleanType()) {
1390         Kind = CK_IntegralToBoolean;
1391         return TC_Success;
1392       } else if (DestType->isIntegralType(Self.Context)) {
1393         Kind = CK_IntegralCast;
1394         return TC_Success;
1395       } else if (DestType->isRealFloatingType()) {
1396         Kind = CK_IntegralToFloating;
1397         return TC_Success;
1398       }
1399     }
1400   }
1401 
1402   // Reverse integral promotion/conversion. All such conversions are themselves
1403   // again integral promotions or conversions and are thus already handled by
1404   // p2 (TryDirectInitialization above).
1405   // (Note: any data loss warnings should be suppressed.)
1406   // The exception is the reverse of enum->integer, i.e. integer->enum (and
1407   // enum->enum). See also C++ 5.2.9p7.
1408   // The same goes for reverse floating point promotion/conversion and
1409   // floating-integral conversions. Again, only floating->enum is relevant.
1410   if (DestType->isEnumeralType()) {
1411     if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
1412                                  diag::err_bad_cast_incomplete)) {
1413       SrcExpr = ExprError();
1414       return TC_Failed;
1415     }
1416     if (SrcType->isIntegralOrEnumerationType()) {
1417       // [expr.static.cast]p10 If the enumeration type has a fixed underlying
1418       // type, the value is first converted to that type by integral conversion
1419       const EnumType *Enum = DestType->castAs<EnumType>();
1420       Kind = Enum->getDecl()->isFixed() &&
1421                      Enum->getDecl()->getIntegerType()->isBooleanType()
1422                  ? CK_IntegralToBoolean
1423                  : CK_IntegralCast;
1424       return TC_Success;
1425     } else if (SrcType->isRealFloatingType())   {
1426       Kind = CK_FloatingToIntegral;
1427       return TC_Success;
1428     }
1429   }
1430 
1431   // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast.
1432   // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance.
1433   tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg,
1434                                  Kind, BasePath);
1435   if (tcr != TC_NotApplicable)
1436     return tcr;
1437 
1438   // Reverse member pointer conversion. C++ 4.11 specifies member pointer
1439   // conversion. C++ 5.2.9p9 has additional information.
1440   // DR54's access restrictions apply here also.
1441   tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle,
1442                                      OpRange, msg, Kind, BasePath);
1443   if (tcr != TC_NotApplicable)
1444     return tcr;
1445 
1446   // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to
1447   // void*. C++ 5.2.9p10 specifies additional restrictions, which really is
1448   // just the usual constness stuff.
1449   if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) {
1450     QualType SrcPointee = SrcPointer->getPointeeType();
1451     if (SrcPointee->isVoidType()) {
1452       if (const PointerType *DestPointer = DestType->getAs<PointerType>()) {
1453         QualType DestPointee = DestPointer->getPointeeType();
1454         if (DestPointee->isIncompleteOrObjectType()) {
1455           // This is definitely the intended conversion, but it might fail due
1456           // to a qualifier violation. Note that we permit Objective-C lifetime
1457           // and GC qualifier mismatches here.
1458           if (!CStyle) {
1459             Qualifiers DestPointeeQuals = DestPointee.getQualifiers();
1460             Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers();
1461             DestPointeeQuals.removeObjCGCAttr();
1462             DestPointeeQuals.removeObjCLifetime();
1463             SrcPointeeQuals.removeObjCGCAttr();
1464             SrcPointeeQuals.removeObjCLifetime();
1465             if (DestPointeeQuals != SrcPointeeQuals &&
1466                 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals,
1467                                                      Self.getASTContext())) {
1468               msg = diag::err_bad_cxx_cast_qualifiers_away;
1469               return TC_Failed;
1470             }
1471           }
1472           Kind = IsAddressSpaceConversion(SrcType, DestType)
1473                      ? CK_AddressSpaceConversion
1474                      : CK_BitCast;
1475           return TC_Success;
1476         }
1477 
1478         // Microsoft permits static_cast from 'pointer-to-void' to
1479         // 'pointer-to-function'.
1480         if (!CStyle && Self.getLangOpts().MSVCCompat &&
1481             DestPointee->isFunctionType()) {
1482           Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange;
1483           Kind = CK_BitCast;
1484           return TC_Success;
1485         }
1486       }
1487       else if (DestType->isObjCObjectPointerType()) {
1488         // allow both c-style cast and static_cast of objective-c pointers as
1489         // they are pervasive.
1490         Kind = CK_CPointerToObjCPointerCast;
1491         return TC_Success;
1492       }
1493       else if (CStyle && DestType->isBlockPointerType()) {
1494         // allow c-style cast of void * to block pointers.
1495         Kind = CK_AnyPointerToBlockPointerCast;
1496         return TC_Success;
1497       }
1498     }
1499   }
1500   // Allow arbitrary objective-c pointer conversion with static casts.
1501   if (SrcType->isObjCObjectPointerType() &&
1502       DestType->isObjCObjectPointerType()) {
1503     Kind = CK_BitCast;
1504     return TC_Success;
1505   }
1506   // Allow ns-pointer to cf-pointer conversion in either direction
1507   // with static casts.
1508   if (!CStyle &&
1509       Self.ObjC().CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind))
1510     return TC_Success;
1511 
1512   // See if it looks like the user is trying to convert between
1513   // related record types, and select a better diagnostic if so.
1514   if (auto SrcPointer = SrcType->getAs<PointerType>())
1515     if (auto DestPointer = DestType->getAs<PointerType>())
1516       if (SrcPointer->getPointeeType()->getAs<RecordType>() &&
1517           DestPointer->getPointeeType()->getAs<RecordType>())
1518        msg = diag::err_bad_cxx_cast_unrelated_class;
1519 
1520   if (SrcType->isMatrixType() && DestType->isMatrixType()) {
1521     if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind)) {
1522       SrcExpr = ExprError();
1523       return TC_Failed;
1524     }
1525     return TC_Success;
1526   }
1527 
1528   // We tried everything. Everything! Nothing works! :-(
1529   return TC_NotApplicable;
1530 }
1531 
1532 /// Tests whether a conversion according to N2844 is valid.
1533 TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr,
1534                                     QualType DestType, bool CStyle,
1535                                     CastKind &Kind, CXXCastPath &BasePath,
1536                                     unsigned &msg) {
1537   // C++11 [expr.static.cast]p3:
1538   //   A glvalue of type "cv1 T1" can be cast to type "rvalue reference to
1539   //   cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1".
1540   const RValueReferenceType *R = DestType->getAs<RValueReferenceType>();
1541   if (!R)
1542     return TC_NotApplicable;
1543 
1544   if (!SrcExpr->isGLValue())
1545     return TC_NotApplicable;
1546 
1547   // Because we try the reference downcast before this function, from now on
1548   // this is the only cast possibility, so we issue an error if we fail now.
1549   // FIXME: Should allow casting away constness if CStyle.
1550   QualType FromType = SrcExpr->getType();
1551   QualType ToType = R->getPointeeType();
1552   if (CStyle) {
1553     FromType = FromType.getUnqualifiedType();
1554     ToType = ToType.getUnqualifiedType();
1555   }
1556 
1557   Sema::ReferenceConversions RefConv;
1558   Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship(
1559       SrcExpr->getBeginLoc(), ToType, FromType, &RefConv);
1560   if (RefResult != Sema::Ref_Compatible) {
1561     if (CStyle || RefResult == Sema::Ref_Incompatible)
1562       return TC_NotApplicable;
1563     // Diagnose types which are reference-related but not compatible here since
1564     // we can provide better diagnostics. In these cases forwarding to
1565     // [expr.static.cast]p4 should never result in a well-formed cast.
1566     msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast
1567                               : diag::err_bad_rvalue_to_rvalue_cast;
1568     return TC_Failed;
1569   }
1570 
1571   if (RefConv & Sema::ReferenceConversions::DerivedToBase) {
1572     Kind = CK_DerivedToBase;
1573     CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1574                        /*DetectVirtual=*/true);
1575     if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(),
1576                             R->getPointeeType(), Paths))
1577       return TC_NotApplicable;
1578 
1579     Self.BuildBasePathArray(Paths, BasePath);
1580   } else
1581     Kind = CK_NoOp;
1582 
1583   return TC_Success;
1584 }
1585 
1586 /// Tests whether a conversion according to C++ 5.2.9p5 is valid.
1587 TryCastResult
1588 TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType,
1589                            bool CStyle, SourceRange OpRange,
1590                            unsigned &msg, CastKind &Kind,
1591                            CXXCastPath &BasePath) {
1592   // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be
1593   //   cast to type "reference to cv2 D", where D is a class derived from B,
1594   //   if a valid standard conversion from "pointer to D" to "pointer to B"
1595   //   exists, cv2 >= cv1, and B is not a virtual base class of D.
1596   // In addition, DR54 clarifies that the base must be accessible in the
1597   // current context. Although the wording of DR54 only applies to the pointer
1598   // variant of this rule, the intent is clearly for it to apply to the this
1599   // conversion as well.
1600 
1601   const ReferenceType *DestReference = DestType->getAs<ReferenceType>();
1602   if (!DestReference) {
1603     return TC_NotApplicable;
1604   }
1605   bool RValueRef = DestReference->isRValueReferenceType();
1606   if (!RValueRef && !SrcExpr->isLValue()) {
1607     // We know the left side is an lvalue reference, so we can suggest a reason.
1608     msg = diag::err_bad_cxx_cast_rvalue;
1609     return TC_NotApplicable;
1610   }
1611 
1612   QualType DestPointee = DestReference->getPointeeType();
1613 
1614   // FIXME: If the source is a prvalue, we should issue a warning (because the
1615   // cast always has undefined behavior), and for AST consistency, we should
1616   // materialize a temporary.
1617   return TryStaticDowncast(Self,
1618                            Self.Context.getCanonicalType(SrcExpr->getType()),
1619                            Self.Context.getCanonicalType(DestPointee), CStyle,
1620                            OpRange, SrcExpr->getType(), DestType, msg, Kind,
1621                            BasePath);
1622 }
1623 
1624 /// Tests whether a conversion according to C++ 5.2.9p8 is valid.
1625 TryCastResult
1626 TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType,
1627                          bool CStyle, SourceRange OpRange,
1628                          unsigned &msg, CastKind &Kind,
1629                          CXXCastPath &BasePath) {
1630   // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class
1631   //   type, can be converted to an rvalue of type "pointer to cv2 D", where D
1632   //   is a class derived from B, if a valid standard conversion from "pointer
1633   //   to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base
1634   //   class of D.
1635   // In addition, DR54 clarifies that the base must be accessible in the
1636   // current context.
1637 
1638   const PointerType *DestPointer = DestType->getAs<PointerType>();
1639   if (!DestPointer) {
1640     return TC_NotApplicable;
1641   }
1642 
1643   const PointerType *SrcPointer = SrcType->getAs<PointerType>();
1644   if (!SrcPointer) {
1645     msg = diag::err_bad_static_cast_pointer_nonpointer;
1646     return TC_NotApplicable;
1647   }
1648 
1649   return TryStaticDowncast(Self,
1650                    Self.Context.getCanonicalType(SrcPointer->getPointeeType()),
1651                   Self.Context.getCanonicalType(DestPointer->getPointeeType()),
1652                            CStyle, OpRange, SrcType, DestType, msg, Kind,
1653                            BasePath);
1654 }
1655 
1656 /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and
1657 /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to
1658 /// DestType is possible and allowed.
1659 TryCastResult
1660 TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType,
1661                   bool CStyle, SourceRange OpRange, QualType OrigSrcType,
1662                   QualType OrigDestType, unsigned &msg,
1663                   CastKind &Kind, CXXCastPath &BasePath) {
1664   // We can only work with complete types. But don't complain if it doesn't work
1665   if (!Self.isCompleteType(OpRange.getBegin(), SrcType) ||
1666       !Self.isCompleteType(OpRange.getBegin(), DestType))
1667     return TC_NotApplicable;
1668 
1669   // Downcast can only happen in class hierarchies, so we need classes.
1670   if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) {
1671     return TC_NotApplicable;
1672   }
1673 
1674   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1675                      /*DetectVirtual=*/true);
1676   if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) {
1677     return TC_NotApplicable;
1678   }
1679 
1680   // Target type does derive from source type. Now we're serious. If an error
1681   // appears now, it's not ignored.
1682   // This may not be entirely in line with the standard. Take for example:
1683   // struct A {};
1684   // struct B : virtual A {
1685   //   B(A&);
1686   // };
1687   //
1688   // void f()
1689   // {
1690   //   (void)static_cast<const B&>(*((A*)0));
1691   // }
1692   // As far as the standard is concerned, p5 does not apply (A is virtual), so
1693   // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid.
1694   // However, both GCC and Comeau reject this example, and accepting it would
1695   // mean more complex code if we're to preserve the nice error message.
1696   // FIXME: Being 100% compliant here would be nice to have.
1697 
1698   // Must preserve cv, as always, unless we're in C-style mode.
1699   if (!CStyle &&
1700       !DestType.isAtLeastAsQualifiedAs(SrcType, Self.getASTContext())) {
1701     msg = diag::err_bad_cxx_cast_qualifiers_away;
1702     return TC_Failed;
1703   }
1704 
1705   if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) {
1706     // This code is analoguous to that in CheckDerivedToBaseConversion, except
1707     // that it builds the paths in reverse order.
1708     // To sum up: record all paths to the base and build a nice string from
1709     // them. Use it to spice up the error message.
1710     if (!Paths.isRecordingPaths()) {
1711       Paths.clear();
1712       Paths.setRecordingPaths(true);
1713       Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths);
1714     }
1715     std::string PathDisplayStr;
1716     std::set<unsigned> DisplayedPaths;
1717     for (clang::CXXBasePath &Path : Paths) {
1718       if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) {
1719         // We haven't displayed a path to this particular base
1720         // class subobject yet.
1721         PathDisplayStr += "\n    ";
1722         for (CXXBasePathElement &PE : llvm::reverse(Path))
1723           PathDisplayStr += PE.Base->getType().getAsString() + " -> ";
1724         PathDisplayStr += QualType(DestType).getAsString();
1725       }
1726     }
1727 
1728     Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast)
1729       << QualType(SrcType).getUnqualifiedType()
1730       << QualType(DestType).getUnqualifiedType()
1731       << PathDisplayStr << OpRange;
1732     msg = 0;
1733     return TC_Failed;
1734   }
1735 
1736   if (Paths.getDetectedVirtual() != nullptr) {
1737     QualType VirtualBase(Paths.getDetectedVirtual(), 0);
1738     Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual)
1739       << OrigSrcType << OrigDestType << VirtualBase << OpRange;
1740     msg = 0;
1741     return TC_Failed;
1742   }
1743 
1744   if (!CStyle) {
1745     switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1746                                       SrcType, DestType,
1747                                       Paths.front(),
1748                                 diag::err_downcast_from_inaccessible_base)) {
1749     case Sema::AR_accessible:
1750     case Sema::AR_delayed:     // be optimistic
1751     case Sema::AR_dependent:   // be optimistic
1752       break;
1753 
1754     case Sema::AR_inaccessible:
1755       msg = 0;
1756       return TC_Failed;
1757     }
1758   }
1759 
1760   Self.BuildBasePathArray(Paths, BasePath);
1761   Kind = CK_BaseToDerived;
1762   return TC_Success;
1763 }
1764 
1765 /// TryStaticMemberPointerUpcast - Tests whether a conversion according to
1766 /// C++ 5.2.9p9 is valid:
1767 ///
1768 ///   An rvalue of type "pointer to member of D of type cv1 T" can be
1769 ///   converted to an rvalue of type "pointer to member of B of type cv2 T",
1770 ///   where B is a base class of D [...].
1771 ///
1772 TryCastResult
1773 TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType,
1774                              QualType DestType, bool CStyle,
1775                              SourceRange OpRange,
1776                              unsigned &msg, CastKind &Kind,
1777                              CXXCastPath &BasePath) {
1778   const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>();
1779   if (!DestMemPtr)
1780     return TC_NotApplicable;
1781 
1782   bool WasOverloadedFunction = false;
1783   DeclAccessPair FoundOverload;
1784   if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
1785     if (FunctionDecl *Fn
1786           = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false,
1787                                                     FoundOverload)) {
1788       CXXMethodDecl *M = cast<CXXMethodDecl>(Fn);
1789       SrcType = Self.Context.getMemberPointerType(Fn->getType(),
1790                       Self.Context.getTypeDeclType(M->getParent()).getTypePtr());
1791       WasOverloadedFunction = true;
1792     }
1793   }
1794 
1795   const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>();
1796   if (!SrcMemPtr) {
1797     msg = diag::err_bad_static_cast_member_pointer_nonmp;
1798     return TC_NotApplicable;
1799   }
1800 
1801   // Lock down the inheritance model right now in MS ABI, whether or not the
1802   // pointee types are the same.
1803   if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1804     (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
1805     (void)Self.isCompleteType(OpRange.getBegin(), DestType);
1806   }
1807 
1808   // T == T, modulo cv
1809   if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(),
1810                                            DestMemPtr->getPointeeType()))
1811     return TC_NotApplicable;
1812 
1813   // B base of D
1814   QualType SrcClass(SrcMemPtr->getClass(), 0);
1815   QualType DestClass(DestMemPtr->getClass(), 0);
1816   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1817                   /*DetectVirtual=*/true);
1818   if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths))
1819     return TC_NotApplicable;
1820 
1821   // B is a base of D. But is it an allowed base? If not, it's a hard error.
1822   if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) {
1823     Paths.clear();
1824     Paths.setRecordingPaths(true);
1825     bool StillOkay =
1826         Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths);
1827     assert(StillOkay);
1828     (void)StillOkay;
1829     std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths);
1830     Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv)
1831       << 1 << SrcClass << DestClass << PathDisplayStr << OpRange;
1832     msg = 0;
1833     return TC_Failed;
1834   }
1835 
1836   if (const RecordType *VBase = Paths.getDetectedVirtual()) {
1837     Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual)
1838       << SrcClass << DestClass << QualType(VBase, 0) << OpRange;
1839     msg = 0;
1840     return TC_Failed;
1841   }
1842 
1843   if (!CStyle) {
1844     switch (Self.CheckBaseClassAccess(OpRange.getBegin(),
1845                                       DestClass, SrcClass,
1846                                       Paths.front(),
1847                                       diag::err_upcast_to_inaccessible_base)) {
1848     case Sema::AR_accessible:
1849     case Sema::AR_delayed:
1850     case Sema::AR_dependent:
1851       // Optimistically assume that the delayed and dependent cases
1852       // will work out.
1853       break;
1854 
1855     case Sema::AR_inaccessible:
1856       msg = 0;
1857       return TC_Failed;
1858     }
1859   }
1860 
1861   if (WasOverloadedFunction) {
1862     // Resolve the address of the overloaded function again, this time
1863     // allowing complaints if something goes wrong.
1864     FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
1865                                                                DestType,
1866                                                                true,
1867                                                                FoundOverload);
1868     if (!Fn) {
1869       msg = 0;
1870       return TC_Failed;
1871     }
1872 
1873     SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn);
1874     if (!SrcExpr.isUsable()) {
1875       msg = 0;
1876       return TC_Failed;
1877     }
1878   }
1879 
1880   Self.BuildBasePathArray(Paths, BasePath);
1881   Kind = CK_DerivedToBaseMemberPointer;
1882   return TC_Success;
1883 }
1884 
1885 /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2
1886 /// is valid:
1887 ///
1888 ///   An expression e can be explicitly converted to a type T using a
1889 ///   @c static_cast if the declaration "T t(e);" is well-formed [...].
1890 TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr,
1891                                     QualType DestType,
1892                                     CheckedConversionKind CCK,
1893                                     SourceRange OpRange, unsigned &msg,
1894                                     CastKind &Kind, bool ListInitialization) {
1895   if (DestType->isRecordType()) {
1896     if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
1897                                  diag::err_bad_cast_incomplete) ||
1898         Self.RequireNonAbstractType(OpRange.getBegin(), DestType,
1899                                     diag::err_allocation_of_abstract_type)) {
1900       msg = 0;
1901       return TC_Failed;
1902     }
1903   }
1904 
1905   InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType);
1906   InitializationKind InitKind =
1907       (CCK == CheckedConversionKind::CStyleCast)
1908           ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange,
1909                                                  ListInitialization)
1910       : (CCK == CheckedConversionKind::FunctionalCast)
1911           ? InitializationKind::CreateFunctionalCast(OpRange,
1912                                                      ListInitialization)
1913           : InitializationKind::CreateCast(OpRange);
1914   Expr *SrcExprRaw = SrcExpr.get();
1915   // FIXME: Per DR242, we should check for an implicit conversion sequence
1916   // or for a constructor that could be invoked by direct-initialization
1917   // here, not for an initialization sequence.
1918   InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw);
1919 
1920   // At this point of CheckStaticCast, if the destination is a reference,
1921   // or the expression is an overload expression this has to work.
1922   // There is no other way that works.
1923   // On the other hand, if we're checking a C-style cast, we've still got
1924   // the reinterpret_cast way.
1925   bool CStyle = (CCK == CheckedConversionKind::CStyleCast ||
1926                  CCK == CheckedConversionKind::FunctionalCast);
1927   if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType()))
1928     return TC_NotApplicable;
1929 
1930   ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw);
1931   if (Result.isInvalid()) {
1932     msg = 0;
1933     return TC_Failed;
1934   }
1935 
1936   if (InitSeq.isConstructorInitialization())
1937     Kind = CK_ConstructorConversion;
1938   else
1939     Kind = CK_NoOp;
1940 
1941   SrcExpr = Result;
1942   return TC_Success;
1943 }
1944 
1945 /// TryConstCast - See if a const_cast from source to destination is allowed,
1946 /// and perform it if it is.
1947 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr,
1948                                   QualType DestType, bool CStyle,
1949                                   unsigned &msg) {
1950   DestType = Self.Context.getCanonicalType(DestType);
1951   QualType SrcType = SrcExpr.get()->getType();
1952   bool NeedToMaterializeTemporary = false;
1953 
1954   if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) {
1955     // C++11 5.2.11p4:
1956     //   if a pointer to T1 can be explicitly converted to the type "pointer to
1957     //   T2" using a const_cast, then the following conversions can also be
1958     //   made:
1959     //    -- an lvalue of type T1 can be explicitly converted to an lvalue of
1960     //       type T2 using the cast const_cast<T2&>;
1961     //    -- a glvalue of type T1 can be explicitly converted to an xvalue of
1962     //       type T2 using the cast const_cast<T2&&>; and
1963     //    -- if T1 is a class type, a prvalue of type T1 can be explicitly
1964     //       converted to an xvalue of type T2 using the cast const_cast<T2&&>.
1965 
1966     if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) {
1967       // Cannot const_cast non-lvalue to lvalue reference type. But if this
1968       // is C-style, static_cast might find a way, so we simply suggest a
1969       // message and tell the parent to keep searching.
1970       msg = diag::err_bad_cxx_cast_rvalue;
1971       return TC_NotApplicable;
1972     }
1973 
1974     if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isPRValue()) {
1975       if (!SrcType->isRecordType()) {
1976         // Cannot const_cast non-class prvalue to rvalue reference type. But if
1977         // this is C-style, static_cast can do this.
1978         msg = diag::err_bad_cxx_cast_rvalue;
1979         return TC_NotApplicable;
1980       }
1981 
1982       // Materialize the class prvalue so that the const_cast can bind a
1983       // reference to it.
1984       NeedToMaterializeTemporary = true;
1985     }
1986 
1987     // It's not completely clear under the standard whether we can
1988     // const_cast bit-field gl-values.  Doing so would not be
1989     // intrinsically complicated, but for now, we say no for
1990     // consistency with other compilers and await the word of the
1991     // committee.
1992     if (SrcExpr.get()->refersToBitField()) {
1993       msg = diag::err_bad_cxx_cast_bitfield;
1994       return TC_NotApplicable;
1995     }
1996 
1997     DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
1998     SrcType = Self.Context.getPointerType(SrcType);
1999   }
2000 
2001   // C++ 5.2.11p5: For a const_cast involving pointers to data members [...]
2002   //   the rules for const_cast are the same as those used for pointers.
2003 
2004   if (!DestType->isPointerType() &&
2005       !DestType->isMemberPointerType() &&
2006       !DestType->isObjCObjectPointerType()) {
2007     // Cannot cast to non-pointer, non-reference type. Note that, if DestType
2008     // was a reference type, we converted it to a pointer above.
2009     // The status of rvalue references isn't entirely clear, but it looks like
2010     // conversion to them is simply invalid.
2011     // C++ 5.2.11p3: For two pointer types [...]
2012     if (!CStyle)
2013       msg = diag::err_bad_const_cast_dest;
2014     return TC_NotApplicable;
2015   }
2016   if (DestType->isFunctionPointerType() ||
2017       DestType->isMemberFunctionPointerType()) {
2018     // Cannot cast direct function pointers.
2019     // C++ 5.2.11p2: [...] where T is any object type or the void type [...]
2020     // T is the ultimate pointee of source and target type.
2021     if (!CStyle)
2022       msg = diag::err_bad_const_cast_dest;
2023     return TC_NotApplicable;
2024   }
2025 
2026   // C++ [expr.const.cast]p3:
2027   //   "For two similar types T1 and T2, [...]"
2028   //
2029   // We only allow a const_cast to change cvr-qualifiers, not other kinds of
2030   // type qualifiers. (Likewise, we ignore other changes when determining
2031   // whether a cast casts away constness.)
2032   if (!Self.Context.hasCvrSimilarType(SrcType, DestType))
2033     return TC_NotApplicable;
2034 
2035   if (NeedToMaterializeTemporary)
2036     // This is a const_cast from a class prvalue to an rvalue reference type.
2037     // Materialize a temporary to store the result of the conversion.
2038     SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(),
2039                                                   SrcExpr.get(),
2040                                                   /*IsLValueReference*/ false);
2041 
2042   return TC_Success;
2043 }
2044 
2045 // Checks for undefined behavior in reinterpret_cast.
2046 // The cases that is checked for is:
2047 // *reinterpret_cast<T*>(&a)
2048 // reinterpret_cast<T&>(a)
2049 // where accessing 'a' as type 'T' will result in undefined behavior.
2050 void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType,
2051                                           bool IsDereference,
2052                                           SourceRange Range) {
2053   unsigned DiagID = IsDereference ?
2054                         diag::warn_pointer_indirection_from_incompatible_type :
2055                         diag::warn_undefined_reinterpret_cast;
2056 
2057   if (Diags.isIgnored(DiagID, Range.getBegin()))
2058     return;
2059 
2060   QualType SrcTy, DestTy;
2061   if (IsDereference) {
2062     if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) {
2063       return;
2064     }
2065     SrcTy = SrcType->getPointeeType();
2066     DestTy = DestType->getPointeeType();
2067   } else {
2068     if (!DestType->getAs<ReferenceType>()) {
2069       return;
2070     }
2071     SrcTy = SrcType;
2072     DestTy = DestType->getPointeeType();
2073   }
2074 
2075   // Cast is compatible if the types are the same.
2076   if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) {
2077     return;
2078   }
2079   // or one of the types is a char or void type
2080   if (DestTy->isAnyCharacterType() || DestTy->isVoidType() ||
2081       SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) {
2082     return;
2083   }
2084   // or one of the types is a tag type.
2085   if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) {
2086     return;
2087   }
2088 
2089   // FIXME: Scoped enums?
2090   if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) ||
2091       (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) {
2092     if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) {
2093       return;
2094     }
2095   }
2096 
2097   if (SrcTy->isDependentType() || DestTy->isDependentType()) {
2098     return;
2099   }
2100 
2101   Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range;
2102 }
2103 
2104 static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr,
2105                                   QualType DestType) {
2106   QualType SrcType = SrcExpr.get()->getType();
2107   if (Self.Context.hasSameType(SrcType, DestType))
2108     return;
2109   if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>())
2110     if (SrcPtrTy->isObjCSelType()) {
2111       QualType DT = DestType;
2112       if (isa<PointerType>(DestType))
2113         DT = DestType->getPointeeType();
2114       if (!DT.getUnqualifiedType()->isVoidType())
2115         Self.Diag(SrcExpr.get()->getExprLoc(),
2116                   diag::warn_cast_pointer_from_sel)
2117         << SrcType << DestType << SrcExpr.get()->getSourceRange();
2118     }
2119 }
2120 
2121 /// Diagnose casts that change the calling convention of a pointer to a function
2122 /// defined in the current TU.
2123 static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr,
2124                                     QualType DstType, SourceRange OpRange) {
2125   // Check if this cast would change the calling convention of a function
2126   // pointer type.
2127   QualType SrcType = SrcExpr.get()->getType();
2128   if (Self.Context.hasSameType(SrcType, DstType) ||
2129       !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType())
2130     return;
2131   const auto *SrcFTy =
2132       SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
2133   const auto *DstFTy =
2134       DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>();
2135   CallingConv SrcCC = SrcFTy->getCallConv();
2136   CallingConv DstCC = DstFTy->getCallConv();
2137   if (SrcCC == DstCC)
2138     return;
2139 
2140   // We have a calling convention cast. Check if the source is a pointer to a
2141   // known, specific function that has already been defined.
2142   Expr *Src = SrcExpr.get()->IgnoreParenImpCasts();
2143   if (auto *UO = dyn_cast<UnaryOperator>(Src))
2144     if (UO->getOpcode() == UO_AddrOf)
2145       Src = UO->getSubExpr()->IgnoreParenImpCasts();
2146   auto *DRE = dyn_cast<DeclRefExpr>(Src);
2147   if (!DRE)
2148     return;
2149   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
2150   if (!FD)
2151     return;
2152 
2153   // Only warn if we are casting from the default convention to a non-default
2154   // convention. This can happen when the programmer forgot to apply the calling
2155   // convention to the function declaration and then inserted this cast to
2156   // satisfy the type system.
2157   CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention(
2158       FD->isVariadic(), FD->isCXXInstanceMember());
2159   if (DstCC == DefaultCC || SrcCC != DefaultCC)
2160     return;
2161 
2162   // Diagnose this cast, as it is probably bad.
2163   StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC);
2164   StringRef DstCCName = FunctionType::getNameForCallConv(DstCC);
2165   Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv)
2166       << SrcCCName << DstCCName << OpRange;
2167 
2168   // The checks above are cheaper than checking if the diagnostic is enabled.
2169   // However, it's worth checking if the warning is enabled before we construct
2170   // a fixit.
2171   if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin()))
2172     return;
2173 
2174   // Try to suggest a fixit to change the calling convention of the function
2175   // whose address was taken. Try to use the latest macro for the convention.
2176   // For example, users probably want to write "WINAPI" instead of "__stdcall"
2177   // to match the Windows header declarations.
2178   SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc();
2179   Preprocessor &PP = Self.getPreprocessor();
2180   SmallVector<TokenValue, 6> AttrTokens;
2181   SmallString<64> CCAttrText;
2182   llvm::raw_svector_ostream OS(CCAttrText);
2183   if (Self.getLangOpts().MicrosoftExt) {
2184     // __stdcall or __vectorcall
2185     OS << "__" << DstCCName;
2186     IdentifierInfo *II = PP.getIdentifierInfo(OS.str());
2187     AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
2188                              ? TokenValue(II->getTokenID())
2189                              : TokenValue(II));
2190   } else {
2191     // __attribute__((stdcall)) or __attribute__((vectorcall))
2192     OS << "__attribute__((" << DstCCName << "))";
2193     AttrTokens.push_back(tok::kw___attribute);
2194     AttrTokens.push_back(tok::l_paren);
2195     AttrTokens.push_back(tok::l_paren);
2196     IdentifierInfo *II = PP.getIdentifierInfo(DstCCName);
2197     AttrTokens.push_back(II->isKeyword(Self.getLangOpts())
2198                              ? TokenValue(II->getTokenID())
2199                              : TokenValue(II));
2200     AttrTokens.push_back(tok::r_paren);
2201     AttrTokens.push_back(tok::r_paren);
2202   }
2203   StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens);
2204   if (!AttrSpelling.empty())
2205     CCAttrText = AttrSpelling;
2206   OS << ' ';
2207   Self.Diag(NameLoc, diag::note_change_calling_conv_fixit)
2208       << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText);
2209 }
2210 
2211 static void checkIntToPointerCast(bool CStyle, const SourceRange &OpRange,
2212                                   const Expr *SrcExpr, QualType DestType,
2213                                   Sema &Self) {
2214   QualType SrcType = SrcExpr->getType();
2215 
2216   // Not warning on reinterpret_cast, boolean, constant expressions, etc
2217   // are not explicit design choices, but consistent with GCC's behavior.
2218   // Feel free to modify them if you've reason/evidence for an alternative.
2219   if (CStyle && SrcType->isIntegralType(Self.Context)
2220       && !SrcType->isBooleanType()
2221       && !SrcType->isEnumeralType()
2222       && !SrcExpr->isIntegerConstantExpr(Self.Context)
2223       && Self.Context.getTypeSize(DestType) >
2224          Self.Context.getTypeSize(SrcType)) {
2225     // Separate between casts to void* and non-void* pointers.
2226     // Some APIs use (abuse) void* for something like a user context,
2227     // and often that value is an integer even if it isn't a pointer itself.
2228     // Having a separate warning flag allows users to control the warning
2229     // for their workflow.
2230     unsigned Diag = DestType->isVoidPointerType() ?
2231                       diag::warn_int_to_void_pointer_cast
2232                     : diag::warn_int_to_pointer_cast;
2233     Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
2234   }
2235 }
2236 
2237 static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType,
2238                                              ExprResult &Result) {
2239   // We can only fix an overloaded reinterpret_cast if
2240   // - it is a template with explicit arguments that resolves to an lvalue
2241   //   unambiguously, or
2242   // - it is the only function in an overload set that may have its address
2243   //   taken.
2244 
2245   Expr *E = Result.get();
2246   // TODO: what if this fails because of DiagnoseUseOfDecl or something
2247   // like it?
2248   if (Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2249           Result,
2250           Expr::getValueKindForType(DestType) ==
2251               VK_PRValue // Convert Fun to Ptr
2252           ) &&
2253       Result.isUsable())
2254     return true;
2255 
2256   // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
2257   // preserves Result.
2258   Result = E;
2259   if (!Self.resolveAndFixAddressOfSingleOverloadCandidate(
2260           Result, /*DoFunctionPointerConversion=*/true))
2261     return false;
2262   return Result.isUsable();
2263 }
2264 
2265 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr,
2266                                         QualType DestType, bool CStyle,
2267                                         SourceRange OpRange,
2268                                         unsigned &msg,
2269                                         CastKind &Kind) {
2270   bool IsLValueCast = false;
2271 
2272   DestType = Self.Context.getCanonicalType(DestType);
2273   QualType SrcType = SrcExpr.get()->getType();
2274 
2275   // Is the source an overloaded name? (i.e. &foo)
2276   // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5)
2277   if (SrcType == Self.Context.OverloadTy) {
2278     ExprResult FixedExpr = SrcExpr;
2279     if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr))
2280       return TC_NotApplicable;
2281 
2282     assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr");
2283     SrcExpr = FixedExpr;
2284     SrcType = SrcExpr.get()->getType();
2285   }
2286 
2287   if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) {
2288     if (!SrcExpr.get()->isGLValue()) {
2289       // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the
2290       // similar comment in const_cast.
2291       msg = diag::err_bad_cxx_cast_rvalue;
2292       return TC_NotApplicable;
2293     }
2294 
2295     if (!CStyle) {
2296       Self.CheckCompatibleReinterpretCast(SrcType, DestType,
2297                                           /*IsDereference=*/false, OpRange);
2298     }
2299 
2300     // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the
2301     //   same effect as the conversion *reinterpret_cast<T*>(&x) with the
2302     //   built-in & and * operators.
2303 
2304     const char *inappropriate = nullptr;
2305     switch (SrcExpr.get()->getObjectKind()) {
2306     case OK_Ordinary:
2307       break;
2308     case OK_BitField:
2309       msg = diag::err_bad_cxx_cast_bitfield;
2310       return TC_NotApplicable;
2311       // FIXME: Use a specific diagnostic for the rest of these cases.
2312     case OK_VectorComponent: inappropriate = "vector element";      break;
2313     case OK_MatrixComponent:
2314       inappropriate = "matrix element";
2315       break;
2316     case OK_ObjCProperty:    inappropriate = "property expression"; break;
2317     case OK_ObjCSubscript:   inappropriate = "container subscripting expression";
2318                              break;
2319     }
2320     if (inappropriate) {
2321       Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference)
2322           << inappropriate << DestType
2323           << OpRange << SrcExpr.get()->getSourceRange();
2324       msg = 0; SrcExpr = ExprError();
2325       return TC_NotApplicable;
2326     }
2327 
2328     // This code does this transformation for the checked types.
2329     DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType());
2330     SrcType = Self.Context.getPointerType(SrcType);
2331 
2332     IsLValueCast = true;
2333   }
2334 
2335   // Canonicalize source for comparison.
2336   SrcType = Self.Context.getCanonicalType(SrcType);
2337 
2338   const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(),
2339                           *SrcMemPtr = SrcType->getAs<MemberPointerType>();
2340   if (DestMemPtr && SrcMemPtr) {
2341     // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1"
2342     //   can be explicitly converted to an rvalue of type "pointer to member
2343     //   of Y of type T2" if T1 and T2 are both function types or both object
2344     //   types.
2345     if (DestMemPtr->isMemberFunctionPointer() !=
2346         SrcMemPtr->isMemberFunctionPointer())
2347       return TC_NotApplicable;
2348 
2349     if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2350       // We need to determine the inheritance model that the class will use if
2351       // haven't yet.
2352       (void)Self.isCompleteType(OpRange.getBegin(), SrcType);
2353       (void)Self.isCompleteType(OpRange.getBegin(), DestType);
2354     }
2355 
2356     // Don't allow casting between member pointers of different sizes.
2357     if (Self.Context.getTypeSize(DestMemPtr) !=
2358         Self.Context.getTypeSize(SrcMemPtr)) {
2359       msg = diag::err_bad_cxx_cast_member_pointer_size;
2360       return TC_Failed;
2361     }
2362 
2363     // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away
2364     //   constness.
2365     // A reinterpret_cast followed by a const_cast can, though, so in C-style,
2366     // we accept it.
2367     if (auto CACK =
2368             CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2369                                /*CheckObjCLifetime=*/CStyle))
2370       return getCastAwayConstnessCastKind(CACK, msg);
2371 
2372     // A valid member pointer cast.
2373     assert(!IsLValueCast);
2374     Kind = CK_ReinterpretMemberPointer;
2375     return TC_Success;
2376   }
2377 
2378   // See below for the enumeral issue.
2379   if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) {
2380     // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral
2381     //   type large enough to hold it. A value of std::nullptr_t can be
2382     //   converted to an integral type; the conversion has the same meaning
2383     //   and validity as a conversion of (void*)0 to the integral type.
2384     if (Self.Context.getTypeSize(SrcType) >
2385         Self.Context.getTypeSize(DestType)) {
2386       msg = diag::err_bad_reinterpret_cast_small_int;
2387       return TC_Failed;
2388     }
2389     Kind = CK_PointerToIntegral;
2390     return TC_Success;
2391   }
2392 
2393   // Allow reinterpret_casts between vectors of the same size and
2394   // between vectors and integers of the same size.
2395   bool destIsVector = DestType->isVectorType();
2396   bool srcIsVector = SrcType->isVectorType();
2397   if (srcIsVector || destIsVector) {
2398     // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa.
2399     if (Self.isValidSveBitcast(SrcType, DestType)) {
2400       Kind = CK_BitCast;
2401       return TC_Success;
2402     }
2403 
2404     // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa.
2405     if (Self.RISCV().isValidRVVBitcast(SrcType, DestType)) {
2406       Kind = CK_BitCast;
2407       return TC_Success;
2408     }
2409 
2410     // The non-vector type, if any, must have integral type.  This is
2411     // the same rule that C vector casts use; note, however, that enum
2412     // types are not integral in C++.
2413     if ((!destIsVector && !DestType->isIntegralType(Self.Context)) ||
2414         (!srcIsVector && !SrcType->isIntegralType(Self.Context)))
2415       return TC_NotApplicable;
2416 
2417     // The size we want to consider is eltCount * eltSize.
2418     // That's exactly what the lax-conversion rules will check.
2419     if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) {
2420       Kind = CK_BitCast;
2421       return TC_Success;
2422     }
2423 
2424     if (Self.LangOpts.OpenCL && !CStyle) {
2425       if (DestType->isExtVectorType() || SrcType->isExtVectorType()) {
2426         // FIXME: Allow for reinterpret cast between 3 and 4 element vectors
2427         if (Self.areVectorTypesSameSize(SrcType, DestType)) {
2428           Kind = CK_BitCast;
2429           return TC_Success;
2430         }
2431       }
2432     }
2433 
2434     // Otherwise, pick a reasonable diagnostic.
2435     if (!destIsVector)
2436       msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size;
2437     else if (!srcIsVector)
2438       msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size;
2439     else
2440       msg = diag::err_bad_cxx_cast_vector_to_vector_different_size;
2441 
2442     return TC_Failed;
2443   }
2444 
2445   if (SrcType == DestType) {
2446     // C++ 5.2.10p2 has a note that mentions that, subject to all other
2447     // restrictions, a cast to the same type is allowed so long as it does not
2448     // cast away constness. In C++98, the intent was not entirely clear here,
2449     // since all other paragraphs explicitly forbid casts to the same type.
2450     // C++11 clarifies this case with p2.
2451     //
2452     // The only allowed types are: integral, enumeration, pointer, or
2453     // pointer-to-member types.  We also won't restrict Obj-C pointers either.
2454     Kind = CK_NoOp;
2455     TryCastResult Result = TC_NotApplicable;
2456     if (SrcType->isIntegralOrEnumerationType() ||
2457         SrcType->isAnyPointerType() ||
2458         SrcType->isMemberPointerType() ||
2459         SrcType->isBlockPointerType()) {
2460       Result = TC_Success;
2461     }
2462     return Result;
2463   }
2464 
2465   bool destIsPtr = DestType->isAnyPointerType() ||
2466                    DestType->isBlockPointerType();
2467   bool srcIsPtr = SrcType->isAnyPointerType() ||
2468                   SrcType->isBlockPointerType();
2469   if (!destIsPtr && !srcIsPtr) {
2470     // Except for std::nullptr_t->integer and lvalue->reference, which are
2471     // handled above, at least one of the two arguments must be a pointer.
2472     return TC_NotApplicable;
2473   }
2474 
2475   if (DestType->isIntegralType(Self.Context)) {
2476     assert(srcIsPtr && "One type must be a pointer");
2477     // C++ 5.2.10p4: A pointer can be explicitly converted to any integral
2478     //   type large enough to hold it; except in Microsoft mode, where the
2479     //   integral type size doesn't matter (except we don't allow bool).
2480     if ((Self.Context.getTypeSize(SrcType) >
2481          Self.Context.getTypeSize(DestType))) {
2482       bool MicrosoftException =
2483           Self.getLangOpts().MicrosoftExt && !DestType->isBooleanType();
2484       if (MicrosoftException) {
2485         unsigned Diag = SrcType->isVoidPointerType()
2486                             ? diag::warn_void_pointer_to_int_cast
2487                             : diag::warn_pointer_to_int_cast;
2488         Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
2489       } else {
2490         msg = diag::err_bad_reinterpret_cast_small_int;
2491         return TC_Failed;
2492       }
2493     }
2494     Kind = CK_PointerToIntegral;
2495     return TC_Success;
2496   }
2497 
2498   if (SrcType->isIntegralOrEnumerationType()) {
2499     assert(destIsPtr && "One type must be a pointer");
2500     checkIntToPointerCast(CStyle, OpRange, SrcExpr.get(), DestType, Self);
2501     // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly
2502     //   converted to a pointer.
2503     // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not
2504     //   necessarily converted to a null pointer value.]
2505     Kind = CK_IntegralToPointer;
2506     return TC_Success;
2507   }
2508 
2509   if (!destIsPtr || !srcIsPtr) {
2510     // With the valid non-pointer conversions out of the way, we can be even
2511     // more stringent.
2512     return TC_NotApplicable;
2513   }
2514 
2515   // Cannot convert between block pointers and Objective-C object pointers.
2516   if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) ||
2517       (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType()))
2518     return TC_NotApplicable;
2519 
2520   // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness.
2521   // The C-style cast operator can.
2522   TryCastResult SuccessResult = TC_Success;
2523   if (auto CACK =
2524           CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle,
2525                              /*CheckObjCLifetime=*/CStyle))
2526     SuccessResult = getCastAwayConstnessCastKind(CACK, msg);
2527 
2528   if (IsAddressSpaceConversion(SrcType, DestType)) {
2529     Kind = CK_AddressSpaceConversion;
2530     assert(SrcType->isPointerType() && DestType->isPointerType());
2531     if (!CStyle &&
2532         !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf(
2533             SrcType->getPointeeType().getQualifiers(), Self.getASTContext())) {
2534       SuccessResult = TC_Failed;
2535     }
2536   } else if (IsLValueCast) {
2537     Kind = CK_LValueBitCast;
2538   } else if (DestType->isObjCObjectPointerType()) {
2539     Kind = Self.ObjC().PrepareCastToObjCObjectPointer(SrcExpr);
2540   } else if (DestType->isBlockPointerType()) {
2541     if (!SrcType->isBlockPointerType()) {
2542       Kind = CK_AnyPointerToBlockPointerCast;
2543     } else {
2544       Kind = CK_BitCast;
2545     }
2546   } else {
2547     Kind = CK_BitCast;
2548   }
2549 
2550   // Any pointer can be cast to an Objective-C pointer type with a C-style
2551   // cast.
2552   if (CStyle && DestType->isObjCObjectPointerType()) {
2553     return SuccessResult;
2554   }
2555   if (CStyle)
2556     DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
2557 
2558   DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
2559 
2560   // Not casting away constness, so the only remaining check is for compatible
2561   // pointer categories.
2562 
2563   if (SrcType->isFunctionPointerType()) {
2564     if (DestType->isFunctionPointerType()) {
2565       // C++ 5.2.10p6: A pointer to a function can be explicitly converted to
2566       // a pointer to a function of a different type.
2567       return SuccessResult;
2568     }
2569 
2570     // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to
2571     //   an object type or vice versa is conditionally-supported.
2572     // Compilers support it in C++03 too, though, because it's necessary for
2573     // casting the return value of dlsym() and GetProcAddress().
2574     // FIXME: Conditionally-supported behavior should be configurable in the
2575     // TargetInfo or similar.
2576     Self.Diag(OpRange.getBegin(),
2577               Self.getLangOpts().CPlusPlus11 ?
2578                 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2579       << OpRange;
2580     return SuccessResult;
2581   }
2582 
2583   if (DestType->isFunctionPointerType()) {
2584     // See above.
2585     Self.Diag(OpRange.getBegin(),
2586               Self.getLangOpts().CPlusPlus11 ?
2587                 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj)
2588       << OpRange;
2589     return SuccessResult;
2590   }
2591 
2592   // Diagnose address space conversion in nested pointers.
2593   QualType DestPtee = DestType->getPointeeType().isNull()
2594                           ? DestType->getPointeeType()
2595                           : DestType->getPointeeType()->getPointeeType();
2596   QualType SrcPtee = SrcType->getPointeeType().isNull()
2597                          ? SrcType->getPointeeType()
2598                          : SrcType->getPointeeType()->getPointeeType();
2599   while (!DestPtee.isNull() && !SrcPtee.isNull()) {
2600     if (DestPtee.getAddressSpace() != SrcPtee.getAddressSpace()) {
2601       Self.Diag(OpRange.getBegin(),
2602                 diag::warn_bad_cxx_cast_nested_pointer_addr_space)
2603           << CStyle << SrcType << DestType << SrcExpr.get()->getSourceRange();
2604       break;
2605     }
2606     DestPtee = DestPtee->getPointeeType();
2607     SrcPtee = SrcPtee->getPointeeType();
2608   }
2609 
2610   // C++ 5.2.10p7: A pointer to an object can be explicitly converted to
2611   //   a pointer to an object of different type.
2612   // Void pointers are not specified, but supported by every compiler out there.
2613   // So we finish by allowing everything that remains - it's got to be two
2614   // object pointers.
2615   return SuccessResult;
2616 }
2617 
2618 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr,
2619                                          QualType DestType, bool CStyle,
2620                                          unsigned &msg, CastKind &Kind) {
2621   if (!Self.getLangOpts().OpenCL && !Self.getLangOpts().SYCLIsDevice)
2622     // FIXME: As compiler doesn't have any information about overlapping addr
2623     // spaces at the moment we have to be permissive here.
2624     return TC_NotApplicable;
2625   // Even though the logic below is general enough and can be applied to
2626   // non-OpenCL mode too, we fast-path above because no other languages
2627   // define overlapping address spaces currently.
2628   auto SrcType = SrcExpr.get()->getType();
2629   // FIXME: Should this be generalized to references? The reference parameter
2630   // however becomes a reference pointee type here and therefore rejected.
2631   // Perhaps this is the right behavior though according to C++.
2632   auto SrcPtrType = SrcType->getAs<PointerType>();
2633   if (!SrcPtrType)
2634     return TC_NotApplicable;
2635   auto DestPtrType = DestType->getAs<PointerType>();
2636   if (!DestPtrType)
2637     return TC_NotApplicable;
2638   auto SrcPointeeType = SrcPtrType->getPointeeType();
2639   auto DestPointeeType = DestPtrType->getPointeeType();
2640   if (!DestPointeeType.isAddressSpaceOverlapping(SrcPointeeType,
2641                                                  Self.getASTContext())) {
2642     msg = diag::err_bad_cxx_cast_addr_space_mismatch;
2643     return TC_Failed;
2644   }
2645   auto SrcPointeeTypeWithoutAS =
2646       Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType());
2647   auto DestPointeeTypeWithoutAS =
2648       Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType());
2649   if (Self.Context.hasSameType(SrcPointeeTypeWithoutAS,
2650                                DestPointeeTypeWithoutAS)) {
2651     Kind = SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace()
2652                ? CK_NoOp
2653                : CK_AddressSpaceConversion;
2654     return TC_Success;
2655   } else {
2656     return TC_NotApplicable;
2657   }
2658 }
2659 
2660 void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) {
2661   // In OpenCL only conversions between pointers to objects in overlapping
2662   // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps
2663   // with any named one, except for constant.
2664 
2665   // Converting the top level pointee addrspace is permitted for compatible
2666   // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but
2667   // if any of the nested pointee addrspaces differ, we emit a warning
2668   // regardless of addrspace compatibility. This makes
2669   //   local int ** p;
2670   //   return (generic int **) p;
2671   // warn even though local -> generic is permitted.
2672   if (Self.getLangOpts().OpenCL) {
2673     const Type *DestPtr, *SrcPtr;
2674     bool Nested = false;
2675     unsigned DiagID = diag::err_typecheck_incompatible_address_space;
2676     DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()),
2677     SrcPtr  = Self.getASTContext().getCanonicalType(SrcType.getTypePtr());
2678 
2679     while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) {
2680       const PointerType *DestPPtr = cast<PointerType>(DestPtr);
2681       const PointerType *SrcPPtr = cast<PointerType>(SrcPtr);
2682       QualType DestPPointee = DestPPtr->getPointeeType();
2683       QualType SrcPPointee = SrcPPtr->getPointeeType();
2684       if (Nested
2685               ? DestPPointee.getAddressSpace() != SrcPPointee.getAddressSpace()
2686               : !DestPPointee.isAddressSpaceOverlapping(SrcPPointee,
2687                                                         Self.getASTContext())) {
2688         Self.Diag(OpRange.getBegin(), DiagID)
2689             << SrcType << DestType << AssignmentAction::Casting
2690             << SrcExpr.get()->getSourceRange();
2691         if (!Nested)
2692           SrcExpr = ExprError();
2693         return;
2694       }
2695 
2696       DestPtr = DestPPtr->getPointeeType().getTypePtr();
2697       SrcPtr = SrcPPtr->getPointeeType().getTypePtr();
2698       Nested = true;
2699       DiagID = diag::ext_nested_pointer_qualifier_mismatch;
2700     }
2701   }
2702 }
2703 
2704 bool Sema::ShouldSplatAltivecScalarInCast(const VectorType *VecTy) {
2705   bool SrcCompatXL = this->getLangOpts().getAltivecSrcCompat() ==
2706                      LangOptions::AltivecSrcCompatKind::XL;
2707   VectorKind VKind = VecTy->getVectorKind();
2708 
2709   if ((VKind == VectorKind::AltiVecVector) ||
2710       (SrcCompatXL && ((VKind == VectorKind::AltiVecBool) ||
2711                        (VKind == VectorKind::AltiVecPixel)))) {
2712     return true;
2713   }
2714   return false;
2715 }
2716 
2717 bool Sema::CheckAltivecInitFromScalar(SourceRange R, QualType VecTy,
2718                                       QualType SrcTy) {
2719   bool SrcCompatGCC = this->getLangOpts().getAltivecSrcCompat() ==
2720                       LangOptions::AltivecSrcCompatKind::GCC;
2721   if (this->getLangOpts().AltiVec && SrcCompatGCC) {
2722     this->Diag(R.getBegin(),
2723                diag::err_invalid_conversion_between_vector_and_integer)
2724         << VecTy << SrcTy << R;
2725     return true;
2726   }
2727   return false;
2728 }
2729 
2730 void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle,
2731                                        bool ListInitialization) {
2732   assert(Self.getLangOpts().CPlusPlus);
2733 
2734   // Handle placeholders.
2735   if (isPlaceholder()) {
2736     // C-style casts can resolve __unknown_any types.
2737     if (claimPlaceholder(BuiltinType::UnknownAny)) {
2738       SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2739                                          SrcExpr.get(), Kind,
2740                                          ValueKind, BasePath);
2741       return;
2742     }
2743 
2744     checkNonOverloadPlaceholders();
2745     if (SrcExpr.isInvalid())
2746       return;
2747   }
2748 
2749   // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void".
2750   // This test is outside everything else because it's the only case where
2751   // a non-lvalue-reference target type does not lead to decay.
2752   if (DestType->isVoidType()) {
2753     Kind = CK_ToVoid;
2754 
2755     if (claimPlaceholder(BuiltinType::Overload)) {
2756       Self.ResolveAndFixSingleFunctionTemplateSpecialization(
2757                   SrcExpr, /* Decay Function to ptr */ false,
2758                   /* Complain */ true, DestRange, DestType,
2759                   diag::err_bad_cstyle_cast_overload);
2760       if (SrcExpr.isInvalid())
2761         return;
2762     }
2763 
2764     SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2765     return;
2766   }
2767 
2768   // If the type is dependent, we won't do any other semantic analysis now.
2769   if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2770       SrcExpr.get()->isValueDependent()) {
2771     assert(Kind == CK_Dependent);
2772     return;
2773   }
2774 
2775   if (ValueKind == VK_PRValue && !DestType->isRecordType() &&
2776       !isPlaceholder(BuiltinType::Overload)) {
2777     SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2778     if (SrcExpr.isInvalid())
2779       return;
2780   }
2781 
2782   // AltiVec vector initialization with a single literal.
2783   if (const VectorType *vecTy = DestType->getAs<VectorType>()) {
2784     if (Self.CheckAltivecInitFromScalar(OpRange, DestType,
2785                                         SrcExpr.get()->getType())) {
2786       SrcExpr = ExprError();
2787       return;
2788     }
2789     if (Self.ShouldSplatAltivecScalarInCast(vecTy) &&
2790         (SrcExpr.get()->getType()->isIntegerType() ||
2791          SrcExpr.get()->getType()->isFloatingType())) {
2792       Kind = CK_VectorSplat;
2793       SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
2794       return;
2795     }
2796   }
2797 
2798   // WebAssembly tables cannot be cast.
2799   QualType SrcType = SrcExpr.get()->getType();
2800   if (SrcType->isWebAssemblyTableType()) {
2801     Self.Diag(OpRange.getBegin(), diag::err_wasm_cast_table)
2802         << 1 << SrcExpr.get()->getSourceRange();
2803     SrcExpr = ExprError();
2804     return;
2805   }
2806 
2807   // C++ [expr.cast]p5: The conversions performed by
2808   //   - a const_cast,
2809   //   - a static_cast,
2810   //   - a static_cast followed by a const_cast,
2811   //   - a reinterpret_cast, or
2812   //   - a reinterpret_cast followed by a const_cast,
2813   //   can be performed using the cast notation of explicit type conversion.
2814   //   [...] If a conversion can be interpreted in more than one of the ways
2815   //   listed above, the interpretation that appears first in the list is used,
2816   //   even if a cast resulting from that interpretation is ill-formed.
2817   // In plain language, this means trying a const_cast ...
2818   // Note that for address space we check compatibility after const_cast.
2819   unsigned msg = diag::err_bad_cxx_cast_generic;
2820   TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType,
2821                                    /*CStyle*/ true, msg);
2822   if (SrcExpr.isInvalid())
2823     return;
2824   if (isValidCast(tcr))
2825     Kind = CK_NoOp;
2826 
2827   CheckedConversionKind CCK = FunctionalStyle
2828                                   ? CheckedConversionKind::FunctionalCast
2829                                   : CheckedConversionKind::CStyleCast;
2830   if (tcr == TC_NotApplicable) {
2831     tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg,
2832                               Kind);
2833     if (SrcExpr.isInvalid())
2834       return;
2835 
2836     if (tcr == TC_NotApplicable) {
2837       // ... or if that is not possible, a static_cast, ignoring const and
2838       // addr space, ...
2839       tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind,
2840                           BasePath, ListInitialization);
2841       if (SrcExpr.isInvalid())
2842         return;
2843 
2844       if (tcr == TC_NotApplicable) {
2845         // ... and finally a reinterpret_cast, ignoring const and addr space.
2846         tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true,
2847                                  OpRange, msg, Kind);
2848         if (SrcExpr.isInvalid())
2849           return;
2850       }
2851     }
2852   }
2853 
2854   if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
2855       isValidCast(tcr))
2856     checkObjCConversion(CCK);
2857 
2858   if (tcr != TC_Success && msg != 0) {
2859     if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2860       DeclAccessPair Found;
2861       FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(),
2862                                 DestType,
2863                                 /*Complain*/ true,
2864                                 Found);
2865       if (Fn) {
2866         // If DestType is a function type (not to be confused with the function
2867         // pointer type), it will be possible to resolve the function address,
2868         // but the type cast should be considered as failure.
2869         OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression;
2870         Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload)
2871           << OE->getName() << DestType << OpRange
2872           << OE->getQualifierLoc().getSourceRange();
2873         Self.NoteAllOverloadCandidates(SrcExpr.get());
2874       }
2875     } else {
2876       diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle),
2877                       OpRange, SrcExpr.get(), DestType, ListInitialization);
2878     }
2879   }
2880 
2881   if (isValidCast(tcr)) {
2882     if (Kind == CK_BitCast)
2883       checkCastAlign();
2884 
2885     if (unsigned DiagID = checkCastFunctionType(Self, SrcExpr, DestType))
2886       Self.Diag(OpRange.getBegin(), DiagID)
2887           << SrcExpr.get()->getType() << DestType << OpRange;
2888 
2889   } else {
2890     SrcExpr = ExprError();
2891   }
2892 }
2893 
2894 /// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a
2895 ///  non-matching type. Such as enum function call to int, int call to
2896 /// pointer; etc. Cast to 'void' is an exception.
2897 static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr,
2898                                   QualType DestType) {
2899   if (Self.Diags.isIgnored(diag::warn_bad_function_cast,
2900                            SrcExpr.get()->getExprLoc()))
2901     return;
2902 
2903   if (!isa<CallExpr>(SrcExpr.get()))
2904     return;
2905 
2906   QualType SrcType = SrcExpr.get()->getType();
2907   if (DestType.getUnqualifiedType()->isVoidType())
2908     return;
2909   if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType())
2910       && (DestType->isAnyPointerType() || DestType->isBlockPointerType()))
2911     return;
2912   if (SrcType->isIntegerType() && DestType->isIntegerType() &&
2913       (SrcType->isBooleanType() == DestType->isBooleanType()) &&
2914       (SrcType->isEnumeralType() == DestType->isEnumeralType()))
2915     return;
2916   if (SrcType->isRealFloatingType() && DestType->isRealFloatingType())
2917     return;
2918   if (SrcType->isEnumeralType() && DestType->isEnumeralType())
2919     return;
2920   if (SrcType->isComplexType() && DestType->isComplexType())
2921     return;
2922   if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType())
2923     return;
2924   if (SrcType->isFixedPointType() && DestType->isFixedPointType())
2925     return;
2926 
2927   Self.Diag(SrcExpr.get()->getExprLoc(),
2928             diag::warn_bad_function_cast)
2929             << SrcType << DestType << SrcExpr.get()->getSourceRange();
2930 }
2931 
2932 /// Check the semantics of a C-style cast operation, in C.
2933 void CastOperation::CheckCStyleCast() {
2934   assert(!Self.getLangOpts().CPlusPlus);
2935 
2936   // C-style casts can resolve __unknown_any types.
2937   if (claimPlaceholder(BuiltinType::UnknownAny)) {
2938     SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType,
2939                                        SrcExpr.get(), Kind,
2940                                        ValueKind, BasePath);
2941     return;
2942   }
2943 
2944   // C99 6.5.4p2: the cast type needs to be void or scalar and the expression
2945   // type needs to be scalar.
2946   if (DestType->isVoidType()) {
2947     // We don't necessarily do lvalue-to-rvalue conversions on this.
2948     SrcExpr = Self.IgnoredValueConversions(SrcExpr.get());
2949     if (SrcExpr.isInvalid())
2950       return;
2951 
2952     // Cast to void allows any expr type.
2953     Kind = CK_ToVoid;
2954     return;
2955   }
2956 
2957   // If the type is dependent, we won't do any other semantic analysis now.
2958   if (Self.getASTContext().isDependenceAllowed() &&
2959       (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() ||
2960        SrcExpr.get()->isValueDependent())) {
2961     assert((DestType->containsErrors() || SrcExpr.get()->containsErrors() ||
2962             SrcExpr.get()->containsErrors()) &&
2963            "should only occur in error-recovery path.");
2964     assert(Kind == CK_Dependent);
2965     return;
2966   }
2967 
2968   // Overloads are allowed with C extensions, so we need to support them.
2969   if (SrcExpr.get()->getType() == Self.Context.OverloadTy) {
2970     DeclAccessPair DAP;
2971     if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction(
2972             SrcExpr.get(), DestType, /*Complain=*/true, DAP))
2973       SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD);
2974     else
2975       return;
2976     assert(SrcExpr.isUsable());
2977   }
2978   SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get());
2979   if (SrcExpr.isInvalid())
2980     return;
2981   QualType SrcType = SrcExpr.get()->getType();
2982 
2983   if (SrcType->isWebAssemblyTableType()) {
2984     Self.Diag(OpRange.getBegin(), diag::err_wasm_cast_table)
2985         << 1 << SrcExpr.get()->getSourceRange();
2986     SrcExpr = ExprError();
2987     return;
2988   }
2989 
2990   assert(!SrcType->isPlaceholderType());
2991 
2992   checkAddressSpaceCast(SrcType, DestType);
2993   if (SrcExpr.isInvalid())
2994     return;
2995 
2996   if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
2997                                diag::err_typecheck_cast_to_incomplete)) {
2998     SrcExpr = ExprError();
2999     return;
3000   }
3001 
3002   // Allow casting a sizeless built-in type to itself.
3003   if (DestType->isSizelessBuiltinType() &&
3004       Self.Context.hasSameUnqualifiedType(DestType, SrcType)) {
3005     Kind = CK_NoOp;
3006     return;
3007   }
3008 
3009   // Allow bitcasting between compatible SVE vector types.
3010   if ((SrcType->isVectorType() || DestType->isVectorType()) &&
3011       Self.isValidSveBitcast(SrcType, DestType)) {
3012     Kind = CK_BitCast;
3013     return;
3014   }
3015 
3016   // Allow bitcasting between compatible RVV vector types.
3017   if ((SrcType->isVectorType() || DestType->isVectorType()) &&
3018       Self.RISCV().isValidRVVBitcast(SrcType, DestType)) {
3019     Kind = CK_BitCast;
3020     return;
3021   }
3022 
3023   if (!DestType->isScalarType() && !DestType->isVectorType() &&
3024       !DestType->isMatrixType()) {
3025     const RecordType *DestRecordTy = DestType->getAs<RecordType>();
3026 
3027     if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){
3028       // GCC struct/union extension: allow cast to self.
3029       Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar)
3030         << DestType << SrcExpr.get()->getSourceRange();
3031       Kind = CK_NoOp;
3032       return;
3033     }
3034 
3035     // GCC's cast to union extension.
3036     if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) {
3037       RecordDecl *RD = DestRecordTy->getDecl();
3038       if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) {
3039         Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union)
3040           << SrcExpr.get()->getSourceRange();
3041         Kind = CK_ToUnion;
3042         return;
3043       } else {
3044         Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type)
3045           << SrcType << SrcExpr.get()->getSourceRange();
3046         SrcExpr = ExprError();
3047         return;
3048       }
3049     }
3050 
3051     // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type.
3052     if (Self.getLangOpts().OpenCL && DestType->isEventT()) {
3053       Expr::EvalResult Result;
3054       if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) {
3055         llvm::APSInt CastInt = Result.Val.getInt();
3056         if (0 == CastInt) {
3057           Kind = CK_ZeroToOCLOpaqueType;
3058           return;
3059         }
3060         Self.Diag(OpRange.getBegin(),
3061                   diag::err_opencl_cast_non_zero_to_event_t)
3062                   << toString(CastInt, 10) << SrcExpr.get()->getSourceRange();
3063         SrcExpr = ExprError();
3064         return;
3065       }
3066     }
3067 
3068     // Reject any other conversions to non-scalar types.
3069     Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar)
3070       << DestType << SrcExpr.get()->getSourceRange();
3071     SrcExpr = ExprError();
3072     return;
3073   }
3074 
3075   // The type we're casting to is known to be a scalar, a vector, or a matrix.
3076 
3077   // Require the operand to be a scalar, a vector, or a matrix.
3078   if (!SrcType->isScalarType() && !SrcType->isVectorType() &&
3079       !SrcType->isMatrixType()) {
3080     Self.Diag(SrcExpr.get()->getExprLoc(),
3081               diag::err_typecheck_expect_scalar_operand)
3082       << SrcType << SrcExpr.get()->getSourceRange();
3083     SrcExpr = ExprError();
3084     return;
3085   }
3086 
3087   // C23 6.5.4p4:
3088   //   The type nullptr_t shall not be converted to any type other than void,
3089   //   bool, or a pointer type. No type other than nullptr_t shall be converted
3090   //   to nullptr_t.
3091   if (SrcType->isNullPtrType()) {
3092     // FIXME: 6.3.2.4p2 says that nullptr_t can be converted to itself, but
3093     // 6.5.4p4 is a constraint check and nullptr_t is not void, bool, or a
3094     // pointer type. We're not going to diagnose that as a constraint violation.
3095     if (!DestType->isVoidType() && !DestType->isBooleanType() &&
3096         !DestType->isPointerType() && !DestType->isNullPtrType()) {
3097       Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_nullptr_cast)
3098           << /*nullptr to type*/ 0 << DestType;
3099       SrcExpr = ExprError();
3100       return;
3101     }
3102     if (!DestType->isNullPtrType()) {
3103       // Implicitly cast from the null pointer type to the type of the
3104       // destination.
3105       CastKind CK = DestType->isPointerType() ? CK_NullToPointer : CK_BitCast;
3106       SrcExpr = ImplicitCastExpr::Create(Self.Context, DestType, CK,
3107                                          SrcExpr.get(), nullptr, VK_PRValue,
3108                                          Self.CurFPFeatureOverrides());
3109     }
3110   }
3111   if (DestType->isNullPtrType() && !SrcType->isNullPtrType()) {
3112     Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_nullptr_cast)
3113         << /*type to nullptr*/ 1 << SrcType;
3114     SrcExpr = ExprError();
3115     return;
3116   }
3117 
3118   if (DestType->isExtVectorType()) {
3119     SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind);
3120     return;
3121   }
3122 
3123   if (DestType->getAs<MatrixType>() || SrcType->getAs<MatrixType>()) {
3124     if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind))
3125       SrcExpr = ExprError();
3126     return;
3127   }
3128 
3129   if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) {
3130     if (Self.CheckAltivecInitFromScalar(OpRange, DestType, SrcType)) {
3131       SrcExpr = ExprError();
3132       return;
3133     }
3134     if (Self.ShouldSplatAltivecScalarInCast(DestVecTy) &&
3135         (SrcType->isIntegerType() || SrcType->isFloatingType())) {
3136       Kind = CK_VectorSplat;
3137       SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get());
3138     } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) {
3139       SrcExpr = ExprError();
3140     }
3141     return;
3142   }
3143 
3144   if (SrcType->isVectorType()) {
3145     if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind))
3146       SrcExpr = ExprError();
3147     return;
3148   }
3149 
3150   // The source and target types are both scalars, i.e.
3151   //   - arithmetic types (fundamental, enum, and complex)
3152   //   - all kinds of pointers
3153   // Note that member pointers were filtered out with C++, above.
3154 
3155   if (isa<ObjCSelectorExpr>(SrcExpr.get())) {
3156     Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr);
3157     SrcExpr = ExprError();
3158     return;
3159   }
3160 
3161   // If either type is a pointer, the other type has to be either an
3162   // integer or a pointer.
3163   if (!DestType->isArithmeticType()) {
3164     if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) {
3165       Self.Diag(SrcExpr.get()->getExprLoc(),
3166                 diag::err_cast_pointer_from_non_pointer_int)
3167         << SrcType << SrcExpr.get()->getSourceRange();
3168       SrcExpr = ExprError();
3169       return;
3170     }
3171     checkIntToPointerCast(/* CStyle */ true, OpRange, SrcExpr.get(), DestType,
3172                           Self);
3173   } else if (!SrcType->isArithmeticType()) {
3174     if (!DestType->isIntegralType(Self.Context) &&
3175         DestType->isArithmeticType()) {
3176       Self.Diag(SrcExpr.get()->getBeginLoc(),
3177                 diag::err_cast_pointer_to_non_pointer_int)
3178           << DestType << SrcExpr.get()->getSourceRange();
3179       SrcExpr = ExprError();
3180       return;
3181     }
3182 
3183     if ((Self.Context.getTypeSize(SrcType) >
3184          Self.Context.getTypeSize(DestType)) &&
3185         !DestType->isBooleanType()) {
3186       // C 6.3.2.3p6: Any pointer type may be converted to an integer type.
3187       // Except as previously specified, the result is implementation-defined.
3188       // If the result cannot be represented in the integer type, the behavior
3189       // is undefined. The result need not be in the range of values of any
3190       // integer type.
3191       unsigned Diag;
3192       if (SrcType->isVoidPointerType())
3193         Diag = DestType->isEnumeralType() ? diag::warn_void_pointer_to_enum_cast
3194                                           : diag::warn_void_pointer_to_int_cast;
3195       else if (DestType->isEnumeralType())
3196         Diag = diag::warn_pointer_to_enum_cast;
3197       else
3198         Diag = diag::warn_pointer_to_int_cast;
3199       Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange;
3200     }
3201   }
3202 
3203   if (Self.getLangOpts().OpenCL && !Self.getOpenCLOptions().isAvailableOption(
3204                                        "cl_khr_fp16", Self.getLangOpts())) {
3205     if (DestType->isHalfType()) {
3206       Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half)
3207           << DestType << SrcExpr.get()->getSourceRange();
3208       SrcExpr = ExprError();
3209       return;
3210     }
3211   }
3212 
3213   // ARC imposes extra restrictions on casts.
3214   if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) {
3215     checkObjCConversion(CheckedConversionKind::CStyleCast);
3216     if (SrcExpr.isInvalid())
3217       return;
3218 
3219     const PointerType *CastPtr = DestType->getAs<PointerType>();
3220     if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) {
3221       if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) {
3222         Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers();
3223         Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers();
3224         if (CastPtr->getPointeeType()->isObjCLifetimeType() &&
3225             ExprPtr->getPointeeType()->isObjCLifetimeType() &&
3226             !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) {
3227           Self.Diag(SrcExpr.get()->getBeginLoc(),
3228                     diag::err_typecheck_incompatible_ownership)
3229               << SrcType << DestType << AssignmentAction::Casting
3230               << SrcExpr.get()->getSourceRange();
3231           return;
3232         }
3233       }
3234     } else if (!Self.ObjC().CheckObjCARCUnavailableWeakConversion(DestType,
3235                                                                   SrcType)) {
3236       Self.Diag(SrcExpr.get()->getBeginLoc(),
3237                 diag::err_arc_convesion_of_weak_unavailable)
3238           << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange();
3239       SrcExpr = ExprError();
3240       return;
3241     }
3242   }
3243 
3244   if (unsigned DiagID = checkCastFunctionType(Self, SrcExpr, DestType))
3245     Self.Diag(OpRange.getBegin(), DiagID) << SrcType << DestType << OpRange;
3246 
3247   if (isa<PointerType>(SrcType) && isa<PointerType>(DestType)) {
3248     QualType SrcTy = cast<PointerType>(SrcType)->getPointeeType();
3249     QualType DestTy = cast<PointerType>(DestType)->getPointeeType();
3250 
3251     const RecordDecl *SrcRD = SrcTy->getAsRecordDecl();
3252     const RecordDecl *DestRD = DestTy->getAsRecordDecl();
3253 
3254     if (SrcRD && DestRD && SrcRD->hasAttr<RandomizeLayoutAttr>() &&
3255         SrcRD != DestRD) {
3256       // The struct we are casting the pointer from was randomized.
3257       Self.Diag(OpRange.getBegin(), diag::err_cast_from_randomized_struct)
3258           << SrcType << DestType;
3259       SrcExpr = ExprError();
3260       return;
3261     }
3262   }
3263 
3264   DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType);
3265   DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange);
3266   DiagnoseBadFunctionCast(Self, SrcExpr, DestType);
3267   Kind = Self.PrepareScalarCast(SrcExpr, DestType);
3268   if (SrcExpr.isInvalid())
3269     return;
3270 
3271   if (Kind == CK_BitCast)
3272     checkCastAlign();
3273 }
3274 
3275 void CastOperation::CheckBuiltinBitCast() {
3276   QualType SrcType = SrcExpr.get()->getType();
3277 
3278   if (Self.RequireCompleteType(OpRange.getBegin(), DestType,
3279                                diag::err_typecheck_cast_to_incomplete) ||
3280       Self.RequireCompleteType(OpRange.getBegin(), SrcType,
3281                                diag::err_incomplete_type)) {
3282     SrcExpr = ExprError();
3283     return;
3284   }
3285 
3286   if (SrcExpr.get()->isPRValue())
3287     SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(),
3288                                                   /*IsLValueReference=*/false);
3289 
3290   CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType);
3291   CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType);
3292   if (DestSize != SourceSize) {
3293     Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch)
3294         << SrcType << DestType << (int)SourceSize.getQuantity()
3295         << (int)DestSize.getQuantity();
3296     SrcExpr = ExprError();
3297     return;
3298   }
3299 
3300   if (!DestType.isTriviallyCopyableType(Self.Context)) {
3301     Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
3302         << 1;
3303     SrcExpr = ExprError();
3304     return;
3305   }
3306 
3307   if (!SrcType.isTriviallyCopyableType(Self.Context)) {
3308     Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable)
3309         << 0;
3310     SrcExpr = ExprError();
3311     return;
3312   }
3313 
3314   Kind = CK_LValueToRValueBitCast;
3315 }
3316 
3317 /// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either
3318 /// const, volatile or both.
3319 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr,
3320                              QualType DestType) {
3321   if (SrcExpr.isInvalid())
3322     return;
3323 
3324   QualType SrcType = SrcExpr.get()->getType();
3325   if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) ||
3326         DestType->isLValueReferenceType()))
3327     return;
3328 
3329   QualType TheOffendingSrcType, TheOffendingDestType;
3330   Qualifiers CastAwayQualifiers;
3331   if (CastsAwayConstness(Self, SrcType, DestType, true, false,
3332                          &TheOffendingSrcType, &TheOffendingDestType,
3333                          &CastAwayQualifiers) !=
3334       CastAwayConstnessKind::CACK_Similar)
3335     return;
3336 
3337   // FIXME: 'restrict' is not properly handled here.
3338   int qualifiers = -1;
3339   if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) {
3340     qualifiers = 0;
3341   } else if (CastAwayQualifiers.hasConst()) {
3342     qualifiers = 1;
3343   } else if (CastAwayQualifiers.hasVolatile()) {
3344     qualifiers = 2;
3345   }
3346   // This is a variant of int **x; const int **y = (const int **)x;
3347   if (qualifiers == -1)
3348     Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2)
3349         << SrcType << DestType;
3350   else
3351     Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual)
3352         << TheOffendingSrcType << TheOffendingDestType << qualifiers;
3353 }
3354 
3355 ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc,
3356                                      TypeSourceInfo *CastTypeInfo,
3357                                      SourceLocation RPLoc,
3358                                      Expr *CastExpr) {
3359   CastOperation Op(*this, CastTypeInfo->getType(), CastExpr);
3360   Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
3361   Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc());
3362 
3363   if (getLangOpts().CPlusPlus) {
3364     Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false,
3365                           isa<InitListExpr>(CastExpr));
3366   } else {
3367     Op.CheckCStyleCast();
3368   }
3369 
3370   if (Op.SrcExpr.isInvalid())
3371     return ExprError();
3372 
3373   // -Wcast-qual
3374   DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType);
3375 
3376   return Op.complete(CStyleCastExpr::Create(
3377       Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(),
3378       &Op.BasePath, CurFPFeatureOverrides(), CastTypeInfo, LPLoc, RPLoc));
3379 }
3380 
3381 ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo,
3382                                             QualType Type,
3383                                             SourceLocation LPLoc,
3384                                             Expr *CastExpr,
3385                                             SourceLocation RPLoc) {
3386   assert(LPLoc.isValid() && "List-initialization shouldn't get here.");
3387   CastOperation Op(*this, Type, CastExpr);
3388   Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange();
3389   Op.OpRange = SourceRange(Op.DestRange.getBegin(), RPLoc);
3390 
3391   Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false);
3392   if (Op.SrcExpr.isInvalid())
3393     return ExprError();
3394 
3395   auto *SubExpr = Op.SrcExpr.get();
3396   if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
3397     SubExpr = BindExpr->getSubExpr();
3398   if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr))
3399     ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc));
3400 
3401   // -Wcast-qual
3402   DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType);
3403 
3404   return Op.complete(CXXFunctionalCastExpr::Create(
3405       Context, Op.ResultType, Op.ValueKind, CastTypeInfo, Op.Kind,
3406       Op.SrcExpr.get(), &Op.BasePath, CurFPFeatureOverrides(), LPLoc, RPLoc));
3407 }
3408