xref: /netbsd-src/sys/arch/x86/x86/x86_machdep.c (revision 271b2a532810f2ad9518c59b4032829ca0caaa05)
1 /*	$NetBSD: x86_machdep.c,v 1.156 2024/12/06 10:53:41 bouyer Exp $	*/
2 
3 /*-
4  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
5  * Copyright (c) 2005, 2008, 2009, 2019, 2023 The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Julio M. Merino Vidal, and Andrew Doran.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: x86_machdep.c,v 1.156 2024/12/06 10:53:41 bouyer Exp $");
35 
36 #include "opt_modular.h"
37 #include "opt_physmem.h"
38 #include "opt_splash.h"
39 #include "opt_kaslr.h"
40 #include "opt_svs.h"
41 #include "opt_xen.h"
42 
43 #include <sys/types.h>
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kcore.h>
47 #include <sys/errno.h>
48 #include <sys/kauth.h>
49 #include <sys/mutex.h>
50 #include <sys/cpu.h>
51 #include <sys/intr.h>
52 #include <sys/atomic.h>
53 #include <sys/module.h>
54 #include <sys/sysctl.h>
55 #include <sys/extent.h>
56 #include <sys/rnd.h>
57 
58 #include <x86/bootspace.h>
59 #include <x86/cpuvar.h>
60 #include <x86/cputypes.h>
61 #include <x86/efi.h>
62 #include <x86/machdep.h>
63 #include <x86/nmi.h>
64 #include <x86/pio.h>
65 
66 #include <dev/splash/splash.h>
67 #include <dev/isa/isareg.h>
68 #include <dev/ic/i8042reg.h>
69 #include <dev/mm.h>
70 
71 #include <machine/bootinfo.h>
72 #include <machine/pmap_private.h>
73 #include <machine/vmparam.h>
74 
75 #include <uvm/uvm_extern.h>
76 
77 #include "tsc.h"
78 
79 #include "acpica.h"
80 #include "ioapic.h"
81 #include "lapic.h"
82 
83 #if NACPICA > 0
84 #include <dev/acpi/acpivar.h>
85 #endif
86 
87 #if NIOAPIC > 0 || NACPICA > 0
88 #include <machine/i82093var.h>
89 #endif
90 
91 #include "opt_md.h"
92 #if defined(MEMORY_DISK_HOOKS) && defined(MEMORY_DISK_DYNAMIC)
93 #include <dev/md.h>
94 #endif
95 
96 void (*x86_cpu_idle)(void);
97 static bool x86_cpu_idle_ipi;
98 static char x86_cpu_idle_text[16];
99 
100 static bool x86_user_ldt_enabled __read_mostly = false;
101 
102 #ifdef XEN
103 
104 #include <xen/xen.h>
105 #include <xen/hypervisor.h>
106 #endif
107 
108 #ifndef XENPV
109 void (*delay_func)(unsigned int) = i8254_delay;
110 void (*x86_initclock_func)(void) = i8254_initclocks;
111 #else /* XENPV */
112 void (*delay_func)(unsigned int) = xen_delay;
113 void (*x86_initclock_func)(void) = xen_initclocks;
114 #endif
115 
116 
117 /* --------------------------------------------------------------------- */
118 
119 /*
120  * Main bootinfo structure.  This is filled in by the bootstrap process
121  * done in locore.S based on the information passed by the boot loader.
122  */
123 struct bootinfo bootinfo;
124 
125 /* --------------------------------------------------------------------- */
126 
127 bool bootmethod_efi;
128 
129 static kauth_listener_t x86_listener;
130 
131 extern paddr_t lowmem_rsvd, avail_start, avail_end;
132 
133 vaddr_t msgbuf_vaddr;
134 
135 struct msgbuf_p_seg msgbuf_p_seg[VM_PHYSSEG_MAX];
136 
137 unsigned int msgbuf_p_cnt = 0;
138 
139 void init_x86_msgbuf(void);
140 
141 /*
142  * Given the type of a bootinfo entry, looks for a matching item inside
143  * the bootinfo structure.  If found, returns a pointer to it (which must
144  * then be casted to the appropriate bootinfo_* type); otherwise, returns
145  * NULL.
146  */
147 void *
148 lookup_bootinfo(int type)
149 {
150 	bool found;
151 	int i;
152 	struct btinfo_common *bic;
153 
154 	bic = (struct btinfo_common *)(bootinfo.bi_data);
155 	found = FALSE;
156 	for (i = 0; i < bootinfo.bi_nentries && !found; i++) {
157 		if (bic->type == type)
158 			found = TRUE;
159 		else
160 			bic = (struct btinfo_common *)
161 			    ((uint8_t *)bic + bic->len);
162 	}
163 
164 	return found ? bic : NULL;
165 }
166 
167 #ifdef notyet
168 /*
169  * List the available bootinfo entries.
170  */
171 static const char *btinfo_str[] = {
172 	BTINFO_STR
173 };
174 
175 void
176 aprint_bootinfo(void)
177 {
178 	int i;
179 	struct btinfo_common *bic;
180 
181 	aprint_normal("bootinfo:");
182 	bic = (struct btinfo_common *)(bootinfo.bi_data);
183 	for (i = 0; i < bootinfo.bi_nentries; i++) {
184 		if (bic->type >= 0 && bic->type < __arraycount(btinfo_str))
185 			aprint_normal(" %s", btinfo_str[bic->type]);
186 		else
187 			aprint_normal(" %d", bic->type);
188 		bic = (struct btinfo_common *)
189 		    ((uint8_t *)bic + bic->len);
190 	}
191 	aprint_normal("\n");
192 }
193 #endif
194 
195 /*
196  * mm_md_physacc: check if given pa is accessible.
197  */
198 int
199 mm_md_physacc(paddr_t pa, vm_prot_t prot)
200 {
201 	extern phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX];
202 	extern int mem_cluster_cnt;
203 	int i;
204 
205 	for (i = 0; i < mem_cluster_cnt; i++) {
206 		const phys_ram_seg_t *seg = &mem_clusters[i];
207 		paddr_t lstart = seg->start;
208 
209 		if (lstart <= pa && pa - lstart <= seg->size) {
210 			return 0;
211 		}
212 	}
213 	return kauth_authorize_machdep(kauth_cred_get(),
214 	    KAUTH_MACHDEP_UNMANAGEDMEM, NULL, NULL, NULL, NULL);
215 }
216 
217 #ifdef MODULAR
218 /*
219  * Push any modules loaded by the boot loader.
220  */
221 void
222 module_init_md(void)
223 {
224 	struct btinfo_modulelist *biml;
225 	struct bi_modulelist_entry *bi, *bimax;
226 
227 	biml = lookup_bootinfo(BTINFO_MODULELIST);
228 	if (biml == NULL) {
229 		aprint_debug("No module info at boot\n");
230 		return;
231 	}
232 
233 	bi = (struct bi_modulelist_entry *)((uint8_t *)biml + sizeof(*biml));
234 	bimax = bi + biml->num;
235 	for (; bi < bimax; bi++) {
236 		switch (bi->type) {
237 		case BI_MODULE_ELF:
238 			aprint_debug("Prep module path=%s len=%d pa=%x\n",
239 			    bi->path, bi->len, bi->base);
240 			KASSERT(trunc_page(bi->base) == bi->base);
241 			module_prime(bi->path,
242 #ifdef KASLR
243 			    (void *)PMAP_DIRECT_MAP((uintptr_t)bi->base),
244 #else
245 			    (void *)((uintptr_t)bi->base + KERNBASE),
246 #endif
247 			    bi->len);
248 			break;
249 		case BI_MODULE_IMAGE:
250 #ifdef SPLASHSCREEN
251 			aprint_debug("Splash image path=%s len=%d pa=%x\n",
252 			    bi->path, bi->len, bi->base);
253 			KASSERT(trunc_page(bi->base) == bi->base);
254 			splash_setimage(
255 #ifdef KASLR
256 			    (void *)PMAP_DIRECT_MAP((uintptr_t)bi->base),
257 #else
258 			    (void *)((uintptr_t)bi->base + KERNBASE),
259 #endif
260 			    bi->len);
261 #endif
262 			break;
263 		case BI_MODULE_RND:
264 			/* handled in x86_rndseed */
265 			break;
266 		case BI_MODULE_FS:
267 			aprint_debug("File-system image path=%s len=%d pa=%x\n",
268 			    bi->path, bi->len, bi->base);
269 			KASSERT(trunc_page(bi->base) == bi->base);
270 #if defined(MEMORY_DISK_HOOKS) && defined(MEMORY_DISK_DYNAMIC)
271 			md_root_setconf(
272 #ifdef KASLR
273 			    (void *)PMAP_DIRECT_MAP((uintptr_t)bi->base),
274 #else
275 			    (void *)((uintptr_t)bi->base + KERNBASE),
276 #endif
277 			    bi->len);
278 #endif
279 			break;
280 		default:
281 			aprint_debug("Skipping non-ELF module\n");
282 			break;
283 		}
284 	}
285 }
286 #endif	/* MODULAR */
287 
288 void
289 x86_rndseed(void)
290 {
291 	struct btinfo_modulelist *biml;
292 	struct bi_modulelist_entry *bi, *bimax;
293 
294 	biml = lookup_bootinfo(BTINFO_MODULELIST);
295 	if (biml == NULL) {
296 		aprint_debug("No module info at boot\n");
297 		return;
298 	}
299 
300 	bi = (struct bi_modulelist_entry *)((uint8_t *)biml + sizeof(*biml));
301 	bimax = bi + biml->num;
302 	for (; bi < bimax; bi++) {
303 		switch (bi->type) {
304 		case BI_MODULE_RND:
305 			aprint_debug("Random seed data path=%s len=%d pa=%x\n",
306 				     bi->path, bi->len, bi->base);
307 			KASSERT(trunc_page(bi->base) == bi->base);
308 			rnd_seed(
309 #ifdef KASLR
310 			    (void *)PMAP_DIRECT_MAP((uintptr_t)bi->base),
311 #else
312 			    (void *)((uintptr_t)bi->base + KERNBASE),
313 #endif
314 			     bi->len);
315 		}
316 	}
317 }
318 
319 void
320 cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
321 {
322 
323 	KASSERT(kpreempt_disabled());
324 
325 	if ((flags & RESCHED_IDLE) != 0) {
326 		if ((flags & RESCHED_REMOTE) != 0 &&
327 		    x86_cpu_idle_ipi != false) {
328 			cpu_kick(ci);
329 		}
330 		return;
331 	}
332 
333 #ifdef __HAVE_PREEMPTION
334 	if ((flags & RESCHED_KPREEMPT) != 0) {
335 		if ((flags & RESCHED_REMOTE) != 0) {
336 #ifdef XENPV
337 			xen_send_ipi(ci, XEN_IPI_KPREEMPT);
338 #else
339 			x86_send_ipi(ci, X86_IPI_KPREEMPT);
340 #endif
341 		} else {
342 			softint_trigger(1 << SIR_PREEMPT);
343 		}
344 		return;
345 	}
346 #endif
347 
348 	KASSERT((flags & RESCHED_UPREEMPT) != 0);
349 	if ((flags & RESCHED_REMOTE) != 0) {
350 		cpu_kick(ci);
351 	} else {
352 		aston(l);
353 	}
354 }
355 
356 void
357 cpu_signotify(struct lwp *l)
358 {
359 
360 	KASSERT(kpreempt_disabled());
361 
362 	if (l->l_cpu != curcpu()) {
363 		cpu_kick(l->l_cpu);
364 	} else {
365 		aston(l);
366 	}
367 }
368 
369 void
370 cpu_need_proftick(struct lwp *l)
371 {
372 
373 	KASSERT(kpreempt_disabled());
374 	KASSERT(l->l_cpu == curcpu());
375 
376 	l->l_pflag |= LP_OWEUPC;
377 	aston(l);
378 }
379 
380 bool
381 cpu_intr_p(void)
382 {
383 	int idepth;
384 	long pctr;
385 	lwp_t *l;
386 
387 	l = curlwp;
388 	if (__predict_false(l->l_cpu == NULL)) {
389 		KASSERT(l == &lwp0);
390 		return false;
391 	}
392 	do {
393 		pctr = lwp_pctr();
394 		idepth = l->l_cpu->ci_idepth;
395 	} while (__predict_false(pctr != lwp_pctr()));
396 
397 	return idepth >= 0;
398 }
399 
400 #ifdef __HAVE_PREEMPTION
401 /*
402  * Called to check MD conditions that would prevent preemption, and to
403  * arrange for those conditions to be rechecked later.
404  */
405 bool
406 cpu_kpreempt_enter(uintptr_t where, int s)
407 {
408 	struct pcb *pcb;
409 	lwp_t *l;
410 
411 	KASSERT(kpreempt_disabled());
412 	l = curlwp;
413 
414 	/*
415 	 * If SPL raised, can't go.  Note this implies that spin
416 	 * mutexes at IPL_NONE are _not_ valid to use.
417 	 */
418 	if (s > IPL_PREEMPT) {
419 		softint_trigger(1 << SIR_PREEMPT);
420 		return false;
421 	}
422 
423 	/* Must save cr2 or it could be clobbered. */
424 	pcb = lwp_getpcb(l);
425 	pcb->pcb_cr2 = rcr2();
426 
427 	return true;
428 }
429 
430 /*
431  * Called after returning from a kernel preemption, and called with
432  * preemption disabled.
433  */
434 void
435 cpu_kpreempt_exit(uintptr_t where)
436 {
437 	extern char x86_copyfunc_start, x86_copyfunc_end;
438 	struct pcb *pcb;
439 
440 	KASSERT(kpreempt_disabled());
441 
442 	/*
443 	 * If we interrupted any of the copy functions we must reload
444 	 * the pmap when resuming, as they cannot tolerate it being
445 	 * swapped out.
446 	 */
447 	if (where >= (uintptr_t)&x86_copyfunc_start &&
448 	    where < (uintptr_t)&x86_copyfunc_end) {
449 		pmap_load();
450 	}
451 
452 	/* Restore cr2 only after the pmap, as pmap_load can block. */
453 	pcb = lwp_getpcb(curlwp);
454 	lcr2(pcb->pcb_cr2);
455 }
456 
457 /*
458  * Return true if preemption is disabled for MD reasons.  Must be called
459  * with preemption disabled, and thus is only for diagnostic checks.
460  */
461 bool
462 cpu_kpreempt_disabled(void)
463 {
464 
465 	return curcpu()->ci_ilevel > IPL_NONE;
466 }
467 #endif	/* __HAVE_PREEMPTION */
468 
469 SYSCTL_SETUP(sysctl_machdep_cpu_idle, "sysctl machdep cpu_idle")
470 {
471 	const struct sysctlnode	*mnode, *node;
472 
473 	sysctl_createv(NULL, 0, NULL, &mnode,
474 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
475 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
476 
477 	sysctl_createv(NULL, 0, &mnode, &node,
478 		       CTLFLAG_PERMANENT, CTLTYPE_STRING, "idle-mechanism",
479 		       SYSCTL_DESCR("Mechanism used for the idle loop."),
480 		       NULL, 0, x86_cpu_idle_text, 0,
481 		       CTL_CREATE, CTL_EOL);
482 }
483 
484 void
485 x86_cpu_idle_init(void)
486 {
487 
488 #ifndef XENPV
489 	if ((cpu_feature[1] & CPUID2_MONITOR) == 0)
490 		x86_cpu_idle_set(x86_cpu_idle_halt, "halt", true);
491 	else
492 		x86_cpu_idle_set(x86_cpu_idle_mwait, "mwait", false);
493 #else
494 	x86_cpu_idle_set(x86_cpu_idle_xen, "xen", true);
495 #endif
496 }
497 
498 void
499 x86_cpu_idle_get(void (**func)(void), char *text, size_t len)
500 {
501 
502 	*func = x86_cpu_idle;
503 
504 	(void)strlcpy(text, x86_cpu_idle_text, len);
505 }
506 
507 void
508 x86_cpu_idle_set(void (*func)(void), const char *text, bool ipi)
509 {
510 
511 	x86_cpu_idle = func;
512 	x86_cpu_idle_ipi = ipi;
513 
514 	(void)strlcpy(x86_cpu_idle_text, text, sizeof(x86_cpu_idle_text));
515 }
516 
517 #ifndef XENPV
518 
519 #define KBTOB(x)	((size_t)(x) * 1024UL)
520 #define MBTOB(x)	((size_t)(x) * 1024UL * 1024UL)
521 
522 static struct {
523 	int freelist;
524 	uint64_t limit;
525 } x86_freelists[VM_NFREELIST] = {
526 	{ VM_FREELIST_DEFAULT, 0 },
527 #ifdef VM_FREELIST_FIRST1T
528 	/* 40-bit addresses needed for modern graphics. */
529 	{ VM_FREELIST_FIRST1T,	1ULL * 1024 * 1024 * 1024 * 1024 },
530 #endif
531 #ifdef VM_FREELIST_FIRST64G
532 	/* 36-bit addresses needed for oldish graphics. */
533 	{ VM_FREELIST_FIRST64G, 64ULL * 1024 * 1024 * 1024 },
534 #endif
535 #ifdef VM_FREELIST_FIRST4G
536 	/* 32-bit addresses needed for PCI 32-bit DMA and old graphics. */
537 	{ VM_FREELIST_FIRST4G,  4ULL * 1024 * 1024 * 1024 },
538 #endif
539 	/* 30-bit addresses needed for ancient graphics. */
540 	{ VM_FREELIST_FIRST1G,	1ULL * 1024 * 1024 * 1024 },
541 	/* 24-bit addresses needed for ISA DMA. */
542 	{ VM_FREELIST_FIRST16,	16 * 1024 * 1024 },
543 };
544 
545 int
546 x86_select_freelist(uint64_t maxaddr)
547 {
548 	unsigned int i;
549 
550 	if (avail_end <= maxaddr)
551 		return VM_NFREELIST;
552 
553 	for (i = 0; i < __arraycount(x86_freelists); i++) {
554 		if ((x86_freelists[i].limit - 1) <= maxaddr)
555 			return x86_freelists[i].freelist;
556 	}
557 
558 	panic("no freelist for maximum address %"PRIx64, maxaddr);
559 }
560 
561 static int
562 x86_add_cluster(uint64_t seg_start, uint64_t seg_end, uint32_t type)
563 {
564 	extern struct extent *iomem_ex;
565 	const uint64_t endext = MAXIOMEM + 1;
566 	uint64_t new_physmem = 0;
567 	phys_ram_seg_t *cluster;
568 	int i;
569 
570 	if (seg_end > MAXPHYSMEM) {
571 		aprint_verbose("WARNING: skipping large memory map entry: "
572 		    "0x%"PRIx64"/0x%"PRIx64"/0x%x\n",
573 		    seg_start, (seg_end - seg_start), type);
574 		return 0;
575 	}
576 
577 	/*
578 	 * XXX: Chop the last page off the size so that it can fit in avail_end.
579 	 */
580 	if (seg_end == MAXPHYSMEM)
581 		seg_end -= PAGE_SIZE;
582 
583 	if (seg_end <= seg_start)
584 		return 0;
585 
586 	for (i = 0; i < mem_cluster_cnt; i++) {
587 		cluster = &mem_clusters[i];
588 		if ((cluster->start == round_page(seg_start)) &&
589 		    (cluster->size == trunc_page(seg_end) - cluster->start)) {
590 #ifdef DEBUG_MEMLOAD
591 			printf("WARNING: skipping duplicate segment entry\n");
592 #endif
593 			return 0;
594 		}
595 	}
596 
597 	/*
598 	 * This cluster is used by RAM. If it is included in the iomem extent,
599 	 * allocate it from there, so that we won't unintentionally reuse it
600 	 * later with extent_alloc_region. A way to avoid collision (with UVM
601 	 * for example).
602 	 *
603 	 * This is done before the addresses are page rounded just to make
604 	 * sure we get them all.
605 	 */
606 	if (seg_start < endext) {
607 		uint64_t io_end;
608 
609 		if (seg_end > endext)
610 			io_end = endext;
611 		else
612 			io_end = seg_end;
613 
614 		if (iomem_ex != NULL && extent_alloc_region(iomem_ex, seg_start,
615 		    io_end - seg_start, EX_NOWAIT)) {
616 			/* XXX What should we do? */
617 			printf("WARNING: CAN't ALLOCATE MEMORY SEGMENT "
618 			    "(0x%"PRIx64"/0x%"PRIx64"/0x%x) FROM "
619 			    "IOMEM EXTENT MAP!\n",
620 			    seg_start, seg_end - seg_start, type);
621 			return 0;
622 		}
623 	}
624 
625 	/* If it's not free memory, skip it. */
626 	if (type != BIM_Memory)
627 		return 0;
628 
629 	if (mem_cluster_cnt >= VM_PHYSSEG_MAX) {
630 		printf("WARNING: too many memory segments"
631 		    "(increase VM_PHYSSEG_MAX)");
632 		return -1;
633 	}
634 
635 #ifdef PHYSMEM_MAX_ADDR
636 	if (seg_start >= MBTOB(PHYSMEM_MAX_ADDR))
637 		return 0;
638 	if (seg_end > MBTOB(PHYSMEM_MAX_ADDR))
639 		seg_end = MBTOB(PHYSMEM_MAX_ADDR);
640 #endif
641 
642 	seg_start = round_page(seg_start);
643 	seg_end = trunc_page(seg_end);
644 
645 	if (seg_start == seg_end)
646 		return 0;
647 
648 	cluster = &mem_clusters[mem_cluster_cnt];
649 	cluster->start = seg_start;
650 	if (iomem_ex != NULL)
651 		new_physmem = physmem + atop(seg_end - seg_start);
652 
653 #ifdef PHYSMEM_MAX_SIZE
654 	if (iomem_ex != NULL) {
655 		if (physmem >= atop(MBTOB(PHYSMEM_MAX_SIZE)))
656 			return 0;
657 		if (new_physmem > atop(MBTOB(PHYSMEM_MAX_SIZE))) {
658 			seg_end = seg_start + MBTOB(PHYSMEM_MAX_SIZE) - ptoa(physmem);
659 			new_physmem = atop(MBTOB(PHYSMEM_MAX_SIZE));
660 		}
661 	}
662 #endif
663 
664 	cluster->size = seg_end - seg_start;
665 
666 	if (iomem_ex != NULL) {
667 		if (avail_end < seg_end)
668 			avail_end = seg_end;
669 		physmem = new_physmem;
670 	}
671 	mem_cluster_cnt++;
672 
673 	return 0;
674 }
675 
676 static int
677 x86_parse_clusters(struct btinfo_memmap *bim)
678 {
679 	uint64_t seg_start, seg_end;
680 	uint64_t addr, size;
681 	uint32_t type;
682 	int x;
683 
684 	KASSERT(bim != NULL);
685 	KASSERT(bim->num > 0);
686 
687 #ifdef DEBUG_MEMLOAD
688 	printf("MEMMAP: %s MEMORY MAP (%d ENTRIES):\n",
689 	    lookup_bootinfo(BTINFO_EFIMEMMAP) != NULL ? "UEFI" : "BIOS",
690 	    bim->num);
691 #endif
692 
693 	for (x = 0; x < bim->num; x++) {
694 		addr = bim->entry[x].addr;
695 		size = bim->entry[x].size;
696 		type = bim->entry[x].type;
697 #ifdef DEBUG_MEMLOAD
698 		printf("MEMMAP: 0x%016" PRIx64 "-0x%016" PRIx64
699 		    "\n\tsize=0x%016" PRIx64 ", type=%d(%s)\n",
700 		    addr, addr + size - 1, size, type,
701 		    (type == BIM_Memory) ?  "Memory" :
702 		    (type == BIM_Reserved) ?  "Reserved" :
703 		    (type == BIM_ACPI) ? "ACPI" :
704 		    (type == BIM_NVS) ? "NVS" :
705 		    (type == BIM_PMEM) ? "Persistent" :
706 		    (type == BIM_PRAM) ? "Persistent (Legacy)" :
707 		    "unknown");
708 #endif
709 
710 		/* If the segment is not memory, skip it. */
711 		switch (type) {
712 		case BIM_Memory:
713 		case BIM_ACPI:
714 		case BIM_NVS:
715 			break;
716 		default:
717 			continue;
718 		}
719 
720 		/* If the segment is smaller than a page, skip it. */
721 		if (size < PAGE_SIZE)
722 			continue;
723 
724 		seg_start = addr;
725 		seg_end = addr + size;
726 
727 		/*
728 		 * XXX XXX: Avoid the ISA I/O MEM.
729 		 *
730 		 * Some laptops (for example, Toshiba Satellite2550X) report
731 		 * this area as valid.
732 		 */
733 		if (seg_start < IOM_END && seg_end > IOM_BEGIN) {
734 			printf("WARNING: memory map entry overlaps "
735 			    "with ``Compatibility Holes'': "
736 			    "0x%"PRIx64"/0x%"PRIx64"/0x%x\n", seg_start,
737 			    seg_end - seg_start, type);
738 
739 			if (x86_add_cluster(seg_start, IOM_BEGIN, type) == -1)
740 				break;
741 			if (x86_add_cluster(IOM_END, seg_end, type) == -1)
742 				break;
743 		} else {
744 			if (x86_add_cluster(seg_start, seg_end, type) == -1)
745 				break;
746 		}
747 	}
748 
749 	return 0;
750 }
751 
752 static int
753 x86_fake_clusters(void)
754 {
755 	extern struct extent *iomem_ex;
756 	phys_ram_seg_t *cluster;
757 	KASSERT(mem_cluster_cnt == 0);
758 
759 	/*
760 	 * Allocate the physical addresses used by RAM from the iomem extent
761 	 * map. This is done before the addresses are page rounded just to make
762 	 * sure we get them all.
763 	 */
764 	if (extent_alloc_region(iomem_ex, 0, KBTOB(biosbasemem), EX_NOWAIT)) {
765 		/* XXX What should we do? */
766 		printf("WARNING: CAN'T ALLOCATE BASE MEMORY FROM "
767 		    "IOMEM EXTENT MAP!\n");
768 	}
769 
770 	cluster = &mem_clusters[0];
771 	cluster->start = 0;
772 	cluster->size = trunc_page(KBTOB(biosbasemem));
773 	physmem += atop(cluster->size);
774 
775 	if (extent_alloc_region(iomem_ex, IOM_END, KBTOB(biosextmem),
776 	    EX_NOWAIT)) {
777 		/* XXX What should we do? */
778 		printf("WARNING: CAN'T ALLOCATE EXTENDED MEMORY FROM "
779 		    "IOMEM EXTENT MAP!\n");
780 	}
781 
782 #if NISADMA > 0
783 	/*
784 	 * Some motherboards/BIOSes remap the 384K of RAM that would
785 	 * normally be covered by the ISA hole to the end of memory
786 	 * so that it can be used.  However, on a 16M system, this
787 	 * would cause bounce buffers to be allocated and used.
788 	 * This is not desirable behaviour, as more than 384K of
789 	 * bounce buffers might be allocated.  As a work-around,
790 	 * we round memory down to the nearest 1M boundary if
791 	 * we're using any isadma devices and the remapped memory
792 	 * is what puts us over 16M.
793 	 */
794 	if (biosextmem > (15*1024) && biosextmem < (16*1024)) {
795 		char pbuf[9];
796 
797 		format_bytes(pbuf, sizeof(pbuf), biosextmem - (15*1024));
798 		printf("Warning: ignoring %s of remapped memory\n", pbuf);
799 		biosextmem = (15*1024);
800 	}
801 #endif
802 
803 	cluster = &mem_clusters[1];
804 	cluster->start = IOM_END;
805 	cluster->size = trunc_page(KBTOB(biosextmem));
806 	physmem += atop(cluster->size);
807 
808 	mem_cluster_cnt = 2;
809 
810 	avail_end = IOM_END + trunc_page(KBTOB(biosextmem));
811 
812 	return 0;
813 }
814 
815 /*
816  * x86_load_region: load the physical memory region from seg_start to seg_end
817  * into the VM system.
818  */
819 static void
820 x86_load_region(uint64_t seg_start, uint64_t seg_end)
821 {
822 	unsigned int i;
823 	uint64_t tmp;
824 
825 	i = __arraycount(x86_freelists);
826 	while (i--) {
827 		if (x86_freelists[i].limit <= seg_start)
828 			continue;
829 		if (x86_freelists[i].freelist == VM_FREELIST_DEFAULT)
830 			continue;
831 		tmp = MIN(x86_freelists[i].limit, seg_end);
832 		if (tmp == seg_start)
833 			continue;
834 
835 #ifdef DEBUG_MEMLOAD
836 		printf("loading freelist %d 0x%"PRIx64"-0x%"PRIx64
837 		    " (0x%"PRIx64"-0x%"PRIx64")\n", x86_freelists[i].freelist,
838 		    seg_start, tmp, (uint64_t)atop(seg_start),
839 		    (uint64_t)atop(tmp));
840 #endif
841 
842 		uvm_page_physload(atop(seg_start), atop(tmp), atop(seg_start),
843 		    atop(tmp), x86_freelists[i].freelist);
844 		seg_start = tmp;
845 	}
846 
847 	if (seg_start != seg_end) {
848 #ifdef DEBUG_MEMLOAD
849 		printf("loading default 0x%"PRIx64"-0x%"PRIx64
850 		    " (0x%"PRIx64"-0x%"PRIx64")\n", seg_start, seg_end,
851 		    (uint64_t)atop(seg_start), (uint64_t)atop(seg_end));
852 #endif
853 		uvm_page_physload(atop(seg_start), atop(seg_end),
854 		    atop(seg_start), atop(seg_end), VM_FREELIST_DEFAULT);
855 	}
856 }
857 
858 #ifdef XEN
859 static void
860 x86_add_xen_clusters(void)
861 {
862 	if (hvm_start_info->memmap_entries > 0) {
863 		struct hvm_memmap_table_entry *map_entry;
864 		map_entry = (void *)((uintptr_t)hvm_start_info->memmap_paddr + KERNBASE);
865 		for (int i = 0; i < hvm_start_info->memmap_entries; i++) {
866 			if (map_entry[i].size < PAGE_SIZE)
867 				continue;
868 			switch (map_entry[i].type) {
869 			case XEN_HVM_MEMMAP_TYPE_RAM:
870 				x86_add_cluster(map_entry[i].addr,
871 				    map_entry[i].addr + map_entry[i].size,
872 				    BIM_Memory);
873 				break;
874 			case XEN_HVM_MEMMAP_TYPE_ACPI:
875 				x86_add_cluster(map_entry[i].addr,
876 				    map_entry[i].addr + map_entry[i].size,
877 				    BIM_ACPI);
878 				break;
879 			}
880 		}
881 	} else {
882 		struct xen_memory_map memmap;
883 		static struct _xen_mmap {
884 			struct btinfo_memmap bim;
885 			struct bi_memmap_entry map[128]; /* same as FreeBSD */
886 		} __packed xen_mmap;
887 		int err;
888 
889 		memmap.nr_entries = 128;
890 		set_xen_guest_handle(memmap.buffer, &xen_mmap.bim.entry[0]);
891 		if ((err = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap))
892 		    < 0)
893 			panic("XENMEM_memory_map %d", err);
894 		xen_mmap.bim.num = memmap.nr_entries;
895 		x86_parse_clusters(&xen_mmap.bim);
896 	}
897 }
898 #endif /* XEN */
899 /*
900  * init_x86_clusters: retrieve the memory clusters provided by the BIOS, and
901  * initialize mem_clusters.
902  */
903 void
904 init_x86_clusters(void)
905 {
906 	struct btinfo_memmap *bim;
907 	struct btinfo_efimemmap *biem;
908 
909 	/*
910 	 * Check to see if we have a memory map from the BIOS (passed to us by
911 	 * the boot program).
912 	 */
913 #ifdef XEN
914 	if (vm_guest_is_pvh()) {
915 		x86_add_xen_clusters();
916 	}
917 #endif /* XEN */
918 
919 #ifdef i386
920 	extern int biosmem_implicit;
921 	biem = lookup_bootinfo(BTINFO_EFIMEMMAP);
922 	if (biem != NULL)
923 		bim = efi_get_e820memmap();
924 	else
925 		bim = lookup_bootinfo(BTINFO_MEMMAP);
926 	if ((biosmem_implicit || (biosbasemem == 0 && biosextmem == 0)) &&
927 	    bim != NULL && bim->num > 0)
928 		x86_parse_clusters(bim);
929 #else
930 #if !defined(REALBASEMEM) && !defined(REALEXTMEM)
931 	biem = lookup_bootinfo(BTINFO_EFIMEMMAP);
932 	if (biem != NULL)
933 		bim = efi_get_e820memmap();
934 	else
935 		bim = lookup_bootinfo(BTINFO_MEMMAP);
936 	if (bim != NULL && bim->num > 0)
937 		x86_parse_clusters(bim);
938 #else
939 	(void)bim, (void)biem;
940 #endif
941 #endif
942 
943 	if (mem_cluster_cnt == 0) {
944 		/*
945 		 * If x86_parse_clusters didn't find any valid segment, create
946 		 * fake clusters.
947 		 */
948 		x86_fake_clusters();
949 	}
950 }
951 
952 /*
953  * init_x86_vm: initialize the VM system on x86. We basically internalize as
954  * many physical pages as we can, starting at lowmem_rsvd, but we don't
955  * internalize the kernel physical pages (from pa_kstart to pa_kend).
956  */
957 int
958 init_x86_vm(paddr_t pa_kend)
959 {
960 	extern struct bootspace bootspace;
961 	paddr_t pa_kstart = bootspace.head.pa;
962 	uint64_t seg_start, seg_end;
963 	uint64_t seg_start1, seg_end1;
964 	int x;
965 	unsigned i;
966 
967 	for (i = 0; i < __arraycount(x86_freelists); i++) {
968 		if (avail_end < x86_freelists[i].limit)
969 			x86_freelists[i].freelist = VM_FREELIST_DEFAULT;
970 	}
971 
972 	/*
973 	 * Now, load the memory clusters (which have already been rounded and
974 	 * truncated) into the VM system.
975 	 *
976 	 * NOTE: we assume that memory starts at 0.
977 	 */
978 	for (x = 0; x < mem_cluster_cnt; x++) {
979 		const phys_ram_seg_t *cluster = &mem_clusters[x];
980 
981 		seg_start = cluster->start;
982 		seg_end = cluster->start + cluster->size;
983 		seg_start1 = 0;
984 		seg_end1 = 0;
985 
986 #ifdef DEBUG_MEMLOAD
987 		printf("segment %" PRIx64 " - %" PRIx64 "\n",
988 		    seg_start, seg_end);
989 #endif
990 
991 		/* Skip memory before our available starting point. */
992 		if (seg_end <= lowmem_rsvd) {
993 #ifdef DEBUG_MEMLOAD
994 			printf("discard segment below starting point "
995 			    "%" PRIx64 " - %" PRIx64 "\n", seg_start, seg_end);
996 #endif
997 			continue;
998 		}
999 
1000 		if (seg_start <= lowmem_rsvd && lowmem_rsvd < seg_end) {
1001 			seg_start = lowmem_rsvd;
1002 			if (seg_start == seg_end) {
1003 #ifdef DEBUG_MEMLOAD
1004 				printf("discard segment below starting point "
1005 				    "%" PRIx64 " - %" PRIx64 "\n",
1006 				    seg_start, seg_end);
1007 
1008 
1009 #endif
1010 				continue;
1011 			}
1012 		}
1013 
1014 		/*
1015 		 * If this segment contains the kernel, split it in two, around
1016 		 * the kernel.
1017 		 *  [seg_start                       seg_end]
1018 		 *             [pa_kstart  pa_kend]
1019 		 */
1020 		if (seg_start <= pa_kstart && pa_kend <= seg_end) {
1021 #ifdef DEBUG_MEMLOAD
1022 			printf("split kernel overlapping to "
1023 			    "%" PRIx64 " - %" PRIxPADDR " and "
1024 			    "%" PRIxPADDR " - %" PRIx64 "\n",
1025 			    seg_start, pa_kstart, pa_kend, seg_end);
1026 #endif
1027 			seg_start1 = pa_kend;
1028 			seg_end1 = seg_end;
1029 			seg_end = pa_kstart;
1030 			KASSERT(seg_end < seg_end1);
1031 		}
1032 
1033 		/*
1034 		 * Discard a segment inside the kernel
1035 		 *  [pa_kstart                       pa_kend]
1036 		 *             [seg_start  seg_end]
1037 		 */
1038 		if (pa_kstart < seg_start && seg_end < pa_kend) {
1039 #ifdef DEBUG_MEMLOAD
1040 			printf("discard complete kernel overlap "
1041 			    "%" PRIx64 " - %" PRIx64 "\n", seg_start, seg_end);
1042 #endif
1043 			continue;
1044 		}
1045 
1046 		/*
1047 		 * Discard leading hunk that overlaps the kernel
1048 		 *  [pa_kstart             pa_kend]
1049 		 *            [seg_start            seg_end]
1050 		 */
1051 		if (pa_kstart < seg_start &&
1052 		    seg_start < pa_kend &&
1053 		    pa_kend < seg_end) {
1054 #ifdef DEBUG_MEMLOAD
1055 			printf("discard leading kernel overlap "
1056 			    "%" PRIx64 " - %" PRIxPADDR "\n",
1057 			    seg_start, pa_kend);
1058 #endif
1059 			seg_start = pa_kend;
1060 		}
1061 
1062 		/*
1063 		 * Discard trailing hunk that overlaps the kernel
1064 		 *             [pa_kstart            pa_kend]
1065 		 *  [seg_start              seg_end]
1066 		 */
1067 		if (seg_start < pa_kstart &&
1068 		    pa_kstart < seg_end &&
1069 		    seg_end < pa_kend) {
1070 #ifdef DEBUG_MEMLOAD
1071 			printf("discard trailing kernel overlap "
1072 			    "%" PRIxPADDR " - %" PRIx64 "\n",
1073 			    pa_kstart, seg_end);
1074 #endif
1075 			seg_end = pa_kstart;
1076 		}
1077 
1078 		/* First hunk */
1079 		if (seg_start != seg_end) {
1080 			x86_load_region(seg_start, seg_end);
1081 		}
1082 
1083 		/* Second hunk */
1084 		if (seg_start1 != seg_end1) {
1085 			x86_load_region(seg_start1, seg_end1);
1086 		}
1087 	}
1088 
1089 	return 0;
1090 }
1091 
1092 #endif /* !XENPV */
1093 
1094 void
1095 init_x86_msgbuf(void)
1096 {
1097 	/* Message buffer is located at end of core. */
1098 	psize_t sz = round_page(MSGBUFSIZE);
1099 	psize_t reqsz = sz;
1100 	uvm_physseg_t x;
1101 
1102 search_again:
1103 	for (x = uvm_physseg_get_first();
1104 	     uvm_physseg_valid_p(x);
1105 	     x = uvm_physseg_get_next(x)) {
1106 
1107 		if (ctob(uvm_physseg_get_avail_end(x)) == avail_end)
1108 			break;
1109 	}
1110 
1111 	if (uvm_physseg_valid_p(x) == false)
1112 		panic("init_x86_msgbuf: can't find end of memory");
1113 
1114 	/* Shrink so it'll fit in the last segment. */
1115 	if (uvm_physseg_get_avail_end(x) - uvm_physseg_get_avail_start(x) < atop(sz))
1116 		sz = ctob(uvm_physseg_get_avail_end(x) - uvm_physseg_get_avail_start(x));
1117 
1118 	msgbuf_p_seg[msgbuf_p_cnt].sz = sz;
1119 	msgbuf_p_seg[msgbuf_p_cnt++].paddr = ctob(uvm_physseg_get_avail_end(x)) - sz;
1120 	uvm_physseg_unplug(uvm_physseg_get_end(x) - atop(sz), atop(sz));
1121 
1122 	/* Now find where the new avail_end is. */
1123 	avail_end = ctob(uvm_physseg_get_highest_frame());
1124 
1125 	if (sz == reqsz)
1126 		return;
1127 
1128 	reqsz -= sz;
1129 	if (msgbuf_p_cnt == VM_PHYSSEG_MAX) {
1130 		/* No more segments available, bail out. */
1131 		printf("WARNING: MSGBUFSIZE (%zu) too large, using %zu.\n",
1132 		    (size_t)MSGBUFSIZE, (size_t)(MSGBUFSIZE - reqsz));
1133 		return;
1134 	}
1135 
1136 	sz = reqsz;
1137 	goto search_again;
1138 }
1139 
1140 void
1141 x86_reset(void)
1142 {
1143 	uint8_t b;
1144 
1145 #if NACPICA > 0
1146 	/*
1147 	 * If ACPI is active, try to reset using the reset register
1148 	 * defined in the FADT.
1149 	 */
1150 	if (acpi_active) {
1151 		if (acpi_reset() == 0) {
1152 			delay(500000); /* wait 0.5 sec to see if that did it */
1153 		}
1154 	}
1155 #endif
1156 
1157 	/*
1158 	 * The keyboard controller has 4 random output pins, one of which is
1159 	 * connected to the RESET pin on the CPU in many PCs.  We tell the
1160 	 * keyboard controller to pulse this line a couple of times.
1161 	 */
1162 	outb(IO_KBD + KBCMDP, KBC_PULSE0);
1163 	delay(100000);
1164 	outb(IO_KBD + KBCMDP, KBC_PULSE0);
1165 	delay(100000);
1166 
1167 	/*
1168 	 * Attempt to force a reset via the Reset Control register at
1169 	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
1170 	 * transitions from 0 to 1.  Bit 1 selects the type of reset
1171 	 * to attempt: 0 selects a "soft" reset, and 1 selects a
1172 	 * "hard" reset.  We try a "hard" reset.  The first write sets
1173 	 * bit 1 to select a "hard" reset and clears bit 2.  The
1174 	 * second write forces a 0 -> 1 transition in bit 2 to trigger
1175 	 * a reset.
1176 	 */
1177 	outb(0xcf9, 0x2);
1178 	outb(0xcf9, 0x6);
1179 	DELAY(500000);	/* wait 0.5 sec to see if that did it */
1180 
1181 	/*
1182 	 * Attempt to force a reset via the Fast A20 and Init register
1183 	 * at I/O port 0x92. Bit 1 serves as an alternate A20 gate.
1184 	 * Bit 0 asserts INIT# when set to 1. We are careful to only
1185 	 * preserve bit 1 while setting bit 0. We also must clear bit
1186 	 * 0 before setting it if it isn't already clear.
1187 	 */
1188 	b = inb(0x92);
1189 	if (b != 0xff) {
1190 		if ((b & 0x1) != 0)
1191 			outb(0x92, b & 0xfe);
1192 		outb(0x92, b | 0x1);
1193 		DELAY(500000);	/* wait 0.5 sec to see if that did it */
1194 	}
1195 }
1196 
1197 static int
1198 x86_listener_cb(kauth_cred_t cred, kauth_action_t action, void *cookie,
1199     void *arg0, void *arg1, void *arg2, void *arg3)
1200 {
1201 	int result;
1202 
1203 	result = KAUTH_RESULT_DEFER;
1204 
1205 	switch (action) {
1206 	case KAUTH_MACHDEP_IOPERM_GET:
1207 		result = KAUTH_RESULT_ALLOW;
1208 		break;
1209 
1210 	case KAUTH_MACHDEP_LDT_GET:
1211 	case KAUTH_MACHDEP_LDT_SET:
1212 		if (x86_user_ldt_enabled) {
1213 			result = KAUTH_RESULT_ALLOW;
1214 		}
1215 		break;
1216 
1217 	default:
1218 		break;
1219 	}
1220 
1221 	return result;
1222 }
1223 
1224 void
1225 machdep_init(void)
1226 {
1227 
1228 	x86_listener = kauth_listen_scope(KAUTH_SCOPE_MACHDEP,
1229 	    x86_listener_cb, NULL);
1230 }
1231 
1232 /*
1233  * x86_startup: x86 common startup routine
1234  *
1235  * called by cpu_startup.
1236  */
1237 
1238 void
1239 x86_startup(void)
1240 {
1241 #if !defined(XENPV)
1242 	nmi_init();
1243 #endif
1244 }
1245 
1246 const char *
1247 get_booted_kernel(void)
1248 {
1249 	const struct btinfo_bootpath *bibp = lookup_bootinfo(BTINFO_BOOTPATH);
1250 	return bibp ? bibp->bootpath : NULL;
1251 }
1252 
1253 /*
1254  * machine dependent system variables.
1255  */
1256 static int
1257 sysctl_machdep_booted_kernel(SYSCTLFN_ARGS)
1258 {
1259 	struct btinfo_bootpath *bibp;
1260 	struct sysctlnode node;
1261 
1262 	bibp = lookup_bootinfo(BTINFO_BOOTPATH);
1263 	if (!bibp)
1264 		return ENOENT; /* ??? */
1265 
1266 	node = *rnode;
1267 	node.sysctl_data = bibp->bootpath;
1268 	node.sysctl_size = sizeof(bibp->bootpath);
1269 	return sysctl_lookup(SYSCTLFN_CALL(&node));
1270 }
1271 
1272 static int
1273 sysctl_machdep_bootmethod(SYSCTLFN_ARGS)
1274 {
1275 	struct sysctlnode node;
1276 	char buf[5];
1277 
1278 	node = *rnode;
1279 	node.sysctl_data = buf;
1280 	if (bootmethod_efi)
1281 		memcpy(node.sysctl_data, "UEFI", 5);
1282 	else
1283 		memcpy(node.sysctl_data, "BIOS", 5);
1284 
1285 	return sysctl_lookup(SYSCTLFN_CALL(&node));
1286 }
1287 
1288 
1289 static int
1290 sysctl_machdep_diskinfo(SYSCTLFN_ARGS)
1291 {
1292 	struct sysctlnode node;
1293 	extern struct bi_devmatch *x86_alldisks;
1294 	extern int x86_ndisks;
1295 
1296 	if (x86_alldisks == NULL)
1297 		return EOPNOTSUPP;
1298 
1299 	node = *rnode;
1300 	node.sysctl_data = x86_alldisks;
1301 	node.sysctl_size = sizeof(struct disklist) +
1302 	    (x86_ndisks - 1) * sizeof(struct nativedisk_info);
1303 	return sysctl_lookup(SYSCTLFN_CALL(&node));
1304 }
1305 
1306 #ifndef XENPV
1307 static int
1308 sysctl_machdep_tsc_enable(SYSCTLFN_ARGS)
1309 {
1310 	struct sysctlnode node;
1311 	int error, val;
1312 
1313 	val = *(int *)rnode->sysctl_data;
1314 
1315 	node = *rnode;
1316 	node.sysctl_data = &val;
1317 
1318 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
1319 	if (error != 0 || newp == NULL)
1320 		return error;
1321 
1322 	if (val == 1) {
1323 		tsc_user_enable();
1324 	} else if (val == 0) {
1325 		tsc_user_disable();
1326 	} else {
1327 		error = EINVAL;
1328 	}
1329 	if (error)
1330 		return error;
1331 
1332 	*(int *)rnode->sysctl_data = val;
1333 
1334 	return 0;
1335 }
1336 #endif
1337 
1338 static const char * const vm_guest_name[VM_LAST] = {
1339 	[VM_GUEST_NO] =		"none",
1340 	[VM_GUEST_VM] =		"generic",
1341 	[VM_GUEST_XENPV] =	"XenPV",
1342 	[VM_GUEST_XENPVH] =	"XenPVH",
1343 	[VM_GUEST_XENHVM] =	"XenHVM",
1344 	[VM_GUEST_XENPVHVM] =	"XenPVHVM",
1345 	[VM_GUEST_HV] =		"Hyper-V",
1346 	[VM_GUEST_VMWARE] =	"VMware",
1347 	[VM_GUEST_KVM] =	"KVM",
1348 	[VM_GUEST_VIRTUALBOX] =	"VirtualBox",
1349 };
1350 
1351 static int
1352 sysctl_machdep_hypervisor(SYSCTLFN_ARGS)
1353 {
1354 	struct sysctlnode node;
1355 	const char *t = NULL;
1356 	char buf[64];
1357 
1358 	node = *rnode;
1359 	node.sysctl_data = buf;
1360 	if (vm_guest >= VM_GUEST_NO && vm_guest < VM_LAST)
1361 		t = vm_guest_name[vm_guest];
1362 	if (t == NULL)
1363 		t = "unknown";
1364 	strlcpy(buf, t, sizeof(buf));
1365 	return sysctl_lookup(SYSCTLFN_CALL(&node));
1366 }
1367 
1368 static void
1369 const_sysctl(struct sysctllog **clog, const char *name, int type,
1370     u_quad_t value, int tag)
1371 {
1372 	(sysctl_createv)(clog, 0, NULL, NULL,
1373 		       CTLFLAG_PERMANENT | CTLFLAG_IMMEDIATE,
1374 		       type, name, NULL, NULL, value, NULL, 0,
1375 		       CTL_MACHDEP, tag, CTL_EOL);
1376 }
1377 
1378 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1379 {
1380 	extern uint64_t tsc_freq;
1381 #ifndef XENPV
1382 	extern int tsc_user_enabled;
1383 #endif
1384 	extern int sparse_dump;
1385 
1386 	sysctl_createv(clog, 0, NULL, NULL,
1387 		       CTLFLAG_PERMANENT,
1388 		       CTLTYPE_NODE, "machdep", NULL,
1389 		       NULL, 0, NULL, 0,
1390 		       CTL_MACHDEP, CTL_EOL);
1391 
1392 	sysctl_createv(clog, 0, NULL, NULL,
1393 		       CTLFLAG_PERMANENT,
1394 		       CTLTYPE_STRUCT, "console_device", NULL,
1395 		       sysctl_consdev, 0, NULL, sizeof(dev_t),
1396 		       CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1397 	sysctl_createv(clog, 0, NULL, NULL,
1398 		       CTLFLAG_PERMANENT,
1399 		       CTLTYPE_STRING, "booted_kernel", NULL,
1400 		       sysctl_machdep_booted_kernel, 0, NULL, 0,
1401 		       CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1402 	sysctl_createv(clog, 0, NULL, NULL,
1403 		       CTLFLAG_PERMANENT,
1404 		       CTLTYPE_STRING, "bootmethod", NULL,
1405 		       sysctl_machdep_bootmethod, 0, NULL, 0,
1406 		       CTL_MACHDEP, CTL_CREATE, CTL_EOL);
1407 	sysctl_createv(clog, 0, NULL, NULL,
1408 		       CTLFLAG_PERMANENT,
1409 		       CTLTYPE_STRUCT, "diskinfo", NULL,
1410 		       sysctl_machdep_diskinfo, 0, NULL, 0,
1411 		       CTL_MACHDEP, CPU_DISKINFO, CTL_EOL);
1412 	sysctl_createv(clog, 0, NULL, NULL,
1413 		       CTLFLAG_PERMANENT,
1414 		       CTLTYPE_STRING, "cpu_brand", NULL,
1415 		       NULL, 0, cpu_brand_string, 0,
1416 		       CTL_MACHDEP, CTL_CREATE, CTL_EOL);
1417 	sysctl_createv(clog, 0, NULL, NULL,
1418 		       CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1419 		       CTLTYPE_INT, "sparse_dump", NULL,
1420 		       NULL, 0, &sparse_dump, 0,
1421 		       CTL_MACHDEP, CTL_CREATE, CTL_EOL);
1422 	sysctl_createv(clog, 0, NULL, NULL,
1423 		       CTLFLAG_PERMANENT,
1424 		       CTLTYPE_QUAD, "tsc_freq", NULL,
1425 		       NULL, 0, &tsc_freq, 0,
1426 		       CTL_MACHDEP, CTL_CREATE, CTL_EOL);
1427 	sysctl_createv(clog, 0, NULL, NULL,
1428 		       CTLFLAG_PERMANENT,
1429 		       CTLTYPE_INT, "pae",
1430 		       SYSCTL_DESCR("Whether the kernel uses PAE"),
1431 		       NULL, 0, &use_pae, 0,
1432 		       CTL_MACHDEP, CTL_CREATE, CTL_EOL);
1433 #ifndef XENPV
1434 	sysctl_createv(clog, 0, NULL, NULL,
1435 		       CTLFLAG_READWRITE,
1436 		       CTLTYPE_INT, "tsc_user_enable",
1437 		       SYSCTL_DESCR("RDTSC instruction enabled in usermode"),
1438 		       sysctl_machdep_tsc_enable, 0, &tsc_user_enabled, 0,
1439 		       CTL_MACHDEP, CTL_CREATE, CTL_EOL);
1440 #endif
1441 	sysctl_createv(clog, 0, NULL, NULL,
1442 		       CTLFLAG_PERMANENT,
1443 		       CTLTYPE_STRING, "hypervisor", NULL,
1444 		       sysctl_machdep_hypervisor, 0, NULL, 0,
1445 		       CTL_MACHDEP, CTL_CREATE, CTL_EOL);
1446 #ifdef SVS
1447 	const struct sysctlnode *svs_rnode = NULL;
1448 	sysctl_createv(clog, 0, NULL, &svs_rnode,
1449 		       CTLFLAG_PERMANENT,
1450 		       CTLTYPE_NODE, "svs", NULL,
1451 		       NULL, 0, NULL, 0,
1452 		       CTL_MACHDEP, CTL_CREATE);
1453 	sysctl_createv(clog, 0, &svs_rnode, NULL,
1454 		       CTLFLAG_PERMANENT,
1455 		       CTLTYPE_BOOL, "enabled",
1456 		       SYSCTL_DESCR("Whether the kernel uses SVS"),
1457 		       NULL, 0, &svs_enabled, 0,
1458 		       CTL_CREATE, CTL_EOL);
1459 	sysctl_createv(clog, 0, &svs_rnode, NULL,
1460 		       CTLFLAG_PERMANENT,
1461 		       CTLTYPE_BOOL, "pcid",
1462 		       SYSCTL_DESCR("Whether SVS uses PCID"),
1463 		       NULL, 0, &svs_pcid, 0,
1464 		       CTL_CREATE, CTL_EOL);
1465 #endif
1466 
1467 	sysctl_createv(clog, 0, NULL, NULL,
1468 		       CTLFLAG_READWRITE,
1469 		       CTLTYPE_BOOL, "user_ldt",
1470 		       SYSCTL_DESCR("Whether USER_LDT is enabled"),
1471 		       NULL, 0, &x86_user_ldt_enabled, 0,
1472 		       CTL_MACHDEP, CTL_CREATE, CTL_EOL);
1473 
1474 #ifndef XENPV
1475 	void sysctl_speculation_init(struct sysctllog **);
1476 	sysctl_speculation_init(clog);
1477 #endif
1478 
1479 	/* None of these can ever change once the system has booted */
1480 	const_sysctl(clog, "fpu_present", CTLTYPE_INT, i386_fpu_present,
1481 	    CPU_FPU_PRESENT);
1482 	const_sysctl(clog, "osfxsr", CTLTYPE_INT, i386_use_fxsave,
1483 	    CPU_OSFXSR);
1484 	const_sysctl(clog, "sse", CTLTYPE_INT, i386_has_sse,
1485 	    CPU_SSE);
1486 	const_sysctl(clog, "sse2", CTLTYPE_INT, i386_has_sse2,
1487 	    CPU_SSE2);
1488 
1489 	const_sysctl(clog, "fpu_save", CTLTYPE_INT, x86_fpu_save,
1490 	    CPU_FPU_SAVE);
1491 	const_sysctl(clog, "fpu_save_size", CTLTYPE_INT, x86_fpu_save_size,
1492 	    CPU_FPU_SAVE_SIZE);
1493 	const_sysctl(clog, "xsave_features", CTLTYPE_QUAD, x86_xsave_features,
1494 	    CPU_XSAVE_FEATURES);
1495 
1496 #ifndef XENPV
1497 	const_sysctl(clog, "biosbasemem", CTLTYPE_INT, biosbasemem,
1498 	    CPU_BIOSBASEMEM);
1499 	const_sysctl(clog, "biosextmem", CTLTYPE_INT, biosextmem,
1500 	    CPU_BIOSEXTMEM);
1501 #endif
1502 }
1503 
1504 /* Here for want of a better place */
1505 #if defined(DOM0OPS) || !defined(XENPV)
1506 struct pic *
1507 intr_findpic(int num)
1508 {
1509 #if NIOAPIC > 0
1510 	struct ioapic_softc *pic;
1511 
1512 	pic = ioapic_find_bybase(num);
1513 	if (pic != NULL)
1514 		return &pic->sc_pic;
1515 #endif
1516 	if (num < NUM_LEGACY_IRQS)
1517 		return &i8259_pic;
1518 
1519 	return NULL;
1520 }
1521 #endif
1522 
1523 void
1524 cpu_initclocks(void)
1525 {
1526 
1527 	/*
1528 	 * Re-calibrate TSC on boot CPU using most accurate time source,
1529 	 * thus making accurate TSC available for x86_initclock_func().
1530 	 */
1531 	cpu_get_tsc_freq(curcpu());
1532 
1533 	/* Now start the clocks on this CPU (the boot CPU). */
1534 	(*x86_initclock_func)();
1535 }
1536 
1537 int
1538 x86_cpu_is_lcall(const void *ip)
1539 {
1540 	static const uint8_t lcall[] = { 0x9a, 0, 0, 0, 0 };
1541 	int error;
1542 	const size_t sz = sizeof(lcall) + 2;
1543 	uint8_t tmp[sizeof(lcall) + 2];
1544 
1545 	if ((error = copyin(ip, tmp, sz)) != 0)
1546 		return error;
1547 
1548 	if (memcmp(tmp, lcall, sizeof(lcall)) != 0 || tmp[sz - 1] != 0)
1549 		return EINVAL;
1550 
1551 	switch (tmp[sz - 2]) {
1552 	case (uint8_t)0x07: /* NetBSD */
1553 	case (uint8_t)0x87: /* BSD/OS */
1554 		return 0;
1555 	default:
1556 		return EINVAL;
1557 	}
1558 }
1559