xref: /netbsd-src/sys/arch/atari/atari/bus.c (revision b9e0c91b067d8201c2f44e59010c960683638ecd)
1 /*	$NetBSD: bus.c,v 1.69 2023/12/07 16:56:09 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 1998 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9  * NASA Ames Research Center and by Chris G. Demetriou.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions
13  * are met:
14  * 1. Redistributions of source code must retain the above copyright
15  *    notice, this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright
17  *    notice, this list of conditions and the following disclaimer in the
18  *    documentation and/or other materials provided with the distribution.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  * POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include "opt_m68k_arch.h"
34 
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: bus.c,v 1.69 2023/12/07 16:56:09 thorpej Exp $");
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/extent.h>
41 #include <sys/kmem.h>
42 #include <sys/mbuf.h>
43 #include <sys/proc.h>
44 #include <sys/vmem_impl.h>
45 
46 #include <uvm/uvm.h>
47 
48 #include <machine/cpu.h>
49 #include <m68k/cacheops.h>
50 #define	_ATARI_BUS_DMA_PRIVATE
51 #include <sys/bus.h>
52 
53 /*
54  * Vmem arena to manage all memory space, including I/O ranges.  Allocate
55  * storage for 16 regions in each, initially.
56  *
57  * This means that the fixed static storage is only used for registrating
58  * the found memory regions and the bus-mapping of the console.
59  */
60 #define	IOMEM_BTAG_COUNT	VMEM_EST_BTCOUNT(1, 16)
61 static struct vmem iomem_arena_store;
62 static struct vmem_btag iomem_btag_store[IOMEM_BTAG_COUNT];
63 static vmem_t *iomem_arena;
64 
65 static int  _bus_dmamap_load_buffer(bus_dma_tag_t tag, bus_dmamap_t,
66 		void *, bus_size_t, struct vmspace *, int, paddr_t *,
67 		int *, int);
68 static int  bus_mem_add_mapping(bus_space_tag_t t, bus_addr_t bpa,
69 		bus_size_t size, int flags, bus_space_handle_t *bsph);
70 
71 extern paddr_t avail_end;
72 
73 /*
74  * We need these for the early memory allocator. The idea is this:
75  * Allocate VA-space through ptextra (atari_init.c:startc()). When
76  * The VA & size of this space are known, call bootm_init().
77  * Until the VM-system is up, bus_mem_add_mapping() allocates its virtual
78  * addresses from this extent-map.
79  *
80  * This allows for the console code to use the bus_space interface at a
81  * very early stage of the system configuration.
82  */
83 static pt_entry_t	*bootm_ptep;
84 static vaddr_t		 bootm_start;
85 static vaddr_t		 bootm_end;		/* inclusive */
86 #define	BOOTM_BTAG_COUNT	VMEM_EST_BTCOUNT(1, 32)
87 static struct vmem	 bootm_arena_store;
88 static struct vmem_btag	 bootm_btag_store[BOOTM_BTAG_COUNT];
89 static vmem_t *		 bootm_arena;
90 
91 static vaddr_t	bootm_alloc(paddr_t pa, u_long size, int flags);
92 static int	bootm_free(vaddr_t va, u_long size);
93 
94 void
bootm_init(vaddr_t va,void * ptep,vsize_t size)95 bootm_init(vaddr_t va, void *ptep, vsize_t size)
96 {
97 
98 	bootm_start = va;
99 	bootm_end = va + size - 1;
100 	bootm_ptep = (pt_entry_t *)ptep;
101 
102 	bootm_arena = vmem_init(&bootm_arena_store,
103 				"bootmem",		/* name */
104 				0,			/* addr */
105 				0,			/* size */
106 				PAGE_SIZE,		/* quantum */
107 				NULL,			/* importfn */
108 				NULL,			/* releasefn */
109 				NULL,			/* source */
110 				0,			/* qcache_max */
111 				VM_NOSLEEP | VM_PRIVTAGS,
112 				IPL_NONE);
113 
114 	vmem_add_bts(bootm_arena, bootm_btag_store, BOOTM_BTAG_COUNT);
115 	vmem_add(bootm_arena, va, size, VM_NOSLEEP);
116 }
117 
118 vaddr_t
bootm_alloc(paddr_t pa,u_long size,int flags)119 bootm_alloc(paddr_t pa, u_long size, int flags)
120 {
121 	pt_entry_t	*pg, *epg;
122 	pt_entry_t	pg_proto;
123 	vmem_addr_t	rva;
124 	vaddr_t		va;
125 
126 	if (vmem_alloc(bootm_arena, size, VM_NOSLEEP, &rva) != 0) {
127 		printf("bootm_alloc fails! Not enough fixed boundary tags?\n");
128 		printf("Requested extent: pa=%lx, size=%lx\n",
129 						(u_long)pa, size);
130 		return 0;
131 	}
132 
133 	pg  = &bootm_ptep[btoc(rva - bootm_start)];
134 	epg = &pg[btoc(size)];
135 	va  = rva;
136 	pg_proto = pa | PG_RW | PG_V;
137 	if ((flags & BUS_SPACE_MAP_CACHEABLE) == 0)
138 		pg_proto |= PG_CI;
139 	while (pg < epg) {
140 		*pg++     = pg_proto;
141 		pg_proto += PAGE_SIZE;
142 #if defined(M68040) || defined(M68060)
143 		if (mmutype == MMU_68040) {
144 			DCFP(pa);
145 			pa += PAGE_SIZE;
146 		}
147 #endif
148 		TBIS(va);
149 		va += PAGE_SIZE;
150 	}
151 	return rva;
152 }
153 
154 int
bootm_free(vaddr_t va,u_long size)155 bootm_free(vaddr_t va, u_long size)
156 {
157 
158 	if ((va < bootm_start) || ((va + size - 1) > bootm_end))
159 		return 0; /* Not for us! */
160 	vmem_free(bootm_arena, va, size);
161 	return 1;
162 }
163 
164 void
atari_bus_space_arena_init(paddr_t startpa,paddr_t endpa)165 atari_bus_space_arena_init(paddr_t startpa, paddr_t endpa)
166 {
167 	vmem_size_t size;
168 
169 	/*
170 	 * Initialize the I/O mem vmem arena.
171 	 *
172 	 * Note: we don't have to check the return value since
173 	 * creation of a fixed extent map will never fail (since
174 	 * descriptor storage has already been allocated).
175 	 *
176 	 * N.B. The iomem arena manages _all_ physical addresses
177 	 * on the machine.  When the amount of RAM is found, all
178 	 * extents of RAM are allocated from the map.
179 	 */
180 
181 	iomem_arena = vmem_init(&iomem_arena_store,
182 				"iomem",		/* name */
183 				0,			/* addr */
184 				0,			/* size */
185 				1,			/* quantum */
186 				NULL,			/* importfn */
187 				NULL,			/* releasefn */
188 				NULL,			/* source */
189 				0,			/* qcache_max */
190 				VM_NOSLEEP | VM_PRIVTAGS,
191 				IPL_NONE);
192 
193 	vmem_add_bts(iomem_arena, iomem_btag_store, IOMEM_BTAG_COUNT);
194 
195 	/* XXX kern/57748 */
196 	size = (vmem_size_t)(endpa - startpa) + 1;
197 	if (size == 0) {
198 		size--;
199 	}
200 	vmem_add(iomem_arena, startpa, size, VM_NOSLEEP);
201 }
202 
203 int
atari_bus_space_alloc_physmem(paddr_t startpa,paddr_t endpa)204 atari_bus_space_alloc_physmem(paddr_t startpa, paddr_t endpa)
205 {
206 
207 	return vmem_xalloc_addr(iomem_arena, startpa, endpa - startpa,
208 	    VM_NOSLEEP);
209 }
210 
211 int
bus_space_map(bus_space_tag_t t,bus_addr_t bpa,bus_size_t size,int flags,bus_space_handle_t * mhp)212 bus_space_map(bus_space_tag_t t, bus_addr_t bpa, bus_size_t size, int flags,
213     bus_space_handle_t *mhp)
214 {
215 	int	error;
216 
217 	/*
218 	 * Before we go any further, let's make sure that this
219 	 * region is available.
220 	 */
221 	error = vmem_xalloc_addr(iomem_arena, bpa + t->base, size,
222 	    VM_NOSLEEP);
223 	if (error != 0)
224 		return error;
225 
226 	error = bus_mem_add_mapping(t, bpa, size, flags, mhp);
227 	if (error != 0) {
228 		vmem_xfree(iomem_arena, bpa + t->base, size);
229 	}
230 	return error;
231 }
232 
233 int
bus_space_alloc(bus_space_tag_t t,bus_addr_t rstart,bus_addr_t rend,bus_size_t size,bus_size_t alignment,bus_size_t boundary,int flags,bus_addr_t * bpap,bus_space_handle_t * bshp)234 bus_space_alloc(bus_space_tag_t t, bus_addr_t rstart, bus_addr_t rend,
235     bus_size_t size, bus_size_t alignment, bus_size_t boundary, int flags,
236     bus_addr_t *bpap, bus_space_handle_t *bshp)
237 {
238 	vmem_addr_t bpa;
239 	int error;
240 
241 	/*
242 	 * Do the requested allocation.
243 	 */
244 	error = vmem_xalloc(iomem_arena, size,
245 			    alignment,		/* align */
246 			    0,			/* phase */
247 			    boundary,		/* boundary */
248 			    rstart + t->base,	/* minaddr */
249 			    rend + t->base,	/* maxaddr */
250 			    VM_BESTFIT | VM_NOSLEEP,
251 			    &bpa);
252 	if (error != 0)
253 		return error;
254 
255 	/*
256 	 * Map the bus physical address to a kernel virtual address.
257 	 */
258 	error = bus_mem_add_mapping(t, bpa, size, flags, bshp);
259 	if (error != 0) {
260 		vmem_xfree(iomem_arena, bpa, size);
261 	}
262 
263 	*bpap = bpa;
264 
265 	return error;
266 }
267 
268 static int
bus_mem_add_mapping(bus_space_tag_t t,bus_addr_t bpa,bus_size_t size,int flags,bus_space_handle_t * bshp)269 bus_mem_add_mapping(bus_space_tag_t t, bus_addr_t bpa, bus_size_t size,
270     int flags, bus_space_handle_t *bshp)
271 {
272 	vaddr_t	va;
273 	paddr_t	pa, endpa;
274 
275 	pa    = m68k_trunc_page(bpa + t->base);
276 	endpa = m68k_round_page((bpa + t->base + size) - 1);
277 
278 #ifdef DIAGNOSTIC
279 	if (endpa <= pa)
280 		panic("%s: overflow", __func__);
281 #endif
282 
283 	if (kernel_map == NULL) {
284 		/*
285 		 * The VM-system is not yet operational, allocate from
286 		 * a special pool.
287 		 */
288 		va = bootm_alloc(pa, endpa - pa, flags);
289 		if (va == 0)
290 			return ENOMEM;
291 		*bshp = va + (bpa & PGOFSET);
292 		return 0;
293 	}
294 
295 	va = uvm_km_alloc(kernel_map, endpa - pa, 0,
296 	    UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
297 	if (va == 0)
298 		return ENOMEM;
299 
300 	*bshp = va + (bpa & PGOFSET);
301 
302 	for (; pa < endpa; pa += PAGE_SIZE, va += PAGE_SIZE) {
303 		pt_entry_t *ptep, npte;
304 
305 		pmap_enter(pmap_kernel(), (vaddr_t)va, pa,
306 		    VM_PROT_READ|VM_PROT_WRITE, VM_PROT_READ|VM_PROT_WRITE);
307 
308 		ptep = kvtopte(va);
309 		npte = *ptep & ~PG_CMASK;
310 
311 		if ((flags & BUS_SPACE_MAP_CACHEABLE) == 0)
312 			npte |= PG_CI;
313 		else if (mmutype == MMU_68040)
314 			npte |= PG_CCB;
315 
316 		*ptep = npte;
317 	}
318 	pmap_update(pmap_kernel());
319 	TBIAS();
320 	return 0;
321 }
322 
323 void
bus_space_unmap(bus_space_tag_t t,bus_space_handle_t bsh,bus_size_t size)324 bus_space_unmap(bus_space_tag_t t, bus_space_handle_t bsh, bus_size_t size)
325 {
326 	vaddr_t	va, endva;
327 	paddr_t bpa;
328 
329 	va = m68k_trunc_page(bsh);
330 	endva = m68k_round_page(((char *)bsh + size) - 1);
331 #ifdef DIAGNOSTIC
332 	if (endva < va)
333 		panic("%s: overflow", __func__);
334 #endif
335 
336 	(void)pmap_extract(pmap_kernel(), va, &bpa);
337 	bpa += ((paddr_t)bsh & PGOFSET);
338 
339 	/*
340 	 * Free the kernel virtual mapping.
341 	 */
342 	if (!bootm_free(va, endva - va)) {
343 		pmap_remove(pmap_kernel(), va, endva);
344 		pmap_update(pmap_kernel());
345 		uvm_km_free(kernel_map, va, endva - va, UVM_KMF_VAONLY);
346 	}
347 
348 	/*
349 	 * Mark as free in the extent map.
350 	 */
351 	vmem_xfree(iomem_arena, bpa, size);
352 }
353 
354 /*
355  * Get a new handle for a subregion of an already-mapped area of bus space.
356  */
357 int
bus_space_subregion(bus_space_tag_t t,bus_space_handle_t memh,bus_size_t off,bus_size_t sz,bus_space_handle_t * mhp)358 bus_space_subregion(bus_space_tag_t t, bus_space_handle_t memh,
359     bus_size_t off, bus_size_t sz, bus_space_handle_t *mhp)
360 {
361 
362 	*mhp = memh + off;
363 	return 0;
364 }
365 
366 paddr_t
bus_space_mmap(bus_space_tag_t t,bus_addr_t addr,off_t off,int prot,int flags)367 bus_space_mmap(bus_space_tag_t t, bus_addr_t addr, off_t off, int prot,
368     int flags)
369 {
370 
371 	/*
372 	 * "addr" is the base address of the device we're mapping.
373 	 * "off" is the offset into that device.
374 	 *
375 	 * Note we are called for each "page" in the device that
376 	 * the upper layers want to map.
377 	 */
378 	return m68k_btop(addr + off);
379 }
380 
381 static size_t
_bus_dmamap_mapsize(int const nsegments)382 _bus_dmamap_mapsize(int const nsegments)
383 {
384 
385 	KASSERT(nsegments > 0);
386 	return sizeof(struct atari_bus_dmamap) +
387 	    (sizeof(bus_dma_segment_t) * (nsegments - 1));
388 }
389 
390 /*
391  * Common function for DMA map creation.  May be called by bus-specific
392  * DMA map creation functions.
393  */
394 int
_bus_dmamap_create(bus_dma_tag_t t,bus_size_t size,int nsegments,bus_size_t maxsegsz,bus_size_t boundary,int flags,bus_dmamap_t * dmamp)395 _bus_dmamap_create(bus_dma_tag_t t, bus_size_t size, int nsegments,
396     bus_size_t maxsegsz, bus_size_t boundary, int flags, bus_dmamap_t *dmamp)
397 {
398 	struct atari_bus_dmamap *map;
399 	void *mapstore;
400 
401 	/*
402 	 * Allocate and initialize the DMA map.  The end of the map
403 	 * is a variable-sized array of segments, so we allocate enough
404 	 * room for them in one shot.
405 	 *
406 	 * Note we don't preserve the WAITOK or NOWAIT flags.  Preservation
407 	 * of ALLOCNOW notifies others that we've reserved these resources,
408 	 * and they are not to be freed.
409 	 *
410 	 * The bus_dmamap_t includes one bus_dma_segment_t, hence
411 	 * the (nsegments - 1).
412 	 */
413 	if ((mapstore = kmem_zalloc(_bus_dmamap_mapsize(nsegments),
414 	    (flags & BUS_DMA_NOWAIT) != 0 ? KM_NOSLEEP : KM_SLEEP)) == NULL)
415 		return ENOMEM;
416 
417 	map = (struct atari_bus_dmamap *)mapstore;
418 	map->_dm_size = size;
419 	map->_dm_segcnt = nsegments;
420 	map->_dm_maxmaxsegsz = maxsegsz;
421 	map->_dm_boundary = boundary;
422 	map->_dm_flags = flags & ~(BUS_DMA_WAITOK|BUS_DMA_NOWAIT);
423 	map->dm_maxsegsz = maxsegsz;
424 	map->dm_mapsize = 0;		/* no valid mappings */
425 	map->dm_nsegs = 0;
426 
427 	*dmamp = map;
428 	return 0;
429 }
430 
431 /*
432  * Common function for DMA map destruction.  May be called by bus-specific
433  * DMA map destruction functions.
434  */
435 void
_bus_dmamap_destroy(bus_dma_tag_t t,bus_dmamap_t map)436 _bus_dmamap_destroy(bus_dma_tag_t t, bus_dmamap_t map)
437 {
438 
439 	kmem_free(map, _bus_dmamap_mapsize(map->_dm_segcnt));
440 }
441 
442 /*
443  * Common function for loading a DMA map with a linear buffer.  May
444  * be called by bus-specific DMA map load functions.
445  */
446 int
_bus_dmamap_load(bus_dma_tag_t t,bus_dmamap_t map,void * buf,bus_size_t buflen,struct proc * p,int flags)447 _bus_dmamap_load(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
448     bus_size_t buflen, struct proc *p, int flags)
449 {
450 	paddr_t lastaddr;
451 	int seg, error;
452 	struct vmspace *vm;
453 
454 	/*
455 	 * Make sure that on error condition we return "no valid mappings".
456 	 */
457 	map->dm_mapsize = 0;
458 	map->dm_nsegs = 0;
459 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
460 
461 	if (buflen > map->_dm_size)
462 		return EINVAL;
463 
464 	if (p != NULL) {
465 		vm = p->p_vmspace;
466 	} else {
467 		vm = vmspace_kernel();
468 	}
469 
470 	seg = 0;
471 	error = _bus_dmamap_load_buffer(t, map, buf, buflen, vm, flags,
472 	    &lastaddr, &seg, 1);
473 	if (error == 0) {
474 		map->dm_mapsize = buflen;
475 		map->dm_nsegs = seg + 1;
476 	}
477 	return error;
478 }
479 
480 /*
481  * Like _bus_dmamap_load(), but for mbufs.
482  */
483 int
_bus_dmamap_load_mbuf(bus_dma_tag_t t,bus_dmamap_t map,struct mbuf * m0,int flags)484 _bus_dmamap_load_mbuf(bus_dma_tag_t t, bus_dmamap_t map, struct mbuf *m0,
485     int flags)
486 {
487 	paddr_t lastaddr;
488 	int seg, error, first;
489 	struct mbuf *m;
490 
491 	/*
492 	 * Make sure that on error condition we return "no valid mappings."
493 	 */
494 	map->dm_mapsize = 0;
495 	map->dm_nsegs = 0;
496 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
497 
498 #ifdef DIAGNOSTIC
499 	if ((m0->m_flags & M_PKTHDR) == 0)
500 		panic("%s: no packet header", __func__);
501 #endif
502 
503 	if (m0->m_pkthdr.len > map->_dm_size)
504 		return EINVAL;
505 
506 	first = 1;
507 	seg = 0;
508 	error = 0;
509 	for (m = m0; m != NULL && error == 0; m = m->m_next) {
510 		if (m->m_len == 0)
511 			continue;
512 		error = _bus_dmamap_load_buffer(t, map, m->m_data, m->m_len,
513 		    vmspace_kernel(), flags, &lastaddr, &seg, first);
514 		first = 0;
515 	}
516 	if (error == 0) {
517 		map->dm_mapsize = m0->m_pkthdr.len;
518 		map->dm_nsegs = seg + 1;
519 	}
520 	return error;
521 }
522 
523 /*
524  * Like _bus_dmamap_load(), but for uios.
525  */
526 int
_bus_dmamap_load_uio(bus_dma_tag_t t,bus_dmamap_t map,struct uio * uio,int flags)527 _bus_dmamap_load_uio(bus_dma_tag_t t, bus_dmamap_t map, struct uio *uio,
528     int flags)
529 {
530 	paddr_t lastaddr;
531 	int seg, i, error, first;
532 	bus_size_t minlen, resid;
533 	struct iovec *iov;
534 	void *addr;
535 
536 	/*
537 	 * Make sure that on error condition we return "no valid mappings."
538 	 */
539 	map->dm_mapsize = 0;
540 	map->dm_nsegs = 0;
541 	KASSERT(map->dm_maxsegsz <= map->_dm_maxmaxsegsz);
542 
543 	resid = uio->uio_resid;
544 	iov = uio->uio_iov;
545 
546 	first = 1;
547 	seg = 0;
548 	error = 0;
549 	for (i = 0; i < uio->uio_iovcnt && resid != 0 && error == 0; i++) {
550 		/*
551 		 * Now at the first iovec to load.  Load each iovec
552 		 * until we have exhausted the residual count.
553 		 */
554 		minlen = resid < iov[i].iov_len ? resid : iov[i].iov_len;
555 		addr = (void *)iov[i].iov_base;
556 
557 		error = _bus_dmamap_load_buffer(t, map, addr, minlen,
558 		    uio->uio_vmspace, flags, &lastaddr, &seg, first);
559 		first = 0;
560 
561 		resid -= minlen;
562 	}
563 	if (error == 0) {
564 		map->dm_mapsize = uio->uio_resid;
565 		map->dm_nsegs = seg + 1;
566 	}
567 	return error;
568 }
569 
570 /*
571  * Like _bus_dmamap_load(), but for raw memory allocated with
572  * bus_dmamem_alloc().
573  */
574 int
_bus_dmamap_load_raw(bus_dma_tag_t t,bus_dmamap_t map,bus_dma_segment_t * segs,int nsegs,bus_size_t size,int flags)575 _bus_dmamap_load_raw(bus_dma_tag_t t, bus_dmamap_t map,
576     bus_dma_segment_t *segs, int nsegs, bus_size_t size, int flags)
577 {
578 
579 	panic("%s: not implemented", __func__);
580 }
581 
582 /*
583  * Common function for unloading a DMA map.  May be called by
584  * bus-specific DMA map unload functions.
585  */
586 void
_bus_dmamap_unload(bus_dma_tag_t t,bus_dmamap_t map)587 _bus_dmamap_unload(bus_dma_tag_t t, bus_dmamap_t map)
588 {
589 
590 	/*
591 	 * No resources to free; just mark the mappings as
592 	 * invalid.
593 	 */
594 	map->dm_maxsegsz = map->_dm_maxmaxsegsz;
595 	map->dm_mapsize = 0;
596 	map->dm_nsegs = 0;
597 }
598 
599 /*
600  * Common function for DMA map synchronization.  May be called
601  * by bus-specific DMA map synchronization functions.
602  */
603 void
_bus_dmamap_sync(bus_dma_tag_t t,bus_dmamap_t map,bus_addr_t offset,bus_size_t len,int ops)604 _bus_dmamap_sync(bus_dma_tag_t t, bus_dmamap_t map, bus_addr_t offset,
605     bus_size_t len, int ops)
606 {
607 #if defined(M68040) || defined(M68060)
608 	bus_addr_t p, e, ps, pe;
609 	bus_size_t seglen;
610 	bus_dma_segment_t *seg;
611 	int i;
612 #endif
613 
614 #if defined(M68020) || defined(M68030)
615 #if defined(M68040) || defined(M68060)
616 	if (cputype == CPU_68020 || cputype == CPU_68030)
617 #endif
618 		/* assume no L2 physical cache */
619 		return;
620 #endif
621 
622 #if defined(M68040) || defined(M68060)
623 	/* If the whole DMA map is uncached, do nothing. */
624 	if ((map->_dm_flags & BUS_DMA_COHERENT) != 0)
625 		return;
626 
627 	/* Short-circuit for unsupported `ops' */
628 	if ((ops & (BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)) == 0)
629 		return;
630 
631 	/*
632 	 * flush/purge the cache.
633 	 */
634 	for (i = 0; i < map->dm_nsegs && len != 0; i++) {
635 		seg = &map->dm_segs[i];
636 		if (seg->ds_len <= offset) {
637 			/* Segment irrelevant - before requested offset */
638 			offset -= seg->ds_len;
639 			continue;
640 		}
641 
642 		/*
643 		 * Now at the first segment to sync; nail
644 		 * each segment until we have exhausted the
645 		 * length.
646 		 */
647 		seglen = seg->ds_len - offset;
648 		if (seglen > len)
649 			seglen = len;
650 
651 		ps = seg->ds_addr + offset;
652 		pe = ps + seglen;
653 
654 		if ((ops & BUS_DMASYNC_PREWRITE) != 0) {
655 			p = ps & ~CACHELINE_MASK;
656 			e = (pe + CACHELINE_MASK) & ~CACHELINE_MASK;
657 
658 			/* flush cacheline */
659 			while ((p < e) && (p & (CACHELINE_SIZE * 8 - 1)) != 0) {
660 				DCFL(p);
661 				p += CACHELINE_SIZE;
662 			}
663 
664 			/* flush cachelines per 128bytes */
665 			while ((p < e) && (p & PAGE_MASK) != 0) {
666 				DCFL(p);
667 				p += CACHELINE_SIZE;
668 				DCFL(p);
669 				p += CACHELINE_SIZE;
670 				DCFL(p);
671 				p += CACHELINE_SIZE;
672 				DCFL(p);
673 				p += CACHELINE_SIZE;
674 				DCFL(p);
675 				p += CACHELINE_SIZE;
676 				DCFL(p);
677 				p += CACHELINE_SIZE;
678 				DCFL(p);
679 				p += CACHELINE_SIZE;
680 				DCFL(p);
681 				p += CACHELINE_SIZE;
682 			}
683 
684 			/* flush page */
685 			while (p + PAGE_SIZE <= e) {
686 				DCFP(p);
687 				p += PAGE_SIZE;
688 			}
689 
690 			/* flush cachelines per 128bytes */
691 			while (p + CACHELINE_SIZE * 8 <= e) {
692 				DCFL(p);
693 				p += CACHELINE_SIZE;
694 				DCFL(p);
695 				p += CACHELINE_SIZE;
696 				DCFL(p);
697 				p += CACHELINE_SIZE;
698 				DCFL(p);
699 				p += CACHELINE_SIZE;
700 				DCFL(p);
701 				p += CACHELINE_SIZE;
702 				DCFL(p);
703 				p += CACHELINE_SIZE;
704 				DCFL(p);
705 				p += CACHELINE_SIZE;
706 				DCFL(p);
707 				p += CACHELINE_SIZE;
708 			}
709 
710 			/* flush cacheline */
711 			while (p < e) {
712 				DCFL(p);
713 				p += CACHELINE_SIZE;
714 			}
715 		}
716 
717 		/*
718 		 * Normally, the `PREREAD' flag instructs us to purge the
719 		 * cache for the specified offset and length. However, if
720 		 * the offset/length is not aligned to a cacheline boundary,
721 		 * we may end up purging some legitimate data from the
722 		 * start/end of the cache. In such a case, *flush* the
723 		 * cachelines at the start and end of the required region.
724 		 */
725 		else if ((ops & BUS_DMASYNC_PREREAD) != 0) {
726 			/* flush cacheline on start boundary */
727 			if ((ps & CACHELINE_MASK) != 0) {
728 				DCFL(ps & ~CACHELINE_MASK);
729 			}
730 
731 			p = (ps + CACHELINE_MASK) & ~CACHELINE_MASK;
732 			e = pe & ~CACHELINE_MASK;
733 
734 			/* purge cacheline */
735 			while ((p < e) && (p & (CACHELINE_SIZE * 8 - 1)) != 0) {
736 				DCPL(p);
737 				p += CACHELINE_SIZE;
738 			}
739 
740 			/* purge cachelines per 128bytes */
741 			while ((p < e) && (p & PAGE_MASK) != 0) {
742 				DCPL(p);
743 				p += CACHELINE_SIZE;
744 				DCPL(p);
745 				p += CACHELINE_SIZE;
746 				DCPL(p);
747 				p += CACHELINE_SIZE;
748 				DCPL(p);
749 				p += CACHELINE_SIZE;
750 				DCPL(p);
751 				p += CACHELINE_SIZE;
752 				DCPL(p);
753 				p += CACHELINE_SIZE;
754 				DCPL(p);
755 				p += CACHELINE_SIZE;
756 				DCPL(p);
757 				p += CACHELINE_SIZE;
758 			}
759 
760 			/* purge page */
761 			while (p + PAGE_SIZE <= e) {
762 				DCPP(p);
763 				p += PAGE_SIZE;
764 			}
765 
766 			/* purge cachelines per 128bytes */
767 			while (p + CACHELINE_SIZE * 8 <= e) {
768 				DCPL(p);
769 				p += CACHELINE_SIZE;
770 				DCPL(p);
771 				p += CACHELINE_SIZE;
772 				DCPL(p);
773 				p += CACHELINE_SIZE;
774 				DCPL(p);
775 				p += CACHELINE_SIZE;
776 				DCPL(p);
777 				p += CACHELINE_SIZE;
778 				DCPL(p);
779 				p += CACHELINE_SIZE;
780 				DCPL(p);
781 				p += CACHELINE_SIZE;
782 				DCPL(p);
783 				p += CACHELINE_SIZE;
784 			}
785 
786 			/* purge cacheline */
787 			while (p < e) {
788 				DCPL(p);
789 				p += CACHELINE_SIZE;
790 			}
791 
792 			/* flush cacheline on end boundary */
793 			if (p < pe) {
794 				DCFL(p);
795 			}
796 		}
797 		offset = 0;
798 		len -= seglen;
799 	}
800 #endif	/* defined(M68040) || defined(M68060) */
801 }
802 
803 /*
804  * Common function for DMA-safe memory allocation.  May be called
805  * by bus-specific DMA memory allocation functions.
806  */
807 int
bus_dmamem_alloc(bus_dma_tag_t t,bus_size_t size,bus_size_t alignment,bus_size_t boundary,bus_dma_segment_t * segs,int nsegs,int * rsegs,int flags)808 bus_dmamem_alloc(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
809     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
810     int flags)
811 {
812 
813 	return bus_dmamem_alloc_range(t, size, alignment, boundary,
814 	    segs, nsegs, rsegs, flags, 0, trunc_page(avail_end));
815 }
816 
817 /*
818  * Common function for freeing DMA-safe memory.  May be called by
819  * bus-specific DMA memory free functions.
820  */
821 void
bus_dmamem_free(bus_dma_tag_t t,bus_dma_segment_t * segs,int nsegs)822 bus_dmamem_free(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs)
823 {
824 	struct vm_page *m;
825 	bus_addr_t addr, offset;
826 	struct pglist mlist;
827 	int curseg;
828 
829 	offset = t->_displacement;
830 
831 	/*
832 	 * Build a list of pages to free back to the VM system.
833 	 */
834 	TAILQ_INIT(&mlist);
835 	for (curseg = 0; curseg < nsegs; curseg++) {
836 		for (addr = segs[curseg].ds_addr;
837 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
838 		    addr += PAGE_SIZE) {
839 			m = PHYS_TO_VM_PAGE(addr - offset);
840 			TAILQ_INSERT_TAIL(&mlist, m, pageq.queue);
841 		}
842 	}
843 
844 	uvm_pglistfree(&mlist);
845 }
846 
847 /*
848  * Common function for mapping DMA-safe memory.  May be called by
849  * bus-specific DMA memory map functions.
850  */
851 int
bus_dmamem_map(bus_dma_tag_t t,bus_dma_segment_t * segs,int nsegs,size_t size,void ** kvap,int flags)852 bus_dmamem_map(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs,
853     size_t size, void **kvap, int flags)
854 {
855 	vaddr_t va;
856 	bus_addr_t addr, offset;
857 	int curseg;
858 	const uvm_flag_t kmflags =
859 	    (flags & BUS_DMA_NOWAIT) != 0 ? UVM_KMF_NOWAIT : 0;
860 
861 	offset = t->_displacement;
862 
863 	size = round_page(size);
864 
865 	va = uvm_km_alloc(kernel_map, size, 0, UVM_KMF_VAONLY | kmflags);
866 
867 	if (va == 0)
868 		return ENOMEM;
869 
870 	*kvap = (void *)va;
871 
872 	for (curseg = 0; curseg < nsegs; curseg++) {
873 		for (addr = segs[curseg].ds_addr;
874 		    addr < (segs[curseg].ds_addr + segs[curseg].ds_len);
875 		    addr += PAGE_SIZE, va += PAGE_SIZE, size -= PAGE_SIZE) {
876 			if (size == 0)
877 				panic("%s: size botch", __func__);
878 			pmap_enter(pmap_kernel(), va, addr - offset,
879 			    VM_PROT_READ | VM_PROT_WRITE,
880 			    VM_PROT_READ | VM_PROT_WRITE);
881 		}
882 	}
883 	pmap_update(pmap_kernel());
884 
885 	return 0;
886 }
887 
888 /*
889  * Common function for unmapping DMA-safe memory.  May be called by
890  * bus-specific DMA memory unmapping functions.
891  */
892 void
bus_dmamem_unmap(bus_dma_tag_t t,void * kva,size_t size)893 bus_dmamem_unmap(bus_dma_tag_t t, void *kva, size_t size)
894 {
895 
896 #ifdef DIAGNOSTIC
897 	if ((vaddr_t)kva & PGOFSET)
898 		panic("%s", __func__);
899 #endif
900 
901 	size = round_page(size);
902 
903 	pmap_remove(pmap_kernel(), (vaddr_t)kva, (vaddr_t)kva + size);
904 	pmap_update(pmap_kernel());
905 	uvm_km_free(kernel_map, (vaddr_t)kva, size, UVM_KMF_VAONLY);
906 }
907 
908 /*
909  * Common function for mmap(2)'ing DMA-safe memory.  May be called by
910  * bus-specific DMA mmap(2)'ing functions.
911  */
912 paddr_t
bus_dmamem_mmap(bus_dma_tag_t t,bus_dma_segment_t * segs,int nsegs,off_t off,int prot,int flags)913 bus_dmamem_mmap(bus_dma_tag_t t, bus_dma_segment_t *segs, int nsegs, off_t off,
914     int prot, int flags)
915 {
916 	int i, offset;
917 
918 	offset = t->_displacement;
919 
920 	for (i = 0; i < nsegs; i++) {
921 #ifdef DIAGNOSTIC
922 		if ((off & PGOFSET) != 0)
923 			panic("%s: offset unaligned", __func__);
924 		if ((segs[i].ds_addr & PGOFSET) != 0)
925 			panic("%s: segment unaligned", __func__);
926 		if ((segs[i].ds_len & PGOFSET) != 0)
927 			panic("%s: segment size not multiple of page size",
928 			    __func__);
929 #endif
930 		if (off >= segs[i].ds_len) {
931 			off -= segs[i].ds_len;
932 			continue;
933 		}
934 
935 		return m68k_btop((char *)segs[i].ds_addr - offset + off);
936 	}
937 
938 	/* Page not found. */
939 	return -1;
940 }
941 
942 /**********************************************************************
943  * DMA utility functions
944  **********************************************************************/
945 
946 /*
947  * Utility function to load a linear buffer.  lastaddrp holds state
948  * between invocations (for multiple-buffer loads).  segp contains
949  * the starting segment on entrance, and the ending segment on exit.
950  * first indicates if this is the first invocation of this function.
951  */
952 static int
_bus_dmamap_load_buffer(bus_dma_tag_t t,bus_dmamap_t map,void * buf,bus_size_t buflen,struct vmspace * vm,int flags,paddr_t * lastaddrp,int * segp,int first)953 _bus_dmamap_load_buffer(bus_dma_tag_t t, bus_dmamap_t map, void *buf,
954     bus_size_t buflen, struct vmspace *vm, int flags, paddr_t *lastaddrp,
955     int *segp, int first)
956 {
957 	bus_size_t sgsize;
958 	bus_addr_t curaddr, lastaddr, offset, baddr, bmask;
959 	vaddr_t vaddr = (vaddr_t)buf;
960 	int seg;
961 	pmap_t pmap;
962 
963 	offset = t->_displacement;
964 
965 	pmap = vm_map_pmap(&vm->vm_map);
966 
967 	lastaddr = *lastaddrp;
968 	bmask = ~(map->_dm_boundary - 1);
969 
970 	for (seg = *segp; buflen > 0 ; ) {
971 		/*
972 		 * Get the physical address for this segment.
973 		 */
974 		(void)pmap_extract(pmap, vaddr, &curaddr);
975 
976 		/*
977 		 * Compute the segment size, and adjust counts.
978 		 */
979 		sgsize = PAGE_SIZE - ((vaddr_t)vaddr & PGOFSET);
980 		if (buflen < sgsize)
981 			sgsize = buflen;
982 
983 		/*
984 		 * Make sure we don't cross any boundaries.
985 		 */
986 		if (map->_dm_boundary > 0) {
987 			baddr = (curaddr + map->_dm_boundary) & bmask;
988 			if (sgsize > (baddr - curaddr))
989 				sgsize = (baddr - curaddr);
990 		}
991 
992 		/*
993 		 * Insert chunk into a segment, coalescing with
994 		 * previous segment if possible.
995 		 */
996 		if (first) {
997 			map->dm_segs[seg].ds_addr = curaddr + offset;
998 			map->dm_segs[seg].ds_len = sgsize;
999 			first = 0;
1000 		} else {
1001 			if (curaddr == lastaddr &&
1002 			    (map->dm_segs[seg].ds_len + sgsize) <=
1003 			     map->dm_maxsegsz &&
1004 			    (map->_dm_boundary == 0 ||
1005 			     (map->dm_segs[seg].ds_addr & bmask) ==
1006 			     (curaddr & bmask)))
1007 				map->dm_segs[seg].ds_len += sgsize;
1008 			else {
1009 				if (++seg >= map->_dm_segcnt)
1010 					break;
1011 				map->dm_segs[seg].ds_addr = curaddr + offset;
1012 				map->dm_segs[seg].ds_len = sgsize;
1013 			}
1014 		}
1015 
1016 		lastaddr = curaddr + sgsize;
1017 		vaddr += sgsize;
1018 		buflen -= sgsize;
1019 	}
1020 
1021 	*segp = seg;
1022 	*lastaddrp = lastaddr;
1023 
1024 	/*
1025 	 * Did we fit?
1026 	 */
1027 	if (buflen != 0)
1028 		return EFBIG;		/* XXX better return value here? */
1029 	return 0;
1030 }
1031 
1032 /*
1033  * Allocate physical memory from the given physical address range.
1034  * Called by DMA-safe memory allocation methods.
1035  */
1036 int
bus_dmamem_alloc_range(bus_dma_tag_t t,bus_size_t size,bus_size_t alignment,bus_size_t boundary,bus_dma_segment_t * segs,int nsegs,int * rsegs,int flags,paddr_t low,paddr_t high)1037 bus_dmamem_alloc_range(bus_dma_tag_t t, bus_size_t size, bus_size_t alignment,
1038     bus_size_t boundary, bus_dma_segment_t *segs, int nsegs, int *rsegs,
1039     int flags, paddr_t low, paddr_t high)
1040 {
1041 	paddr_t curaddr, lastaddr;
1042 	bus_addr_t offset;
1043 	struct vm_page *m;
1044 	struct pglist mlist;
1045 	int curseg, error;
1046 
1047 	offset = t->_displacement;
1048 
1049 	/* Always round the size. */
1050 	size = round_page(size);
1051 
1052 	/*
1053 	 * Allocate pages from the VM system.
1054 	 */
1055 	error = uvm_pglistalloc(size, low, high, alignment, boundary,
1056 	    &mlist, nsegs, (flags & BUS_DMA_NOWAIT) == 0);
1057 	if (error != 0)
1058 		return error;
1059 
1060 	/*
1061 	 * Compute the location, size, and number of segments actually
1062 	 * returned by the VM code.
1063 	 */
1064 	m = TAILQ_FIRST(&mlist);
1065 	curseg = 0;
1066 	lastaddr = VM_PAGE_TO_PHYS(m);
1067 	segs[curseg].ds_addr = lastaddr + offset;
1068 	segs[curseg].ds_len = PAGE_SIZE;
1069 	m = TAILQ_NEXT(m, pageq.queue);
1070 
1071 	for (; m != NULL; m = TAILQ_NEXT(m, pageq.queue)) {
1072 		curaddr = VM_PAGE_TO_PHYS(m);
1073 #ifdef DIAGNOSTIC
1074 		if (curaddr < low || curaddr >= high) {
1075 			printf("uvm_pglistalloc returned non-sensical"
1076 			    " address 0x%lx\n", curaddr);
1077 			panic("%s", __func__);
1078 		}
1079 #endif
1080 		if (curaddr == (lastaddr + PAGE_SIZE))
1081 			segs[curseg].ds_len += PAGE_SIZE;
1082 		else {
1083 			curseg++;
1084 			segs[curseg].ds_addr = curaddr + offset;
1085 			segs[curseg].ds_len = PAGE_SIZE;
1086 		}
1087 		lastaddr = curaddr;
1088 	}
1089 
1090 	*rsegs = curseg + 1;
1091 
1092 	return 0;
1093 }
1094