1 /* $NetBSD: bootinfo.c,v 1.8 2024/11/11 13:55:22 riastradh Exp $ */ 2 3 /*- 4 * Copyright (c) 2023 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Jason R. Thorpe. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: bootinfo.c,v 1.8 2024/11/11 13:55:22 riastradh Exp $"); 34 35 #include "opt_md.h" 36 37 #include <sys/types.h> 38 #include <sys/cpu.h> 39 #include <sys/rnd.h> 40 #include <sys/rndsource.h> 41 42 #include <uvm/uvm_extern.h> 43 44 #ifdef MEMORY_DISK_DYNAMIC 45 #include <dev/md.h> 46 #endif 47 48 #include <machine/bootinfo.h> 49 #include <machine/vmparam.h> 50 51 #include "gftty.h" 52 #if NGFTTY > 0 53 #include <dev/goldfish/gfttyvar.h> 54 #endif 55 56 struct bi_record * bootinfo; 57 vaddr_t bootinfo_end; 58 uint32_t bootinfo_machtype; 59 int bootinfo_mem_segments_ignored; 60 size_t bootinfo_mem_segments_ignored_bytes; 61 struct bi_mem_info bootinfo_mem_segments[VM_PHYSSEG_MAX]; 62 struct bi_mem_info bootinfo_mem_segments_avail[VM_PHYSSEG_MAX]; 63 int bootinfo_mem_nsegments; 64 int bootinfo_mem_nsegments_avail; 65 66 static paddr_t bootinfo_console_addr; 67 static bool bootinfo_console_addr_valid; 68 69 static uint32_t bootinfo_initrd_start; 70 static uint32_t bootinfo_initrd_size; 71 72 #if NGFTTY > 0 73 static bool 74 bootinfo_set_console(paddr_t pa) 75 { 76 if (! bootinfo_console_addr_valid) { 77 bootinfo_console_addr = pa; 78 bootinfo_console_addr_valid = true; 79 return true; 80 } 81 return false; 82 } 83 #endif 84 85 static inline struct bi_record * 86 bootinfo_next(struct bi_record *bi) 87 { 88 uintptr_t addr = (uintptr_t)bi; 89 90 addr += bi->bi_size; 91 return (struct bi_record *)addr; 92 } 93 94 static inline int 95 bootinfo_get_cpu(struct bi_record *bi) 96 { 97 switch (bootinfo_get_u32(bi)) { 98 case BI_CPU_68020: return CPU_68020; 99 case BI_CPU_68030: return CPU_68030; 100 case BI_CPU_68040: return CPU_68040; 101 case BI_CPU_68060: return CPU_68060; 102 default: return -666; 103 } 104 } 105 106 static inline int 107 bootinfo_get_fpu(struct bi_record *bi) 108 { 109 switch (bootinfo_get_u32(bi)) { 110 case BI_FPU_68881: return FPU_68881; 111 case BI_FPU_68882: return FPU_68882; 112 case BI_FPU_68040: return FPU_68040; 113 case BI_FPU_68060: return FPU_68060; 114 default: return FPU_UNKNOWN; 115 } 116 } 117 118 static inline int 119 bootinfo_get_mmu(struct bi_record *bi) 120 { 121 switch (bootinfo_get_u32(bi)) { 122 case BI_MMU_68851: return MMU_68851; 123 case BI_MMU_68030: return MMU_68030; 124 case BI_MMU_68040: return MMU_68040; 125 case BI_MMU_68060: return MMU_68040; /* XXX */ 126 case BI_MMU_SUN3: return MMU_SUN; 127 case BI_MMU_APOLLO: /* XXX MMU_HP ??? */ 128 case BI_MMU_COLDFIRE: 129 default: return FPU_UNKNOWN; 130 } 131 } 132 133 static inline void 134 bootinfo_add_mem(struct bi_record *bi) 135 { 136 struct bi_mem_info *m = bootinfo_dataptr(bi); 137 138 if (bootinfo_mem_nsegments == VM_PHYSSEG_MAX) { 139 bootinfo_mem_segments_ignored++; 140 bootinfo_mem_segments_ignored_bytes += m->mem_size; 141 } 142 143 /* 144 * Make sure the start / size are properly aligned. 145 */ 146 if (m->mem_addr & PGOFSET) { 147 m->mem_size -= m->mem_addr & PGOFSET; 148 m->mem_addr = m68k_round_page(m->mem_addr); 149 } 150 m->mem_size = m68k_trunc_page(m->mem_size); 151 physmem += m->mem_size >> PGSHIFT; 152 153 bootinfo_mem_segments[bootinfo_mem_nsegments++] = *m; 154 bootinfo_mem_segments_avail[bootinfo_mem_nsegments_avail++] = *m; 155 } 156 157 static inline void 158 bootinfo_add_initrd(struct bi_record *bi) 159 { 160 struct bi_mem_info *rd = bootinfo_dataptr(bi); 161 162 if (bootinfo_initrd_size == 0) { 163 bootinfo_initrd_start = rd->mem_addr; 164 bootinfo_initrd_size = rd->mem_size; 165 } 166 } 167 168 static inline void 169 bootinfo_reserve_initrd(void) 170 { 171 if (bootinfo_initrd_size == 0) { 172 return; 173 } 174 175 paddr_t initrd_start = bootinfo_initrd_start; 176 paddr_t initrd_end = bootinfo_initrd_start + bootinfo_initrd_size; 177 int i; 178 179 /* Page-align the RAM disk start/end. */ 180 initrd_end = m68k_round_page(initrd_end); 181 initrd_start = m68k_trunc_page(initrd_start); 182 183 /* 184 * XXX All if this code assumes that the RAM disk fits within 185 * XXX a single memory segment. 186 */ 187 188 for (i = 0; i < bootinfo_mem_nsegments_avail; i++) { 189 /* Memory segment start/end already page-aligned. */ 190 paddr_t seg_start = bootinfo_mem_segments_avail[i].mem_addr; 191 paddr_t seg_end = seg_start + 192 bootinfo_mem_segments_avail[i].mem_size; 193 194 if (initrd_start >= seg_end || 195 initrd_end <= seg_start) { 196 /* Does not fall within this segment. */ 197 continue; 198 } 199 200 if (initrd_start > seg_start && initrd_end < seg_end) { 201 /* We need to split this segment. */ 202 /* XXX */ 203 printf("WARNING: ignoring RAM disk that splits " 204 "memory segment.\n"); 205 bootinfo_initrd_size = 0; 206 return; 207 } 208 209 printf("Reserving RAM disk pages %p - %p from memory " 210 "segment %d.\n", (void *)initrd_start, 211 (void *)(initrd_end - 1), i); 212 213 if (initrd_start == seg_start) { 214 seg_start = initrd_end; 215 } 216 217 if (initrd_end == seg_end) { 218 seg_end = initrd_start; 219 } 220 221 /* Now adjust the segment. */ 222 bootinfo_mem_segments_avail[i].mem_addr = seg_start; 223 bootinfo_mem_segments_avail[i].mem_size = seg_end - seg_start; 224 return; 225 } 226 } 227 228 static inline void 229 bootinfo_gf_tty_consinit(struct bi_record *bi) 230 { 231 #if NGFTTY > 0 232 struct bi_virt_dev *vd = bootinfo_dataptr(bi); 233 234 /* 235 * vd_mmio_base is the PA, but we're going to run mapped 236 * VA==PA for devices anyway once the MMU is turned on. 237 */ 238 if (bootinfo_set_console(vd->vd_mmio_base)) { 239 bootinfo_md_cnattach(gftty_cnattach, 240 vd->vd_mmio_base, 0x1000); 241 printf("Initialized Goldfish TTY console @ 0x%08x\n", 242 vd->vd_mmio_base); 243 } 244 #endif /* NGFTTY > 0 */ 245 } 246 247 /* 248 * bootinfo_start -- 249 * Parse the boot info during early start-up. 250 */ 251 void 252 bootinfo_start(struct bi_record *first) 253 { 254 struct bi_record *bi; 255 256 bootinfo = first; 257 258 for (bi = bootinfo; bi->bi_tag != BI_LAST; bi = bootinfo_next(bi)) { 259 switch (bi->bi_tag) { 260 case BI_MACHTYPE: 261 bootinfo_machtype = bootinfo_get_u32(bi); 262 break; 263 264 case BI_CPUTYPE: 265 cputype = bootinfo_get_cpu(bi); 266 break; 267 268 case BI_FPUTYPE: 269 fputype = bootinfo_get_fpu(bi); 270 break; 271 272 case BI_MMUTYPE: 273 mmutype = bootinfo_get_mmu(bi); 274 break; 275 276 case BI_MEMCHUNK: 277 bootinfo_add_mem(bi); 278 break; 279 280 case BI_RAMDISK: 281 bootinfo_add_initrd(bi); 282 break; 283 284 case BI_VIRT_GF_TTY_BASE: 285 bootinfo_gf_tty_consinit(bi); 286 break; 287 288 default: 289 break; 290 } 291 } 292 293 /* Set bootinfo_end to be just past the BI_LAST record. */ 294 bootinfo_end = (vaddr_t)bootinfo_next(bi); 295 296 /* 297 * If we have a RAM disk, we need to take it out of the 298 * available memory segments. 299 */ 300 bootinfo_reserve_initrd(); 301 } 302 303 /* 304 * bootinfo_enumerate -- 305 * Enumerate through the boot info, invoking the specified callback 306 * for each record. The callback returns true to keep searching, 307 * false, to stop. 308 */ 309 void 310 bootinfo_enumerate(bool (*cb)(struct bi_record *, void *), void *ctx) 311 { 312 struct bi_record *bi = bootinfo; 313 314 if (bi == NULL) { 315 return; 316 } 317 318 for (; bi->bi_tag != BI_LAST; bi = bootinfo_next(bi)) { 319 if ((*cb)(bi, ctx) == false) { 320 break; 321 } 322 } 323 } 324 325 struct bootinfo_find_ctx { 326 uint32_t tag; 327 struct bi_record *result; 328 }; 329 330 static bool 331 bootinfo_find_cb(struct bi_record *bi, void *v) 332 { 333 struct bootinfo_find_ctx *ctx = v; 334 335 if (bi->bi_tag == ctx->tag) { 336 ctx->result = bi; 337 return false; 338 } 339 340 return true; 341 } 342 343 /* 344 * bootinfo_find -- 345 * Scan through the boot info looking for the first instance of 346 * the specified tag. 347 */ 348 struct bi_record * 349 bootinfo_find(uint32_t tag) 350 { 351 struct bootinfo_find_ctx ctx = { 352 .tag = tag, 353 }; 354 355 bootinfo_enumerate(bootinfo_find_cb, &ctx); 356 return ctx.result; 357 } 358 359 /* 360 * bootinfo_addr_is_console -- 361 * Tests to see if the device at the specified address is 362 * the console device. 363 */ 364 bool 365 bootinfo_addr_is_console(paddr_t pa) 366 { 367 return bootinfo_console_addr_valid && bootinfo_console_addr == pa; 368 } 369 370 /* 371 * bootinfo_setup_initrd -- 372 * Check for a BI_RAMDISK record and, if found, set it as 373 * the root file system. 374 */ 375 void 376 bootinfo_setup_initrd(void) 377 { 378 #ifdef MEMORY_DISK_DYNAMIC 379 if (bootinfo_initrd_size != 0) { 380 paddr_t rdstart, rdend, rdpgoff; 381 vaddr_t rdva, rdoff; 382 vsize_t rdvsize; 383 384 printf("Initializing root RAM disk @ %p - %p\n", 385 (void *)bootinfo_initrd_start, 386 (void *)(bootinfo_initrd_start + bootinfo_initrd_size - 1)); 387 388 rdend = m68k_round_page(bootinfo_initrd_start + 389 bootinfo_initrd_size); 390 rdstart = m68k_trunc_page(bootinfo_initrd_start); 391 rdvsize = rdend - rdstart; 392 rdpgoff = bootinfo_initrd_start & PAGE_MASK; 393 394 rdva = uvm_km_alloc(kernel_map, rdvsize, PAGE_SIZE, 395 UVM_KMF_VAONLY); 396 if (rdva == 0) { 397 printf("WARNING: Unable to allocate KVA for " 398 "RAM disk.\n"); 399 return; 400 } 401 for (rdoff = 0; rdoff < rdvsize; rdoff += PAGE_SIZE) { 402 pmap_kenter_pa(rdva + rdoff, rdstart + rdoff, 403 VM_PROT_READ | VM_PROT_WRITE, 0); 404 } 405 md_root_setconf((void *)(rdva + rdpgoff), 406 bootinfo_initrd_size); 407 } 408 #endif /* MEMORY_DISK_DYNAMIC */ 409 } 410 411 /* 412 * bootinfo_setup_rndseed -- 413 * Check for a BI_RNG_SEED record and, if found, use it to 414 * seed the kenrnel entropy pool. 415 */ 416 void 417 bootinfo_setup_rndseed(void) 418 { 419 static struct krndsource bootinfo_rndsource; 420 struct bi_record *bi = bootinfo_find(BI_RNG_SEED); 421 if (bi != NULL) { 422 struct bi_data *rnd = bootinfo_dataptr(bi); 423 rnd_attach_source(&bootinfo_rndsource, "bootinfo", 424 RND_TYPE_RNG, RND_FLAG_DEFAULT); 425 rnd_add_data(&bootinfo_rndsource, 426 rnd->data_bytes, rnd->data_length, 427 rnd->data_length * NBBY); 428 explicit_memset(rnd->data_bytes, 0, rnd->data_length); 429 } 430 } 431 432 /* 433 * bootinfo_getarg -- 434 * Get an argument from the BI_COMMAND_LINE bootinfo record. 435 */ 436 bool 437 bootinfo_getarg(const char *var, char *buf, size_t buflen) 438 { 439 const size_t varlen = strlen(var); 440 struct bi_record *bi = bootinfo_find(BI_COMMAND_LINE); 441 442 if (bi == NULL) { 443 return false; 444 } 445 446 const char *sp = bootinfo_dataptr(bi); 447 const char *osp = sp; 448 for (;;) { 449 sp = strstr(sp, var); 450 if (sp == NULL) { 451 return false; 452 } 453 454 if (sp != osp && 455 sp[-1] != ' ' && sp[-1] != '\t' && sp[-1] != '-') { 456 continue; 457 } 458 sp += varlen; 459 char ch = *sp++; 460 if (ch != '=' && ch != ' ' && ch != '\t' && ch != '\0') { 461 continue; 462 } 463 /* Found it. */ 464 break; 465 } 466 467 while (--buflen) { 468 if (*sp == ' ' || *sp == '\t' || *sp == '\0') { 469 break; 470 } 471 *buf++ = *sp++; 472 } 473 *buf = '\0'; 474 475 return true; 476 } 477