1 /* $NetBSD: machdep.c,v 1.379 2024/03/31 17:13:29 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 1999, 2000, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1994, 1995, 1996 Carnegie-Mellon University.
35 * All rights reserved.
36 *
37 * Author: Chris G. Demetriou
38 *
39 * Permission to use, copy, modify and distribute this software and
40 * its documentation is hereby granted, provided that both the copyright
41 * notice and this permission notice appear in all copies of the
42 * software, derivative works or modified versions, and any portions
43 * thereof, and that both notices appear in supporting documentation.
44 *
45 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
46 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
47 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 *
49 * Carnegie Mellon requests users of this software to return to
50 *
51 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
52 * School of Computer Science
53 * Carnegie Mellon University
54 * Pittsburgh PA 15213-3890
55 *
56 * any improvements or extensions that they make and grant Carnegie the
57 * rights to redistribute these changes.
58 */
59
60 #include "opt_ddb.h"
61 #include "opt_kgdb.h"
62 #include "opt_modular.h"
63 #include "opt_multiprocessor.h"
64 #include "opt_dec_3000_300.h"
65 #include "opt_dec_3000_500.h"
66 #include "opt_execfmt.h"
67
68 #define __RWLOCK_PRIVATE
69
70 #include <sys/cdefs.h> /* RCS ID & Copyright macro defns */
71
72 __KERNEL_RCSID(0, "$NetBSD: machdep.c,v 1.379 2024/03/31 17:13:29 thorpej Exp $");
73
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/signalvar.h>
77 #include <sys/kernel.h>
78 #include <sys/cpu.h>
79 #include <sys/proc.h>
80 #include <sys/ras.h>
81 #include <sys/sched.h>
82 #include <sys/reboot.h>
83 #include <sys/device.h>
84 #include <sys/module.h>
85 #include <sys/mman.h>
86 #include <sys/msgbuf.h>
87 #include <sys/ioctl.h>
88 #include <sys/tty.h>
89 #include <sys/exec.h>
90 #include <sys/exec_aout.h> /* for MID_* */
91 #include <sys/exec_ecoff.h>
92 #include <sys/core.h>
93 #include <sys/kcore.h>
94 #include <sys/ucontext.h>
95 #include <sys/conf.h>
96 #include <sys/ksyms.h>
97 #include <sys/kauth.h>
98 #include <sys/atomic.h>
99 #include <sys/cpu.h>
100 #include <sys/rwlock.h>
101
102 #include <machine/kcore.h>
103 #include <machine/fpu.h>
104
105 #include <sys/mount.h>
106 #include <sys/syscallargs.h>
107
108 #include <uvm/uvm.h>
109 #include <sys/sysctl.h>
110
111 #include <dev/cons.h>
112 #include <dev/mm.h>
113
114 #include <machine/autoconf.h>
115 #include <machine/reg.h>
116 #include <machine/rpb.h>
117 #include <machine/prom.h>
118 #include <machine/cpuconf.h>
119 #include <machine/ieeefp.h>
120
121 #ifdef DDB
122 #include <machine/db_machdep.h>
123 #include <ddb/db_access.h>
124 #include <ddb/db_sym.h>
125 #include <ddb/db_extern.h>
126 #include <ddb/db_interface.h>
127 #endif
128
129 #ifdef KGDB
130 #include <sys/kgdb.h>
131 #endif
132
133 #ifdef DEBUG
134 #include <machine/sigdebug.h>
135 int sigdebug = 0x0;
136 int sigpid = 0;
137 #endif
138
139 /* Assert some assumptions made in lock_stubs.s */
140 __CTASSERT(RW_READER == 0);
141 __CTASSERT(RW_HAS_WAITERS == 1);
142
143 #include <machine/alpha.h>
144
145 #include "ksyms.h"
146
147 struct vm_map *phys_map = NULL;
148
149 void *msgbufaddr;
150
151 int maxmem; /* max memory per process */
152
153 int totalphysmem; /* total amount of physical memory in system */
154 int resvmem; /* amount of memory reserved for PROM */
155 int unusedmem; /* amount of memory for OS that we don't use */
156 int unknownmem; /* amount of memory with an unknown use */
157
158 int cputype; /* system type, from the RPB */
159 bool alpha_is_qemu; /* true if we've detected running in qemu */
160
161 int bootdev_debug = 0; /* patchable, or from DDB */
162
163 /*
164 * XXX We need an address to which we can assign things so that they
165 * won't be optimized away because we didn't use the value.
166 */
167 uint32_t no_optimize;
168
169 /* the following is used externally (sysctl_hw) */
170 char machine[] = MACHINE; /* from <machine/param.h> */
171 char machine_arch[] = MACHINE_ARCH; /* from <machine/param.h> */
172
173 /* Number of machine cycles per microsecond */
174 uint64_t cycles_per_usec;
175
176 /* number of CPUs in the box. really! */
177 int ncpus;
178
179 struct bootinfo_kernel bootinfo;
180
181 /* For built-in TCDS */
182 #if defined(DEC_3000_300) || defined(DEC_3000_500)
183 uint8_t dec_3000_scsiid[3], dec_3000_scsifast[3];
184 #endif
185
186 struct platform platform;
187
188 #if NKSYMS || defined(DDB) || defined(MODULAR)
189 /* start and end of kernel symbol table */
190 void *ksym_start, *ksym_end;
191 #endif
192
193 /* for cpu_sysctl() */
194 int alpha_unaligned_print = 1; /* warn about unaligned accesses */
195 int alpha_unaligned_fix = 1; /* fix up unaligned accesses */
196 int alpha_unaligned_sigbus = 0; /* don't SIGBUS on fixed-up accesses */
197 int alpha_fp_sync_complete = 0; /* fp fixup if sync even without /s */
198 int alpha_fp_complete_debug = 0; /* fp completion debug enabled */
199
200 /*
201 * XXX This should be dynamically sized, but we have the chicken-egg problem!
202 * XXX it should also be larger than it is, because not all of the mddt
203 * XXX clusters end up being used for VM.
204 */
205 phys_ram_seg_t mem_clusters[VM_PHYSSEG_MAX]; /* low size bits overloaded */
206 int mem_cluster_cnt;
207
208 int cpu_dump(void);
209 int cpu_dumpsize(void);
210 u_long cpu_dump_mempagecnt(void);
211 void dumpsys(void);
212 void identifycpu(void);
213 void printregs(struct reg *);
214
215 const pcu_ops_t fpu_ops = {
216 .pcu_id = PCU_FPU,
217 .pcu_state_load = fpu_state_load,
218 .pcu_state_save = fpu_state_save,
219 .pcu_state_release = fpu_state_release,
220 };
221
222 const pcu_ops_t * const pcu_ops_md_defs[PCU_UNIT_COUNT] = {
223 [PCU_FPU] = &fpu_ops,
224 };
225
226 static void
alpha_page_physload(unsigned long const start_pfn,unsigned long const end_pfn)227 alpha_page_physload(unsigned long const start_pfn, unsigned long const end_pfn)
228 {
229
230 /*
231 * Some Alpha platforms may have unique requirements about
232 * how physical memory is managed (e.g. reserving memory
233 * ranges due to lack of SGMAP DMA).
234 */
235 if (platform.page_physload != NULL) {
236 (*platform.page_physload)(start_pfn, end_pfn);
237 return;
238 }
239
240 uvm_page_physload(start_pfn, end_pfn, start_pfn, end_pfn,
241 VM_FREELIST_DEFAULT);
242 }
243
244 void
alpha_page_physload_sheltered(unsigned long const start_pfn,unsigned long const end_pfn,unsigned long const shelter_start_pfn,unsigned long const shelter_end_pfn)245 alpha_page_physload_sheltered(unsigned long const start_pfn,
246 unsigned long const end_pfn, unsigned long const shelter_start_pfn,
247 unsigned long const shelter_end_pfn)
248 {
249
250 /*
251 * If the added region ends before or starts after the sheltered
252 * region, then it just goes on the default freelist.
253 */
254 if (end_pfn <= shelter_start_pfn || start_pfn >= shelter_end_pfn) {
255 uvm_page_physload(start_pfn, end_pfn,
256 start_pfn, end_pfn, VM_FREELIST_DEFAULT);
257 return;
258 }
259
260 /*
261 * Load any portion that comes before the sheltered region.
262 */
263 if (start_pfn < shelter_start_pfn) {
264 KASSERT(end_pfn > shelter_start_pfn);
265 uvm_page_physload(start_pfn, shelter_start_pfn,
266 start_pfn, shelter_start_pfn, VM_FREELIST_DEFAULT);
267 }
268
269 /*
270 * Load the portion that overlaps that sheltered region.
271 */
272 const unsigned long ov_start = MAX(start_pfn, shelter_start_pfn);
273 const unsigned long ov_end = MIN(end_pfn, shelter_end_pfn);
274 KASSERT(ov_start >= shelter_start_pfn);
275 KASSERT(ov_end <= shelter_end_pfn);
276 uvm_page_physload(ov_start, ov_end, ov_start, ov_end,
277 VM_FREELIST_SHELTERED);
278
279 /*
280 * Load any portion that comes after the sheltered region.
281 */
282 if (end_pfn > shelter_end_pfn) {
283 KASSERT(start_pfn < shelter_end_pfn);
284 uvm_page_physload(shelter_end_pfn, end_pfn,
285 shelter_end_pfn, end_pfn, VM_FREELIST_DEFAULT);
286 }
287 }
288
289 void
alpha_init(u_long xxx_pfn __unused,u_long ptb,u_long bim,u_long bip,u_long biv)290 alpha_init(u_long xxx_pfn __unused, u_long ptb, u_long bim, u_long bip,
291 u_long biv)
292 /* pfn: first free PFN number (no longer used) */
293 /* ptb: PFN of current level 1 page table */
294 /* bim: bootinfo magic */
295 /* bip: bootinfo pointer */
296 /* biv: bootinfo version */
297 {
298 extern char kernel_text[], _end[];
299 struct mddt *mddtp;
300 struct mddt_cluster *memc;
301 int i, mddtweird;
302 struct pcb *pcb0;
303 vaddr_t kernstart, kernend, v;
304 paddr_t kernstartpfn, kernendpfn, pfn0, pfn1;
305 cpuid_t cpu_id;
306 struct cpu_info *ci;
307 char *p;
308 const char *bootinfo_msg;
309 const struct cpuinit *c;
310
311 /* NO OUTPUT ALLOWED UNTIL FURTHER NOTICE */
312
313 /*
314 * Turn off interrupts (not mchecks) and floating point.
315 * Make sure the instruction and data streams are consistent.
316 */
317 (void)alpha_pal_swpipl(ALPHA_PSL_IPL_HIGH);
318 alpha_pal_wrfen(0);
319 ALPHA_TBIA();
320 alpha_pal_imb();
321
322 /* Initialize the SCB. */
323 scb_init();
324
325 cpu_id = cpu_number();
326
327 ci = &cpu_info_primary;
328 ci->ci_cpuid = cpu_id;
329
330 #if defined(MULTIPROCESSOR)
331 /*
332 * Set the SysValue to &lwp0, after making sure that lwp0
333 * is pointing at the primary CPU. Secondary processors do
334 * this in their spinup trampoline.
335 */
336 lwp0.l_cpu = ci;
337 cpu_info[cpu_id] = ci;
338 alpha_pal_wrval((u_long)&lwp0);
339 #endif
340
341 /*
342 * Get critical system information (if possible, from the
343 * information provided by the boot program).
344 */
345 bootinfo_msg = NULL;
346 if (bim == BOOTINFO_MAGIC) {
347 if (biv == 0) { /* backward compat */
348 biv = *(u_long *)bip;
349 bip += 8;
350 }
351 switch (biv) {
352 case 1: {
353 struct bootinfo_v1 *v1p = (struct bootinfo_v1 *)bip;
354
355 bootinfo.ssym = v1p->ssym;
356 bootinfo.esym = v1p->esym;
357 /* hwrpb may not be provided by boot block in v1 */
358 if (v1p->hwrpb != NULL) {
359 bootinfo.hwrpb_phys =
360 ((struct rpb *)v1p->hwrpb)->rpb_phys;
361 bootinfo.hwrpb_size = v1p->hwrpbsize;
362 } else {
363 bootinfo.hwrpb_phys =
364 ((struct rpb *)HWRPB_ADDR)->rpb_phys;
365 bootinfo.hwrpb_size =
366 ((struct rpb *)HWRPB_ADDR)->rpb_size;
367 }
368 memcpy(bootinfo.boot_flags, v1p->boot_flags,
369 uimin(sizeof v1p->boot_flags,
370 sizeof bootinfo.boot_flags));
371 memcpy(bootinfo.booted_kernel, v1p->booted_kernel,
372 uimin(sizeof v1p->booted_kernel,
373 sizeof bootinfo.booted_kernel));
374 /* booted dev not provided in bootinfo */
375 init_prom_interface(ptb, (struct rpb *)
376 ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys));
377 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
378 sizeof bootinfo.booted_dev);
379 break;
380 }
381 default:
382 bootinfo_msg = "unknown bootinfo version";
383 goto nobootinfo;
384 }
385 } else {
386 bootinfo_msg = "boot program did not pass bootinfo";
387 nobootinfo:
388 bootinfo.ssym = (u_long)_end;
389 bootinfo.esym = (u_long)_end;
390 bootinfo.hwrpb_phys = ((struct rpb *)HWRPB_ADDR)->rpb_phys;
391 bootinfo.hwrpb_size = ((struct rpb *)HWRPB_ADDR)->rpb_size;
392 init_prom_interface(ptb, (struct rpb *)HWRPB_ADDR);
393 if (alpha_is_qemu) {
394 /*
395 * Grab boot flags from kernel command line.
396 * Assume autoboot if not supplied.
397 */
398 if (! prom_qemu_getenv("flags", bootinfo.boot_flags,
399 sizeof(bootinfo.boot_flags))) {
400 strlcpy(bootinfo.boot_flags, "A",
401 sizeof(bootinfo.boot_flags));
402 }
403 } else {
404 prom_getenv(PROM_E_BOOTED_OSFLAGS, bootinfo.boot_flags,
405 sizeof bootinfo.boot_flags);
406 prom_getenv(PROM_E_BOOTED_FILE, bootinfo.booted_kernel,
407 sizeof bootinfo.booted_kernel);
408 prom_getenv(PROM_E_BOOTED_DEV, bootinfo.booted_dev,
409 sizeof bootinfo.booted_dev);
410 }
411 }
412
413 /*
414 * Initialize the kernel's mapping of the RPB. It's needed for
415 * lots of things.
416 */
417 hwrpb = (struct rpb *)ALPHA_PHYS_TO_K0SEG(bootinfo.hwrpb_phys);
418
419 #if defined(DEC_3000_300) || defined(DEC_3000_500)
420 if (hwrpb->rpb_type == ST_DEC_3000_300 ||
421 hwrpb->rpb_type == ST_DEC_3000_500) {
422 prom_getenv(PROM_E_SCSIID, dec_3000_scsiid,
423 sizeof(dec_3000_scsiid));
424 prom_getenv(PROM_E_SCSIFAST, dec_3000_scsifast,
425 sizeof(dec_3000_scsifast));
426 }
427 #endif
428
429 /*
430 * Remember how many cycles there are per microsecond,
431 * so that we can use delay(). Round up, for safety.
432 */
433 cycles_per_usec = (hwrpb->rpb_cc_freq + 999999) / 1000000;
434
435 /*
436 * Initialize the (temporary) bootstrap console interface, so
437 * we can use printf until the VM system starts being setup.
438 * The real console is initialized before then.
439 */
440 init_bootstrap_console();
441
442 /* OUTPUT NOW ALLOWED */
443
444 /* delayed from above */
445 if (bootinfo_msg)
446 printf("WARNING: %s (0x%lx, 0x%lx, 0x%lx)\n",
447 bootinfo_msg, bim, bip, biv);
448
449 /* Initialize the trap vectors on the primary processor. */
450 trap_init();
451
452 /*
453 * Find out this system's page size, and initialize
454 * PAGE_SIZE-dependent variables.
455 */
456 if (hwrpb->rpb_page_size != ALPHA_PGBYTES)
457 panic("page size %lu != %d?!", hwrpb->rpb_page_size,
458 ALPHA_PGBYTES);
459 uvmexp.pagesize = hwrpb->rpb_page_size;
460 uvm_md_init();
461
462 /*
463 * cputype has been initialized in init_prom_interface().
464 * Perform basic platform initialization using this info.
465 */
466 KASSERT(prom_interface_initialized);
467 c = platform_lookup(cputype);
468 if (c == NULL) {
469 platform_not_supported();
470 /* NOTREACHED */
471 }
472 (*c->init)();
473 cpu_setmodel("%s", platform.model);
474
475 /*
476 * Initialize the real console, so that the bootstrap console is
477 * no longer necessary.
478 */
479 (*platform.cons_init)();
480
481 #ifdef DIAGNOSTIC
482 /* Paranoid sanity checking */
483
484 /* We should always be running on the primary. */
485 assert(hwrpb->rpb_primary_cpu_id == cpu_id);
486
487 /*
488 * On single-CPU systypes, the primary should always be CPU 0,
489 * except on Alpha 8200 systems where the CPU id is related
490 * to the VID, which is related to the Turbo Laser node id.
491 */
492 if (cputype != ST_DEC_21000)
493 assert(hwrpb->rpb_primary_cpu_id == 0);
494 #endif
495
496 /* NO MORE FIRMWARE ACCESS ALLOWED */
497 /* XXX Unless prom_uses_prom_console() evaluates to non-zero.) */
498
499 /*
500 * Find the beginning and end of the kernel (and leave a
501 * bit of space before the beginning for the bootstrap
502 * stack).
503 */
504 kernstart = trunc_page((vaddr_t)kernel_text) - 2 * PAGE_SIZE;
505 #if NKSYMS || defined(DDB) || defined(MODULAR)
506 ksym_start = (void *)bootinfo.ssym;
507 ksym_end = (void *)bootinfo.esym;
508 kernend = (vaddr_t)round_page((vaddr_t)ksym_end);
509 #else
510 kernend = (vaddr_t)round_page((vaddr_t)_end);
511 #endif
512
513 kernstartpfn = atop(ALPHA_K0SEG_TO_PHYS(kernstart));
514 kernendpfn = atop(ALPHA_K0SEG_TO_PHYS(kernend));
515
516 /*
517 * Find out how much memory is available, by looking at
518 * the memory cluster descriptors. This also tries to do
519 * its best to detect things things that have never been seen
520 * before...
521 */
522 mddtp = (struct mddt *)(((char *)hwrpb) + hwrpb->rpb_memdat_off);
523
524 /* MDDT SANITY CHECKING */
525 mddtweird = 0;
526 if (mddtp->mddt_cluster_cnt < 2) {
527 mddtweird = 1;
528 printf("WARNING: weird number of mem clusters: %lu\n",
529 mddtp->mddt_cluster_cnt);
530 }
531
532 #if 0
533 printf("Memory cluster count: %" PRIu64 "\n", mddtp->mddt_cluster_cnt);
534 #endif
535
536 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
537 memc = &mddtp->mddt_clusters[i];
538 #if 0
539 printf("MEMC %d: pfn 0x%lx cnt 0x%lx usage 0x%lx\n", i,
540 memc->mddt_pfn, memc->mddt_pg_cnt, memc->mddt_usage);
541 #endif
542 totalphysmem += memc->mddt_pg_cnt;
543 if (mem_cluster_cnt < VM_PHYSSEG_MAX) { /* XXX */
544 mem_clusters[mem_cluster_cnt].start =
545 ptoa(memc->mddt_pfn);
546 mem_clusters[mem_cluster_cnt].size =
547 ptoa(memc->mddt_pg_cnt);
548 if (memc->mddt_usage & MDDT_mbz ||
549 memc->mddt_usage & MDDT_NONVOLATILE || /* XXX */
550 memc->mddt_usage & MDDT_PALCODE)
551 mem_clusters[mem_cluster_cnt].size |=
552 PROT_READ;
553 else
554 mem_clusters[mem_cluster_cnt].size |=
555 PROT_READ | PROT_WRITE | PROT_EXEC;
556 mem_cluster_cnt++;
557 }
558
559 if (memc->mddt_usage & MDDT_mbz) {
560 mddtweird = 1;
561 printf("WARNING: mem cluster %d has weird "
562 "usage 0x%lx\n", i, memc->mddt_usage);
563 unknownmem += memc->mddt_pg_cnt;
564 continue;
565 }
566 if (memc->mddt_usage & MDDT_NONVOLATILE) {
567 /* XXX should handle these... */
568 printf("WARNING: skipping non-volatile mem "
569 "cluster %d\n", i);
570 unusedmem += memc->mddt_pg_cnt;
571 continue;
572 }
573 if (memc->mddt_usage & MDDT_PALCODE) {
574 resvmem += memc->mddt_pg_cnt;
575 continue;
576 }
577
578 /*
579 * We have a memory cluster available for system
580 * software use. We must determine if this cluster
581 * holds the kernel.
582 */
583
584 /*
585 * XXX If the kernel uses the PROM console, we only use the
586 * XXX memory after the kernel in the first system segment,
587 * XXX to avoid clobbering prom mapping, data, etc.
588 */
589 physmem += memc->mddt_pg_cnt;
590 pfn0 = memc->mddt_pfn;
591 pfn1 = memc->mddt_pfn + memc->mddt_pg_cnt;
592 if (pfn0 <= kernstartpfn && kernendpfn <= pfn1) {
593 /*
594 * Must compute the location of the kernel
595 * within the segment.
596 */
597 #if 0
598 printf("Cluster %d contains kernel\n", i);
599 #endif
600 if (pfn0 < kernstartpfn && !prom_uses_prom_console()) {
601 /*
602 * There is a chunk before the kernel.
603 */
604 #if 0
605 printf("Loading chunk before kernel: "
606 "0x%lx / 0x%lx\n", pfn0, kernstartpfn);
607 #endif
608 alpha_page_physload(pfn0, kernstartpfn);
609 }
610 if (kernendpfn < pfn1) {
611 /*
612 * There is a chunk after the kernel.
613 */
614 #if 0
615 printf("Loading chunk after kernel: "
616 "0x%lx / 0x%lx\n", kernendpfn, pfn1);
617 #endif
618 alpha_page_physload(kernendpfn, pfn1);
619 }
620 } else {
621 /*
622 * Just load this cluster as one chunk.
623 */
624 #if 0
625 printf("Loading cluster %d: 0x%lx / 0x%lx\n", i,
626 pfn0, pfn1);
627 #endif
628 alpha_page_physload(pfn0, pfn1);
629 }
630 }
631
632 /*
633 * Dump out the MDDT if it looks odd...
634 */
635 if (mddtweird) {
636 printf("\n");
637 printf("complete memory cluster information:\n");
638 for (i = 0; i < mddtp->mddt_cluster_cnt; i++) {
639 printf("mddt %d:\n", i);
640 printf("\tpfn %lx\n",
641 mddtp->mddt_clusters[i].mddt_pfn);
642 printf("\tcnt %lx\n",
643 mddtp->mddt_clusters[i].mddt_pg_cnt);
644 printf("\ttest %lx\n",
645 mddtp->mddt_clusters[i].mddt_pg_test);
646 printf("\tbva %lx\n",
647 mddtp->mddt_clusters[i].mddt_v_bitaddr);
648 printf("\tbpa %lx\n",
649 mddtp->mddt_clusters[i].mddt_p_bitaddr);
650 printf("\tbcksum %lx\n",
651 mddtp->mddt_clusters[i].mddt_bit_cksum);
652 printf("\tusage %lx\n",
653 mddtp->mddt_clusters[i].mddt_usage);
654 }
655 printf("\n");
656 }
657
658 if (totalphysmem == 0)
659 panic("can't happen: system seems to have no memory!");
660 maxmem = physmem;
661 #if 0
662 printf("totalphysmem = %d\n", totalphysmem);
663 printf("physmem = %lu\n", physmem);
664 printf("resvmem = %d\n", resvmem);
665 printf("unusedmem = %d\n", unusedmem);
666 printf("unknownmem = %d\n", unknownmem);
667 #endif
668
669 /*
670 * Initialize error message buffer (at end of core).
671 */
672 {
673 paddr_t end;
674 vsize_t sz = (vsize_t)round_page(MSGBUFSIZE);
675 vsize_t reqsz = sz;
676 uvm_physseg_t bank;
677
678 bank = uvm_physseg_get_last();
679
680 /* shrink so that it'll fit in the last segment */
681 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < atop(sz))
682 sz = ptoa(uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank));
683
684 end = uvm_physseg_get_end(bank);
685 end -= atop(sz);
686
687 uvm_physseg_unplug(end, atop(sz));
688 msgbufaddr = (void *) ALPHA_PHYS_TO_K0SEG(ptoa(end));
689
690 initmsgbuf(msgbufaddr, sz);
691
692 /* warn if the message buffer had to be shrunk */
693 if (sz != reqsz)
694 printf("WARNING: %ld bytes not available for msgbuf "
695 "in last cluster (%ld used)\n", reqsz, sz);
696
697 }
698
699 /*
700 * NOTE: It is safe to use uvm_pageboot_alloc() before
701 * pmap_bootstrap() because our pmap_virtual_space()
702 * returns compile-time constants.
703 */
704
705 /*
706 * Allocate uarea page for lwp0 and set it.
707 */
708 v = uvm_pageboot_alloc(UPAGES * PAGE_SIZE);
709 uvm_lwp_setuarea(&lwp0, v);
710
711 /*
712 * Initialize the virtual memory system, and set the
713 * page table base register in proc 0's PCB.
714 */
715 pmap_bootstrap(ALPHA_PHYS_TO_K0SEG(ptb << PGSHIFT),
716 hwrpb->rpb_max_asn, hwrpb->rpb_pcs_cnt);
717
718 /*
719 * Initialize the rest of lwp0's PCB and cache its physical address.
720 */
721 pcb0 = lwp_getpcb(&lwp0);
722 lwp0.l_md.md_pcbpaddr = (void *)ALPHA_K0SEG_TO_PHYS((vaddr_t)pcb0);
723
724 /*
725 * Set the kernel sp, reserving space for an (empty) trapframe,
726 * and make lwp0's trapframe pointer point to it for sanity.
727 */
728 pcb0->pcb_hw.apcb_ksp = v + USPACE - sizeof(struct trapframe);
729 lwp0.l_md.md_tf = (struct trapframe *)pcb0->pcb_hw.apcb_ksp;
730
731 /* Indicate that lwp0 has a CPU. */
732 lwp0.l_cpu = ci;
733
734 /*
735 * Look at arguments passed to us and compute boothowto.
736 */
737
738 boothowto = RB_SINGLE;
739 #ifdef KADB
740 boothowto |= RB_KDB;
741 #endif
742 for (p = bootinfo.boot_flags; p && *p != '\0'; p++) {
743 /*
744 * Note that we'd really like to differentiate case here,
745 * but the Alpha AXP Architecture Reference Manual
746 * says that we shouldn't.
747 */
748 switch (*p) {
749 case 'a': /* autoboot */
750 case 'A':
751 boothowto &= ~RB_SINGLE;
752 break;
753
754 #ifdef DEBUG
755 case 'c': /* crash dump immediately after autoconfig */
756 case 'C':
757 boothowto |= RB_DUMP;
758 break;
759 #endif
760
761 #if defined(KGDB) || defined(DDB)
762 case 'd': /* break into the kernel debugger ASAP */
763 case 'D':
764 boothowto |= RB_KDB;
765 break;
766 #endif
767
768 case 'h': /* always halt, never reboot */
769 case 'H':
770 boothowto |= RB_HALT;
771 break;
772
773 #if 0
774 case 'm': /* mini root present in memory */
775 case 'M':
776 boothowto |= RB_MINIROOT;
777 break;
778 #endif
779
780 case 'n': /* askname */
781 case 'N':
782 boothowto |= RB_ASKNAME;
783 break;
784
785 case 's': /* single-user (default, supported for sanity) */
786 case 'S':
787 boothowto |= RB_SINGLE;
788 break;
789
790 case 'q': /* quiet boot */
791 case 'Q':
792 boothowto |= AB_QUIET;
793 break;
794
795 case 'v': /* verbose boot */
796 case 'V':
797 boothowto |= AB_VERBOSE;
798 break;
799
800 case 'x': /* debug messages */
801 case 'X':
802 boothowto |= AB_DEBUG;
803 break;
804
805 case '-':
806 /*
807 * Just ignore this. It's not required, but it's
808 * common for it to be passed regardless.
809 */
810 break;
811
812 default:
813 printf("Unrecognized boot flag '%c'.\n", *p);
814 break;
815 }
816 }
817
818 /*
819 * Perform any initial kernel patches based on the running system.
820 * We may perform more later if we attach additional CPUs.
821 */
822 alpha_patch(false);
823
824 /*
825 * Figure out the number of CPUs in the box, from RPB fields.
826 * Really. We mean it.
827 */
828 for (i = 0; i < hwrpb->rpb_pcs_cnt; i++) {
829 struct pcs *pcsp;
830
831 pcsp = LOCATE_PCS(hwrpb, i);
832 if ((pcsp->pcs_flags & PCS_PP) != 0)
833 ncpus++;
834 }
835
836 /*
837 * Initialize debuggers, and break into them if appropriate.
838 */
839 #if NKSYMS || defined(DDB) || defined(MODULAR)
840 ksyms_addsyms_elf((int)((uint64_t)ksym_end - (uint64_t)ksym_start),
841 ksym_start, ksym_end);
842 #endif
843
844 if (boothowto & RB_KDB) {
845 #if defined(KGDB)
846 kgdb_debug_init = 1;
847 kgdb_connect(1);
848 #elif defined(DDB)
849 Debugger();
850 #endif
851 }
852
853 #ifdef DIAGNOSTIC
854 /*
855 * Check our clock frequency, from RPB fields.
856 */
857 if ((hwrpb->rpb_intr_freq >> 12) != 1024)
858 printf("WARNING: unbelievable rpb_intr_freq: %ld (%d hz)\n",
859 hwrpb->rpb_intr_freq, hz);
860 #endif
861 }
862
863 #ifdef MODULAR
864 /* Push any modules loaded by the boot loader */
865 void
module_init_md(void)866 module_init_md(void)
867 {
868 /* nada. */
869 }
870 #endif /* MODULAR */
871
872 void
consinit(void)873 consinit(void)
874 {
875
876 /*
877 * Everything related to console initialization is done
878 * in alpha_init().
879 */
880 #if defined(DIAGNOSTIC) && defined(_PROM_MAY_USE_PROM_CONSOLE)
881 printf("consinit: %susing prom console\n",
882 prom_uses_prom_console() ? "" : "not ");
883 #endif
884 }
885
886 void
cpu_startup(void)887 cpu_startup(void)
888 {
889 extern struct evcnt fpevent_use, fpevent_reuse;
890 vaddr_t minaddr, maxaddr;
891 char pbuf[9];
892 #if defined(DEBUG)
893 extern int pmapdebug;
894 int opmapdebug = pmapdebug;
895
896 pmapdebug = 0;
897 #endif
898
899 /*
900 * Good {morning,afternoon,evening,night}.
901 */
902 printf("%s%s", copyright, version);
903 identifycpu();
904 format_bytes(pbuf, sizeof(pbuf), ptoa(totalphysmem));
905 printf("total memory = %s\n", pbuf);
906 format_bytes(pbuf, sizeof(pbuf), ptoa(resvmem));
907 printf("(%s reserved for PROM, ", pbuf);
908 format_bytes(pbuf, sizeof(pbuf), ptoa(physmem));
909 printf("%s used by NetBSD)\n", pbuf);
910 if (unusedmem) {
911 format_bytes(pbuf, sizeof(pbuf), ptoa(unusedmem));
912 printf("WARNING: unused memory = %s\n", pbuf);
913 }
914 if (unknownmem) {
915 format_bytes(pbuf, sizeof(pbuf), ptoa(unknownmem));
916 printf("WARNING: %s of memory with unknown purpose\n", pbuf);
917 }
918
919 minaddr = 0;
920
921 /*
922 * Allocate a submap for physio
923 */
924 phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
925 VM_PHYS_SIZE, 0, false, NULL);
926
927 /*
928 * No need to allocate an mbuf cluster submap. Mbuf clusters
929 * are allocated via the pool allocator, and we use K0SEG to
930 * map those pages.
931 */
932
933 #if defined(DEBUG)
934 pmapdebug = opmapdebug;
935 #endif
936 format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
937 printf("avail memory = %s\n", pbuf);
938 #if 0
939 {
940 extern u_long pmap_pages_stolen;
941
942 format_bytes(pbuf, sizeof(pbuf), pmap_pages_stolen * PAGE_SIZE);
943 printf("stolen memory for VM structures = %s\n", pbuf);
944 }
945 #endif
946
947 /*
948 * Set up the HWPCB so that it's safe to configure secondary
949 * CPUs.
950 */
951 hwrpb_primary_init();
952
953 /*
954 * Initialize some trap event counters.
955 */
956 evcnt_attach_dynamic_nozero(&fpevent_use, EVCNT_TYPE_MISC, NULL,
957 "FP", "proc use");
958 evcnt_attach_dynamic_nozero(&fpevent_reuse, EVCNT_TYPE_MISC, NULL,
959 "FP", "proc re-use");
960 }
961
962 /*
963 * Retrieve the platform name from the DSR.
964 */
965 const char *
alpha_dsr_sysname(void)966 alpha_dsr_sysname(void)
967 {
968 struct dsrdb *dsr;
969 const char *sysname;
970
971 /*
972 * DSR does not exist on early HWRPB versions.
973 */
974 if (hwrpb->rpb_version < HWRPB_DSRDB_MINVERS)
975 return (NULL);
976
977 dsr = (struct dsrdb *)(((char *)hwrpb) + hwrpb->rpb_dsrdb_off);
978 sysname = (const char *)((char *)dsr + (dsr->dsr_sysname_off +
979 sizeof(uint64_t)));
980 return (sysname);
981 }
982
983 /*
984 * Lookup the system specified system variation in the provided table,
985 * returning the model string on match.
986 */
987 const char *
alpha_variation_name(uint64_t variation,const struct alpha_variation_table * avtp)988 alpha_variation_name(uint64_t variation, const struct alpha_variation_table *avtp)
989 {
990 int i;
991
992 for (i = 0; avtp[i].avt_model != NULL; i++)
993 if (avtp[i].avt_variation == variation)
994 return (avtp[i].avt_model);
995 return (NULL);
996 }
997
998 /*
999 * Generate a default platform name based for unknown system variations.
1000 */
1001 const char *
alpha_unknown_sysname(void)1002 alpha_unknown_sysname(void)
1003 {
1004 static char s[128]; /* safe size */
1005
1006 snprintf(s, sizeof(s), "%s family, unknown model variation 0x%lx",
1007 platform.family, hwrpb->rpb_variation & SV_ST_MASK);
1008 return ((const char *)s);
1009 }
1010
1011 void
identifycpu(void)1012 identifycpu(void)
1013 {
1014 const char *s;
1015 int i;
1016
1017 /*
1018 * print out CPU identification information.
1019 */
1020 printf("%s", cpu_getmodel());
1021 for(s = cpu_getmodel(); *s; ++s)
1022 if(strncasecmp(s, "MHz", 3) == 0)
1023 goto skipMHz;
1024 printf(", %ldMHz", hwrpb->rpb_cc_freq / 1000000);
1025 skipMHz:
1026 printf(", s/n ");
1027 for (i = 0; i < 10; i++)
1028 printf("%c", hwrpb->rpb_ssn[i]);
1029 printf("\n");
1030 printf("%ld byte page size, %d processor%s.\n",
1031 hwrpb->rpb_page_size, ncpus, ncpus == 1 ? "" : "s");
1032 }
1033
1034 int waittime = -1;
1035 struct pcb dumppcb;
1036
1037 void
cpu_reboot(int howto,char * bootstr)1038 cpu_reboot(int howto, char *bootstr)
1039 {
1040 #if defined(MULTIPROCESSOR)
1041 u_long cpu_id = cpu_number();
1042 u_long wait_mask;
1043 int i;
1044 #endif
1045
1046 /* If "always halt" was specified as a boot flag, obey. */
1047 if ((boothowto & RB_HALT) != 0)
1048 howto |= RB_HALT;
1049
1050 boothowto = howto;
1051
1052 /* If system is cold, just halt. */
1053 if (cold) {
1054 boothowto |= RB_HALT;
1055 goto haltsys;
1056 }
1057
1058 if ((boothowto & RB_NOSYNC) == 0 && waittime < 0) {
1059 waittime = 0;
1060 vfs_shutdown();
1061 }
1062
1063 /* Disable interrupts. */
1064 splhigh();
1065
1066 #if defined(MULTIPROCESSOR)
1067 /*
1068 * Halt all other CPUs. If we're not the primary, the
1069 * primary will spin, waiting for us to halt.
1070 */
1071 cpu_id = cpu_number(); /* may have changed cpu */
1072 wait_mask = (1UL << cpu_id) | (1UL << hwrpb->rpb_primary_cpu_id);
1073
1074 alpha_broadcast_ipi(ALPHA_IPI_HALT);
1075
1076 /* Ensure any CPUs paused by DDB resume execution so they can halt */
1077 cpus_paused = 0;
1078
1079 for (i = 0; i < 10000; i++) {
1080 alpha_mb();
1081 if (cpus_running == wait_mask)
1082 break;
1083 delay(1000);
1084 }
1085 alpha_mb();
1086 if (cpus_running != wait_mask)
1087 printf("WARNING: Unable to halt secondary CPUs (0x%lx)\n",
1088 cpus_running);
1089 #endif /* MULTIPROCESSOR */
1090
1091 /* If rebooting and a dump is requested do it. */
1092 #if 0
1093 if ((boothowto & (RB_DUMP | RB_HALT)) == RB_DUMP)
1094 #else
1095 if (boothowto & RB_DUMP)
1096 #endif
1097 dumpsys();
1098
1099 haltsys:
1100
1101 /* run any shutdown hooks */
1102 doshutdownhooks();
1103
1104 pmf_system_shutdown(boothowto);
1105
1106 #ifdef BOOTKEY
1107 printf("hit any key to %s...\n", howto & RB_HALT ? "halt" : "reboot");
1108 cnpollc(1); /* for proper keyboard command handling */
1109 cngetc();
1110 cnpollc(0);
1111 printf("\n");
1112 #endif
1113
1114 /* Finally, powerdown/halt/reboot the system. */
1115 if ((boothowto & RB_POWERDOWN) == RB_POWERDOWN &&
1116 platform.powerdown != NULL) {
1117 (*platform.powerdown)();
1118 printf("WARNING: powerdown failed!\n");
1119 }
1120 printf("%s\n\n", (boothowto & RB_HALT) ? "halted." : "rebooting...");
1121 #if defined(MULTIPROCESSOR)
1122 if (cpu_id != hwrpb->rpb_primary_cpu_id)
1123 cpu_halt();
1124 else
1125 #endif
1126 prom_halt(boothowto & RB_HALT);
1127 /*NOTREACHED*/
1128 }
1129
1130 /*
1131 * These variables are needed by /sbin/savecore
1132 */
1133 uint32_t dumpmag = 0x8fca0101; /* magic number */
1134 int dumpsize = 0; /* pages */
1135 long dumplo = 0; /* blocks */
1136
1137 /*
1138 * cpu_dumpsize: calculate size of machine-dependent kernel core dump headers.
1139 */
1140 int
cpu_dumpsize(void)1141 cpu_dumpsize(void)
1142 {
1143 int size;
1144
1145 size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t)) +
1146 ALIGN(mem_cluster_cnt * sizeof(phys_ram_seg_t));
1147 if (roundup(size, dbtob(1)) != dbtob(1))
1148 return -1;
1149
1150 return (1);
1151 }
1152
1153 /*
1154 * cpu_dump_mempagecnt: calculate size of RAM (in pages) to be dumped.
1155 */
1156 u_long
cpu_dump_mempagecnt(void)1157 cpu_dump_mempagecnt(void)
1158 {
1159 u_long i, n;
1160
1161 n = 0;
1162 for (i = 0; i < mem_cluster_cnt; i++)
1163 n += atop(mem_clusters[i].size);
1164 return (n);
1165 }
1166
1167 /*
1168 * cpu_dump: dump machine-dependent kernel core dump headers.
1169 */
1170 int
cpu_dump(void)1171 cpu_dump(void)
1172 {
1173 int (*dump)(dev_t, daddr_t, void *, size_t);
1174 char buf[dbtob(1)];
1175 kcore_seg_t *segp;
1176 cpu_kcore_hdr_t *cpuhdrp;
1177 phys_ram_seg_t *memsegp;
1178 const struct bdevsw *bdev;
1179 int i;
1180
1181 bdev = bdevsw_lookup(dumpdev);
1182 if (bdev == NULL)
1183 return (ENXIO);
1184 dump = bdev->d_dump;
1185
1186 memset(buf, 0, sizeof buf);
1187 segp = (kcore_seg_t *)buf;
1188 cpuhdrp = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*segp))];
1189 memsegp = (phys_ram_seg_t *)&buf[ ALIGN(sizeof(*segp)) +
1190 ALIGN(sizeof(*cpuhdrp))];
1191
1192 /*
1193 * Generate a segment header.
1194 */
1195 CORE_SETMAGIC(*segp, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
1196 segp->c_size = dbtob(1) - ALIGN(sizeof(*segp));
1197
1198 /*
1199 * Add the machine-dependent header info.
1200 */
1201 cpuhdrp->lev1map_pa = ALPHA_K0SEG_TO_PHYS((vaddr_t)kernel_lev1map);
1202 cpuhdrp->page_size = PAGE_SIZE;
1203 cpuhdrp->nmemsegs = mem_cluster_cnt;
1204
1205 /*
1206 * Fill in the memory segment descriptors.
1207 */
1208 for (i = 0; i < mem_cluster_cnt; i++) {
1209 memsegp[i].start = mem_clusters[i].start;
1210 memsegp[i].size = mem_clusters[i].size & ~PAGE_MASK;
1211 }
1212
1213 return (dump(dumpdev, dumplo, (void *)buf, dbtob(1)));
1214 }
1215
1216 /*
1217 * This is called by main to set dumplo and dumpsize.
1218 * Dumps always skip the first PAGE_SIZE of disk space
1219 * in case there might be a disk label stored there.
1220 * If there is extra space, put dump at the end to
1221 * reduce the chance that swapping trashes it.
1222 */
1223 void
cpu_dumpconf(void)1224 cpu_dumpconf(void)
1225 {
1226 int nblks, dumpblks; /* size of dump area */
1227
1228 if (dumpdev == NODEV)
1229 goto bad;
1230 nblks = bdev_size(dumpdev);
1231 if (nblks <= ctod(1))
1232 goto bad;
1233
1234 dumpblks = cpu_dumpsize();
1235 if (dumpblks < 0)
1236 goto bad;
1237 dumpblks += ctod(cpu_dump_mempagecnt());
1238
1239 /* If dump won't fit (incl. room for possible label), punt. */
1240 if (dumpblks > (nblks - ctod(1)))
1241 goto bad;
1242
1243 /* Put dump at end of partition */
1244 dumplo = nblks - dumpblks;
1245
1246 /* dumpsize is in page units, and doesn't include headers. */
1247 dumpsize = cpu_dump_mempagecnt();
1248 return;
1249
1250 bad:
1251 dumpsize = 0;
1252 return;
1253 }
1254
1255 /*
1256 * Dump the kernel's image to the swap partition.
1257 */
1258 #define BYTES_PER_DUMP PAGE_SIZE
1259
1260 void
dumpsys(void)1261 dumpsys(void)
1262 {
1263 const struct bdevsw *bdev;
1264 u_long totalbytesleft, bytes, i, n, memcl;
1265 u_long maddr;
1266 int psize;
1267 daddr_t blkno;
1268 int (*dump)(dev_t, daddr_t, void *, size_t);
1269 int error;
1270
1271 /* Save registers. */
1272 savectx(&dumppcb);
1273
1274 if (dumpdev == NODEV)
1275 return;
1276 bdev = bdevsw_lookup(dumpdev);
1277 if (bdev == NULL || bdev->d_psize == NULL)
1278 return;
1279
1280 /*
1281 * For dumps during autoconfiguration,
1282 * if dump device has already configured...
1283 */
1284 if (dumpsize == 0)
1285 cpu_dumpconf();
1286 if (dumplo <= 0) {
1287 printf("\ndump to dev %u,%u not possible\n",
1288 major(dumpdev), minor(dumpdev));
1289 return;
1290 }
1291 printf("\ndumping to dev %u,%u offset %ld\n",
1292 major(dumpdev), minor(dumpdev), dumplo);
1293
1294 psize = bdev_size(dumpdev);
1295 printf("dump ");
1296 if (psize == -1) {
1297 printf("area unavailable\n");
1298 return;
1299 }
1300
1301 /* XXX should purge all outstanding keystrokes. */
1302
1303 if ((error = cpu_dump()) != 0)
1304 goto err;
1305
1306 totalbytesleft = ptoa(cpu_dump_mempagecnt());
1307 blkno = dumplo + cpu_dumpsize();
1308 dump = bdev->d_dump;
1309 error = 0;
1310
1311 for (memcl = 0; memcl < mem_cluster_cnt; memcl++) {
1312 maddr = mem_clusters[memcl].start;
1313 bytes = mem_clusters[memcl].size & ~PAGE_MASK;
1314
1315 for (i = 0; i < bytes; i += n, totalbytesleft -= n) {
1316
1317 /* Print out how many MBs we to go. */
1318 if ((totalbytesleft % (1024*1024)) == 0)
1319 printf_nolog("%ld ",
1320 totalbytesleft / (1024 * 1024));
1321
1322 /* Limit size for next transfer. */
1323 n = bytes - i;
1324 if (n > BYTES_PER_DUMP)
1325 n = BYTES_PER_DUMP;
1326
1327 error = (*dump)(dumpdev, blkno,
1328 (void *)ALPHA_PHYS_TO_K0SEG(maddr), n);
1329 if (error)
1330 goto err;
1331 maddr += n;
1332 blkno += btodb(n); /* XXX? */
1333
1334 /* XXX should look for keystrokes, to cancel. */
1335 }
1336 }
1337
1338 err:
1339 switch (error) {
1340
1341 case ENXIO:
1342 printf("device bad\n");
1343 break;
1344
1345 case EFAULT:
1346 printf("device not ready\n");
1347 break;
1348
1349 case EINVAL:
1350 printf("area improper\n");
1351 break;
1352
1353 case EIO:
1354 printf("i/o error\n");
1355 break;
1356
1357 case EINTR:
1358 printf("aborted from console\n");
1359 break;
1360
1361 case 0:
1362 printf("succeeded\n");
1363 break;
1364
1365 default:
1366 printf("error %d\n", error);
1367 break;
1368 }
1369 printf("\n\n");
1370 delay(1000);
1371 }
1372
1373 void
frametoreg(const struct trapframe * framep,struct reg * regp)1374 frametoreg(const struct trapframe *framep, struct reg *regp)
1375 {
1376
1377 regp->r_regs[R_V0] = framep->tf_regs[FRAME_V0];
1378 regp->r_regs[R_T0] = framep->tf_regs[FRAME_T0];
1379 regp->r_regs[R_T1] = framep->tf_regs[FRAME_T1];
1380 regp->r_regs[R_T2] = framep->tf_regs[FRAME_T2];
1381 regp->r_regs[R_T3] = framep->tf_regs[FRAME_T3];
1382 regp->r_regs[R_T4] = framep->tf_regs[FRAME_T4];
1383 regp->r_regs[R_T5] = framep->tf_regs[FRAME_T5];
1384 regp->r_regs[R_T6] = framep->tf_regs[FRAME_T6];
1385 regp->r_regs[R_T7] = framep->tf_regs[FRAME_T7];
1386 regp->r_regs[R_S0] = framep->tf_regs[FRAME_S0];
1387 regp->r_regs[R_S1] = framep->tf_regs[FRAME_S1];
1388 regp->r_regs[R_S2] = framep->tf_regs[FRAME_S2];
1389 regp->r_regs[R_S3] = framep->tf_regs[FRAME_S3];
1390 regp->r_regs[R_S4] = framep->tf_regs[FRAME_S4];
1391 regp->r_regs[R_S5] = framep->tf_regs[FRAME_S5];
1392 regp->r_regs[R_S6] = framep->tf_regs[FRAME_S6];
1393 regp->r_regs[R_A0] = framep->tf_regs[FRAME_A0];
1394 regp->r_regs[R_A1] = framep->tf_regs[FRAME_A1];
1395 regp->r_regs[R_A2] = framep->tf_regs[FRAME_A2];
1396 regp->r_regs[R_A3] = framep->tf_regs[FRAME_A3];
1397 regp->r_regs[R_A4] = framep->tf_regs[FRAME_A4];
1398 regp->r_regs[R_A5] = framep->tf_regs[FRAME_A5];
1399 regp->r_regs[R_T8] = framep->tf_regs[FRAME_T8];
1400 regp->r_regs[R_T9] = framep->tf_regs[FRAME_T9];
1401 regp->r_regs[R_T10] = framep->tf_regs[FRAME_T10];
1402 regp->r_regs[R_T11] = framep->tf_regs[FRAME_T11];
1403 regp->r_regs[R_RA] = framep->tf_regs[FRAME_RA];
1404 regp->r_regs[R_T12] = framep->tf_regs[FRAME_T12];
1405 regp->r_regs[R_AT] = framep->tf_regs[FRAME_AT];
1406 regp->r_regs[R_GP] = framep->tf_regs[FRAME_GP];
1407 /* regp->r_regs[R_SP] = framep->tf_regs[FRAME_SP]; XXX */
1408 regp->r_regs[R_ZERO] = 0;
1409 }
1410
1411 void
regtoframe(const struct reg * regp,struct trapframe * framep)1412 regtoframe(const struct reg *regp, struct trapframe *framep)
1413 {
1414
1415 framep->tf_regs[FRAME_V0] = regp->r_regs[R_V0];
1416 framep->tf_regs[FRAME_T0] = regp->r_regs[R_T0];
1417 framep->tf_regs[FRAME_T1] = regp->r_regs[R_T1];
1418 framep->tf_regs[FRAME_T2] = regp->r_regs[R_T2];
1419 framep->tf_regs[FRAME_T3] = regp->r_regs[R_T3];
1420 framep->tf_regs[FRAME_T4] = regp->r_regs[R_T4];
1421 framep->tf_regs[FRAME_T5] = regp->r_regs[R_T5];
1422 framep->tf_regs[FRAME_T6] = regp->r_regs[R_T6];
1423 framep->tf_regs[FRAME_T7] = regp->r_regs[R_T7];
1424 framep->tf_regs[FRAME_S0] = regp->r_regs[R_S0];
1425 framep->tf_regs[FRAME_S1] = regp->r_regs[R_S1];
1426 framep->tf_regs[FRAME_S2] = regp->r_regs[R_S2];
1427 framep->tf_regs[FRAME_S3] = regp->r_regs[R_S3];
1428 framep->tf_regs[FRAME_S4] = regp->r_regs[R_S4];
1429 framep->tf_regs[FRAME_S5] = regp->r_regs[R_S5];
1430 framep->tf_regs[FRAME_S6] = regp->r_regs[R_S6];
1431 framep->tf_regs[FRAME_A0] = regp->r_regs[R_A0];
1432 framep->tf_regs[FRAME_A1] = regp->r_regs[R_A1];
1433 framep->tf_regs[FRAME_A2] = regp->r_regs[R_A2];
1434 framep->tf_regs[FRAME_A3] = regp->r_regs[R_A3];
1435 framep->tf_regs[FRAME_A4] = regp->r_regs[R_A4];
1436 framep->tf_regs[FRAME_A5] = regp->r_regs[R_A5];
1437 framep->tf_regs[FRAME_T8] = regp->r_regs[R_T8];
1438 framep->tf_regs[FRAME_T9] = regp->r_regs[R_T9];
1439 framep->tf_regs[FRAME_T10] = regp->r_regs[R_T10];
1440 framep->tf_regs[FRAME_T11] = regp->r_regs[R_T11];
1441 framep->tf_regs[FRAME_RA] = regp->r_regs[R_RA];
1442 framep->tf_regs[FRAME_T12] = regp->r_regs[R_T12];
1443 framep->tf_regs[FRAME_AT] = regp->r_regs[R_AT];
1444 framep->tf_regs[FRAME_GP] = regp->r_regs[R_GP];
1445 /* framep->tf_regs[FRAME_SP] = regp->r_regs[R_SP]; XXX */
1446 /* ??? = regp->r_regs[R_ZERO]; */
1447 }
1448
1449 void
printregs(struct reg * regp)1450 printregs(struct reg *regp)
1451 {
1452 int i;
1453
1454 for (i = 0; i < 32; i++)
1455 printf("R%d:\t0x%016lx%s", i, regp->r_regs[i],
1456 i & 1 ? "\n" : "\t");
1457 }
1458
1459 void
regdump(struct trapframe * framep)1460 regdump(struct trapframe *framep)
1461 {
1462 struct reg reg;
1463
1464 frametoreg(framep, ®);
1465 reg.r_regs[R_SP] = alpha_pal_rdusp();
1466
1467 printf("REGISTERS:\n");
1468 printregs(®);
1469 }
1470
1471
1472
1473 void *
getframe(const struct lwp * l,int sig,int * onstack)1474 getframe(const struct lwp *l, int sig, int *onstack)
1475 {
1476 void *frame;
1477
1478 /* Do we need to jump onto the signal stack? */
1479 *onstack =
1480 (l->l_sigstk.ss_flags & (SS_DISABLE | SS_ONSTACK)) == 0 &&
1481 (SIGACTION(l->l_proc, sig).sa_flags & SA_ONSTACK) != 0;
1482
1483 if (*onstack)
1484 frame = (void *)((char *)l->l_sigstk.ss_sp +
1485 l->l_sigstk.ss_size);
1486 else
1487 frame = (void *)(alpha_pal_rdusp());
1488 return (frame);
1489 }
1490
1491 void
buildcontext(struct lwp * l,const void * catcher,const void * tramp,const void * fp)1492 buildcontext(struct lwp *l, const void *catcher, const void *tramp, const void *fp)
1493 {
1494 struct trapframe *tf = l->l_md.md_tf;
1495
1496 tf->tf_regs[FRAME_RA] = (uint64_t)tramp;
1497 tf->tf_regs[FRAME_PC] = (uint64_t)catcher;
1498 tf->tf_regs[FRAME_T12] = (uint64_t)catcher;
1499 alpha_pal_wrusp((unsigned long)fp);
1500 }
1501
1502
1503 /*
1504 * Send an interrupt to process, new style
1505 */
1506 void
sendsig_siginfo(const ksiginfo_t * ksi,const sigset_t * mask)1507 sendsig_siginfo(const ksiginfo_t *ksi, const sigset_t *mask)
1508 {
1509 struct lwp *l = curlwp;
1510 struct proc *p = l->l_proc;
1511 struct sigacts *ps = p->p_sigacts;
1512 int onstack, sig = ksi->ksi_signo, error;
1513 struct sigframe_siginfo *fp, frame;
1514 struct trapframe *tf;
1515 sig_t catcher = SIGACTION(p, ksi->ksi_signo).sa_handler;
1516
1517 fp = (struct sigframe_siginfo *)getframe(l,ksi->ksi_signo,&onstack);
1518 tf = l->l_md.md_tf;
1519
1520 /* Allocate space for the signal handler context. */
1521 fp--;
1522
1523 #ifdef DEBUG
1524 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1525 printf("sendsig_siginfo(%d): sig %d ssp %p usp %p\n", p->p_pid,
1526 sig, &onstack, fp);
1527 #endif
1528
1529 /* Build stack frame for signal trampoline. */
1530 memset(&frame, 0, sizeof(frame));
1531 frame.sf_si._info = ksi->ksi_info;
1532 frame.sf_uc.uc_flags = _UC_SIGMASK;
1533 frame.sf_uc.uc_sigmask = *mask;
1534 frame.sf_uc.uc_link = l->l_ctxlink;
1535 frame.sf_uc.uc_flags |= (l->l_sigstk.ss_flags & SS_ONSTACK)
1536 ? _UC_SETSTACK : _UC_CLRSTACK;
1537 sendsig_reset(l, sig);
1538 mutex_exit(p->p_lock);
1539 cpu_getmcontext(l, &frame.sf_uc.uc_mcontext, &frame.sf_uc.uc_flags);
1540 error = copyout(&frame, fp, sizeof(frame));
1541 mutex_enter(p->p_lock);
1542
1543 if (error != 0) {
1544 /*
1545 * Process has trashed its stack; give it an illegal
1546 * instruction to halt it in its tracks.
1547 */
1548 #ifdef DEBUG
1549 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1550 printf("sendsig_siginfo(%d): copyout failed on sig %d\n",
1551 p->p_pid, sig);
1552 #endif
1553 sigexit(l, SIGILL);
1554 /* NOTREACHED */
1555 }
1556
1557 #ifdef DEBUG
1558 if (sigdebug & SDB_FOLLOW)
1559 printf("sendsig_siginfo(%d): sig %d usp %p code %x\n",
1560 p->p_pid, sig, fp, ksi->ksi_code);
1561 #endif
1562
1563 /*
1564 * Set up the registers to directly invoke the signal handler. The
1565 * signal trampoline is then used to return from the signal. Note
1566 * the trampoline version numbers are coordinated with machine-
1567 * dependent code in libc.
1568 */
1569
1570 tf->tf_regs[FRAME_A0] = sig;
1571 tf->tf_regs[FRAME_A1] = (uint64_t)&fp->sf_si;
1572 tf->tf_regs[FRAME_A2] = (uint64_t)&fp->sf_uc;
1573
1574 buildcontext(l,catcher,ps->sa_sigdesc[sig].sd_tramp,fp);
1575
1576 /* Remember that we're now on the signal stack. */
1577 if (onstack)
1578 l->l_sigstk.ss_flags |= SS_ONSTACK;
1579
1580 #ifdef DEBUG
1581 if (sigdebug & SDB_FOLLOW)
1582 printf("sendsig_siginfo(%d): pc %lx, catcher %lx\n", p->p_pid,
1583 tf->tf_regs[FRAME_PC], tf->tf_regs[FRAME_A3]);
1584 if ((sigdebug & SDB_KSTACK) && p->p_pid == sigpid)
1585 printf("sendsig_siginfo(%d): sig %d returns\n",
1586 p->p_pid, sig);
1587 #endif
1588 }
1589
1590 /*
1591 * machine dependent system variables.
1592 */
1593 SYSCTL_SETUP(sysctl_machdep_setup, "sysctl machdep subtree setup")
1594 {
1595
1596 sysctl_createv(clog, 0, NULL, NULL,
1597 CTLFLAG_PERMANENT,
1598 CTLTYPE_NODE, "machdep", NULL,
1599 NULL, 0, NULL, 0,
1600 CTL_MACHDEP, CTL_EOL);
1601
1602 sysctl_createv(clog, 0, NULL, NULL,
1603 CTLFLAG_PERMANENT,
1604 CTLTYPE_STRUCT, "console_device", NULL,
1605 sysctl_consdev, 0, NULL, sizeof(dev_t),
1606 CTL_MACHDEP, CPU_CONSDEV, CTL_EOL);
1607 sysctl_createv(clog, 0, NULL, NULL,
1608 CTLFLAG_PERMANENT,
1609 CTLTYPE_STRING, "root_device", NULL,
1610 sysctl_root_device, 0, NULL, 0,
1611 CTL_MACHDEP, CPU_ROOT_DEVICE, CTL_EOL);
1612 sysctl_createv(clog, 0, NULL, NULL,
1613 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1614 CTLTYPE_INT, "unaligned_print",
1615 SYSCTL_DESCR("Warn about unaligned accesses"),
1616 NULL, 0, &alpha_unaligned_print, 0,
1617 CTL_MACHDEP, CPU_UNALIGNED_PRINT, CTL_EOL);
1618 sysctl_createv(clog, 0, NULL, NULL,
1619 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1620 CTLTYPE_INT, "unaligned_fix",
1621 SYSCTL_DESCR("Fix up unaligned accesses"),
1622 NULL, 0, &alpha_unaligned_fix, 0,
1623 CTL_MACHDEP, CPU_UNALIGNED_FIX, CTL_EOL);
1624 sysctl_createv(clog, 0, NULL, NULL,
1625 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1626 CTLTYPE_INT, "unaligned_sigbus",
1627 SYSCTL_DESCR("Do SIGBUS for fixed unaligned accesses"),
1628 NULL, 0, &alpha_unaligned_sigbus, 0,
1629 CTL_MACHDEP, CPU_UNALIGNED_SIGBUS, CTL_EOL);
1630 sysctl_createv(clog, 0, NULL, NULL,
1631 CTLFLAG_PERMANENT,
1632 CTLTYPE_STRING, "booted_kernel", NULL,
1633 NULL, 0, bootinfo.booted_kernel, 0,
1634 CTL_MACHDEP, CPU_BOOTED_KERNEL, CTL_EOL);
1635 sysctl_createv(clog, 0, NULL, NULL,
1636 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1637 CTLTYPE_INT, "fp_sync_complete", NULL,
1638 NULL, 0, &alpha_fp_sync_complete, 0,
1639 CTL_MACHDEP, CPU_FP_SYNC_COMPLETE, CTL_EOL);
1640 sysctl_createv(clog, 0, NULL, NULL,
1641 CTLFLAG_PERMANENT,
1642 CTLTYPE_INT, "cctr", NULL,
1643 NULL, 0, &alpha_use_cctr, 0,
1644 CTL_MACHDEP, CPU_CCTR, CTL_EOL);
1645 sysctl_createv(clog, 0, NULL, NULL,
1646 CTLFLAG_PERMANENT,
1647 CTLTYPE_BOOL, "is_qemu", NULL,
1648 NULL, 0, &alpha_is_qemu, 0,
1649 CTL_MACHDEP, CPU_IS_QEMU, CTL_EOL);
1650 sysctl_createv(clog, 0, NULL, NULL,
1651 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1652 CTLTYPE_INT, "fp_complete_debug", NULL,
1653 NULL, 0, &alpha_fp_complete_debug, 0,
1654 CTL_MACHDEP, CPU_FP_COMPLETE_DEBUG, CTL_EOL);
1655 sysctl_createv(clog, 0, NULL, NULL,
1656 CTLFLAG_PERMANENT,
1657 CTLTYPE_QUAD, "rpb_type", NULL,
1658 NULL, 0, &hwrpb->rpb_type, 0,
1659 CTL_MACHDEP, CPU_RPB_TYPE, CTL_EOL);
1660 sysctl_createv(clog, 0, NULL, NULL,
1661 CTLFLAG_PERMANENT,
1662 CTLTYPE_QUAD, "rpb_variation", NULL,
1663 NULL, 0, &hwrpb->rpb_variation, 0,
1664 CTL_MACHDEP, CPU_RPB_VARIATION, CTL_EOL);
1665 }
1666
1667 /*
1668 * Set registers on exec.
1669 */
1670 void
setregs(register struct lwp * l,struct exec_package * pack,vaddr_t stack)1671 setregs(register struct lwp *l, struct exec_package *pack, vaddr_t stack)
1672 {
1673 struct trapframe *tfp = l->l_md.md_tf;
1674 struct pcb *pcb;
1675 #ifdef DEBUG
1676 int i;
1677 #endif
1678
1679 #ifdef DEBUG
1680 /*
1681 * Crash and dump, if the user requested it.
1682 */
1683 if (boothowto & RB_DUMP)
1684 panic("crash requested by boot flags");
1685 #endif
1686
1687 #ifdef DEBUG
1688 for (i = 0; i < FRAME_SIZE; i++)
1689 tfp->tf_regs[i] = 0xbabefacedeadbeef;
1690 #else
1691 memset(tfp->tf_regs, 0, FRAME_SIZE * sizeof tfp->tf_regs[0]);
1692 #endif
1693 pcb = lwp_getpcb(l);
1694 memset(&pcb->pcb_fp, 0, sizeof(pcb->pcb_fp));
1695 alpha_pal_wrusp(stack);
1696 tfp->tf_regs[FRAME_PS] = ALPHA_PSL_USERSET;
1697 tfp->tf_regs[FRAME_PC] = pack->ep_entry & ~3;
1698
1699 tfp->tf_regs[FRAME_A0] = stack; /* a0 = sp */
1700 tfp->tf_regs[FRAME_A1] = 0; /* a1 = rtld cleanup */
1701 tfp->tf_regs[FRAME_A2] = 0; /* a2 = rtld object */
1702 tfp->tf_regs[FRAME_A3] = l->l_proc->p_psstrp; /* a3 = ps_strings */
1703 tfp->tf_regs[FRAME_T12] = tfp->tf_regs[FRAME_PC]; /* a.k.a. PV */
1704
1705 if (__predict_true((l->l_md.md_flags & IEEE_INHERIT) == 0)) {
1706 l->l_md.md_flags =
1707 (l->l_md.md_flags & ~(MDLWP_FP_C | MDLWP_FPACTIVE)) |
1708 FP_C_DEFAULT;
1709 pcb->pcb_fp.fpr_cr = FPCR_DEFAULT;
1710 }
1711 }
1712
1713 void (*alpha_delay_fn)(unsigned long);
1714
1715 /*
1716 * Wait "n" microseconds.
1717 */
1718 void
delay(unsigned long n)1719 delay(unsigned long n)
1720 {
1721 unsigned long pcc0, pcc1, curcycle, cycles, usec;
1722
1723 if (n == 0)
1724 return;
1725
1726 /*
1727 * If we have an alternative delay function, go ahead and
1728 * use it.
1729 */
1730 if (alpha_delay_fn != NULL) {
1731 (*alpha_delay_fn)(n);
1732 return;
1733 }
1734
1735 lwp_t * const l = curlwp;
1736 KPREEMPT_DISABLE(l);
1737
1738 pcc0 = alpha_rpcc() & 0xffffffffUL;
1739 cycles = 0;
1740 usec = 0;
1741
1742 while (usec <= n) {
1743 /*
1744 * Get the next CPU cycle count- assumes that we cannot
1745 * have had more than one 32 bit overflow.
1746 */
1747 pcc1 = alpha_rpcc() & 0xffffffffUL;
1748 if (pcc1 < pcc0)
1749 curcycle = (pcc1 + 0x100000000UL) - pcc0;
1750 else
1751 curcycle = pcc1 - pcc0;
1752
1753 /*
1754 * We now have the number of processor cycles since we
1755 * last checked. Add the current cycle count to the
1756 * running total. If it's over cycles_per_usec, increment
1757 * the usec counter.
1758 */
1759 cycles += curcycle;
1760 while (cycles > cycles_per_usec) {
1761 usec++;
1762 cycles -= cycles_per_usec;
1763 }
1764 pcc0 = pcc1;
1765 }
1766
1767 KPREEMPT_ENABLE(l);
1768 }
1769
1770 #ifdef EXEC_ECOFF
1771 void
cpu_exec_ecoff_setregs(struct lwp * l,struct exec_package * epp,vaddr_t stack)1772 cpu_exec_ecoff_setregs(struct lwp *l, struct exec_package *epp, vaddr_t stack)
1773 {
1774 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1775
1776 l->l_md.md_tf->tf_regs[FRAME_GP] = execp->a.gp_value;
1777 }
1778
1779 /*
1780 * cpu_exec_ecoff_hook():
1781 * cpu-dependent ECOFF format hook for execve().
1782 *
1783 * Do any machine-dependent diddling of the exec package when doing ECOFF.
1784 *
1785 */
1786 int
cpu_exec_ecoff_probe(struct lwp * l,struct exec_package * epp)1787 cpu_exec_ecoff_probe(struct lwp *l, struct exec_package *epp)
1788 {
1789 struct ecoff_exechdr *execp = (struct ecoff_exechdr *)epp->ep_hdr;
1790 int error;
1791
1792 if (execp->f.f_magic == ECOFF_MAGIC_NETBSD_ALPHA)
1793 error = 0;
1794 else
1795 error = ENOEXEC;
1796
1797 return (error);
1798 }
1799 #endif /* EXEC_ECOFF */
1800
1801 int
mm_md_physacc(paddr_t pa,vm_prot_t prot)1802 mm_md_physacc(paddr_t pa, vm_prot_t prot)
1803 {
1804 u_quad_t size;
1805 int i;
1806
1807 for (i = 0; i < mem_cluster_cnt; i++) {
1808 if (pa < mem_clusters[i].start)
1809 continue;
1810 size = mem_clusters[i].size & ~PAGE_MASK;
1811 if (pa >= (mem_clusters[i].start + size))
1812 continue;
1813 if ((prot & mem_clusters[i].size & PAGE_MASK) == prot)
1814 return 0;
1815 }
1816 return EFAULT;
1817 }
1818
1819 bool
mm_md_direct_mapped_io(void * addr,paddr_t * paddr)1820 mm_md_direct_mapped_io(void *addr, paddr_t *paddr)
1821 {
1822 vaddr_t va = (vaddr_t)addr;
1823
1824 if (va >= ALPHA_K0SEG_BASE && va <= ALPHA_K0SEG_END) {
1825 *paddr = ALPHA_K0SEG_TO_PHYS(va);
1826 return true;
1827 }
1828 return false;
1829 }
1830
1831 bool
mm_md_direct_mapped_phys(paddr_t paddr,vaddr_t * vaddr)1832 mm_md_direct_mapped_phys(paddr_t paddr, vaddr_t *vaddr)
1833 {
1834
1835 *vaddr = ALPHA_PHYS_TO_K0SEG(paddr);
1836 return true;
1837 }
1838
1839 void
cpu_getmcontext(struct lwp * l,mcontext_t * mcp,unsigned int * flags)1840 cpu_getmcontext(struct lwp *l, mcontext_t *mcp, unsigned int *flags)
1841 {
1842 struct trapframe *frame = l->l_md.md_tf;
1843 struct pcb *pcb = lwp_getpcb(l);
1844 __greg_t *gr = mcp->__gregs;
1845 __greg_t ras_pc;
1846
1847 /* Save register context. */
1848 frametoreg(frame, (struct reg *)gr);
1849 /* XXX if there's a better, general way to get the USP of
1850 * an LWP that might or might not be curlwp, I'd like to know
1851 * about it.
1852 */
1853 if (l == curlwp) {
1854 gr[_REG_SP] = alpha_pal_rdusp();
1855 gr[_REG_UNIQUE] = alpha_pal_rdunique();
1856 } else {
1857 gr[_REG_SP] = pcb->pcb_hw.apcb_usp;
1858 gr[_REG_UNIQUE] = pcb->pcb_hw.apcb_unique;
1859 }
1860 gr[_REG_PC] = frame->tf_regs[FRAME_PC];
1861 gr[_REG_PS] = frame->tf_regs[FRAME_PS];
1862
1863 if ((ras_pc = (__greg_t)ras_lookup(l->l_proc,
1864 (void *) gr[_REG_PC])) != -1)
1865 gr[_REG_PC] = ras_pc;
1866
1867 *flags |= _UC_CPU | _UC_TLSBASE;
1868
1869 /* Save floating point register context, if any, and copy it. */
1870 if (fpu_valid_p(l)) {
1871 fpu_save(l);
1872 (void)memcpy(&mcp->__fpregs, &pcb->pcb_fp,
1873 sizeof (mcp->__fpregs));
1874 mcp->__fpregs.__fp_fpcr = alpha_read_fp_c(l);
1875 *flags |= _UC_FPU;
1876 }
1877 }
1878
1879 int
cpu_mcontext_validate(struct lwp * l,const mcontext_t * mcp)1880 cpu_mcontext_validate(struct lwp *l, const mcontext_t *mcp)
1881 {
1882 const __greg_t *gr = mcp->__gregs;
1883
1884 if ((gr[_REG_PS] & ALPHA_PSL_USERSET) != ALPHA_PSL_USERSET ||
1885 (gr[_REG_PS] & ALPHA_PSL_USERCLR) != 0)
1886 return EINVAL;
1887
1888 return 0;
1889 }
1890
1891 int
cpu_setmcontext(struct lwp * l,const mcontext_t * mcp,unsigned int flags)1892 cpu_setmcontext(struct lwp *l, const mcontext_t *mcp, unsigned int flags)
1893 {
1894 struct trapframe *frame = l->l_md.md_tf;
1895 struct pcb *pcb = lwp_getpcb(l);
1896 const __greg_t *gr = mcp->__gregs;
1897 int error;
1898
1899 /* Restore register context, if any. */
1900 if (flags & _UC_CPU) {
1901 /* Check for security violations first. */
1902 error = cpu_mcontext_validate(l, mcp);
1903 if (error)
1904 return error;
1905
1906 regtoframe((const struct reg *)gr, l->l_md.md_tf);
1907 if (l == curlwp)
1908 alpha_pal_wrusp(gr[_REG_SP]);
1909 else
1910 pcb->pcb_hw.apcb_usp = gr[_REG_SP];
1911 frame->tf_regs[FRAME_PC] = gr[_REG_PC];
1912 frame->tf_regs[FRAME_PS] = gr[_REG_PS];
1913 }
1914
1915 if (flags & _UC_TLSBASE)
1916 lwp_setprivate(l, (void *)(uintptr_t)gr[_REG_UNIQUE]);
1917
1918 /* Restore floating point register context, if any. */
1919 if (flags & _UC_FPU) {
1920 /* If we have an FP register context, get rid of it. */
1921 fpu_discard(l, true);
1922 (void)memcpy(&pcb->pcb_fp, &mcp->__fpregs,
1923 sizeof (pcb->pcb_fp));
1924 l->l_md.md_flags = mcp->__fpregs.__fp_fpcr & MDLWP_FP_C;
1925 }
1926
1927 mutex_enter(l->l_proc->p_lock);
1928 if (flags & _UC_SETSTACK)
1929 l->l_sigstk.ss_flags |= SS_ONSTACK;
1930 if (flags & _UC_CLRSTACK)
1931 l->l_sigstk.ss_flags &= ~SS_ONSTACK;
1932 mutex_exit(l->l_proc->p_lock);
1933
1934 return (0);
1935 }
1936
1937 static void
cpu_kick(struct cpu_info * const ci)1938 cpu_kick(struct cpu_info * const ci)
1939 {
1940 #if defined(MULTIPROCESSOR)
1941 alpha_send_ipi(ci->ci_cpuid, ALPHA_IPI_AST);
1942 #endif /* MULTIPROCESSOR */
1943 }
1944
1945 /*
1946 * Preempt the current process if in interrupt from user mode,
1947 * or after the current trap/syscall if in system mode.
1948 */
1949 void
cpu_need_resched(struct cpu_info * ci,struct lwp * l,int flags)1950 cpu_need_resched(struct cpu_info *ci, struct lwp *l, int flags)
1951 {
1952
1953 KASSERT(kpreempt_disabled());
1954
1955 if ((flags & RESCHED_IDLE) != 0) {
1956 /*
1957 * Nothing to do here; we are not currently using WTINT
1958 * in cpu_idle().
1959 */
1960 return;
1961 }
1962
1963 /* XXX RESCHED_KPREEMPT XXX */
1964
1965 KASSERT((flags & RESCHED_UPREEMPT) != 0);
1966 if ((flags & RESCHED_REMOTE) != 0) {
1967 cpu_kick(ci);
1968 } else {
1969 aston(l);
1970 }
1971 }
1972
1973 /*
1974 * Notify the current lwp (l) that it has a signal pending,
1975 * process as soon as possible.
1976 */
1977 void
cpu_signotify(struct lwp * l)1978 cpu_signotify(struct lwp *l)
1979 {
1980
1981 KASSERT(kpreempt_disabled());
1982
1983 if (l->l_cpu != curcpu()) {
1984 cpu_kick(l->l_cpu);
1985 } else {
1986 aston(l);
1987 }
1988 }
1989
1990 /*
1991 * Give a profiling tick to the current process when the user profiling
1992 * buffer pages are invalid. On the alpha, request an AST to send us
1993 * through trap, marking the proc as needing a profiling tick.
1994 */
1995 void
cpu_need_proftick(struct lwp * l)1996 cpu_need_proftick(struct lwp *l)
1997 {
1998
1999 KASSERT(kpreempt_disabled());
2000 KASSERT(l->l_cpu == curcpu());
2001
2002 l->l_pflag |= LP_OWEUPC;
2003 aston(l);
2004 }
2005