1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2022 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "cfgloop.h"
52 #include "gimple-iterator.h"
53 #include "tree-cfg.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
57 #include "ipa-utils.h"
58 #include "gimple-pretty-print.h"
59 #include "selftest.h"
60 #include "cfgrtl.h"
61 #include "stringpool.h"
62 #include "attribs.h"
63
64 /* Enum with reasons why a predictor is ignored. */
65
66 enum predictor_reason
67 {
68 REASON_NONE,
69 REASON_IGNORED,
70 REASON_SINGLE_EDGE_DUPLICATE,
71 REASON_EDGE_PAIR_DUPLICATE
72 };
73
74 /* String messages for the aforementioned enum. */
75
76 static const char *reason_messages[] = {"", " (ignored)",
77 " (single edge duplicate)", " (edge pair duplicate)"};
78
79
80 static void combine_predictions_for_insn (rtx_insn *, basic_block);
81 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
82 enum predictor_reason, edge);
83 static void predict_paths_leading_to (basic_block, enum br_predictor,
84 enum prediction,
85 class loop *in_loop = NULL);
86 static void predict_paths_leading_to_edge (edge, enum br_predictor,
87 enum prediction,
88 class loop *in_loop = NULL);
89 static bool can_predict_insn_p (const rtx_insn *);
90 static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
91 static void determine_unlikely_bbs ();
92
93 /* Information we hold about each branch predictor.
94 Filled using information from predict.def. */
95
96 struct predictor_info
97 {
98 const char *const name; /* Name used in the debugging dumps. */
99 const int hitrate; /* Expected hitrate used by
100 predict_insn_def call. */
101 const int flags;
102 };
103
104 /* Use given predictor without Dempster-Shaffer theory if it matches
105 using first_match heuristics. */
106 #define PRED_FLAG_FIRST_MATCH 1
107
108 /* Recompute hitrate in percent to our representation. */
109
110 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
111
112 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
113 static const struct predictor_info predictor_info[]= {
114 #include "predict.def"
115
116 /* Upper bound on predictors. */
117 {NULL, 0, 0}
118 };
119 #undef DEF_PREDICTOR
120
121 static gcov_type min_count = -1;
122
123 /* Determine the threshold for hot BB counts. */
124
125 gcov_type
get_hot_bb_threshold()126 get_hot_bb_threshold ()
127 {
128 if (min_count == -1)
129 {
130 const int hot_frac = param_hot_bb_count_fraction;
131 const gcov_type min_hot_count
132 = hot_frac
133 ? profile_info->sum_max / hot_frac
134 : (gcov_type)profile_count::max_count;
135 set_hot_bb_threshold (min_hot_count);
136 if (dump_file)
137 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
138 min_hot_count);
139 }
140 return min_count;
141 }
142
143 /* Set the threshold for hot BB counts. */
144
145 void
set_hot_bb_threshold(gcov_type min)146 set_hot_bb_threshold (gcov_type min)
147 {
148 min_count = min;
149 }
150
151 /* Return TRUE if COUNT is considered to be hot in function FUN. */
152
153 bool
maybe_hot_count_p(struct function * fun,profile_count count)154 maybe_hot_count_p (struct function *fun, profile_count count)
155 {
156 if (!count.initialized_p ())
157 return true;
158 if (count.ipa () == profile_count::zero ())
159 return false;
160 if (!count.ipa_p ())
161 {
162 struct cgraph_node *node = cgraph_node::get (fun->decl);
163 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
164 {
165 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
166 return false;
167 if (node->frequency == NODE_FREQUENCY_HOT)
168 return true;
169 }
170 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
171 return true;
172 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
173 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
174 return false;
175 if (count.apply_scale (param_hot_bb_frequency_fraction, 1)
176 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
177 return false;
178 return true;
179 }
180 /* Code executed at most once is not hot. */
181 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
182 return false;
183 return (count >= get_hot_bb_threshold ());
184 }
185
186 /* Return true if basic block BB of function FUN can be CPU intensive
187 and should thus be optimized for maximum performance. */
188
189 bool
maybe_hot_bb_p(struct function * fun,const_basic_block bb)190 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
191 {
192 gcc_checking_assert (fun);
193 return maybe_hot_count_p (fun, bb->count);
194 }
195
196 /* Return true if edge E can be CPU intensive and should thus be optimized
197 for maximum performance. */
198
199 bool
maybe_hot_edge_p(edge e)200 maybe_hot_edge_p (edge e)
201 {
202 return maybe_hot_count_p (cfun, e->count ());
203 }
204
205 /* Return true if COUNT is considered to be never executed in function FUN
206 or if function FUN is considered so in the static profile. */
207
208 static bool
probably_never_executed(struct function * fun,profile_count count)209 probably_never_executed (struct function *fun, profile_count count)
210 {
211 gcc_checking_assert (fun);
212 if (count.ipa () == profile_count::zero ())
213 return true;
214 /* Do not trust adjusted counts. This will make us to drop int cold section
215 code with low execution count as a result of inlining. These low counts
216 are not safe even with read profile and may lead us to dropping
217 code which actually gets executed into cold section of binary that is not
218 desirable. */
219 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
220 {
221 const int unlikely_frac = param_unlikely_bb_count_fraction;
222 if (count.apply_scale (unlikely_frac, 1) >= profile_info->runs)
223 return false;
224 return true;
225 }
226 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
227 && (cgraph_node::get (fun->decl)->frequency
228 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
229 return true;
230 return false;
231 }
232
233 /* Return true if basic block BB of function FUN is probably never executed. */
234
235 bool
probably_never_executed_bb_p(struct function * fun,const_basic_block bb)236 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
237 {
238 return probably_never_executed (fun, bb->count);
239 }
240
241 /* Return true if edge E is unlikely executed for obvious reasons. */
242
243 static bool
unlikely_executed_edge_p(edge e)244 unlikely_executed_edge_p (edge e)
245 {
246 return (e->src->count == profile_count::zero ()
247 || e->probability == profile_probability::never ())
248 || (e->flags & (EDGE_EH | EDGE_FAKE));
249 }
250
251 /* Return true if edge E of function FUN is probably never executed. */
252
253 bool
probably_never_executed_edge_p(struct function * fun,edge e)254 probably_never_executed_edge_p (struct function *fun, edge e)
255 {
256 if (unlikely_executed_edge_p (e))
257 return true;
258 return probably_never_executed (fun, e->count ());
259 }
260
261 /* Return true if function FUN should always be optimized for size. */
262
263 optimize_size_level
optimize_function_for_size_p(struct function * fun)264 optimize_function_for_size_p (struct function *fun)
265 {
266 if (!fun || !fun->decl)
267 return optimize_size ? OPTIMIZE_SIZE_MAX : OPTIMIZE_SIZE_NO;
268 cgraph_node *n = cgraph_node::get (fun->decl);
269 if (n)
270 return n->optimize_for_size_p ();
271 return OPTIMIZE_SIZE_NO;
272 }
273
274 /* Return true if function FUN should always be optimized for speed. */
275
276 bool
optimize_function_for_speed_p(struct function * fun)277 optimize_function_for_speed_p (struct function *fun)
278 {
279 return !optimize_function_for_size_p (fun);
280 }
281
282 /* Return the optimization type that should be used for function FUN. */
283
284 optimization_type
function_optimization_type(struct function * fun)285 function_optimization_type (struct function *fun)
286 {
287 return (optimize_function_for_speed_p (fun)
288 ? OPTIMIZE_FOR_SPEED
289 : OPTIMIZE_FOR_SIZE);
290 }
291
292 /* Return TRUE if basic block BB should be optimized for size. */
293
294 optimize_size_level
optimize_bb_for_size_p(const_basic_block bb)295 optimize_bb_for_size_p (const_basic_block bb)
296 {
297 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
298
299 if (bb && ret < OPTIMIZE_SIZE_MAX && bb->count == profile_count::zero ())
300 ret = OPTIMIZE_SIZE_MAX;
301 if (bb && ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_bb_p (cfun, bb))
302 ret = OPTIMIZE_SIZE_BALANCED;
303 return ret;
304 }
305
306 /* Return TRUE if basic block BB should be optimized for speed. */
307
308 bool
optimize_bb_for_speed_p(const_basic_block bb)309 optimize_bb_for_speed_p (const_basic_block bb)
310 {
311 return !optimize_bb_for_size_p (bb);
312 }
313
314 /* Return the optimization type that should be used for basic block BB. */
315
316 optimization_type
bb_optimization_type(const_basic_block bb)317 bb_optimization_type (const_basic_block bb)
318 {
319 return (optimize_bb_for_speed_p (bb)
320 ? OPTIMIZE_FOR_SPEED
321 : OPTIMIZE_FOR_SIZE);
322 }
323
324 /* Return TRUE if edge E should be optimized for size. */
325
326 optimize_size_level
optimize_edge_for_size_p(edge e)327 optimize_edge_for_size_p (edge e)
328 {
329 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
330
331 if (ret < OPTIMIZE_SIZE_MAX && unlikely_executed_edge_p (e))
332 ret = OPTIMIZE_SIZE_MAX;
333 if (ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_edge_p (e))
334 ret = OPTIMIZE_SIZE_BALANCED;
335 return ret;
336 }
337
338 /* Return TRUE if edge E should be optimized for speed. */
339
340 bool
optimize_edge_for_speed_p(edge e)341 optimize_edge_for_speed_p (edge e)
342 {
343 return !optimize_edge_for_size_p (e);
344 }
345
346 /* Return TRUE if the current function is optimized for size. */
347
348 optimize_size_level
optimize_insn_for_size_p(void)349 optimize_insn_for_size_p (void)
350 {
351 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
352 if (ret < OPTIMIZE_SIZE_BALANCED && !crtl->maybe_hot_insn_p)
353 ret = OPTIMIZE_SIZE_BALANCED;
354 return ret;
355 }
356
357 /* Return TRUE if the current function is optimized for speed. */
358
359 bool
optimize_insn_for_speed_p(void)360 optimize_insn_for_speed_p (void)
361 {
362 return !optimize_insn_for_size_p ();
363 }
364
365 /* Return TRUE if LOOP should be optimized for size. */
366
367 optimize_size_level
optimize_loop_for_size_p(class loop * loop)368 optimize_loop_for_size_p (class loop *loop)
369 {
370 return optimize_bb_for_size_p (loop->header);
371 }
372
373 /* Return TRUE if LOOP should be optimized for speed. */
374
375 bool
optimize_loop_for_speed_p(class loop * loop)376 optimize_loop_for_speed_p (class loop *loop)
377 {
378 return optimize_bb_for_speed_p (loop->header);
379 }
380
381 /* Return TRUE if nest rooted at LOOP should be optimized for speed. */
382
383 bool
optimize_loop_nest_for_speed_p(class loop * loop)384 optimize_loop_nest_for_speed_p (class loop *loop)
385 {
386 class loop *l = loop;
387 if (optimize_loop_for_speed_p (loop))
388 return true;
389 l = loop->inner;
390 while (l && l != loop)
391 {
392 if (optimize_loop_for_speed_p (l))
393 return true;
394 if (l->inner)
395 l = l->inner;
396 else if (l->next)
397 l = l->next;
398 else
399 {
400 while (l != loop && !l->next)
401 l = loop_outer (l);
402 if (l != loop)
403 l = l->next;
404 }
405 }
406 return false;
407 }
408
409 /* Return TRUE if nest rooted at LOOP should be optimized for size. */
410
411 optimize_size_level
optimize_loop_nest_for_size_p(class loop * loop)412 optimize_loop_nest_for_size_p (class loop *loop)
413 {
414 enum optimize_size_level ret = optimize_loop_for_size_p (loop);
415 class loop *l = loop;
416
417 l = loop->inner;
418 while (l && l != loop)
419 {
420 if (ret == OPTIMIZE_SIZE_NO)
421 break;
422 ret = MIN (optimize_loop_for_size_p (l), ret);
423 if (l->inner)
424 l = l->inner;
425 else if (l->next)
426 l = l->next;
427 else
428 {
429 while (l != loop && !l->next)
430 l = loop_outer (l);
431 if (l != loop)
432 l = l->next;
433 }
434 }
435 return ret;
436 }
437
438 /* Return true if edge E is likely to be well predictable by branch
439 predictor. */
440
441 bool
predictable_edge_p(edge e)442 predictable_edge_p (edge e)
443 {
444 if (!e->probability.initialized_p ())
445 return false;
446 if ((e->probability.to_reg_br_prob_base ()
447 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100)
448 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
449 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100))
450 return true;
451 return false;
452 }
453
454
455 /* Set RTL expansion for BB profile. */
456
457 void
rtl_profile_for_bb(basic_block bb)458 rtl_profile_for_bb (basic_block bb)
459 {
460 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
461 }
462
463 /* Set RTL expansion for edge profile. */
464
465 void
rtl_profile_for_edge(edge e)466 rtl_profile_for_edge (edge e)
467 {
468 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
469 }
470
471 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
472 void
default_rtl_profile(void)473 default_rtl_profile (void)
474 {
475 crtl->maybe_hot_insn_p = true;
476 }
477
478 /* Return true if the one of outgoing edges is already predicted by
479 PREDICTOR. */
480
481 bool
rtl_predicted_by_p(const_basic_block bb,enum br_predictor predictor)482 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
483 {
484 rtx note;
485 if (!INSN_P (BB_END (bb)))
486 return false;
487 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
488 if (REG_NOTE_KIND (note) == REG_BR_PRED
489 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
490 return true;
491 return false;
492 }
493
494 /* Structure representing predictions in tree level. */
495
496 struct edge_prediction {
497 struct edge_prediction *ep_next;
498 edge ep_edge;
499 enum br_predictor ep_predictor;
500 int ep_probability;
501 };
502
503 /* This map contains for a basic block the list of predictions for the
504 outgoing edges. */
505
506 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
507
508 /* Return true if the one of outgoing edges is already predicted by
509 PREDICTOR. */
510
511 bool
gimple_predicted_by_p(const_basic_block bb,enum br_predictor predictor)512 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
513 {
514 struct edge_prediction *i;
515 edge_prediction **preds = bb_predictions->get (bb);
516
517 if (!preds)
518 return false;
519
520 for (i = *preds; i; i = i->ep_next)
521 if (i->ep_predictor == predictor)
522 return true;
523 return false;
524 }
525
526 /* Return true if the one of outgoing edges is already predicted by
527 PREDICTOR for edge E predicted as TAKEN. */
528
529 bool
edge_predicted_by_p(edge e,enum br_predictor predictor,bool taken)530 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
531 {
532 struct edge_prediction *i;
533 basic_block bb = e->src;
534 edge_prediction **preds = bb_predictions->get (bb);
535 if (!preds)
536 return false;
537
538 int probability = predictor_info[(int) predictor].hitrate;
539
540 if (taken != TAKEN)
541 probability = REG_BR_PROB_BASE - probability;
542
543 for (i = *preds; i; i = i->ep_next)
544 if (i->ep_predictor == predictor
545 && i->ep_edge == e
546 && i->ep_probability == probability)
547 return true;
548 return false;
549 }
550
551 /* Same predicate as above, working on edges. */
552 bool
edge_probability_reliable_p(const_edge e)553 edge_probability_reliable_p (const_edge e)
554 {
555 return e->probability.probably_reliable_p ();
556 }
557
558 /* Same predicate as edge_probability_reliable_p, working on notes. */
559 bool
br_prob_note_reliable_p(const_rtx note)560 br_prob_note_reliable_p (const_rtx note)
561 {
562 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
563 return profile_probability::from_reg_br_prob_note
564 (XINT (note, 0)).probably_reliable_p ();
565 }
566
567 static void
predict_insn(rtx_insn * insn,enum br_predictor predictor,int probability)568 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
569 {
570 gcc_assert (any_condjump_p (insn));
571 if (!flag_guess_branch_prob)
572 return;
573
574 add_reg_note (insn, REG_BR_PRED,
575 gen_rtx_CONCAT (VOIDmode,
576 GEN_INT ((int) predictor),
577 GEN_INT ((int) probability)));
578 }
579
580 /* Predict insn by given predictor. */
581
582 void
predict_insn_def(rtx_insn * insn,enum br_predictor predictor,enum prediction taken)583 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
584 enum prediction taken)
585 {
586 int probability = predictor_info[(int) predictor].hitrate;
587 gcc_assert (probability != PROB_UNINITIALIZED);
588
589 if (taken != TAKEN)
590 probability = REG_BR_PROB_BASE - probability;
591
592 predict_insn (insn, predictor, probability);
593 }
594
595 /* Predict edge E with given probability if possible. */
596
597 void
rtl_predict_edge(edge e,enum br_predictor predictor,int probability)598 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
599 {
600 rtx_insn *last_insn;
601 last_insn = BB_END (e->src);
602
603 /* We can store the branch prediction information only about
604 conditional jumps. */
605 if (!any_condjump_p (last_insn))
606 return;
607
608 /* We always store probability of branching. */
609 if (e->flags & EDGE_FALLTHRU)
610 probability = REG_BR_PROB_BASE - probability;
611
612 predict_insn (last_insn, predictor, probability);
613 }
614
615 /* Predict edge E with the given PROBABILITY. */
616 void
gimple_predict_edge(edge e,enum br_predictor predictor,int probability)617 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
618 {
619 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
620 && EDGE_COUNT (e->src->succs) > 1
621 && flag_guess_branch_prob
622 && optimize)
623 {
624 struct edge_prediction *i = XNEW (struct edge_prediction);
625 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
626
627 i->ep_next = preds;
628 preds = i;
629 i->ep_probability = probability;
630 i->ep_predictor = predictor;
631 i->ep_edge = e;
632 }
633 }
634
635 /* Filter edge predictions PREDS by a function FILTER: if FILTER return false
636 the prediction is removed.
637 DATA are passed to the filter function. */
638
639 static void
filter_predictions(edge_prediction ** preds,bool (* filter)(edge_prediction *,void *),void * data)640 filter_predictions (edge_prediction **preds,
641 bool (*filter) (edge_prediction *, void *), void *data)
642 {
643 if (!bb_predictions)
644 return;
645
646 if (preds)
647 {
648 struct edge_prediction **prediction = preds;
649 struct edge_prediction *next;
650
651 while (*prediction)
652 {
653 if ((*filter) (*prediction, data))
654 prediction = &((*prediction)->ep_next);
655 else
656 {
657 next = (*prediction)->ep_next;
658 free (*prediction);
659 *prediction = next;
660 }
661 }
662 }
663 }
664
665 /* Filter function predicate that returns true for a edge predicate P
666 if its edge is equal to DATA. */
667
668 static bool
not_equal_edge_p(edge_prediction * p,void * data)669 not_equal_edge_p (edge_prediction *p, void *data)
670 {
671 return p->ep_edge != (edge)data;
672 }
673
674 /* Remove all predictions on given basic block that are attached
675 to edge E. */
676 void
remove_predictions_associated_with_edge(edge e)677 remove_predictions_associated_with_edge (edge e)
678 {
679 if (!bb_predictions)
680 return;
681
682 edge_prediction **preds = bb_predictions->get (e->src);
683 filter_predictions (preds, not_equal_edge_p, e);
684 }
685
686 /* Clears the list of predictions stored for BB. */
687
688 static void
clear_bb_predictions(basic_block bb)689 clear_bb_predictions (basic_block bb)
690 {
691 edge_prediction **preds = bb_predictions->get (bb);
692 struct edge_prediction *pred, *next;
693
694 if (!preds)
695 return;
696
697 for (pred = *preds; pred; pred = next)
698 {
699 next = pred->ep_next;
700 free (pred);
701 }
702 *preds = NULL;
703 }
704
705 /* Return true when we can store prediction on insn INSN.
706 At the moment we represent predictions only on conditional
707 jumps, not at computed jump or other complicated cases. */
708 static bool
can_predict_insn_p(const rtx_insn * insn)709 can_predict_insn_p (const rtx_insn *insn)
710 {
711 return (JUMP_P (insn)
712 && any_condjump_p (insn)
713 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
714 }
715
716 /* Predict edge E by given predictor if possible. */
717
718 void
predict_edge_def(edge e,enum br_predictor predictor,enum prediction taken)719 predict_edge_def (edge e, enum br_predictor predictor,
720 enum prediction taken)
721 {
722 int probability = predictor_info[(int) predictor].hitrate;
723
724 if (taken != TAKEN)
725 probability = REG_BR_PROB_BASE - probability;
726
727 predict_edge (e, predictor, probability);
728 }
729
730 /* Invert all branch predictions or probability notes in the INSN. This needs
731 to be done each time we invert the condition used by the jump. */
732
733 void
invert_br_probabilities(rtx insn)734 invert_br_probabilities (rtx insn)
735 {
736 rtx note;
737
738 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
739 if (REG_NOTE_KIND (note) == REG_BR_PROB)
740 XINT (note, 0) = profile_probability::from_reg_br_prob_note
741 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
742 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
743 XEXP (XEXP (note, 0), 1)
744 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
745 }
746
747 /* Dump information about the branch prediction to the output file. */
748
749 static void
dump_prediction(FILE * file,enum br_predictor predictor,int probability,basic_block bb,enum predictor_reason reason=REASON_NONE,edge ep_edge=NULL)750 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
751 basic_block bb, enum predictor_reason reason = REASON_NONE,
752 edge ep_edge = NULL)
753 {
754 edge e = ep_edge;
755 edge_iterator ei;
756
757 if (!file)
758 return;
759
760 if (e == NULL)
761 FOR_EACH_EDGE (e, ei, bb->succs)
762 if (! (e->flags & EDGE_FALLTHRU))
763 break;
764
765 char edge_info_str[128];
766 if (ep_edge)
767 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
768 ep_edge->dest->index);
769 else
770 edge_info_str[0] = '\0';
771
772 fprintf (file, " %s heuristics%s%s: %.2f%%",
773 predictor_info[predictor].name,
774 edge_info_str, reason_messages[reason],
775 probability * 100.0 / REG_BR_PROB_BASE);
776
777 if (bb->count.initialized_p ())
778 {
779 fprintf (file, " exec ");
780 bb->count.dump (file);
781 if (e)
782 {
783 fprintf (file, " hit ");
784 e->count ().dump (file);
785 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
786 / bb->count.to_gcov_type ());
787 }
788 }
789
790 fprintf (file, "\n");
791
792 /* Print output that be easily read by analyze_brprob.py script. We are
793 interested only in counts that are read from GCDA files. */
794 if (dump_file && (dump_flags & TDF_DETAILS)
795 && bb->count.precise_p ()
796 && reason == REASON_NONE)
797 {
798 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
799 predictor_info[predictor].name,
800 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
801 probability * 100.0 / REG_BR_PROB_BASE);
802 }
803 }
804
805 /* Return true if STMT is known to be unlikely executed. */
806
807 static bool
unlikely_executed_stmt_p(gimple * stmt)808 unlikely_executed_stmt_p (gimple *stmt)
809 {
810 if (!is_gimple_call (stmt))
811 return false;
812 /* NORETURN attribute alone is not strong enough: exit() may be quite
813 likely executed once during program run. */
814 if (gimple_call_fntype (stmt)
815 && lookup_attribute ("cold",
816 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
817 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
818 return true;
819 tree decl = gimple_call_fndecl (stmt);
820 if (!decl)
821 return false;
822 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
823 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
824 return true;
825
826 cgraph_node *n = cgraph_node::get (decl);
827 if (!n)
828 return false;
829
830 availability avail;
831 n = n->ultimate_alias_target (&avail);
832 if (avail < AVAIL_AVAILABLE)
833 return false;
834 if (!n->analyzed
835 || n->decl == current_function_decl)
836 return false;
837 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
838 }
839
840 /* Return true if BB is unlikely executed. */
841
842 static bool
unlikely_executed_bb_p(basic_block bb)843 unlikely_executed_bb_p (basic_block bb)
844 {
845 if (bb->count == profile_count::zero ())
846 return true;
847 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
848 return false;
849 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
850 !gsi_end_p (gsi); gsi_next (&gsi))
851 {
852 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
853 return true;
854 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
855 return false;
856 }
857 return false;
858 }
859
860 /* We cannot predict the probabilities of outgoing edges of bb. Set them
861 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
862 even probability for all edges not mentioned in the set. These edges
863 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
864 if we have exactly one likely edge, make the other edges predicted
865 as not probable. */
866
867 static void
set_even_probabilities(basic_block bb,hash_set<edge> * unlikely_edges=NULL,hash_set<edge_prediction * > * likely_edges=NULL)868 set_even_probabilities (basic_block bb,
869 hash_set<edge> *unlikely_edges = NULL,
870 hash_set<edge_prediction *> *likely_edges = NULL)
871 {
872 unsigned nedges = 0, unlikely_count = 0;
873 edge e = NULL;
874 edge_iterator ei;
875 profile_probability all = profile_probability::always ();
876
877 FOR_EACH_EDGE (e, ei, bb->succs)
878 if (e->probability.initialized_p ())
879 all -= e->probability;
880 else if (!unlikely_executed_edge_p (e))
881 {
882 nedges++;
883 if (unlikely_edges != NULL && unlikely_edges->contains (e))
884 {
885 all -= profile_probability::very_unlikely ();
886 unlikely_count++;
887 }
888 }
889
890 /* Make the distribution even if all edges are unlikely. */
891 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
892 if (unlikely_count == nedges)
893 {
894 unlikely_edges = NULL;
895 unlikely_count = 0;
896 }
897
898 /* If we have one likely edge, then use its probability and distribute
899 remaining probabilities as even. */
900 if (likely_count == 1)
901 {
902 FOR_EACH_EDGE (e, ei, bb->succs)
903 if (e->probability.initialized_p ())
904 ;
905 else if (!unlikely_executed_edge_p (e))
906 {
907 edge_prediction *prediction = *likely_edges->begin ();
908 int p = prediction->ep_probability;
909 profile_probability prob
910 = profile_probability::from_reg_br_prob_base (p);
911
912 if (prediction->ep_edge == e)
913 e->probability = prob;
914 else if (unlikely_edges != NULL && unlikely_edges->contains (e))
915 e->probability = profile_probability::very_unlikely ();
916 else
917 {
918 profile_probability remainder = prob.invert ();
919 remainder -= profile_probability::very_unlikely ()
920 .apply_scale (unlikely_count, 1);
921 int count = nedges - unlikely_count - 1;
922 gcc_assert (count >= 0);
923
924 e->probability = remainder.apply_scale (1, count);
925 }
926 }
927 else
928 e->probability = profile_probability::never ();
929 }
930 else
931 {
932 /* Make all unlikely edges unlikely and the rest will have even
933 probability. */
934 unsigned scale = nedges - unlikely_count;
935 FOR_EACH_EDGE (e, ei, bb->succs)
936 if (e->probability.initialized_p ())
937 ;
938 else if (!unlikely_executed_edge_p (e))
939 {
940 if (unlikely_edges != NULL && unlikely_edges->contains (e))
941 e->probability = profile_probability::very_unlikely ();
942 else
943 e->probability = all.apply_scale (1, scale);
944 }
945 else
946 e->probability = profile_probability::never ();
947 }
948 }
949
950 /* Add REG_BR_PROB note to JUMP with PROB. */
951
952 void
add_reg_br_prob_note(rtx_insn * jump,profile_probability prob)953 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
954 {
955 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
956 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
957 }
958
959 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
960 note if not already present. Remove now useless REG_BR_PRED notes. */
961
962 static void
combine_predictions_for_insn(rtx_insn * insn,basic_block bb)963 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
964 {
965 rtx prob_note;
966 rtx *pnote;
967 rtx note;
968 int best_probability = PROB_EVEN;
969 enum br_predictor best_predictor = END_PREDICTORS;
970 int combined_probability = REG_BR_PROB_BASE / 2;
971 int d;
972 bool first_match = false;
973 bool found = false;
974
975 if (!can_predict_insn_p (insn))
976 {
977 set_even_probabilities (bb);
978 return;
979 }
980
981 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
982 pnote = ®_NOTES (insn);
983 if (dump_file)
984 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
985 bb->index);
986
987 /* We implement "first match" heuristics and use probability guessed
988 by predictor with smallest index. */
989 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
990 if (REG_NOTE_KIND (note) == REG_BR_PRED)
991 {
992 enum br_predictor predictor = ((enum br_predictor)
993 INTVAL (XEXP (XEXP (note, 0), 0)));
994 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
995
996 found = true;
997 if (best_predictor > predictor
998 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
999 best_probability = probability, best_predictor = predictor;
1000
1001 d = (combined_probability * probability
1002 + (REG_BR_PROB_BASE - combined_probability)
1003 * (REG_BR_PROB_BASE - probability));
1004
1005 /* Use FP math to avoid overflows of 32bit integers. */
1006 if (d == 0)
1007 /* If one probability is 0% and one 100%, avoid division by zero. */
1008 combined_probability = REG_BR_PROB_BASE / 2;
1009 else
1010 combined_probability = (((double) combined_probability) * probability
1011 * REG_BR_PROB_BASE / d + 0.5);
1012 }
1013
1014 /* Decide which heuristic to use. In case we didn't match anything,
1015 use no_prediction heuristic, in case we did match, use either
1016 first match or Dempster-Shaffer theory depending on the flags. */
1017
1018 if (best_predictor != END_PREDICTORS)
1019 first_match = true;
1020
1021 if (!found)
1022 dump_prediction (dump_file, PRED_NO_PREDICTION,
1023 combined_probability, bb);
1024 else
1025 {
1026 if (!first_match)
1027 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
1028 bb, !first_match ? REASON_NONE : REASON_IGNORED);
1029 else
1030 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
1031 bb, first_match ? REASON_NONE : REASON_IGNORED);
1032 }
1033
1034 if (first_match)
1035 combined_probability = best_probability;
1036 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1037
1038 while (*pnote)
1039 {
1040 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1041 {
1042 enum br_predictor predictor = ((enum br_predictor)
1043 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1044 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1045
1046 dump_prediction (dump_file, predictor, probability, bb,
1047 (!first_match || best_predictor == predictor)
1048 ? REASON_NONE : REASON_IGNORED);
1049 *pnote = XEXP (*pnote, 1);
1050 }
1051 else
1052 pnote = &XEXP (*pnote, 1);
1053 }
1054
1055 if (!prob_note)
1056 {
1057 profile_probability p
1058 = profile_probability::from_reg_br_prob_base (combined_probability);
1059 add_reg_br_prob_note (insn, p);
1060
1061 /* Save the prediction into CFG in case we are seeing non-degenerated
1062 conditional jump. */
1063 if (!single_succ_p (bb))
1064 {
1065 BRANCH_EDGE (bb)->probability = p;
1066 FALLTHRU_EDGE (bb)->probability
1067 = BRANCH_EDGE (bb)->probability.invert ();
1068 }
1069 }
1070 else if (!single_succ_p (bb))
1071 {
1072 profile_probability prob = profile_probability::from_reg_br_prob_note
1073 (XINT (prob_note, 0));
1074
1075 BRANCH_EDGE (bb)->probability = prob;
1076 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1077 }
1078 else
1079 single_succ_edge (bb)->probability = profile_probability::always ();
1080 }
1081
1082 /* Edge prediction hash traits. */
1083
1084 struct predictor_hash: pointer_hash <edge_prediction>
1085 {
1086
1087 static inline hashval_t hash (const edge_prediction *);
1088 static inline bool equal (const edge_prediction *, const edge_prediction *);
1089 };
1090
1091 /* Calculate hash value of an edge prediction P based on predictor and
1092 normalized probability. */
1093
1094 inline hashval_t
hash(const edge_prediction * p)1095 predictor_hash::hash (const edge_prediction *p)
1096 {
1097 inchash::hash hstate;
1098 hstate.add_int (p->ep_predictor);
1099
1100 int prob = p->ep_probability;
1101 if (prob > REG_BR_PROB_BASE / 2)
1102 prob = REG_BR_PROB_BASE - prob;
1103
1104 hstate.add_int (prob);
1105
1106 return hstate.end ();
1107 }
1108
1109 /* Return true whether edge predictions P1 and P2 use the same predictor and
1110 have equal (or opposed probability). */
1111
1112 inline bool
equal(const edge_prediction * p1,const edge_prediction * p2)1113 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1114 {
1115 return (p1->ep_predictor == p2->ep_predictor
1116 && (p1->ep_probability == p2->ep_probability
1117 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1118 }
1119
1120 struct predictor_hash_traits: predictor_hash,
1121 typed_noop_remove <edge_prediction *> {};
1122
1123 /* Return true if edge prediction P is not in DATA hash set. */
1124
1125 static bool
not_removed_prediction_p(edge_prediction * p,void * data)1126 not_removed_prediction_p (edge_prediction *p, void *data)
1127 {
1128 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1129 return !remove->contains (p);
1130 }
1131
1132 /* Prune predictions for a basic block BB. Currently we do following
1133 clean-up steps:
1134
1135 1) remove duplicate prediction that is guessed with the same probability
1136 (different than 1/2) to both edge
1137 2) remove duplicates for a prediction that belongs with the same probability
1138 to a single edge
1139
1140 */
1141
1142 static void
prune_predictions_for_bb(basic_block bb)1143 prune_predictions_for_bb (basic_block bb)
1144 {
1145 edge_prediction **preds = bb_predictions->get (bb);
1146
1147 if (preds)
1148 {
1149 hash_table <predictor_hash_traits> s (13);
1150 hash_set <edge_prediction *> remove;
1151
1152 /* Step 1: identify predictors that should be removed. */
1153 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1154 {
1155 edge_prediction *existing = s.find (pred);
1156 if (existing)
1157 {
1158 if (pred->ep_edge == existing->ep_edge
1159 && pred->ep_probability == existing->ep_probability)
1160 {
1161 /* Remove a duplicate predictor. */
1162 dump_prediction (dump_file, pred->ep_predictor,
1163 pred->ep_probability, bb,
1164 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1165
1166 remove.add (pred);
1167 }
1168 else if (pred->ep_edge != existing->ep_edge
1169 && pred->ep_probability == existing->ep_probability
1170 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1171 {
1172 /* Remove both predictors as they predict the same
1173 for both edges. */
1174 dump_prediction (dump_file, existing->ep_predictor,
1175 pred->ep_probability, bb,
1176 REASON_EDGE_PAIR_DUPLICATE,
1177 existing->ep_edge);
1178 dump_prediction (dump_file, pred->ep_predictor,
1179 pred->ep_probability, bb,
1180 REASON_EDGE_PAIR_DUPLICATE,
1181 pred->ep_edge);
1182
1183 remove.add (existing);
1184 remove.add (pred);
1185 }
1186 }
1187
1188 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1189 *slot2 = pred;
1190 }
1191
1192 /* Step 2: Remove predictors. */
1193 filter_predictions (preds, not_removed_prediction_p, &remove);
1194 }
1195 }
1196
1197 /* Combine predictions into single probability and store them into CFG.
1198 Remove now useless prediction entries.
1199 If DRY_RUN is set, only produce dumps and do not modify profile. */
1200
1201 static void
combine_predictions_for_bb(basic_block bb,bool dry_run)1202 combine_predictions_for_bb (basic_block bb, bool dry_run)
1203 {
1204 int best_probability = PROB_EVEN;
1205 enum br_predictor best_predictor = END_PREDICTORS;
1206 int combined_probability = REG_BR_PROB_BASE / 2;
1207 int d;
1208 bool first_match = false;
1209 bool found = false;
1210 struct edge_prediction *pred;
1211 int nedges = 0;
1212 edge e, first = NULL, second = NULL;
1213 edge_iterator ei;
1214 int nzero = 0;
1215 int nunknown = 0;
1216
1217 FOR_EACH_EDGE (e, ei, bb->succs)
1218 {
1219 if (!unlikely_executed_edge_p (e))
1220 {
1221 nedges ++;
1222 if (first && !second)
1223 second = e;
1224 if (!first)
1225 first = e;
1226 }
1227 else if (!e->probability.initialized_p ())
1228 e->probability = profile_probability::never ();
1229 if (!e->probability.initialized_p ())
1230 nunknown++;
1231 else if (e->probability == profile_probability::never ())
1232 nzero++;
1233 }
1234
1235 /* When there is no successor or only one choice, prediction is easy.
1236
1237 When we have a basic block with more than 2 successors, the situation
1238 is more complicated as DS theory cannot be used literally.
1239 More precisely, let's assume we predicted edge e1 with probability p1,
1240 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1241 need to find probability of e.g. m1({b2}), which we don't know.
1242 The only approximation is to equally distribute 1-p1 to all edges
1243 different from b1.
1244
1245 According to numbers we've got from SPEC2006 benchark, there's only
1246 one interesting reliable predictor (noreturn call), which can be
1247 handled with a bit easier approach. */
1248 if (nedges != 2)
1249 {
1250 hash_set<edge> unlikely_edges (4);
1251 hash_set<edge_prediction *> likely_edges (4);
1252
1253 /* Identify all edges that have a probability close to very unlikely.
1254 Doing the approach for very unlikely doesn't worth for doing as
1255 there's no such probability in SPEC2006 benchmark. */
1256 edge_prediction **preds = bb_predictions->get (bb);
1257 if (preds)
1258 for (pred = *preds; pred; pred = pred->ep_next)
1259 {
1260 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1261 || pred->ep_predictor == PRED_COLD_LABEL)
1262 unlikely_edges.add (pred->ep_edge);
1263 else if (pred->ep_probability >= PROB_VERY_LIKELY
1264 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1265 || pred->ep_predictor == PRED_HOT_LABEL)
1266 likely_edges.add (pred);
1267 }
1268
1269 /* It can happen that an edge is both in likely_edges and unlikely_edges.
1270 Clear both sets in that situation. */
1271 for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
1272 it != likely_edges.end (); ++it)
1273 if (unlikely_edges.contains ((*it)->ep_edge))
1274 {
1275 likely_edges.empty ();
1276 unlikely_edges.empty ();
1277 break;
1278 }
1279
1280 if (!dry_run)
1281 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
1282 clear_bb_predictions (bb);
1283 if (dump_file)
1284 {
1285 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1286 if (unlikely_edges.is_empty ())
1287 fprintf (dump_file,
1288 "%i edges in bb %i predicted to even probabilities\n",
1289 nedges, bb->index);
1290 else
1291 {
1292 fprintf (dump_file,
1293 "%i edges in bb %i predicted with some unlikely edges\n",
1294 nedges, bb->index);
1295 FOR_EACH_EDGE (e, ei, bb->succs)
1296 if (!unlikely_executed_edge_p (e))
1297 dump_prediction (dump_file, PRED_COMBINED,
1298 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1299 }
1300 }
1301 return;
1302 }
1303
1304 if (dump_file)
1305 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1306
1307 prune_predictions_for_bb (bb);
1308
1309 edge_prediction **preds = bb_predictions->get (bb);
1310
1311 if (preds)
1312 {
1313 /* We implement "first match" heuristics and use probability guessed
1314 by predictor with smallest index. */
1315 for (pred = *preds; pred; pred = pred->ep_next)
1316 {
1317 enum br_predictor predictor = pred->ep_predictor;
1318 int probability = pred->ep_probability;
1319
1320 if (pred->ep_edge != first)
1321 probability = REG_BR_PROB_BASE - probability;
1322
1323 found = true;
1324 /* First match heuristics would be widly confused if we predicted
1325 both directions. */
1326 if (best_predictor > predictor
1327 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1328 {
1329 struct edge_prediction *pred2;
1330 int prob = probability;
1331
1332 for (pred2 = (struct edge_prediction *) *preds;
1333 pred2; pred2 = pred2->ep_next)
1334 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1335 {
1336 int probability2 = pred2->ep_probability;
1337
1338 if (pred2->ep_edge != first)
1339 probability2 = REG_BR_PROB_BASE - probability2;
1340
1341 if ((probability < REG_BR_PROB_BASE / 2) !=
1342 (probability2 < REG_BR_PROB_BASE / 2))
1343 break;
1344
1345 /* If the same predictor later gave better result, go for it! */
1346 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1347 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1348 prob = probability2;
1349 }
1350 if (!pred2)
1351 best_probability = prob, best_predictor = predictor;
1352 }
1353
1354 d = (combined_probability * probability
1355 + (REG_BR_PROB_BASE - combined_probability)
1356 * (REG_BR_PROB_BASE - probability));
1357
1358 /* Use FP math to avoid overflows of 32bit integers. */
1359 if (d == 0)
1360 /* If one probability is 0% and one 100%, avoid division by zero. */
1361 combined_probability = REG_BR_PROB_BASE / 2;
1362 else
1363 combined_probability = (((double) combined_probability)
1364 * probability
1365 * REG_BR_PROB_BASE / d + 0.5);
1366 }
1367 }
1368
1369 /* Decide which heuristic to use. In case we didn't match anything,
1370 use no_prediction heuristic, in case we did match, use either
1371 first match or Dempster-Shaffer theory depending on the flags. */
1372
1373 if (best_predictor != END_PREDICTORS)
1374 first_match = true;
1375
1376 if (!found)
1377 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1378 else
1379 {
1380 if (!first_match)
1381 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1382 !first_match ? REASON_NONE : REASON_IGNORED);
1383 else
1384 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1385 first_match ? REASON_NONE : REASON_IGNORED);
1386 }
1387
1388 if (first_match)
1389 combined_probability = best_probability;
1390 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1391
1392 if (preds)
1393 {
1394 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1395 {
1396 enum br_predictor predictor = pred->ep_predictor;
1397 int probability = pred->ep_probability;
1398
1399 dump_prediction (dump_file, predictor, probability, bb,
1400 (!first_match || best_predictor == predictor)
1401 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1402 }
1403 }
1404 clear_bb_predictions (bb);
1405
1406
1407 /* If we have only one successor which is unknown, we can compute missing
1408 probability. */
1409 if (nunknown == 1)
1410 {
1411 profile_probability prob = profile_probability::always ();
1412 edge missing = NULL;
1413
1414 FOR_EACH_EDGE (e, ei, bb->succs)
1415 if (e->probability.initialized_p ())
1416 prob -= e->probability;
1417 else if (missing == NULL)
1418 missing = e;
1419 else
1420 gcc_unreachable ();
1421 missing->probability = prob;
1422 }
1423 /* If nothing is unknown, we have nothing to update. */
1424 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1425 ;
1426 else if (!dry_run)
1427 {
1428 first->probability
1429 = profile_probability::from_reg_br_prob_base (combined_probability);
1430 second->probability = first->probability.invert ();
1431 }
1432 }
1433
1434 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1435 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1436
1437 T1 and T2 should be one of the following cases:
1438 1. T1 is SSA_NAME, T2 is NULL
1439 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1440 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1441
1442 static tree
strips_small_constant(tree t1,tree t2)1443 strips_small_constant (tree t1, tree t2)
1444 {
1445 tree ret = NULL;
1446 int value = 0;
1447
1448 if (!t1)
1449 return NULL;
1450 else if (TREE_CODE (t1) == SSA_NAME)
1451 ret = t1;
1452 else if (tree_fits_shwi_p (t1))
1453 value = tree_to_shwi (t1);
1454 else
1455 return NULL;
1456
1457 if (!t2)
1458 return ret;
1459 else if (tree_fits_shwi_p (t2))
1460 value = tree_to_shwi (t2);
1461 else if (TREE_CODE (t2) == SSA_NAME)
1462 {
1463 if (ret)
1464 return NULL;
1465 else
1466 ret = t2;
1467 }
1468
1469 if (value <= 4 && value >= -4)
1470 return ret;
1471 else
1472 return NULL;
1473 }
1474
1475 /* Return the SSA_NAME in T or T's operands.
1476 Return NULL if SSA_NAME cannot be found. */
1477
1478 static tree
get_base_value(tree t)1479 get_base_value (tree t)
1480 {
1481 if (TREE_CODE (t) == SSA_NAME)
1482 return t;
1483
1484 if (!BINARY_CLASS_P (t))
1485 return NULL;
1486
1487 switch (TREE_OPERAND_LENGTH (t))
1488 {
1489 case 1:
1490 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1491 case 2:
1492 return strips_small_constant (TREE_OPERAND (t, 0),
1493 TREE_OPERAND (t, 1));
1494 default:
1495 return NULL;
1496 }
1497 }
1498
1499 /* Check the compare STMT in LOOP. If it compares an induction
1500 variable to a loop invariant, return true, and save
1501 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1502 Otherwise return false and set LOOP_INVAIANT to NULL. */
1503
1504 static bool
is_comparison_with_loop_invariant_p(gcond * stmt,class loop * loop,tree * loop_invariant,enum tree_code * compare_code,tree * loop_step,tree * loop_iv_base)1505 is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
1506 tree *loop_invariant,
1507 enum tree_code *compare_code,
1508 tree *loop_step,
1509 tree *loop_iv_base)
1510 {
1511 tree op0, op1, bound, base;
1512 affine_iv iv0, iv1;
1513 enum tree_code code;
1514 tree step;
1515
1516 code = gimple_cond_code (stmt);
1517 *loop_invariant = NULL;
1518
1519 switch (code)
1520 {
1521 case GT_EXPR:
1522 case GE_EXPR:
1523 case NE_EXPR:
1524 case LT_EXPR:
1525 case LE_EXPR:
1526 case EQ_EXPR:
1527 break;
1528
1529 default:
1530 return false;
1531 }
1532
1533 op0 = gimple_cond_lhs (stmt);
1534 op1 = gimple_cond_rhs (stmt);
1535
1536 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1537 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1538 return false;
1539 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1540 return false;
1541 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1542 return false;
1543 if (TREE_CODE (iv0.step) != INTEGER_CST
1544 || TREE_CODE (iv1.step) != INTEGER_CST)
1545 return false;
1546 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1547 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1548 return false;
1549
1550 if (integer_zerop (iv0.step))
1551 {
1552 if (code != NE_EXPR && code != EQ_EXPR)
1553 code = invert_tree_comparison (code, false);
1554 bound = iv0.base;
1555 base = iv1.base;
1556 if (tree_fits_shwi_p (iv1.step))
1557 step = iv1.step;
1558 else
1559 return false;
1560 }
1561 else
1562 {
1563 bound = iv1.base;
1564 base = iv0.base;
1565 if (tree_fits_shwi_p (iv0.step))
1566 step = iv0.step;
1567 else
1568 return false;
1569 }
1570
1571 if (TREE_CODE (bound) != INTEGER_CST)
1572 bound = get_base_value (bound);
1573 if (!bound)
1574 return false;
1575 if (TREE_CODE (base) != INTEGER_CST)
1576 base = get_base_value (base);
1577 if (!base)
1578 return false;
1579
1580 *loop_invariant = bound;
1581 *compare_code = code;
1582 *loop_step = step;
1583 *loop_iv_base = base;
1584 return true;
1585 }
1586
1587 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1588
1589 static bool
expr_coherent_p(tree t1,tree t2)1590 expr_coherent_p (tree t1, tree t2)
1591 {
1592 gimple *stmt;
1593 tree ssa_name_1 = NULL;
1594 tree ssa_name_2 = NULL;
1595
1596 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1597 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1598
1599 if (t1 == t2)
1600 return true;
1601
1602 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1603 return true;
1604 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1605 return false;
1606
1607 /* Check to see if t1 is expressed/defined with t2. */
1608 stmt = SSA_NAME_DEF_STMT (t1);
1609 gcc_assert (stmt != NULL);
1610 if (is_gimple_assign (stmt))
1611 {
1612 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1613 if (ssa_name_1 && ssa_name_1 == t2)
1614 return true;
1615 }
1616
1617 /* Check to see if t2 is expressed/defined with t1. */
1618 stmt = SSA_NAME_DEF_STMT (t2);
1619 gcc_assert (stmt != NULL);
1620 if (is_gimple_assign (stmt))
1621 {
1622 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1623 if (ssa_name_2 && ssa_name_2 == t1)
1624 return true;
1625 }
1626
1627 /* Compare if t1 and t2's def_stmts are identical. */
1628 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1629 return true;
1630 else
1631 return false;
1632 }
1633
1634 /* Return true if E is predicted by one of loop heuristics. */
1635
1636 static bool
predicted_by_loop_heuristics_p(basic_block bb)1637 predicted_by_loop_heuristics_p (basic_block bb)
1638 {
1639 struct edge_prediction *i;
1640 edge_prediction **preds = bb_predictions->get (bb);
1641
1642 if (!preds)
1643 return false;
1644
1645 for (i = *preds; i; i = i->ep_next)
1646 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1647 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1648 || i->ep_predictor == PRED_LOOP_ITERATIONS
1649 || i->ep_predictor == PRED_LOOP_EXIT
1650 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1651 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1652 return true;
1653 return false;
1654 }
1655
1656 /* Predict branch probability of BB when BB contains a branch that compares
1657 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1658 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1659
1660 E.g.
1661 for (int i = 0; i < bound; i++) {
1662 if (i < bound - 2)
1663 computation_1();
1664 else
1665 computation_2();
1666 }
1667
1668 In this loop, we will predict the branch inside the loop to be taken. */
1669
1670 static void
predict_iv_comparison(class loop * loop,basic_block bb,tree loop_bound_var,tree loop_iv_base_var,enum tree_code loop_bound_code,int loop_bound_step)1671 predict_iv_comparison (class loop *loop, basic_block bb,
1672 tree loop_bound_var,
1673 tree loop_iv_base_var,
1674 enum tree_code loop_bound_code,
1675 int loop_bound_step)
1676 {
1677 gimple *stmt;
1678 tree compare_var, compare_base;
1679 enum tree_code compare_code;
1680 tree compare_step_var;
1681 edge then_edge;
1682 edge_iterator ei;
1683
1684 if (predicted_by_loop_heuristics_p (bb))
1685 return;
1686
1687 stmt = last_stmt (bb);
1688 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1689 return;
1690 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1691 loop, &compare_var,
1692 &compare_code,
1693 &compare_step_var,
1694 &compare_base))
1695 return;
1696
1697 /* Find the taken edge. */
1698 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1699 if (then_edge->flags & EDGE_TRUE_VALUE)
1700 break;
1701
1702 /* When comparing an IV to a loop invariant, NE is more likely to be
1703 taken while EQ is more likely to be not-taken. */
1704 if (compare_code == NE_EXPR)
1705 {
1706 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1707 return;
1708 }
1709 else if (compare_code == EQ_EXPR)
1710 {
1711 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1712 return;
1713 }
1714
1715 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1716 return;
1717
1718 /* If loop bound, base and compare bound are all constants, we can
1719 calculate the probability directly. */
1720 if (tree_fits_shwi_p (loop_bound_var)
1721 && tree_fits_shwi_p (compare_var)
1722 && tree_fits_shwi_p (compare_base))
1723 {
1724 int probability;
1725 wi::overflow_type overflow;
1726 bool overall_overflow = false;
1727 widest_int compare_count, tem;
1728
1729 /* (loop_bound - base) / compare_step */
1730 tem = wi::sub (wi::to_widest (loop_bound_var),
1731 wi::to_widest (compare_base), SIGNED, &overflow);
1732 overall_overflow |= overflow;
1733 widest_int loop_count = wi::div_trunc (tem,
1734 wi::to_widest (compare_step_var),
1735 SIGNED, &overflow);
1736 overall_overflow |= overflow;
1737
1738 if (!wi::neg_p (wi::to_widest (compare_step_var))
1739 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1740 {
1741 /* (loop_bound - compare_bound) / compare_step */
1742 tem = wi::sub (wi::to_widest (loop_bound_var),
1743 wi::to_widest (compare_var), SIGNED, &overflow);
1744 overall_overflow |= overflow;
1745 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1746 SIGNED, &overflow);
1747 overall_overflow |= overflow;
1748 }
1749 else
1750 {
1751 /* (compare_bound - base) / compare_step */
1752 tem = wi::sub (wi::to_widest (compare_var),
1753 wi::to_widest (compare_base), SIGNED, &overflow);
1754 overall_overflow |= overflow;
1755 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1756 SIGNED, &overflow);
1757 overall_overflow |= overflow;
1758 }
1759 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1760 ++compare_count;
1761 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1762 ++loop_count;
1763 if (wi::neg_p (compare_count))
1764 compare_count = 0;
1765 if (wi::neg_p (loop_count))
1766 loop_count = 0;
1767 if (loop_count == 0)
1768 probability = 0;
1769 else if (wi::cmps (compare_count, loop_count) == 1)
1770 probability = REG_BR_PROB_BASE;
1771 else
1772 {
1773 tem = compare_count * REG_BR_PROB_BASE;
1774 tem = wi::udiv_trunc (tem, loop_count);
1775 probability = tem.to_uhwi ();
1776 }
1777
1778 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1779 if (!overall_overflow)
1780 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1781
1782 return;
1783 }
1784
1785 if (expr_coherent_p (loop_bound_var, compare_var))
1786 {
1787 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1788 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1789 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1790 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1791 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1792 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1793 else if (loop_bound_code == NE_EXPR)
1794 {
1795 /* If the loop backedge condition is "(i != bound)", we do
1796 the comparison based on the step of IV:
1797 * step < 0 : backedge condition is like (i > bound)
1798 * step > 0 : backedge condition is like (i < bound) */
1799 gcc_assert (loop_bound_step != 0);
1800 if (loop_bound_step > 0
1801 && (compare_code == LT_EXPR
1802 || compare_code == LE_EXPR))
1803 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1804 else if (loop_bound_step < 0
1805 && (compare_code == GT_EXPR
1806 || compare_code == GE_EXPR))
1807 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1808 else
1809 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1810 }
1811 else
1812 /* The branch is predicted not-taken if loop_bound_code is
1813 opposite with compare_code. */
1814 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1815 }
1816 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1817 {
1818 /* For cases like:
1819 for (i = s; i < h; i++)
1820 if (i > s + 2) ....
1821 The branch should be predicted taken. */
1822 if (loop_bound_step > 0
1823 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1824 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1825 else if (loop_bound_step < 0
1826 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1827 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1828 else
1829 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1830 }
1831 }
1832
1833 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1834 exits are resulted from short-circuit conditions that will generate an
1835 if_tmp. E.g.:
1836
1837 if (foo() || global > 10)
1838 break;
1839
1840 This will be translated into:
1841
1842 BB3:
1843 loop header...
1844 BB4:
1845 if foo() goto BB6 else goto BB5
1846 BB5:
1847 if global > 10 goto BB6 else goto BB7
1848 BB6:
1849 goto BB7
1850 BB7:
1851 iftmp = (PHI 0(BB5), 1(BB6))
1852 if iftmp == 1 goto BB8 else goto BB3
1853 BB8:
1854 outside of the loop...
1855
1856 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1857 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1858 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1859 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1860
1861 static void
predict_extra_loop_exits(class loop * loop,edge exit_edge)1862 predict_extra_loop_exits (class loop *loop, edge exit_edge)
1863 {
1864 unsigned i;
1865 bool check_value_one;
1866 gimple *lhs_def_stmt;
1867 gphi *phi_stmt;
1868 tree cmp_rhs, cmp_lhs;
1869 gimple *last;
1870 gcond *cmp_stmt;
1871
1872 last = last_stmt (exit_edge->src);
1873 if (!last)
1874 return;
1875 cmp_stmt = dyn_cast <gcond *> (last);
1876 if (!cmp_stmt)
1877 return;
1878
1879 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1880 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1881 if (!TREE_CONSTANT (cmp_rhs)
1882 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1883 return;
1884 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1885 return;
1886
1887 /* If check_value_one is true, only the phi_args with value '1' will lead
1888 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1889 loop exit. */
1890 check_value_one = (((integer_onep (cmp_rhs))
1891 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1892 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1893
1894 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1895 if (!lhs_def_stmt)
1896 return;
1897
1898 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1899 if (!phi_stmt)
1900 return;
1901
1902 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1903 {
1904 edge e1;
1905 edge_iterator ei;
1906 tree val = gimple_phi_arg_def (phi_stmt, i);
1907 edge e = gimple_phi_arg_edge (phi_stmt, i);
1908
1909 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1910 continue;
1911 if ((check_value_one ^ integer_onep (val)) == 1)
1912 continue;
1913 if (EDGE_COUNT (e->src->succs) != 1)
1914 {
1915 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1916 loop);
1917 continue;
1918 }
1919
1920 FOR_EACH_EDGE (e1, ei, e->src->preds)
1921 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1922 loop);
1923 }
1924 }
1925
1926
1927 /* Predict edge probabilities by exploiting loop structure. */
1928
1929 static void
predict_loops(void)1930 predict_loops (void)
1931 {
1932 basic_block bb;
1933 hash_set <class loop *> with_recursion(10);
1934
1935 FOR_EACH_BB_FN (bb, cfun)
1936 {
1937 gimple_stmt_iterator gsi;
1938 tree decl;
1939
1940 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1941 if (is_gimple_call (gsi_stmt (gsi))
1942 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1943 && recursive_call_p (current_function_decl, decl))
1944 {
1945 class loop *loop = bb->loop_father;
1946 while (loop && !with_recursion.add (loop))
1947 loop = loop_outer (loop);
1948 }
1949 }
1950
1951 /* Try to predict out blocks in a loop that are not part of a
1952 natural loop. */
1953 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1954 {
1955 basic_block bb, *bbs;
1956 unsigned j, n_exits = 0;
1957 class tree_niter_desc niter_desc;
1958 edge ex;
1959 class nb_iter_bound *nb_iter;
1960 enum tree_code loop_bound_code = ERROR_MARK;
1961 tree loop_bound_step = NULL;
1962 tree loop_bound_var = NULL;
1963 tree loop_iv_base = NULL;
1964 gcond *stmt = NULL;
1965 bool recursion = with_recursion.contains (loop);
1966
1967 auto_vec<edge> exits = get_loop_exit_edges (loop);
1968 FOR_EACH_VEC_ELT (exits, j, ex)
1969 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1970 n_exits ++;
1971 if (!n_exits)
1972 continue;
1973
1974 if (dump_file && (dump_flags & TDF_DETAILS))
1975 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1976 loop->num, recursion ? " (with recursion)":"", n_exits);
1977 if (dump_file && (dump_flags & TDF_DETAILS)
1978 && max_loop_iterations_int (loop) >= 0)
1979 {
1980 fprintf (dump_file,
1981 "Loop %d iterates at most %i times.\n", loop->num,
1982 (int)max_loop_iterations_int (loop));
1983 }
1984 if (dump_file && (dump_flags & TDF_DETAILS)
1985 && likely_max_loop_iterations_int (loop) >= 0)
1986 {
1987 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1988 loop->num, (int)likely_max_loop_iterations_int (loop));
1989 }
1990
1991 FOR_EACH_VEC_ELT (exits, j, ex)
1992 {
1993 tree niter = NULL;
1994 HOST_WIDE_INT nitercst;
1995 int max = param_max_predicted_iterations;
1996 int probability;
1997 enum br_predictor predictor;
1998 widest_int nit;
1999
2000 if (unlikely_executed_edge_p (ex)
2001 || (ex->flags & EDGE_ABNORMAL_CALL))
2002 continue;
2003 /* Loop heuristics do not expect exit conditional to be inside
2004 inner loop. We predict from innermost to outermost loop. */
2005 if (predicted_by_loop_heuristics_p (ex->src))
2006 {
2007 if (dump_file && (dump_flags & TDF_DETAILS))
2008 fprintf (dump_file, "Skipping exit %i->%i because "
2009 "it is already predicted.\n",
2010 ex->src->index, ex->dest->index);
2011 continue;
2012 }
2013 predict_extra_loop_exits (loop, ex);
2014
2015 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
2016 niter = niter_desc.niter;
2017 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
2018 niter = loop_niter_by_eval (loop, ex);
2019 if (dump_file && (dump_flags & TDF_DETAILS)
2020 && TREE_CODE (niter) == INTEGER_CST)
2021 {
2022 fprintf (dump_file, "Exit %i->%i %d iterates ",
2023 ex->src->index, ex->dest->index,
2024 loop->num);
2025 print_generic_expr (dump_file, niter, TDF_SLIM);
2026 fprintf (dump_file, " times.\n");
2027 }
2028
2029 if (TREE_CODE (niter) == INTEGER_CST)
2030 {
2031 if (tree_fits_uhwi_p (niter)
2032 && max
2033 && compare_tree_int (niter, max - 1) == -1)
2034 nitercst = tree_to_uhwi (niter) + 1;
2035 else
2036 nitercst = max;
2037 predictor = PRED_LOOP_ITERATIONS;
2038 }
2039 /* If we have just one exit and we can derive some information about
2040 the number of iterations of the loop from the statements inside
2041 the loop, use it to predict this exit. */
2042 else if (n_exits == 1
2043 && estimated_stmt_executions (loop, &nit))
2044 {
2045 if (wi::gtu_p (nit, max))
2046 nitercst = max;
2047 else
2048 nitercst = nit.to_shwi ();
2049 predictor = PRED_LOOP_ITERATIONS_GUESSED;
2050 }
2051 /* If we have likely upper bound, trust it for very small iteration
2052 counts. Such loops would otherwise get mispredicted by standard
2053 LOOP_EXIT heuristics. */
2054 else if (n_exits == 1
2055 && likely_max_stmt_executions (loop, &nit)
2056 && wi::ltu_p (nit,
2057 RDIV (REG_BR_PROB_BASE,
2058 REG_BR_PROB_BASE
2059 - predictor_info
2060 [recursion
2061 ? PRED_LOOP_EXIT_WITH_RECURSION
2062 : PRED_LOOP_EXIT].hitrate)))
2063 {
2064 nitercst = nit.to_shwi ();
2065 predictor = PRED_LOOP_ITERATIONS_MAX;
2066 }
2067 else
2068 {
2069 if (dump_file && (dump_flags & TDF_DETAILS))
2070 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2071 ex->src->index, ex->dest->index);
2072 continue;
2073 }
2074
2075 if (dump_file && (dump_flags & TDF_DETAILS))
2076 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2077 (int)nitercst, predictor_info[predictor].name);
2078 /* If the prediction for number of iterations is zero, do not
2079 predict the exit edges. */
2080 if (nitercst == 0)
2081 continue;
2082
2083 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2084 predict_edge (ex, predictor, probability);
2085 }
2086
2087 /* Find information about loop bound variables. */
2088 for (nb_iter = loop->bounds; nb_iter;
2089 nb_iter = nb_iter->next)
2090 if (nb_iter->stmt
2091 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2092 {
2093 stmt = as_a <gcond *> (nb_iter->stmt);
2094 break;
2095 }
2096 if (!stmt && last_stmt (loop->header)
2097 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
2098 stmt = as_a <gcond *> (last_stmt (loop->header));
2099 if (stmt)
2100 is_comparison_with_loop_invariant_p (stmt, loop,
2101 &loop_bound_var,
2102 &loop_bound_code,
2103 &loop_bound_step,
2104 &loop_iv_base);
2105
2106 bbs = get_loop_body (loop);
2107
2108 for (j = 0; j < loop->num_nodes; j++)
2109 {
2110 edge e;
2111 edge_iterator ei;
2112
2113 bb = bbs[j];
2114
2115 /* Bypass loop heuristics on continue statement. These
2116 statements construct loops via "non-loop" constructs
2117 in the source language and are better to be handled
2118 separately. */
2119 if (predicted_by_p (bb, PRED_CONTINUE))
2120 {
2121 if (dump_file && (dump_flags & TDF_DETAILS))
2122 fprintf (dump_file, "BB %i predicted by continue.\n",
2123 bb->index);
2124 continue;
2125 }
2126
2127 /* If we already used more reliable loop exit predictors, do not
2128 bother with PRED_LOOP_EXIT. */
2129 if (!predicted_by_loop_heuristics_p (bb))
2130 {
2131 /* For loop with many exits we don't want to predict all exits
2132 with the pretty large probability, because if all exits are
2133 considered in row, the loop would be predicted to iterate
2134 almost never. The code to divide probability by number of
2135 exits is very rough. It should compute the number of exits
2136 taken in each patch through function (not the overall number
2137 of exits that might be a lot higher for loops with wide switch
2138 statements in them) and compute n-th square root.
2139
2140 We limit the minimal probability by 2% to avoid
2141 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2142 as this was causing regression in perl benchmark containing such
2143 a wide loop. */
2144
2145 int probability = ((REG_BR_PROB_BASE
2146 - predictor_info
2147 [recursion
2148 ? PRED_LOOP_EXIT_WITH_RECURSION
2149 : PRED_LOOP_EXIT].hitrate)
2150 / n_exits);
2151 if (probability < HITRATE (2))
2152 probability = HITRATE (2);
2153 FOR_EACH_EDGE (e, ei, bb->succs)
2154 if (e->dest->index < NUM_FIXED_BLOCKS
2155 || !flow_bb_inside_loop_p (loop, e->dest))
2156 {
2157 if (dump_file && (dump_flags & TDF_DETAILS))
2158 fprintf (dump_file,
2159 "Predicting exit %i->%i with prob %i.\n",
2160 e->src->index, e->dest->index, probability);
2161 predict_edge (e,
2162 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2163 : PRED_LOOP_EXIT, probability);
2164 }
2165 }
2166 if (loop_bound_var)
2167 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2168 loop_bound_code,
2169 tree_to_shwi (loop_bound_step));
2170 }
2171
2172 /* In the following code
2173 for (loop1)
2174 if (cond)
2175 for (loop2)
2176 body;
2177 guess that cond is unlikely. */
2178 if (loop_outer (loop)->num)
2179 {
2180 basic_block bb = NULL;
2181 edge preheader_edge = loop_preheader_edge (loop);
2182
2183 if (single_pred_p (preheader_edge->src)
2184 && single_succ_p (preheader_edge->src))
2185 preheader_edge = single_pred_edge (preheader_edge->src);
2186
2187 gimple *stmt = last_stmt (preheader_edge->src);
2188 /* Pattern match fortran loop preheader:
2189 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2190 _17 = (logical(kind=4)) _16;
2191 if (_17 != 0)
2192 goto <bb 11>;
2193 else
2194 goto <bb 13>;
2195
2196 Loop guard branch prediction says nothing about duplicated loop
2197 headers produced by fortran frontend and in this case we want
2198 to predict paths leading to this preheader. */
2199
2200 if (stmt
2201 && gimple_code (stmt) == GIMPLE_COND
2202 && gimple_cond_code (stmt) == NE_EXPR
2203 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2204 && integer_zerop (gimple_cond_rhs (stmt)))
2205 {
2206 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2207 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2208 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (call_stmt))
2209 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2210 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2211 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2212 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2213 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2214 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2215 == PRED_FORTRAN_LOOP_PREHEADER)
2216 bb = preheader_edge->src;
2217 }
2218 if (!bb)
2219 {
2220 if (!dominated_by_p (CDI_DOMINATORS,
2221 loop_outer (loop)->latch, loop->header))
2222 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2223 recursion
2224 ? PRED_LOOP_GUARD_WITH_RECURSION
2225 : PRED_LOOP_GUARD,
2226 NOT_TAKEN,
2227 loop_outer (loop));
2228 }
2229 else
2230 {
2231 if (!dominated_by_p (CDI_DOMINATORS,
2232 loop_outer (loop)->latch, bb))
2233 predict_paths_leading_to (bb,
2234 recursion
2235 ? PRED_LOOP_GUARD_WITH_RECURSION
2236 : PRED_LOOP_GUARD,
2237 NOT_TAKEN,
2238 loop_outer (loop));
2239 }
2240 }
2241
2242 /* Free basic blocks from get_loop_body. */
2243 free (bbs);
2244 }
2245 }
2246
2247 /* Attempt to predict probabilities of BB outgoing edges using local
2248 properties. */
2249 static void
bb_estimate_probability_locally(basic_block bb)2250 bb_estimate_probability_locally (basic_block bb)
2251 {
2252 rtx_insn *last_insn = BB_END (bb);
2253 rtx cond;
2254
2255 if (! can_predict_insn_p (last_insn))
2256 return;
2257 cond = get_condition (last_insn, NULL, false, false);
2258 if (! cond)
2259 return;
2260
2261 /* Try "pointer heuristic."
2262 A comparison ptr == 0 is predicted as false.
2263 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2264 if (COMPARISON_P (cond)
2265 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2266 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2267 {
2268 if (GET_CODE (cond) == EQ)
2269 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2270 else if (GET_CODE (cond) == NE)
2271 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2272 }
2273 else
2274
2275 /* Try "opcode heuristic."
2276 EQ tests are usually false and NE tests are usually true. Also,
2277 most quantities are positive, so we can make the appropriate guesses
2278 about signed comparisons against zero. */
2279 switch (GET_CODE (cond))
2280 {
2281 case CONST_INT:
2282 /* Unconditional branch. */
2283 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2284 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2285 break;
2286
2287 case EQ:
2288 case UNEQ:
2289 /* Floating point comparisons appears to behave in a very
2290 unpredictable way because of special role of = tests in
2291 FP code. */
2292 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2293 ;
2294 /* Comparisons with 0 are often used for booleans and there is
2295 nothing useful to predict about them. */
2296 else if (XEXP (cond, 1) == const0_rtx
2297 || XEXP (cond, 0) == const0_rtx)
2298 ;
2299 else
2300 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2301 break;
2302
2303 case NE:
2304 case LTGT:
2305 /* Floating point comparisons appears to behave in a very
2306 unpredictable way because of special role of = tests in
2307 FP code. */
2308 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2309 ;
2310 /* Comparisons with 0 are often used for booleans and there is
2311 nothing useful to predict about them. */
2312 else if (XEXP (cond, 1) == const0_rtx
2313 || XEXP (cond, 0) == const0_rtx)
2314 ;
2315 else
2316 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2317 break;
2318
2319 case ORDERED:
2320 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2321 break;
2322
2323 case UNORDERED:
2324 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2325 break;
2326
2327 case LE:
2328 case LT:
2329 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2330 || XEXP (cond, 1) == constm1_rtx)
2331 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2332 break;
2333
2334 case GE:
2335 case GT:
2336 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2337 || XEXP (cond, 1) == constm1_rtx)
2338 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2339 break;
2340
2341 default:
2342 break;
2343 }
2344 }
2345
2346 /* Set edge->probability for each successor edge of BB. */
2347 void
guess_outgoing_edge_probabilities(basic_block bb)2348 guess_outgoing_edge_probabilities (basic_block bb)
2349 {
2350 bb_estimate_probability_locally (bb);
2351 combine_predictions_for_insn (BB_END (bb), bb);
2352 }
2353
2354 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2355 HOST_WIDE_INT *probability);
2356
2357 /* Helper function for expr_expected_value. */
2358
2359 static tree
expr_expected_value_1(tree type,tree op0,enum tree_code code,tree op1,bitmap visited,enum br_predictor * predictor,HOST_WIDE_INT * probability)2360 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2361 tree op1, bitmap visited, enum br_predictor *predictor,
2362 HOST_WIDE_INT *probability)
2363 {
2364 gimple *def;
2365
2366 /* Reset returned probability value. */
2367 *probability = -1;
2368 *predictor = PRED_UNCONDITIONAL;
2369
2370 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2371 {
2372 if (TREE_CONSTANT (op0))
2373 return op0;
2374
2375 if (code == IMAGPART_EXPR)
2376 {
2377 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2378 {
2379 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2380 if (is_gimple_call (def)
2381 && gimple_call_internal_p (def)
2382 && (gimple_call_internal_fn (def)
2383 == IFN_ATOMIC_COMPARE_EXCHANGE))
2384 {
2385 /* Assume that any given atomic operation has low contention,
2386 and thus the compare-and-swap operation succeeds. */
2387 *predictor = PRED_COMPARE_AND_SWAP;
2388 return build_one_cst (TREE_TYPE (op0));
2389 }
2390 }
2391 }
2392
2393 if (code != SSA_NAME)
2394 return NULL_TREE;
2395
2396 def = SSA_NAME_DEF_STMT (op0);
2397
2398 /* If we were already here, break the infinite cycle. */
2399 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2400 return NULL;
2401
2402 if (gimple_code (def) == GIMPLE_PHI)
2403 {
2404 /* All the arguments of the PHI node must have the same constant
2405 length. */
2406 int i, n = gimple_phi_num_args (def);
2407 tree val = NULL, new_val;
2408
2409 for (i = 0; i < n; i++)
2410 {
2411 tree arg = PHI_ARG_DEF (def, i);
2412 enum br_predictor predictor2;
2413
2414 /* If this PHI has itself as an argument, we cannot
2415 determine the string length of this argument. However,
2416 if we can find an expected constant value for the other
2417 PHI args then we can still be sure that this is
2418 likely a constant. So be optimistic and just
2419 continue with the next argument. */
2420 if (arg == PHI_RESULT (def))
2421 continue;
2422
2423 HOST_WIDE_INT probability2;
2424 new_val = expr_expected_value (arg, visited, &predictor2,
2425 &probability2);
2426
2427 /* It is difficult to combine value predictors. Simply assume
2428 that later predictor is weaker and take its prediction. */
2429 if (*predictor < predictor2)
2430 {
2431 *predictor = predictor2;
2432 *probability = probability2;
2433 }
2434 if (!new_val)
2435 return NULL;
2436 if (!val)
2437 val = new_val;
2438 else if (!operand_equal_p (val, new_val, false))
2439 return NULL;
2440 }
2441 return val;
2442 }
2443 if (is_gimple_assign (def))
2444 {
2445 if (gimple_assign_lhs (def) != op0)
2446 return NULL;
2447
2448 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2449 gimple_assign_rhs1 (def),
2450 gimple_assign_rhs_code (def),
2451 gimple_assign_rhs2 (def),
2452 visited, predictor, probability);
2453 }
2454
2455 if (is_gimple_call (def))
2456 {
2457 tree decl = gimple_call_fndecl (def);
2458 if (!decl)
2459 {
2460 if (gimple_call_internal_p (def)
2461 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2462 {
2463 gcc_assert (gimple_call_num_args (def) == 3);
2464 tree val = gimple_call_arg (def, 0);
2465 if (TREE_CONSTANT (val))
2466 return val;
2467 tree val2 = gimple_call_arg (def, 2);
2468 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2469 && tree_fits_uhwi_p (val2)
2470 && tree_to_uhwi (val2) < END_PREDICTORS);
2471 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2472 if (*predictor == PRED_BUILTIN_EXPECT)
2473 *probability
2474 = HITRATE (param_builtin_expect_probability);
2475 return gimple_call_arg (def, 1);
2476 }
2477 return NULL;
2478 }
2479
2480 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
2481 {
2482 if (predictor)
2483 *predictor = PRED_MALLOC_NONNULL;
2484 return boolean_true_node;
2485 }
2486
2487 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2488 switch (DECL_FUNCTION_CODE (decl))
2489 {
2490 case BUILT_IN_EXPECT:
2491 {
2492 tree val;
2493 if (gimple_call_num_args (def) != 2)
2494 return NULL;
2495 val = gimple_call_arg (def, 0);
2496 if (TREE_CONSTANT (val))
2497 return val;
2498 *predictor = PRED_BUILTIN_EXPECT;
2499 *probability
2500 = HITRATE (param_builtin_expect_probability);
2501 return gimple_call_arg (def, 1);
2502 }
2503 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2504 {
2505 tree val;
2506 if (gimple_call_num_args (def) != 3)
2507 return NULL;
2508 val = gimple_call_arg (def, 0);
2509 if (TREE_CONSTANT (val))
2510 return val;
2511 /* Compute final probability as:
2512 probability * REG_BR_PROB_BASE. */
2513 tree prob = gimple_call_arg (def, 2);
2514 tree t = TREE_TYPE (prob);
2515 tree base = build_int_cst (integer_type_node,
2516 REG_BR_PROB_BASE);
2517 base = build_real_from_int_cst (t, base);
2518 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2519 MULT_EXPR, t, prob, base);
2520 if (TREE_CODE (r) != REAL_CST)
2521 {
2522 error_at (gimple_location (def),
2523 "probability %qE must be "
2524 "constant floating-point expression", prob);
2525 return NULL;
2526 }
2527 HOST_WIDE_INT probi
2528 = real_to_integer (TREE_REAL_CST_PTR (r));
2529 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2530 {
2531 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2532 *probability = probi;
2533 }
2534 else
2535 error_at (gimple_location (def),
2536 "probability %qE is outside "
2537 "the range [0.0, 1.0]", prob);
2538
2539 return gimple_call_arg (def, 1);
2540 }
2541
2542 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2543 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2544 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2545 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2546 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2547 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2548 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2549 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2550 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2551 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2552 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2553 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2554 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2555 /* Assume that any given atomic operation has low contention,
2556 and thus the compare-and-swap operation succeeds. */
2557 *predictor = PRED_COMPARE_AND_SWAP;
2558 return boolean_true_node;
2559 case BUILT_IN_REALLOC:
2560 if (predictor)
2561 *predictor = PRED_MALLOC_NONNULL;
2562 return boolean_true_node;
2563 default:
2564 break;
2565 }
2566 }
2567
2568 return NULL;
2569 }
2570
2571 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2572 {
2573 tree res;
2574 enum br_predictor predictor2;
2575 HOST_WIDE_INT probability2;
2576 op0 = expr_expected_value (op0, visited, predictor, probability);
2577 if (!op0)
2578 return NULL;
2579 op1 = expr_expected_value (op1, visited, &predictor2, &probability2);
2580 if (!op1)
2581 return NULL;
2582 res = fold_build2 (code, type, op0, op1);
2583 if (TREE_CODE (res) == INTEGER_CST
2584 && TREE_CODE (op0) == INTEGER_CST
2585 && TREE_CODE (op1) == INTEGER_CST)
2586 {
2587 /* Combine binary predictions. */
2588 if (*probability != -1 || probability2 != -1)
2589 {
2590 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2591 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2592 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2593 }
2594
2595 if (*predictor < predictor2)
2596 *predictor = predictor2;
2597
2598 return res;
2599 }
2600 return NULL;
2601 }
2602 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2603 {
2604 tree res;
2605 op0 = expr_expected_value (op0, visited, predictor, probability);
2606 if (!op0)
2607 return NULL;
2608 res = fold_build1 (code, type, op0);
2609 if (TREE_CONSTANT (res))
2610 return res;
2611 return NULL;
2612 }
2613 return NULL;
2614 }
2615
2616 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2617 The function is used by builtin_expect branch predictor so the evidence
2618 must come from this construct and additional possible constant folding.
2619
2620 We may want to implement more involved value guess (such as value range
2621 propagation based prediction), but such tricks shall go to new
2622 implementation. */
2623
2624 static tree
expr_expected_value(tree expr,bitmap visited,enum br_predictor * predictor,HOST_WIDE_INT * probability)2625 expr_expected_value (tree expr, bitmap visited,
2626 enum br_predictor *predictor,
2627 HOST_WIDE_INT *probability)
2628 {
2629 enum tree_code code;
2630 tree op0, op1;
2631
2632 if (TREE_CONSTANT (expr))
2633 {
2634 *predictor = PRED_UNCONDITIONAL;
2635 *probability = -1;
2636 return expr;
2637 }
2638
2639 extract_ops_from_tree (expr, &code, &op0, &op1);
2640 return expr_expected_value_1 (TREE_TYPE (expr),
2641 op0, code, op1, visited, predictor,
2642 probability);
2643 }
2644
2645
2646 /* Return probability of a PREDICTOR. If the predictor has variable
2647 probability return passed PROBABILITY. */
2648
2649 static HOST_WIDE_INT
get_predictor_value(br_predictor predictor,HOST_WIDE_INT probability)2650 get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2651 {
2652 switch (predictor)
2653 {
2654 case PRED_BUILTIN_EXPECT:
2655 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2656 gcc_assert (probability != -1);
2657 return probability;
2658 default:
2659 gcc_assert (probability == -1);
2660 return predictor_info[(int) predictor].hitrate;
2661 }
2662 }
2663
2664 /* Predict using opcode of the last statement in basic block. */
2665 static void
tree_predict_by_opcode(basic_block bb)2666 tree_predict_by_opcode (basic_block bb)
2667 {
2668 gimple *stmt = last_stmt (bb);
2669 edge then_edge;
2670 tree op0, op1;
2671 tree type;
2672 tree val;
2673 enum tree_code cmp;
2674 edge_iterator ei;
2675 enum br_predictor predictor;
2676 HOST_WIDE_INT probability;
2677
2678 if (!stmt)
2679 return;
2680
2681 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2682 {
2683 tree index = gimple_switch_index (sw);
2684 tree val = expr_expected_value (index, auto_bitmap (),
2685 &predictor, &probability);
2686 if (val && TREE_CODE (val) == INTEGER_CST)
2687 {
2688 edge e = find_taken_edge_switch_expr (sw, val);
2689 if (predictor == PRED_BUILTIN_EXPECT)
2690 {
2691 int percent = param_builtin_expect_probability;
2692 gcc_assert (percent >= 0 && percent <= 100);
2693 predict_edge (e, PRED_BUILTIN_EXPECT,
2694 HITRATE (percent));
2695 }
2696 else
2697 predict_edge_def (e, predictor, TAKEN);
2698 }
2699 }
2700
2701 if (gimple_code (stmt) != GIMPLE_COND)
2702 return;
2703 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2704 if (then_edge->flags & EDGE_TRUE_VALUE)
2705 break;
2706 op0 = gimple_cond_lhs (stmt);
2707 op1 = gimple_cond_rhs (stmt);
2708 cmp = gimple_cond_code (stmt);
2709 type = TREE_TYPE (op0);
2710 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2711 &predictor, &probability);
2712 if (val && TREE_CODE (val) == INTEGER_CST)
2713 {
2714 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2715 if (integer_zerop (val))
2716 prob = REG_BR_PROB_BASE - prob;
2717 predict_edge (then_edge, predictor, prob);
2718 }
2719 /* Try "pointer heuristic."
2720 A comparison ptr == 0 is predicted as false.
2721 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2722 if (POINTER_TYPE_P (type))
2723 {
2724 if (cmp == EQ_EXPR)
2725 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2726 else if (cmp == NE_EXPR)
2727 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2728 }
2729 else
2730
2731 /* Try "opcode heuristic."
2732 EQ tests are usually false and NE tests are usually true. Also,
2733 most quantities are positive, so we can make the appropriate guesses
2734 about signed comparisons against zero. */
2735 switch (cmp)
2736 {
2737 case EQ_EXPR:
2738 case UNEQ_EXPR:
2739 /* Floating point comparisons appears to behave in a very
2740 unpredictable way because of special role of = tests in
2741 FP code. */
2742 if (FLOAT_TYPE_P (type))
2743 ;
2744 /* Comparisons with 0 are often used for booleans and there is
2745 nothing useful to predict about them. */
2746 else if (integer_zerop (op0) || integer_zerop (op1))
2747 ;
2748 else
2749 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2750 break;
2751
2752 case NE_EXPR:
2753 case LTGT_EXPR:
2754 /* Floating point comparisons appears to behave in a very
2755 unpredictable way because of special role of = tests in
2756 FP code. */
2757 if (FLOAT_TYPE_P (type))
2758 ;
2759 /* Comparisons with 0 are often used for booleans and there is
2760 nothing useful to predict about them. */
2761 else if (integer_zerop (op0)
2762 || integer_zerop (op1))
2763 ;
2764 else
2765 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2766 break;
2767
2768 case ORDERED_EXPR:
2769 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2770 break;
2771
2772 case UNORDERED_EXPR:
2773 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2774 break;
2775
2776 case LE_EXPR:
2777 case LT_EXPR:
2778 if (integer_zerop (op1)
2779 || integer_onep (op1)
2780 || integer_all_onesp (op1)
2781 || real_zerop (op1)
2782 || real_onep (op1)
2783 || real_minus_onep (op1))
2784 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2785 break;
2786
2787 case GE_EXPR:
2788 case GT_EXPR:
2789 if (integer_zerop (op1)
2790 || integer_onep (op1)
2791 || integer_all_onesp (op1)
2792 || real_zerop (op1)
2793 || real_onep (op1)
2794 || real_minus_onep (op1))
2795 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2796 break;
2797
2798 default:
2799 break;
2800 }
2801 }
2802
2803 /* Returns TRUE if the STMT is exit(0) like statement. */
2804
2805 static bool
is_exit_with_zero_arg(const gimple * stmt)2806 is_exit_with_zero_arg (const gimple *stmt)
2807 {
2808 /* This is not exit, _exit or _Exit. */
2809 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2810 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2811 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2812 return false;
2813
2814 /* Argument is an interger zero. */
2815 return integer_zerop (gimple_call_arg (stmt, 0));
2816 }
2817
2818 /* Try to guess whether the value of return means error code. */
2819
2820 static enum br_predictor
return_prediction(tree val,enum prediction * prediction)2821 return_prediction (tree val, enum prediction *prediction)
2822 {
2823 /* VOID. */
2824 if (!val)
2825 return PRED_NO_PREDICTION;
2826 /* Different heuristics for pointers and scalars. */
2827 if (POINTER_TYPE_P (TREE_TYPE (val)))
2828 {
2829 /* NULL is usually not returned. */
2830 if (integer_zerop (val))
2831 {
2832 *prediction = NOT_TAKEN;
2833 return PRED_NULL_RETURN;
2834 }
2835 }
2836 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2837 {
2838 /* Negative return values are often used to indicate
2839 errors. */
2840 if (TREE_CODE (val) == INTEGER_CST
2841 && tree_int_cst_sgn (val) < 0)
2842 {
2843 *prediction = NOT_TAKEN;
2844 return PRED_NEGATIVE_RETURN;
2845 }
2846 /* Constant return values seems to be commonly taken.
2847 Zero/one often represent booleans so exclude them from the
2848 heuristics. */
2849 if (TREE_CONSTANT (val)
2850 && (!integer_zerop (val) && !integer_onep (val)))
2851 {
2852 *prediction = NOT_TAKEN;
2853 return PRED_CONST_RETURN;
2854 }
2855 }
2856 return PRED_NO_PREDICTION;
2857 }
2858
2859 /* Return zero if phi result could have values other than -1, 0 or 1,
2860 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2861 values are used or likely. */
2862
2863 static int
zero_one_minusone(gphi * phi,int limit)2864 zero_one_minusone (gphi *phi, int limit)
2865 {
2866 int phi_num_args = gimple_phi_num_args (phi);
2867 int ret = 0;
2868 for (int i = 0; i < phi_num_args; i++)
2869 {
2870 tree t = PHI_ARG_DEF (phi, i);
2871 if (TREE_CODE (t) != INTEGER_CST)
2872 continue;
2873 wide_int w = wi::to_wide (t);
2874 if (w == -1)
2875 ret |= 1;
2876 else if (w == 0)
2877 ret |= 2;
2878 else if (w == 1)
2879 ret |= 4;
2880 else
2881 return 0;
2882 }
2883 for (int i = 0; i < phi_num_args; i++)
2884 {
2885 tree t = PHI_ARG_DEF (phi, i);
2886 if (TREE_CODE (t) == INTEGER_CST)
2887 continue;
2888 if (TREE_CODE (t) != SSA_NAME)
2889 return 0;
2890 gimple *g = SSA_NAME_DEF_STMT (t);
2891 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2892 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2893 {
2894 ret |= r;
2895 continue;
2896 }
2897 if (!is_gimple_assign (g))
2898 return 0;
2899 if (gimple_assign_cast_p (g))
2900 {
2901 tree rhs1 = gimple_assign_rhs1 (g);
2902 if (TREE_CODE (rhs1) != SSA_NAME
2903 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2904 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2905 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2906 return 0;
2907 ret |= (2 | 4);
2908 continue;
2909 }
2910 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2911 return 0;
2912 ret |= (2 | 4);
2913 }
2914 return ret;
2915 }
2916
2917 /* Find the basic block with return expression and look up for possible
2918 return value trying to apply RETURN_PREDICTION heuristics. */
2919 static void
apply_return_prediction(void)2920 apply_return_prediction (void)
2921 {
2922 greturn *return_stmt = NULL;
2923 tree return_val;
2924 edge e;
2925 gphi *phi;
2926 int phi_num_args, i;
2927 enum br_predictor pred;
2928 enum prediction direction;
2929 edge_iterator ei;
2930
2931 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2932 {
2933 gimple *last = last_stmt (e->src);
2934 if (last
2935 && gimple_code (last) == GIMPLE_RETURN)
2936 {
2937 return_stmt = as_a <greturn *> (last);
2938 break;
2939 }
2940 }
2941 if (!e)
2942 return;
2943 return_val = gimple_return_retval (return_stmt);
2944 if (!return_val)
2945 return;
2946 if (TREE_CODE (return_val) != SSA_NAME
2947 || !SSA_NAME_DEF_STMT (return_val)
2948 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2949 return;
2950 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2951 phi_num_args = gimple_phi_num_args (phi);
2952 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2953
2954 /* Avoid the case where the function returns -1, 0 and 1 values and
2955 nothing else. Those could be qsort etc. comparison functions
2956 where the negative return isn't less probable than positive.
2957 For this require that the function returns at least -1 or 1
2958 or -1 and a boolean value or comparison result, so that functions
2959 returning just -1 and 0 are treated as if -1 represents error value. */
2960 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2961 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2962 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2963 if (int r = zero_one_minusone (phi, 3))
2964 if ((r & (1 | 4)) == (1 | 4))
2965 return;
2966
2967 /* Avoid the degenerate case where all return values form the function
2968 belongs to same category (ie they are all positive constants)
2969 so we can hardly say something about them. */
2970 for (i = 1; i < phi_num_args; i++)
2971 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2972 break;
2973 if (i != phi_num_args)
2974 for (i = 0; i < phi_num_args; i++)
2975 {
2976 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2977 if (pred != PRED_NO_PREDICTION)
2978 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2979 direction);
2980 }
2981 }
2982
2983 /* Look for basic block that contains unlikely to happen events
2984 (such as noreturn calls) and mark all paths leading to execution
2985 of this basic blocks as unlikely. */
2986
2987 static void
tree_bb_level_predictions(void)2988 tree_bb_level_predictions (void)
2989 {
2990 basic_block bb;
2991 bool has_return_edges = false;
2992 edge e;
2993 edge_iterator ei;
2994
2995 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2996 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
2997 {
2998 has_return_edges = true;
2999 break;
3000 }
3001
3002 apply_return_prediction ();
3003
3004 FOR_EACH_BB_FN (bb, cfun)
3005 {
3006 gimple_stmt_iterator gsi;
3007
3008 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3009 {
3010 gimple *stmt = gsi_stmt (gsi);
3011 tree decl;
3012
3013 if (is_gimple_call (stmt))
3014 {
3015 if (gimple_call_noreturn_p (stmt)
3016 && has_return_edges
3017 && !is_exit_with_zero_arg (stmt))
3018 predict_paths_leading_to (bb, PRED_NORETURN,
3019 NOT_TAKEN);
3020 decl = gimple_call_fndecl (stmt);
3021 if (decl
3022 && lookup_attribute ("cold",
3023 DECL_ATTRIBUTES (decl)))
3024 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
3025 NOT_TAKEN);
3026 if (decl && recursive_call_p (current_function_decl, decl))
3027 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
3028 NOT_TAKEN);
3029 }
3030 else if (gimple_code (stmt) == GIMPLE_PREDICT)
3031 {
3032 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
3033 gimple_predict_outcome (stmt));
3034 /* Keep GIMPLE_PREDICT around so early inlining will propagate
3035 hints to callers. */
3036 }
3037 }
3038 }
3039 }
3040
3041 /* Callback for hash_map::traverse, asserts that the pointer map is
3042 empty. */
3043
3044 bool
assert_is_empty(const_basic_block const &,edge_prediction * const & value,void *)3045 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3046 void *)
3047 {
3048 gcc_assert (!value);
3049 return true;
3050 }
3051
3052 /* Predict branch probabilities and estimate profile for basic block BB.
3053 When LOCAL_ONLY is set do not use any global properties of CFG. */
3054
3055 static void
tree_estimate_probability_bb(basic_block bb,bool local_only)3056 tree_estimate_probability_bb (basic_block bb, bool local_only)
3057 {
3058 edge e;
3059 edge_iterator ei;
3060
3061 FOR_EACH_EDGE (e, ei, bb->succs)
3062 {
3063 /* Look for block we are guarding (ie we dominate it,
3064 but it doesn't postdominate us). */
3065 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3066 && !local_only
3067 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3068 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3069 {
3070 gimple_stmt_iterator bi;
3071
3072 /* The call heuristic claims that a guarded function call
3073 is improbable. This is because such calls are often used
3074 to signal exceptional situations such as printing error
3075 messages. */
3076 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3077 gsi_next (&bi))
3078 {
3079 gimple *stmt = gsi_stmt (bi);
3080 if (is_gimple_call (stmt)
3081 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
3082 /* Constant and pure calls are hardly used to signalize
3083 something exceptional. */
3084 && gimple_has_side_effects (stmt))
3085 {
3086 if (gimple_call_fndecl (stmt))
3087 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3088 else if (virtual_method_call_p (gimple_call_fn (stmt)))
3089 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
3090 else
3091 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
3092 break;
3093 }
3094 }
3095 }
3096 }
3097 tree_predict_by_opcode (bb);
3098 }
3099
3100 /* Predict branch probabilities and estimate profile of the tree CFG.
3101 This function can be called from the loop optimizers to recompute
3102 the profile information.
3103 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3104
3105 void
tree_estimate_probability(bool dry_run)3106 tree_estimate_probability (bool dry_run)
3107 {
3108 basic_block bb;
3109
3110 connect_infinite_loops_to_exit ();
3111 /* We use loop_niter_by_eval, which requires that the loops have
3112 preheaders. */
3113 create_preheaders (CP_SIMPLE_PREHEADERS);
3114 calculate_dominance_info (CDI_POST_DOMINATORS);
3115 /* Decide which edges are known to be unlikely. This improves later
3116 branch prediction. */
3117 determine_unlikely_bbs ();
3118
3119 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3120 tree_bb_level_predictions ();
3121 record_loop_exits ();
3122
3123 if (number_of_loops (cfun) > 1)
3124 predict_loops ();
3125
3126 FOR_EACH_BB_FN (bb, cfun)
3127 tree_estimate_probability_bb (bb, false);
3128
3129 FOR_EACH_BB_FN (bb, cfun)
3130 combine_predictions_for_bb (bb, dry_run);
3131
3132 if (flag_checking)
3133 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3134
3135 delete bb_predictions;
3136 bb_predictions = NULL;
3137
3138 if (!dry_run)
3139 estimate_bb_frequencies (false);
3140 free_dominance_info (CDI_POST_DOMINATORS);
3141 remove_fake_exit_edges ();
3142 }
3143
3144 /* Set edge->probability for each successor edge of BB. */
3145 void
tree_guess_outgoing_edge_probabilities(basic_block bb)3146 tree_guess_outgoing_edge_probabilities (basic_block bb)
3147 {
3148 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3149 tree_estimate_probability_bb (bb, true);
3150 combine_predictions_for_bb (bb, false);
3151 if (flag_checking)
3152 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3153 delete bb_predictions;
3154 bb_predictions = NULL;
3155 }
3156
3157 /* Filter function predicate that returns true for a edge predicate P
3158 if its edge is equal to DATA. */
3159
3160 static bool
not_loop_guard_equal_edge_p(edge_prediction * p,void * data)3161 not_loop_guard_equal_edge_p (edge_prediction *p, void *data)
3162 {
3163 return p->ep_edge != (edge)data || p->ep_predictor != PRED_LOOP_GUARD;
3164 }
3165
3166 /* Predict edge E with PRED unless it is already predicted by some predictor
3167 considered equivalent. */
3168
3169 static void
maybe_predict_edge(edge e,enum br_predictor pred,enum prediction taken)3170 maybe_predict_edge (edge e, enum br_predictor pred, enum prediction taken)
3171 {
3172 if (edge_predicted_by_p (e, pred, taken))
3173 return;
3174 if (pred == PRED_LOOP_GUARD
3175 && edge_predicted_by_p (e, PRED_LOOP_GUARD_WITH_RECURSION, taken))
3176 return;
3177 /* Consider PRED_LOOP_GUARD_WITH_RECURSION superrior to LOOP_GUARD. */
3178 if (pred == PRED_LOOP_GUARD_WITH_RECURSION)
3179 {
3180 edge_prediction **preds = bb_predictions->get (e->src);
3181 if (preds)
3182 filter_predictions (preds, not_loop_guard_equal_edge_p, e);
3183 }
3184 predict_edge_def (e, pred, taken);
3185 }
3186 /* Predict edges to successors of CUR whose sources are not postdominated by
3187 BB by PRED and recurse to all postdominators. */
3188
3189 static void
predict_paths_for_bb(basic_block cur,basic_block bb,enum br_predictor pred,enum prediction taken,bitmap visited,class loop * in_loop=NULL)3190 predict_paths_for_bb (basic_block cur, basic_block bb,
3191 enum br_predictor pred,
3192 enum prediction taken,
3193 bitmap visited, class loop *in_loop = NULL)
3194 {
3195 edge e;
3196 edge_iterator ei;
3197 basic_block son;
3198
3199 /* If we exited the loop or CUR is unconditional in the loop, there is
3200 nothing to do. */
3201 if (in_loop
3202 && (!flow_bb_inside_loop_p (in_loop, cur)
3203 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3204 return;
3205
3206 /* We are looking for all edges forming edge cut induced by
3207 set of all blocks postdominated by BB. */
3208 FOR_EACH_EDGE (e, ei, cur->preds)
3209 if (e->src->index >= NUM_FIXED_BLOCKS
3210 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3211 {
3212 edge e2;
3213 edge_iterator ei2;
3214 bool found = false;
3215
3216 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3217 if (unlikely_executed_edge_p (e))
3218 continue;
3219 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3220
3221 /* See if there is an edge from e->src that is not abnormal
3222 and does not lead to BB and does not exit the loop. */
3223 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3224 if (e2 != e
3225 && !unlikely_executed_edge_p (e2)
3226 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3227 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3228 {
3229 found = true;
3230 break;
3231 }
3232
3233 /* If there is non-abnormal path leaving e->src, predict edge
3234 using predictor. Otherwise we need to look for paths
3235 leading to e->src.
3236
3237 The second may lead to infinite loop in the case we are predicitng
3238 regions that are only reachable by abnormal edges. We simply
3239 prevent visiting given BB twice. */
3240 if (found)
3241 maybe_predict_edge (e, pred, taken);
3242 else if (bitmap_set_bit (visited, e->src->index))
3243 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3244 }
3245 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3246 son;
3247 son = next_dom_son (CDI_POST_DOMINATORS, son))
3248 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3249 }
3250
3251 /* Sets branch probabilities according to PREDiction and
3252 FLAGS. */
3253
3254 static void
predict_paths_leading_to(basic_block bb,enum br_predictor pred,enum prediction taken,class loop * in_loop)3255 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3256 enum prediction taken, class loop *in_loop)
3257 {
3258 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3259 }
3260
3261 /* Like predict_paths_leading_to but take edge instead of basic block. */
3262
3263 static void
predict_paths_leading_to_edge(edge e,enum br_predictor pred,enum prediction taken,class loop * in_loop)3264 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3265 enum prediction taken, class loop *in_loop)
3266 {
3267 bool has_nonloop_edge = false;
3268 edge_iterator ei;
3269 edge e2;
3270
3271 basic_block bb = e->src;
3272 FOR_EACH_EDGE (e2, ei, bb->succs)
3273 if (e2->dest != e->src && e2->dest != e->dest
3274 && !unlikely_executed_edge_p (e2)
3275 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3276 {
3277 has_nonloop_edge = true;
3278 break;
3279 }
3280
3281 if (!has_nonloop_edge)
3282 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3283 else
3284 maybe_predict_edge (e, pred, taken);
3285 }
3286
3287 /* This is used to carry information about basic blocks. It is
3288 attached to the AUX field of the standard CFG block. */
3289
3290 class block_info
3291 {
3292 public:
3293 /* Estimated frequency of execution of basic_block. */
3294 sreal frequency;
3295
3296 /* To keep queue of basic blocks to process. */
3297 basic_block next;
3298
3299 /* Number of predecessors we need to visit first. */
3300 int npredecessors;
3301 };
3302
3303 /* Similar information for edges. */
3304 class edge_prob_info
3305 {
3306 public:
3307 /* In case edge is a loopback edge, the probability edge will be reached
3308 in case header is. Estimated number of iterations of the loop can be
3309 then computed as 1 / (1 - back_edge_prob). */
3310 sreal back_edge_prob;
3311 /* True if the edge is a loopback edge in the natural loop. */
3312 unsigned int back_edge:1;
3313 };
3314
3315 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3316 #undef EDGE_INFO
3317 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3318
3319 /* Helper function for estimate_bb_frequencies.
3320 Propagate the frequencies in blocks marked in
3321 TOVISIT, starting in HEAD. */
3322
3323 static void
propagate_freq(basic_block head,bitmap tovisit,sreal max_cyclic_prob)3324 propagate_freq (basic_block head, bitmap tovisit,
3325 sreal max_cyclic_prob)
3326 {
3327 basic_block bb;
3328 basic_block last;
3329 unsigned i;
3330 edge e;
3331 basic_block nextbb;
3332 bitmap_iterator bi;
3333
3334 /* For each basic block we need to visit count number of his predecessors
3335 we need to visit first. */
3336 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3337 {
3338 edge_iterator ei;
3339 int count = 0;
3340
3341 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3342
3343 FOR_EACH_EDGE (e, ei, bb->preds)
3344 {
3345 bool visit = bitmap_bit_p (tovisit, e->src->index);
3346
3347 if (visit && !(e->flags & EDGE_DFS_BACK))
3348 count++;
3349 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3350 fprintf (dump_file,
3351 "Irreducible region hit, ignoring edge to %i->%i\n",
3352 e->src->index, bb->index);
3353 }
3354 BLOCK_INFO (bb)->npredecessors = count;
3355 /* When function never returns, we will never process exit block. */
3356 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3357 bb->count = profile_count::zero ();
3358 }
3359
3360 BLOCK_INFO (head)->frequency = 1;
3361 last = head;
3362 for (bb = head; bb; bb = nextbb)
3363 {
3364 edge_iterator ei;
3365 sreal cyclic_probability = 0;
3366 sreal frequency = 0;
3367
3368 nextbb = BLOCK_INFO (bb)->next;
3369 BLOCK_INFO (bb)->next = NULL;
3370
3371 /* Compute frequency of basic block. */
3372 if (bb != head)
3373 {
3374 if (flag_checking)
3375 FOR_EACH_EDGE (e, ei, bb->preds)
3376 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3377 || (e->flags & EDGE_DFS_BACK));
3378
3379 FOR_EACH_EDGE (e, ei, bb->preds)
3380 if (EDGE_INFO (e)->back_edge)
3381 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3382 else if (!(e->flags & EDGE_DFS_BACK))
3383 {
3384 /* FIXME: Graphite is producing edges with no profile. Once
3385 this is fixed, drop this. */
3386 sreal tmp = e->probability.initialized_p () ?
3387 e->probability.to_sreal () : 0;
3388 frequency += tmp * BLOCK_INFO (e->src)->frequency;
3389 }
3390
3391 if (cyclic_probability == 0)
3392 {
3393 BLOCK_INFO (bb)->frequency = frequency;
3394 }
3395 else
3396 {
3397 if (cyclic_probability > max_cyclic_prob)
3398 {
3399 if (dump_file)
3400 fprintf (dump_file,
3401 "cyclic probability of bb %i is %f (capped to %f)"
3402 "; turning freq %f",
3403 bb->index, cyclic_probability.to_double (),
3404 max_cyclic_prob.to_double (),
3405 frequency.to_double ());
3406
3407 cyclic_probability = max_cyclic_prob;
3408 }
3409 else if (dump_file)
3410 fprintf (dump_file,
3411 "cyclic probability of bb %i is %f; turning freq %f",
3412 bb->index, cyclic_probability.to_double (),
3413 frequency.to_double ());
3414
3415 BLOCK_INFO (bb)->frequency = frequency
3416 / (sreal (1) - cyclic_probability);
3417 if (dump_file)
3418 fprintf (dump_file, " to %f\n",
3419 BLOCK_INFO (bb)->frequency.to_double ());
3420 }
3421 }
3422
3423 bitmap_clear_bit (tovisit, bb->index);
3424
3425 e = find_edge (bb, head);
3426 if (e)
3427 {
3428 /* FIXME: Graphite is producing edges with no profile. Once
3429 this is fixed, drop this. */
3430 sreal tmp = e->probability.initialized_p () ?
3431 e->probability.to_sreal () : 0;
3432 EDGE_INFO (e)->back_edge_prob = tmp * BLOCK_INFO (bb)->frequency;
3433 }
3434
3435 /* Propagate to successor blocks. */
3436 FOR_EACH_EDGE (e, ei, bb->succs)
3437 if (!(e->flags & EDGE_DFS_BACK)
3438 && BLOCK_INFO (e->dest)->npredecessors)
3439 {
3440 BLOCK_INFO (e->dest)->npredecessors--;
3441 if (!BLOCK_INFO (e->dest)->npredecessors)
3442 {
3443 if (!nextbb)
3444 nextbb = e->dest;
3445 else
3446 BLOCK_INFO (last)->next = e->dest;
3447
3448 last = e->dest;
3449 }
3450 }
3451 }
3452 }
3453
3454 /* Estimate frequencies in loops at same nest level. */
3455
3456 static void
estimate_loops_at_level(class loop * first_loop,sreal max_cyclic_prob)3457 estimate_loops_at_level (class loop *first_loop, sreal max_cyclic_prob)
3458 {
3459 class loop *loop;
3460
3461 for (loop = first_loop; loop; loop = loop->next)
3462 {
3463 edge e;
3464 basic_block *bbs;
3465 unsigned i;
3466 auto_bitmap tovisit;
3467
3468 estimate_loops_at_level (loop->inner, max_cyclic_prob);
3469
3470 /* Find current loop back edge and mark it. */
3471 e = loop_latch_edge (loop);
3472 EDGE_INFO (e)->back_edge = 1;
3473
3474 bbs = get_loop_body (loop);
3475 for (i = 0; i < loop->num_nodes; i++)
3476 bitmap_set_bit (tovisit, bbs[i]->index);
3477 free (bbs);
3478 propagate_freq (loop->header, tovisit, max_cyclic_prob);
3479 }
3480 }
3481
3482 /* Propagates frequencies through structure of loops. */
3483
3484 static void
estimate_loops(void)3485 estimate_loops (void)
3486 {
3487 auto_bitmap tovisit;
3488 basic_block bb;
3489 sreal max_cyclic_prob = (sreal)1
3490 - (sreal)1 / (param_max_predicted_iterations + 1);
3491
3492 /* Start by estimating the frequencies in the loops. */
3493 if (number_of_loops (cfun) > 1)
3494 estimate_loops_at_level (current_loops->tree_root->inner, max_cyclic_prob);
3495
3496 /* Now propagate the frequencies through all the blocks. */
3497 FOR_ALL_BB_FN (bb, cfun)
3498 {
3499 bitmap_set_bit (tovisit, bb->index);
3500 }
3501 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit, max_cyclic_prob);
3502 }
3503
3504 /* Drop the profile for NODE to guessed, and update its frequency based on
3505 whether it is expected to be hot given the CALL_COUNT. */
3506
3507 static void
drop_profile(struct cgraph_node * node,profile_count call_count)3508 drop_profile (struct cgraph_node *node, profile_count call_count)
3509 {
3510 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3511 /* In the case where this was called by another function with a
3512 dropped profile, call_count will be 0. Since there are no
3513 non-zero call counts to this function, we don't know for sure
3514 whether it is hot, and therefore it will be marked normal below. */
3515 bool hot = maybe_hot_count_p (NULL, call_count);
3516
3517 if (dump_file)
3518 fprintf (dump_file,
3519 "Dropping 0 profile for %s. %s based on calls.\n",
3520 node->dump_name (),
3521 hot ? "Function is hot" : "Function is normal");
3522 /* We only expect to miss profiles for functions that are reached
3523 via non-zero call edges in cases where the function may have
3524 been linked from another module or library (COMDATs and extern
3525 templates). See the comments below for handle_missing_profiles.
3526 Also, only warn in cases where the missing counts exceed the
3527 number of training runs. In certain cases with an execv followed
3528 by a no-return call the profile for the no-return call is not
3529 dumped and there can be a mismatch. */
3530 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3531 && call_count > profile_info->runs)
3532 {
3533 if (flag_profile_correction)
3534 {
3535 if (dump_file)
3536 fprintf (dump_file,
3537 "Missing counts for called function %s\n",
3538 node->dump_name ());
3539 }
3540 else
3541 warning (0, "Missing counts for called function %s",
3542 node->dump_name ());
3543 }
3544
3545 basic_block bb;
3546 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3547 {
3548 bool clear_zeros
3549 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3550 FOR_ALL_BB_FN (bb, fn)
3551 if (clear_zeros || !(bb->count == profile_count::zero ()))
3552 bb->count = bb->count.guessed_local ();
3553 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3554 }
3555 else
3556 {
3557 FOR_ALL_BB_FN (bb, fn)
3558 bb->count = profile_count::uninitialized ();
3559 fn->cfg->count_max = profile_count::uninitialized ();
3560 }
3561
3562 struct cgraph_edge *e;
3563 for (e = node->callees; e; e = e->next_callee)
3564 e->count = gimple_bb (e->call_stmt)->count;
3565 for (e = node->indirect_calls; e; e = e->next_callee)
3566 e->count = gimple_bb (e->call_stmt)->count;
3567 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3568
3569 profile_status_for_fn (fn)
3570 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3571 node->frequency
3572 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3573 }
3574
3575 /* In the case of COMDAT routines, multiple object files will contain the same
3576 function and the linker will select one for the binary. In that case
3577 all the other copies from the profile instrument binary will be missing
3578 profile counts. Look for cases where this happened, due to non-zero
3579 call counts going to 0-count functions, and drop the profile to guessed
3580 so that we can use the estimated probabilities and avoid optimizing only
3581 for size.
3582
3583 The other case where the profile may be missing is when the routine
3584 is not going to be emitted to the object file, e.g. for "extern template"
3585 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3586 all other cases of non-zero calls to 0-count functions. */
3587
3588 void
handle_missing_profiles(void)3589 handle_missing_profiles (void)
3590 {
3591 const int unlikely_frac = param_unlikely_bb_count_fraction;
3592 struct cgraph_node *node;
3593 auto_vec<struct cgraph_node *, 64> worklist;
3594
3595 /* See if 0 count function has non-0 count callers. In this case we
3596 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3597 FOR_EACH_DEFINED_FUNCTION (node)
3598 {
3599 struct cgraph_edge *e;
3600 profile_count call_count = profile_count::zero ();
3601 gcov_type max_tp_first_run = 0;
3602 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3603
3604 if (node->count.ipa ().nonzero_p ())
3605 continue;
3606 for (e = node->callers; e; e = e->next_caller)
3607 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3608 {
3609 call_count = call_count + e->count.ipa ();
3610
3611 if (e->caller->tp_first_run > max_tp_first_run)
3612 max_tp_first_run = e->caller->tp_first_run;
3613 }
3614
3615 /* If time profile is missing, let assign the maximum that comes from
3616 caller functions. */
3617 if (!node->tp_first_run && max_tp_first_run)
3618 node->tp_first_run = max_tp_first_run + 1;
3619
3620 if (call_count > 0
3621 && fn && fn->cfg
3622 && call_count.apply_scale (unlikely_frac, 1) >= profile_info->runs)
3623 {
3624 drop_profile (node, call_count);
3625 worklist.safe_push (node);
3626 }
3627 }
3628
3629 /* Propagate the profile dropping to other 0-count COMDATs that are
3630 potentially called by COMDATs we already dropped the profile on. */
3631 while (worklist.length () > 0)
3632 {
3633 struct cgraph_edge *e;
3634
3635 node = worklist.pop ();
3636 for (e = node->callees; e; e = e->next_caller)
3637 {
3638 struct cgraph_node *callee = e->callee;
3639 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3640
3641 if (!(e->count.ipa () == profile_count::zero ())
3642 && callee->count.ipa ().nonzero_p ())
3643 continue;
3644 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3645 && fn && fn->cfg
3646 && profile_status_for_fn (fn) == PROFILE_READ)
3647 {
3648 drop_profile (node, profile_count::zero ());
3649 worklist.safe_push (callee);
3650 }
3651 }
3652 }
3653 }
3654
3655 /* Convert counts measured by profile driven feedback to frequencies.
3656 Return nonzero iff there was any nonzero execution count. */
3657
3658 bool
update_max_bb_count(void)3659 update_max_bb_count (void)
3660 {
3661 profile_count true_count_max = profile_count::uninitialized ();
3662 basic_block bb;
3663
3664 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3665 true_count_max = true_count_max.max (bb->count);
3666
3667 cfun->cfg->count_max = true_count_max;
3668
3669 return true_count_max.ipa ().nonzero_p ();
3670 }
3671
3672 /* Return true if function is likely to be expensive, so there is no point to
3673 optimize performance of prologue, epilogue or do inlining at the expense
3674 of code size growth. THRESHOLD is the limit of number of instructions
3675 function can execute at average to be still considered not expensive. */
3676
3677 bool
expensive_function_p(int threshold)3678 expensive_function_p (int threshold)
3679 {
3680 basic_block bb;
3681
3682 /* If profile was scaled in a way entry block has count 0, then the function
3683 is deifnitly taking a lot of time. */
3684 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3685 return true;
3686
3687 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN
3688 (cfun)->count.apply_scale (threshold, 1);
3689 profile_count sum = profile_count::zero ();
3690 FOR_EACH_BB_FN (bb, cfun)
3691 {
3692 rtx_insn *insn;
3693
3694 if (!bb->count.initialized_p ())
3695 {
3696 if (dump_file)
3697 fprintf (dump_file, "Function is considered expensive because"
3698 " count of bb %i is not initialized\n", bb->index);
3699 return true;
3700 }
3701
3702 FOR_BB_INSNS (bb, insn)
3703 if (active_insn_p (insn))
3704 {
3705 sum += bb->count;
3706 if (sum > limit)
3707 return true;
3708 }
3709 }
3710
3711 return false;
3712 }
3713
3714 /* All basic blocks that are reachable only from unlikely basic blocks are
3715 unlikely. */
3716
3717 void
propagate_unlikely_bbs_forward(void)3718 propagate_unlikely_bbs_forward (void)
3719 {
3720 auto_vec<basic_block, 64> worklist;
3721 basic_block bb;
3722 edge_iterator ei;
3723 edge e;
3724
3725 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3726 {
3727 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3728 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3729
3730 while (worklist.length () > 0)
3731 {
3732 bb = worklist.pop ();
3733 FOR_EACH_EDGE (e, ei, bb->succs)
3734 if (!(e->count () == profile_count::zero ())
3735 && !(e->dest->count == profile_count::zero ())
3736 && !e->dest->aux)
3737 {
3738 e->dest->aux = (void *)(size_t) 1;
3739 worklist.safe_push (e->dest);
3740 }
3741 }
3742 }
3743
3744 FOR_ALL_BB_FN (bb, cfun)
3745 {
3746 if (!bb->aux)
3747 {
3748 if (!(bb->count == profile_count::zero ())
3749 && (dump_file && (dump_flags & TDF_DETAILS)))
3750 fprintf (dump_file,
3751 "Basic block %i is marked unlikely by forward prop\n",
3752 bb->index);
3753 bb->count = profile_count::zero ();
3754 }
3755 else
3756 bb->aux = NULL;
3757 }
3758 }
3759
3760 /* Determine basic blocks/edges that are known to be unlikely executed and set
3761 their counters to zero.
3762 This is done with first identifying obviously unlikely BBs/edges and then
3763 propagating in both directions. */
3764
3765 static void
determine_unlikely_bbs()3766 determine_unlikely_bbs ()
3767 {
3768 basic_block bb;
3769 auto_vec<basic_block, 64> worklist;
3770 edge_iterator ei;
3771 edge e;
3772
3773 FOR_EACH_BB_FN (bb, cfun)
3774 {
3775 if (!(bb->count == profile_count::zero ())
3776 && unlikely_executed_bb_p (bb))
3777 {
3778 if (dump_file && (dump_flags & TDF_DETAILS))
3779 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3780 bb->index);
3781 bb->count = profile_count::zero ();
3782 }
3783
3784 FOR_EACH_EDGE (e, ei, bb->succs)
3785 if (!(e->probability == profile_probability::never ())
3786 && unlikely_executed_edge_p (e))
3787 {
3788 if (dump_file && (dump_flags & TDF_DETAILS))
3789 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3790 bb->index, e->dest->index);
3791 e->probability = profile_probability::never ();
3792 }
3793
3794 gcc_checking_assert (!bb->aux);
3795 }
3796 propagate_unlikely_bbs_forward ();
3797
3798 auto_vec<int, 64> nsuccs;
3799 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
3800 FOR_ALL_BB_FN (bb, cfun)
3801 if (!(bb->count == profile_count::zero ())
3802 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3803 {
3804 nsuccs[bb->index] = 0;
3805 FOR_EACH_EDGE (e, ei, bb->succs)
3806 if (!(e->probability == profile_probability::never ())
3807 && !(e->dest->count == profile_count::zero ()))
3808 nsuccs[bb->index]++;
3809 if (!nsuccs[bb->index])
3810 worklist.safe_push (bb);
3811 }
3812 while (worklist.length () > 0)
3813 {
3814 bb = worklist.pop ();
3815 if (bb->count == profile_count::zero ())
3816 continue;
3817 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3818 {
3819 bool found = false;
3820 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3821 !gsi_end_p (gsi); gsi_next (&gsi))
3822 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3823 /* stmt_can_terminate_bb_p special cases noreturns because it
3824 assumes that fake edges are created. We want to know that
3825 noreturn alone does not imply BB to be unlikely. */
3826 || (is_gimple_call (gsi_stmt (gsi))
3827 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3828 {
3829 found = true;
3830 break;
3831 }
3832 if (found)
3833 continue;
3834 }
3835 if (dump_file && (dump_flags & TDF_DETAILS))
3836 fprintf (dump_file,
3837 "Basic block %i is marked unlikely by backward prop\n",
3838 bb->index);
3839 bb->count = profile_count::zero ();
3840 FOR_EACH_EDGE (e, ei, bb->preds)
3841 if (!(e->probability == profile_probability::never ()))
3842 {
3843 if (!(e->src->count == profile_count::zero ()))
3844 {
3845 gcc_checking_assert (nsuccs[e->src->index] > 0);
3846 nsuccs[e->src->index]--;
3847 if (!nsuccs[e->src->index])
3848 worklist.safe_push (e->src);
3849 }
3850 }
3851 }
3852 /* Finally all edges from non-0 regions to 0 are unlikely. */
3853 FOR_ALL_BB_FN (bb, cfun)
3854 {
3855 if (!(bb->count == profile_count::zero ()))
3856 FOR_EACH_EDGE (e, ei, bb->succs)
3857 if (!(e->probability == profile_probability::never ())
3858 && e->dest->count == profile_count::zero ())
3859 {
3860 if (dump_file && (dump_flags & TDF_DETAILS))
3861 fprintf (dump_file, "Edge %i->%i is unlikely because "
3862 "it enters unlikely block\n",
3863 bb->index, e->dest->index);
3864 e->probability = profile_probability::never ();
3865 }
3866
3867 edge other = NULL;
3868
3869 FOR_EACH_EDGE (e, ei, bb->succs)
3870 if (e->probability == profile_probability::never ())
3871 ;
3872 else if (other)
3873 {
3874 other = NULL;
3875 break;
3876 }
3877 else
3878 other = e;
3879 if (other
3880 && !(other->probability == profile_probability::always ()))
3881 {
3882 if (dump_file && (dump_flags & TDF_DETAILS))
3883 fprintf (dump_file, "Edge %i->%i is locally likely\n",
3884 bb->index, other->dest->index);
3885 other->probability = profile_probability::always ();
3886 }
3887 }
3888 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3889 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3890 }
3891
3892 /* Estimate and propagate basic block frequencies using the given branch
3893 probabilities. If FORCE is true, the frequencies are used to estimate
3894 the counts even when there are already non-zero profile counts. */
3895
3896 void
estimate_bb_frequencies(bool force)3897 estimate_bb_frequencies (bool force)
3898 {
3899 basic_block bb;
3900 sreal freq_max;
3901
3902 determine_unlikely_bbs ();
3903
3904 if (force || profile_status_for_fn (cfun) != PROFILE_READ
3905 || !update_max_bb_count ())
3906 {
3907
3908 mark_dfs_back_edges ();
3909
3910 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3911 profile_probability::always ();
3912
3913 /* Set up block info for each basic block. */
3914 alloc_aux_for_blocks (sizeof (block_info));
3915 alloc_aux_for_edges (sizeof (edge_prob_info));
3916 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3917 {
3918 edge e;
3919 edge_iterator ei;
3920
3921 FOR_EACH_EDGE (e, ei, bb->succs)
3922 {
3923 /* FIXME: Graphite is producing edges with no profile. Once
3924 this is fixed, drop this. */
3925 if (e->probability.initialized_p ())
3926 EDGE_INFO (e)->back_edge_prob
3927 = e->probability.to_sreal ();
3928 else
3929 /* back_edge_prob = 0.5 */
3930 EDGE_INFO (e)->back_edge_prob = sreal (1, -1);
3931 }
3932 }
3933
3934 /* First compute frequencies locally for each loop from innermost
3935 to outermost to examine frequencies for back edges. */
3936 estimate_loops ();
3937
3938 freq_max = 0;
3939 FOR_EACH_BB_FN (bb, cfun)
3940 if (freq_max < BLOCK_INFO (bb)->frequency)
3941 freq_max = BLOCK_INFO (bb)->frequency;
3942
3943 /* Scaling frequencies up to maximal profile count may result in
3944 frequent overflows especially when inlining loops.
3945 Small scalling results in unnecesary precision loss. Stay in
3946 the half of the (exponential) range. */
3947 freq_max = (sreal (1) << (profile_count::n_bits / 2)) / freq_max;
3948 if (freq_max < 16)
3949 freq_max = 16;
3950 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3951 cfun->cfg->count_max = profile_count::uninitialized ();
3952 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3953 {
3954 sreal tmp = BLOCK_INFO (bb)->frequency;
3955 if (tmp >= 1)
3956 {
3957 gimple_stmt_iterator gsi;
3958 tree decl;
3959
3960 /* Self recursive calls can not have frequency greater than 1
3961 or program will never terminate. This will result in an
3962 inconsistent bb profile but it is better than greatly confusing
3963 IPA cost metrics. */
3964 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3965 if (is_gimple_call (gsi_stmt (gsi))
3966 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
3967 && recursive_call_p (current_function_decl, decl))
3968 {
3969 if (dump_file)
3970 fprintf (dump_file, "Dropping frequency of recursive call"
3971 " in bb %i from %f\n", bb->index,
3972 tmp.to_double ());
3973 tmp = (sreal)9 / (sreal)10;
3974 break;
3975 }
3976 }
3977 tmp = tmp * freq_max + sreal (1, -1);
3978 profile_count count = profile_count::from_gcov_type (tmp.to_int ());
3979
3980 /* If we have profile feedback in which this function was never
3981 executed, then preserve this info. */
3982 if (!(bb->count == profile_count::zero ()))
3983 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
3984 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
3985 }
3986
3987 free_aux_for_blocks ();
3988 free_aux_for_edges ();
3989 }
3990 compute_function_frequency ();
3991 }
3992
3993 /* Decide whether function is hot, cold or unlikely executed. */
3994 void
compute_function_frequency(void)3995 compute_function_frequency (void)
3996 {
3997 basic_block bb;
3998 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3999
4000 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4001 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
4002 node->only_called_at_startup = true;
4003 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
4004 node->only_called_at_exit = true;
4005
4006 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ())
4007 {
4008 int flags = flags_from_decl_or_type (current_function_decl);
4009 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
4010 != NULL)
4011 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4012 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
4013 != NULL)
4014 node->frequency = NODE_FREQUENCY_HOT;
4015 else if (flags & ECF_NORETURN)
4016 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4017 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
4018 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4019 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4020 || DECL_STATIC_DESTRUCTOR (current_function_decl))
4021 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4022 return;
4023 }
4024
4025 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4026 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
4027 == NULL)
4028 warn_function_cold (current_function_decl);
4029 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
4030 return;
4031 FOR_EACH_BB_FN (bb, cfun)
4032 {
4033 if (maybe_hot_bb_p (cfun, bb))
4034 {
4035 node->frequency = NODE_FREQUENCY_HOT;
4036 return;
4037 }
4038 if (!probably_never_executed_bb_p (cfun, bb))
4039 node->frequency = NODE_FREQUENCY_NORMAL;
4040 }
4041 }
4042
4043 /* Build PREDICT_EXPR. */
4044 tree
build_predict_expr(enum br_predictor predictor,enum prediction taken)4045 build_predict_expr (enum br_predictor predictor, enum prediction taken)
4046 {
4047 tree t = build1 (PREDICT_EXPR, void_type_node,
4048 build_int_cst (integer_type_node, predictor));
4049 SET_PREDICT_EXPR_OUTCOME (t, taken);
4050 return t;
4051 }
4052
4053 const char *
predictor_name(enum br_predictor predictor)4054 predictor_name (enum br_predictor predictor)
4055 {
4056 return predictor_info[predictor].name;
4057 }
4058
4059 /* Predict branch probabilities and estimate profile of the tree CFG. */
4060
4061 namespace {
4062
4063 const pass_data pass_data_profile =
4064 {
4065 GIMPLE_PASS, /* type */
4066 "profile_estimate", /* name */
4067 OPTGROUP_NONE, /* optinfo_flags */
4068 TV_BRANCH_PROB, /* tv_id */
4069 PROP_cfg, /* properties_required */
4070 0, /* properties_provided */
4071 0, /* properties_destroyed */
4072 0, /* todo_flags_start */
4073 0, /* todo_flags_finish */
4074 };
4075
4076 class pass_profile : public gimple_opt_pass
4077 {
4078 public:
pass_profile(gcc::context * ctxt)4079 pass_profile (gcc::context *ctxt)
4080 : gimple_opt_pass (pass_data_profile, ctxt)
4081 {}
4082
4083 /* opt_pass methods: */
gate(function *)4084 virtual bool gate (function *) { return flag_guess_branch_prob; }
4085 virtual unsigned int execute (function *);
4086
4087 }; // class pass_profile
4088
4089 unsigned int
execute(function * fun)4090 pass_profile::execute (function *fun)
4091 {
4092 unsigned nb_loops;
4093
4094 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4095 return 0;
4096
4097 loop_optimizer_init (LOOPS_NORMAL);
4098 if (dump_file && (dump_flags & TDF_DETAILS))
4099 flow_loops_dump (dump_file, NULL, 0);
4100
4101 nb_loops = number_of_loops (fun);
4102 if (nb_loops > 1)
4103 scev_initialize ();
4104
4105 tree_estimate_probability (false);
4106
4107 if (nb_loops > 1)
4108 scev_finalize ();
4109
4110 loop_optimizer_finalize ();
4111 if (dump_file && (dump_flags & TDF_DETAILS))
4112 gimple_dump_cfg (dump_file, dump_flags);
4113 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4114 profile_status_for_fn (fun) = PROFILE_GUESSED;
4115 if (dump_file && (dump_flags & TDF_DETAILS))
4116 {
4117 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
4118 if (loop->header->count.initialized_p ())
4119 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
4120 loop->num,
4121 (int)expected_loop_iterations_unbounded (loop));
4122 }
4123 return 0;
4124 }
4125
4126 } // anon namespace
4127
4128 gimple_opt_pass *
make_pass_profile(gcc::context * ctxt)4129 make_pass_profile (gcc::context *ctxt)
4130 {
4131 return new pass_profile (ctxt);
4132 }
4133
4134 /* Return true when PRED predictor should be removed after early
4135 tree passes. Most of the predictors are beneficial to survive
4136 as early inlining can also distribute then into caller's bodies. */
4137
4138 static bool
strip_predictor_early(enum br_predictor pred)4139 strip_predictor_early (enum br_predictor pred)
4140 {
4141 switch (pred)
4142 {
4143 case PRED_TREE_EARLY_RETURN:
4144 return true;
4145 default:
4146 return false;
4147 }
4148 }
4149
4150 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4151 we no longer need. EARLY is set to true when called from early
4152 optimizations. */
4153
4154 unsigned int
strip_predict_hints(function * fun,bool early)4155 strip_predict_hints (function *fun, bool early)
4156 {
4157 basic_block bb;
4158 gimple *ass_stmt;
4159 tree var;
4160 bool changed = false;
4161
4162 FOR_EACH_BB_FN (bb, fun)
4163 {
4164 gimple_stmt_iterator bi;
4165 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4166 {
4167 gimple *stmt = gsi_stmt (bi);
4168
4169 if (gimple_code (stmt) == GIMPLE_PREDICT)
4170 {
4171 if (!early
4172 || strip_predictor_early (gimple_predict_predictor (stmt)))
4173 {
4174 gsi_remove (&bi, true);
4175 changed = true;
4176 continue;
4177 }
4178 }
4179 else if (is_gimple_call (stmt))
4180 {
4181 tree fndecl = gimple_call_fndecl (stmt);
4182
4183 if (!early
4184 && ((fndecl != NULL_TREE
4185 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
4186 && gimple_call_num_args (stmt) == 2)
4187 || (fndecl != NULL_TREE
4188 && fndecl_built_in_p (fndecl,
4189 BUILT_IN_EXPECT_WITH_PROBABILITY)
4190 && gimple_call_num_args (stmt) == 3)
4191 || (gimple_call_internal_p (stmt)
4192 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
4193 {
4194 var = gimple_call_lhs (stmt);
4195 changed = true;
4196 if (var)
4197 {
4198 ass_stmt
4199 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4200 gsi_replace (&bi, ass_stmt, true);
4201 }
4202 else
4203 {
4204 gsi_remove (&bi, true);
4205 continue;
4206 }
4207 }
4208 }
4209 gsi_next (&bi);
4210 }
4211 }
4212 return changed ? TODO_cleanup_cfg : 0;
4213 }
4214
4215 namespace {
4216
4217 const pass_data pass_data_strip_predict_hints =
4218 {
4219 GIMPLE_PASS, /* type */
4220 "*strip_predict_hints", /* name */
4221 OPTGROUP_NONE, /* optinfo_flags */
4222 TV_BRANCH_PROB, /* tv_id */
4223 PROP_cfg, /* properties_required */
4224 0, /* properties_provided */
4225 0, /* properties_destroyed */
4226 0, /* todo_flags_start */
4227 0, /* todo_flags_finish */
4228 };
4229
4230 class pass_strip_predict_hints : public gimple_opt_pass
4231 {
4232 public:
pass_strip_predict_hints(gcc::context * ctxt)4233 pass_strip_predict_hints (gcc::context *ctxt)
4234 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4235 {}
4236
4237 /* opt_pass methods: */
clone()4238 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
set_pass_param(unsigned int n,bool param)4239 void set_pass_param (unsigned int n, bool param)
4240 {
4241 gcc_assert (n == 0);
4242 early_p = param;
4243 }
4244
4245 virtual unsigned int execute (function *);
4246
4247 private:
4248 bool early_p;
4249
4250 }; // class pass_strip_predict_hints
4251
4252 unsigned int
execute(function * fun)4253 pass_strip_predict_hints::execute (function *fun)
4254 {
4255 return strip_predict_hints (fun, early_p);
4256 }
4257
4258 } // anon namespace
4259
4260 gimple_opt_pass *
make_pass_strip_predict_hints(gcc::context * ctxt)4261 make_pass_strip_predict_hints (gcc::context *ctxt)
4262 {
4263 return new pass_strip_predict_hints (ctxt);
4264 }
4265
4266 /* Rebuild function frequencies. Passes are in general expected to
4267 maintain profile by hand, however in some cases this is not possible:
4268 for example when inlining several functions with loops freuqencies might run
4269 out of scale and thus needs to be recomputed. */
4270
4271 void
rebuild_frequencies(void)4272 rebuild_frequencies (void)
4273 {
4274 timevar_push (TV_REBUILD_FREQUENCIES);
4275
4276 /* When the max bb count in the function is small, there is a higher
4277 chance that there were truncation errors in the integer scaling
4278 of counts by inlining and other optimizations. This could lead
4279 to incorrect classification of code as being cold when it isn't.
4280 In that case, force the estimation of bb counts/frequencies from the
4281 branch probabilities, rather than computing frequencies from counts,
4282 which may also lead to frequencies incorrectly reduced to 0. There
4283 is less precision in the probabilities, so we only do this for small
4284 max counts. */
4285 cfun->cfg->count_max = profile_count::uninitialized ();
4286 basic_block bb;
4287 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4288 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4289
4290 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4291 {
4292 loop_optimizer_init (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
4293 connect_infinite_loops_to_exit ();
4294 estimate_bb_frequencies (true);
4295 remove_fake_exit_edges ();
4296 loop_optimizer_finalize ();
4297 }
4298 else if (profile_status_for_fn (cfun) == PROFILE_READ)
4299 update_max_bb_count ();
4300 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4301 && !flag_guess_branch_prob)
4302 ;
4303 else
4304 gcc_unreachable ();
4305 timevar_pop (TV_REBUILD_FREQUENCIES);
4306 }
4307
4308 /* Perform a dry run of the branch prediction pass and report comparsion of
4309 the predicted and real profile into the dump file. */
4310
4311 void
report_predictor_hitrates(void)4312 report_predictor_hitrates (void)
4313 {
4314 unsigned nb_loops;
4315
4316 loop_optimizer_init (LOOPS_NORMAL);
4317 if (dump_file && (dump_flags & TDF_DETAILS))
4318 flow_loops_dump (dump_file, NULL, 0);
4319
4320 nb_loops = number_of_loops (cfun);
4321 if (nb_loops > 1)
4322 scev_initialize ();
4323
4324 tree_estimate_probability (true);
4325
4326 if (nb_loops > 1)
4327 scev_finalize ();
4328
4329 loop_optimizer_finalize ();
4330 }
4331
4332 /* Force edge E to be cold.
4333 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4334 keep low probability to represent possible error in a guess. This is used
4335 i.e. in case we predict loop to likely iterate given number of times but
4336 we are not 100% sure.
4337
4338 This function locally updates profile without attempt to keep global
4339 consistency which cannot be reached in full generality without full profile
4340 rebuild from probabilities alone. Doing so is not necessarily a good idea
4341 because frequencies and counts may be more realistic then probabilities.
4342
4343 In some cases (such as for elimination of early exits during full loop
4344 unrolling) the caller can ensure that profile will get consistent
4345 afterwards. */
4346
4347 void
force_edge_cold(edge e,bool impossible)4348 force_edge_cold (edge e, bool impossible)
4349 {
4350 profile_count count_sum = profile_count::zero ();
4351 profile_probability prob_sum = profile_probability::never ();
4352 edge_iterator ei;
4353 edge e2;
4354 bool uninitialized_exit = false;
4355
4356 /* When branch probability guesses are not known, then do nothing. */
4357 if (!impossible && !e->count ().initialized_p ())
4358 return;
4359
4360 profile_probability goal = (impossible ? profile_probability::never ()
4361 : profile_probability::very_unlikely ());
4362
4363 /* If edge is already improbably or cold, just return. */
4364 if (e->probability <= goal
4365 && (!impossible || e->count () == profile_count::zero ()))
4366 return;
4367 FOR_EACH_EDGE (e2, ei, e->src->succs)
4368 if (e2 != e)
4369 {
4370 if (e->flags & EDGE_FAKE)
4371 continue;
4372 if (e2->count ().initialized_p ())
4373 count_sum += e2->count ();
4374 if (e2->probability.initialized_p ())
4375 prob_sum += e2->probability;
4376 else
4377 uninitialized_exit = true;
4378 }
4379
4380 /* If we are not guessing profiles but have some other edges out,
4381 just assume the control flow goes elsewhere. */
4382 if (uninitialized_exit)
4383 e->probability = goal;
4384 /* If there are other edges out of e->src, redistribute probabilitity
4385 there. */
4386 else if (prob_sum > profile_probability::never ())
4387 {
4388 if (!(e->probability < goal))
4389 e->probability = goal;
4390
4391 profile_probability prob_comp = prob_sum / e->probability.invert ();
4392
4393 if (dump_file && (dump_flags & TDF_DETAILS))
4394 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4395 "probability to other edges.\n",
4396 e->src->index, e->dest->index,
4397 impossible ? "impossible" : "cold");
4398 FOR_EACH_EDGE (e2, ei, e->src->succs)
4399 if (e2 != e)
4400 {
4401 e2->probability /= prob_comp;
4402 }
4403 if (current_ir_type () != IR_GIMPLE
4404 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4405 update_br_prob_note (e->src);
4406 }
4407 /* If all edges out of e->src are unlikely, the basic block itself
4408 is unlikely. */
4409 else
4410 {
4411 if (prob_sum == profile_probability::never ())
4412 e->probability = profile_probability::always ();
4413 else
4414 {
4415 if (impossible)
4416 e->probability = profile_probability::never ();
4417 /* If BB has some edges out that are not impossible, we cannot
4418 assume that BB itself is. */
4419 impossible = false;
4420 }
4421 if (current_ir_type () != IR_GIMPLE
4422 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4423 update_br_prob_note (e->src);
4424 if (e->src->count == profile_count::zero ())
4425 return;
4426 if (count_sum == profile_count::zero () && impossible)
4427 {
4428 bool found = false;
4429 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4430 ;
4431 else if (current_ir_type () == IR_GIMPLE)
4432 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4433 !gsi_end_p (gsi); gsi_next (&gsi))
4434 {
4435 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4436 {
4437 found = true;
4438 break;
4439 }
4440 }
4441 /* FIXME: Implement RTL path. */
4442 else
4443 found = true;
4444 if (!found)
4445 {
4446 if (dump_file && (dump_flags & TDF_DETAILS))
4447 fprintf (dump_file,
4448 "Making bb %i impossible and dropping count to 0.\n",
4449 e->src->index);
4450 e->src->count = profile_count::zero ();
4451 FOR_EACH_EDGE (e2, ei, e->src->preds)
4452 force_edge_cold (e2, impossible);
4453 return;
4454 }
4455 }
4456
4457 /* If we did not adjusting, the source basic block has no likely edeges
4458 leaving other direction. In that case force that bb cold, too.
4459 This in general is difficult task to do, but handle special case when
4460 BB has only one predecestor. This is common case when we are updating
4461 after loop transforms. */
4462 if (!(prob_sum > profile_probability::never ())
4463 && count_sum == profile_count::zero ()
4464 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4465 > (impossible ? 0 : 1))
4466 {
4467 int old_frequency = e->src->count.to_frequency (cfun);
4468 if (dump_file && (dump_flags & TDF_DETAILS))
4469 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4470 impossible ? "impossible" : "cold");
4471 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4472 impossible ? 0 : 1);
4473 if (impossible)
4474 e->src->count = profile_count::zero ();
4475 else
4476 e->src->count = e->count ().apply_scale (new_frequency,
4477 old_frequency);
4478 force_edge_cold (single_pred_edge (e->src), impossible);
4479 }
4480 else if (dump_file && (dump_flags & TDF_DETAILS)
4481 && maybe_hot_bb_p (cfun, e->src))
4482 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4483 impossible ? "impossible" : "cold");
4484 }
4485 }
4486
4487 /* Change E's probability to NEW_E_PROB, redistributing the probabilities
4488 of other outgoing edges proportionally.
4489
4490 Note that this function does not change the profile counts of any
4491 basic blocks. The caller must do that instead, using whatever
4492 information it has about the region that needs updating. */
4493
4494 void
change_edge_frequency(edge e,profile_probability new_e_prob)4495 change_edge_frequency (edge e, profile_probability new_e_prob)
4496 {
4497 profile_probability old_e_prob = e->probability;
4498 profile_probability old_other_prob = old_e_prob.invert ();
4499 profile_probability new_other_prob = new_e_prob.invert ();
4500
4501 e->probability = new_e_prob;
4502 profile_probability cumulative_prob = new_e_prob;
4503
4504 unsigned int num_other = EDGE_COUNT (e->src->succs) - 1;
4505 edge other_e;
4506 edge_iterator ei;
4507 FOR_EACH_EDGE (other_e, ei, e->src->succs)
4508 if (other_e != e)
4509 {
4510 num_other -= 1;
4511 if (num_other == 0)
4512 /* Ensure that the probabilities add up to 1 without
4513 rounding error. */
4514 other_e->probability = cumulative_prob.invert ();
4515 else
4516 {
4517 other_e->probability /= old_other_prob;
4518 other_e->probability *= new_other_prob;
4519 cumulative_prob += other_e->probability;
4520 }
4521 }
4522 }
4523
4524 #if CHECKING_P
4525
4526 namespace selftest {
4527
4528 /* Test that value range of predictor values defined in predict.def is
4529 within range (50, 100]. */
4530
4531 struct branch_predictor
4532 {
4533 const char *name;
4534 int probability;
4535 };
4536
4537 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4538
4539 static void
test_prediction_value_range()4540 test_prediction_value_range ()
4541 {
4542 branch_predictor predictors[] = {
4543 #include "predict.def"
4544 { NULL, PROB_UNINITIALIZED }
4545 };
4546
4547 for (unsigned i = 0; predictors[i].name != NULL; i++)
4548 {
4549 if (predictors[i].probability == PROB_UNINITIALIZED)
4550 continue;
4551
4552 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4553 ASSERT_TRUE (p >= 50 && p <= 100);
4554 }
4555 }
4556
4557 #undef DEF_PREDICTOR
4558
4559 /* Run all of the selfests within this file. */
4560
4561 void
predict_cc_tests()4562 predict_cc_tests ()
4563 {
4564 test_prediction_value_range ();
4565 }
4566
4567 } // namespace selftest
4568 #endif /* CHECKING_P. */
4569