1 //===- Barvinok.cpp - Barvinok's Algorithm ----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Barvinok.h" 10 #include "mlir/Analysis/Presburger/Utils.h" 11 #include "llvm/ADT/Sequence.h" 12 #include <algorithm> 13 14 using namespace mlir; 15 using namespace presburger; 16 using namespace mlir::presburger::detail; 17 18 /// Assuming that the input cone is pointed at the origin, 19 /// converts it to its dual in V-representation. 20 /// Essentially we just remove the all-zeroes constant column. 21 ConeV mlir::presburger::detail::getDual(ConeH cone) { 22 unsigned numIneq = cone.getNumInequalities(); 23 unsigned numVar = cone.getNumCols() - 1; 24 ConeV dual(numIneq, numVar, 0, 0); 25 // Assuming that an inequality of the form 26 // a1*x1 + ... + an*xn + b ≥ 0 27 // is represented as a row [a1, ..., an, b] 28 // and that b = 0. 29 30 for (auto i : llvm::seq<int>(0, numIneq)) { 31 assert(cone.atIneq(i, numVar) == 0 && 32 "H-representation of cone is not centred at the origin!"); 33 for (unsigned j = 0; j < numVar; ++j) { 34 dual.at(i, j) = cone.atIneq(i, j); 35 } 36 } 37 38 // Now dual is of the form [ [a1, ..., an] , ... ] 39 // which is the V-representation of the dual. 40 return dual; 41 } 42 43 /// Converts a cone in V-representation to the H-representation 44 /// of its dual, pointed at the origin (not at the original vertex). 45 /// Essentially adds a column consisting only of zeroes to the end. 46 ConeH mlir::presburger::detail::getDual(ConeV cone) { 47 unsigned rows = cone.getNumRows(); 48 unsigned columns = cone.getNumColumns(); 49 ConeH dual = defineHRep(columns); 50 // Add a new column (for constants) at the end. 51 // This will be initialized to zero. 52 cone.insertColumn(columns); 53 54 for (unsigned i = 0; i < rows; ++i) 55 dual.addInequality(cone.getRow(i)); 56 57 // Now dual is of the form [ [a1, ..., an, 0] , ... ] 58 // which is the H-representation of the dual. 59 return dual; 60 } 61 62 /// Find the index of a cone in V-representation. 63 DynamicAPInt mlir::presburger::detail::getIndex(const ConeV &cone) { 64 if (cone.getNumRows() > cone.getNumColumns()) 65 return DynamicAPInt(0); 66 67 return cone.determinant(); 68 } 69 70 /// Compute the generating function for a unimodular cone. 71 /// This consists of a single term of the form 72 /// sign * x^num / prod_j (1 - x^den_j) 73 /// 74 /// sign is either +1 or -1. 75 /// den_j is defined as the set of generators of the cone. 76 /// num is computed by expressing the vertex as a weighted 77 /// sum of the generators, and then taking the floor of the 78 /// coefficients. 79 GeneratingFunction 80 mlir::presburger::detail::computeUnimodularConeGeneratingFunction( 81 ParamPoint vertex, int sign, const ConeH &cone) { 82 // Consider a cone with H-representation [0 -1]. 83 // [-1 -2] 84 // Let the vertex be given by the matrix [ 2 2 0], with 2 params. 85 // [-1 -1/2 1] 86 87 // `cone` must be unimodular. 88 assert(abs(getIndex(getDual(cone))) == 1 && "input cone is not unimodular!"); 89 90 unsigned numVar = cone.getNumVars(); 91 unsigned numIneq = cone.getNumInequalities(); 92 93 // Thus its ray matrix, U, is the inverse of the 94 // transpose of its inequality matrix, `cone`. 95 // The last column of the inequality matrix is null, 96 // so we remove it to obtain a square matrix. 97 FracMatrix transp = FracMatrix(cone.getInequalities()).transpose(); 98 transp.removeRow(numVar); 99 100 FracMatrix generators(numVar, numIneq); 101 transp.determinant(/*inverse=*/&generators); // This is the U-matrix. 102 // Thus the generators are given by U = [2 -1]. 103 // [-1 0] 104 105 // The powers in the denominator of the generating 106 // function are given by the generators of the cone, 107 // i.e., the rows of the matrix U. 108 std::vector<Point> denominator(numIneq); 109 ArrayRef<Fraction> row; 110 for (auto i : llvm::seq<int>(0, numVar)) { 111 row = generators.getRow(i); 112 denominator[i] = Point(row); 113 } 114 115 // The vertex is v \in Z^{d x (n+1)} 116 // We need to find affine functions of parameters λ_i(p) 117 // such that v = Σ λ_i(p)*u_i, 118 // where u_i are the rows of U (generators) 119 // The λ_i are given by the columns of Λ = v^T U^{-1}, and 120 // we have transp = U^{-1}. 121 // Then the exponent in the numerator will be 122 // Σ -floor(-λ_i(p))*u_i. 123 // Thus we store the (exponent of the) numerator as the affine function -Λ, 124 // since the generators u_i are already stored as the exponent of the 125 // denominator. Note that the outer -1 will have to be accounted for, as it is 126 // not stored. See end for an example. 127 128 unsigned numColumns = vertex.getNumColumns(); 129 unsigned numRows = vertex.getNumRows(); 130 ParamPoint numerator(numColumns, numRows); 131 SmallVector<Fraction> ithCol(numRows); 132 for (auto i : llvm::seq<int>(0, numColumns)) { 133 for (auto j : llvm::seq<int>(0, numRows)) 134 ithCol[j] = vertex(j, i); 135 numerator.setRow(i, transp.preMultiplyWithRow(ithCol)); 136 numerator.negateRow(i); 137 } 138 // Therefore Λ will be given by [ 1 0 ] and the negation of this will be 139 // [ 1/2 -1 ] 140 // [ -1 -2 ] 141 // stored as the numerator. 142 // Algebraically, the numerator exponent is 143 // [ -2 ⌊ - N - M/2 + 1 ⌋ + 1 ⌊ 0 + M + 2 ⌋ ] -> first COLUMN of U is [2, -1] 144 // [ 1 ⌊ - N - M/2 + 1 ⌋ + 0 ⌊ 0 + M + 2 ⌋ ] -> second COLUMN of U is [-1, 0] 145 146 return GeneratingFunction(numColumns - 1, SmallVector<int>(1, sign), 147 std::vector({numerator}), 148 std::vector({denominator})); 149 } 150 151 /// We use Gaussian elimination to find the solution to a set of d equations 152 /// of the form 153 /// a_1 x_1 + ... + a_d x_d + b_1 m_1 + ... + b_p m_p + c = 0 154 /// where x_i are variables, 155 /// m_i are parameters and 156 /// a_i, b_i, c are rational coefficients. 157 /// 158 /// The solution expresses each x_i as an affine function of the m_i, and is 159 /// therefore represented as a matrix of size d x (p+1). 160 /// If there is no solution, we return null. 161 std::optional<ParamPoint> 162 mlir::presburger::detail::solveParametricEquations(FracMatrix equations) { 163 // equations is a d x (d + p + 1) matrix. 164 // Each row represents an equation. 165 unsigned d = equations.getNumRows(); 166 unsigned numCols = equations.getNumColumns(); 167 168 // If the determinant is zero, there is no unique solution. 169 // Thus we return null. 170 if (FracMatrix(equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1, 171 /*fromColumn=*/0, 172 /*toColumn=*/d - 1)) 173 .determinant() == 0) 174 return std::nullopt; 175 176 // Perform row operations to make each column all zeros except for the 177 // diagonal element, which is made to be one. 178 for (unsigned i = 0; i < d; ++i) { 179 // First ensure that the diagonal element is nonzero, by swapping 180 // it with a row that is non-zero at column i. 181 if (equations(i, i) != 0) 182 continue; 183 for (unsigned j = i + 1; j < d; ++j) { 184 if (equations(j, i) == 0) 185 continue; 186 equations.swapRows(j, i); 187 break; 188 } 189 190 Fraction diagElement = equations(i, i); 191 192 // Apply row operations to make all elements except the diagonal to zero. 193 for (unsigned j = 0; j < d; ++j) { 194 if (i == j) 195 continue; 196 if (equations(j, i) == 0) 197 continue; 198 // Apply row operations to make element (j, i) zero by subtracting the 199 // ith row, appropriately scaled. 200 Fraction currentElement = equations(j, i); 201 equations.addToRow(/*sourceRow=*/i, /*targetRow=*/j, 202 /*scale=*/-currentElement / diagElement); 203 } 204 } 205 206 // Rescale diagonal elements to 1. 207 for (unsigned i = 0; i < d; ++i) 208 equations.scaleRow(i, 1 / equations(i, i)); 209 210 // Now we have reduced the equations to the form 211 // x_i + b_1' m_1 + ... + b_p' m_p + c' = 0 212 // i.e. each variable appears exactly once in the system, and has coefficient 213 // one. 214 // 215 // Thus we have 216 // x_i = - b_1' m_1 - ... - b_p' m_p - c 217 // and so we return the negation of the last p + 1 columns of the matrix. 218 // 219 // We copy these columns and return them. 220 ParamPoint vertex = 221 equations.getSubMatrix(/*fromRow=*/0, /*toRow=*/d - 1, 222 /*fromColumn=*/d, /*toColumn=*/numCols - 1); 223 vertex.negateMatrix(); 224 return vertex; 225 } 226 227 /// This is an implementation of the Clauss-Loechner algorithm for chamber 228 /// decomposition. 229 /// 230 /// We maintain a list of pairwise disjoint chambers and the generating 231 /// functions corresponding to each one. We iterate over the list of regions, 232 /// each time adding the current region's generating function to the chambers 233 /// where it is active and separating the chambers where it is not. 234 /// 235 /// Given the region each generating function is active in, for each subset of 236 /// generating functions the region that (the sum of) precisely this subset is 237 /// in, is the intersection of the regions that these are active in, 238 /// intersected with the complements of the remaining regions. 239 std::vector<std::pair<PresburgerSet, GeneratingFunction>> 240 mlir::presburger::detail::computeChamberDecomposition( 241 unsigned numSymbols, ArrayRef<std::pair<PresburgerSet, GeneratingFunction>> 242 regionsAndGeneratingFunctions) { 243 assert(!regionsAndGeneratingFunctions.empty() && 244 "there must be at least one chamber!"); 245 // We maintain a list of regions and their associated generating function 246 // initialized with the universe and the empty generating function. 247 std::vector<std::pair<PresburgerSet, GeneratingFunction>> chambers = { 248 {PresburgerSet::getUniverse(PresburgerSpace::getSetSpace(numSymbols)), 249 GeneratingFunction(numSymbols, {}, {}, {})}}; 250 251 // We iterate over the region list. 252 // 253 // For each activity region R_j (corresponding to the generating function 254 // gf_j), we examine all the current chambers R_i. 255 // 256 // If R_j has a full-dimensional intersection with an existing chamber R_i, 257 // then that chamber is replaced by two new ones: 258 // 1. the intersection R_i \cap R_j, where the generating function is 259 // gf_i + gf_j. 260 // 2. the difference R_i - R_j, where the generating function is gf_i. 261 // 262 // At each step, we define a new chamber list after considering gf_j, 263 // replacing and appending chambers as discussed above. 264 // 265 // The loop has the invariant that the union over all the chambers gives the 266 // universe at every step. 267 for (const auto &[region, generatingFunction] : 268 regionsAndGeneratingFunctions) { 269 std::vector<std::pair<PresburgerSet, GeneratingFunction>> newChambers; 270 271 for (const auto &[currentRegion, currentGeneratingFunction] : chambers) { 272 PresburgerSet intersection = currentRegion.intersect(region); 273 274 // If the intersection is not full-dimensional, we do not modify 275 // the chamber list. 276 if (!intersection.isFullDim()) { 277 newChambers.emplace_back(currentRegion, currentGeneratingFunction); 278 continue; 279 } 280 281 // If it is, we add the intersection and the difference as chambers. 282 newChambers.emplace_back(intersection, 283 currentGeneratingFunction + generatingFunction); 284 newChambers.emplace_back(currentRegion.subtract(region), 285 currentGeneratingFunction); 286 } 287 chambers = std::move(newChambers); 288 } 289 290 return chambers; 291 } 292 293 /// For a polytope expressed as a set of n inequalities, compute the generating 294 /// function corresponding to the lattice points included in the polytope. This 295 /// algorithm has three main steps: 296 /// 1. Enumerate the vertices, by iterating over subsets of inequalities and 297 /// checking for satisfiability. For each d-subset of inequalities (where d 298 /// is the number of variables), we solve to obtain the vertex in terms of 299 /// the parameters, and then check for the region in parameter space where 300 /// this vertex satisfies the remaining (n - d) inequalities. 301 /// 2. For each vertex, identify the tangent cone and compute the generating 302 /// function corresponding to it. The generating function depends on the 303 /// parametric expression of the vertex and the (non-parametric) generators 304 /// of the tangent cone. 305 /// 3. [Clauss-Loechner decomposition] Identify the regions in parameter space 306 /// (chambers) where each vertex is active, and accordingly compute the 307 /// GF of the polytope in each chamber. 308 /// 309 /// Verdoolaege, Sven, et al. "Counting integer points in parametric 310 /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): 311 /// 37-66. 312 std::vector<std::pair<PresburgerSet, GeneratingFunction>> 313 mlir::presburger::detail::computePolytopeGeneratingFunction( 314 const PolyhedronH &poly) { 315 unsigned numVars = poly.getNumRangeVars(); 316 unsigned numSymbols = poly.getNumSymbolVars(); 317 unsigned numIneqs = poly.getNumInequalities(); 318 319 // We store a list of the computed vertices. 320 std::vector<ParamPoint> vertices; 321 // For each vertex, we store the corresponding active region and the 322 // generating functions of the tangent cone, in order. 323 std::vector<std::pair<PresburgerSet, GeneratingFunction>> 324 regionsAndGeneratingFunctions; 325 326 // We iterate over all subsets of inequalities with cardinality numVars, 327 // using permutations of numVars 1's and (numIneqs - numVars) 0's. 328 // 329 // For a given permutation, we consider a subset which contains 330 // the i'th inequality if the i'th bit in the bitset is 1. 331 // 332 // We start with the permutation that takes the last numVars inequalities. 333 SmallVector<int> indicator(numIneqs); 334 for (unsigned i = numIneqs - numVars; i < numIneqs; ++i) 335 indicator[i] = 1; 336 337 do { 338 // Collect the inequalities corresponding to the bits which are set 339 // and the remaining ones. 340 auto [subset, remainder] = poly.getInequalities().splitByBitset(indicator); 341 // All other inequalities are stored in a2 and b2c2. 342 // 343 // These are column-wise splits of the inequalities; 344 // a2 stores the coefficients of the variables, and 345 // b2c2 stores the coefficients of the parameters and the constant term. 346 FracMatrix a2(numIneqs - numVars, numVars); 347 FracMatrix b2c2(numIneqs - numVars, numSymbols + 1); 348 a2 = FracMatrix( 349 remainder.getSubMatrix(0, numIneqs - numVars - 1, 0, numVars - 1)); 350 b2c2 = FracMatrix(remainder.getSubMatrix(0, numIneqs - numVars - 1, numVars, 351 numVars + numSymbols)); 352 353 // Find the vertex, if any, corresponding to the current subset of 354 // inequalities. 355 std::optional<ParamPoint> vertex = 356 solveParametricEquations(FracMatrix(subset)); // d x (p+1) 357 358 if (!vertex) 359 continue; 360 if (llvm::is_contained(vertices, vertex)) 361 continue; 362 // If this subset corresponds to a vertex that has not been considered, 363 // store it. 364 vertices.emplace_back(*vertex); 365 366 // If a vertex is formed by the intersection of more than d facets, we 367 // assume that any d-subset of these facets can be solved to obtain its 368 // expression. This assumption is valid because, if the vertex has two 369 // distinct parametric expressions, then a nontrivial equality among the 370 // parameters holds, which is a contradiction as we know the parameter 371 // space to be full-dimensional. 372 373 // Let the current vertex be [X | y], where 374 // X represents the coefficients of the parameters and 375 // y represents the constant term. 376 // 377 // The region (in parameter space) where this vertex is active is given 378 // by substituting the vertex into the *remaining* inequalities of the 379 // polytope (those which were not collected into `subset`), i.e., into the 380 // inequalities [A2 | B2 | c2]. 381 // 382 // Thus, the coefficients of the parameters after substitution become 383 // (A2 • X + B2) 384 // and the constant terms become 385 // (A2 • y + c2). 386 // 387 // The region is therefore given by 388 // (A2 • X + B2) p + (A2 • y + c2) ≥ 0 389 // 390 // This is equivalent to A2 • [X | y] + [B2 | c2]. 391 // 392 // Thus we premultiply [X | y] with each row of A2 393 // and add each row of [B2 | c2]. 394 FracMatrix activeRegion(numIneqs - numVars, numSymbols + 1); 395 for (unsigned i = 0; i < numIneqs - numVars; i++) { 396 activeRegion.setRow(i, vertex->preMultiplyWithRow(a2.getRow(i))); 397 activeRegion.addToRow(i, b2c2.getRow(i), 1); 398 } 399 400 // We convert the representation of the active region to an integers-only 401 // form so as to store it as a PresburgerSet. 402 IntegerPolyhedron activeRegionRel( 403 PresburgerSpace::getRelationSpace(0, numSymbols, 0, 0), activeRegion); 404 405 // Now, we compute the generating function at this vertex. 406 // We collect the inequalities corresponding to each vertex to compute 407 // the tangent cone at that vertex. 408 // 409 // We only need the coefficients of the variables (NOT the parameters) 410 // as the generating function only depends on these. 411 // We translate the cones to be pointed at the origin by making the 412 // constant terms zero. 413 ConeH tangentCone = defineHRep(numVars); 414 for (unsigned j = 0, e = subset.getNumRows(); j < e; ++j) { 415 SmallVector<DynamicAPInt> ineq(numVars + 1); 416 for (unsigned k = 0; k < numVars; ++k) 417 ineq[k] = subset(j, k); 418 tangentCone.addInequality(ineq); 419 } 420 // We assume that the tangent cone is unimodular, so there is no need 421 // to decompose it. 422 // 423 // In the general case, the unimodular decomposition may have several 424 // cones. 425 GeneratingFunction vertexGf(numSymbols, {}, {}, {}); 426 SmallVector<std::pair<int, ConeH>, 4> unimodCones = {{1, tangentCone}}; 427 for (const std::pair<int, ConeH> &signedCone : unimodCones) { 428 auto [sign, cone] = signedCone; 429 vertexGf = vertexGf + 430 computeUnimodularConeGeneratingFunction(*vertex, sign, cone); 431 } 432 // We store the vertex we computed with the generating function of its 433 // tangent cone. 434 regionsAndGeneratingFunctions.emplace_back(PresburgerSet(activeRegionRel), 435 vertexGf); 436 } while (std::next_permutation(indicator.begin(), indicator.end())); 437 438 // Now, we use Clauss-Loechner decomposition to identify regions in parameter 439 // space where each vertex is active. These regions (chambers) have the 440 // property that no two of them have a full-dimensional intersection, i.e., 441 // they may share "facets" or "edges", but their intersection can only have 442 // up to numVars - 1 dimensions. 443 // 444 // In each chamber, we sum up the generating functions of the active vertices 445 // to find the generating function of the polytope. 446 return computeChamberDecomposition(numSymbols, regionsAndGeneratingFunctions); 447 } 448 449 /// We use an iterative procedure to find a vector not orthogonal 450 /// to a given set, ignoring the null vectors. 451 /// Let the inputs be {x_1, ..., x_k}, all vectors of length n. 452 /// 453 /// In the following, 454 /// vs[:i] means the elements of vs up to and including the i'th one, 455 /// <vs, us> means the dot product of vs and us, 456 /// vs ++ [v] means the vector vs with the new element v appended to it. 457 /// 458 /// We proceed iteratively; for steps d = 0, ... n-1, we construct a vector 459 /// which is not orthogonal to any of {x_1[:d], ..., x_n[:d]}, ignoring 460 /// the null vectors. 461 /// At step d = 0, we let vs = [1]. Clearly this is not orthogonal to 462 /// any vector in the set {x_1[0], ..., x_n[0]}, except the null ones, 463 /// which we ignore. 464 /// At step d > 0 , we need a number v 465 /// s.t. <x_i[:d], vs++[v]> != 0 for all i. 466 /// => <x_i[:d-1], vs> + x_i[d]*v != 0 467 /// => v != - <x_i[:d-1], vs> / x_i[d] 468 /// We compute this value for all x_i, and then 469 /// set v to be the maximum element of this set plus one. Thus 470 /// v is outside the set as desired, and we append it to vs 471 /// to obtain the result of the d'th step. 472 Point mlir::presburger::detail::getNonOrthogonalVector( 473 ArrayRef<Point> vectors) { 474 unsigned dim = vectors[0].size(); 475 assert(llvm::all_of( 476 vectors, 477 [&dim](const Point &vector) { return vector.size() == dim; }) && 478 "all vectors need to be the same size!"); 479 480 SmallVector<Fraction> newPoint = {Fraction(1, 1)}; 481 Fraction maxDisallowedValue = -Fraction(1, 0), 482 disallowedValue = Fraction(0, 1); 483 484 for (unsigned d = 1; d < dim; ++d) { 485 // Compute the disallowed values - <x_i[:d-1], vs> / x_i[d] for each i. 486 maxDisallowedValue = -Fraction(1, 0); 487 for (const Point &vector : vectors) { 488 if (vector[d] == 0) 489 continue; 490 disallowedValue = 491 -dotProduct(ArrayRef(vector).slice(0, d), newPoint) / vector[d]; 492 493 // Find the biggest such value 494 maxDisallowedValue = std::max(maxDisallowedValue, disallowedValue); 495 } 496 newPoint.emplace_back(maxDisallowedValue + 1); 497 } 498 return newPoint; 499 } 500 501 /// We use the following recursive formula to find the coefficient of 502 /// s^power in the rational function given by P(s)/Q(s). 503 /// 504 /// Let P[i] denote the coefficient of s^i in the polynomial P(s). 505 /// (P/Q)[r] = 506 /// if (r == 0) then 507 /// P[0]/Q[0] 508 /// else 509 /// (P[r] - {Σ_{i=1}^r (P/Q)[r-i] * Q[i])}/(Q[0]) 510 /// We therefore recursively call `getCoefficientInRationalFunction` on 511 /// all i \in [0, power). 512 /// 513 /// https://math.ucdavis.edu/~deloera/researchsummary/ 514 /// barvinokalgorithm-latte1.pdf, p. 1285 515 QuasiPolynomial mlir::presburger::detail::getCoefficientInRationalFunction( 516 unsigned power, ArrayRef<QuasiPolynomial> num, ArrayRef<Fraction> den) { 517 assert(!den.empty() && "division by empty denominator in rational function!"); 518 519 unsigned numParam = num[0].getNumInputs(); 520 // We use the `isEqual` method of PresburgerSpace, which QuasiPolynomial 521 // inherits from. 522 assert(llvm::all_of(num, 523 [&num](const QuasiPolynomial &qp) { 524 return num[0].isEqual(qp); 525 }) && 526 "the quasipolynomials should all belong to the same space!"); 527 528 std::vector<QuasiPolynomial> coefficients; 529 coefficients.reserve(power + 1); 530 531 coefficients.emplace_back(num[0] / den[0]); 532 for (unsigned i = 1; i <= power; ++i) { 533 // If the power is not there in the numerator, the coefficient is zero. 534 coefficients.emplace_back(i < num.size() ? num[i] 535 : QuasiPolynomial(numParam, 0)); 536 537 // After den.size(), the coefficients are zero, so we stop 538 // subtracting at that point (if it is less than i). 539 unsigned limit = std::min<unsigned long>(i, den.size() - 1); 540 for (unsigned j = 1; j <= limit; ++j) 541 coefficients[i] = coefficients[i] - 542 coefficients[i - j] * QuasiPolynomial(numParam, den[j]); 543 544 coefficients[i] = coefficients[i] / den[0]; 545 } 546 return coefficients[power].simplify(); 547 } 548 549 /// Substitute x_i = t^μ_i in one term of a generating function, returning 550 /// a quasipolynomial which represents the exponent of the numerator 551 /// of the result, and a vector which represents the exponents of the 552 /// denominator of the result. 553 /// If the returned value is {num, dens}, it represents the function 554 /// t^num / \prod_j (1 - t^dens[j]). 555 /// v represents the affine functions whose floors are multiplied by the 556 /// generators, and ds represents the list of generators. 557 std::pair<QuasiPolynomial, std::vector<Fraction>> 558 substituteMuInTerm(unsigned numParams, const ParamPoint &v, 559 const std::vector<Point> &ds, const Point &mu) { 560 unsigned numDims = mu.size(); 561 #ifndef NDEBUG 562 for (const Point &d : ds) 563 assert(d.size() == numDims && 564 "μ has to have the same number of dimensions as the generators!"); 565 #endif 566 567 // First, the exponent in the numerator becomes 568 // - (μ • u_1) * (floor(first col of v)) 569 // - (μ • u_2) * (floor(second col of v)) - ... 570 // - (μ • u_d) * (floor(d'th col of v)) 571 // So we store the negation of the dot products. 572 573 // We have d terms, each of whose coefficient is the negative dot product. 574 SmallVector<Fraction> coefficients; 575 coefficients.reserve(numDims); 576 for (const Point &d : ds) 577 coefficients.emplace_back(-dotProduct(mu, d)); 578 579 // Then, the affine function is a single floor expression, given by the 580 // corresponding column of v. 581 ParamPoint vTranspose = v.transpose(); 582 std::vector<std::vector<SmallVector<Fraction>>> affine; 583 affine.reserve(numDims); 584 for (unsigned j = 0; j < numDims; ++j) 585 affine.push_back({SmallVector<Fraction>{vTranspose.getRow(j)}}); 586 587 QuasiPolynomial num(numParams, coefficients, affine); 588 num = num.simplify(); 589 590 std::vector<Fraction> dens; 591 dens.reserve(ds.size()); 592 // Similarly, each term in the denominator has exponent 593 // given by the dot product of μ with u_i. 594 for (const Point &d : ds) { 595 // This term in the denominator is 596 // (1 - t^dens.back()) 597 dens.emplace_back(dotProduct(d, mu)); 598 } 599 600 return {num, dens}; 601 } 602 603 /// Normalize all denominator exponents `dens` to their absolute values 604 /// by multiplying and dividing by the inverses, in a function of the form 605 /// sign * t^num / prod_j (1 - t^dens[j]). 606 /// Here, sign = ± 1, 607 /// num is a QuasiPolynomial, and 608 /// each dens[j] is a Fraction. 609 void normalizeDenominatorExponents(int &sign, QuasiPolynomial &num, 610 std::vector<Fraction> &dens) { 611 // We track the number of exponents that are negative in the 612 // denominator, and convert them to their absolute values. 613 unsigned numNegExps = 0; 614 Fraction sumNegExps(0, 1); 615 for (const auto &den : dens) { 616 if (den < 0) { 617 numNegExps += 1; 618 sumNegExps += den; 619 } 620 } 621 622 // If we have (1 - t^-c) in the denominator, for positive c, 623 // multiply and divide by t^c. 624 // We convert all negative-exponent terms at once; therefore 625 // we multiply and divide by t^sumNegExps. 626 // Then we get 627 // -(1 - t^c) in the denominator, 628 // increase the numerator by c, and 629 // flip the sign of the function. 630 if (numNegExps % 2 == 1) 631 sign = -sign; 632 num = num - QuasiPolynomial(num.getNumInputs(), sumNegExps); 633 } 634 635 /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, 636 /// where n is a QuasiPolynomial. 637 std::vector<QuasiPolynomial> getBinomialCoefficients(const QuasiPolynomial &n, 638 unsigned r) { 639 unsigned numParams = n.getNumInputs(); 640 std::vector<QuasiPolynomial> coefficients; 641 coefficients.reserve(r + 1); 642 coefficients.emplace_back(numParams, 1); 643 for (unsigned j = 1; j <= r; ++j) 644 // We use the recursive formula for binomial coefficients here and below. 645 coefficients.emplace_back( 646 (coefficients[j - 1] * (n - QuasiPolynomial(numParams, j - 1)) / 647 Fraction(j, 1)) 648 .simplify()); 649 return coefficients; 650 } 651 652 /// Compute the binomial coefficients nCi for 0 ≤ i ≤ r, 653 /// where n is a QuasiPolynomial. 654 std::vector<Fraction> getBinomialCoefficients(const Fraction &n, 655 const Fraction &r) { 656 std::vector<Fraction> coefficients; 657 coefficients.reserve((int64_t)floor(r)); 658 coefficients.emplace_back(1); 659 for (unsigned j = 1; j <= r; ++j) 660 coefficients.emplace_back(coefficients[j - 1] * (n - (j - 1)) / (j)); 661 return coefficients; 662 } 663 664 /// We have a generating function of the form 665 /// f_p(x) = \sum_i sign_i * (x^n_i(p)) / (\prod_j (1 - x^d_{ij}) 666 /// 667 /// where sign_i is ±1, 668 /// n_i \in Q^p -> Q^d is the sum of the vectors d_{ij}, weighted by the 669 /// floors of d affine functions on p parameters. 670 /// d_{ij} \in Q^d are vectors. 671 /// 672 /// We need to find the number of terms of the form x^t in the expansion of 673 /// this function. 674 /// However, direct substitution (x = (1, ..., 1)) causes the denominator 675 /// to become zero. 676 /// 677 /// We therefore use the following procedure instead: 678 /// 1. Substitute x_i = (s+1)^μ_i for some vector μ. This makes the generating 679 /// function a function of a scalar s. 680 /// 2. Write each term in this function as P(s)/Q(s), where P and Q are 681 /// polynomials. P has coefficients as quasipolynomials in d parameters, while 682 /// Q has coefficients as scalars. 683 /// 3. Find the constant term in the expansion of each term P(s)/Q(s). This is 684 /// equivalent to substituting s = 0. 685 /// 686 /// Verdoolaege, Sven, et al. "Counting integer points in parametric 687 /// polytopes using Barvinok's rational functions." Algorithmica 48 (2007): 688 /// 37-66. 689 QuasiPolynomial 690 mlir::presburger::detail::computeNumTerms(const GeneratingFunction &gf) { 691 // Step (1) We need to find a μ such that we can substitute x_i = 692 // (s+1)^μ_i. After this substitution, the exponent of (s+1) in the 693 // denominator is (μ_i • d_{ij}) in each term. Clearly, this cannot become 694 // zero. Hence we find a vector μ that is not orthogonal to any of the 695 // d_{ij} and substitute x accordingly. 696 std::vector<Point> allDenominators; 697 for (ArrayRef<Point> den : gf.getDenominators()) 698 allDenominators.insert(allDenominators.end(), den.begin(), den.end()); 699 Point mu = getNonOrthogonalVector(allDenominators); 700 701 unsigned numParams = gf.getNumParams(); 702 const std::vector<std::vector<Point>> &ds = gf.getDenominators(); 703 QuasiPolynomial totalTerm(numParams, 0); 704 for (unsigned i = 0, e = ds.size(); i < e; ++i) { 705 int sign = gf.getSigns()[i]; 706 707 // Compute the new exponents of (s+1) for the numerator and the 708 // denominator after substituting μ. 709 auto [numExp, dens] = 710 substituteMuInTerm(numParams, gf.getNumerators()[i], ds[i], mu); 711 // Now the numerator is (s+1)^numExp 712 // and the denominator is \prod_j (1 - (s+1)^dens[j]). 713 714 // Step (2) We need to express the terms in the function as quotients of 715 // polynomials. Each term is now of the form 716 // sign_i * (s+1)^numExp / (\prod_j (1 - (s+1)^dens[j])) 717 // For the i'th term, we first normalize the denominator to have only 718 // positive exponents. We convert all the dens[j] to their 719 // absolute values and change the sign and exponent in the numerator. 720 normalizeDenominatorExponents(sign, numExp, dens); 721 722 // Then, using the formula for geometric series, we replace each (1 - 723 // (s+1)^(dens[j])) with 724 // (-s)(\sum_{0 ≤ k < dens[j]} (s+1)^k). 725 for (auto &j : dens) 726 j = abs(j) - 1; 727 // Note that at this point, the semantics of `dens[j]` changes to mean 728 // a term (\sum_{0 ≤ k ≤ dens[j]} (s+1)^k). The denominator is, as before, 729 // a product of these terms. 730 731 // Since the -s are taken out, the sign changes if there is an odd number 732 // of such terms. 733 unsigned r = dens.size(); 734 if (dens.size() % 2 == 1) 735 sign = -sign; 736 737 // Thus the term overall now has the form 738 // sign'_i * (s+1)^numExp / 739 // (s^r * \prod_j (\sum_{0 ≤ k < dens[j]} (s+1)^k)). 740 // This means that 741 // the numerator is a polynomial in s, with coefficients as 742 // quasipolynomials (given by binomial coefficients), and the denominator 743 // is a polynomial in s, with integral coefficients (given by taking the 744 // convolution over all j). 745 746 // Step (3) We need to find the constant term in the expansion of each 747 // term. Since each term has s^r as a factor in the denominator, we avoid 748 // substituting s = 0 directly; instead, we find the coefficient of s^r in 749 // sign'_i * (s+1)^numExp / (\prod_j (\sum_k (s+1)^k)), 750 // Letting P(s) = (s+1)^numExp and Q(s) = \prod_j (...), 751 // we need to find the coefficient of s^r in P(s)/Q(s), 752 // for which we use the `getCoefficientInRationalFunction()` function. 753 754 // First, we compute the coefficients of P(s), which are binomial 755 // coefficients. 756 // We only need the first r+1 of these, as higher-order terms do not 757 // contribute to the coefficient of s^r. 758 std::vector<QuasiPolynomial> numeratorCoefficients = 759 getBinomialCoefficients(numExp, r); 760 761 // Then we compute the coefficients of each individual term in Q(s), 762 // which are (dens[i]+1) C (k+1) for 0 ≤ k ≤ dens[i]. 763 std::vector<std::vector<Fraction>> eachTermDenCoefficients; 764 std::vector<Fraction> singleTermDenCoefficients; 765 eachTermDenCoefficients.reserve(r); 766 for (const Fraction &den : dens) { 767 singleTermDenCoefficients = getBinomialCoefficients(den + 1, den + 1); 768 eachTermDenCoefficients.emplace_back( 769 ArrayRef<Fraction>(singleTermDenCoefficients).drop_front()); 770 } 771 772 // Now we find the coefficients in Q(s) itself 773 // by taking the convolution of the coefficients 774 // of all the terms. 775 std::vector<Fraction> denominatorCoefficients; 776 denominatorCoefficients = eachTermDenCoefficients[0]; 777 for (unsigned j = 1, e = eachTermDenCoefficients.size(); j < e; ++j) 778 denominatorCoefficients = multiplyPolynomials(denominatorCoefficients, 779 eachTermDenCoefficients[j]); 780 781 totalTerm = 782 totalTerm + getCoefficientInRationalFunction(r, numeratorCoefficients, 783 denominatorCoefficients) * 784 QuasiPolynomial(numParams, sign); 785 } 786 787 return totalTerm.simplify(); 788 } 789