xref: /netbsd-src/sys/dev/audio/audio.c (revision 7d8e907f96b421a61a03a1f417499d1c5430b322)
1 /*	$NetBSD: audio.c,v 1.146 2024/05/27 02:47:53 nia Exp $	*/
2 
3 /*-
4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1991-1993 Regents of the University of California.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by the Computer Systems
47  *	Engineering Group at Lawrence Berkeley Laboratory.
48  * 4. Neither the name of the University nor of the Laboratory may be used
49  *    to endorse or promote products derived from this software without
50  *    specific prior written permission.
51  *
52  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62  * SUCH DAMAGE.
63  */
64 
65 /*
66  * Terminology: "sample", "channel", "frame", "block", "track":
67  *
68  *  channel       frame
69  *   |           ........
70  *   v           :      :                                    \
71  *        +------:------:------:-  -+------+ : +------+-..   |
72  *  #0(L) |sample|sample|sample| .. |sample| : |sample|      |
73  *        +------:------:------:-  -+------+ : +------+-..   |
74  *  #1(R) |sample|sample|sample| .. |sample| : |sample|      |
75  *        +------:------:------:-  -+------+ : +------+-..   | track
76  *   :           :      :                    :               |
77  *        +------:------:------:-  -+------+ : +------+-..   |
78  *        |sample|sample|sample| .. |sample| : |sample|      |
79  *        +------:------:------:-  -+------+ : +------+-..   |
80  *               :      :                                    /
81  *               ........
82  *
83  *        \--------------------------------/   \--------..
84  *                     block
85  *
86  * - A "frame" is the minimum unit in the time axis direction, and consists
87  *   of samples for the number of channels.
88  * - A "block" is basic length of processing.  The audio layer basically
89  *   handles audio data stream block by block, asks underlying hardware to
90  *   process them block by block, and then the hardware raises interrupt by
91  *   each block.
92  * - A "track" is single completed audio stream.
93  *
94  * For example, the hardware block is assumed to be 10 msec, and your audio
95  * track consists of 2.1(=3) channels 44.1kHz 16bit PCM,
96  *
97  * "channel" = 3
98  * "sample" = 2 [bytes]
99  * "frame" = 2 [bytes/sample] * 3 [channels] = 6 [bytes]
100  * "block" = 44100 [Hz] * (10/1000) [seconds] * 6 [bytes/frame] = 2646 [bytes]
101  *
102  * The terminologies shown here are only for this MI audio layer.  Note that
103  * different terminologies may be used in each manufacturer's datasheet, and
104  * each MD driver may follow it.  For example, what we call a "block" is
105  * called a "frame" in sys/dev/pci/yds.c.
106  */
107 
108 /*
109  * Locking: there are three locks per device.
110  *
111  * - sc_lock, provided by the underlying driver.  This is an adaptive lock,
112  *   returned in the second parameter to hw_if->get_locks().  It is known
113  *   as the "thread lock".
114  *
115  *   It serializes access to state in all places except the
116  *   driver's interrupt service routine.  This lock is taken from process
117  *   context (example: access to /dev/audio).  It is also taken from soft
118  *   interrupt handlers in this module, primarily to serialize delivery of
119  *   wakeups.  This lock may be used/provided by modules external to the
120  *   audio subsystem, so take care not to introduce a lock order problem.
121  *   LONG TERM SLEEPS MUST NOT OCCUR WITH THIS LOCK HELD.
122  *
123  * - sc_intr_lock, provided by the underlying driver.  This may be either a
124  *   spinlock (at IPL_SCHED or IPL_VM) or an adaptive lock (IPL_NONE or
125  *   IPL_SOFT*), returned in the first parameter to hw_if->get_locks().  It
126  *   is known as the "interrupt lock".
127  *
128  *   It provides atomic access to the device's hardware state, and to audio
129  *   channel data that may be accessed by the hardware driver's ISR.
130  *   In all places outside the ISR, sc_lock must be held before taking
131  *   sc_intr_lock.  This is to ensure that groups of hardware operations are
132  *   made atomically.  SLEEPS CANNOT OCCUR WITH THIS LOCK HELD.
133  *
134  * - sc_exlock, private to this module.  This is a variable protected by
135  *   sc_lock.  It is known as the "critical section".
136  *   Some operations release sc_lock in order to allocate memory, to wait
137  *   for in-flight I/O to complete, to copy to/from user context, etc.
138  *   sc_exlock provides a critical section even under the circumstance.
139  *   "+" in following list indicates the interfaces which necessary to be
140  *   protected by sc_exlock.
141  *
142  * List of hardware interface methods, and which locks are held when each
143  * is called by this module:
144  *
145  *	METHOD			INTR	THREAD  NOTES
146  *	----------------------- ------- -------	-------------------------
147  *	open 			x	x +
148  *	close 			x	x +
149  *	query_format		-	x
150  *	set_format		-	x
151  *	round_blocksize		-	x
152  *	commit_settings		-	x
153  *	init_output 		x	x
154  *	init_input 		x	x
155  *	start_output 		x	x +
156  *	start_input 		x	x +
157  *	halt_output 		x	x +
158  *	halt_input 		x	x +
159  *	speaker_ctl 		x	x
160  *	getdev 			-	-
161  *	set_port 		-	x +
162  *	get_port 		-	x +
163  *	query_devinfo 		-	x
164  *	allocm 			-	- +
165  *	freem 			-	- +
166  *	round_buffersize 	-	x
167  *	get_props 		-	-	Called at attach time
168  *	trigger_output 		x	x +
169  *	trigger_input 		x	x +
170  *	dev_ioctl 		-	x
171  *	get_locks 		-	-	Called at attach time
172  *
173  * In addition, there is an additional lock.
174  *
175  * - track->lock.  This is an atomic variable and is similar to the
176  *   "interrupt lock".  This is one for each track.  If any thread context
177  *   (and software interrupt context) and hardware interrupt context who
178  *   want to access some variables on this track, they must acquire this
179  *   lock before.  It protects track's consistency between hardware
180  *   interrupt context and others.
181  */
182 
183 #include <sys/cdefs.h>
184 __KERNEL_RCSID(0, "$NetBSD: audio.c,v 1.146 2024/05/27 02:47:53 nia Exp $");
185 
186 #ifdef _KERNEL_OPT
187 #include "audio.h"
188 #include "midi.h"
189 #endif
190 
191 #if NAUDIO > 0
192 
193 #include <sys/types.h>
194 #include <sys/param.h>
195 #include <sys/atomic.h>
196 #include <sys/audioio.h>
197 #include <sys/conf.h>
198 #include <sys/cpu.h>
199 #include <sys/device.h>
200 #include <sys/fcntl.h>
201 #include <sys/file.h>
202 #include <sys/filedesc.h>
203 #include <sys/intr.h>
204 #include <sys/ioctl.h>
205 #include <sys/kauth.h>
206 #include <sys/kernel.h>
207 #include <sys/kmem.h>
208 #include <sys/lock.h>
209 #include <sys/malloc.h>
210 #include <sys/mman.h>
211 #include <sys/module.h>
212 #include <sys/poll.h>
213 #include <sys/proc.h>
214 #include <sys/queue.h>
215 #include <sys/select.h>
216 #include <sys/signalvar.h>
217 #include <sys/stat.h>
218 #include <sys/sysctl.h>
219 #include <sys/systm.h>
220 #include <sys/syslog.h>
221 #include <sys/vnode.h>
222 
223 #include <dev/audio/audio_if.h>
224 #include <dev/audio/audiovar.h>
225 #include <dev/audio/audiodef.h>
226 #include <dev/audio/linear.h>
227 #include <dev/audio/mulaw.h>
228 
229 #include <machine/endian.h>
230 
231 #include <uvm/uvm_extern.h>
232 
233 #include "ioconf.h"
234 
235 /*
236  * 0: No debug logs
237  * 1: action changes like open/close/set_format/mmap...
238  * 2: + normal operations like read/write/ioctl...
239  * 3: + TRACEs except interrupt
240  * 4: + TRACEs including interrupt
241  */
242 //#define AUDIO_DEBUG 1
243 
244 #if defined(AUDIO_DEBUG)
245 
246 int audiodebug = AUDIO_DEBUG;
247 static void audio_vtrace(struct audio_softc *sc, const char *, const char *,
248 	const char *, va_list);
249 static void audio_trace(struct audio_softc *sc, const char *, const char *, ...)
250 	__printflike(3, 4);
251 static void audio_tracet(const char *, audio_track_t *, const char *, ...)
252 	__printflike(3, 4);
253 static void audio_tracef(const char *, audio_file_t *, const char *, ...)
254 	__printflike(3, 4);
255 
256 /* XXX sloppy memory logger */
257 static void audio_mlog_init(void);
258 static void audio_mlog_free(void);
259 static void audio_mlog_softintr(void *);
260 extern void audio_mlog_flush(void);
261 extern void audio_mlog_printf(const char *, ...);
262 
263 static int mlog_refs;		/* reference counter */
264 static char *mlog_buf[2];	/* double buffer */
265 static int mlog_buflen;		/* buffer length */
266 static int mlog_used;		/* used length */
267 static int mlog_full;		/* number of dropped lines by buffer full */
268 static int mlog_drop;		/* number of dropped lines by busy */
269 static volatile uint32_t mlog_inuse;	/* in-use */
270 static int mlog_wpage;		/* active page */
271 static void *mlog_sih;		/* softint handle */
272 
273 static void
audio_mlog_init(void)274 audio_mlog_init(void)
275 {
276 	mlog_refs++;
277 	if (mlog_refs > 1)
278 		return;
279 	mlog_buflen = 4096;
280 	mlog_buf[0] = kmem_zalloc(mlog_buflen, KM_SLEEP);
281 	mlog_buf[1] = kmem_zalloc(mlog_buflen, KM_SLEEP);
282 	mlog_used = 0;
283 	mlog_full = 0;
284 	mlog_drop = 0;
285 	mlog_inuse = 0;
286 	mlog_wpage = 0;
287 	mlog_sih = softint_establish(SOFTINT_SERIAL, audio_mlog_softintr, NULL);
288 	if (mlog_sih == NULL)
289 		printf("%s: softint_establish failed\n", __func__);
290 }
291 
292 static void
audio_mlog_free(void)293 audio_mlog_free(void)
294 {
295 	mlog_refs--;
296 	if (mlog_refs > 0)
297 		return;
298 
299 	audio_mlog_flush();
300 	if (mlog_sih)
301 		softint_disestablish(mlog_sih);
302 	kmem_free(mlog_buf[0], mlog_buflen);
303 	kmem_free(mlog_buf[1], mlog_buflen);
304 }
305 
306 /*
307  * Flush memory buffer.
308  * It must not be called from hardware interrupt context.
309  */
310 void
audio_mlog_flush(void)311 audio_mlog_flush(void)
312 {
313 	if (mlog_refs == 0)
314 		return;
315 
316 	/* Nothing to do if already in use ? */
317 	if (atomic_swap_32(&mlog_inuse, 1) == 1)
318 		return;
319 	membar_acquire();
320 
321 	int rpage = mlog_wpage;
322 	mlog_wpage ^= 1;
323 	mlog_buf[mlog_wpage][0] = '\0';
324 	mlog_used = 0;
325 
326 	atomic_store_release(&mlog_inuse, 0);
327 
328 	if (mlog_buf[rpage][0] != '\0') {
329 		printf("%s", mlog_buf[rpage]);
330 		if (mlog_drop > 0)
331 			printf("mlog_drop %d\n", mlog_drop);
332 		if (mlog_full > 0)
333 			printf("mlog_full %d\n", mlog_full);
334 	}
335 	mlog_full = 0;
336 	mlog_drop = 0;
337 }
338 
339 static void
audio_mlog_softintr(void * cookie)340 audio_mlog_softintr(void *cookie)
341 {
342 	audio_mlog_flush();
343 }
344 
345 void
audio_mlog_printf(const char * fmt,...)346 audio_mlog_printf(const char *fmt, ...)
347 {
348 	int len;
349 	va_list ap;
350 
351 	if (atomic_swap_32(&mlog_inuse, 1) == 1) {
352 		/* already inuse */
353 		mlog_drop++;
354 		return;
355 	}
356 	membar_acquire();
357 
358 	va_start(ap, fmt);
359 	len = vsnprintf(
360 	    mlog_buf[mlog_wpage] + mlog_used,
361 	    mlog_buflen - mlog_used,
362 	    fmt, ap);
363 	va_end(ap);
364 
365 	mlog_used += len;
366 	if (mlog_buflen - mlog_used <= 1) {
367 		mlog_full++;
368 	}
369 
370 	atomic_store_release(&mlog_inuse, 0);
371 
372 	if (mlog_sih)
373 		softint_schedule(mlog_sih);
374 }
375 
376 /* trace functions */
377 static void
audio_vtrace(struct audio_softc * sc,const char * funcname,const char * header,const char * fmt,va_list ap)378 audio_vtrace(struct audio_softc *sc, const char *funcname, const char *header,
379 	const char *fmt, va_list ap)
380 {
381 	char buf[256];
382 	int n;
383 
384 	n = 0;
385 	buf[0] = '\0';
386 	n += snprintf(buf + n, sizeof(buf) - n, "%s@%d %s",
387 	    funcname, device_unit(sc->sc_dev), header);
388 	n += vsnprintf(buf + n, sizeof(buf) - n, fmt, ap);
389 
390 	if (cpu_intr_p()) {
391 		audio_mlog_printf("%s\n", buf);
392 	} else {
393 		audio_mlog_flush();
394 		printf("%s\n", buf);
395 	}
396 }
397 
398 static void
audio_trace(struct audio_softc * sc,const char * funcname,const char * fmt,...)399 audio_trace(struct audio_softc *sc, const char *funcname, const char *fmt, ...)
400 {
401 	va_list ap;
402 
403 	va_start(ap, fmt);
404 	audio_vtrace(sc, funcname, "", fmt, ap);
405 	va_end(ap);
406 }
407 
408 static void
audio_tracet(const char * funcname,audio_track_t * track,const char * fmt,...)409 audio_tracet(const char *funcname, audio_track_t *track, const char *fmt, ...)
410 {
411 	char hdr[16];
412 	va_list ap;
413 
414 	snprintf(hdr, sizeof(hdr), "#%d ", track->id);
415 	va_start(ap, fmt);
416 	audio_vtrace(track->mixer->sc, funcname, hdr, fmt, ap);
417 	va_end(ap);
418 }
419 
420 static void
audio_tracef(const char * funcname,audio_file_t * file,const char * fmt,...)421 audio_tracef(const char *funcname, audio_file_t *file, const char *fmt, ...)
422 {
423 	char hdr[32];
424 	char phdr[16], rhdr[16];
425 	va_list ap;
426 
427 	phdr[0] = '\0';
428 	rhdr[0] = '\0';
429 	if (file->ptrack)
430 		snprintf(phdr, sizeof(phdr), "#%d", file->ptrack->id);
431 	if (file->rtrack)
432 		snprintf(rhdr, sizeof(rhdr), "#%d", file->rtrack->id);
433 	snprintf(hdr, sizeof(hdr), "{%s,%s} ", phdr, rhdr);
434 
435 	va_start(ap, fmt);
436 	audio_vtrace(file->sc, funcname, hdr, fmt, ap);
437 	va_end(ap);
438 }
439 
440 #define DPRINTF(n, fmt...)	do {	\
441 	if (audiodebug >= (n)) {	\
442 		audio_mlog_flush();	\
443 		printf(fmt);		\
444 	}				\
445 } while (0)
446 #define TRACE(n, fmt...)	do { \
447 	if (audiodebug >= (n)) audio_trace(sc, __func__, fmt); \
448 } while (0)
449 #define TRACET(n, t, fmt...)	do { \
450 	if (audiodebug >= (n)) audio_tracet(__func__, t, fmt); \
451 } while (0)
452 #define TRACEF(n, f, fmt...)	do { \
453 	if (audiodebug >= (n)) audio_tracef(__func__, f, fmt); \
454 } while (0)
455 
456 struct audio_track_debugbuf {
457 	char usrbuf[32];
458 	char codec[32];
459 	char chvol[32];
460 	char chmix[32];
461 	char freq[32];
462 	char outbuf[32];
463 };
464 
465 static void
audio_track_bufstat(audio_track_t * track,struct audio_track_debugbuf * buf)466 audio_track_bufstat(audio_track_t *track, struct audio_track_debugbuf *buf)
467 {
468 
469 	memset(buf, 0, sizeof(*buf));
470 
471 	snprintf(buf->outbuf, sizeof(buf->outbuf), " out=%d/%d/%d",
472 	    track->outbuf.head, track->outbuf.used, track->outbuf.capacity);
473 	if (track->freq.filter)
474 		snprintf(buf->freq, sizeof(buf->freq), " f=%d/%d/%d",
475 		    track->freq.srcbuf.head,
476 		    track->freq.srcbuf.used,
477 		    track->freq.srcbuf.capacity);
478 	if (track->chmix.filter)
479 		snprintf(buf->chmix, sizeof(buf->chmix), " m=%d",
480 		    track->chmix.srcbuf.used);
481 	if (track->chvol.filter)
482 		snprintf(buf->chvol, sizeof(buf->chvol), " v=%d",
483 		    track->chvol.srcbuf.used);
484 	if (track->codec.filter)
485 		snprintf(buf->codec, sizeof(buf->codec), " e=%d",
486 		    track->codec.srcbuf.used);
487 	snprintf(buf->usrbuf, sizeof(buf->usrbuf), " usr=%d/%d/H%d",
488 	    track->usrbuf.head, track->usrbuf.used, track->usrbuf_usedhigh);
489 }
490 #else
491 #define DPRINTF(n, fmt...)	do { } while (0)
492 #define TRACE(n, fmt, ...)	do { } while (0)
493 #define TRACET(n, t, fmt, ...)	do { } while (0)
494 #define TRACEF(n, f, fmt, ...)	do { } while (0)
495 #endif
496 
497 #define SPECIFIED(x)	((x) != ~0)
498 #define SPECIFIED_CH(x)	((x) != (u_char)~0)
499 
500 /*
501  * Default hardware blocksize in msec.
502  *
503  * We use 10 msec for most modern platforms.  This period is good enough to
504  * play audio and video synchronizely.
505  * In contrast, for very old platforms, this is usually too short and too
506  * severe.  Also such platforms usually can not play video confortably, so
507  * it's not so important to make the blocksize shorter.  If the platform
508  * defines its own value as __AUDIO_BLK_MS in its <machine/param.h>, it
509  * uses this instead.
510  *
511  * In either case, you can overwrite AUDIO_BLK_MS by your kernel
512  * configuration file if you wish.
513  */
514 #if !defined(AUDIO_BLK_MS)
515 # if defined(__AUDIO_BLK_MS)
516 #  define AUDIO_BLK_MS __AUDIO_BLK_MS
517 # else
518 #  define AUDIO_BLK_MS (10)
519 # endif
520 #endif
521 
522 /* Device timeout in msec */
523 #define AUDIO_TIMEOUT	(3000)
524 
525 /* #define AUDIO_PM_IDLE */
526 #ifdef AUDIO_PM_IDLE
527 int audio_idle_timeout = 30;
528 #endif
529 
530 /* Number of elements of async mixer's pid */
531 #define AM_CAPACITY	(4)
532 
533 struct portname {
534 	const char *name;
535 	int mask;
536 };
537 
538 static int audiomatch(device_t, cfdata_t, void *);
539 static void audioattach(device_t, device_t, void *);
540 static int audiodetach(device_t, int);
541 static int audioactivate(device_t, enum devact);
542 static void audiochilddet(device_t, device_t);
543 static int audiorescan(device_t, const char *, const int *);
544 
545 static int audio_modcmd(modcmd_t, void *);
546 
547 #ifdef AUDIO_PM_IDLE
548 static void audio_idle(void *);
549 static void audio_activity(device_t, devactive_t);
550 #endif
551 
552 static bool audio_suspend(device_t dv, const pmf_qual_t *);
553 static bool audio_resume(device_t dv, const pmf_qual_t *);
554 static void audio_volume_down(device_t);
555 static void audio_volume_up(device_t);
556 static void audio_volume_toggle(device_t);
557 
558 static void audio_mixer_capture(struct audio_softc *);
559 static void audio_mixer_restore(struct audio_softc *);
560 
561 static void audio_softintr_rd(void *);
562 static void audio_softintr_wr(void *);
563 
564 static int audio_properties(struct audio_softc *);
565 static void audio_printf(struct audio_softc *, const char *, ...)
566 	__printflike(2, 3);
567 static int audio_exlock_mutex_enter(struct audio_softc *);
568 static void audio_exlock_mutex_exit(struct audio_softc *);
569 static int audio_exlock_enter(struct audio_softc *);
570 static void audio_exlock_exit(struct audio_softc *);
571 static struct audio_softc *audio_sc_acquire_fromfile(audio_file_t *,
572 	struct psref *);
573 static void audio_sc_release(struct audio_softc *, struct psref *);
574 static int audio_track_waitio(struct audio_softc *, audio_track_t *,
575 	const char *mess);
576 
577 static int audioclose(struct file *);
578 static int audioread(struct file *, off_t *, struct uio *, kauth_cred_t, int);
579 static int audiowrite(struct file *, off_t *, struct uio *, kauth_cred_t, int);
580 static int audioioctl(struct file *, u_long, void *);
581 static int audiopoll(struct file *, int);
582 static int audiokqfilter(struct file *, struct knote *);
583 static int audiommap(struct file *, off_t *, size_t, int, int *, int *,
584 	struct uvm_object **, int *);
585 static int audiostat(struct file *, struct stat *);
586 
587 static void filt_audiowrite_detach(struct knote *);
588 static int  filt_audiowrite_event(struct knote *, long);
589 static void filt_audioread_detach(struct knote *);
590 static int  filt_audioread_event(struct knote *, long);
591 
592 static int audio_open(dev_t, struct audio_softc *, int, int, struct lwp *,
593 	audio_file_t **);
594 static int audio_close(struct audio_softc *, audio_file_t *);
595 static void audio_unlink(struct audio_softc *, audio_file_t *);
596 static int audio_read(struct audio_softc *, struct uio *, int, audio_file_t *);
597 static int audio_write(struct audio_softc *, struct uio *, int, audio_file_t *);
598 static void audio_file_clear(struct audio_softc *, audio_file_t *);
599 static int audio_ioctl(dev_t, struct audio_softc *, u_long, void *, int,
600 	struct lwp *, audio_file_t *);
601 static int audio_poll(struct audio_softc *, int, struct lwp *, audio_file_t *);
602 static int audio_kqfilter(struct audio_softc *, audio_file_t *, struct knote *);
603 static int audio_mmap(struct audio_softc *, off_t *, size_t, int, int *, int *,
604 	struct uvm_object **, int *, audio_file_t *);
605 
606 static int audioctl_open(dev_t, struct audio_softc *, int, int, struct lwp *);
607 
608 static void audio_pintr(void *);
609 static void audio_rintr(void *);
610 
611 static int audio_query_devinfo(struct audio_softc *, mixer_devinfo_t *);
612 
613 static int audio_track_inputblk_as_usrbyte(const audio_track_t *, int);
614 static int audio_track_readablebytes(const audio_track_t *);
615 static int audio_file_setinfo(struct audio_softc *, audio_file_t *,
616 	const struct audio_info *);
617 static int audio_track_setinfo_check(audio_track_t *,
618 	audio_format2_t *, const struct audio_prinfo *);
619 static void audio_track_setinfo_water(audio_track_t *,
620 	const struct audio_info *);
621 static int audio_hw_setinfo(struct audio_softc *, const struct audio_info *,
622 	struct audio_info *);
623 static int audio_hw_set_format(struct audio_softc *, int,
624 	const audio_format2_t *, const audio_format2_t *,
625 	audio_filter_reg_t *, audio_filter_reg_t *);
626 static int audiogetinfo(struct audio_softc *, struct audio_info *, int,
627 	audio_file_t *);
628 static bool audio_can_playback(struct audio_softc *);
629 static bool audio_can_capture(struct audio_softc *);
630 static int audio_check_params(audio_format2_t *);
631 static int audio_mixers_init(struct audio_softc *sc, int,
632 	const audio_format2_t *, const audio_format2_t *,
633 	const audio_filter_reg_t *, const audio_filter_reg_t *);
634 static int audio_select_freq(const struct audio_format *);
635 static int audio_hw_probe(struct audio_softc *, audio_format2_t *, int);
636 static int audio_hw_validate_format(struct audio_softc *, int,
637 	const audio_format2_t *);
638 static int audio_mixers_set_format(struct audio_softc *,
639 	const struct audio_info *);
640 static void audio_mixers_get_format(struct audio_softc *, struct audio_info *);
641 static int audio_sysctl_blk_ms(SYSCTLFN_PROTO);
642 static int audio_sysctl_multiuser(SYSCTLFN_PROTO);
643 #if defined(AUDIO_DEBUG)
644 static int audio_sysctl_debug(SYSCTLFN_PROTO);
645 static void audio_format2_tostr(char *, size_t, const audio_format2_t *);
646 static void audio_print_format2(const char *, const audio_format2_t *) __unused;
647 #endif
648 
649 static void *audio_realloc(void *, size_t);
650 static void audio_free_usrbuf(audio_track_t *);
651 
652 static audio_track_t *audio_track_create(struct audio_softc *,
653 	audio_trackmixer_t *);
654 static void audio_track_destroy(audio_track_t *);
655 static audio_filter_t audio_track_get_codec(audio_track_t *,
656 	const audio_format2_t *, const audio_format2_t *);
657 static int audio_track_set_format(audio_track_t *, audio_format2_t *);
658 static void audio_track_play(audio_track_t *);
659 static int audio_track_drain(struct audio_softc *, audio_track_t *);
660 static void audio_track_record(audio_track_t *);
661 static void audio_track_clear(struct audio_softc *, audio_track_t *);
662 
663 static int audio_mixer_init(struct audio_softc *, int,
664 	const audio_format2_t *, const audio_filter_reg_t *);
665 static void audio_mixer_destroy(struct audio_softc *, audio_trackmixer_t *);
666 static void audio_pmixer_start(struct audio_softc *, bool);
667 static void audio_pmixer_process(struct audio_softc *);
668 static void audio_pmixer_agc(audio_trackmixer_t *, int);
669 static int  audio_pmixer_mix_track(audio_trackmixer_t *, audio_track_t *, int);
670 static void audio_pmixer_output(struct audio_softc *);
671 static int  audio_pmixer_halt(struct audio_softc *);
672 static void audio_rmixer_start(struct audio_softc *);
673 static void audio_rmixer_process(struct audio_softc *);
674 static void audio_rmixer_input(struct audio_softc *);
675 static int  audio_rmixer_halt(struct audio_softc *);
676 
677 static void mixer_init(struct audio_softc *);
678 static int mixer_open(dev_t, struct audio_softc *, int, int, struct lwp *);
679 static int mixer_close(struct audio_softc *, audio_file_t *);
680 static int mixer_ioctl(struct audio_softc *, u_long, void *, int, struct lwp *);
681 static void mixer_async_add(struct audio_softc *, pid_t);
682 static void mixer_async_remove(struct audio_softc *, pid_t);
683 static void mixer_signal(struct audio_softc *);
684 
685 static int au_portof(struct audio_softc *, char *, int);
686 
687 static void au_setup_ports(struct audio_softc *, struct au_mixer_ports *,
688 	mixer_devinfo_t *, const struct portname *);
689 static int au_set_lr_value(struct audio_softc *, mixer_ctrl_t *, int, int);
690 static int au_get_lr_value(struct audio_softc *, mixer_ctrl_t *, int *, int *);
691 static int au_set_gain(struct audio_softc *, struct au_mixer_ports *, int, int);
692 static void au_get_gain(struct audio_softc *, struct au_mixer_ports *,
693 	u_int *, u_char *);
694 static int au_set_port(struct audio_softc *, struct au_mixer_ports *, u_int);
695 static int au_get_port(struct audio_softc *, struct au_mixer_ports *);
696 static int au_set_monitor_gain(struct audio_softc *, int);
697 static int au_get_monitor_gain(struct audio_softc *);
698 static int audio_get_port(struct audio_softc *, mixer_ctrl_t *);
699 static int audio_set_port(struct audio_softc *, mixer_ctrl_t *);
700 
701 void audio_mixsample_to_linear(audio_filter_arg_t *);
702 
703 static __inline struct audio_params
format2_to_params(const audio_format2_t * f2)704 format2_to_params(const audio_format2_t *f2)
705 {
706 	audio_params_t p;
707 
708 	/* validbits/precision <-> precision/stride */
709 	p.sample_rate = f2->sample_rate;
710 	p.channels    = f2->channels;
711 	p.encoding    = f2->encoding;
712 	p.validbits   = f2->precision;
713 	p.precision   = f2->stride;
714 	return p;
715 }
716 
717 static __inline audio_format2_t
params_to_format2(const struct audio_params * p)718 params_to_format2(const struct audio_params *p)
719 {
720 	audio_format2_t f2;
721 
722 	/* precision/stride <-> validbits/precision */
723 	f2.sample_rate = p->sample_rate;
724 	f2.channels    = p->channels;
725 	f2.encoding    = p->encoding;
726 	f2.precision   = p->validbits;
727 	f2.stride      = p->precision;
728 	return f2;
729 }
730 
731 /* Return true if this track is a playback track. */
732 static __inline bool
audio_track_is_playback(const audio_track_t * track)733 audio_track_is_playback(const audio_track_t *track)
734 {
735 
736 	return ((track->mode & AUMODE_PLAY) != 0);
737 }
738 
739 #if 0
740 /* Return true if this track is a recording track. */
741 static __inline bool
742 audio_track_is_record(const audio_track_t *track)
743 {
744 
745 	return ((track->mode & AUMODE_RECORD) != 0);
746 }
747 #endif
748 
749 #if 0 /* XXX Not used yet */
750 /*
751  * Convert 0..255 volume used in userland to internal presentation 0..256.
752  */
753 static __inline u_int
754 audio_volume_to_inner(u_int v)
755 {
756 
757 	return v < 127 ? v : v + 1;
758 }
759 
760 /*
761  * Convert 0..256 internal presentation to 0..255 volume used in userland.
762  */
763 static __inline u_int
764 audio_volume_to_outer(u_int v)
765 {
766 
767 	return v < 127 ? v : v - 1;
768 }
769 #endif /* 0 */
770 
771 static dev_type_open(audioopen);
772 /* XXXMRG use more dev_type_xxx */
773 
774 static int
audiounit(dev_t dev)775 audiounit(dev_t dev)
776 {
777 
778 	return AUDIOUNIT(dev);
779 }
780 
781 const struct cdevsw audio_cdevsw = {
782 	.d_open = audioopen,
783 	.d_close = noclose,
784 	.d_read = noread,
785 	.d_write = nowrite,
786 	.d_ioctl = noioctl,
787 	.d_stop = nostop,
788 	.d_tty = notty,
789 	.d_poll = nopoll,
790 	.d_mmap = nommap,
791 	.d_kqfilter = nokqfilter,
792 	.d_discard = nodiscard,
793 	.d_cfdriver = &audio_cd,
794 	.d_devtounit = audiounit,
795 	.d_flag = D_OTHER | D_MPSAFE
796 };
797 
798 const struct fileops audio_fileops = {
799 	.fo_name = "audio",
800 	.fo_read = audioread,
801 	.fo_write = audiowrite,
802 	.fo_ioctl = audioioctl,
803 	.fo_fcntl = fnullop_fcntl,
804 	.fo_stat = audiostat,
805 	.fo_poll = audiopoll,
806 	.fo_close = audioclose,
807 	.fo_mmap = audiommap,
808 	.fo_kqfilter = audiokqfilter,
809 	.fo_restart = fnullop_restart
810 };
811 
812 /* The default audio mode: 8 kHz mono mu-law */
813 static const struct audio_params audio_default = {
814 	.sample_rate = 8000,
815 	.encoding = AUDIO_ENCODING_ULAW,
816 	.precision = 8,
817 	.validbits = 8,
818 	.channels = 1,
819 };
820 
821 static const char *encoding_names[] = {
822 	"none",
823 	AudioEmulaw,
824 	AudioEalaw,
825 	"pcm16",
826 	"pcm8",
827 	AudioEadpcm,
828 	AudioEslinear_le,
829 	AudioEslinear_be,
830 	AudioEulinear_le,
831 	AudioEulinear_be,
832 	AudioEslinear,
833 	AudioEulinear,
834 	AudioEmpeg_l1_stream,
835 	AudioEmpeg_l1_packets,
836 	AudioEmpeg_l1_system,
837 	AudioEmpeg_l2_stream,
838 	AudioEmpeg_l2_packets,
839 	AudioEmpeg_l2_system,
840 	AudioEac3,
841 };
842 
843 /*
844  * Returns encoding name corresponding to AUDIO_ENCODING_*.
845  * Note that it may return a local buffer because it is mainly for debugging.
846  */
847 const char *
audio_encoding_name(int encoding)848 audio_encoding_name(int encoding)
849 {
850 	static char buf[16];
851 
852 	if (0 <= encoding && encoding < __arraycount(encoding_names)) {
853 		return encoding_names[encoding];
854 	} else {
855 		snprintf(buf, sizeof(buf), "enc=%d", encoding);
856 		return buf;
857 	}
858 }
859 
860 /*
861  * Supported encodings used by AUDIO_GETENC.
862  * index and flags are set by code.
863  * XXX is there any needs for SLINEAR_OE:>=16/ULINEAR_OE:>=16 ?
864  */
865 static const audio_encoding_t audio_encodings[] = {
866 	{ 0, AudioEmulaw,	AUDIO_ENCODING_ULAW,		8,  0 },
867 	{ 0, AudioEalaw,	AUDIO_ENCODING_ALAW,		8,  0 },
868 	{ 0, AudioEslinear,	AUDIO_ENCODING_SLINEAR,		8,  0 },
869 	{ 0, AudioEulinear,	AUDIO_ENCODING_ULINEAR,		8,  0 },
870 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	16, 0 },
871 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	16, 0 },
872 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	16, 0 },
873 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	16, 0 },
874 #if defined(AUDIO_SUPPORT_LINEAR24)
875 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	24, 0 },
876 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	24, 0 },
877 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	24, 0 },
878 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	24, 0 },
879 #endif
880 	{ 0, AudioEslinear_le,	AUDIO_ENCODING_SLINEAR_LE,	32, 0 },
881 	{ 0, AudioEulinear_le,	AUDIO_ENCODING_ULINEAR_LE,	32, 0 },
882 	{ 0, AudioEslinear_be,	AUDIO_ENCODING_SLINEAR_BE,	32, 0 },
883 	{ 0, AudioEulinear_be,	AUDIO_ENCODING_ULINEAR_BE,	32, 0 },
884 };
885 
886 static const struct portname itable[] = {
887 	{ AudioNmicrophone,	AUDIO_MICROPHONE },
888 	{ AudioNline,		AUDIO_LINE_IN },
889 	{ AudioNcd,		AUDIO_CD },
890 	{ 0, 0 }
891 };
892 static const struct portname otable[] = {
893 	{ AudioNspeaker,	AUDIO_SPEAKER },
894 	{ AudioNheadphone,	AUDIO_HEADPHONE },
895 	{ AudioNline,		AUDIO_LINE_OUT },
896 	{ 0, 0 }
897 };
898 
899 static struct psref_class *audio_psref_class __read_mostly;
900 
901 CFATTACH_DECL3_NEW(audio, sizeof(struct audio_softc),
902     audiomatch, audioattach, audiodetach, audioactivate, audiorescan,
903     audiochilddet, DVF_DETACH_SHUTDOWN);
904 
905 static int
audiomatch(device_t parent,cfdata_t match,void * aux)906 audiomatch(device_t parent, cfdata_t match, void *aux)
907 {
908 	struct audio_attach_args *sa;
909 
910 	sa = aux;
911 	DPRINTF(1, "%s: type=%d sa=%p hw=%p\n",
912 	     __func__, sa->type, sa, sa->hwif);
913 	return (sa->type == AUDIODEV_TYPE_AUDIO) ? 1 : 0;
914 }
915 
916 static void
audioattach(device_t parent,device_t self,void * aux)917 audioattach(device_t parent, device_t self, void *aux)
918 {
919 	struct audio_softc *sc;
920 	struct audio_attach_args *sa;
921 	const struct audio_hw_if *hw_if;
922 	audio_format2_t phwfmt;
923 	audio_format2_t rhwfmt;
924 	audio_filter_reg_t pfil;
925 	audio_filter_reg_t rfil;
926 	const struct sysctlnode *node;
927 	void *hdlp;
928 	bool has_playback;
929 	bool has_capture;
930 	bool has_indep;
931 	bool has_fulldup;
932 	int mode;
933 	int error;
934 
935 	sc = device_private(self);
936 	sc->sc_dev = self;
937 	sa = (struct audio_attach_args *)aux;
938 	hw_if = sa->hwif;
939 	hdlp = sa->hdl;
940 
941 	if (hw_if == NULL) {
942 		panic("audioattach: missing hw_if method");
943 	}
944 	if (hw_if->get_locks == NULL || hw_if->get_props == NULL) {
945 		aprint_error(": missing mandatory method\n");
946 		return;
947 	}
948 
949 	hw_if->get_locks(hdlp, &sc->sc_intr_lock, &sc->sc_lock);
950 	sc->sc_props = hw_if->get_props(hdlp);
951 
952 	has_playback = (sc->sc_props & AUDIO_PROP_PLAYBACK);
953 	has_capture  = (sc->sc_props & AUDIO_PROP_CAPTURE);
954 	has_indep    = (sc->sc_props & AUDIO_PROP_INDEPENDENT);
955 	has_fulldup  = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
956 
957 #ifdef DIAGNOSTIC
958 	if (hw_if->query_format == NULL ||
959 	    hw_if->set_format == NULL ||
960 	    hw_if->getdev == NULL ||
961 	    hw_if->set_port == NULL ||
962 	    hw_if->get_port == NULL ||
963 	    hw_if->query_devinfo == NULL) {
964 		aprint_error(": missing mandatory method\n");
965 		return;
966 	}
967 	if (has_playback) {
968 		if ((hw_if->start_output == NULL &&
969 		     hw_if->trigger_output == NULL) ||
970 		    hw_if->halt_output == NULL) {
971 			aprint_error(": missing playback method\n");
972 		}
973 	}
974 	if (has_capture) {
975 		if ((hw_if->start_input == NULL &&
976 		     hw_if->trigger_input == NULL) ||
977 		    hw_if->halt_input == NULL) {
978 			aprint_error(": missing capture method\n");
979 		}
980 	}
981 #endif
982 
983 	sc->hw_if = hw_if;
984 	sc->hw_hdl = hdlp;
985 	sc->hw_dev = parent;
986 
987 	sc->sc_exlock = 1;
988 	sc->sc_blk_ms = AUDIO_BLK_MS;
989 	SLIST_INIT(&sc->sc_files);
990 	cv_init(&sc->sc_exlockcv, "audiolk");
991 	sc->sc_am_capacity = 0;
992 	sc->sc_am_used = 0;
993 	sc->sc_am = NULL;
994 
995 	/* MMAP is now supported by upper layer.  */
996 	sc->sc_props |= AUDIO_PROP_MMAP;
997 
998 	KASSERT(has_playback || has_capture);
999 	/* Unidirectional device must have neither FULLDUP nor INDEPENDENT. */
1000 	if (!has_playback || !has_capture) {
1001 		KASSERT(!has_indep);
1002 		KASSERT(!has_fulldup);
1003 	}
1004 
1005 	mode = 0;
1006 	if (has_playback) {
1007 		aprint_normal(": playback");
1008 		mode |= AUMODE_PLAY;
1009 	}
1010 	if (has_capture) {
1011 		aprint_normal("%c capture", has_playback ? ',' : ':');
1012 		mode |= AUMODE_RECORD;
1013 	}
1014 	if (has_playback && has_capture) {
1015 		if (has_fulldup)
1016 			aprint_normal(", full duplex");
1017 		else
1018 			aprint_normal(", half duplex");
1019 
1020 		if (has_indep)
1021 			aprint_normal(", independent");
1022 	}
1023 
1024 	aprint_naive("\n");
1025 	aprint_normal("\n");
1026 
1027 	/* probe hw params */
1028 	memset(&phwfmt, 0, sizeof(phwfmt));
1029 	memset(&rhwfmt, 0, sizeof(rhwfmt));
1030 	memset(&pfil, 0, sizeof(pfil));
1031 	memset(&rfil, 0, sizeof(rfil));
1032 	if (has_indep) {
1033 		int perror, rerror;
1034 
1035 		/* On independent devices, probe separately. */
1036 		perror = audio_hw_probe(sc, &phwfmt, AUMODE_PLAY);
1037 		rerror = audio_hw_probe(sc, &rhwfmt, AUMODE_RECORD);
1038 		if (perror && rerror) {
1039 			aprint_error_dev(self,
1040 			    "audio_hw_probe failed: perror=%d, rerror=%d\n",
1041 			    perror, rerror);
1042 			goto bad;
1043 		}
1044 		if (perror) {
1045 			mode &= ~AUMODE_PLAY;
1046 			aprint_error_dev(self, "audio_hw_probe failed: "
1047 			    "errno=%d, playback disabled\n", perror);
1048 		}
1049 		if (rerror) {
1050 			mode &= ~AUMODE_RECORD;
1051 			aprint_error_dev(self, "audio_hw_probe failed: "
1052 			    "errno=%d, capture disabled\n", rerror);
1053 		}
1054 	} else {
1055 		/*
1056 		 * On non independent devices or uni-directional devices,
1057 		 * probe once (simultaneously).
1058 		 */
1059 		audio_format2_t *fmt = has_playback ? &phwfmt : &rhwfmt;
1060 		error = audio_hw_probe(sc, fmt, mode);
1061 		if (error) {
1062 			aprint_error_dev(self,
1063 			    "audio_hw_probe failed: errno=%d\n", error);
1064 			goto bad;
1065 		}
1066 		if (has_playback && has_capture)
1067 			rhwfmt = phwfmt;
1068 	}
1069 
1070 	/* Make device id available */
1071 	if (audio_properties(sc))
1072 		aprint_error_dev(self, "audio_properties failed\n");
1073 
1074 	/* Init hardware. */
1075 	/* hw_probe() also validates [pr]hwfmt.  */
1076 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1077 	if (error) {
1078 		aprint_error_dev(self,
1079 		    "audio_hw_set_format failed: errno=%d\n", error);
1080 		goto bad;
1081 	}
1082 
1083 	/*
1084 	 * Init track mixers.  If at least one direction is available on
1085 	 * attach time, we assume a success.
1086 	 */
1087 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
1088 	if (sc->sc_pmixer == NULL && sc->sc_rmixer == NULL) {
1089 		aprint_error_dev(self,
1090 		    "audio_mixers_init failed: errno=%d\n", error);
1091 		goto bad;
1092 	}
1093 
1094 	sc->sc_psz = pserialize_create();
1095 	psref_target_init(&sc->sc_psref, audio_psref_class);
1096 
1097 	selinit(&sc->sc_wsel);
1098 	selinit(&sc->sc_rsel);
1099 
1100 	/* Initial parameter of /dev/sound */
1101 	sc->sc_sound_pparams = params_to_format2(&audio_default);
1102 	sc->sc_sound_rparams = params_to_format2(&audio_default);
1103 	sc->sc_sound_ppause = false;
1104 	sc->sc_sound_rpause = false;
1105 
1106 	/* XXX TODO: consider about sc_ai */
1107 
1108 	mixer_init(sc);
1109 	TRACE(2, "inputs ports=0x%x, input master=%d, "
1110 	    "output ports=0x%x, output master=%d",
1111 	    sc->sc_inports.allports, sc->sc_inports.master,
1112 	    sc->sc_outports.allports, sc->sc_outports.master);
1113 
1114 	sysctl_createv(&sc->sc_log, 0, NULL, &node,
1115 	    0,
1116 	    CTLTYPE_NODE, device_xname(sc->sc_dev),
1117 	    SYSCTL_DESCR("audio test"),
1118 	    NULL, 0,
1119 	    NULL, 0,
1120 	    CTL_HW,
1121 	    CTL_CREATE, CTL_EOL);
1122 
1123 	if (node != NULL) {
1124 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1125 		    CTLFLAG_READWRITE,
1126 		    CTLTYPE_INT, "blk_ms",
1127 		    SYSCTL_DESCR("blocksize in msec"),
1128 		    audio_sysctl_blk_ms, 0, (void *)sc, 0,
1129 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1130 
1131 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1132 		    CTLFLAG_READWRITE,
1133 		    CTLTYPE_BOOL, "multiuser",
1134 		    SYSCTL_DESCR("allow multiple user access"),
1135 		    audio_sysctl_multiuser, 0, (void *)sc, 0,
1136 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1137 
1138 #if defined(AUDIO_DEBUG)
1139 		sysctl_createv(&sc->sc_log, 0, NULL, NULL,
1140 		    CTLFLAG_READWRITE,
1141 		    CTLTYPE_INT, "debug",
1142 		    SYSCTL_DESCR("debug level (0..4)"),
1143 		    audio_sysctl_debug, 0, (void *)sc, 0,
1144 		    CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
1145 #endif
1146 	}
1147 
1148 #ifdef AUDIO_PM_IDLE
1149 	callout_init(&sc->sc_idle_counter, 0);
1150 	callout_setfunc(&sc->sc_idle_counter, audio_idle, self);
1151 #endif
1152 
1153 	if (!pmf_device_register(self, audio_suspend, audio_resume))
1154 		aprint_error_dev(self, "couldn't establish power handler\n");
1155 #ifdef AUDIO_PM_IDLE
1156 	if (!device_active_register(self, audio_activity))
1157 		aprint_error_dev(self, "couldn't register activity handler\n");
1158 #endif
1159 
1160 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_DOWN,
1161 	    audio_volume_down, true))
1162 		aprint_error_dev(self, "couldn't add volume down handler\n");
1163 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_UP,
1164 	    audio_volume_up, true))
1165 		aprint_error_dev(self, "couldn't add volume up handler\n");
1166 	if (!pmf_event_register(self, PMFE_AUDIO_VOLUME_TOGGLE,
1167 	    audio_volume_toggle, true))
1168 		aprint_error_dev(self, "couldn't add volume toggle handler\n");
1169 
1170 #ifdef AUDIO_PM_IDLE
1171 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
1172 #endif
1173 
1174 #if defined(AUDIO_DEBUG)
1175 	audio_mlog_init();
1176 #endif
1177 
1178 	audiorescan(self, NULL, NULL);
1179 	sc->sc_exlock = 0;
1180 	return;
1181 
1182 bad:
1183 	/* Clearing hw_if means that device is attached but disabled. */
1184 	sc->hw_if = NULL;
1185 	sc->sc_exlock = 0;
1186 	aprint_error_dev(sc->sc_dev, "disabled\n");
1187 	return;
1188 }
1189 
1190 /*
1191  * Identify audio backend device for drvctl.
1192  */
1193 static int
audio_properties(struct audio_softc * sc)1194 audio_properties(struct audio_softc *sc)
1195 {
1196 	prop_dictionary_t dict = device_properties(sc->sc_dev);
1197 	audio_device_t adev;
1198 	int error;
1199 
1200 	error = sc->hw_if->getdev(sc->hw_hdl, &adev);
1201 	if (error)
1202 		return error;
1203 
1204 	prop_dictionary_set_string(dict, "name", adev.name);
1205 	prop_dictionary_set_string(dict, "version", adev.version);
1206 	prop_dictionary_set_string(dict, "config", adev.config);
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * Initialize hardware mixer.
1213  * This function is called from audioattach().
1214  */
1215 static void
mixer_init(struct audio_softc * sc)1216 mixer_init(struct audio_softc *sc)
1217 {
1218 	mixer_devinfo_t mi;
1219 	int iclass, mclass, oclass, rclass;
1220 	int record_master_found, record_source_found;
1221 
1222 	iclass = mclass = oclass = rclass = -1;
1223 	sc->sc_inports.index = -1;
1224 	sc->sc_inports.master = -1;
1225 	sc->sc_inports.nports = 0;
1226 	sc->sc_inports.isenum = false;
1227 	sc->sc_inports.allports = 0;
1228 	sc->sc_inports.isdual = false;
1229 	sc->sc_inports.mixerout = -1;
1230 	sc->sc_inports.cur_port = -1;
1231 	sc->sc_outports.index = -1;
1232 	sc->sc_outports.master = -1;
1233 	sc->sc_outports.nports = 0;
1234 	sc->sc_outports.isenum = false;
1235 	sc->sc_outports.allports = 0;
1236 	sc->sc_outports.isdual = false;
1237 	sc->sc_outports.mixerout = -1;
1238 	sc->sc_outports.cur_port = -1;
1239 	sc->sc_monitor_port = -1;
1240 	/*
1241 	 * Read through the underlying driver's list, picking out the class
1242 	 * names from the mixer descriptions. We'll need them to decode the
1243 	 * mixer descriptions on the next pass through the loop.
1244 	 */
1245 	mutex_enter(sc->sc_lock);
1246 	for(mi.index = 0; ; mi.index++) {
1247 		if (audio_query_devinfo(sc, &mi) != 0)
1248 			break;
1249 		 /*
1250 		  * The type of AUDIO_MIXER_CLASS merely introduces a class.
1251 		  * All the other types describe an actual mixer.
1252 		  */
1253 		if (mi.type == AUDIO_MIXER_CLASS) {
1254 			if (strcmp(mi.label.name, AudioCinputs) == 0)
1255 				iclass = mi.mixer_class;
1256 			if (strcmp(mi.label.name, AudioCmonitor) == 0)
1257 				mclass = mi.mixer_class;
1258 			if (strcmp(mi.label.name, AudioCoutputs) == 0)
1259 				oclass = mi.mixer_class;
1260 			if (strcmp(mi.label.name, AudioCrecord) == 0)
1261 				rclass = mi.mixer_class;
1262 		}
1263 	}
1264 	mutex_exit(sc->sc_lock);
1265 
1266 	/* Allocate save area.  Ensure non-zero allocation. */
1267 	sc->sc_nmixer_states = mi.index;
1268 	sc->sc_mixer_state = kmem_zalloc(sizeof(sc->sc_mixer_state[0]) *
1269 	    (sc->sc_nmixer_states + 1), KM_SLEEP);
1270 
1271 	/*
1272 	 * This is where we assign each control in the "audio" model, to the
1273 	 * underlying "mixer" control.  We walk through the whole list once,
1274 	 * assigning likely candidates as we come across them.
1275 	 */
1276 	record_master_found = 0;
1277 	record_source_found = 0;
1278 	mutex_enter(sc->sc_lock);
1279 	for(mi.index = 0; ; mi.index++) {
1280 		if (audio_query_devinfo(sc, &mi) != 0)
1281 			break;
1282 		KASSERT(mi.index < sc->sc_nmixer_states);
1283 		if (mi.type == AUDIO_MIXER_CLASS)
1284 			continue;
1285 		if (mi.mixer_class == iclass) {
1286 			/*
1287 			 * AudioCinputs is only a fallback, when we don't
1288 			 * find what we're looking for in AudioCrecord, so
1289 			 * check the flags before accepting one of these.
1290 			 */
1291 			if (strcmp(mi.label.name, AudioNmaster) == 0
1292 			    && record_master_found == 0)
1293 				sc->sc_inports.master = mi.index;
1294 			if (strcmp(mi.label.name, AudioNsource) == 0
1295 			    && record_source_found == 0) {
1296 				if (mi.type == AUDIO_MIXER_ENUM) {
1297 				    int i;
1298 				    for(i = 0; i < mi.un.e.num_mem; i++)
1299 					if (strcmp(mi.un.e.member[i].label.name,
1300 						    AudioNmixerout) == 0)
1301 						sc->sc_inports.mixerout =
1302 						    mi.un.e.member[i].ord;
1303 				}
1304 				au_setup_ports(sc, &sc->sc_inports, &mi,
1305 				    itable);
1306 			}
1307 			if (strcmp(mi.label.name, AudioNdac) == 0 &&
1308 			    sc->sc_outports.master == -1)
1309 				sc->sc_outports.master = mi.index;
1310 		} else if (mi.mixer_class == mclass) {
1311 			if (strcmp(mi.label.name, AudioNmonitor) == 0)
1312 				sc->sc_monitor_port = mi.index;
1313 		} else if (mi.mixer_class == oclass) {
1314 			if (strcmp(mi.label.name, AudioNmaster) == 0)
1315 				sc->sc_outports.master = mi.index;
1316 			if (strcmp(mi.label.name, AudioNselect) == 0)
1317 				au_setup_ports(sc, &sc->sc_outports, &mi,
1318 				    otable);
1319 		} else if (mi.mixer_class == rclass) {
1320 			/*
1321 			 * These are the preferred mixers for the audio record
1322 			 * controls, so set the flags here, but don't check.
1323 			 */
1324 			if (strcmp(mi.label.name, AudioNmaster) == 0) {
1325 				sc->sc_inports.master = mi.index;
1326 				record_master_found = 1;
1327 			}
1328 #if 1	/* Deprecated. Use AudioNmaster. */
1329 			if (strcmp(mi.label.name, AudioNrecord) == 0) {
1330 				sc->sc_inports.master = mi.index;
1331 				record_master_found = 1;
1332 			}
1333 			if (strcmp(mi.label.name, AudioNvolume) == 0) {
1334 				sc->sc_inports.master = mi.index;
1335 				record_master_found = 1;
1336 			}
1337 #endif
1338 			if (strcmp(mi.label.name, AudioNsource) == 0) {
1339 				if (mi.type == AUDIO_MIXER_ENUM) {
1340 				    int i;
1341 				    for(i = 0; i < mi.un.e.num_mem; i++)
1342 					if (strcmp(mi.un.e.member[i].label.name,
1343 						    AudioNmixerout) == 0)
1344 						sc->sc_inports.mixerout =
1345 						    mi.un.e.member[i].ord;
1346 				}
1347 				au_setup_ports(sc, &sc->sc_inports, &mi,
1348 				    itable);
1349 				record_source_found = 1;
1350 			}
1351 		}
1352 	}
1353 	mutex_exit(sc->sc_lock);
1354 }
1355 
1356 static int
audioactivate(device_t self,enum devact act)1357 audioactivate(device_t self, enum devact act)
1358 {
1359 	struct audio_softc *sc = device_private(self);
1360 
1361 	switch (act) {
1362 	case DVACT_DEACTIVATE:
1363 		mutex_enter(sc->sc_lock);
1364 		sc->sc_dying = true;
1365 		cv_broadcast(&sc->sc_exlockcv);
1366 		mutex_exit(sc->sc_lock);
1367 		return 0;
1368 	default:
1369 		return EOPNOTSUPP;
1370 	}
1371 }
1372 
1373 static int
audiodetach(device_t self,int flags)1374 audiodetach(device_t self, int flags)
1375 {
1376 	struct audio_softc *sc;
1377 	struct audio_file *file;
1378 	int maj, mn;
1379 	int error;
1380 
1381 	sc = device_private(self);
1382 	TRACE(2, "flags=%d", flags);
1383 
1384 	/* device is not initialized */
1385 	if (sc->hw_if == NULL)
1386 		return 0;
1387 
1388 	/* Start draining existing accessors of the device. */
1389 	error = config_detach_children(self, flags);
1390 	if (error)
1391 		return error;
1392 
1393 	/*
1394 	 * Prevent new opens and wait for existing opens to complete.
1395 	 *
1396 	 * At the moment there are only four bits in the minor for the
1397 	 * unit number, so we only revoke if the unit number could be
1398 	 * used in a device node.
1399 	 *
1400 	 * XXX If we want more audio units, we need to encode them
1401 	 * more elaborately in the minor space.
1402 	 */
1403 	maj = cdevsw_lookup_major(&audio_cdevsw);
1404 	mn = device_unit(self);
1405 	if (mn <= 0xf) {
1406 		vdevgone(maj, mn|SOUND_DEVICE, mn|SOUND_DEVICE, VCHR);
1407 		vdevgone(maj, mn|AUDIO_DEVICE, mn|AUDIO_DEVICE, VCHR);
1408 		vdevgone(maj, mn|AUDIOCTL_DEVICE, mn|AUDIOCTL_DEVICE, VCHR);
1409 		vdevgone(maj, mn|MIXER_DEVICE, mn|MIXER_DEVICE, VCHR);
1410 	}
1411 
1412 	/*
1413 	 * This waits currently running sysctls to finish if exists.
1414 	 * After this, no more new sysctls will come.
1415 	 */
1416 	sysctl_teardown(&sc->sc_log);
1417 
1418 	mutex_enter(sc->sc_lock);
1419 	sc->sc_dying = true;
1420 	cv_broadcast(&sc->sc_exlockcv);
1421 	if (sc->sc_pmixer)
1422 		cv_broadcast(&sc->sc_pmixer->outcv);
1423 	if (sc->sc_rmixer)
1424 		cv_broadcast(&sc->sc_rmixer->outcv);
1425 
1426 	/* Prevent new users */
1427 	SLIST_FOREACH(file, &sc->sc_files, entry) {
1428 		atomic_store_relaxed(&file->dying, true);
1429 	}
1430 	mutex_exit(sc->sc_lock);
1431 
1432 	/*
1433 	 * Wait for existing users to drain.
1434 	 * - pserialize_perform waits for all pserialize_read sections on
1435 	 *   all CPUs; after this, no more new psref_acquire can happen.
1436 	 * - psref_target_destroy waits for all extant acquired psrefs to
1437 	 *   be psref_released.
1438 	 */
1439 	pserialize_perform(sc->sc_psz);
1440 	psref_target_destroy(&sc->sc_psref, audio_psref_class);
1441 
1442 	/*
1443 	 * We are now guaranteed that there are no calls to audio fileops
1444 	 * that hold sc, and any new calls with files that were for sc will
1445 	 * fail.  Thus, we now have exclusive access to the softc.
1446 	 */
1447 	sc->sc_exlock = 1;
1448 
1449 	/*
1450 	 * Clean up all open instances.
1451 	 */
1452 	mutex_enter(sc->sc_lock);
1453 	while ((file = SLIST_FIRST(&sc->sc_files)) != NULL) {
1454 		mutex_enter(sc->sc_intr_lock);
1455 		SLIST_REMOVE_HEAD(&sc->sc_files, entry);
1456 		mutex_exit(sc->sc_intr_lock);
1457 		if (file->ptrack || file->rtrack) {
1458 			mutex_exit(sc->sc_lock);
1459 			audio_unlink(sc, file);
1460 			mutex_enter(sc->sc_lock);
1461 		}
1462 	}
1463 	mutex_exit(sc->sc_lock);
1464 
1465 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_DOWN,
1466 	    audio_volume_down, true);
1467 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_UP,
1468 	    audio_volume_up, true);
1469 	pmf_event_deregister(self, PMFE_AUDIO_VOLUME_TOGGLE,
1470 	    audio_volume_toggle, true);
1471 
1472 #ifdef AUDIO_PM_IDLE
1473 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
1474 
1475 	device_active_deregister(self, audio_activity);
1476 #endif
1477 
1478 	pmf_device_deregister(self);
1479 
1480 	/* Free resources */
1481 	if (sc->sc_pmixer) {
1482 		audio_mixer_destroy(sc, sc->sc_pmixer);
1483 		kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
1484 	}
1485 	if (sc->sc_rmixer) {
1486 		audio_mixer_destroy(sc, sc->sc_rmixer);
1487 		kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
1488 	}
1489 	if (sc->sc_am)
1490 		kern_free(sc->sc_am);
1491 
1492 	seldestroy(&sc->sc_wsel);
1493 	seldestroy(&sc->sc_rsel);
1494 
1495 #ifdef AUDIO_PM_IDLE
1496 	callout_destroy(&sc->sc_idle_counter);
1497 #endif
1498 
1499 	cv_destroy(&sc->sc_exlockcv);
1500 
1501 #if defined(AUDIO_DEBUG)
1502 	audio_mlog_free();
1503 #endif
1504 
1505 	return 0;
1506 }
1507 
1508 static void
audiochilddet(device_t self,device_t child)1509 audiochilddet(device_t self, device_t child)
1510 {
1511 
1512 	/* we hold no child references, so do nothing */
1513 }
1514 
1515 static int
audiosearch(device_t parent,cfdata_t cf,const int * locs,void * aux)1516 audiosearch(device_t parent, cfdata_t cf, const int *locs, void *aux)
1517 {
1518 
1519 	if (config_probe(parent, cf, aux))
1520 		config_attach(parent, cf, aux, NULL,
1521 		    CFARGS_NONE);
1522 
1523 	return 0;
1524 }
1525 
1526 static int
audiorescan(device_t self,const char * ifattr,const int * locators)1527 audiorescan(device_t self, const char *ifattr, const int *locators)
1528 {
1529 	struct audio_softc *sc = device_private(self);
1530 
1531 	config_search(sc->sc_dev, NULL,
1532 	    CFARGS(.search = audiosearch));
1533 
1534 	return 0;
1535 }
1536 
1537 /*
1538  * Called from hardware driver.  This is where the MI audio driver gets
1539  * probed/attached to the hardware driver.
1540  */
1541 device_t
audio_attach_mi(const struct audio_hw_if * ahwp,void * hdlp,device_t dev)1542 audio_attach_mi(const struct audio_hw_if *ahwp, void *hdlp, device_t dev)
1543 {
1544 	struct audio_attach_args arg;
1545 
1546 #ifdef DIAGNOSTIC
1547 	if (ahwp == NULL) {
1548 		aprint_error("audio_attach_mi: NULL\n");
1549 		return 0;
1550 	}
1551 #endif
1552 	arg.type = AUDIODEV_TYPE_AUDIO;
1553 	arg.hwif = ahwp;
1554 	arg.hdl = hdlp;
1555 	return config_found(dev, &arg, audioprint,
1556 	    CFARGS(.iattr = "audiobus"));
1557 }
1558 
1559 /*
1560  * audio_printf() outputs fmt... with the audio device name and MD device
1561  * name prefixed.  If the message is considered to be related to the MD
1562  * driver, use this one instead of device_printf().
1563  */
1564 static void
audio_printf(struct audio_softc * sc,const char * fmt,...)1565 audio_printf(struct audio_softc *sc, const char *fmt, ...)
1566 {
1567 	va_list ap;
1568 
1569 	printf("%s(%s): ", device_xname(sc->sc_dev), device_xname(sc->hw_dev));
1570 	va_start(ap, fmt);
1571 	vprintf(fmt, ap);
1572 	va_end(ap);
1573 }
1574 
1575 /*
1576  * Enter critical section and also keep sc_lock.
1577  * If successful, returns 0 with sc_lock held.  Otherwise returns errno.
1578  * Must be called without sc_lock held.
1579  */
1580 static int
audio_exlock_mutex_enter(struct audio_softc * sc)1581 audio_exlock_mutex_enter(struct audio_softc *sc)
1582 {
1583 	int error;
1584 
1585 	mutex_enter(sc->sc_lock);
1586 	if (sc->sc_dying) {
1587 		mutex_exit(sc->sc_lock);
1588 		return EIO;
1589 	}
1590 
1591 	while (__predict_false(sc->sc_exlock != 0)) {
1592 		error = cv_wait_sig(&sc->sc_exlockcv, sc->sc_lock);
1593 		if (sc->sc_dying)
1594 			error = EIO;
1595 		if (error) {
1596 			mutex_exit(sc->sc_lock);
1597 			return error;
1598 		}
1599 	}
1600 
1601 	/* Acquire */
1602 	sc->sc_exlock = 1;
1603 	return 0;
1604 }
1605 
1606 /*
1607  * Exit critical section and exit sc_lock.
1608  * Must be called with sc_lock held.
1609  */
1610 static void
audio_exlock_mutex_exit(struct audio_softc * sc)1611 audio_exlock_mutex_exit(struct audio_softc *sc)
1612 {
1613 
1614 	KASSERT(mutex_owned(sc->sc_lock));
1615 
1616 	sc->sc_exlock = 0;
1617 	cv_broadcast(&sc->sc_exlockcv);
1618 	mutex_exit(sc->sc_lock);
1619 }
1620 
1621 /*
1622  * Enter critical section.
1623  * If successful, it returns 0.  Otherwise returns errno.
1624  * Must be called without sc_lock held.
1625  * This function returns without sc_lock held.
1626  */
1627 static int
audio_exlock_enter(struct audio_softc * sc)1628 audio_exlock_enter(struct audio_softc *sc)
1629 {
1630 	int error;
1631 
1632 	error = audio_exlock_mutex_enter(sc);
1633 	if (error)
1634 		return error;
1635 	mutex_exit(sc->sc_lock);
1636 	return 0;
1637 }
1638 
1639 /*
1640  * Exit critical section.
1641  * Must be called without sc_lock held.
1642  */
1643 static void
audio_exlock_exit(struct audio_softc * sc)1644 audio_exlock_exit(struct audio_softc *sc)
1645 {
1646 
1647 	mutex_enter(sc->sc_lock);
1648 	audio_exlock_mutex_exit(sc);
1649 }
1650 
1651 /*
1652  * Get sc from file, and increment reference counter for this sc.
1653  * This is intended to be used for methods other than open.
1654  * If successful, returns sc.  Otherwise returns NULL.
1655  */
1656 struct audio_softc *
audio_sc_acquire_fromfile(audio_file_t * file,struct psref * refp)1657 audio_sc_acquire_fromfile(audio_file_t *file, struct psref *refp)
1658 {
1659 	int s;
1660 	bool dying;
1661 
1662 	/* Block audiodetach while we acquire a reference */
1663 	s = pserialize_read_enter();
1664 
1665 	/* If close or audiodetach already ran, tough -- no more audio */
1666 	dying = atomic_load_relaxed(&file->dying);
1667 	if (dying) {
1668 		pserialize_read_exit(s);
1669 		return NULL;
1670 	}
1671 
1672 	/* Acquire a reference */
1673 	psref_acquire(refp, &file->sc->sc_psref, audio_psref_class);
1674 
1675 	/* Now sc won't go away until we drop the reference count */
1676 	pserialize_read_exit(s);
1677 
1678 	return file->sc;
1679 }
1680 
1681 /*
1682  * Decrement reference counter for this sc.
1683  */
1684 void
audio_sc_release(struct audio_softc * sc,struct psref * refp)1685 audio_sc_release(struct audio_softc *sc, struct psref *refp)
1686 {
1687 
1688 	psref_release(refp, &sc->sc_psref, audio_psref_class);
1689 }
1690 
1691 /*
1692  * Wait for I/O to complete, releasing sc_lock.
1693  * Must be called with sc_lock held.
1694  */
1695 static int
audio_track_waitio(struct audio_softc * sc,audio_track_t * track,const char * mess)1696 audio_track_waitio(struct audio_softc *sc, audio_track_t *track,
1697     const char *mess)
1698 {
1699 	int error;
1700 
1701 	KASSERT(track);
1702 	KASSERT(mutex_owned(sc->sc_lock));
1703 
1704 	/* Wait for pending I/O to complete. */
1705 	error = cv_timedwait_sig(&track->mixer->outcv, sc->sc_lock,
1706 	    mstohz(AUDIO_TIMEOUT));
1707 	if (sc->sc_suspending) {
1708 		/* If it's about to suspend, ignore timeout error. */
1709 		if (error == EWOULDBLOCK) {
1710 			TRACET(2, track, "timeout (suspending)");
1711 			return 0;
1712 		}
1713 	}
1714 	if (sc->sc_dying) {
1715 		error = EIO;
1716 	}
1717 	if (error) {
1718 		TRACET(2, track, "cv_timedwait_sig failed %d", error);
1719 		if (error == EWOULDBLOCK) {
1720 			audio_ring_t *usrbuf = &track->usrbuf;
1721 			audio_ring_t *outbuf = &track->outbuf;
1722 			audio_printf(sc,
1723 			    "%s: device timeout, seq=%d, usrbuf=%d/H%d, outbuf=%d/%d\n",
1724 			    mess, (int)track->seq,
1725 			    usrbuf->used, track->usrbuf_usedhigh,
1726 			    outbuf->used, outbuf->capacity);
1727 		}
1728 	} else {
1729 		TRACET(3, track, "wakeup");
1730 	}
1731 	return error;
1732 }
1733 
1734 /*
1735  * Try to acquire track lock.
1736  * It doesn't block if the track lock is already acquired.
1737  * Returns true if the track lock was acquired, or false if the track
1738  * lock was already acquired.
1739  */
1740 static __inline bool
audio_track_lock_tryenter(audio_track_t * track)1741 audio_track_lock_tryenter(audio_track_t *track)
1742 {
1743 
1744 	if (atomic_swap_uint(&track->lock, 1) != 0)
1745 		return false;
1746 	membar_acquire();
1747 	return true;
1748 }
1749 
1750 /*
1751  * Acquire track lock.
1752  */
1753 static __inline void
audio_track_lock_enter(audio_track_t * track)1754 audio_track_lock_enter(audio_track_t *track)
1755 {
1756 
1757 	/* Don't sleep here. */
1758 	while (audio_track_lock_tryenter(track) == false)
1759 		SPINLOCK_BACKOFF_HOOK;
1760 }
1761 
1762 /*
1763  * Release track lock.
1764  */
1765 static __inline void
audio_track_lock_exit(audio_track_t * track)1766 audio_track_lock_exit(audio_track_t *track)
1767 {
1768 
1769 	atomic_store_release(&track->lock, 0);
1770 }
1771 
1772 
1773 static int
audioopen(dev_t dev,int flags,int ifmt,struct lwp * l)1774 audioopen(dev_t dev, int flags, int ifmt, struct lwp *l)
1775 {
1776 	struct audio_softc *sc;
1777 	int error;
1778 
1779 	/*
1780 	 * Find the device.  Because we wired the cdevsw to the audio
1781 	 * autoconf instance, the system ensures it will not go away
1782 	 * until after we return.
1783 	 */
1784 	sc = device_lookup_private(&audio_cd, AUDIOUNIT(dev));
1785 	if (sc == NULL || sc->hw_if == NULL)
1786 		return ENXIO;
1787 
1788 	error = audio_exlock_enter(sc);
1789 	if (error)
1790 		return error;
1791 
1792 	device_active(sc->sc_dev, DVA_SYSTEM);
1793 	switch (AUDIODEV(dev)) {
1794 	case SOUND_DEVICE:
1795 	case AUDIO_DEVICE:
1796 		error = audio_open(dev, sc, flags, ifmt, l, NULL);
1797 		break;
1798 	case AUDIOCTL_DEVICE:
1799 		error = audioctl_open(dev, sc, flags, ifmt, l);
1800 		break;
1801 	case MIXER_DEVICE:
1802 		error = mixer_open(dev, sc, flags, ifmt, l);
1803 		break;
1804 	default:
1805 		error = ENXIO;
1806 		break;
1807 	}
1808 	audio_exlock_exit(sc);
1809 
1810 	return error;
1811 }
1812 
1813 static int
audioclose(struct file * fp)1814 audioclose(struct file *fp)
1815 {
1816 	struct audio_softc *sc;
1817 	struct psref sc_ref;
1818 	audio_file_t *file;
1819 	int bound;
1820 	int error;
1821 	dev_t dev;
1822 
1823 	KASSERT(fp->f_audioctx);
1824 	file = fp->f_audioctx;
1825 	dev = file->dev;
1826 	error = 0;
1827 
1828 	/*
1829 	 * audioclose() must
1830 	 * - unplug track from the trackmixer (and unplug anything from softc),
1831 	 *   if sc exists.
1832 	 * - free all memory objects, regardless of sc.
1833 	 */
1834 
1835 	bound = curlwp_bind();
1836 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1837 	if (sc) {
1838 		switch (AUDIODEV(dev)) {
1839 		case SOUND_DEVICE:
1840 		case AUDIO_DEVICE:
1841 			error = audio_close(sc, file);
1842 			break;
1843 		case AUDIOCTL_DEVICE:
1844 			mutex_enter(sc->sc_lock);
1845 			mutex_enter(sc->sc_intr_lock);
1846 			SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1847 			mutex_exit(sc->sc_intr_lock);
1848 			mutex_exit(sc->sc_lock);
1849 			error = 0;
1850 			break;
1851 		case MIXER_DEVICE:
1852 			mutex_enter(sc->sc_lock);
1853 			mutex_enter(sc->sc_intr_lock);
1854 			SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
1855 			mutex_exit(sc->sc_intr_lock);
1856 			mutex_exit(sc->sc_lock);
1857 			error = mixer_close(sc, file);
1858 			break;
1859 		default:
1860 			error = ENXIO;
1861 			break;
1862 		}
1863 
1864 		audio_sc_release(sc, &sc_ref);
1865 	}
1866 	curlwp_bindx(bound);
1867 
1868 	/* Free memory objects anyway */
1869 	TRACEF(2, file, "free memory");
1870 	if (file->ptrack)
1871 		audio_track_destroy(file->ptrack);
1872 	if (file->rtrack)
1873 		audio_track_destroy(file->rtrack);
1874 	kmem_free(file, sizeof(*file));
1875 	fp->f_audioctx = NULL;
1876 
1877 	return error;
1878 }
1879 
1880 static int
audioread(struct file * fp,off_t * offp,struct uio * uio,kauth_cred_t cred,int ioflag)1881 audioread(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1882 	int ioflag)
1883 {
1884 	struct audio_softc *sc;
1885 	struct psref sc_ref;
1886 	audio_file_t *file;
1887 	int bound;
1888 	int error;
1889 	dev_t dev;
1890 
1891 	KASSERT(fp->f_audioctx);
1892 	file = fp->f_audioctx;
1893 	dev = file->dev;
1894 
1895 	bound = curlwp_bind();
1896 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1897 	if (sc == NULL) {
1898 		error = EIO;
1899 		goto done;
1900 	}
1901 
1902 	if (fp->f_flag & O_NONBLOCK)
1903 		ioflag |= IO_NDELAY;
1904 
1905 	switch (AUDIODEV(dev)) {
1906 	case SOUND_DEVICE:
1907 	case AUDIO_DEVICE:
1908 		error = audio_read(sc, uio, ioflag, file);
1909 		break;
1910 	case AUDIOCTL_DEVICE:
1911 	case MIXER_DEVICE:
1912 		error = ENODEV;
1913 		break;
1914 	default:
1915 		error = ENXIO;
1916 		break;
1917 	}
1918 
1919 	audio_sc_release(sc, &sc_ref);
1920 done:
1921 	curlwp_bindx(bound);
1922 	return error;
1923 }
1924 
1925 static int
audiowrite(struct file * fp,off_t * offp,struct uio * uio,kauth_cred_t cred,int ioflag)1926 audiowrite(struct file *fp, off_t *offp, struct uio *uio, kauth_cred_t cred,
1927 	int ioflag)
1928 {
1929 	struct audio_softc *sc;
1930 	struct psref sc_ref;
1931 	audio_file_t *file;
1932 	int bound;
1933 	int error;
1934 	dev_t dev;
1935 
1936 	KASSERT(fp->f_audioctx);
1937 	file = fp->f_audioctx;
1938 	dev = file->dev;
1939 
1940 	bound = curlwp_bind();
1941 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1942 	if (sc == NULL) {
1943 		error = EIO;
1944 		goto done;
1945 	}
1946 
1947 	if (fp->f_flag & O_NONBLOCK)
1948 		ioflag |= IO_NDELAY;
1949 
1950 	switch (AUDIODEV(dev)) {
1951 	case SOUND_DEVICE:
1952 	case AUDIO_DEVICE:
1953 		error = audio_write(sc, uio, ioflag, file);
1954 		break;
1955 	case AUDIOCTL_DEVICE:
1956 	case MIXER_DEVICE:
1957 		error = ENODEV;
1958 		break;
1959 	default:
1960 		error = ENXIO;
1961 		break;
1962 	}
1963 
1964 	audio_sc_release(sc, &sc_ref);
1965 done:
1966 	curlwp_bindx(bound);
1967 	return error;
1968 }
1969 
1970 static int
audioioctl(struct file * fp,u_long cmd,void * addr)1971 audioioctl(struct file *fp, u_long cmd, void *addr)
1972 {
1973 	struct audio_softc *sc;
1974 	struct psref sc_ref;
1975 	audio_file_t *file;
1976 	struct lwp *l = curlwp;
1977 	int bound;
1978 	int error;
1979 	dev_t dev;
1980 
1981 	KASSERT(fp->f_audioctx);
1982 	file = fp->f_audioctx;
1983 	dev = file->dev;
1984 
1985 	bound = curlwp_bind();
1986 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
1987 	if (sc == NULL) {
1988 		error = EIO;
1989 		goto done;
1990 	}
1991 
1992 	switch (AUDIODEV(dev)) {
1993 	case SOUND_DEVICE:
1994 	case AUDIO_DEVICE:
1995 	case AUDIOCTL_DEVICE:
1996 		mutex_enter(sc->sc_lock);
1997 		device_active(sc->sc_dev, DVA_SYSTEM);
1998 		mutex_exit(sc->sc_lock);
1999 		if (IOCGROUP(cmd) == IOCGROUP(AUDIO_MIXER_READ))
2000 			error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
2001 		else
2002 			error = audio_ioctl(dev, sc, cmd, addr, fp->f_flag, l,
2003 			    file);
2004 		break;
2005 	case MIXER_DEVICE:
2006 		error = mixer_ioctl(sc, cmd, addr, fp->f_flag, l);
2007 		break;
2008 	default:
2009 		error = ENXIO;
2010 		break;
2011 	}
2012 
2013 	audio_sc_release(sc, &sc_ref);
2014 done:
2015 	curlwp_bindx(bound);
2016 	return error;
2017 }
2018 
2019 static int
audiostat(struct file * fp,struct stat * st)2020 audiostat(struct file *fp, struct stat *st)
2021 {
2022 	struct audio_softc *sc;
2023 	struct psref sc_ref;
2024 	audio_file_t *file;
2025 	int bound;
2026 	int error;
2027 
2028 	KASSERT(fp->f_audioctx);
2029 	file = fp->f_audioctx;
2030 
2031 	bound = curlwp_bind();
2032 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2033 	if (sc == NULL) {
2034 		error = EIO;
2035 		goto done;
2036 	}
2037 
2038 	error = 0;
2039 	memset(st, 0, sizeof(*st));
2040 
2041 	st->st_dev = file->dev;
2042 	st->st_uid = kauth_cred_geteuid(fp->f_cred);
2043 	st->st_gid = kauth_cred_getegid(fp->f_cred);
2044 	st->st_mode = S_IFCHR;
2045 
2046 	audio_sc_release(sc, &sc_ref);
2047 done:
2048 	curlwp_bindx(bound);
2049 	return error;
2050 }
2051 
2052 static int
audiopoll(struct file * fp,int events)2053 audiopoll(struct file *fp, int events)
2054 {
2055 	struct audio_softc *sc;
2056 	struct psref sc_ref;
2057 	audio_file_t *file;
2058 	struct lwp *l = curlwp;
2059 	int bound;
2060 	int revents;
2061 	dev_t dev;
2062 
2063 	KASSERT(fp->f_audioctx);
2064 	file = fp->f_audioctx;
2065 	dev = file->dev;
2066 
2067 	bound = curlwp_bind();
2068 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2069 	if (sc == NULL) {
2070 		revents = POLLERR;
2071 		goto done;
2072 	}
2073 
2074 	switch (AUDIODEV(dev)) {
2075 	case SOUND_DEVICE:
2076 	case AUDIO_DEVICE:
2077 		revents = audio_poll(sc, events, l, file);
2078 		break;
2079 	case AUDIOCTL_DEVICE:
2080 	case MIXER_DEVICE:
2081 		revents = 0;
2082 		break;
2083 	default:
2084 		revents = POLLERR;
2085 		break;
2086 	}
2087 
2088 	audio_sc_release(sc, &sc_ref);
2089 done:
2090 	curlwp_bindx(bound);
2091 	return revents;
2092 }
2093 
2094 static int
audiokqfilter(struct file * fp,struct knote * kn)2095 audiokqfilter(struct file *fp, struct knote *kn)
2096 {
2097 	struct audio_softc *sc;
2098 	struct psref sc_ref;
2099 	audio_file_t *file;
2100 	dev_t dev;
2101 	int bound;
2102 	int error;
2103 
2104 	KASSERT(fp->f_audioctx);
2105 	file = fp->f_audioctx;
2106 	dev = file->dev;
2107 
2108 	bound = curlwp_bind();
2109 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2110 	if (sc == NULL) {
2111 		error = EIO;
2112 		goto done;
2113 	}
2114 
2115 	switch (AUDIODEV(dev)) {
2116 	case SOUND_DEVICE:
2117 	case AUDIO_DEVICE:
2118 		error = audio_kqfilter(sc, file, kn);
2119 		break;
2120 	case AUDIOCTL_DEVICE:
2121 	case MIXER_DEVICE:
2122 		error = ENODEV;
2123 		break;
2124 	default:
2125 		error = ENXIO;
2126 		break;
2127 	}
2128 
2129 	audio_sc_release(sc, &sc_ref);
2130 done:
2131 	curlwp_bindx(bound);
2132 	return error;
2133 }
2134 
2135 static int
audiommap(struct file * fp,off_t * offp,size_t len,int prot,int * flagsp,int * advicep,struct uvm_object ** uobjp,int * maxprotp)2136 audiommap(struct file *fp, off_t *offp, size_t len, int prot, int *flagsp,
2137 	int *advicep, struct uvm_object **uobjp, int *maxprotp)
2138 {
2139 	struct audio_softc *sc;
2140 	struct psref sc_ref;
2141 	audio_file_t *file;
2142 	dev_t dev;
2143 	int bound;
2144 	int error;
2145 
2146 	KASSERT(len > 0);
2147 
2148 	KASSERT(fp->f_audioctx);
2149 	file = fp->f_audioctx;
2150 	dev = file->dev;
2151 
2152 	bound = curlwp_bind();
2153 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2154 	if (sc == NULL) {
2155 		error = EIO;
2156 		goto done;
2157 	}
2158 
2159 	mutex_enter(sc->sc_lock);
2160 	device_active(sc->sc_dev, DVA_SYSTEM); /* XXXJDM */
2161 	mutex_exit(sc->sc_lock);
2162 
2163 	switch (AUDIODEV(dev)) {
2164 	case SOUND_DEVICE:
2165 	case AUDIO_DEVICE:
2166 		error = audio_mmap(sc, offp, len, prot, flagsp, advicep,
2167 		    uobjp, maxprotp, file);
2168 		break;
2169 	case AUDIOCTL_DEVICE:
2170 	case MIXER_DEVICE:
2171 	default:
2172 		error = ENOTSUP;
2173 		break;
2174 	}
2175 
2176 	audio_sc_release(sc, &sc_ref);
2177 done:
2178 	curlwp_bindx(bound);
2179 	return error;
2180 }
2181 
2182 
2183 /* Exported interfaces for audiobell. */
2184 
2185 /*
2186  * Open for audiobell.
2187  * It stores allocated file to *filep.
2188  * If successful returns 0, otherwise errno.
2189  */
2190 int
audiobellopen(dev_t dev,audio_file_t ** filep)2191 audiobellopen(dev_t dev, audio_file_t **filep)
2192 {
2193 	device_t audiodev = NULL;
2194 	struct audio_softc *sc;
2195 	bool exlock = false;
2196 	int error;
2197 
2198 	/*
2199 	 * Find the autoconf instance and make sure it doesn't go away
2200 	 * while we are opening it.
2201 	 */
2202 	audiodev = device_lookup_acquire(&audio_cd, AUDIOUNIT(dev));
2203 	if (audiodev == NULL) {
2204 		error = ENXIO;
2205 		goto out;
2206 	}
2207 
2208 	/* If attach failed, it's hopeless -- give up.  */
2209 	sc = device_private(audiodev);
2210 	if (sc->hw_if == NULL) {
2211 		error = ENXIO;
2212 		goto out;
2213 	}
2214 
2215 	/* Take the exclusive configuration lock.  */
2216 	error = audio_exlock_enter(sc);
2217 	if (error)
2218 		goto out;
2219 	exlock = true;
2220 
2221 	/* Open the audio device.  */
2222 	device_active(sc->sc_dev, DVA_SYSTEM);
2223 	error = audio_open(dev, sc, FWRITE, 0, curlwp, filep);
2224 
2225 out:	if (exlock)
2226 		audio_exlock_exit(sc);
2227 	if (audiodev)
2228 		device_release(audiodev);
2229 	return error;
2230 }
2231 
2232 /* Close for audiobell */
2233 int
audiobellclose(audio_file_t * file)2234 audiobellclose(audio_file_t *file)
2235 {
2236 	struct audio_softc *sc;
2237 	struct psref sc_ref;
2238 	int bound;
2239 	int error;
2240 
2241 	error = 0;
2242 	/*
2243 	 * audiobellclose() must
2244 	 * - unplug track from the trackmixer if sc exist.
2245 	 * - free all memory objects, regardless of sc.
2246 	 */
2247 	bound = curlwp_bind();
2248 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2249 	if (sc) {
2250 		error = audio_close(sc, file);
2251 		audio_sc_release(sc, &sc_ref);
2252 	}
2253 	curlwp_bindx(bound);
2254 
2255 	/* Free memory objects anyway */
2256 	KASSERT(file->ptrack);
2257 	audio_track_destroy(file->ptrack);
2258 	KASSERT(file->rtrack == NULL);
2259 	kmem_free(file, sizeof(*file));
2260 	return error;
2261 }
2262 
2263 /* Set sample rate for audiobell */
2264 int
audiobellsetrate(audio_file_t * file,u_int sample_rate)2265 audiobellsetrate(audio_file_t *file, u_int sample_rate)
2266 {
2267 	struct audio_softc *sc;
2268 	struct psref sc_ref;
2269 	struct audio_info ai;
2270 	int bound;
2271 	int error;
2272 
2273 	bound = curlwp_bind();
2274 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2275 	if (sc == NULL) {
2276 		error = EIO;
2277 		goto done1;
2278 	}
2279 
2280 	AUDIO_INITINFO(&ai);
2281 	ai.play.sample_rate = sample_rate;
2282 
2283 	error = audio_exlock_enter(sc);
2284 	if (error)
2285 		goto done2;
2286 	error = audio_file_setinfo(sc, file, &ai);
2287 	audio_exlock_exit(sc);
2288 
2289 done2:
2290 	audio_sc_release(sc, &sc_ref);
2291 done1:
2292 	curlwp_bindx(bound);
2293 	return error;
2294 }
2295 
2296 /* Playback for audiobell */
2297 int
audiobellwrite(audio_file_t * file,struct uio * uio)2298 audiobellwrite(audio_file_t *file, struct uio *uio)
2299 {
2300 	struct audio_softc *sc;
2301 	struct psref sc_ref;
2302 	int bound;
2303 	int error;
2304 
2305 	bound = curlwp_bind();
2306 	sc = audio_sc_acquire_fromfile(file, &sc_ref);
2307 	if (sc == NULL) {
2308 		error = EIO;
2309 		goto done;
2310 	}
2311 
2312 	error = audio_write(sc, uio, 0, file);
2313 
2314 	audio_sc_release(sc, &sc_ref);
2315 done:
2316 	curlwp_bindx(bound);
2317 	return error;
2318 }
2319 
2320 
2321 /*
2322  * Audio driver
2323  */
2324 
2325 /*
2326  * Must be called with sc_exlock held and without sc_lock held.
2327  */
2328 int
audio_open(dev_t dev,struct audio_softc * sc,int flags,int ifmt,struct lwp * l,audio_file_t ** bellfile)2329 audio_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
2330 	struct lwp *l, audio_file_t **bellfile)
2331 {
2332 	struct audio_info ai;
2333 	struct file *fp;
2334 	audio_file_t *af;
2335 	audio_ring_t *hwbuf;
2336 	bool fullduplex;
2337 	bool cred_held;
2338 	bool hw_opened;
2339 	bool rmixer_started;
2340 	bool inserted;
2341 	int fd;
2342 	int error;
2343 
2344 	KASSERT(sc->sc_exlock);
2345 
2346 	TRACE(1, "%sdev=%s flags=0x%x po=%d ro=%d",
2347 	    (audiodebug >= 3) ? "start " : "",
2348 	    ISDEVSOUND(dev) ? "sound" : "audio",
2349 	    flags, sc->sc_popens, sc->sc_ropens);
2350 
2351 	fp = NULL;
2352 	cred_held = false;
2353 	hw_opened = false;
2354 	rmixer_started = false;
2355 	inserted = false;
2356 
2357 	af = kmem_zalloc(sizeof(*af), KM_SLEEP);
2358 	af->sc = sc;
2359 	af->dev = dev;
2360 	if ((flags & FWRITE) != 0 && audio_can_playback(sc))
2361 		af->mode |= AUMODE_PLAY | AUMODE_PLAY_ALL;
2362 	if ((flags & FREAD) != 0 && audio_can_capture(sc))
2363 		af->mode |= AUMODE_RECORD;
2364 	if (af->mode == 0) {
2365 		error = ENXIO;
2366 		goto bad;
2367 	}
2368 
2369 	fullduplex = (sc->sc_props & AUDIO_PROP_FULLDUPLEX);
2370 
2371 	/*
2372 	 * On half duplex hardware,
2373 	 * 1. if mode is (PLAY | REC), let mode PLAY.
2374 	 * 2. if mode is PLAY, let mode PLAY if no rec tracks, otherwise error.
2375 	 * 3. if mode is REC, let mode REC if no play tracks, otherwise error.
2376 	 */
2377 	if (fullduplex == false) {
2378 		if ((af->mode & AUMODE_PLAY)) {
2379 			if (sc->sc_ropens != 0) {
2380 				TRACE(1, "record track already exists");
2381 				error = ENODEV;
2382 				goto bad;
2383 			}
2384 			/* Play takes precedence */
2385 			af->mode &= ~AUMODE_RECORD;
2386 		}
2387 		if ((af->mode & AUMODE_RECORD)) {
2388 			if (sc->sc_popens != 0) {
2389 				TRACE(1, "play track already exists");
2390 				error = ENODEV;
2391 				goto bad;
2392 			}
2393 		}
2394 	}
2395 
2396 	/* Create tracks */
2397 	if ((af->mode & AUMODE_PLAY))
2398 		af->ptrack = audio_track_create(sc, sc->sc_pmixer);
2399 	if ((af->mode & AUMODE_RECORD))
2400 		af->rtrack = audio_track_create(sc, sc->sc_rmixer);
2401 
2402 	/* Set parameters */
2403 	AUDIO_INITINFO(&ai);
2404 	if (bellfile) {
2405 		/* If audiobell, only sample_rate will be set later. */
2406 		ai.play.sample_rate   = audio_default.sample_rate;
2407 		ai.play.encoding      = AUDIO_ENCODING_SLINEAR_NE;
2408 		ai.play.channels      = 1;
2409 		ai.play.precision     = 16;
2410 		ai.play.pause         = 0;
2411 	} else if (ISDEVAUDIO(dev)) {
2412 		/* If /dev/audio, initialize everytime. */
2413 		ai.play.sample_rate   = audio_default.sample_rate;
2414 		ai.play.encoding      = audio_default.encoding;
2415 		ai.play.channels      = audio_default.channels;
2416 		ai.play.precision     = audio_default.precision;
2417 		ai.play.pause         = 0;
2418 		ai.record.sample_rate = audio_default.sample_rate;
2419 		ai.record.encoding    = audio_default.encoding;
2420 		ai.record.channels    = audio_default.channels;
2421 		ai.record.precision   = audio_default.precision;
2422 		ai.record.pause       = 0;
2423 	} else {
2424 		/* If /dev/sound, take over the previous parameters. */
2425 		ai.play.sample_rate   = sc->sc_sound_pparams.sample_rate;
2426 		ai.play.encoding      = sc->sc_sound_pparams.encoding;
2427 		ai.play.channels      = sc->sc_sound_pparams.channels;
2428 		ai.play.precision     = sc->sc_sound_pparams.precision;
2429 		ai.play.pause         = sc->sc_sound_ppause;
2430 		ai.record.sample_rate = sc->sc_sound_rparams.sample_rate;
2431 		ai.record.encoding    = sc->sc_sound_rparams.encoding;
2432 		ai.record.channels    = sc->sc_sound_rparams.channels;
2433 		ai.record.precision   = sc->sc_sound_rparams.precision;
2434 		ai.record.pause       = sc->sc_sound_rpause;
2435 	}
2436 	error = audio_file_setinfo(sc, af, &ai);
2437 	if (error)
2438 		goto bad;
2439 
2440 	if (sc->sc_popens + sc->sc_ropens == 0) {
2441 		/* First open */
2442 
2443 		sc->sc_cred = kauth_cred_get();
2444 		kauth_cred_hold(sc->sc_cred);
2445 		cred_held = true;
2446 
2447 		if (sc->hw_if->open) {
2448 			int hwflags;
2449 
2450 			/*
2451 			 * Call hw_if->open() only at first open of
2452 			 * combination of playback and recording.
2453 			 * On full duplex hardware, the flags passed to
2454 			 * hw_if->open() is always (FREAD | FWRITE)
2455 			 * regardless of this open()'s flags.
2456 			 * see also dev/isa/aria.c
2457 			 * On half duplex hardware, the flags passed to
2458 			 * hw_if->open() is either FREAD or FWRITE.
2459 			 * see also arch/evbarm/mini2440/audio_mini2440.c
2460 			 */
2461 			if (fullduplex) {
2462 				hwflags = FREAD | FWRITE;
2463 			} else {
2464 				/* Construct hwflags from af->mode. */
2465 				hwflags = 0;
2466 				if ((af->mode & AUMODE_PLAY) != 0)
2467 					hwflags |= FWRITE;
2468 				if ((af->mode & AUMODE_RECORD) != 0)
2469 					hwflags |= FREAD;
2470 			}
2471 
2472 			mutex_enter(sc->sc_lock);
2473 			mutex_enter(sc->sc_intr_lock);
2474 			error = sc->hw_if->open(sc->hw_hdl, hwflags);
2475 			mutex_exit(sc->sc_intr_lock);
2476 			mutex_exit(sc->sc_lock);
2477 			if (error)
2478 				goto bad;
2479 		}
2480 		/*
2481 		 * Regardless of whether we called hw_if->open (whether
2482 		 * hw_if->open exists) or not, we move to the Opened phase
2483 		 * here.  Therefore from this point, we have to call
2484 		 * hw_if->close (if exists) whenever abort.
2485 		 * Note that both of hw_if->{open,close} are optional.
2486 		 */
2487 		hw_opened = true;
2488 
2489 		/*
2490 		 * Set speaker mode when a half duplex.
2491 		 * XXX I'm not sure this is correct.
2492 		 */
2493 		if (1/*XXX*/) {
2494 			if (sc->hw_if->speaker_ctl) {
2495 				int on;
2496 				if (af->ptrack) {
2497 					on = 1;
2498 				} else {
2499 					on = 0;
2500 				}
2501 				mutex_enter(sc->sc_lock);
2502 				mutex_enter(sc->sc_intr_lock);
2503 				error = sc->hw_if->speaker_ctl(sc->hw_hdl, on);
2504 				mutex_exit(sc->sc_intr_lock);
2505 				mutex_exit(sc->sc_lock);
2506 				if (error)
2507 					goto bad;
2508 			}
2509 		}
2510 	} else if (sc->sc_multiuser == false) {
2511 		uid_t euid = kauth_cred_geteuid(kauth_cred_get());
2512 		if (euid != 0 && euid != kauth_cred_geteuid(sc->sc_cred)) {
2513 			error = EPERM;
2514 			goto bad;
2515 		}
2516 	}
2517 
2518 	/* Call init_output if this is the first playback open. */
2519 	if (af->ptrack && sc->sc_popens == 0) {
2520 		if (sc->hw_if->init_output) {
2521 			hwbuf = &sc->sc_pmixer->hwbuf;
2522 			mutex_enter(sc->sc_lock);
2523 			mutex_enter(sc->sc_intr_lock);
2524 			error = sc->hw_if->init_output(sc->hw_hdl,
2525 			    hwbuf->mem,
2526 			    hwbuf->capacity *
2527 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2528 			mutex_exit(sc->sc_intr_lock);
2529 			mutex_exit(sc->sc_lock);
2530 			if (error)
2531 				goto bad;
2532 		}
2533 	}
2534 	/*
2535 	 * Call init_input and start rmixer, if this is the first recording
2536 	 * open.  See pause consideration notes.
2537 	 */
2538 	if (af->rtrack && sc->sc_ropens == 0) {
2539 		if (sc->hw_if->init_input) {
2540 			hwbuf = &sc->sc_rmixer->hwbuf;
2541 			mutex_enter(sc->sc_lock);
2542 			mutex_enter(sc->sc_intr_lock);
2543 			error = sc->hw_if->init_input(sc->hw_hdl,
2544 			    hwbuf->mem,
2545 			    hwbuf->capacity *
2546 			    hwbuf->fmt.channels * hwbuf->fmt.stride / NBBY);
2547 			mutex_exit(sc->sc_intr_lock);
2548 			mutex_exit(sc->sc_lock);
2549 			if (error)
2550 				goto bad;
2551 		}
2552 
2553 		mutex_enter(sc->sc_lock);
2554 		audio_rmixer_start(sc);
2555 		mutex_exit(sc->sc_lock);
2556 		rmixer_started = true;
2557 	}
2558 
2559 	/*
2560 	 * This is the last sc_lock section in the function, so we have to
2561 	 * examine sc_dying again before starting the rest tasks.  Because
2562 	 * audiodeatch() may have been invoked (and it would set sc_dying)
2563 	 * from the time audioopen() was executed until now.  If it happens,
2564 	 * audiodetach() may already have set file->dying for all sc_files
2565 	 * that exist at that point, so that audioopen() must abort without
2566 	 * inserting af to sc_files, in order to keep consistency.
2567 	 */
2568 	mutex_enter(sc->sc_lock);
2569 	if (sc->sc_dying) {
2570 		mutex_exit(sc->sc_lock);
2571 		error = ENXIO;
2572 		goto bad;
2573 	}
2574 
2575 	/* Count up finally */
2576 	if (af->ptrack)
2577 		sc->sc_popens++;
2578 	if (af->rtrack)
2579 		sc->sc_ropens++;
2580 	mutex_enter(sc->sc_intr_lock);
2581 	SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
2582 	mutex_exit(sc->sc_intr_lock);
2583 	mutex_exit(sc->sc_lock);
2584 	inserted = true;
2585 
2586 	if (bellfile) {
2587 		*bellfile = af;
2588 	} else {
2589 		error = fd_allocfile(&fp, &fd);
2590 		if (error)
2591 			goto bad;
2592 
2593 		error = fd_clone(fp, fd, flags, &audio_fileops, af);
2594 		KASSERTMSG(error == EMOVEFD, "error=%d", error);
2595 	}
2596 
2597 	/* Be nothing else after fd_clone */
2598 
2599 	TRACEF(3, af, "done");
2600 	return error;
2601 
2602 bad:
2603 	if (inserted) {
2604 		mutex_enter(sc->sc_lock);
2605 		mutex_enter(sc->sc_intr_lock);
2606 		SLIST_REMOVE(&sc->sc_files, af, audio_file, entry);
2607 		mutex_exit(sc->sc_intr_lock);
2608 		if (af->ptrack)
2609 			sc->sc_popens--;
2610 		if (af->rtrack)
2611 			sc->sc_ropens--;
2612 		mutex_exit(sc->sc_lock);
2613 	}
2614 
2615 	if (rmixer_started) {
2616 		mutex_enter(sc->sc_lock);
2617 		audio_rmixer_halt(sc);
2618 		mutex_exit(sc->sc_lock);
2619 	}
2620 
2621 	if (hw_opened) {
2622 		if (sc->hw_if->close) {
2623 			mutex_enter(sc->sc_lock);
2624 			mutex_enter(sc->sc_intr_lock);
2625 			sc->hw_if->close(sc->hw_hdl);
2626 			mutex_exit(sc->sc_intr_lock);
2627 			mutex_exit(sc->sc_lock);
2628 		}
2629 	}
2630 	if (cred_held) {
2631 		kauth_cred_free(sc->sc_cred);
2632 	}
2633 
2634 	/*
2635 	 * Since track here is not yet linked to sc_files,
2636 	 * you can call track_destroy() without sc_intr_lock.
2637 	 */
2638 	if (af->rtrack) {
2639 		audio_track_destroy(af->rtrack);
2640 		af->rtrack = NULL;
2641 	}
2642 	if (af->ptrack) {
2643 		audio_track_destroy(af->ptrack);
2644 		af->ptrack = NULL;
2645 	}
2646 
2647 	kmem_free(af, sizeof(*af));
2648 	return error;
2649 }
2650 
2651 /*
2652  * Must be called without sc_lock nor sc_exlock held.
2653  */
2654 int
audio_close(struct audio_softc * sc,audio_file_t * file)2655 audio_close(struct audio_softc *sc, audio_file_t *file)
2656 {
2657 	int error;
2658 
2659 	/*
2660 	 * Drain first.
2661 	 * It must be done before unlinking(acquiring exlock).
2662 	 */
2663 	if (file->ptrack) {
2664 		mutex_enter(sc->sc_lock);
2665 		audio_track_drain(sc, file->ptrack);
2666 		mutex_exit(sc->sc_lock);
2667 	}
2668 
2669 	mutex_enter(sc->sc_lock);
2670 	mutex_enter(sc->sc_intr_lock);
2671 	SLIST_REMOVE(&sc->sc_files, file, audio_file, entry);
2672 	mutex_exit(sc->sc_intr_lock);
2673 	mutex_exit(sc->sc_lock);
2674 
2675 	error = audio_exlock_enter(sc);
2676 	if (error) {
2677 		/*
2678 		 * If EIO, this sc is about to detach.  In this case, even if
2679 		 * we don't do subsequent _unlink(), audiodetach() will do it.
2680 		 */
2681 		if (error == EIO)
2682 			return error;
2683 
2684 		/* XXX This should not happen but what should I do ? */
2685 		panic("%s: can't acquire exlock: errno=%d", __func__, error);
2686 	}
2687 	audio_unlink(sc, file);
2688 	audio_exlock_exit(sc);
2689 
2690 	return 0;
2691 }
2692 
2693 /*
2694  * Unlink this file, but not freeing memory here.
2695  * Must be called with sc_exlock held and without sc_lock held.
2696  */
2697 static void
audio_unlink(struct audio_softc * sc,audio_file_t * file)2698 audio_unlink(struct audio_softc *sc, audio_file_t *file)
2699 {
2700 	kauth_cred_t cred = NULL;
2701 	int error;
2702 
2703 	mutex_enter(sc->sc_lock);
2704 
2705 	TRACEF(1, file, "%spid=%d.%d po=%d ro=%d",
2706 	    (audiodebug >= 3) ? "start " : "",
2707 	    (int)curproc->p_pid, (int)curlwp->l_lid,
2708 	    sc->sc_popens, sc->sc_ropens);
2709 	KASSERTMSG(sc->sc_popens + sc->sc_ropens > 0,
2710 	    "sc->sc_popens=%d, sc->sc_ropens=%d",
2711 	    sc->sc_popens, sc->sc_ropens);
2712 
2713 	device_active(sc->sc_dev, DVA_SYSTEM);
2714 
2715 	if (file->ptrack) {
2716 		TRACET(3, file->ptrack, "dropframes=%" PRIu64,
2717 		    file->ptrack->dropframes);
2718 
2719 		KASSERT(sc->sc_popens > 0);
2720 		sc->sc_popens--;
2721 
2722 		/* Call hw halt_output if this is the last playback track. */
2723 		if (sc->sc_popens == 0 && sc->sc_pbusy) {
2724 			error = audio_pmixer_halt(sc);
2725 			if (error) {
2726 				audio_printf(sc,
2727 				    "halt_output failed: errno=%d (ignored)\n",
2728 				    error);
2729 			}
2730 		}
2731 
2732 		/* Restore mixing volume if all tracks are gone. */
2733 		if (sc->sc_popens == 0) {
2734 			/* intr_lock is not necessary, but just manners. */
2735 			mutex_enter(sc->sc_intr_lock);
2736 			sc->sc_pmixer->volume = 256;
2737 			sc->sc_pmixer->voltimer = 0;
2738 			mutex_exit(sc->sc_intr_lock);
2739 		}
2740 	}
2741 	if (file->rtrack) {
2742 		TRACET(3, file->rtrack, "dropframes=%" PRIu64,
2743 		    file->rtrack->dropframes);
2744 
2745 		KASSERT(sc->sc_ropens > 0);
2746 		sc->sc_ropens--;
2747 
2748 		/* Call hw halt_input if this is the last recording track. */
2749 		if (sc->sc_ropens == 0 && sc->sc_rbusy) {
2750 			error = audio_rmixer_halt(sc);
2751 			if (error) {
2752 				audio_printf(sc,
2753 				    "halt_input failed: errno=%d (ignored)\n",
2754 				    error);
2755 			}
2756 		}
2757 
2758 	}
2759 
2760 	/* Call hw close if this is the last track. */
2761 	if (sc->sc_popens + sc->sc_ropens == 0) {
2762 		if (sc->hw_if->close) {
2763 			TRACE(2, "hw_if close");
2764 			mutex_enter(sc->sc_intr_lock);
2765 			sc->hw_if->close(sc->hw_hdl);
2766 			mutex_exit(sc->sc_intr_lock);
2767 		}
2768 		cred = sc->sc_cred;
2769 		sc->sc_cred = NULL;
2770 	}
2771 
2772 	mutex_exit(sc->sc_lock);
2773 	if (cred)
2774 		kauth_cred_free(cred);
2775 
2776 	TRACE(3, "done");
2777 }
2778 
2779 /*
2780  * Must be called without sc_lock nor sc_exlock held.
2781  */
2782 int
audio_read(struct audio_softc * sc,struct uio * uio,int ioflag,audio_file_t * file)2783 audio_read(struct audio_softc *sc, struct uio *uio, int ioflag,
2784 	audio_file_t *file)
2785 {
2786 	audio_track_t *track;
2787 	audio_ring_t *usrbuf;
2788 	audio_ring_t *input;
2789 	int error;
2790 
2791 	/*
2792 	 * On half-duplex hardware, O_RDWR is treated as O_WRONLY.
2793 	 * However read() system call itself can be called because it's
2794 	 * opened with O_RDWR.  So in this case, deny this read().
2795 	 */
2796 	track = file->rtrack;
2797 	if (track == NULL) {
2798 		return EBADF;
2799 	}
2800 
2801 	/* I think it's better than EINVAL. */
2802 	if (track->mmapped)
2803 		return EPERM;
2804 
2805 	TRACET(2, track, "resid=%zd ioflag=0x%x", uio->uio_resid, ioflag);
2806 
2807 #ifdef AUDIO_PM_IDLE
2808 	error = audio_exlock_mutex_enter(sc);
2809 	if (error)
2810 		return error;
2811 
2812 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2813 		device_active(&sc->sc_dev, DVA_SYSTEM);
2814 
2815 	/* In recording, unlike playback, read() never operates rmixer. */
2816 
2817 	audio_exlock_mutex_exit(sc);
2818 #endif
2819 
2820 	usrbuf = &track->usrbuf;
2821 	input = track->input;
2822 	error = 0;
2823 
2824 	while (uio->uio_resid > 0 && error == 0) {
2825 		int bytes;
2826 
2827 		TRACET(3, track,
2828 		    "while resid=%zd input=%d/%d/%d usrbuf=%d/%d/C%d",
2829 		    uio->uio_resid,
2830 		    input->head, input->used, input->capacity,
2831 		    usrbuf->head, usrbuf->used, usrbuf->capacity);
2832 
2833 		/* Wait when buffers are empty. */
2834 		mutex_enter(sc->sc_lock);
2835 		for (;;) {
2836 			bool empty;
2837 			audio_track_lock_enter(track);
2838 			empty = (input->used == 0 && usrbuf->used == 0);
2839 			audio_track_lock_exit(track);
2840 			if (!empty)
2841 				break;
2842 
2843 			if ((ioflag & IO_NDELAY)) {
2844 				mutex_exit(sc->sc_lock);
2845 				return EWOULDBLOCK;
2846 			}
2847 
2848 			TRACET(3, track, "sleep");
2849 			error = audio_track_waitio(sc, track, "audio_read");
2850 			if (error) {
2851 				mutex_exit(sc->sc_lock);
2852 				return error;
2853 			}
2854 		}
2855 		mutex_exit(sc->sc_lock);
2856 
2857 		audio_track_lock_enter(track);
2858 		/* Convert one block if possible. */
2859 		if (usrbuf->used == 0 && input->used > 0) {
2860 			audio_track_record(track);
2861 		}
2862 
2863 		/* uiomove from usrbuf as many bytes as possible. */
2864 		bytes = uimin(usrbuf->used, uio->uio_resid);
2865 		error = uiomove((uint8_t *)usrbuf->mem + usrbuf->head, bytes,
2866 		    uio);
2867 		if (error) {
2868 			audio_track_lock_exit(track);
2869 			device_printf(sc->sc_dev,
2870 			    "%s: uiomove(%d) failed: errno=%d\n",
2871 			    __func__, bytes, error);
2872 			goto abort;
2873 		}
2874 		auring_take(usrbuf, bytes);
2875 		TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
2876 		    bytes,
2877 		    usrbuf->head, usrbuf->used, usrbuf->capacity);
2878 
2879 		audio_track_lock_exit(track);
2880 	}
2881 
2882 abort:
2883 	return error;
2884 }
2885 
2886 
2887 /*
2888  * Clear file's playback and/or record track buffer immediately.
2889  */
2890 static void
audio_file_clear(struct audio_softc * sc,audio_file_t * file)2891 audio_file_clear(struct audio_softc *sc, audio_file_t *file)
2892 {
2893 
2894 	if (file->ptrack)
2895 		audio_track_clear(sc, file->ptrack);
2896 	if (file->rtrack)
2897 		audio_track_clear(sc, file->rtrack);
2898 }
2899 
2900 /*
2901  * Must be called without sc_lock nor sc_exlock held.
2902  */
2903 int
audio_write(struct audio_softc * sc,struct uio * uio,int ioflag,audio_file_t * file)2904 audio_write(struct audio_softc *sc, struct uio *uio, int ioflag,
2905 	audio_file_t *file)
2906 {
2907 	audio_track_t *track;
2908 	audio_ring_t *usrbuf;
2909 	audio_ring_t *outbuf;
2910 	int error;
2911 
2912 	track = file->ptrack;
2913 	if (track == NULL)
2914 		return EPERM;
2915 
2916 	/* I think it's better than EINVAL. */
2917 	if (track->mmapped)
2918 		return EPERM;
2919 
2920 	TRACET(2, track, "%sresid=%zd pid=%d.%d ioflag=0x%x",
2921 	    audiodebug >= 3 ? "begin " : "",
2922 	    uio->uio_resid, (int)curproc->p_pid, (int)curlwp->l_lid, ioflag);
2923 
2924 	if (uio->uio_resid == 0) {
2925 		track->eofcounter++;
2926 		return 0;
2927 	}
2928 
2929 	error = audio_exlock_mutex_enter(sc);
2930 	if (error)
2931 		return error;
2932 
2933 #ifdef AUDIO_PM_IDLE
2934 	if (device_is_active(&sc->sc_dev) || sc->sc_idle)
2935 		device_active(&sc->sc_dev, DVA_SYSTEM);
2936 #endif
2937 
2938 	/*
2939 	 * The first write starts pmixer.
2940 	 */
2941 	if (sc->sc_pbusy == false)
2942 		audio_pmixer_start(sc, false);
2943 	audio_exlock_mutex_exit(sc);
2944 
2945 	usrbuf = &track->usrbuf;
2946 	outbuf = &track->outbuf;
2947 	track->pstate = AUDIO_STATE_RUNNING;
2948 	error = 0;
2949 
2950 	while (uio->uio_resid > 0 && error == 0) {
2951 		int bytes;
2952 
2953 		TRACET(3, track, "while resid=%zd usrbuf=%d/%d/H%d",
2954 		    uio->uio_resid,
2955 		    usrbuf->head, usrbuf->used, track->usrbuf_usedhigh);
2956 
2957 		/* Wait when buffers are full. */
2958 		mutex_enter(sc->sc_lock);
2959 		for (;;) {
2960 			bool full;
2961 			audio_track_lock_enter(track);
2962 			full = (usrbuf->used >= track->usrbuf_usedhigh &&
2963 			    outbuf->used >= outbuf->capacity);
2964 			audio_track_lock_exit(track);
2965 			if (!full)
2966 				break;
2967 
2968 			if ((ioflag & IO_NDELAY)) {
2969 				error = EWOULDBLOCK;
2970 				mutex_exit(sc->sc_lock);
2971 				goto abort;
2972 			}
2973 
2974 			TRACET(3, track, "sleep usrbuf=%d/H%d",
2975 			    usrbuf->used, track->usrbuf_usedhigh);
2976 			error = audio_track_waitio(sc, track, "audio_write");
2977 			if (error) {
2978 				mutex_exit(sc->sc_lock);
2979 				goto abort;
2980 			}
2981 		}
2982 		mutex_exit(sc->sc_lock);
2983 
2984 		audio_track_lock_enter(track);
2985 
2986 		/* uiomove to usrbuf as many bytes as possible. */
2987 		bytes = uimin(track->usrbuf_usedhigh - usrbuf->used,
2988 		    uio->uio_resid);
2989 		while (bytes > 0) {
2990 			int tail = auring_tail(usrbuf);
2991 			int len = uimin(bytes, usrbuf->capacity - tail);
2992 			error = uiomove((uint8_t *)usrbuf->mem + tail, len,
2993 			    uio);
2994 			if (error) {
2995 				audio_track_lock_exit(track);
2996 				device_printf(sc->sc_dev,
2997 				    "%s: uiomove(%d) failed: errno=%d\n",
2998 				    __func__, len, error);
2999 				goto abort;
3000 			}
3001 			auring_push(usrbuf, len);
3002 			TRACET(3, track, "uiomove(len=%d) usrbuf=%d/%d/C%d",
3003 			    len,
3004 			    usrbuf->head, usrbuf->used, usrbuf->capacity);
3005 			bytes -= len;
3006 		}
3007 
3008 		/* Convert them as many blocks as possible. */
3009 		while (usrbuf->used >= track->usrbuf_blksize &&
3010 		    outbuf->used < outbuf->capacity) {
3011 			audio_track_play(track);
3012 		}
3013 
3014 		audio_track_lock_exit(track);
3015 	}
3016 
3017 abort:
3018 	TRACET(3, track, "done error=%d", error);
3019 	return error;
3020 }
3021 
3022 /*
3023  * Must be called without sc_lock nor sc_exlock held.
3024  */
3025 int
audio_ioctl(dev_t dev,struct audio_softc * sc,u_long cmd,void * addr,int flag,struct lwp * l,audio_file_t * file)3026 audio_ioctl(dev_t dev, struct audio_softc *sc, u_long cmd, void *addr, int flag,
3027 	struct lwp *l, audio_file_t *file)
3028 {
3029 	struct audio_offset *ao;
3030 	struct audio_info ai;
3031 	audio_track_t *track;
3032 	audio_encoding_t *ae;
3033 	audio_format_query_t *query;
3034 	u_int stamp;
3035 	u_int offset;
3036 	int val;
3037 	int index;
3038 	int error;
3039 
3040 #if defined(AUDIO_DEBUG)
3041 	const char *ioctlnames[] = {
3042 		"AUDIO_GETINFO",	/* 21 */
3043 		"AUDIO_SETINFO",	/* 22 */
3044 		"AUDIO_DRAIN",		/* 23 */
3045 		"AUDIO_FLUSH",		/* 24 */
3046 		"AUDIO_WSEEK",		/* 25 */
3047 		"AUDIO_RERROR",		/* 26 */
3048 		"AUDIO_GETDEV",		/* 27 */
3049 		"AUDIO_GETENC",		/* 28 */
3050 		"AUDIO_GETFD",		/* 29 */
3051 		"AUDIO_SETFD",		/* 30 */
3052 		"AUDIO_PERROR",		/* 31 */
3053 		"AUDIO_GETIOFFS",	/* 32 */
3054 		"AUDIO_GETOOFFS",	/* 33 */
3055 		"AUDIO_GETPROPS",	/* 34 */
3056 		"AUDIO_GETBUFINFO",	/* 35 */
3057 		"AUDIO_SETCHAN",	/* 36 */
3058 		"AUDIO_GETCHAN",	/* 37 */
3059 		"AUDIO_QUERYFORMAT",	/* 38 */
3060 		"AUDIO_GETFORMAT",	/* 39 */
3061 		"AUDIO_SETFORMAT",	/* 40 */
3062 	};
3063 	char pre[64];
3064 	int nameidx = (cmd & 0xff);
3065 	if (21 <= nameidx && nameidx <= 21 + __arraycount(ioctlnames)) {
3066 		snprintf(pre, sizeof(pre), "pid=%d.%d %s",
3067 		    (int)curproc->p_pid, (int)l->l_lid,
3068 		    ioctlnames[nameidx - 21]);
3069 	} else {
3070 		snprintf(pre, sizeof(pre), "pid=%d.%d (%lu,'%c',%u)",
3071 		    (int)curproc->p_pid, (int)l->l_lid,
3072 		    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), nameidx);
3073 	}
3074 #endif
3075 
3076 	error = 0;
3077 	switch (cmd) {
3078 	case FIONBIO:
3079 		/* All handled in the upper FS layer. */
3080 		break;
3081 
3082 	case FIONREAD:
3083 		/* Get the number of bytes that can be read. */
3084 		track = file->rtrack;
3085 		if (track) {
3086 			val = audio_track_readablebytes(track);
3087 			*(int *)addr = val;
3088 			TRACET(2, track, "pid=%d.%d FIONREAD bytes=%d",
3089 			    (int)curproc->p_pid, (int)l->l_lid, val);
3090 		} else {
3091 			TRACEF(2, file, "pid=%d.%d FIONREAD no track",
3092 			    (int)curproc->p_pid, (int)l->l_lid);
3093 		}
3094 		break;
3095 
3096 	case FIOASYNC:
3097 		/* Set/Clear ASYNC I/O. */
3098 		if (*(int *)addr) {
3099 			file->async_audio = curproc->p_pid;
3100 		} else {
3101 			file->async_audio = 0;
3102 		}
3103 		TRACEF(2, file, "pid=%d.%d FIOASYNC %s",
3104 		    (int)curproc->p_pid, (int)l->l_lid,
3105 		    file->async_audio ? "on" : "off");
3106 		break;
3107 
3108 	case AUDIO_FLUSH:
3109 		/* XXX TODO: clear errors and restart? */
3110 		TRACEF(2, file, "%s", pre);
3111 		audio_file_clear(sc, file);
3112 		break;
3113 
3114 	case AUDIO_PERROR:
3115 	case AUDIO_RERROR:
3116 		/*
3117 		 * Number of dropped bytes during playback/record.  We don't
3118 		 * know where or when they were dropped (including conversion
3119 		 * stage).  Therefore, the number of accurate bytes or samples
3120 		 * is also unknown.
3121 		 */
3122 		track = (cmd == AUDIO_PERROR) ? file->ptrack : file->rtrack;
3123 		if (track) {
3124 			val = frametobyte(&track->usrbuf.fmt,
3125 			    track->dropframes);
3126 			*(int *)addr = val;
3127 			TRACET(2, track, "%s bytes=%d", pre, val);
3128 		} else {
3129 			TRACEF(2, file, "%s no track", pre);
3130 		}
3131 		break;
3132 
3133 	case AUDIO_GETIOFFS:
3134 		ao = (struct audio_offset *)addr;
3135 		track = file->rtrack;
3136 		if (track == NULL) {
3137 			ao->samples = 0;
3138 			ao->deltablks = 0;
3139 			ao->offset = 0;
3140 			TRACEF(2, file, "%s no rtrack", pre);
3141 			break;
3142 		}
3143 		mutex_enter(sc->sc_lock);
3144 		mutex_enter(sc->sc_intr_lock);
3145 		/* figure out where next transfer will start */
3146 		stamp = track->stamp;
3147 		offset = auring_tail(track->input);
3148 		mutex_exit(sc->sc_intr_lock);
3149 		mutex_exit(sc->sc_lock);
3150 
3151 		/* samples will overflow soon but is as per spec. */
3152 		ao->samples = stamp * track->usrbuf_blksize;
3153 		ao->deltablks = stamp - track->last_stamp;
3154 		ao->offset = audio_track_inputblk_as_usrbyte(track, offset);
3155 		TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3156 		    pre, ao->samples, ao->deltablks, ao->offset);
3157 
3158 		track->last_stamp = stamp;
3159 		break;
3160 
3161 	case AUDIO_GETOOFFS:
3162 		ao = (struct audio_offset *)addr;
3163 		track = file->ptrack;
3164 		if (track == NULL) {
3165 			ao->samples = 0;
3166 			ao->deltablks = 0;
3167 			ao->offset = 0;
3168 			TRACEF(2, file, "%s no ptrack", pre);
3169 			break;
3170 		}
3171 		mutex_enter(sc->sc_lock);
3172 		mutex_enter(sc->sc_intr_lock);
3173 		/* figure out where next transfer will start */
3174 		stamp = track->stamp;
3175 		offset = track->usrbuf.head;
3176 		mutex_exit(sc->sc_intr_lock);
3177 		mutex_exit(sc->sc_lock);
3178 
3179 		/* samples will overflow soon but is as per spec. */
3180 		ao->samples = stamp * track->usrbuf_blksize;
3181 		ao->deltablks = stamp - track->last_stamp;
3182 		ao->offset = offset;
3183 		TRACET(2, track, "%s samples=%u deltablks=%u offset=%u",
3184 		    pre, ao->samples, ao->deltablks, ao->offset);
3185 
3186 		track->last_stamp = stamp;
3187 		break;
3188 
3189 	case AUDIO_WSEEK:
3190 		track = file->ptrack;
3191 		if (track) {
3192 			val = track->usrbuf.used;
3193 			*(u_long *)addr = val;
3194 			TRACET(2, track, "%s bytes=%d", pre, val);
3195 		} else {
3196 			TRACEF(2, file, "%s no ptrack", pre);
3197 		}
3198 		break;
3199 
3200 	case AUDIO_SETINFO:
3201 		TRACEF(2, file, "%s", pre);
3202 		error = audio_exlock_enter(sc);
3203 		if (error)
3204 			break;
3205 		error = audio_file_setinfo(sc, file, (struct audio_info *)addr);
3206 		if (error) {
3207 			audio_exlock_exit(sc);
3208 			break;
3209 		}
3210 		if (ISDEVSOUND(dev))
3211 			error = audiogetinfo(sc, &sc->sc_ai, 0, file);
3212 		audio_exlock_exit(sc);
3213 		break;
3214 
3215 	case AUDIO_GETINFO:
3216 		TRACEF(2, file, "%s", pre);
3217 		error = audio_exlock_enter(sc);
3218 		if (error)
3219 			break;
3220 		error = audiogetinfo(sc, (struct audio_info *)addr, 1, file);
3221 		audio_exlock_exit(sc);
3222 		break;
3223 
3224 	case AUDIO_GETBUFINFO:
3225 		TRACEF(2, file, "%s", pre);
3226 		error = audio_exlock_enter(sc);
3227 		if (error)
3228 			break;
3229 		error = audiogetinfo(sc, (struct audio_info *)addr, 0, file);
3230 		audio_exlock_exit(sc);
3231 		break;
3232 
3233 	case AUDIO_DRAIN:
3234 		track = file->ptrack;
3235 		if (track) {
3236 			TRACET(2, track, "%s", pre);
3237 			mutex_enter(sc->sc_lock);
3238 			error = audio_track_drain(sc, track);
3239 			mutex_exit(sc->sc_lock);
3240 		} else {
3241 			TRACEF(2, file, "%s no ptrack", pre);
3242 		}
3243 		break;
3244 
3245 	case AUDIO_GETDEV:
3246 		TRACEF(2, file, "%s", pre);
3247 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
3248 		break;
3249 
3250 	case AUDIO_GETENC:
3251 		ae = (audio_encoding_t *)addr;
3252 		index = ae->index;
3253 		TRACEF(2, file, "%s index=%d", pre, index);
3254 		if (index < 0 || index >= __arraycount(audio_encodings)) {
3255 			error = EINVAL;
3256 			break;
3257 		}
3258 		*ae = audio_encodings[index];
3259 		ae->index = index;
3260 		/*
3261 		 * EMULATED always.
3262 		 * EMULATED flag at that time used to mean that it could
3263 		 * not be passed directly to the hardware as-is.  But
3264 		 * currently, all formats including hardware native is not
3265 		 * passed directly to the hardware.  So I set EMULATED
3266 		 * flag for all formats.
3267 		 */
3268 		ae->flags = AUDIO_ENCODINGFLAG_EMULATED;
3269 		break;
3270 
3271 	case AUDIO_GETFD:
3272 		/*
3273 		 * Returns the current setting of full duplex mode.
3274 		 * If HW has full duplex mode and there are two mixers,
3275 		 * it is full duplex.  Otherwise half duplex.
3276 		 */
3277 		error = audio_exlock_enter(sc);
3278 		if (error)
3279 			break;
3280 		val = (sc->sc_props & AUDIO_PROP_FULLDUPLEX)
3281 		    && (sc->sc_pmixer && sc->sc_rmixer);
3282 		audio_exlock_exit(sc);
3283 		*(int *)addr = val;
3284 		TRACEF(2, file, "%s fulldup=%d", pre, val);
3285 		break;
3286 
3287 	case AUDIO_GETPROPS:
3288 		val = sc->sc_props;
3289 		*(int *)addr = val;
3290 #if defined(AUDIO_DEBUG)
3291 		char pbuf[64];
3292 		snprintb(pbuf, sizeof(pbuf), "\x10"
3293 		    "\6CAPTURE" "\5PLAY" "\3INDEP" "\2MMAP" "\1FULLDUP", val);
3294 		TRACEF(2, file, "%s %s", pre, pbuf);
3295 #endif
3296 		break;
3297 
3298 	case AUDIO_QUERYFORMAT:
3299 		query = (audio_format_query_t *)addr;
3300 		TRACEF(2, file, "%s index=%u", pre, query->index);
3301 		mutex_enter(sc->sc_lock);
3302 		error = sc->hw_if->query_format(sc->hw_hdl, query);
3303 		mutex_exit(sc->sc_lock);
3304 		/* Hide internal information */
3305 		query->fmt.driver_data = NULL;
3306 		break;
3307 
3308 	case AUDIO_GETFORMAT:
3309 		TRACEF(2, file, "%s", pre);
3310 		error = audio_exlock_enter(sc);
3311 		if (error)
3312 			break;
3313 		audio_mixers_get_format(sc, (struct audio_info *)addr);
3314 		audio_exlock_exit(sc);
3315 		break;
3316 
3317 	case AUDIO_SETFORMAT:
3318 		TRACEF(2, file, "%s", pre);
3319 		error = audio_exlock_enter(sc);
3320 		audio_mixers_get_format(sc, &ai);
3321 		error = audio_mixers_set_format(sc, (struct audio_info *)addr);
3322 		if (error) {
3323 			/* Rollback */
3324 			audio_mixers_set_format(sc, &ai);
3325 		}
3326 		audio_exlock_exit(sc);
3327 		break;
3328 
3329 	case AUDIO_SETFD:
3330 	case AUDIO_SETCHAN:
3331 	case AUDIO_GETCHAN:
3332 		/* Obsoleted */
3333 		TRACEF(2, file, "%s", pre);
3334 		break;
3335 
3336 	default:
3337 		TRACEF(2, file, "%s", pre);
3338 		if (sc->hw_if->dev_ioctl) {
3339 			mutex_enter(sc->sc_lock);
3340 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
3341 			    cmd, addr, flag, l);
3342 			mutex_exit(sc->sc_lock);
3343 		} else {
3344 			error = EINVAL;
3345 		}
3346 		break;
3347 	}
3348 
3349 	if (error)
3350 		TRACEF(2, file, "%s error=%d", pre, error);
3351 	return error;
3352 }
3353 
3354 /*
3355  * Convert n [frames] of the input buffer to bytes in the usrbuf format.
3356  * n is in frames but should be a multiple of frame/block.  Note that the
3357  * usrbuf's frame/block and the input buffer's frame/block may be different
3358  * (i.e., if frequencies are different).
3359  *
3360  * This function is for recording track only.
3361  */
3362 static int
audio_track_inputblk_as_usrbyte(const audio_track_t * track,int n)3363 audio_track_inputblk_as_usrbyte(const audio_track_t *track, int n)
3364 {
3365 	int input_fpb;
3366 
3367 	/*
3368 	 * In the input buffer on recording track, these are the same.
3369 	 * input_fpb = frame_per_block(track->mixer, &track->input->fmt);
3370 	 */
3371 	input_fpb = track->mixer->frames_per_block;
3372 
3373 	return (n / input_fpb) * track->usrbuf_blksize;
3374 }
3375 
3376 /*
3377  * Returns the number of bytes that can be read on recording buffer.
3378  */
3379 static int
audio_track_readablebytes(const audio_track_t * track)3380 audio_track_readablebytes(const audio_track_t *track)
3381 {
3382 	int bytes;
3383 
3384 	KASSERT(track);
3385 	KASSERT(track->mode == AUMODE_RECORD);
3386 
3387 	/*
3388 	 * For recording, track->input is the main block-unit buffer and
3389 	 * track->usrbuf holds less than one block of byte data ("fragment").
3390 	 * Note that the input buffer is in frames and the usrbuf is in bytes.
3391 	 *
3392 	 * Actual total capacity of these two buffers is
3393 	 *  input->capacity [frames] + usrbuf.capacity [bytes],
3394 	 * but only input->capacity is reported to userland as buffer_size.
3395 	 * So, even if the total used bytes exceed input->capacity, report it
3396 	 * as input->capacity for consistency.
3397 	 */
3398 	bytes = audio_track_inputblk_as_usrbyte(track, track->input->used);
3399 	if (track->input->used < track->input->capacity) {
3400 		bytes += track->usrbuf.used;
3401 	}
3402 	return bytes;
3403 }
3404 
3405 /*
3406  * Must be called without sc_lock nor sc_exlock held.
3407  */
3408 int
audio_poll(struct audio_softc * sc,int events,struct lwp * l,audio_file_t * file)3409 audio_poll(struct audio_softc *sc, int events, struct lwp *l,
3410 	audio_file_t *file)
3411 {
3412 	audio_track_t *track;
3413 	int revents;
3414 	bool in_is_valid;
3415 	bool out_is_valid;
3416 
3417 #if defined(AUDIO_DEBUG)
3418 #define POLLEV_BITMAP "\177\020" \
3419 	    "b\10WRBAND\0" \
3420 	    "b\7RDBAND\0" "b\6RDNORM\0" "b\5NVAL\0" "b\4HUP\0" \
3421 	    "b\3ERR\0" "b\2OUT\0" "b\1PRI\0" "b\0IN\0"
3422 	char evbuf[64];
3423 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, events);
3424 	TRACEF(2, file, "pid=%d.%d events=%s",
3425 	    (int)curproc->p_pid, (int)l->l_lid, evbuf);
3426 #endif
3427 
3428 	revents = 0;
3429 	in_is_valid = false;
3430 	out_is_valid = false;
3431 	if (events & (POLLIN | POLLRDNORM)) {
3432 		track = file->rtrack;
3433 		if (track) {
3434 			int used;
3435 			in_is_valid = true;
3436 			used = audio_track_readablebytes(track);
3437 			if (used > 0)
3438 				revents |= events & (POLLIN | POLLRDNORM);
3439 		}
3440 	}
3441 	if (events & (POLLOUT | POLLWRNORM)) {
3442 		track = file->ptrack;
3443 		if (track) {
3444 			out_is_valid = true;
3445 			if (track->usrbuf.used <= track->usrbuf_usedlow)
3446 				revents |= events & (POLLOUT | POLLWRNORM);
3447 		}
3448 	}
3449 
3450 	if (revents == 0) {
3451 		mutex_enter(sc->sc_lock);
3452 		if (in_is_valid) {
3453 			TRACEF(3, file, "selrecord rsel");
3454 			selrecord(l, &sc->sc_rsel);
3455 		}
3456 		if (out_is_valid) {
3457 			TRACEF(3, file, "selrecord wsel");
3458 			selrecord(l, &sc->sc_wsel);
3459 		}
3460 		mutex_exit(sc->sc_lock);
3461 	}
3462 
3463 #if defined(AUDIO_DEBUG)
3464 	snprintb(evbuf, sizeof(evbuf), POLLEV_BITMAP, revents);
3465 	TRACEF(2, file, "revents=%s", evbuf);
3466 #endif
3467 	return revents;
3468 }
3469 
3470 static const struct filterops audioread_filtops = {
3471 	.f_flags = FILTEROP_ISFD,
3472 	.f_attach = NULL,
3473 	.f_detach = filt_audioread_detach,
3474 	.f_event = filt_audioread_event,
3475 };
3476 
3477 static void
filt_audioread_detach(struct knote * kn)3478 filt_audioread_detach(struct knote *kn)
3479 {
3480 	struct audio_softc *sc;
3481 	audio_file_t *file;
3482 
3483 	file = kn->kn_hook;
3484 	sc = file->sc;
3485 	TRACEF(3, file, "called");
3486 
3487 	mutex_enter(sc->sc_lock);
3488 	selremove_knote(&sc->sc_rsel, kn);
3489 	mutex_exit(sc->sc_lock);
3490 }
3491 
3492 static int
filt_audioread_event(struct knote * kn,long hint)3493 filt_audioread_event(struct knote *kn, long hint)
3494 {
3495 	audio_file_t *file;
3496 	audio_track_t *track;
3497 
3498 	file = kn->kn_hook;
3499 	track = file->rtrack;
3500 
3501 	/*
3502 	 * kn_data must contain the number of bytes can be read.
3503 	 * The return value indicates whether the event occurs or not.
3504 	 */
3505 
3506 	if (track == NULL) {
3507 		/* can not read with this descriptor. */
3508 		kn->kn_data = 0;
3509 		return 0;
3510 	}
3511 
3512 	kn->kn_data = audio_track_readablebytes(track);
3513 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3514 	return kn->kn_data > 0;
3515 }
3516 
3517 static const struct filterops audiowrite_filtops = {
3518 	.f_flags = FILTEROP_ISFD,
3519 	.f_attach = NULL,
3520 	.f_detach = filt_audiowrite_detach,
3521 	.f_event = filt_audiowrite_event,
3522 };
3523 
3524 static void
filt_audiowrite_detach(struct knote * kn)3525 filt_audiowrite_detach(struct knote *kn)
3526 {
3527 	struct audio_softc *sc;
3528 	audio_file_t *file;
3529 
3530 	file = kn->kn_hook;
3531 	sc = file->sc;
3532 	TRACEF(3, file, "called");
3533 
3534 	mutex_enter(sc->sc_lock);
3535 	selremove_knote(&sc->sc_wsel, kn);
3536 	mutex_exit(sc->sc_lock);
3537 }
3538 
3539 static int
filt_audiowrite_event(struct knote * kn,long hint)3540 filt_audiowrite_event(struct knote *kn, long hint)
3541 {
3542 	audio_file_t *file;
3543 	audio_track_t *track;
3544 
3545 	file = kn->kn_hook;
3546 	track = file->ptrack;
3547 
3548 	/*
3549 	 * kn_data must contain the number of bytes can be write.
3550 	 * The return value indicates whether the event occurs or not.
3551 	 */
3552 
3553 	if (track == NULL) {
3554 		/* can not write with this descriptor. */
3555 		kn->kn_data = 0;
3556 		return 0;
3557 	}
3558 
3559 	kn->kn_data = track->usrbuf_usedhigh - track->usrbuf.used;
3560 	TRACEF(3, file, "data=%" PRId64, kn->kn_data);
3561 	return (track->usrbuf.used < track->usrbuf_usedlow);
3562 }
3563 
3564 /*
3565  * Must be called without sc_lock nor sc_exlock held.
3566  */
3567 int
audio_kqfilter(struct audio_softc * sc,audio_file_t * file,struct knote * kn)3568 audio_kqfilter(struct audio_softc *sc, audio_file_t *file, struct knote *kn)
3569 {
3570 	struct selinfo *sip;
3571 
3572 	TRACEF(3, file, "kn=%p kn_filter=%x", kn, (int)kn->kn_filter);
3573 
3574 	switch (kn->kn_filter) {
3575 	case EVFILT_READ:
3576 		sip = &sc->sc_rsel;
3577 		kn->kn_fop = &audioread_filtops;
3578 		break;
3579 
3580 	case EVFILT_WRITE:
3581 		sip = &sc->sc_wsel;
3582 		kn->kn_fop = &audiowrite_filtops;
3583 		break;
3584 
3585 	default:
3586 		return EINVAL;
3587 	}
3588 
3589 	kn->kn_hook = file;
3590 
3591 	mutex_enter(sc->sc_lock);
3592 	selrecord_knote(sip, kn);
3593 	mutex_exit(sc->sc_lock);
3594 
3595 	return 0;
3596 }
3597 
3598 /*
3599  * Must be called without sc_lock nor sc_exlock held.
3600  */
3601 int
audio_mmap(struct audio_softc * sc,off_t * offp,size_t len,int prot,int * flagsp,int * advicep,struct uvm_object ** uobjp,int * maxprotp,audio_file_t * file)3602 audio_mmap(struct audio_softc *sc, off_t *offp, size_t len, int prot,
3603 	int *flagsp, int *advicep, struct uvm_object **uobjp, int *maxprotp,
3604 	audio_file_t *file)
3605 {
3606 	audio_track_t *track;
3607 	struct uvm_object *uobj;
3608 	vaddr_t vstart;
3609 	vsize_t vsize;
3610 	int error;
3611 
3612 	TRACEF(1, file, "off=%jd, len=%ju, prot=%d",
3613 	    (intmax_t)(*offp), (uintmax_t)len, prot);
3614 
3615 	KASSERT(len > 0);
3616 
3617 	if (*offp < 0)
3618 		return EINVAL;
3619 
3620 #if 0
3621 	/* XXX
3622 	 * The idea here was to use the protection to determine if
3623 	 * we are mapping the read or write buffer, but it fails.
3624 	 * The VM system is broken in (at least) two ways.
3625 	 * 1) If you map memory VM_PROT_WRITE you SIGSEGV
3626 	 *    when writing to it, so VM_PROT_READ|VM_PROT_WRITE
3627 	 *    has to be used for mmapping the play buffer.
3628 	 * 2) Even if calling mmap() with VM_PROT_READ|VM_PROT_WRITE
3629 	 *    audio_mmap will get called at some point with VM_PROT_READ
3630 	 *    only.
3631 	 * So, alas, we always map the play buffer for now.
3632 	 */
3633 	if (prot == (VM_PROT_READ|VM_PROT_WRITE) ||
3634 	    prot == VM_PROT_WRITE)
3635 		track = file->ptrack;
3636 	else if (prot == VM_PROT_READ)
3637 		track = file->rtrack;
3638 	else
3639 		return EINVAL;
3640 #else
3641 	track = file->ptrack;
3642 #endif
3643 	if (track == NULL)
3644 		return EACCES;
3645 
3646 	/* XXX TODO: what happens when mmap twice. */
3647 	if (track->mmapped)
3648 		return EIO;
3649 
3650 	/* Create a uvm anonymous object */
3651 	vsize = roundup2(MAX(track->usrbuf.capacity, PAGE_SIZE), PAGE_SIZE);
3652 	if (*offp + len > vsize)
3653 		return EOVERFLOW;
3654 	uobj = uao_create(vsize, 0);
3655 
3656 	/* Map it into the kernel virtual address space */
3657 	vstart = 0;
3658 	error = uvm_map(kernel_map, &vstart, vsize, uobj, 0, 0,
3659 	    UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW, UVM_INH_NONE,
3660 	    UVM_ADV_RANDOM, 0));
3661 	if (error) {
3662 		device_printf(sc->sc_dev, "uvm_map failed: errno=%d\n", error);
3663 		uao_detach(uobj);	/* release reference */
3664 		return error;
3665 	}
3666 
3667 	error = uvm_map_pageable(kernel_map, vstart, vstart + vsize,
3668 	    false, 0);
3669 	if (error) {
3670 		device_printf(sc->sc_dev, "uvm_map_pageable failed: errno=%d\n",
3671 		    error);
3672 		goto abort;
3673 	}
3674 
3675 	error = audio_exlock_mutex_enter(sc);
3676 	if (error)
3677 		goto abort;
3678 
3679 	/*
3680 	 * mmap() will start playing immediately.  XXX Maybe we lack API...
3681 	 * If no one has played yet, start pmixer here.
3682 	 */
3683 	if (sc->sc_pbusy == false)
3684 		audio_pmixer_start(sc, true);
3685 	audio_exlock_mutex_exit(sc);
3686 
3687 	/* Finally, replace the usrbuf from kmem to uvm. */
3688 	audio_track_lock_enter(track);
3689 	kmem_free(track->usrbuf.mem, track->usrbuf_allocsize);
3690 	track->usrbuf.mem = (void *)vstart;
3691 	track->usrbuf_allocsize = vsize;
3692 	memset(track->usrbuf.mem, 0, vsize);
3693 	track->mmapped = true;
3694 	audio_track_lock_exit(track);
3695 
3696 	/* Acquire a reference for the mmap.  munmap will release. */
3697 	uao_reference(uobj);
3698 	*uobjp = uobj;
3699 	*maxprotp = prot;
3700 	*advicep = UVM_ADV_RANDOM;
3701 	*flagsp = MAP_SHARED;
3702 
3703 	return 0;
3704 
3705 abort:
3706 	uvm_unmap(kernel_map, vstart, vstart + vsize);
3707 	/* uvm_unmap also detach uobj */
3708 	return error;
3709 }
3710 
3711 /*
3712  * /dev/audioctl has to be able to open at any time without interference
3713  * with any /dev/audio or /dev/sound.
3714  * Must be called with sc_exlock held and without sc_lock held.
3715  */
3716 static int
audioctl_open(dev_t dev,struct audio_softc * sc,int flags,int ifmt,struct lwp * l)3717 audioctl_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
3718 	struct lwp *l)
3719 {
3720 	struct file *fp;
3721 	audio_file_t *af;
3722 	int fd;
3723 	int error;
3724 
3725 	KASSERT(sc->sc_exlock);
3726 
3727 	TRACE(1, "called");
3728 
3729 	error = fd_allocfile(&fp, &fd);
3730 	if (error)
3731 		return error;
3732 
3733 	af = kmem_zalloc(sizeof(*af), KM_SLEEP);
3734 	af->sc = sc;
3735 	af->dev = dev;
3736 
3737 	mutex_enter(sc->sc_lock);
3738 	if (sc->sc_dying) {
3739 		mutex_exit(sc->sc_lock);
3740 		kmem_free(af, sizeof(*af));
3741 		fd_abort(curproc, fp, fd);
3742 		return ENXIO;
3743 	}
3744 	mutex_enter(sc->sc_intr_lock);
3745 	SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
3746 	mutex_exit(sc->sc_intr_lock);
3747 	mutex_exit(sc->sc_lock);
3748 
3749 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
3750 	KASSERTMSG(error == EMOVEFD, "error=%d", error);
3751 
3752 	return error;
3753 }
3754 
3755 /*
3756  * Free 'mem' if available, and initialize the pointer.
3757  * For this reason, this is implemented as macro.
3758  */
3759 #define audio_free(mem)	do {	\
3760 	if (mem != NULL) {	\
3761 		kern_free(mem);	\
3762 		mem = NULL;	\
3763 	}	\
3764 } while (0)
3765 
3766 /*
3767  * (Re)allocate 'memblock' with specified 'bytes'.
3768  * bytes must not be 0.
3769  * This function never returns NULL.
3770  */
3771 static void *
audio_realloc(void * memblock,size_t bytes)3772 audio_realloc(void *memblock, size_t bytes)
3773 {
3774 
3775 	KASSERT(bytes != 0);
3776 	if (memblock)
3777 		kern_free(memblock);
3778 	return kern_malloc(bytes, M_WAITOK);
3779 }
3780 
3781 /*
3782  * Free usrbuf (if available).
3783  */
3784 static void
audio_free_usrbuf(audio_track_t * track)3785 audio_free_usrbuf(audio_track_t *track)
3786 {
3787 	vaddr_t vstart;
3788 	vsize_t vsize;
3789 
3790 	if (track->usrbuf_allocsize != 0) {
3791 		if (track->mmapped) {
3792 			/*
3793 			 * Unmap the kernel mapping.  uvm_unmap releases the
3794 			 * reference to the uvm object, and this should be the
3795 			 * last virtual mapping of the uvm object, so no need
3796 			 * to explicitly release (`detach') the object.
3797 			 */
3798 			vstart = (vaddr_t)track->usrbuf.mem;
3799 			vsize = track->usrbuf_allocsize;
3800 			uvm_unmap(kernel_map, vstart, vstart + vsize);
3801 			track->mmapped = false;
3802 		} else {
3803 			kmem_free(track->usrbuf.mem, track->usrbuf_allocsize);
3804 		}
3805 	}
3806 	track->usrbuf.mem = NULL;
3807 	track->usrbuf.capacity = 0;
3808 	track->usrbuf_allocsize = 0;
3809 }
3810 
3811 /*
3812  * This filter changes the volume for each channel.
3813  * arg->context points track->ch_volume[].
3814  */
3815 static void
audio_track_chvol(audio_filter_arg_t * arg)3816 audio_track_chvol(audio_filter_arg_t *arg)
3817 {
3818 	int16_t *ch_volume;
3819 	const aint_t *s;
3820 	aint_t *d;
3821 	u_int i;
3822 	u_int ch;
3823 	u_int channels;
3824 
3825 	DIAGNOSTIC_filter_arg(arg);
3826 	KASSERTMSG(arg->srcfmt->channels == arg->dstfmt->channels,
3827 	    "arg->srcfmt->channels=%d, arg->dstfmt->channels=%d",
3828 	    arg->srcfmt->channels, arg->dstfmt->channels);
3829 	KASSERT(arg->context != NULL);
3830 	KASSERTMSG(arg->srcfmt->channels <= AUDIO_MAX_CHANNELS,
3831 	    "arg->srcfmt->channels=%d", arg->srcfmt->channels);
3832 
3833 	s = arg->src;
3834 	d = arg->dst;
3835 	ch_volume = arg->context;
3836 
3837 	channels = arg->srcfmt->channels;
3838 	for (i = 0; i < arg->count; i++) {
3839 		for (ch = 0; ch < channels; ch++) {
3840 			aint2_t val;
3841 			val = *s++;
3842 			val = AUDIO_SCALEDOWN(val * ch_volume[ch], 8);
3843 			*d++ = (aint_t)val;
3844 		}
3845 	}
3846 }
3847 
3848 /*
3849  * This filter performs conversion from stereo (or more channels) to mono.
3850  */
3851 static void
audio_track_chmix_mixLR(audio_filter_arg_t * arg)3852 audio_track_chmix_mixLR(audio_filter_arg_t *arg)
3853 {
3854 	const aint_t *s;
3855 	aint_t *d;
3856 	u_int i;
3857 
3858 	DIAGNOSTIC_filter_arg(arg);
3859 
3860 	s = arg->src;
3861 	d = arg->dst;
3862 
3863 	for (i = 0; i < arg->count; i++) {
3864 		*d++ = AUDIO_SCALEDOWN(s[0], 1) + AUDIO_SCALEDOWN(s[1], 1);
3865 		s += arg->srcfmt->channels;
3866 	}
3867 }
3868 
3869 /*
3870  * This filter performs conversion from mono to stereo (or more channels).
3871  */
3872 static void
audio_track_chmix_dupLR(audio_filter_arg_t * arg)3873 audio_track_chmix_dupLR(audio_filter_arg_t *arg)
3874 {
3875 	const aint_t *s;
3876 	aint_t *d;
3877 	u_int i;
3878 	u_int ch;
3879 	u_int dstchannels;
3880 
3881 	DIAGNOSTIC_filter_arg(arg);
3882 
3883 	s = arg->src;
3884 	d = arg->dst;
3885 	dstchannels = arg->dstfmt->channels;
3886 
3887 	for (i = 0; i < arg->count; i++) {
3888 		d[0] = s[0];
3889 		d[1] = s[0];
3890 		s++;
3891 		d += dstchannels;
3892 	}
3893 	if (dstchannels > 2) {
3894 		d = arg->dst;
3895 		for (i = 0; i < arg->count; i++) {
3896 			for (ch = 2; ch < dstchannels; ch++) {
3897 				d[ch] = 0;
3898 			}
3899 			d += dstchannels;
3900 		}
3901 	}
3902 }
3903 
3904 /*
3905  * This filter shrinks M channels into N channels.
3906  * Extra channels are discarded.
3907  */
3908 static void
audio_track_chmix_shrink(audio_filter_arg_t * arg)3909 audio_track_chmix_shrink(audio_filter_arg_t *arg)
3910 {
3911 	const aint_t *s;
3912 	aint_t *d;
3913 	u_int i;
3914 	u_int ch;
3915 
3916 	DIAGNOSTIC_filter_arg(arg);
3917 
3918 	s = arg->src;
3919 	d = arg->dst;
3920 
3921 	for (i = 0; i < arg->count; i++) {
3922 		for (ch = 0; ch < arg->dstfmt->channels; ch++) {
3923 			*d++ = s[ch];
3924 		}
3925 		s += arg->srcfmt->channels;
3926 	}
3927 }
3928 
3929 /*
3930  * This filter expands M channels into N channels.
3931  * Silence is inserted for missing channels.
3932  */
3933 static void
audio_track_chmix_expand(audio_filter_arg_t * arg)3934 audio_track_chmix_expand(audio_filter_arg_t *arg)
3935 {
3936 	const aint_t *s;
3937 	aint_t *d;
3938 	u_int i;
3939 	u_int ch;
3940 	u_int srcchannels;
3941 	u_int dstchannels;
3942 
3943 	DIAGNOSTIC_filter_arg(arg);
3944 
3945 	s = arg->src;
3946 	d = arg->dst;
3947 
3948 	srcchannels = arg->srcfmt->channels;
3949 	dstchannels = arg->dstfmt->channels;
3950 	for (i = 0; i < arg->count; i++) {
3951 		for (ch = 0; ch < srcchannels; ch++) {
3952 			*d++ = *s++;
3953 		}
3954 		for (; ch < dstchannels; ch++) {
3955 			*d++ = 0;
3956 		}
3957 	}
3958 }
3959 
3960 /*
3961  * This filter performs frequency conversion (up sampling).
3962  * It uses linear interpolation.
3963  */
3964 static void
audio_track_freq_up(audio_filter_arg_t * arg)3965 audio_track_freq_up(audio_filter_arg_t *arg)
3966 {
3967 	audio_track_t *track;
3968 	audio_ring_t *src;
3969 	audio_ring_t *dst;
3970 	const aint_t *s;
3971 	aint_t *d;
3972 	aint_t prev[AUDIO_MAX_CHANNELS];
3973 	aint_t curr[AUDIO_MAX_CHANNELS];
3974 	aint_t grad[AUDIO_MAX_CHANNELS];
3975 	u_int i;
3976 	u_int t;
3977 	u_int step;
3978 	u_int channels;
3979 	u_int ch;
3980 	int srcused;
3981 
3982 	track = arg->context;
3983 	KASSERT(track);
3984 	src = &track->freq.srcbuf;
3985 	dst = track->freq.dst;
3986 	DIAGNOSTIC_ring(dst);
3987 	DIAGNOSTIC_ring(src);
3988 	KASSERT(src->used > 0);
3989 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
3990 	    "src->fmt.channels=%d dst->fmt.channels=%d",
3991 	    src->fmt.channels, dst->fmt.channels);
3992 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
3993 	    "src->head=%d track->mixer->frames_per_block=%d",
3994 	    src->head, track->mixer->frames_per_block);
3995 
3996 	s = arg->src;
3997 	d = arg->dst;
3998 
3999 	/*
4000 	 * In order to facilitate interpolation for each block, slide (delay)
4001 	 * input by one sample.  As a result, strictly speaking, the output
4002 	 * phase is delayed by 1/dstfreq.  However, I believe there is no
4003 	 * observable impact.
4004 	 *
4005 	 * Example)
4006 	 * srcfreq:dstfreq = 1:3
4007 	 *
4008 	 *  A - -
4009 	 *  |
4010 	 *  |
4011 	 *  |     B - -
4012 	 *  +-----+-----> input timeframe
4013 	 *  0     1
4014 	 *
4015 	 *  0     1
4016 	 *  +-----+-----> input timeframe
4017 	 *  |     A
4018 	 *  |   x   x
4019 	 *  | x       x
4020 	 *  x          (B)
4021 	 *  +-+-+-+-+-+-> output timeframe
4022 	 *  0 1 2 3 4 5
4023 	 */
4024 
4025 	/* Last samples in previous block */
4026 	channels = src->fmt.channels;
4027 	for (ch = 0; ch < channels; ch++) {
4028 		prev[ch] = track->freq_prev[ch];
4029 		curr[ch] = track->freq_curr[ch];
4030 		grad[ch] = curr[ch] - prev[ch];
4031 	}
4032 
4033 	step = track->freq_step;
4034 	t = track->freq_current;
4035 //#define FREQ_DEBUG
4036 #if defined(FREQ_DEBUG)
4037 #define PRINTF(fmt...)	printf(fmt)
4038 #else
4039 #define PRINTF(fmt...)	do { } while (0)
4040 #endif
4041 	srcused = src->used;
4042 	PRINTF("upstart step=%d leap=%d", step, track->freq_leap);
4043 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4044 	PRINTF(" prev=%d curr=%d grad=%d", prev[0], curr[0], grad[0]);
4045 	PRINTF(" t=%d\n", t);
4046 
4047 	for (i = 0; i < arg->count; i++) {
4048 		PRINTF("i=%d t=%5d", i, t);
4049 		if (t >= 65536) {
4050 			for (ch = 0; ch < channels; ch++) {
4051 				prev[ch] = curr[ch];
4052 				curr[ch] = *s++;
4053 				grad[ch] = curr[ch] - prev[ch];
4054 			}
4055 			PRINTF(" prev=%d s[%d]=%d",
4056 			    prev[0], src->used - srcused, curr[0]);
4057 
4058 			/* Update */
4059 			t -= 65536;
4060 			srcused--;
4061 			if (srcused < 0) {
4062 				PRINTF(" break\n");
4063 				break;
4064 			}
4065 		}
4066 
4067 		for (ch = 0; ch < channels; ch++) {
4068 			*d++ = prev[ch] + (aint2_t)grad[ch] * t / 65536;
4069 #if defined(FREQ_DEBUG)
4070 			if (ch == 0)
4071 				printf(" t=%5d *d=%d", t, d[-1]);
4072 #endif
4073 		}
4074 		t += step;
4075 
4076 		PRINTF("\n");
4077 	}
4078 	PRINTF("end prev=%d curr=%d\n", prev[0], curr[0]);
4079 
4080 	auring_take(src, src->used);
4081 	auring_push(dst, i);
4082 
4083 	/* Adjust */
4084 	t += track->freq_leap;
4085 
4086 	track->freq_current = t;
4087 	for (ch = 0; ch < channels; ch++) {
4088 		track->freq_prev[ch] = prev[ch];
4089 		track->freq_curr[ch] = curr[ch];
4090 	}
4091 }
4092 
4093 /*
4094  * This filter performs frequency conversion (down sampling).
4095  * It uses simple thinning.
4096  */
4097 static void
audio_track_freq_down(audio_filter_arg_t * arg)4098 audio_track_freq_down(audio_filter_arg_t *arg)
4099 {
4100 	audio_track_t *track;
4101 	audio_ring_t *src;
4102 	audio_ring_t *dst;
4103 	const aint_t *s0;
4104 	aint_t *d;
4105 	u_int i;
4106 	u_int t;
4107 	u_int step;
4108 	u_int ch;
4109 	u_int channels;
4110 
4111 	track = arg->context;
4112 	KASSERT(track);
4113 	src = &track->freq.srcbuf;
4114 	dst = track->freq.dst;
4115 
4116 	DIAGNOSTIC_ring(dst);
4117 	DIAGNOSTIC_ring(src);
4118 	KASSERT(src->used > 0);
4119 	KASSERTMSG(src->fmt.channels == dst->fmt.channels,
4120 	    "src->fmt.channels=%d dst->fmt.channels=%d",
4121 	    src->fmt.channels, dst->fmt.channels);
4122 	KASSERTMSG(src->head % track->mixer->frames_per_block == 0,
4123 	    "src->head=%d track->mixer->frames_per_block=%d",
4124 	    src->head, track->mixer->frames_per_block);
4125 
4126 	s0 = arg->src;
4127 	d = arg->dst;
4128 	t = track->freq_current;
4129 	step = track->freq_step;
4130 	channels = dst->fmt.channels;
4131 	PRINTF("downstart step=%d leap=%d", step, track->freq_leap);
4132 	PRINTF(" srcused=%d arg->count=%u", src->used, arg->count);
4133 	PRINTF(" t=%d\n", t);
4134 
4135 	for (i = 0; i < arg->count && t / 65536 < src->used; i++) {
4136 		const aint_t *s;
4137 		PRINTF("i=%4d t=%10d", i, t);
4138 		s = s0 + (t / 65536) * channels;
4139 		PRINTF(" s=%5ld", (s - s0) / channels);
4140 		for (ch = 0; ch < channels; ch++) {
4141 			if (ch == 0) PRINTF(" *s=%d", s[ch]);
4142 			*d++ = s[ch];
4143 		}
4144 		PRINTF("\n");
4145 		t += step;
4146 	}
4147 	t += track->freq_leap;
4148 	PRINTF("end t=%d\n", t);
4149 	auring_take(src, src->used);
4150 	auring_push(dst, i);
4151 	track->freq_current = t % 65536;
4152 }
4153 
4154 /*
4155  * Creates track and returns it.
4156  * Must be called without sc_lock held.
4157  */
4158 audio_track_t *
audio_track_create(struct audio_softc * sc,audio_trackmixer_t * mixer)4159 audio_track_create(struct audio_softc *sc, audio_trackmixer_t *mixer)
4160 {
4161 	audio_track_t *track;
4162 	static int newid = 0;
4163 
4164 	track = kmem_zalloc(sizeof(*track), KM_SLEEP);
4165 
4166 	track->id = newid++;
4167 	track->mixer = mixer;
4168 	track->mode = mixer->mode;
4169 
4170 	/* Do TRACE after id is assigned. */
4171 	TRACET(3, track, "for %s",
4172 	    mixer->mode == AUMODE_PLAY ? "playback" : "recording");
4173 
4174 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
4175 	track->volume = 256;
4176 #endif
4177 	for (int i = 0; i < AUDIO_MAX_CHANNELS; i++) {
4178 		track->ch_volume[i] = 256;
4179 	}
4180 
4181 	return track;
4182 }
4183 
4184 /*
4185  * Release all resources of the track and track itself.
4186  * track must not be NULL.  Don't specify the track within the file
4187  * structure linked from sc->sc_files.
4188  */
4189 static void
audio_track_destroy(audio_track_t * track)4190 audio_track_destroy(audio_track_t *track)
4191 {
4192 
4193 	KASSERT(track);
4194 
4195 	audio_free_usrbuf(track);
4196 	audio_free(track->codec.srcbuf.mem);
4197 	audio_free(track->chvol.srcbuf.mem);
4198 	audio_free(track->chmix.srcbuf.mem);
4199 	audio_free(track->freq.srcbuf.mem);
4200 	audio_free(track->outbuf.mem);
4201 
4202 	kmem_free(track, sizeof(*track));
4203 }
4204 
4205 /*
4206  * It returns encoding conversion filter according to src and dst format.
4207  * If it is not a convertible pair, it returns NULL.  Either src or dst
4208  * must be internal format.
4209  */
4210 static audio_filter_t
audio_track_get_codec(audio_track_t * track,const audio_format2_t * src,const audio_format2_t * dst)4211 audio_track_get_codec(audio_track_t *track, const audio_format2_t *src,
4212 	const audio_format2_t *dst)
4213 {
4214 
4215 	if (audio_format2_is_internal(src)) {
4216 		if (dst->encoding == AUDIO_ENCODING_ULAW) {
4217 			return audio_internal_to_mulaw;
4218 		} else if (dst->encoding == AUDIO_ENCODING_ALAW) {
4219 			return audio_internal_to_alaw;
4220 		} else if (audio_format2_is_linear(dst)) {
4221 			switch (dst->stride) {
4222 			case 8:
4223 				return audio_internal_to_linear8;
4224 			case 16:
4225 				return audio_internal_to_linear16;
4226 #if defined(AUDIO_SUPPORT_LINEAR24)
4227 			case 24:
4228 				return audio_internal_to_linear24;
4229 #endif
4230 			case 32:
4231 				return audio_internal_to_linear32;
4232 			default:
4233 				TRACET(1, track, "unsupported %s stride %d",
4234 				    "dst", dst->stride);
4235 				goto abort;
4236 			}
4237 		}
4238 	} else if (audio_format2_is_internal(dst)) {
4239 		if (src->encoding == AUDIO_ENCODING_ULAW) {
4240 			return audio_mulaw_to_internal;
4241 		} else if (src->encoding == AUDIO_ENCODING_ALAW) {
4242 			return audio_alaw_to_internal;
4243 		} else if (audio_format2_is_linear(src)) {
4244 			switch (src->stride) {
4245 			case 8:
4246 				return audio_linear8_to_internal;
4247 			case 16:
4248 				return audio_linear16_to_internal;
4249 #if defined(AUDIO_SUPPORT_LINEAR24)
4250 			case 24:
4251 				return audio_linear24_to_internal;
4252 #endif
4253 			case 32:
4254 				return audio_linear32_to_internal;
4255 			default:
4256 				TRACET(1, track, "unsupported %s stride %d",
4257 				    "src", src->stride);
4258 				goto abort;
4259 			}
4260 		}
4261 	}
4262 
4263 	TRACET(1, track, "unsupported encoding");
4264 abort:
4265 #if defined(AUDIO_DEBUG)
4266 	if (audiodebug >= 2) {
4267 		char buf[100];
4268 		audio_format2_tostr(buf, sizeof(buf), src);
4269 		TRACET(2, track, "src %s", buf);
4270 		audio_format2_tostr(buf, sizeof(buf), dst);
4271 		TRACET(2, track, "dst %s", buf);
4272 	}
4273 #endif
4274 	return NULL;
4275 }
4276 
4277 /*
4278  * Initialize the codec stage of this track as necessary.
4279  * If successful, it initializes the codec stage as necessary, stores updated
4280  * last_dst in *last_dstp in any case, and returns 0.
4281  * Otherwise, it returns errno without modifying *last_dstp.
4282  */
4283 static int
audio_track_init_codec(audio_track_t * track,audio_ring_t ** last_dstp)4284 audio_track_init_codec(audio_track_t *track, audio_ring_t **last_dstp)
4285 {
4286 	audio_ring_t *last_dst;
4287 	audio_ring_t *srcbuf;
4288 	audio_format2_t *srcfmt;
4289 	audio_format2_t *dstfmt;
4290 	audio_filter_arg_t *arg;
4291 	u_int len;
4292 	int error;
4293 
4294 	KASSERT(track);
4295 
4296 	last_dst = *last_dstp;
4297 	dstfmt = &last_dst->fmt;
4298 	srcfmt = &track->inputfmt;
4299 	srcbuf = &track->codec.srcbuf;
4300 	error = 0;
4301 
4302 	if (srcfmt->encoding != dstfmt->encoding
4303 	 || srcfmt->precision != dstfmt->precision
4304 	 || srcfmt->stride != dstfmt->stride) {
4305 		track->codec.dst = last_dst;
4306 
4307 		srcbuf->fmt = *dstfmt;
4308 		srcbuf->fmt.encoding = srcfmt->encoding;
4309 		srcbuf->fmt.precision = srcfmt->precision;
4310 		srcbuf->fmt.stride = srcfmt->stride;
4311 
4312 		track->codec.filter = audio_track_get_codec(track,
4313 		    &srcbuf->fmt, dstfmt);
4314 		if (track->codec.filter == NULL) {
4315 			error = EINVAL;
4316 			goto abort;
4317 		}
4318 
4319 		srcbuf->head = 0;
4320 		srcbuf->used = 0;
4321 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4322 		len = auring_bytelen(srcbuf);
4323 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
4324 
4325 		arg = &track->codec.arg;
4326 		arg->srcfmt = &srcbuf->fmt;
4327 		arg->dstfmt = dstfmt;
4328 		arg->context = NULL;
4329 
4330 		*last_dstp = srcbuf;
4331 		return 0;
4332 	}
4333 
4334 abort:
4335 	track->codec.filter = NULL;
4336 	audio_free(srcbuf->mem);
4337 	return error;
4338 }
4339 
4340 /*
4341  * Initialize the chvol stage of this track as necessary.
4342  * If successful, it initializes the chvol stage as necessary, stores updated
4343  * last_dst in *last_dstp in any case, and returns 0.
4344  * Otherwise, it returns errno without modifying *last_dstp.
4345  */
4346 static int
audio_track_init_chvol(audio_track_t * track,audio_ring_t ** last_dstp)4347 audio_track_init_chvol(audio_track_t *track, audio_ring_t **last_dstp)
4348 {
4349 	audio_ring_t *last_dst;
4350 	audio_ring_t *srcbuf;
4351 	audio_format2_t *srcfmt;
4352 	audio_format2_t *dstfmt;
4353 	audio_filter_arg_t *arg;
4354 	u_int len;
4355 	int error;
4356 
4357 	KASSERT(track);
4358 
4359 	last_dst = *last_dstp;
4360 	dstfmt = &last_dst->fmt;
4361 	srcfmt = &track->inputfmt;
4362 	srcbuf = &track->chvol.srcbuf;
4363 	error = 0;
4364 
4365 	/* Check whether channel volume conversion is necessary. */
4366 	bool use_chvol = false;
4367 	for (int ch = 0; ch < srcfmt->channels; ch++) {
4368 		if (track->ch_volume[ch] != 256) {
4369 			use_chvol = true;
4370 			break;
4371 		}
4372 	}
4373 
4374 	if (use_chvol == true) {
4375 		track->chvol.dst = last_dst;
4376 		track->chvol.filter = audio_track_chvol;
4377 
4378 		srcbuf->fmt = *dstfmt;
4379 		/* no format conversion occurs */
4380 
4381 		srcbuf->head = 0;
4382 		srcbuf->used = 0;
4383 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4384 		len = auring_bytelen(srcbuf);
4385 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
4386 
4387 		arg = &track->chvol.arg;
4388 		arg->srcfmt = &srcbuf->fmt;
4389 		arg->dstfmt = dstfmt;
4390 		arg->context = track->ch_volume;
4391 
4392 		*last_dstp = srcbuf;
4393 		return 0;
4394 	}
4395 
4396 	track->chvol.filter = NULL;
4397 	audio_free(srcbuf->mem);
4398 	return error;
4399 }
4400 
4401 /*
4402  * Initialize the chmix stage of this track as necessary.
4403  * If successful, it initializes the chmix stage as necessary, stores updated
4404  * last_dst in *last_dstp in any case, and returns 0.
4405  * Otherwise, it returns errno without modifying *last_dstp.
4406  */
4407 static int
audio_track_init_chmix(audio_track_t * track,audio_ring_t ** last_dstp)4408 audio_track_init_chmix(audio_track_t *track, audio_ring_t **last_dstp)
4409 {
4410 	audio_ring_t *last_dst;
4411 	audio_ring_t *srcbuf;
4412 	audio_format2_t *srcfmt;
4413 	audio_format2_t *dstfmt;
4414 	audio_filter_arg_t *arg;
4415 	u_int srcch;
4416 	u_int dstch;
4417 	u_int len;
4418 	int error;
4419 
4420 	KASSERT(track);
4421 
4422 	last_dst = *last_dstp;
4423 	dstfmt = &last_dst->fmt;
4424 	srcfmt = &track->inputfmt;
4425 	srcbuf = &track->chmix.srcbuf;
4426 	error = 0;
4427 
4428 	srcch = srcfmt->channels;
4429 	dstch = dstfmt->channels;
4430 	if (srcch != dstch) {
4431 		track->chmix.dst = last_dst;
4432 
4433 		if (srcch >= 2 && dstch == 1) {
4434 			track->chmix.filter = audio_track_chmix_mixLR;
4435 		} else if (srcch == 1 && dstch >= 2) {
4436 			track->chmix.filter = audio_track_chmix_dupLR;
4437 		} else if (srcch > dstch) {
4438 			track->chmix.filter = audio_track_chmix_shrink;
4439 		} else {
4440 			track->chmix.filter = audio_track_chmix_expand;
4441 		}
4442 
4443 		srcbuf->fmt = *dstfmt;
4444 		srcbuf->fmt.channels = srcch;
4445 
4446 		srcbuf->head = 0;
4447 		srcbuf->used = 0;
4448 		/* XXX The buffer size should be able to calculate. */
4449 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4450 		len = auring_bytelen(srcbuf);
4451 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
4452 
4453 		arg = &track->chmix.arg;
4454 		arg->srcfmt = &srcbuf->fmt;
4455 		arg->dstfmt = dstfmt;
4456 		arg->context = NULL;
4457 
4458 		*last_dstp = srcbuf;
4459 		return 0;
4460 	}
4461 
4462 	track->chmix.filter = NULL;
4463 	audio_free(srcbuf->mem);
4464 	return error;
4465 }
4466 
4467 /*
4468  * Initialize the freq stage of this track as necessary.
4469  * If successful, it initializes the freq stage as necessary, stores updated
4470  * last_dst in *last_dstp in any case, and returns 0.
4471  * Otherwise, it returns errno without modifying *last_dstp.
4472  */
4473 static int
audio_track_init_freq(audio_track_t * track,audio_ring_t ** last_dstp)4474 audio_track_init_freq(audio_track_t *track, audio_ring_t **last_dstp)
4475 {
4476 	audio_ring_t *last_dst;
4477 	audio_ring_t *srcbuf;
4478 	audio_format2_t *srcfmt;
4479 	audio_format2_t *dstfmt;
4480 	audio_filter_arg_t *arg;
4481 	uint32_t srcfreq;
4482 	uint32_t dstfreq;
4483 	u_int dst_capacity;
4484 	u_int mod;
4485 	u_int len;
4486 	int error;
4487 
4488 	KASSERT(track);
4489 
4490 	last_dst = *last_dstp;
4491 	dstfmt = &last_dst->fmt;
4492 	srcfmt = &track->inputfmt;
4493 	srcbuf = &track->freq.srcbuf;
4494 	error = 0;
4495 
4496 	srcfreq = srcfmt->sample_rate;
4497 	dstfreq = dstfmt->sample_rate;
4498 	if (srcfreq != dstfreq) {
4499 		track->freq.dst = last_dst;
4500 
4501 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
4502 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
4503 
4504 		/* freq_step is the ratio of src/dst when let dst 65536. */
4505 		track->freq_step = (uint64_t)srcfreq * 65536 / dstfreq;
4506 
4507 		dst_capacity = frame_per_block(track->mixer, dstfmt);
4508 		mod = (uint64_t)srcfreq * 65536 % dstfreq;
4509 		track->freq_leap = (mod * dst_capacity + dstfreq / 2) / dstfreq;
4510 
4511 		if (track->freq_step < 65536) {
4512 			track->freq.filter = audio_track_freq_up;
4513 			/* In order to carry at the first time. */
4514 			track->freq_current = 65536;
4515 		} else {
4516 			track->freq.filter = audio_track_freq_down;
4517 			track->freq_current = 0;
4518 		}
4519 
4520 		srcbuf->fmt = *dstfmt;
4521 		srcbuf->fmt.sample_rate = srcfreq;
4522 
4523 		srcbuf->head = 0;
4524 		srcbuf->used = 0;
4525 		srcbuf->capacity = frame_per_block(track->mixer, &srcbuf->fmt);
4526 		len = auring_bytelen(srcbuf);
4527 		srcbuf->mem = audio_realloc(srcbuf->mem, len);
4528 
4529 		arg = &track->freq.arg;
4530 		arg->srcfmt = &srcbuf->fmt;
4531 		arg->dstfmt = dstfmt;
4532 		arg->context = track;
4533 
4534 		*last_dstp = srcbuf;
4535 		return 0;
4536 	}
4537 
4538 	track->freq.filter = NULL;
4539 	audio_free(srcbuf->mem);
4540 	return error;
4541 }
4542 
4543 /*
4544  * There are two unit of buffers; A block buffer and a byte buffer.  Both use
4545  * audio_ring_t.  Internally, audio data is always handled in block unit.
4546  * Converting format, sythesizing tracks, transferring from/to the hardware,
4547  * and etc.  Only one exception is usrbuf.  To transfer with userland, usrbuf
4548  * is buffered in byte unit.
4549  * For playing back, write(2) writes arbitrary length of data to usrbuf.
4550  * When one block is filled, it is sent to the next stage (converting and/or
4551  * synthesizing).
4552  * For recording, the rmixer writes one block length of data to input buffer
4553  * (the bottom stage buffer) each time.  read(2) (converts one block if usrbuf
4554  * is empty and then) reads arbitrary length of data from usrbuf.
4555  *
4556  * The following charts show the data flow and buffer types for playback and
4557  * recording track.  In this example, both have two conversion stages, codec
4558  * and freq.  Every [**] represents a buffer described below.
4559  *
4560  * On playback track:
4561  *
4562  *               write(2)
4563  *                |
4564  *                | uiomove
4565  *                v
4566  *  usrbuf       [BB|BB ... BB|BB]     .. Byte ring buffer
4567  *                |
4568  *                | memcpy one block
4569  *                v
4570  *  codec.srcbuf [FF]                  .. 1 block (ring) buffer
4571  *       .dst ----+
4572  *                |
4573  *                | convert
4574  *                v
4575  *  freq.srcbuf  [FF]                  .. 1 block (ring) buffer
4576  *      .dst  ----+
4577  *                |
4578  *                | convert
4579  *                v
4580  *  outbuf       [FF|FF|FF|FF]         .. NBLKOUT blocks ring buffer
4581  *                |
4582  *                v
4583  *               pmixer
4584  *
4585  * There are three different types of buffers:
4586  *
4587  *  [BB|BB ... BB|BB]  usrbuf.  Is the buffer closest to userland.  Mandatory.
4588  *                     This is a byte buffer and its length is basically less
4589  *                     than or equal to 64KB or at least AUMINNOBLK blocks.
4590  *
4591  *  [FF]               Interim conversion stage's srcbuf if necessary.
4592  *                     This is one block (ring) buffer counted in frames.
4593  *
4594  *  [FF|FF|FF|FF]      outbuf.  Is the buffer closest to pmixer.  Mandatory.
4595  *                     This is NBLKOUT blocks ring buffer counted in frames.
4596  *
4597  *
4598  * On recording track:
4599  *
4600  *               read(2)
4601  *                ^
4602  *                | uiomove
4603  *                |
4604  *  usrbuf       [BB]                  .. Byte (ring) buffer
4605  *                ^
4606  *                | memcpy one block
4607  *                |
4608  *  outbuf       [FF]                  .. 1 block (ring) buffer
4609  *                ^
4610  *                | convert
4611  *                |
4612  *  codec.dst ----+
4613  *       .srcbuf [FF]                  .. 1 block (ring) buffer
4614  *                ^
4615  *                | convert
4616  *                |
4617  *  freq.dst  ----+
4618  *      .srcbuf  [FF|FF ... FF|FF]     .. NBLKIN blocks ring buffer
4619  *                ^
4620  *                |
4621  *               rmixer
4622  *
4623  * There are also three different types of buffers.
4624  *
4625  *  [BB]               usrbuf.  Is the buffer closest to userland.  Mandatory.
4626  *                     This is a byte buffer and its length is one block.
4627  *                     This buffer holds only "fragment".
4628  *
4629  *  [FF]               Interim conversion stage's srcbuf (or outbuf).
4630  *                     This is one block (ring) buffer counted in frames.
4631  *
4632  *  [FF|FF ... FF|FF]  The bottom conversion stage's srcbuf (or outbuf).
4633  *                     This is the buffer closest to rmixer, and mandatory.
4634  *                     This is NBLKIN blocks ring buffer counted in frames.
4635  *                     Also pointed by *input.
4636  */
4637 
4638 /*
4639  * Set the userland format of this track.
4640  * usrfmt argument should have been previously verified by
4641  * audio_track_setinfo_check().
4642  * This function may release and reallocate all internal conversion buffers.
4643  * It returns 0 if successful.  Otherwise it returns errno with clearing all
4644  * internal buffers.
4645  * It must be called without sc_intr_lock since uvm_* routines require non
4646  * intr_lock state.
4647  * It must be called with track lock held since it may release and reallocate
4648  * outbuf.
4649  */
4650 static int
audio_track_set_format(audio_track_t * track,audio_format2_t * usrfmt)4651 audio_track_set_format(audio_track_t *track, audio_format2_t *usrfmt)
4652 {
4653 	audio_ring_t *last_dst;
4654 	int is_playback;
4655 	u_int newbufsize;
4656 	u_int newvsize;
4657 	u_int len;
4658 	int error;
4659 
4660 	KASSERT(track);
4661 
4662 	is_playback = audio_track_is_playback(track);
4663 
4664 	/* Once mmap is called, the track format cannot be changed. */
4665 	if (track->mmapped)
4666 		return EIO;
4667 
4668 	/* usrbuf is the closest buffer to the userland. */
4669 	track->usrbuf.fmt = *usrfmt;
4670 
4671 	/*
4672 	 * Usrbuf.
4673 	 * On the playback track, its capacity is less than or equal to 64KB
4674 	 * (for historical reason) and must be a multiple of a block
4675 	 * (constraint in this implementation).  But at least AUMINNOBLK
4676 	 * blocks.
4677 	 * On the recording track, its capacity is one block.
4678 	 */
4679 	/*
4680 	 * For references, one block size (in 40msec) is:
4681 	 *  320 bytes    = 204 blocks/64KB for mulaw/8kHz/1ch
4682 	 *  7680 bytes   = 8 blocks/64KB for s16/48kHz/2ch
4683 	 *  30720 bytes  = 90 KB/3blocks for s16/48kHz/8ch
4684 	 *  61440 bytes  = 180 KB/3blocks for s16/96kHz/8ch
4685 	 *  245760 bytes = 720 KB/3blocks for s32/192kHz/8ch
4686 	 *
4687 	 * For example,
4688 	 * 1) If usrbuf_blksize = 7056 (s16/44.1k/2ch) and PAGE_SIZE = 8192,
4689 	 *     newbufsize = rounddown(65536 / 7056) = 63504
4690 	 *     newvsize = roundup2(63504, PAGE_SIZE) = 65536
4691 	 *    Therefore it maps 8 * 8K pages and usrbuf->capacity = 63504.
4692 	 *
4693 	 * 2) If usrbuf_blksize = 7680 (s16/48k/2ch) and PAGE_SIZE = 4096,
4694 	 *     newbufsize = rounddown(65536 / 7680) = 61440
4695 	 *     newvsize = roundup2(61440, PAGE_SIZE) = 61440 (= 15 pages)
4696 	 *    Therefore it maps 15 * 4K pages and usrbuf->capacity = 61440.
4697 	 */
4698 	track->usrbuf_blksize = frametobyte(&track->usrbuf.fmt,
4699 	    frame_per_block(track->mixer, &track->usrbuf.fmt));
4700 	track->usrbuf.head = 0;
4701 	track->usrbuf.used = 0;
4702 	if (is_playback) {
4703 		newbufsize = track->usrbuf_blksize * AUMINNOBLK;
4704 		if (newbufsize < 65536)
4705 			newbufsize = rounddown(65536, track->usrbuf_blksize);
4706 		newvsize = roundup2(newbufsize, PAGE_SIZE);
4707 	} else {
4708 		newbufsize = track->usrbuf_blksize;
4709 		newvsize = track->usrbuf_blksize;
4710 	}
4711 	/*
4712 	 * Reallocate only if the number of pages changes.
4713 	 * This is because we expect kmem to allocate memory on per page
4714 	 * basis if the request size is about 64KB.
4715 	 */
4716 	if (newvsize != track->usrbuf_allocsize) {
4717 		if (track->usrbuf_allocsize != 0) {
4718 			kmem_free(track->usrbuf.mem, track->usrbuf_allocsize);
4719 		}
4720 		TRACET(2, track, "usrbuf_allocsize %d -> %d",
4721 		    track->usrbuf_allocsize, newvsize);
4722 		track->usrbuf.mem = kmem_alloc(newvsize, KM_SLEEP);
4723 		track->usrbuf_allocsize = newvsize;
4724 	}
4725 	track->usrbuf.capacity = newbufsize;
4726 
4727 	/* Recalc water mark. */
4728 	if (is_playback) {
4729 		/* Set high at 100%, low at 75%. */
4730 		track->usrbuf_usedhigh = track->usrbuf.capacity;
4731 		track->usrbuf_usedlow = track->usrbuf.capacity * 3 / 4;
4732 	} else {
4733 		/* Set high at 100%, low at 0%. (But not used) */
4734 		track->usrbuf_usedhigh = track->usrbuf.capacity;
4735 		track->usrbuf_usedlow = 0;
4736 	}
4737 
4738 	/* Stage buffer */
4739 	last_dst = &track->outbuf;
4740 	if (is_playback) {
4741 		/* On playback, initialize from the mixer side in order. */
4742 		track->inputfmt = *usrfmt;
4743 		track->outbuf.fmt =  track->mixer->track_fmt;
4744 
4745 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4746 			goto error;
4747 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4748 			goto error;
4749 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4750 			goto error;
4751 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4752 			goto error;
4753 	} else {
4754 		/* On recording, initialize from userland side in order. */
4755 		track->inputfmt = track->mixer->track_fmt;
4756 		track->outbuf.fmt = *usrfmt;
4757 
4758 		if ((error = audio_track_init_codec(track, &last_dst)) != 0)
4759 			goto error;
4760 		if ((error = audio_track_init_chvol(track, &last_dst)) != 0)
4761 			goto error;
4762 		if ((error = audio_track_init_chmix(track, &last_dst)) != 0)
4763 			goto error;
4764 		if ((error = audio_track_init_freq(track, &last_dst)) != 0)
4765 			goto error;
4766 	}
4767 
4768 #if defined(AUDIO_DEBUG)
4769 	if (audiodebug >= 3) {
4770 		if (track->freq.filter) {
4771 			audio_print_format2("freq src",
4772 			    &track->freq.srcbuf.fmt);
4773 			audio_print_format2("freq dst",
4774 			    &track->freq.dst->fmt);
4775 		}
4776 		if (track->chmix.filter) {
4777 			audio_print_format2("chmix src",
4778 			    &track->chmix.srcbuf.fmt);
4779 			audio_print_format2("chmix dst",
4780 			    &track->chmix.dst->fmt);
4781 		}
4782 		if (track->chvol.filter) {
4783 			audio_print_format2("chvol src",
4784 			    &track->chvol.srcbuf.fmt);
4785 			audio_print_format2("chvol dst",
4786 			    &track->chvol.dst->fmt);
4787 		}
4788 		if (track->codec.filter) {
4789 			audio_print_format2("codec src",
4790 			    &track->codec.srcbuf.fmt);
4791 			audio_print_format2("codec dst",
4792 			    &track->codec.dst->fmt);
4793 		}
4794 	}
4795 #endif /* AUDIO_DEBUG */
4796 
4797 	/* Stage input buffer */
4798 	track->input = last_dst;
4799 
4800 	/*
4801 	 * Output buffer.
4802 	 * On the playback track, its capacity is NBLKOUT blocks.
4803 	 * On the recording track, its capacity is 1 block.
4804 	 */
4805 	track->outbuf.head = 0;
4806 	track->outbuf.used = 0;
4807 	track->outbuf.capacity = frame_per_block(track->mixer,
4808 	    &track->outbuf.fmt);
4809 	if (is_playback)
4810 		track->outbuf.capacity *= NBLKOUT;
4811 	len = auring_bytelen(&track->outbuf);
4812 	track->outbuf.mem = audio_realloc(track->outbuf.mem, len);
4813 
4814 	/*
4815 	 * On the recording track, expand the input stage buffer, which is
4816 	 * the closest buffer to rmixer, to NBLKIN blocks.
4817 	 * Note that input buffer may point to outbuf.
4818 	 */
4819 	if (!is_playback) {
4820 		int input_fpb;
4821 
4822 		input_fpb = frame_per_block(track->mixer, &track->input->fmt);
4823 		track->input->capacity = input_fpb * NBLKIN;
4824 		len = auring_bytelen(track->input);
4825 		track->input->mem = audio_realloc(track->input->mem, len);
4826 	}
4827 
4828 #if defined(AUDIO_DEBUG)
4829 	if (audiodebug >= 3) {
4830 		struct audio_track_debugbuf m;
4831 
4832 		memset(&m, 0, sizeof(m));
4833 		snprintf(m.outbuf, sizeof(m.outbuf), " out=%d",
4834 		    track->outbuf.capacity * frametobyte(&track->outbuf.fmt,1));
4835 		if (track->freq.filter)
4836 			snprintf(m.freq, sizeof(m.freq), " freq=%d",
4837 			    track->freq.srcbuf.capacity *
4838 			    frametobyte(&track->freq.srcbuf.fmt, 1));
4839 		if (track->chmix.filter)
4840 			snprintf(m.chmix, sizeof(m.chmix), " chmix=%d",
4841 			    track->chmix.srcbuf.capacity *
4842 			    frametobyte(&track->chmix.srcbuf.fmt, 1));
4843 		if (track->chvol.filter)
4844 			snprintf(m.chvol, sizeof(m.chvol), " chvol=%d",
4845 			    track->chvol.srcbuf.capacity *
4846 			    frametobyte(&track->chvol.srcbuf.fmt, 1));
4847 		if (track->codec.filter)
4848 			snprintf(m.codec, sizeof(m.codec), " codec=%d",
4849 			    track->codec.srcbuf.capacity *
4850 			    frametobyte(&track->codec.srcbuf.fmt, 1));
4851 		snprintf(m.usrbuf, sizeof(m.usrbuf),
4852 		    " usr=%d", track->usrbuf.capacity);
4853 
4854 		if (is_playback) {
4855 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
4856 			    m.outbuf, m.freq, m.chmix,
4857 			    m.chvol, m.codec, m.usrbuf);
4858 		} else {
4859 			TRACET(0, track, "bufsize%s%s%s%s%s%s",
4860 			    m.freq, m.chmix, m.chvol,
4861 			    m.codec, m.outbuf, m.usrbuf);
4862 		}
4863 	}
4864 #endif
4865 	return 0;
4866 
4867 error:
4868 	audio_free_usrbuf(track);
4869 	audio_free(track->codec.srcbuf.mem);
4870 	audio_free(track->chvol.srcbuf.mem);
4871 	audio_free(track->chmix.srcbuf.mem);
4872 	audio_free(track->freq.srcbuf.mem);
4873 	audio_free(track->outbuf.mem);
4874 	return error;
4875 }
4876 
4877 /*
4878  * Fill silence frames (as the internal format) up to 1 block
4879  * if the ring is not empty and less than 1 block.
4880  * It returns the number of appended frames.
4881  */
4882 static int
audio_append_silence(audio_track_t * track,audio_ring_t * ring)4883 audio_append_silence(audio_track_t *track, audio_ring_t *ring)
4884 {
4885 	int fpb;
4886 	int n;
4887 
4888 	KASSERT(track);
4889 	KASSERT(audio_format2_is_internal(&ring->fmt));
4890 
4891 	/* XXX is n correct? */
4892 	/* XXX memset uses frametobyte()? */
4893 
4894 	if (ring->used == 0)
4895 		return 0;
4896 
4897 	fpb = frame_per_block(track->mixer, &ring->fmt);
4898 	if (ring->used >= fpb)
4899 		return 0;
4900 
4901 	n = (ring->capacity - ring->used) % fpb;
4902 
4903 	KASSERTMSG(auring_get_contig_free(ring) >= n,
4904 	    "auring_get_contig_free(ring)=%d n=%d",
4905 	    auring_get_contig_free(ring), n);
4906 
4907 	memset(auring_tailptr_aint(ring), 0,
4908 	    n * ring->fmt.channels * sizeof(aint_t));
4909 	auring_push(ring, n);
4910 	return n;
4911 }
4912 
4913 /*
4914  * Execute the conversion stage.
4915  * It prepares arg from this stage and executes stage->filter.
4916  * It must be called only if stage->filter is not NULL.
4917  *
4918  * For stages other than frequency conversion, the function increments
4919  * src and dst counters here.  For frequency conversion stage, on the
4920  * other hand, the function does not touch src and dst counters and
4921  * filter side has to increment them.
4922  */
4923 static void
audio_apply_stage(audio_track_t * track,audio_stage_t * stage,bool isfreq)4924 audio_apply_stage(audio_track_t *track, audio_stage_t *stage, bool isfreq)
4925 {
4926 	audio_filter_arg_t *arg;
4927 	int srccount;
4928 	int dstcount;
4929 	int count;
4930 
4931 	KASSERT(track);
4932 	KASSERT(stage->filter);
4933 
4934 	srccount = auring_get_contig_used(&stage->srcbuf);
4935 	dstcount = auring_get_contig_free(stage->dst);
4936 
4937 	if (isfreq) {
4938 		KASSERTMSG(srccount > 0, "freq but srccount=%d", srccount);
4939 		count = uimin(dstcount, track->mixer->frames_per_block);
4940 	} else {
4941 		count = uimin(srccount, dstcount);
4942 	}
4943 
4944 	if (count > 0) {
4945 		arg = &stage->arg;
4946 		arg->src = auring_headptr(&stage->srcbuf);
4947 		arg->dst = auring_tailptr(stage->dst);
4948 		arg->count = count;
4949 
4950 		stage->filter(arg);
4951 
4952 		if (!isfreq) {
4953 			auring_take(&stage->srcbuf, count);
4954 			auring_push(stage->dst, count);
4955 		}
4956 	}
4957 }
4958 
4959 /*
4960  * Produce output buffer for playback from user input buffer.
4961  * It must be called only if usrbuf is not empty and outbuf is
4962  * available at least one free block.
4963  */
4964 static void
audio_track_play(audio_track_t * track)4965 audio_track_play(audio_track_t *track)
4966 {
4967 	audio_ring_t *usrbuf;
4968 	audio_ring_t *input;
4969 	int count;
4970 	int framesize;
4971 	int bytes;
4972 
4973 	KASSERT(track);
4974 	KASSERT(track->lock);
4975 	TRACET(4, track, "start pstate=%d", track->pstate);
4976 
4977 	/* At this point usrbuf must not be empty. */
4978 	KASSERT(track->usrbuf.used > 0);
4979 	/* Also, outbuf must be available at least one block. */
4980 	count = auring_get_contig_free(&track->outbuf);
4981 	KASSERTMSG(count >= frame_per_block(track->mixer, &track->outbuf.fmt),
4982 	    "count=%d fpb=%d",
4983 	    count, frame_per_block(track->mixer, &track->outbuf.fmt));
4984 
4985 	usrbuf = &track->usrbuf;
4986 	input = track->input;
4987 
4988 	/*
4989 	 * framesize is always 1 byte or more since all formats supported as
4990 	 * usrfmt(=input) have 8bit or more stride.
4991 	 */
4992 	framesize = frametobyte(&input->fmt, 1);
4993 	KASSERT(framesize >= 1);
4994 
4995 	/* The next stage of usrbuf (=input) must be available. */
4996 	KASSERT(auring_get_contig_free(input) > 0);
4997 
4998 	/*
4999 	 * Copy usrbuf up to 1block to input buffer.
5000 	 * count is the number of frames to copy from usrbuf.
5001 	 * bytes is the number of bytes to copy from usrbuf.  However it is
5002 	 * not copied less than one frame.
5003 	 */
5004 	count = uimin(usrbuf->used, track->usrbuf_blksize) / framesize;
5005 	bytes = count * framesize;
5006 
5007 	if (usrbuf->head + bytes < usrbuf->capacity) {
5008 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
5009 		    (uint8_t *)usrbuf->mem + usrbuf->head,
5010 		    bytes);
5011 		auring_push(input, count);
5012 		auring_take(usrbuf, bytes);
5013 	} else {
5014 		int bytes1;
5015 		int bytes2;
5016 
5017 		bytes1 = auring_get_contig_used(usrbuf);
5018 		KASSERTMSG(bytes1 % framesize == 0,
5019 		    "bytes1=%d framesize=%d", bytes1, framesize);
5020 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
5021 		    (uint8_t *)usrbuf->mem + usrbuf->head,
5022 		    bytes1);
5023 		auring_push(input, bytes1 / framesize);
5024 		auring_take(usrbuf, bytes1);
5025 
5026 		bytes2 = bytes - bytes1;
5027 		memcpy((uint8_t *)input->mem + auring_tail(input) * framesize,
5028 		    (uint8_t *)usrbuf->mem + usrbuf->head,
5029 		    bytes2);
5030 		auring_push(input, bytes2 / framesize);
5031 		auring_take(usrbuf, bytes2);
5032 	}
5033 
5034 	/* Encoding conversion */
5035 	if (track->codec.filter)
5036 		audio_apply_stage(track, &track->codec, false);
5037 
5038 	/* Channel volume */
5039 	if (track->chvol.filter)
5040 		audio_apply_stage(track, &track->chvol, false);
5041 
5042 	/* Channel mix */
5043 	if (track->chmix.filter)
5044 		audio_apply_stage(track, &track->chmix, false);
5045 
5046 	/* Frequency conversion */
5047 	/*
5048 	 * Since the frequency conversion needs correction for each block,
5049 	 * it rounds up to 1 block.
5050 	 */
5051 	if (track->freq.filter) {
5052 		int n;
5053 		n = audio_append_silence(track, &track->freq.srcbuf);
5054 		if (n > 0) {
5055 			TRACET(4, track,
5056 			    "freq.srcbuf add silence %d -> %d/%d/%d",
5057 			    n,
5058 			    track->freq.srcbuf.head,
5059 			    track->freq.srcbuf.used,
5060 			    track->freq.srcbuf.capacity);
5061 		}
5062 		if (track->freq.srcbuf.used > 0) {
5063 			audio_apply_stage(track, &track->freq, true);
5064 		}
5065 	}
5066 
5067 	if (bytes < track->usrbuf_blksize) {
5068 		/*
5069 		 * Clear all conversion buffer pointer if the conversion was
5070 		 * not exactly one block.  These conversion stage buffers are
5071 		 * certainly circular buffers because of symmetry with the
5072 		 * previous and next stage buffer.  However, since they are
5073 		 * treated as simple contiguous buffers in operation, so head
5074 		 * always should point 0.  This may happen during drain-age.
5075 		 */
5076 		TRACET(4, track, "reset stage");
5077 		if (track->codec.filter) {
5078 			KASSERT(track->codec.srcbuf.used == 0);
5079 			track->codec.srcbuf.head = 0;
5080 		}
5081 		if (track->chvol.filter) {
5082 			KASSERT(track->chvol.srcbuf.used == 0);
5083 			track->chvol.srcbuf.head = 0;
5084 		}
5085 		if (track->chmix.filter) {
5086 			KASSERT(track->chmix.srcbuf.used == 0);
5087 			track->chmix.srcbuf.head = 0;
5088 		}
5089 		if (track->freq.filter) {
5090 			KASSERT(track->freq.srcbuf.used == 0);
5091 			track->freq.srcbuf.head = 0;
5092 		}
5093 	}
5094 
5095 	track->stamp++;
5096 
5097 #if defined(AUDIO_DEBUG)
5098 	if (audiodebug >= 3) {
5099 		struct audio_track_debugbuf m;
5100 		audio_track_bufstat(track, &m);
5101 		TRACET(0, track, "end%s%s%s%s%s%s",
5102 		    m.outbuf, m.freq, m.chvol, m.chmix, m.codec, m.usrbuf);
5103 	}
5104 #endif
5105 }
5106 
5107 /*
5108  * Produce user output buffer for recording from input buffer.
5109  */
5110 static void
audio_track_record(audio_track_t * track)5111 audio_track_record(audio_track_t *track)
5112 {
5113 	audio_ring_t *outbuf;
5114 	audio_ring_t *usrbuf;
5115 	int count;
5116 	int bytes;
5117 	int framesize;
5118 
5119 	KASSERT(track);
5120 	KASSERT(track->lock);
5121 
5122 	if (auring_get_contig_used(track->input) == 0) {
5123 		TRACET(4, track, "input->used == 0");
5124 		return;
5125 	}
5126 
5127 	/* Frequency conversion */
5128 	if (track->freq.filter) {
5129 		if (track->freq.srcbuf.used > 0) {
5130 			audio_apply_stage(track, &track->freq, true);
5131 			/* XXX should input of freq be from beginning of buf? */
5132 		}
5133 	}
5134 
5135 	/* Channel mix */
5136 	if (track->chmix.filter)
5137 		audio_apply_stage(track, &track->chmix, false);
5138 
5139 	/* Channel volume */
5140 	if (track->chvol.filter)
5141 		audio_apply_stage(track, &track->chvol, false);
5142 
5143 	/* Encoding conversion */
5144 	if (track->codec.filter)
5145 		audio_apply_stage(track, &track->codec, false);
5146 
5147 	/* Copy outbuf to usrbuf */
5148 	outbuf = &track->outbuf;
5149 	usrbuf = &track->usrbuf;
5150 	/* usrbuf should be empty. */
5151 	KASSERT(usrbuf->used == 0);
5152 	/*
5153 	 * framesize is always 1 byte or more since all formats supported
5154 	 * as usrfmt(=output) have 8bit or more stride.
5155 	 */
5156 	framesize = frametobyte(&outbuf->fmt, 1);
5157 	KASSERT(framesize >= 1);
5158 	/*
5159 	 * count is the number of frames to copy to usrbuf.
5160 	 * bytes is the number of bytes to copy to usrbuf.
5161 	 */
5162 	count = outbuf->used;
5163 	count = uimin(count, track->usrbuf_blksize / framesize);
5164 	bytes = count * framesize;
5165 	if (auring_tail(usrbuf) + bytes < usrbuf->capacity) {
5166 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5167 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
5168 		    bytes);
5169 		auring_push(usrbuf, bytes);
5170 		auring_take(outbuf, count);
5171 	} else {
5172 		int bytes1;
5173 		int bytes2;
5174 
5175 		bytes1 = auring_get_contig_free(usrbuf);
5176 		KASSERTMSG(bytes1 % framesize == 0,
5177 		    "bytes1=%d framesize=%d", bytes1, framesize);
5178 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5179 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
5180 		    bytes1);
5181 		auring_push(usrbuf, bytes1);
5182 		auring_take(outbuf, bytes1 / framesize);
5183 
5184 		bytes2 = bytes - bytes1;
5185 		memcpy((uint8_t *)usrbuf->mem + auring_tail(usrbuf),
5186 		    (uint8_t *)outbuf->mem + outbuf->head * framesize,
5187 		    bytes2);
5188 		auring_push(usrbuf, bytes2);
5189 		auring_take(outbuf, bytes2 / framesize);
5190 	}
5191 
5192 #if defined(AUDIO_DEBUG)
5193 	if (audiodebug >= 3) {
5194 		struct audio_track_debugbuf m;
5195 		audio_track_bufstat(track, &m);
5196 		TRACET(0, track, "end%s%s%s%s%s%s",
5197 		    m.freq, m.chvol, m.chmix, m.codec, m.outbuf, m.usrbuf);
5198 	}
5199 #endif
5200 }
5201 
5202 /*
5203  * Calculate blktime [msec] from mixer(.hwbuf.fmt).
5204  * Must be called with sc_exlock held.
5205  */
5206 static u_int
audio_mixer_calc_blktime(struct audio_softc * sc,audio_trackmixer_t * mixer)5207 audio_mixer_calc_blktime(struct audio_softc *sc, audio_trackmixer_t *mixer)
5208 {
5209 	audio_format2_t *fmt;
5210 	u_int blktime;
5211 	u_int frames_per_block;
5212 
5213 	KASSERT(sc->sc_exlock);
5214 
5215 	fmt = &mixer->hwbuf.fmt;
5216 	blktime = sc->sc_blk_ms;
5217 
5218 	/*
5219 	 * If stride is not multiples of 8, special treatment is necessary.
5220 	 * For now, it is only x68k's vs(4), 4 bit/sample ADPCM.
5221 	 */
5222 	if (fmt->stride == 4) {
5223 		frames_per_block = fmt->sample_rate * blktime / 1000;
5224 		if ((frames_per_block & 1) != 0)
5225 			blktime *= 2;
5226 	}
5227 #ifdef DIAGNOSTIC
5228 	else if (fmt->stride % NBBY != 0) {
5229 		panic("unsupported HW stride %d", fmt->stride);
5230 	}
5231 #endif
5232 
5233 	return blktime;
5234 }
5235 
5236 /*
5237  * Initialize the mixer corresponding to the mode.
5238  * Set AUMODE_PLAY to the 'mode' for playback or AUMODE_RECORD for recording.
5239  * sc->sc_[pr]mixer (corresponding to the 'mode') must be zero-filled.
5240  * This function returns 0 on successful.  Otherwise returns errno.
5241  * Must be called with sc_exlock held and without sc_lock held.
5242  */
5243 static int
audio_mixer_init(struct audio_softc * sc,int mode,const audio_format2_t * hwfmt,const audio_filter_reg_t * reg)5244 audio_mixer_init(struct audio_softc *sc, int mode,
5245 	const audio_format2_t *hwfmt, const audio_filter_reg_t *reg)
5246 {
5247 	char codecbuf[64];
5248 	char blkdmsbuf[8];
5249 	audio_trackmixer_t *mixer;
5250 	void (*softint_handler)(void *);
5251 	int len;
5252 	int blksize;
5253 	int capacity;
5254 	size_t bufsize;
5255 	int hwblks;
5256 	int blkms;
5257 	int blkdms;
5258 	int error;
5259 
5260 	KASSERT(hwfmt != NULL);
5261 	KASSERT(reg != NULL);
5262 	KASSERT(sc->sc_exlock);
5263 
5264 	error = 0;
5265 	if (mode == AUMODE_PLAY)
5266 		mixer = sc->sc_pmixer;
5267 	else
5268 		mixer = sc->sc_rmixer;
5269 
5270 	mixer->sc = sc;
5271 	mixer->mode = mode;
5272 
5273 	mixer->hwbuf.fmt = *hwfmt;
5274 	mixer->volume = 256;
5275 	mixer->blktime_d = 1000;
5276 	mixer->blktime_n = audio_mixer_calc_blktime(sc, mixer);
5277 	sc->sc_blk_ms = mixer->blktime_n;
5278 	hwblks = NBLKHW;
5279 
5280 	mixer->frames_per_block = frame_per_block(mixer, &mixer->hwbuf.fmt);
5281 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5282 	if (sc->hw_if->round_blocksize) {
5283 		int rounded;
5284 		audio_params_t p = format2_to_params(&mixer->hwbuf.fmt);
5285 		mutex_enter(sc->sc_lock);
5286 		rounded = sc->hw_if->round_blocksize(sc->hw_hdl, blksize,
5287 		    mode, &p);
5288 		mutex_exit(sc->sc_lock);
5289 		TRACE(1, "round_blocksize %d -> %d", blksize, rounded);
5290 		if (rounded != blksize) {
5291 			if ((rounded * NBBY) % (mixer->hwbuf.fmt.stride *
5292 			    mixer->hwbuf.fmt.channels) != 0) {
5293 				audio_printf(sc,
5294 				    "round_blocksize returned blocksize "
5295 				    "indivisible by framesize: "
5296 				    "blksize=%d rounded=%d "
5297 				    "stride=%ubit channels=%u\n",
5298 				    blksize, rounded,
5299 				    mixer->hwbuf.fmt.stride,
5300 				    mixer->hwbuf.fmt.channels);
5301 				return EINVAL;
5302 			}
5303 			/* Recalculation */
5304 			blksize = rounded;
5305 			mixer->frames_per_block = blksize * NBBY /
5306 			    (mixer->hwbuf.fmt.stride *
5307 			     mixer->hwbuf.fmt.channels);
5308 		}
5309 	}
5310 	mixer->blktime_n = mixer->frames_per_block;
5311 	mixer->blktime_d = mixer->hwbuf.fmt.sample_rate;
5312 
5313 	capacity = mixer->frames_per_block * hwblks;
5314 	bufsize = frametobyte(&mixer->hwbuf.fmt, capacity);
5315 	if (sc->hw_if->round_buffersize) {
5316 		size_t rounded;
5317 		mutex_enter(sc->sc_lock);
5318 		rounded = sc->hw_if->round_buffersize(sc->hw_hdl, mode,
5319 		    bufsize);
5320 		mutex_exit(sc->sc_lock);
5321 		TRACE(1, "round_buffersize %zd -> %zd", bufsize, rounded);
5322 		if (rounded < bufsize) {
5323 			/* buffersize needs NBLKHW blocks at least. */
5324 			audio_printf(sc,
5325 			    "round_buffersize returned too small buffersize: "
5326 			    "buffersize=%zd blksize=%d\n",
5327 			    rounded, blksize);
5328 			return EINVAL;
5329 		}
5330 		if (rounded % blksize != 0) {
5331 			/* buffersize/blksize constraint mismatch? */
5332 			audio_printf(sc,
5333 			    "round_buffersize returned buffersize indivisible "
5334 			    "by blksize: buffersize=%zu blksize=%d\n",
5335 			    rounded, blksize);
5336 			return EINVAL;
5337 		}
5338 		if (rounded != bufsize) {
5339 			/* Recalculation */
5340 			bufsize = rounded;
5341 			hwblks = bufsize / blksize;
5342 			capacity = mixer->frames_per_block * hwblks;
5343 		}
5344 	}
5345 	TRACE(1, "buffersize for %s = %zu",
5346 	    (mode == AUMODE_PLAY) ? "playback" : "recording",
5347 	    bufsize);
5348 	mixer->hwbuf.capacity = capacity;
5349 
5350 	if (sc->hw_if->allocm) {
5351 		/* sc_lock is not necessary for allocm */
5352 		mixer->hwbuf.mem = sc->hw_if->allocm(sc->hw_hdl, mode, bufsize);
5353 		if (mixer->hwbuf.mem == NULL) {
5354 			audio_printf(sc, "allocm(%zu) failed\n", bufsize);
5355 			return ENOMEM;
5356 		}
5357 	} else {
5358 		mixer->hwbuf.mem = kmem_alloc(bufsize, KM_SLEEP);
5359 	}
5360 
5361 	/* From here, audio_mixer_destroy is necessary to exit. */
5362 	if (mode == AUMODE_PLAY) {
5363 		cv_init(&mixer->outcv, "audiowr");
5364 	} else {
5365 		cv_init(&mixer->outcv, "audiord");
5366 	}
5367 
5368 	if (mode == AUMODE_PLAY) {
5369 		softint_handler = audio_softintr_wr;
5370 	} else {
5371 		softint_handler = audio_softintr_rd;
5372 	}
5373 	mixer->sih = softint_establish(SOFTINT_SERIAL | SOFTINT_MPSAFE,
5374 	    softint_handler, sc);
5375 	if (mixer->sih == NULL) {
5376 		device_printf(sc->sc_dev, "softint_establish failed\n");
5377 		goto abort;
5378 	}
5379 
5380 	mixer->track_fmt.encoding = AUDIO_ENCODING_SLINEAR_NE;
5381 	mixer->track_fmt.precision = AUDIO_INTERNAL_BITS;
5382 	mixer->track_fmt.stride = AUDIO_INTERNAL_BITS;
5383 	mixer->track_fmt.channels = mixer->hwbuf.fmt.channels;
5384 	mixer->track_fmt.sample_rate = mixer->hwbuf.fmt.sample_rate;
5385 
5386 	if (mixer->hwbuf.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
5387 	    mixer->hwbuf.fmt.precision == AUDIO_INTERNAL_BITS) {
5388 		mixer->swap_endian = true;
5389 		TRACE(1, "swap_endian");
5390 	}
5391 
5392 	if (mode == AUMODE_PLAY) {
5393 		/* Mixing buffer */
5394 		mixer->mixfmt = mixer->track_fmt;
5395 		mixer->mixfmt.precision *= 2;
5396 		mixer->mixfmt.stride *= 2;
5397 		/* XXX TODO: use some macros? */
5398 		len = mixer->frames_per_block * mixer->mixfmt.channels *
5399 		    mixer->mixfmt.stride / NBBY;
5400 		mixer->mixsample = audio_realloc(mixer->mixsample, len);
5401 	} else if (reg->codec == NULL) {
5402 		/*
5403 		 * Recording requires an input conversion buffer
5404 		 * unless the hardware provides a codec itself
5405 		 */
5406 		mixer->mixfmt = mixer->track_fmt;
5407 		len = mixer->frames_per_block * mixer->mixfmt.channels *
5408 		    mixer->mixfmt.stride / NBBY;
5409 		mixer->mixsample = audio_realloc(mixer->mixsample, len);
5410 	}
5411 
5412 	if (reg->codec) {
5413 		mixer->codec = reg->codec;
5414 		mixer->codecarg.context = reg->context;
5415 		if (mode == AUMODE_PLAY) {
5416 			mixer->codecarg.srcfmt = &mixer->track_fmt;
5417 			mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5418 		} else {
5419 			mixer->codecarg.srcfmt = &mixer->hwbuf.fmt;
5420 			mixer->codecarg.dstfmt = &mixer->track_fmt;
5421 		}
5422 		mixer->codecbuf.fmt = mixer->track_fmt;
5423 		mixer->codecbuf.capacity = mixer->frames_per_block;
5424 		len = auring_bytelen(&mixer->codecbuf);
5425 		mixer->codecbuf.mem = audio_realloc(mixer->codecbuf.mem, len);
5426 	}
5427 
5428 	/* Succeeded so display it. */
5429 	codecbuf[0] = '\0';
5430 	if (mixer->codec || mixer->swap_endian) {
5431 		snprintf(codecbuf, sizeof(codecbuf), " %s %s:%d",
5432 		    (mode == AUMODE_PLAY) ? "->" : "<-",
5433 		    audio_encoding_name(mixer->hwbuf.fmt.encoding),
5434 		    mixer->hwbuf.fmt.precision);
5435 	}
5436 	blkms = mixer->blktime_n * 1000 / mixer->blktime_d;
5437 	blkdms = (mixer->blktime_n * 10000 / mixer->blktime_d) % 10;
5438 	blkdmsbuf[0] = '\0';
5439 	if (blkdms != 0) {
5440 		snprintf(blkdmsbuf, sizeof(blkdmsbuf), ".%1d", blkdms);
5441 	}
5442 	aprint_normal_dev(sc->sc_dev,
5443 	    "%s:%d%s %dch %dHz, blk %d bytes (%d%sms) for %s\n",
5444 	    audio_encoding_name(mixer->track_fmt.encoding),
5445 	    mixer->track_fmt.precision,
5446 	    codecbuf,
5447 	    mixer->track_fmt.channels,
5448 	    mixer->track_fmt.sample_rate,
5449 	    blksize,
5450 	    blkms, blkdmsbuf,
5451 	    (mode == AUMODE_PLAY) ? "playback" : "recording");
5452 
5453 	return 0;
5454 
5455 abort:
5456 	audio_mixer_destroy(sc, mixer);
5457 	return error;
5458 }
5459 
5460 /*
5461  * Releases all resources of 'mixer'.
5462  * Note that it does not release the memory area of 'mixer' itself.
5463  * Must be called with sc_exlock held and without sc_lock held.
5464  */
5465 static void
audio_mixer_destroy(struct audio_softc * sc,audio_trackmixer_t * mixer)5466 audio_mixer_destroy(struct audio_softc *sc, audio_trackmixer_t *mixer)
5467 {
5468 	int bufsize;
5469 
5470 	KASSERT(sc->sc_exlock == 1);
5471 
5472 	bufsize = frametobyte(&mixer->hwbuf.fmt, mixer->hwbuf.capacity);
5473 
5474 	if (mixer->hwbuf.mem != NULL) {
5475 		if (sc->hw_if->freem) {
5476 			/* sc_lock is not necessary for freem */
5477 			sc->hw_if->freem(sc->hw_hdl, mixer->hwbuf.mem, bufsize);
5478 		} else {
5479 			kmem_free(mixer->hwbuf.mem, bufsize);
5480 		}
5481 		mixer->hwbuf.mem = NULL;
5482 	}
5483 
5484 	audio_free(mixer->codecbuf.mem);
5485 	audio_free(mixer->mixsample);
5486 
5487 	cv_destroy(&mixer->outcv);
5488 
5489 	if (mixer->sih) {
5490 		softint_disestablish(mixer->sih);
5491 		mixer->sih = NULL;
5492 	}
5493 }
5494 
5495 /*
5496  * Starts playback mixer.
5497  * Must be called only if sc_pbusy is false.
5498  * Must be called with sc_lock && sc_exlock held.
5499  * Must not be called from the interrupt context.
5500  */
5501 static void
audio_pmixer_start(struct audio_softc * sc,bool force)5502 audio_pmixer_start(struct audio_softc *sc, bool force)
5503 {
5504 	audio_trackmixer_t *mixer;
5505 	int minimum;
5506 
5507 	KASSERT(mutex_owned(sc->sc_lock));
5508 	KASSERT(sc->sc_exlock);
5509 	KASSERT(sc->sc_pbusy == false);
5510 
5511 	mutex_enter(sc->sc_intr_lock);
5512 
5513 	mixer = sc->sc_pmixer;
5514 	TRACE(2, "%smixseq=%d hwseq=%d hwbuf=%d/%d/%d%s",
5515 	    (audiodebug >= 3) ? "begin " : "",
5516 	    (int)mixer->mixseq, (int)mixer->hwseq,
5517 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5518 	    force ? " force" : "");
5519 
5520 	/* Need two blocks to start normally. */
5521 	minimum = (force) ? 1 : 2;
5522 	while (mixer->hwbuf.used < mixer->frames_per_block * minimum) {
5523 		audio_pmixer_process(sc);
5524 	}
5525 
5526 	/* Start output */
5527 	audio_pmixer_output(sc);
5528 	sc->sc_pbusy = true;
5529 
5530 	TRACE(3, "end   mixseq=%d hwseq=%d hwbuf=%d/%d/%d",
5531 	    (int)mixer->mixseq, (int)mixer->hwseq,
5532 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5533 
5534 	mutex_exit(sc->sc_intr_lock);
5535 }
5536 
5537 /*
5538  * When playing back with MD filter:
5539  *
5540  *           track track ...
5541  *               v v
5542  *                +  mix (with aint2_t)
5543  *                |  master volume (with aint2_t)
5544  *                v
5545  *    mixsample [::::]                  wide-int 1 block (ring) buffer
5546  *                |
5547  *                |  convert aint2_t -> aint_t
5548  *                v
5549  *    codecbuf  [....]                  1 block (ring) buffer
5550  *                |
5551  *                |  convert to hw format
5552  *                v
5553  *    hwbuf     [............]          NBLKHW blocks ring buffer
5554  *
5555  * When playing back without MD filter:
5556  *
5557  *    mixsample [::::]                  wide-int 1 block (ring) buffer
5558  *                |
5559  *                |  convert aint2_t -> aint_t
5560  *                |  (with byte swap if necessary)
5561  *                v
5562  *    hwbuf     [............]          NBLKHW blocks ring buffer
5563  *
5564  * mixsample: slinear_NE, wide internal precision, HW ch, HW freq.
5565  * codecbuf:  slinear_NE, internal precision,      HW ch, HW freq.
5566  * hwbuf:     HW encoding, HW precision,           HW ch, HW freq.
5567  */
5568 
5569 /*
5570  * Performs track mixing and converts it to hwbuf.
5571  * Note that this function doesn't transfer hwbuf to hardware.
5572  * Must be called with sc_intr_lock held.
5573  */
5574 static void
audio_pmixer_process(struct audio_softc * sc)5575 audio_pmixer_process(struct audio_softc *sc)
5576 {
5577 	audio_trackmixer_t *mixer;
5578 	audio_file_t *f;
5579 	int frame_count;
5580 	int sample_count;
5581 	int mixed;
5582 	int i;
5583 	aint2_t *m;
5584 	aint_t *h;
5585 
5586 	mixer = sc->sc_pmixer;
5587 
5588 	frame_count = mixer->frames_per_block;
5589 	KASSERTMSG(auring_get_contig_free(&mixer->hwbuf) >= frame_count,
5590 	    "auring_get_contig_free()=%d frame_count=%d",
5591 	    auring_get_contig_free(&mixer->hwbuf), frame_count);
5592 	sample_count = frame_count * mixer->mixfmt.channels;
5593 
5594 	mixer->mixseq++;
5595 
5596 	/* Mix all tracks */
5597 	mixed = 0;
5598 	SLIST_FOREACH(f, &sc->sc_files, entry) {
5599 		audio_track_t *track = f->ptrack;
5600 
5601 		if (track == NULL)
5602 			continue;
5603 
5604 		if (track->is_pause) {
5605 			TRACET(4, track, "skip; paused");
5606 			continue;
5607 		}
5608 
5609 		/* Skip if the track is used by process context. */
5610 		if (audio_track_lock_tryenter(track) == false) {
5611 			TRACET(4, track, "skip; in use");
5612 			continue;
5613 		}
5614 
5615 		/* Emulate mmap'ped track */
5616 		if (track->mmapped) {
5617 			auring_push(&track->usrbuf, track->usrbuf_blksize);
5618 			TRACET(4, track, "mmap; usr=%d/%d/C%d",
5619 			    track->usrbuf.head,
5620 			    track->usrbuf.used,
5621 			    track->usrbuf.capacity);
5622 		}
5623 
5624 		if (track->outbuf.used < mixer->frames_per_block &&
5625 		    track->usrbuf.used > 0) {
5626 			TRACET(4, track, "process");
5627 			audio_track_play(track);
5628 		}
5629 
5630 		if (track->outbuf.used > 0) {
5631 			mixed = audio_pmixer_mix_track(mixer, track, mixed);
5632 		} else {
5633 			TRACET(4, track, "skip; empty");
5634 		}
5635 
5636 		audio_track_lock_exit(track);
5637 	}
5638 
5639 	if (mixed == 0) {
5640 		/* Silence */
5641 		memset(mixer->mixsample, 0,
5642 		    frametobyte(&mixer->mixfmt, frame_count));
5643 	} else {
5644 		if (mixed > 1) {
5645 			/* If there are multiple tracks, do auto gain control */
5646 			audio_pmixer_agc(mixer, sample_count);
5647 		}
5648 
5649 		/* Apply master volume */
5650 		if (mixer->volume < 256) {
5651 			m = mixer->mixsample;
5652 			for (i = 0; i < sample_count; i++) {
5653 				*m = AUDIO_SCALEDOWN(*m * mixer->volume, 8);
5654 				m++;
5655 			}
5656 
5657 			/*
5658 			 * Recover the volume gradually at the pace of
5659 			 * several times per second.  If it's too fast, you
5660 			 * can recognize that the volume changes up and down
5661 			 * quickly and it's not so comfortable.
5662 			 */
5663 			mixer->voltimer += mixer->blktime_n;
5664 			if (mixer->voltimer * 4 >= mixer->blktime_d) {
5665 				mixer->volume++;
5666 				mixer->voltimer = 0;
5667 #if defined(AUDIO_DEBUG_AGC)
5668 				TRACE(1, "volume recover: %d", mixer->volume);
5669 #endif
5670 			}
5671 		}
5672 	}
5673 
5674 	/*
5675 	 * The rest is the hardware part.
5676 	 */
5677 
5678 	m = mixer->mixsample;
5679 
5680 	if (mixer->codec) {
5681 		TRACE(4, "codec count=%d", frame_count);
5682 
5683 		h = auring_tailptr_aint(&mixer->codecbuf);
5684 		for (i=0; i<sample_count; ++i)
5685 			*h++ = *m++;
5686 
5687 		/* Hardware driver's codec */
5688 		auring_push(&mixer->codecbuf, frame_count);
5689 		mixer->codecarg.src = auring_headptr(&mixer->codecbuf);
5690 		mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5691 		mixer->codecarg.count = frame_count;
5692 		mixer->codec(&mixer->codecarg);
5693 		auring_take(&mixer->codecbuf, mixer->codecarg.count);
5694 	} else {
5695 		TRACE(4, "direct count=%d", frame_count);
5696 
5697 		/* Direct conversion to linear output */
5698 		mixer->codecarg.src = m;
5699 		mixer->codecarg.dst = auring_tailptr(&mixer->hwbuf);
5700 		mixer->codecarg.count = frame_count;
5701 		mixer->codecarg.srcfmt = &mixer->mixfmt;
5702 		mixer->codecarg.dstfmt = &mixer->hwbuf.fmt;
5703 		audio_mixsample_to_linear(&mixer->codecarg);
5704 	}
5705 
5706 	auring_push(&mixer->hwbuf, frame_count);
5707 
5708 	TRACE(4, "done mixseq=%d hwbuf=%d/%d/%d%s",
5709 	    (int)mixer->mixseq,
5710 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity,
5711 	    (mixed == 0) ? " silent" : "");
5712 }
5713 
5714 /*
5715  * Do auto gain control.
5716  * Must be called sc_intr_lock held.
5717  */
5718 static void
audio_pmixer_agc(audio_trackmixer_t * mixer,int sample_count)5719 audio_pmixer_agc(audio_trackmixer_t *mixer, int sample_count)
5720 {
5721 	struct audio_softc *sc __unused;
5722 	aint2_t val;
5723 	aint2_t maxval;
5724 	aint2_t minval;
5725 	aint2_t over_plus;
5726 	aint2_t over_minus;
5727 	aint2_t *m;
5728 	int newvol;
5729 	int i;
5730 
5731 	sc = mixer->sc;
5732 
5733 	/* Overflow detection */
5734 	maxval = AINT_T_MAX;
5735 	minval = AINT_T_MIN;
5736 	m = mixer->mixsample;
5737 	for (i = 0; i < sample_count; i++) {
5738 		val = *m++;
5739 		if (val > maxval)
5740 			maxval = val;
5741 		else if (val < minval)
5742 			minval = val;
5743 	}
5744 
5745 	/* Absolute value of overflowed amount */
5746 	over_plus = maxval - AINT_T_MAX;
5747 	over_minus = AINT_T_MIN - minval;
5748 
5749 	if (over_plus > 0 || over_minus > 0) {
5750 		if (over_plus > over_minus) {
5751 			newvol = (int)((aint2_t)AINT_T_MAX * 256 / maxval);
5752 		} else {
5753 			newvol = (int)((aint2_t)AINT_T_MIN * 256 / minval);
5754 		}
5755 
5756 		/*
5757 		 * Change the volume only if new one is smaller.
5758 		 * Reset the timer even if the volume isn't changed.
5759 		 */
5760 		if (newvol <= mixer->volume) {
5761 			mixer->volume = newvol;
5762 			mixer->voltimer = 0;
5763 #if defined(AUDIO_DEBUG_AGC)
5764 			TRACE(1, "auto volume adjust: %d", mixer->volume);
5765 #endif
5766 		}
5767 	}
5768 }
5769 
5770 /*
5771  * Mix one track.
5772  * 'mixed' specifies the number of tracks mixed so far.
5773  * It returns the number of tracks mixed.  In other words, it returns
5774  * mixed + 1 if this track is mixed.
5775  */
5776 static int
audio_pmixer_mix_track(audio_trackmixer_t * mixer,audio_track_t * track,int mixed)5777 audio_pmixer_mix_track(audio_trackmixer_t *mixer, audio_track_t *track,
5778 	int mixed)
5779 {
5780 	int count;
5781 	int sample_count;
5782 	int remain;
5783 	int i;
5784 	const aint_t *s;
5785 	aint2_t *d;
5786 
5787 	/* XXX TODO: Is this necessary for now? */
5788 	if (mixer->mixseq < track->seq)
5789 		return mixed;
5790 
5791 	count = auring_get_contig_used(&track->outbuf);
5792 	count = uimin(count, mixer->frames_per_block);
5793 
5794 	s = auring_headptr_aint(&track->outbuf);
5795 	d = mixer->mixsample;
5796 
5797 	/*
5798 	 * Apply track volume with double-sized integer and perform
5799 	 * additive synthesis.
5800 	 *
5801 	 * XXX If you limit the track volume to 1.0 or less (<= 256),
5802 	 *     it would be better to do this in the track conversion stage
5803 	 *     rather than here.  However, if you accept the volume to
5804 	 *     be greater than 1.0 (> 256), it's better to do it here.
5805 	 *     Because the operation here is done by double-sized integer.
5806 	 */
5807 	sample_count = count * mixer->mixfmt.channels;
5808 	if (mixed == 0) {
5809 		/* If this is the first track, assignment can be used. */
5810 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5811 		if (track->volume != 256) {
5812 			for (i = 0; i < sample_count; i++) {
5813 				aint2_t v;
5814 				v = *s++;
5815 				*d++ = AUDIO_SCALEDOWN(v * track->volume, 8)
5816 			}
5817 		} else
5818 #endif
5819 		{
5820 			for (i = 0; i < sample_count; i++) {
5821 				*d++ = ((aint2_t)*s++);
5822 			}
5823 		}
5824 		/* Fill silence if the first track is not filled. */
5825 		for (; i < mixer->frames_per_block * mixer->mixfmt.channels; i++)
5826 			*d++ = 0;
5827 	} else {
5828 		/* If this is the second or later, add it. */
5829 #if defined(AUDIO_SUPPORT_TRACK_VOLUME)
5830 		if (track->volume != 256) {
5831 			for (i = 0; i < sample_count; i++) {
5832 				aint2_t v;
5833 				v = *s++;
5834 				*d++ += AUDIO_SCALEDOWN(v * track->volume, 8);
5835 			}
5836 		} else
5837 #endif
5838 		{
5839 			for (i = 0; i < sample_count; i++) {
5840 				*d++ += ((aint2_t)*s++);
5841 			}
5842 		}
5843 	}
5844 
5845 	auring_take(&track->outbuf, count);
5846 	/*
5847 	 * The counters have to align block even if outbuf is less than
5848 	 * one block. XXX Is this still necessary?
5849 	 */
5850 	remain = mixer->frames_per_block - count;
5851 	if (__predict_false(remain != 0)) {
5852 		auring_push(&track->outbuf, remain);
5853 		auring_take(&track->outbuf, remain);
5854 	}
5855 
5856 	/*
5857 	 * Update track sequence.
5858 	 * mixseq has previous value yet at this point.
5859 	 */
5860 	track->seq = mixer->mixseq + 1;
5861 
5862 	return mixed + 1;
5863 }
5864 
5865 /*
5866  * Output one block from hwbuf to HW.
5867  * Must be called with sc_intr_lock held.
5868  */
5869 static void
audio_pmixer_output(struct audio_softc * sc)5870 audio_pmixer_output(struct audio_softc *sc)
5871 {
5872 	audio_trackmixer_t *mixer;
5873 	audio_params_t params;
5874 	void *start;
5875 	void *end;
5876 	int blksize;
5877 	int error;
5878 
5879 	mixer = sc->sc_pmixer;
5880 	TRACE(4, "pbusy=%d hwbuf=%d/%d/%d",
5881 	    sc->sc_pbusy,
5882 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5883 	KASSERTMSG(mixer->hwbuf.used >= mixer->frames_per_block,
5884 	    "mixer->hwbuf.used=%d mixer->frames_per_block=%d",
5885 	    mixer->hwbuf.used, mixer->frames_per_block);
5886 
5887 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
5888 
5889 	if (sc->hw_if->trigger_output) {
5890 		/* trigger (at once) */
5891 		if (!sc->sc_pbusy) {
5892 			start = mixer->hwbuf.mem;
5893 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
5894 			params = format2_to_params(&mixer->hwbuf.fmt);
5895 
5896 			error = sc->hw_if->trigger_output(sc->hw_hdl,
5897 			    start, end, blksize, audio_pintr, sc, &params);
5898 			if (error) {
5899 				audio_printf(sc,
5900 				    "trigger_output failed: errno=%d\n",
5901 				    error);
5902 				return;
5903 			}
5904 		}
5905 	} else {
5906 		/* start (everytime) */
5907 		start = auring_headptr(&mixer->hwbuf);
5908 
5909 		error = sc->hw_if->start_output(sc->hw_hdl,
5910 		    start, blksize, audio_pintr, sc);
5911 		if (error) {
5912 			audio_printf(sc,
5913 			    "start_output failed: errno=%d\n", error);
5914 			return;
5915 		}
5916 	}
5917 }
5918 
5919 /*
5920  * This is an interrupt handler for playback.
5921  * It is called with sc_intr_lock held.
5922  *
5923  * It is usually called from hardware interrupt.  However, note that
5924  * for some drivers (e.g. uaudio) it is called from software interrupt.
5925  */
5926 static void
audio_pintr(void * arg)5927 audio_pintr(void *arg)
5928 {
5929 	struct audio_softc *sc;
5930 	audio_trackmixer_t *mixer;
5931 
5932 	sc = arg;
5933 	KASSERT(mutex_owned(sc->sc_intr_lock));
5934 
5935 	if (sc->sc_dying)
5936 		return;
5937 	if (sc->sc_pbusy == false) {
5938 #if defined(DIAGNOSTIC)
5939 		audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
5940 		    device_xname(sc->hw_dev));
5941 #endif
5942 		return;
5943 	}
5944 
5945 	mixer = sc->sc_pmixer;
5946 	mixer->hw_complete_counter += mixer->frames_per_block;
5947 	mixer->hwseq++;
5948 
5949 	auring_take(&mixer->hwbuf, mixer->frames_per_block);
5950 
5951 	TRACE(4,
5952 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
5953 	    mixer->hwseq, mixer->hw_complete_counter,
5954 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
5955 
5956 #if defined(AUDIO_HW_SINGLE_BUFFER)
5957 	/*
5958 	 * Create a new block here and output it immediately.
5959 	 * It makes a latency lower but needs machine power.
5960 	 */
5961 	audio_pmixer_process(sc);
5962 	audio_pmixer_output(sc);
5963 #else
5964 	/*
5965 	 * It is called when block N output is done.
5966 	 * Output immediately block N+1 created by the last interrupt.
5967 	 * And then create block N+2 for the next interrupt.
5968 	 * This method makes playback robust even on slower machines.
5969 	 * Instead the latency is increased by one block.
5970 	 */
5971 
5972 	/* At first, output ready block. */
5973 	if (mixer->hwbuf.used >= mixer->frames_per_block) {
5974 		audio_pmixer_output(sc);
5975 	}
5976 
5977 	bool later = false;
5978 
5979 	if (mixer->hwbuf.used < mixer->frames_per_block) {
5980 		later = true;
5981 	}
5982 
5983 	/* Then, process next block. */
5984 	audio_pmixer_process(sc);
5985 
5986 	if (later) {
5987 		audio_pmixer_output(sc);
5988 	}
5989 #endif
5990 
5991 	/*
5992 	 * When this interrupt is the real hardware interrupt, disabling
5993 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
5994 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
5995 	 */
5996 	kpreempt_disable();
5997 	softint_schedule(mixer->sih);
5998 	kpreempt_enable();
5999 }
6000 
6001 /*
6002  * Starts record mixer.
6003  * Must be called only if sc_rbusy is false.
6004  * Must be called with sc_lock && sc_exlock held.
6005  * Must not be called from the interrupt context.
6006  */
6007 static void
audio_rmixer_start(struct audio_softc * sc)6008 audio_rmixer_start(struct audio_softc *sc)
6009 {
6010 
6011 	KASSERT(mutex_owned(sc->sc_lock));
6012 	KASSERT(sc->sc_exlock);
6013 	KASSERT(sc->sc_rbusy == false);
6014 
6015 	mutex_enter(sc->sc_intr_lock);
6016 
6017 	TRACE(2, "%s", (audiodebug >= 3) ? "begin" : "");
6018 	audio_rmixer_input(sc);
6019 	sc->sc_rbusy = true;
6020 	TRACE(3, "end");
6021 
6022 	mutex_exit(sc->sc_intr_lock);
6023 }
6024 
6025 /*
6026  * When recording with MD filter:
6027  *
6028  *    hwbuf     [............]          NBLKHW blocks ring buffer
6029  *                |
6030  *                | convert from hw format
6031  *                v
6032  *    codecbuf  [....]                  1 block (ring) buffer
6033  *               |  |
6034  *               v  v
6035  *            track track ...
6036  *
6037  * When recording without MD filter:
6038  *
6039  *    hwbuf     [............]          NBLKHW blocks ring buffer
6040  *               |  |
6041  *               v  v
6042  *            track track ...
6043  *
6044  * hwbuf:     HW encoding, HW precision, HW ch, HW freq.
6045  * codecbuf:  slinear_NE, internal precision, HW ch, HW freq.
6046  */
6047 
6048 /*
6049  * Distribute a recorded block to all recording tracks.
6050  */
6051 static void
audio_rmixer_process(struct audio_softc * sc)6052 audio_rmixer_process(struct audio_softc *sc)
6053 {
6054 	audio_trackmixer_t *mixer;
6055 	audio_ring_t *mixersrc;
6056 	audio_ring_t tmpsrc;
6057 	audio_filter_t codec;
6058 	audio_filter_arg_t codecarg;
6059 	audio_file_t *f;
6060 	int count;
6061 	int bytes;
6062 
6063 	mixer = sc->sc_rmixer;
6064 
6065 	/*
6066 	 * count is the number of frames to be retrieved this time.
6067 	 * count should be one block.
6068 	 */
6069 	count = auring_get_contig_used(&mixer->hwbuf);
6070 	count = uimin(count, mixer->frames_per_block);
6071 	if (count <= 0) {
6072 		TRACE(4, "count %d: too short", count);
6073 		return;
6074 	}
6075 	bytes = frametobyte(&mixer->track_fmt, count);
6076 
6077 	/* Hardware driver's codec */
6078 	if (mixer->codec) {
6079 		TRACE(4, "codec count=%d", count);
6080 		mixer->codecarg.src = auring_headptr(&mixer->hwbuf);
6081 		mixer->codecarg.dst = auring_tailptr(&mixer->codecbuf);
6082 		mixer->codecarg.count = count;
6083 		mixer->codec(&mixer->codecarg);
6084 		mixersrc = &mixer->codecbuf;
6085 	} else {
6086 		TRACE(4, "direct count=%d", count);
6087 		/* temporary ring using mixsample buffer */
6088 		tmpsrc.fmt = mixer->mixfmt;
6089 		tmpsrc.capacity = mixer->frames_per_block;
6090 		tmpsrc.mem = mixer->mixsample;
6091 		tmpsrc.head = 0;
6092 		tmpsrc.used = 0;
6093 
6094 		/* ad-hoc codec */
6095 		codecarg.srcfmt = &mixer->hwbuf.fmt;
6096 		codecarg.dstfmt = &mixer->mixfmt;
6097 		codec = NULL;
6098 		if (audio_format2_is_linear(codecarg.srcfmt) &&
6099 		    codecarg.srcfmt->stride == codecarg.srcfmt->precision) {
6100 			switch (codecarg.srcfmt->stride) {
6101 			case 8:
6102 				codec = audio_linear8_to_internal;
6103 				break;
6104 			case 16:
6105 				codec = audio_linear16_to_internal;
6106 				break;
6107 #if defined(AUDIO_SUPPORT_LINEAR24)
6108 			case 24:
6109 				codec = audio_linear24_to_internal;
6110 				break;
6111 #endif
6112 			case 32:
6113 				codec = audio_linear32_to_internal;
6114 				break;
6115 			}
6116 		}
6117 		if (codec == NULL) {
6118 			TRACE(4, "unsupported hw format");
6119 			/* drain hwbuf */
6120 			auring_take(&mixer->hwbuf, count);
6121 			return;
6122 		}
6123 
6124 		codecarg.src = auring_headptr(&mixer->hwbuf);
6125 		codecarg.dst = auring_tailptr(&tmpsrc);
6126 		codecarg.count = count;
6127 		codec(&codecarg);
6128 		mixersrc = &tmpsrc;
6129 	}
6130 
6131 	auring_take(&mixer->hwbuf, count);
6132 	auring_push(mixersrc, count);
6133 
6134 	TRACE(4, "distribute");
6135 
6136 	/* Distribute to all tracks. */
6137 	SLIST_FOREACH(f, &sc->sc_files, entry) {
6138 		audio_track_t *track = f->rtrack;
6139 		audio_ring_t *input;
6140 
6141 		if (track == NULL)
6142 			continue;
6143 
6144 		if (track->is_pause) {
6145 			TRACET(4, track, "skip; paused");
6146 			continue;
6147 		}
6148 
6149 		if (audio_track_lock_tryenter(track) == false) {
6150 			TRACET(4, track, "skip; in use");
6151 			continue;
6152 		}
6153 
6154 		/*
6155 		 * If the track buffer has less than one block of free space,
6156 		 * make one block free.
6157 		 */
6158 		input = track->input;
6159 		if (input->capacity - input->used < mixer->frames_per_block) {
6160 			int drops = mixer->frames_per_block -
6161 			    (input->capacity - input->used);
6162 			track->dropframes += drops;
6163 			TRACET(4, track, "drop %d frames: inp=%d/%d/%d",
6164 			    drops,
6165 			    input->head, input->used, input->capacity);
6166 			auring_take(input, drops);
6167 		}
6168 
6169 		KASSERTMSG(auring_tail(input) % mixer->frames_per_block == 0,
6170 		    "inputtail=%d mixer->frames_per_block=%d",
6171 		    auring_tail(input), mixer->frames_per_block);
6172 		memcpy(auring_tailptr_aint(input),
6173 		    auring_headptr_aint(mixersrc),
6174 		    bytes);
6175 		auring_push(input, count);
6176 
6177 		track->stamp++;
6178 
6179 		audio_track_lock_exit(track);
6180 	}
6181 
6182 	auring_take(mixersrc, count);
6183 }
6184 
6185 /*
6186  * Input one block from HW to hwbuf.
6187  * Must be called with sc_intr_lock held.
6188  */
6189 static void
audio_rmixer_input(struct audio_softc * sc)6190 audio_rmixer_input(struct audio_softc *sc)
6191 {
6192 	audio_trackmixer_t *mixer;
6193 	audio_params_t params;
6194 	void *start;
6195 	void *end;
6196 	int blksize;
6197 	int error;
6198 
6199 	mixer = sc->sc_rmixer;
6200 	blksize = frametobyte(&mixer->hwbuf.fmt, mixer->frames_per_block);
6201 
6202 	if (sc->hw_if->trigger_input) {
6203 		/* trigger (at once) */
6204 		if (!sc->sc_rbusy) {
6205 			start = mixer->hwbuf.mem;
6206 			end = (uint8_t *)start + auring_bytelen(&mixer->hwbuf);
6207 			params = format2_to_params(&mixer->hwbuf.fmt);
6208 
6209 			error = sc->hw_if->trigger_input(sc->hw_hdl,
6210 			    start, end, blksize, audio_rintr, sc, &params);
6211 			if (error) {
6212 				audio_printf(sc,
6213 				    "trigger_input failed: errno=%d\n",
6214 				    error);
6215 				return;
6216 			}
6217 		}
6218 	} else {
6219 		/* start (everytime) */
6220 		start = auring_tailptr(&mixer->hwbuf);
6221 
6222 		error = sc->hw_if->start_input(sc->hw_hdl,
6223 		    start, blksize, audio_rintr, sc);
6224 		if (error) {
6225 			audio_printf(sc,
6226 			    "start_input failed: errno=%d\n", error);
6227 			return;
6228 		}
6229 	}
6230 }
6231 
6232 /*
6233  * This is an interrupt handler for recording.
6234  * It is called with sc_intr_lock.
6235  *
6236  * It is usually called from hardware interrupt.  However, note that
6237  * for some drivers (e.g. uaudio) it is called from software interrupt.
6238  */
6239 static void
audio_rintr(void * arg)6240 audio_rintr(void *arg)
6241 {
6242 	struct audio_softc *sc;
6243 	audio_trackmixer_t *mixer;
6244 
6245 	sc = arg;
6246 	KASSERT(mutex_owned(sc->sc_intr_lock));
6247 
6248 	if (sc->sc_dying)
6249 		return;
6250 	if (sc->sc_rbusy == false) {
6251 #if defined(DIAGNOSTIC)
6252 		audio_printf(sc, "DIAGNOSTIC: %s raised stray interrupt\n",
6253 		    device_xname(sc->hw_dev));
6254 #endif
6255 		return;
6256 	}
6257 
6258 	mixer = sc->sc_rmixer;
6259 	mixer->hw_complete_counter += mixer->frames_per_block;
6260 	mixer->hwseq++;
6261 
6262 	auring_push(&mixer->hwbuf, mixer->frames_per_block);
6263 
6264 	TRACE(4,
6265 	    "HW_INT ++hwseq=%" PRIu64 " cmplcnt=%" PRIu64 " hwbuf=%d/%d/%d",
6266 	    mixer->hwseq, mixer->hw_complete_counter,
6267 	    mixer->hwbuf.head, mixer->hwbuf.used, mixer->hwbuf.capacity);
6268 
6269 	/* Distrubute recorded block */
6270 	audio_rmixer_process(sc);
6271 
6272 	/* Request next block */
6273 	audio_rmixer_input(sc);
6274 
6275 	/*
6276 	 * When this interrupt is the real hardware interrupt, disabling
6277 	 * preemption here is not necessary.  But some drivers (e.g. uaudio)
6278 	 * emulate it by software interrupt, so kpreempt_disable is necessary.
6279 	 */
6280 	kpreempt_disable();
6281 	softint_schedule(mixer->sih);
6282 	kpreempt_enable();
6283 }
6284 
6285 /*
6286  * Halts playback mixer.
6287  * This function also clears related parameters, so call this function
6288  * instead of calling halt_output directly.
6289  * Must be called only if sc_pbusy is true.
6290  * Must be called with sc_lock && sc_exlock held.
6291  */
6292 static int
audio_pmixer_halt(struct audio_softc * sc)6293 audio_pmixer_halt(struct audio_softc *sc)
6294 {
6295 	int error;
6296 
6297 	TRACE(2, "called");
6298 	KASSERT(mutex_owned(sc->sc_lock));
6299 	KASSERT(sc->sc_exlock);
6300 
6301 	mutex_enter(sc->sc_intr_lock);
6302 	error = sc->hw_if->halt_output(sc->hw_hdl);
6303 
6304 	/* Halts anyway even if some error has occurred. */
6305 	sc->sc_pbusy = false;
6306 	sc->sc_pmixer->hwbuf.head = 0;
6307 	sc->sc_pmixer->hwbuf.used = 0;
6308 	sc->sc_pmixer->mixseq = 0;
6309 	sc->sc_pmixer->hwseq = 0;
6310 	mutex_exit(sc->sc_intr_lock);
6311 
6312 	return error;
6313 }
6314 
6315 /*
6316  * Halts recording mixer.
6317  * This function also clears related parameters, so call this function
6318  * instead of calling halt_input directly.
6319  * Must be called only if sc_rbusy is true.
6320  * Must be called with sc_lock && sc_exlock held.
6321  */
6322 static int
audio_rmixer_halt(struct audio_softc * sc)6323 audio_rmixer_halt(struct audio_softc *sc)
6324 {
6325 	int error;
6326 
6327 	TRACE(2, "called");
6328 	KASSERT(mutex_owned(sc->sc_lock));
6329 	KASSERT(sc->sc_exlock);
6330 
6331 	mutex_enter(sc->sc_intr_lock);
6332 	error = sc->hw_if->halt_input(sc->hw_hdl);
6333 
6334 	/* Halts anyway even if some error has occurred. */
6335 	sc->sc_rbusy = false;
6336 	sc->sc_rmixer->hwbuf.head = 0;
6337 	sc->sc_rmixer->hwbuf.used = 0;
6338 	sc->sc_rmixer->mixseq = 0;
6339 	sc->sc_rmixer->hwseq = 0;
6340 	mutex_exit(sc->sc_intr_lock);
6341 
6342 	return error;
6343 }
6344 
6345 /*
6346  * Flush this track.
6347  * Halts all operations, clears all buffers, reset error counters.
6348  * XXX I'm not sure...
6349  */
6350 static void
audio_track_clear(struct audio_softc * sc,audio_track_t * track)6351 audio_track_clear(struct audio_softc *sc, audio_track_t *track)
6352 {
6353 
6354 	KASSERT(track);
6355 	TRACET(3, track, "clear");
6356 
6357 	audio_track_lock_enter(track);
6358 
6359 	/* Clear all internal parameters. */
6360 	track->usrbuf.used = 0;
6361 	track->usrbuf.head = 0;
6362 	if (track->codec.filter) {
6363 		track->codec.srcbuf.used = 0;
6364 		track->codec.srcbuf.head = 0;
6365 	}
6366 	if (track->chvol.filter) {
6367 		track->chvol.srcbuf.used = 0;
6368 		track->chvol.srcbuf.head = 0;
6369 	}
6370 	if (track->chmix.filter) {
6371 		track->chmix.srcbuf.used = 0;
6372 		track->chmix.srcbuf.head = 0;
6373 	}
6374 	if (track->freq.filter) {
6375 		track->freq.srcbuf.used = 0;
6376 		track->freq.srcbuf.head = 0;
6377 		if (track->freq_step < 65536)
6378 			track->freq_current = 65536;
6379 		else
6380 			track->freq_current = 0;
6381 		memset(track->freq_prev, 0, sizeof(track->freq_prev));
6382 		memset(track->freq_curr, 0, sizeof(track->freq_curr));
6383 	}
6384 	/* Clear buffer, then operation halts naturally. */
6385 	track->outbuf.used = 0;
6386 
6387 	/* Clear counters. */
6388 	track->stamp = 0;
6389 	track->last_stamp = 0;
6390 	track->dropframes = 0;
6391 
6392 	audio_track_lock_exit(track);
6393 }
6394 
6395 /*
6396  * Drain the track.
6397  * track must be present and for playback.
6398  * If successful, it returns 0.  Otherwise returns errno.
6399  * Must be called with sc_lock held.
6400  */
6401 static int
audio_track_drain(struct audio_softc * sc,audio_track_t * track)6402 audio_track_drain(struct audio_softc *sc, audio_track_t *track)
6403 {
6404 	audio_trackmixer_t *mixer;
6405 	int done;
6406 	int error;
6407 
6408 	KASSERT(track);
6409 	TRACET(3, track, "start");
6410 	mixer = track->mixer;
6411 	KASSERT(mutex_owned(sc->sc_lock));
6412 
6413 	/* Ignore them if pause. */
6414 	if (track->is_pause) {
6415 		TRACET(3, track, "pause -> clear");
6416 		track->pstate = AUDIO_STATE_CLEAR;
6417 	}
6418 	/* Terminate early here if there is no data in the track. */
6419 	if (track->pstate == AUDIO_STATE_CLEAR) {
6420 		TRACET(3, track, "no need to drain");
6421 		return 0;
6422 	}
6423 	track->pstate = AUDIO_STATE_DRAINING;
6424 
6425 	for (;;) {
6426 		/* I want to display it before condition evaluation. */
6427 		TRACET(3, track, "pid=%d.%d trkseq=%d hwseq=%d out=%d/%d/%d",
6428 		    (int)curproc->p_pid, (int)curlwp->l_lid,
6429 		    (int)track->seq, (int)mixer->hwseq,
6430 		    track->outbuf.head, track->outbuf.used,
6431 		    track->outbuf.capacity);
6432 
6433 		/* Condition to terminate */
6434 		audio_track_lock_enter(track);
6435 		done = (track->usrbuf.used < frametobyte(&track->inputfmt, 1) &&
6436 		    track->outbuf.used == 0 &&
6437 		    track->seq <= mixer->hwseq);
6438 		audio_track_lock_exit(track);
6439 		if (done)
6440 			break;
6441 
6442 		TRACET(3, track, "sleep");
6443 		error = audio_track_waitio(sc, track, "audio_drain");
6444 		if (error)
6445 			return error;
6446 
6447 		/* XXX call audio_track_play here ? */
6448 	}
6449 
6450 	track->pstate = AUDIO_STATE_CLEAR;
6451 	TRACET(3, track, "done");
6452 	return 0;
6453 }
6454 
6455 /*
6456  * Send signal to process.
6457  * This is intended to be called only from audio_softintr_{rd,wr}.
6458  * Must be called without sc_intr_lock held.
6459  */
6460 static inline void
audio_psignal(struct audio_softc * sc,pid_t pid,int signum)6461 audio_psignal(struct audio_softc *sc, pid_t pid, int signum)
6462 {
6463 	proc_t *p;
6464 
6465 	KASSERT(pid != 0);
6466 
6467 	/*
6468 	 * psignal() must be called without spin lock held.
6469 	 */
6470 
6471 	mutex_enter(&proc_lock);
6472 	p = proc_find(pid);
6473 	if (p)
6474 		psignal(p, signum);
6475 	mutex_exit(&proc_lock);
6476 }
6477 
6478 /*
6479  * This is software interrupt handler for record.
6480  * It is called from recording hardware interrupt everytime.
6481  * It does:
6482  * - Deliver SIGIO for all async processes.
6483  * - Notify to audio_read() that data has arrived.
6484  * - selnotify() for select/poll-ing processes.
6485  */
6486 /*
6487  * XXX If a process issues FIOASYNC between hardware interrupt and
6488  *     software interrupt, (stray) SIGIO will be sent to the process
6489  *     despite the fact that it has not receive recorded data yet.
6490  */
6491 static void
audio_softintr_rd(void * cookie)6492 audio_softintr_rd(void *cookie)
6493 {
6494 	struct audio_softc *sc = cookie;
6495 	audio_file_t *f;
6496 	pid_t pid;
6497 
6498 	mutex_enter(sc->sc_lock);
6499 
6500 	SLIST_FOREACH(f, &sc->sc_files, entry) {
6501 		audio_track_t *track = f->rtrack;
6502 
6503 		if (track == NULL)
6504 			continue;
6505 
6506 		TRACET(4, track, "broadcast; inp=%d/%d/%d",
6507 		    track->input->head,
6508 		    track->input->used,
6509 		    track->input->capacity);
6510 
6511 		pid = f->async_audio;
6512 		if (pid != 0) {
6513 			TRACEF(4, f, "sending SIGIO %d", pid);
6514 			audio_psignal(sc, pid, SIGIO);
6515 		}
6516 	}
6517 
6518 	/* Notify that data has arrived. */
6519 	selnotify(&sc->sc_rsel, 0, NOTE_SUBMIT);
6520 	cv_broadcast(&sc->sc_rmixer->outcv);
6521 
6522 	mutex_exit(sc->sc_lock);
6523 }
6524 
6525 /*
6526  * This is software interrupt handler for playback.
6527  * It is called from playback hardware interrupt everytime.
6528  * It does:
6529  * - Deliver SIGIO for all async and writable (used < lowat) processes.
6530  * - Notify to audio_write() that outbuf block available.
6531  * - selnotify() for select/poll-ing processes if there are any writable
6532  *   (used < lowat) processes.  Checking each descriptor will be done by
6533  *   filt_audiowrite_event().
6534  */
6535 static void
audio_softintr_wr(void * cookie)6536 audio_softintr_wr(void *cookie)
6537 {
6538 	struct audio_softc *sc = cookie;
6539 	audio_file_t *f;
6540 	bool found;
6541 	pid_t pid;
6542 
6543 	TRACE(4, "called");
6544 	found = false;
6545 
6546 	mutex_enter(sc->sc_lock);
6547 
6548 	SLIST_FOREACH(f, &sc->sc_files, entry) {
6549 		audio_track_t *track = f->ptrack;
6550 
6551 		if (track == NULL)
6552 			continue;
6553 
6554 		TRACET(4, track, "broadcast; trkseq=%d out=%d/%d/%d",
6555 		    (int)track->seq,
6556 		    track->outbuf.head,
6557 		    track->outbuf.used,
6558 		    track->outbuf.capacity);
6559 
6560 		/*
6561 		 * Send a signal if the process is async mode and
6562 		 * used is lower than lowat.
6563 		 */
6564 		if (track->usrbuf.used <= track->usrbuf_usedlow &&
6565 		    !track->is_pause) {
6566 			/* For selnotify */
6567 			found = true;
6568 			/* For SIGIO */
6569 			pid = f->async_audio;
6570 			if (pid != 0) {
6571 				TRACEF(4, f, "sending SIGIO %d", pid);
6572 				audio_psignal(sc, pid, SIGIO);
6573 			}
6574 		}
6575 	}
6576 
6577 	/*
6578 	 * Notify for select/poll when someone become writable.
6579 	 * It needs sc_lock (and not sc_intr_lock).
6580 	 */
6581 	if (found) {
6582 		TRACE(4, "selnotify");
6583 		selnotify(&sc->sc_wsel, 0, NOTE_SUBMIT);
6584 	}
6585 
6586 	/* Notify to audio_write() that outbuf available. */
6587 	cv_broadcast(&sc->sc_pmixer->outcv);
6588 
6589 	mutex_exit(sc->sc_lock);
6590 }
6591 
6592 /*
6593  * Check (and convert) the format *p came from userland.
6594  * If successful, it writes back the converted format to *p if necessary and
6595  * returns 0.  Otherwise returns errno (*p may be changed even in this case).
6596  */
6597 static int
audio_check_params(audio_format2_t * p)6598 audio_check_params(audio_format2_t *p)
6599 {
6600 
6601 	/*
6602 	 * Convert obsolete AUDIO_ENCODING_PCM encodings.
6603 	 *
6604 	 * AUDIO_ENCODING_PCM16 == AUDIO_ENCODING_LINEAR
6605 	 * So, it's always signed, as in SunOS.
6606 	 *
6607 	 * AUDIO_ENCODING_PCM8 == AUDIO_ENCODING_LINEAR8
6608 	 * So, it's always unsigned, as in SunOS.
6609 	 */
6610 	if (p->encoding == AUDIO_ENCODING_PCM16) {
6611 		p->encoding = AUDIO_ENCODING_SLINEAR;
6612 	} else if (p->encoding == AUDIO_ENCODING_PCM8) {
6613 		if (p->precision == 8)
6614 			p->encoding = AUDIO_ENCODING_ULINEAR;
6615 		else
6616 			return EINVAL;
6617 	}
6618 
6619 	/*
6620 	 * Convert obsoleted AUDIO_ENCODING_[SU]LINEAR without endianness
6621 	 * suffix.
6622 	 */
6623 	if (p->encoding == AUDIO_ENCODING_SLINEAR)
6624 		p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6625 	if (p->encoding == AUDIO_ENCODING_ULINEAR)
6626 		p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6627 
6628 	switch (p->encoding) {
6629 	case AUDIO_ENCODING_ULAW:
6630 	case AUDIO_ENCODING_ALAW:
6631 		if (p->precision != 8)
6632 			return EINVAL;
6633 		break;
6634 	case AUDIO_ENCODING_ADPCM:
6635 		if (p->precision != 4 && p->precision != 8)
6636 			return EINVAL;
6637 		break;
6638 	case AUDIO_ENCODING_SLINEAR_LE:
6639 	case AUDIO_ENCODING_SLINEAR_BE:
6640 	case AUDIO_ENCODING_ULINEAR_LE:
6641 	case AUDIO_ENCODING_ULINEAR_BE:
6642 		if (p->precision !=  8 && p->precision != 16 &&
6643 		    p->precision != 24 && p->precision != 32)
6644 			return EINVAL;
6645 
6646 		/* 8bit format does not have endianness. */
6647 		if (p->precision == 8) {
6648 			if (p->encoding == AUDIO_ENCODING_SLINEAR_OE)
6649 				p->encoding = AUDIO_ENCODING_SLINEAR_NE;
6650 			if (p->encoding == AUDIO_ENCODING_ULINEAR_OE)
6651 				p->encoding = AUDIO_ENCODING_ULINEAR_NE;
6652 		}
6653 
6654 		if (p->precision > p->stride)
6655 			return EINVAL;
6656 		break;
6657 	case AUDIO_ENCODING_MPEG_L1_STREAM:
6658 	case AUDIO_ENCODING_MPEG_L1_PACKETS:
6659 	case AUDIO_ENCODING_MPEG_L1_SYSTEM:
6660 	case AUDIO_ENCODING_MPEG_L2_STREAM:
6661 	case AUDIO_ENCODING_MPEG_L2_PACKETS:
6662 	case AUDIO_ENCODING_MPEG_L2_SYSTEM:
6663 	case AUDIO_ENCODING_AC3:
6664 		break;
6665 	default:
6666 		return EINVAL;
6667 	}
6668 
6669 	/* sanity check # of channels*/
6670 	if (p->channels < 1 || p->channels > AUDIO_MAX_CHANNELS)
6671 		return EINVAL;
6672 
6673 	return 0;
6674 }
6675 
6676 /*
6677  * Initialize playback and record mixers.
6678  * mode (AUMODE_{PLAY,RECORD}) indicates the mixer to be initialized.
6679  * phwfmt and rhwfmt indicate the hardware format.  pfil and rfil indicate
6680  * the filter registration information.  These four must not be NULL.
6681  * If successful returns 0.  Otherwise returns errno.
6682  * Must be called with sc_exlock held and without sc_lock held.
6683  * Must not be called if there are any tracks.
6684  * Caller should check that the initialization succeed by whether
6685  * sc_[pr]mixer is not NULL.
6686  */
6687 static int
audio_mixers_init(struct audio_softc * sc,int mode,const audio_format2_t * phwfmt,const audio_format2_t * rhwfmt,const audio_filter_reg_t * pfil,const audio_filter_reg_t * rfil)6688 audio_mixers_init(struct audio_softc *sc, int mode,
6689 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
6690 	const audio_filter_reg_t *pfil, const audio_filter_reg_t *rfil)
6691 {
6692 	int error;
6693 
6694 	KASSERT(phwfmt != NULL);
6695 	KASSERT(rhwfmt != NULL);
6696 	KASSERT(pfil != NULL);
6697 	KASSERT(rfil != NULL);
6698 	KASSERT(sc->sc_exlock);
6699 
6700 	if ((mode & AUMODE_PLAY)) {
6701 		if (sc->sc_pmixer == NULL) {
6702 			sc->sc_pmixer = kmem_zalloc(sizeof(*sc->sc_pmixer),
6703 			    KM_SLEEP);
6704 		} else {
6705 			/* destroy() doesn't free memory. */
6706 			audio_mixer_destroy(sc, sc->sc_pmixer);
6707 			memset(sc->sc_pmixer, 0, sizeof(*sc->sc_pmixer));
6708 		}
6709 		error = audio_mixer_init(sc, AUMODE_PLAY, phwfmt, pfil);
6710 		if (error) {
6711 			/* audio_mixer_init already displayed error code */
6712 			audio_printf(sc, "configuring playback mode failed\n");
6713 			kmem_free(sc->sc_pmixer, sizeof(*sc->sc_pmixer));
6714 			sc->sc_pmixer = NULL;
6715 			return error;
6716 		}
6717 	}
6718 	if ((mode & AUMODE_RECORD)) {
6719 		if (sc->sc_rmixer == NULL) {
6720 			sc->sc_rmixer = kmem_zalloc(sizeof(*sc->sc_rmixer),
6721 			    KM_SLEEP);
6722 		} else {
6723 			/* destroy() doesn't free memory. */
6724 			audio_mixer_destroy(sc, sc->sc_rmixer);
6725 			memset(sc->sc_rmixer, 0, sizeof(*sc->sc_rmixer));
6726 		}
6727 		error = audio_mixer_init(sc, AUMODE_RECORD, rhwfmt, rfil);
6728 		if (error) {
6729 			/* audio_mixer_init already displayed error code */
6730 			audio_printf(sc, "configuring record mode failed\n");
6731 			kmem_free(sc->sc_rmixer, sizeof(*sc->sc_rmixer));
6732 			sc->sc_rmixer = NULL;
6733 			return error;
6734 		}
6735 	}
6736 
6737 	return 0;
6738 }
6739 
6740 /*
6741  * Select a frequency.
6742  * Prioritize 48kHz and 44.1kHz.  Otherwise choose the highest one.
6743  * XXX Better algorithm?
6744  */
6745 static int
audio_select_freq(const struct audio_format * fmt)6746 audio_select_freq(const struct audio_format *fmt)
6747 {
6748 	int freq;
6749 	int high;
6750 	int low;
6751 	int j;
6752 
6753 	if (fmt->frequency_type == 0) {
6754 		low = fmt->frequency[0];
6755 		high = fmt->frequency[1];
6756 		freq = 48000;
6757 		if (low <= freq && freq <= high) {
6758 			return freq;
6759 		}
6760 		freq = 44100;
6761 		if (low <= freq && freq <= high) {
6762 			return freq;
6763 		}
6764 		return high;
6765 	} else {
6766 		for (j = 0; j < fmt->frequency_type; j++) {
6767 			if (fmt->frequency[j] == 48000) {
6768 				return fmt->frequency[j];
6769 			}
6770 		}
6771 		high = 0;
6772 		for (j = 0; j < fmt->frequency_type; j++) {
6773 			if (fmt->frequency[j] == 44100) {
6774 				return fmt->frequency[j];
6775 			}
6776 			if (fmt->frequency[j] > high) {
6777 				high = fmt->frequency[j];
6778 			}
6779 		}
6780 		return high;
6781 	}
6782 }
6783 
6784 /*
6785  * Choose the most preferred hardware format.
6786  * If successful, it will store the chosen format into *cand and return 0.
6787  * Otherwise, return errno.
6788  * Must be called without sc_lock held.
6789  */
6790 static int
audio_hw_probe(struct audio_softc * sc,audio_format2_t * cand,int mode)6791 audio_hw_probe(struct audio_softc *sc, audio_format2_t *cand, int mode)
6792 {
6793 	audio_format_query_t query;
6794 	int cand_score;
6795 	int score;
6796 	int i;
6797 	int error;
6798 
6799 	/*
6800 	 * Score each formats and choose the highest one.
6801 	 *
6802 	 *                 +---- priority(0-3)
6803 	 *                 |+--- encoding/precision
6804 	 *                 ||+-- channels
6805 	 * score = 0x000000PEC
6806 	 */
6807 
6808 	cand_score = 0;
6809 	for (i = 0; ; i++) {
6810 		memset(&query, 0, sizeof(query));
6811 		query.index = i;
6812 
6813 		mutex_enter(sc->sc_lock);
6814 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
6815 		mutex_exit(sc->sc_lock);
6816 		if (error == EINVAL)
6817 			break;
6818 		if (error)
6819 			return error;
6820 
6821 #if defined(AUDIO_DEBUG)
6822 		DPRINTF(1, "fmt[%d] %c%c pri=%d %s,%d/%dbit,%dch,", i,
6823 		    (query.fmt.mode & AUMODE_PLAY)   ? 'P' : '-',
6824 		    (query.fmt.mode & AUMODE_RECORD) ? 'R' : '-',
6825 		    query.fmt.priority,
6826 		    audio_encoding_name(query.fmt.encoding),
6827 		    query.fmt.validbits,
6828 		    query.fmt.precision,
6829 		    query.fmt.channels);
6830 		if (query.fmt.frequency_type == 0) {
6831 			DPRINTF(1, "{%d-%d",
6832 			    query.fmt.frequency[0], query.fmt.frequency[1]);
6833 		} else {
6834 			int j;
6835 			for (j = 0; j < query.fmt.frequency_type; j++) {
6836 				DPRINTF(1, "%c%d",
6837 				    (j == 0) ? '{' : ',',
6838 				    query.fmt.frequency[j]);
6839 			}
6840 		}
6841 		DPRINTF(1, "}\n");
6842 #endif
6843 
6844 		if ((query.fmt.mode & mode) == 0) {
6845 			DPRINTF(1, "fmt[%d] skip; mode not match %d\n", i,
6846 			    mode);
6847 			continue;
6848 		}
6849 
6850 		if (query.fmt.priority < 0) {
6851 			DPRINTF(1, "fmt[%d] skip; unsupported encoding\n", i);
6852 			continue;
6853 		}
6854 
6855 		/* Score */
6856 		score = (query.fmt.priority & 3) * 0x100;
6857 		if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_NE &&
6858 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6859 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
6860 			score += 0x20;
6861 		} else if (query.fmt.encoding == AUDIO_ENCODING_SLINEAR_OE &&
6862 		    query.fmt.validbits == AUDIO_INTERNAL_BITS &&
6863 		    query.fmt.precision == AUDIO_INTERNAL_BITS) {
6864 			score += 0x10;
6865 		}
6866 
6867 		/* Do not prefer surround formats */
6868 		if (query.fmt.channels <= 2)
6869 			score += query.fmt.channels;
6870 
6871 		if (score < cand_score) {
6872 			DPRINTF(1, "fmt[%d] skip; score 0x%x < 0x%x\n", i,
6873 			    score, cand_score);
6874 			continue;
6875 		}
6876 
6877 		/* Update candidate */
6878 		cand_score = score;
6879 		cand->encoding    = query.fmt.encoding;
6880 		cand->precision   = query.fmt.validbits;
6881 		cand->stride      = query.fmt.precision;
6882 		cand->channels    = query.fmt.channels;
6883 		cand->sample_rate = audio_select_freq(&query.fmt);
6884 		DPRINTF(1, "fmt[%d] candidate (score=0x%x)"
6885 		    " pri=%d %s,%d/%d,%dch,%dHz\n", i,
6886 		    cand_score, query.fmt.priority,
6887 		    audio_encoding_name(query.fmt.encoding),
6888 		    cand->precision, cand->stride,
6889 		    cand->channels, cand->sample_rate);
6890 	}
6891 
6892 	if (cand_score == 0) {
6893 		DPRINTF(1, "%s no fmt\n", __func__);
6894 		return ENXIO;
6895 	}
6896 	DPRINTF(1, "%s selected: %s,%d/%d,%dch,%dHz\n", __func__,
6897 	    audio_encoding_name(cand->encoding),
6898 	    cand->precision, cand->stride, cand->channels, cand->sample_rate);
6899 	return 0;
6900 }
6901 
6902 /*
6903  * Validate fmt with query_format.
6904  * If fmt is included in the result of query_format, returns 0.
6905  * Otherwise returns EINVAL.
6906  * Must be called without sc_lock held.
6907  */
6908 static int
audio_hw_validate_format(struct audio_softc * sc,int mode,const audio_format2_t * fmt)6909 audio_hw_validate_format(struct audio_softc *sc, int mode,
6910 	const audio_format2_t *fmt)
6911 {
6912 	audio_format_query_t query;
6913 	struct audio_format *q;
6914 	int index;
6915 	int error;
6916 	int j;
6917 
6918 	for (index = 0; ; index++) {
6919 		query.index = index;
6920 		mutex_enter(sc->sc_lock);
6921 		error = sc->hw_if->query_format(sc->hw_hdl, &query);
6922 		mutex_exit(sc->sc_lock);
6923 		if (error == EINVAL)
6924 			break;
6925 		if (error)
6926 			return error;
6927 
6928 		q = &query.fmt;
6929 		/*
6930 		 * Note that fmt is audio_format2_t (precision/stride) but
6931 		 * q is audio_format_t (validbits/precision).
6932 		 */
6933 		if ((q->mode & mode) == 0) {
6934 			continue;
6935 		}
6936 		if (fmt->encoding != q->encoding) {
6937 			continue;
6938 		}
6939 		if (fmt->precision != q->validbits) {
6940 			continue;
6941 		}
6942 		if (fmt->stride != q->precision) {
6943 			continue;
6944 		}
6945 		if (fmt->channels != q->channels) {
6946 			continue;
6947 		}
6948 		if (q->frequency_type == 0) {
6949 			if (fmt->sample_rate < q->frequency[0] ||
6950 			    fmt->sample_rate > q->frequency[1]) {
6951 				continue;
6952 			}
6953 		} else {
6954 			for (j = 0; j < q->frequency_type; j++) {
6955 				if (fmt->sample_rate == q->frequency[j])
6956 					break;
6957 			}
6958 			if (j == query.fmt.frequency_type) {
6959 				continue;
6960 			}
6961 		}
6962 
6963 		/* Matched. */
6964 		return 0;
6965 	}
6966 
6967 	return EINVAL;
6968 }
6969 
6970 /*
6971  * Set track mixer's format depending on ai->mode.
6972  * If AUMODE_PLAY is set in ai->mode, it set up the playback mixer
6973  * with ai.play.*.
6974  * If AUMODE_RECORD is set in ai->mode, it set up the recording mixer
6975  * with ai.record.*.
6976  * All other fields in ai are ignored.
6977  * If successful returns 0.  Otherwise returns errno.
6978  * This function does not roll back even if it fails.
6979  * Must be called with sc_exlock held and without sc_lock held.
6980  */
6981 static int
audio_mixers_set_format(struct audio_softc * sc,const struct audio_info * ai)6982 audio_mixers_set_format(struct audio_softc *sc, const struct audio_info *ai)
6983 {
6984 	audio_format2_t phwfmt;
6985 	audio_format2_t rhwfmt;
6986 	audio_filter_reg_t pfil;
6987 	audio_filter_reg_t rfil;
6988 	int mode;
6989 	int error;
6990 
6991 	KASSERT(sc->sc_exlock);
6992 
6993 	/*
6994 	 * Even when setting either one of playback and recording,
6995 	 * both must be halted.
6996 	 */
6997 	if (sc->sc_popens + sc->sc_ropens > 0)
6998 		return EBUSY;
6999 
7000 	if (!SPECIFIED(ai->mode) || ai->mode == 0)
7001 		return ENOTTY;
7002 
7003 	mode = ai->mode;
7004 	if ((mode & AUMODE_PLAY)) {
7005 		phwfmt.encoding    = ai->play.encoding;
7006 		phwfmt.precision   = ai->play.precision;
7007 		phwfmt.stride      = ai->play.precision;
7008 		phwfmt.channels    = ai->play.channels;
7009 		phwfmt.sample_rate = ai->play.sample_rate;
7010 	}
7011 	if ((mode & AUMODE_RECORD)) {
7012 		rhwfmt.encoding    = ai->record.encoding;
7013 		rhwfmt.precision   = ai->record.precision;
7014 		rhwfmt.stride      = ai->record.precision;
7015 		rhwfmt.channels    = ai->record.channels;
7016 		rhwfmt.sample_rate = ai->record.sample_rate;
7017 	}
7018 
7019 	/* On non-independent devices, use the same format for both. */
7020 	if ((sc->sc_props & AUDIO_PROP_INDEPENDENT) == 0) {
7021 		if (mode == AUMODE_RECORD) {
7022 			phwfmt = rhwfmt;
7023 		} else {
7024 			rhwfmt = phwfmt;
7025 		}
7026 		mode = AUMODE_PLAY | AUMODE_RECORD;
7027 	}
7028 
7029 	/* Then, unset the direction not exist on the hardware. */
7030 	if ((sc->sc_props & AUDIO_PROP_PLAYBACK) == 0)
7031 		mode &= ~AUMODE_PLAY;
7032 	if ((sc->sc_props & AUDIO_PROP_CAPTURE) == 0)
7033 		mode &= ~AUMODE_RECORD;
7034 
7035 	/* debug */
7036 	if ((mode & AUMODE_PLAY)) {
7037 		TRACE(1, "play=%s/%d/%d/%dch/%dHz",
7038 		    audio_encoding_name(phwfmt.encoding),
7039 		    phwfmt.precision,
7040 		    phwfmt.stride,
7041 		    phwfmt.channels,
7042 		    phwfmt.sample_rate);
7043 	}
7044 	if ((mode & AUMODE_RECORD)) {
7045 		TRACE(1, "rec =%s/%d/%d/%dch/%dHz",
7046 		    audio_encoding_name(rhwfmt.encoding),
7047 		    rhwfmt.precision,
7048 		    rhwfmt.stride,
7049 		    rhwfmt.channels,
7050 		    rhwfmt.sample_rate);
7051 	}
7052 
7053 	/* Check the format */
7054 	if ((mode & AUMODE_PLAY)) {
7055 		if (audio_hw_validate_format(sc, AUMODE_PLAY, &phwfmt)) {
7056 			TRACE(1, "invalid format");
7057 			return EINVAL;
7058 		}
7059 	}
7060 	if ((mode & AUMODE_RECORD)) {
7061 		if (audio_hw_validate_format(sc, AUMODE_RECORD, &rhwfmt)) {
7062 			TRACE(1, "invalid format");
7063 			return EINVAL;
7064 		}
7065 	}
7066 
7067 	/* Configure the mixers. */
7068 	memset(&pfil, 0, sizeof(pfil));
7069 	memset(&rfil, 0, sizeof(rfil));
7070 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7071 	if (error)
7072 		return error;
7073 
7074 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
7075 	if (error)
7076 		return error;
7077 
7078 	/*
7079 	 * Reinitialize the sticky parameters for /dev/sound.
7080 	 * If the number of the hardware channels becomes less than the number
7081 	 * of channels that sticky parameters remember, subsequent /dev/sound
7082 	 * open will fail.  To prevent this, reinitialize the sticky
7083 	 * parameters whenever the hardware format is changed.
7084 	 */
7085 	sc->sc_sound_pparams = params_to_format2(&audio_default);
7086 	sc->sc_sound_rparams = params_to_format2(&audio_default);
7087 	sc->sc_sound_ppause = false;
7088 	sc->sc_sound_rpause = false;
7089 
7090 	return 0;
7091 }
7092 
7093 /*
7094  * Store current mixers format into *ai.
7095  * Must be called with sc_exlock held.
7096  */
7097 static void
audio_mixers_get_format(struct audio_softc * sc,struct audio_info * ai)7098 audio_mixers_get_format(struct audio_softc *sc, struct audio_info *ai)
7099 {
7100 
7101 	KASSERT(sc->sc_exlock);
7102 
7103 	/*
7104 	 * There is no stride information in audio_info but it doesn't matter.
7105 	 * trackmixer always treats stride and precision as the same.
7106 	 */
7107 	AUDIO_INITINFO(ai);
7108 	ai->mode = 0;
7109 	if (sc->sc_pmixer) {
7110 		audio_format2_t *fmt = &sc->sc_pmixer->track_fmt;
7111 		ai->play.encoding    = fmt->encoding;
7112 		ai->play.precision   = fmt->precision;
7113 		ai->play.channels    = fmt->channels;
7114 		ai->play.sample_rate = fmt->sample_rate;
7115 		ai->mode |= AUMODE_PLAY;
7116 	}
7117 	if (sc->sc_rmixer) {
7118 		audio_format2_t *fmt = &sc->sc_rmixer->track_fmt;
7119 		ai->record.encoding    = fmt->encoding;
7120 		ai->record.precision   = fmt->precision;
7121 		ai->record.channels    = fmt->channels;
7122 		ai->record.sample_rate = fmt->sample_rate;
7123 		ai->mode |= AUMODE_RECORD;
7124 	}
7125 }
7126 
7127 /*
7128  * audio_info details:
7129  *
7130  * ai.{play,record}.sample_rate		(R/W)
7131  * ai.{play,record}.encoding		(R/W)
7132  * ai.{play,record}.precision		(R/W)
7133  * ai.{play,record}.channels		(R/W)
7134  *	These specify the playback or recording format.
7135  *	Ignore members within an inactive track.
7136  *
7137  * ai.mode				(R/W)
7138  *	It specifies the playback or recording mode, AUMODE_*.
7139  *	Currently, a mode change operation by ai.mode after opening is
7140  *	prohibited.  In addition, AUMODE_PLAY_ALL no longer makes sense.
7141  *	However, it's possible to get or to set for backward compatibility.
7142  *
7143  * ai.{hiwat,lowat}			(R/W)
7144  *	These specify the high water mark and low water mark for playback
7145  *	track.  The unit is block.
7146  *
7147  * ai.{play,record}.gain		(R/W)
7148  *	It specifies the HW mixer volume in 0-255.
7149  *	It is historical reason that the gain is connected to HW mixer.
7150  *
7151  * ai.{play,record}.balance		(R/W)
7152  *	It specifies the left-right balance of HW mixer in 0-64.
7153  *	32 means the center.
7154  *	It is historical reason that the balance is connected to HW mixer.
7155  *
7156  * ai.{play,record}.port		(R/W)
7157  *	It specifies the input/output port of HW mixer.
7158  *
7159  * ai.monitor_gain			(R/W)
7160  *	It specifies the recording monitor gain(?) of HW mixer.
7161  *
7162  * ai.{play,record}.pause		(R/W)
7163  *	Non-zero means the track is paused.
7164  *
7165  * ai.play.seek				(R/-)
7166  *	It indicates the number of bytes written but not processed.
7167  * ai.record.seek			(R/-)
7168  *	It indicates the number of bytes to be able to read.
7169  *
7170  * ai.{play,record}.avail_ports		(R/-)
7171  *	Mixer info.
7172  *
7173  * ai.{play,record}.buffer_size		(R/-)
7174  *	It indicates the buffer size in bytes.  Internally it means usrbuf.
7175  *
7176  * ai.{play,record}.samples		(R/-)
7177  *	It indicates the total number of bytes played or recorded.
7178  *
7179  * ai.{play,record}.eof			(R/-)
7180  *	It indicates the number of times reached EOF(?).
7181  *
7182  * ai.{play,record}.error		(R/-)
7183  *	Non-zero indicates overflow/underflow has occurred.
7184  *
7185  * ai.{play,record}.waiting		(R/-)
7186  *	Non-zero indicates that other process waits to open.
7187  *	It will never happen anymore.
7188  *
7189  * ai.{play,record}.open		(R/-)
7190  *	Non-zero indicates the direction is opened by this process(?).
7191  *	XXX Is this better to indicate that "the device is opened by
7192  *	at least one process"?
7193  *
7194  * ai.{play,record}.active		(R/-)
7195  *	Non-zero indicates that I/O is currently active.
7196  *
7197  * ai.blocksize				(R/-)
7198  *	It indicates the block size in bytes.
7199  *	XXX The blocksize of playback and recording may be different.
7200  */
7201 
7202 /*
7203  * Pause consideration:
7204  *
7205  * Pausing/unpausing never affect [pr]mixer.  This single rule makes
7206  * operation simple.  Note that playback and recording are asymmetric.
7207  *
7208  * For playback,
7209  *  1. Any playback open doesn't start pmixer regardless of initial pause
7210  *     state of this track.
7211  *  2. The first write access among playback tracks only starts pmixer
7212  *     regardless of this track's pause state.
7213  *  3. Even a pause of the last playback track doesn't stop pmixer.
7214  *  4. The last close of all playback tracks only stops pmixer.
7215  *
7216  * For recording,
7217  *  1. The first recording open only starts rmixer regardless of initial
7218  *     pause state of this track.
7219  *  2. Even a pause of the last track doesn't stop rmixer.
7220  *  3. The last close of all recording tracks only stops rmixer.
7221  */
7222 
7223 /*
7224  * Set both track's parameters within a file depending on ai.
7225  * Update sc_sound_[pr]* if set.
7226  * Must be called with sc_exlock held and without sc_lock held.
7227  */
7228 static int
audio_file_setinfo(struct audio_softc * sc,audio_file_t * file,const struct audio_info * ai)7229 audio_file_setinfo(struct audio_softc *sc, audio_file_t *file,
7230 	const struct audio_info *ai)
7231 {
7232 	const struct audio_prinfo *pi;
7233 	const struct audio_prinfo *ri;
7234 	audio_track_t *ptrack;
7235 	audio_track_t *rtrack;
7236 	audio_format2_t pfmt;
7237 	audio_format2_t rfmt;
7238 	int pchanges;
7239 	int rchanges;
7240 	int mode;
7241 	struct audio_info saved_ai;
7242 	audio_format2_t saved_pfmt;
7243 	audio_format2_t saved_rfmt;
7244 	int error;
7245 
7246 	KASSERT(sc->sc_exlock);
7247 
7248 	pi = &ai->play;
7249 	ri = &ai->record;
7250 	pchanges = 0;
7251 	rchanges = 0;
7252 
7253 	ptrack = file->ptrack;
7254 	rtrack = file->rtrack;
7255 
7256 #if defined(AUDIO_DEBUG)
7257 	if (audiodebug >= 2) {
7258 		char buf[256];
7259 		char p[64];
7260 		int buflen;
7261 		int plen;
7262 #define SPRINTF(var, fmt...) do {	\
7263 	var##len += snprintf(var + var##len, sizeof(var) - var##len, fmt); \
7264 } while (0)
7265 
7266 		buflen = 0;
7267 		plen = 0;
7268 		if (SPECIFIED(pi->encoding))
7269 			SPRINTF(p, "/%s", audio_encoding_name(pi->encoding));
7270 		if (SPECIFIED(pi->precision))
7271 			SPRINTF(p, "/%dbit", pi->precision);
7272 		if (SPECIFIED(pi->channels))
7273 			SPRINTF(p, "/%dch", pi->channels);
7274 		if (SPECIFIED(pi->sample_rate))
7275 			SPRINTF(p, "/%dHz", pi->sample_rate);
7276 		if (plen > 0)
7277 			SPRINTF(buf, ",play.param=%s", p + 1);
7278 
7279 		plen = 0;
7280 		if (SPECIFIED(ri->encoding))
7281 			SPRINTF(p, "/%s", audio_encoding_name(ri->encoding));
7282 		if (SPECIFIED(ri->precision))
7283 			SPRINTF(p, "/%dbit", ri->precision);
7284 		if (SPECIFIED(ri->channels))
7285 			SPRINTF(p, "/%dch", ri->channels);
7286 		if (SPECIFIED(ri->sample_rate))
7287 			SPRINTF(p, "/%dHz", ri->sample_rate);
7288 		if (plen > 0)
7289 			SPRINTF(buf, ",record.param=%s", p + 1);
7290 
7291 		if (SPECIFIED(ai->mode))
7292 			SPRINTF(buf, ",mode=%d", ai->mode);
7293 		if (SPECIFIED(ai->hiwat))
7294 			SPRINTF(buf, ",hiwat=%d", ai->hiwat);
7295 		if (SPECIFIED(ai->lowat))
7296 			SPRINTF(buf, ",lowat=%d", ai->lowat);
7297 		if (SPECIFIED(ai->play.gain))
7298 			SPRINTF(buf, ",play.gain=%d", ai->play.gain);
7299 		if (SPECIFIED(ai->record.gain))
7300 			SPRINTF(buf, ",record.gain=%d", ai->record.gain);
7301 		if (SPECIFIED_CH(ai->play.balance))
7302 			SPRINTF(buf, ",play.balance=%d", ai->play.balance);
7303 		if (SPECIFIED_CH(ai->record.balance))
7304 			SPRINTF(buf, ",record.balance=%d", ai->record.balance);
7305 		if (SPECIFIED(ai->play.port))
7306 			SPRINTF(buf, ",play.port=%d", ai->play.port);
7307 		if (SPECIFIED(ai->record.port))
7308 			SPRINTF(buf, ",record.port=%d", ai->record.port);
7309 		if (SPECIFIED(ai->monitor_gain))
7310 			SPRINTF(buf, ",monitor_gain=%d", ai->monitor_gain);
7311 		if (SPECIFIED_CH(ai->play.pause))
7312 			SPRINTF(buf, ",play.pause=%d", ai->play.pause);
7313 		if (SPECIFIED_CH(ai->record.pause))
7314 			SPRINTF(buf, ",record.pause=%d", ai->record.pause);
7315 
7316 		if (buflen > 0)
7317 			TRACE(2, "specified %s", buf + 1);
7318 	}
7319 #endif
7320 
7321 	AUDIO_INITINFO(&saved_ai);
7322 	/* XXX shut up gcc */
7323 	memset(&saved_pfmt, 0, sizeof(saved_pfmt));
7324 	memset(&saved_rfmt, 0, sizeof(saved_rfmt));
7325 
7326 	/*
7327 	 * Set default value and save current parameters.
7328 	 * For backward compatibility, use sticky parameters for nonexistent
7329 	 * track.
7330 	 */
7331 	if (ptrack) {
7332 		pfmt = ptrack->usrbuf.fmt;
7333 		saved_pfmt = ptrack->usrbuf.fmt;
7334 		saved_ai.play.pause = ptrack->is_pause;
7335 	} else {
7336 		pfmt = sc->sc_sound_pparams;
7337 	}
7338 	if (rtrack) {
7339 		rfmt = rtrack->usrbuf.fmt;
7340 		saved_rfmt = rtrack->usrbuf.fmt;
7341 		saved_ai.record.pause = rtrack->is_pause;
7342 	} else {
7343 		rfmt = sc->sc_sound_rparams;
7344 	}
7345 	saved_ai.mode = file->mode;
7346 
7347 	/*
7348 	 * Overwrite if specified.
7349 	 */
7350 	mode = file->mode;
7351 	if (SPECIFIED(ai->mode)) {
7352 		/*
7353 		 * Setting ai->mode no longer does anything because it's
7354 		 * prohibited to change playback/recording mode after open
7355 		 * and AUMODE_PLAY_ALL is obsoleted.  However, it still
7356 		 * keeps the state of AUMODE_PLAY_ALL itself for backward
7357 		 * compatibility.
7358 		 * In the internal, only file->mode has the state of
7359 		 * AUMODE_PLAY_ALL flag and track->mode in both track does
7360 		 * not have.
7361 		 */
7362 		if ((file->mode & AUMODE_PLAY)) {
7363 			mode = (file->mode & (AUMODE_PLAY | AUMODE_RECORD))
7364 			    | (ai->mode & AUMODE_PLAY_ALL);
7365 		}
7366 	}
7367 
7368 	pchanges = audio_track_setinfo_check(ptrack, &pfmt, pi);
7369 	if (pchanges == -1) {
7370 #if defined(AUDIO_DEBUG)
7371 		TRACEF(1, file, "check play.params failed: "
7372 		    "%s %ubit %uch %uHz",
7373 		    audio_encoding_name(pi->encoding),
7374 		    pi->precision,
7375 		    pi->channels,
7376 		    pi->sample_rate);
7377 #endif
7378 		return EINVAL;
7379 	}
7380 
7381 	rchanges = audio_track_setinfo_check(rtrack, &rfmt, ri);
7382 	if (rchanges == -1) {
7383 #if defined(AUDIO_DEBUG)
7384 		TRACEF(1, file, "check record.params failed: "
7385 		    "%s %ubit %uch %uHz",
7386 		    audio_encoding_name(ri->encoding),
7387 		    ri->precision,
7388 		    ri->channels,
7389 		    ri->sample_rate);
7390 #endif
7391 		return EINVAL;
7392 	}
7393 
7394 	if (SPECIFIED(ai->mode)) {
7395 		pchanges = 1;
7396 		rchanges = 1;
7397 	}
7398 
7399 	/*
7400 	 * Even when setting either one of playback and recording,
7401 	 * both track must be halted.
7402 	 */
7403 	if (pchanges || rchanges) {
7404 		audio_file_clear(sc, file);
7405 #if defined(AUDIO_DEBUG)
7406 		char nbuf[16];
7407 		char fmtbuf[64];
7408 		if (pchanges) {
7409 			if (ptrack) {
7410 				snprintf(nbuf, sizeof(nbuf), "%d", ptrack->id);
7411 			} else {
7412 				snprintf(nbuf, sizeof(nbuf), "-");
7413 			}
7414 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &pfmt);
7415 			DPRINTF(1, "audio track#%s play mode: %s\n",
7416 			    nbuf, fmtbuf);
7417 		}
7418 		if (rchanges) {
7419 			if (rtrack) {
7420 				snprintf(nbuf, sizeof(nbuf), "%d", rtrack->id);
7421 			} else {
7422 				snprintf(nbuf, sizeof(nbuf), "-");
7423 			}
7424 			audio_format2_tostr(fmtbuf, sizeof(fmtbuf), &rfmt);
7425 			DPRINTF(1, "audio track#%s rec  mode: %s\n",
7426 			    nbuf, fmtbuf);
7427 		}
7428 #endif
7429 	}
7430 
7431 	/* Set mixer parameters */
7432 	mutex_enter(sc->sc_lock);
7433 	error = audio_hw_setinfo(sc, ai, &saved_ai);
7434 	mutex_exit(sc->sc_lock);
7435 	if (error)
7436 		goto abort1;
7437 
7438 	/*
7439 	 * Set to track and update sticky parameters.
7440 	 */
7441 	error = 0;
7442 	file->mode = mode;
7443 
7444 	if (SPECIFIED_CH(pi->pause)) {
7445 		if (ptrack)
7446 			ptrack->is_pause = pi->pause;
7447 		sc->sc_sound_ppause = pi->pause;
7448 	}
7449 	if (pchanges) {
7450 		if (ptrack) {
7451 			audio_track_lock_enter(ptrack);
7452 			error = audio_track_set_format(ptrack, &pfmt);
7453 			audio_track_lock_exit(ptrack);
7454 			if (error) {
7455 				TRACET(1, ptrack, "set play.params failed");
7456 				goto abort2;
7457 			}
7458 		}
7459 		sc->sc_sound_pparams = pfmt;
7460 	}
7461 	/* Change water marks after initializing the buffers. */
7462 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7463 		if (ptrack)
7464 			audio_track_setinfo_water(ptrack, ai);
7465 	}
7466 
7467 	if (SPECIFIED_CH(ri->pause)) {
7468 		if (rtrack)
7469 			rtrack->is_pause = ri->pause;
7470 		sc->sc_sound_rpause = ri->pause;
7471 	}
7472 	if (rchanges) {
7473 		if (rtrack) {
7474 			audio_track_lock_enter(rtrack);
7475 			error = audio_track_set_format(rtrack, &rfmt);
7476 			audio_track_lock_exit(rtrack);
7477 			if (error) {
7478 				TRACET(1, rtrack, "set record.params failed");
7479 				goto abort3;
7480 			}
7481 		}
7482 		sc->sc_sound_rparams = rfmt;
7483 	}
7484 
7485 	return 0;
7486 
7487 	/* Rollback */
7488 abort3:
7489 	if (error != ENOMEM) {
7490 		rtrack->is_pause = saved_ai.record.pause;
7491 		audio_track_lock_enter(rtrack);
7492 		audio_track_set_format(rtrack, &saved_rfmt);
7493 		audio_track_lock_exit(rtrack);
7494 	}
7495 	sc->sc_sound_rpause = saved_ai.record.pause;
7496 	sc->sc_sound_rparams = saved_rfmt;
7497 abort2:
7498 	if (ptrack && error != ENOMEM) {
7499 		ptrack->is_pause = saved_ai.play.pause;
7500 		audio_track_lock_enter(ptrack);
7501 		audio_track_set_format(ptrack, &saved_pfmt);
7502 		audio_track_lock_exit(ptrack);
7503 	}
7504 	sc->sc_sound_ppause = saved_ai.play.pause;
7505 	sc->sc_sound_pparams = saved_pfmt;
7506 	file->mode = saved_ai.mode;
7507 abort1:
7508 	mutex_enter(sc->sc_lock);
7509 	audio_hw_setinfo(sc, &saved_ai, NULL);
7510 	mutex_exit(sc->sc_lock);
7511 
7512 	return error;
7513 }
7514 
7515 /*
7516  * Write SPECIFIED() parameters within info back to fmt.
7517  * Note that track can be NULL here.
7518  * Return value of 1 indicates that fmt is modified.
7519  * Return value of 0 indicates that fmt is not modified.
7520  * Return value of -1 indicates that error EINVAL has occurred.
7521  */
7522 static int
audio_track_setinfo_check(audio_track_t * track,audio_format2_t * fmt,const struct audio_prinfo * info)7523 audio_track_setinfo_check(audio_track_t *track,
7524 	audio_format2_t *fmt, const struct audio_prinfo *info)
7525 {
7526 	const audio_format2_t *hwfmt;
7527 	int changes;
7528 
7529 	changes = 0;
7530 	if (SPECIFIED(info->sample_rate)) {
7531 		if (info->sample_rate < AUDIO_MIN_FREQUENCY)
7532 			return -1;
7533 		if (info->sample_rate > AUDIO_MAX_FREQUENCY)
7534 			return -1;
7535 		fmt->sample_rate = info->sample_rate;
7536 		changes = 1;
7537 	}
7538 	if (SPECIFIED(info->encoding)) {
7539 		fmt->encoding = info->encoding;
7540 		changes = 1;
7541 	}
7542 	if (SPECIFIED(info->precision)) {
7543 		fmt->precision = info->precision;
7544 		/* we don't have API to specify stride */
7545 		fmt->stride = info->precision;
7546 		changes = 1;
7547 	}
7548 	if (SPECIFIED(info->channels)) {
7549 		/*
7550 		 * We can convert between monaural and stereo each other.
7551 		 * We can reduce than the number of channels that the hardware
7552 		 * supports.
7553 		 */
7554 		if (info->channels > 2) {
7555 			if (track) {
7556 				hwfmt = &track->mixer->hwbuf.fmt;
7557 				if (info->channels > hwfmt->channels)
7558 					return -1;
7559 			} else {
7560 				/*
7561 				 * This should never happen.
7562 				 * If track == NULL, channels should be <= 2.
7563 				 */
7564 				return -1;
7565 			}
7566 		}
7567 		fmt->channels = info->channels;
7568 		changes = 1;
7569 	}
7570 
7571 	if (changes) {
7572 		if (audio_check_params(fmt) != 0)
7573 			return -1;
7574 	}
7575 
7576 	return changes;
7577 }
7578 
7579 /*
7580  * Change water marks for playback track if specified.
7581  */
7582 static void
audio_track_setinfo_water(audio_track_t * track,const struct audio_info * ai)7583 audio_track_setinfo_water(audio_track_t *track, const struct audio_info *ai)
7584 {
7585 	u_int blks;
7586 	u_int maxblks;
7587 	u_int blksize;
7588 
7589 	KASSERT(audio_track_is_playback(track));
7590 
7591 	blksize = track->usrbuf_blksize;
7592 	maxblks = track->usrbuf.capacity / blksize;
7593 
7594 	if (SPECIFIED(ai->hiwat)) {
7595 		blks = ai->hiwat;
7596 		if (blks > maxblks)
7597 			blks = maxblks;
7598 		if (blks < 2)
7599 			blks = 2;
7600 		track->usrbuf_usedhigh = blks * blksize;
7601 	}
7602 	if (SPECIFIED(ai->lowat)) {
7603 		blks = ai->lowat;
7604 		if (blks > maxblks - 1)
7605 			blks = maxblks - 1;
7606 		track->usrbuf_usedlow = blks * blksize;
7607 	}
7608 	if (SPECIFIED(ai->hiwat) || SPECIFIED(ai->lowat)) {
7609 		if (track->usrbuf_usedlow > track->usrbuf_usedhigh - blksize) {
7610 			track->usrbuf_usedlow = track->usrbuf_usedhigh -
7611 			    blksize;
7612 		}
7613 	}
7614 }
7615 
7616 /*
7617  * Set hardware part of *newai.
7618  * The parameters handled here are *.port, *.gain, *.balance and monitor_gain.
7619  * If oldai is specified, previous parameters are stored.
7620  * This function itself does not roll back if error occurred.
7621  * Must be called with sc_lock && sc_exlock held.
7622  */
7623 static int
audio_hw_setinfo(struct audio_softc * sc,const struct audio_info * newai,struct audio_info * oldai)7624 audio_hw_setinfo(struct audio_softc *sc, const struct audio_info *newai,
7625 	struct audio_info *oldai)
7626 {
7627 	const struct audio_prinfo *newpi;
7628 	const struct audio_prinfo *newri;
7629 	struct audio_prinfo *oldpi;
7630 	struct audio_prinfo *oldri;
7631 	u_int pgain;
7632 	u_int rgain;
7633 	u_char pbalance;
7634 	u_char rbalance;
7635 	int error;
7636 
7637 	KASSERT(mutex_owned(sc->sc_lock));
7638 	KASSERT(sc->sc_exlock);
7639 
7640 	/* XXX shut up gcc */
7641 	oldpi = NULL;
7642 	oldri = NULL;
7643 
7644 	newpi = &newai->play;
7645 	newri = &newai->record;
7646 	if (oldai) {
7647 		oldpi = &oldai->play;
7648 		oldri = &oldai->record;
7649 	}
7650 	error = 0;
7651 
7652 	/*
7653 	 * It looks like unnecessary to halt HW mixers to set HW mixers.
7654 	 * mixer_ioctl(MIXER_WRITE) also doesn't halt.
7655 	 */
7656 
7657 	if (SPECIFIED(newpi->port)) {
7658 		if (oldai)
7659 			oldpi->port = au_get_port(sc, &sc->sc_outports);
7660 		error = au_set_port(sc, &sc->sc_outports, newpi->port);
7661 		if (error) {
7662 			audio_printf(sc,
7663 			    "setting play.port=%d failed: errno=%d\n",
7664 			    newpi->port, error);
7665 			goto abort;
7666 		}
7667 	}
7668 	if (SPECIFIED(newri->port)) {
7669 		if (oldai)
7670 			oldri->port = au_get_port(sc, &sc->sc_inports);
7671 		error = au_set_port(sc, &sc->sc_inports, newri->port);
7672 		if (error) {
7673 			audio_printf(sc,
7674 			    "setting record.port=%d failed: errno=%d\n",
7675 			    newri->port, error);
7676 			goto abort;
7677 		}
7678 	}
7679 
7680 	/* play.{gain,balance} */
7681 	if (SPECIFIED(newpi->gain) || SPECIFIED_CH(newpi->balance)) {
7682 		au_get_gain(sc, &sc->sc_outports, &pgain, &pbalance);
7683 		if (oldai) {
7684 			oldpi->gain = pgain;
7685 			oldpi->balance = pbalance;
7686 		}
7687 
7688 		if (SPECIFIED(newpi->gain))
7689 			pgain = newpi->gain;
7690 		if (SPECIFIED_CH(newpi->balance))
7691 			pbalance = newpi->balance;
7692 		error = au_set_gain(sc, &sc->sc_outports, pgain, pbalance);
7693 		if (error) {
7694 			audio_printf(sc,
7695 			    "setting play.gain=%d/balance=%d failed: "
7696 			    "errno=%d\n",
7697 			    pgain, pbalance, error);
7698 			goto abort;
7699 		}
7700 	}
7701 
7702 	/* record.{gain,balance} */
7703 	if (SPECIFIED(newri->gain) || SPECIFIED_CH(newri->balance)) {
7704 		au_get_gain(sc, &sc->sc_inports, &rgain, &rbalance);
7705 		if (oldai) {
7706 			oldri->gain = rgain;
7707 			oldri->balance = rbalance;
7708 		}
7709 
7710 		if (SPECIFIED(newri->gain))
7711 			rgain = newri->gain;
7712 		if (SPECIFIED_CH(newri->balance))
7713 			rbalance = newri->balance;
7714 		error = au_set_gain(sc, &sc->sc_inports, rgain, rbalance);
7715 		if (error) {
7716 			audio_printf(sc,
7717 			    "setting record.gain=%d/balance=%d failed: "
7718 			    "errno=%d\n",
7719 			    rgain, rbalance, error);
7720 			goto abort;
7721 		}
7722 	}
7723 
7724 	if (SPECIFIED(newai->monitor_gain) && sc->sc_monitor_port != -1) {
7725 		if (oldai)
7726 			oldai->monitor_gain = au_get_monitor_gain(sc);
7727 		error = au_set_monitor_gain(sc, newai->monitor_gain);
7728 		if (error) {
7729 			audio_printf(sc,
7730 			    "setting monitor_gain=%d failed: errno=%d\n",
7731 			    newai->monitor_gain, error);
7732 			goto abort;
7733 		}
7734 	}
7735 
7736 	/* XXX TODO */
7737 	/* sc->sc_ai = *ai; */
7738 
7739 	error = 0;
7740 abort:
7741 	return error;
7742 }
7743 
7744 /*
7745  * Setup the hardware with mixer format phwfmt, rhwfmt.
7746  * The arguments have following restrictions:
7747  * - setmode is the direction you want to set, AUMODE_PLAY or AUMODE_RECORD,
7748  *   or both.
7749  * - phwfmt and rhwfmt must not be NULL regardless of setmode.
7750  * - On non-independent devices, phwfmt and rhwfmt must have the same
7751  *   parameters.
7752  * - pfil and rfil must be zero-filled.
7753  * If successful,
7754  * - pfil, rfil will be filled with filter information specified by the
7755  *   hardware driver if necessary.
7756  * and then returns 0.  Otherwise returns errno.
7757  * Must be called without sc_lock held.
7758  */
7759 static int
audio_hw_set_format(struct audio_softc * sc,int setmode,const audio_format2_t * phwfmt,const audio_format2_t * rhwfmt,audio_filter_reg_t * pfil,audio_filter_reg_t * rfil)7760 audio_hw_set_format(struct audio_softc *sc, int setmode,
7761 	const audio_format2_t *phwfmt, const audio_format2_t *rhwfmt,
7762 	audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
7763 {
7764 	audio_params_t pp, rp;
7765 	int error;
7766 
7767 	KASSERT(phwfmt != NULL);
7768 	KASSERT(rhwfmt != NULL);
7769 
7770 	pp = format2_to_params(phwfmt);
7771 	rp = format2_to_params(rhwfmt);
7772 
7773 	mutex_enter(sc->sc_lock);
7774 	error = sc->hw_if->set_format(sc->hw_hdl, setmode,
7775 	    &pp, &rp, pfil, rfil);
7776 	if (error) {
7777 		mutex_exit(sc->sc_lock);
7778 		audio_printf(sc, "set_format failed: errno=%d\n", error);
7779 		return error;
7780 	}
7781 
7782 	if (sc->hw_if->commit_settings) {
7783 		error = sc->hw_if->commit_settings(sc->hw_hdl);
7784 		if (error) {
7785 			mutex_exit(sc->sc_lock);
7786 			audio_printf(sc,
7787 			    "commit_settings failed: errno=%d\n", error);
7788 			return error;
7789 		}
7790 	}
7791 	mutex_exit(sc->sc_lock);
7792 
7793 	return 0;
7794 }
7795 
7796 /*
7797  * Fill audio_info structure.  If need_mixerinfo is true, it will also
7798  * fill the hardware mixer information.
7799  * Must be called with sc_exlock held and without sc_lock held.
7800  */
7801 static int
audiogetinfo(struct audio_softc * sc,struct audio_info * ai,int need_mixerinfo,audio_file_t * file)7802 audiogetinfo(struct audio_softc *sc, struct audio_info *ai, int need_mixerinfo,
7803 	audio_file_t *file)
7804 {
7805 	struct audio_prinfo *ri, *pi;
7806 	audio_track_t *track;
7807 	audio_track_t *ptrack;
7808 	audio_track_t *rtrack;
7809 	int gain;
7810 
7811 	KASSERT(sc->sc_exlock);
7812 
7813 	ri = &ai->record;
7814 	pi = &ai->play;
7815 	ptrack = file->ptrack;
7816 	rtrack = file->rtrack;
7817 
7818 	memset(ai, 0, sizeof(*ai));
7819 
7820 	if (ptrack) {
7821 		pi->sample_rate = ptrack->usrbuf.fmt.sample_rate;
7822 		pi->channels    = ptrack->usrbuf.fmt.channels;
7823 		pi->precision   = ptrack->usrbuf.fmt.precision;
7824 		pi->encoding    = ptrack->usrbuf.fmt.encoding;
7825 		pi->pause       = ptrack->is_pause;
7826 	} else {
7827 		/* Use sticky parameters if the track is not available. */
7828 		pi->sample_rate = sc->sc_sound_pparams.sample_rate;
7829 		pi->channels    = sc->sc_sound_pparams.channels;
7830 		pi->precision   = sc->sc_sound_pparams.precision;
7831 		pi->encoding    = sc->sc_sound_pparams.encoding;
7832 		pi->pause       = sc->sc_sound_ppause;
7833 	}
7834 	if (rtrack) {
7835 		ri->sample_rate = rtrack->usrbuf.fmt.sample_rate;
7836 		ri->channels    = rtrack->usrbuf.fmt.channels;
7837 		ri->precision   = rtrack->usrbuf.fmt.precision;
7838 		ri->encoding    = rtrack->usrbuf.fmt.encoding;
7839 		ri->pause       = rtrack->is_pause;
7840 	} else {
7841 		/* Use sticky parameters if the track is not available. */
7842 		ri->sample_rate = sc->sc_sound_rparams.sample_rate;
7843 		ri->channels    = sc->sc_sound_rparams.channels;
7844 		ri->precision   = sc->sc_sound_rparams.precision;
7845 		ri->encoding    = sc->sc_sound_rparams.encoding;
7846 		ri->pause       = sc->sc_sound_rpause;
7847 	}
7848 
7849 	if (ptrack) {
7850 		pi->seek = ptrack->usrbuf.used;
7851 		pi->samples = ptrack->stamp * ptrack->usrbuf_blksize;
7852 		pi->eof = ptrack->eofcounter;
7853 		pi->error = (ptrack->dropframes != 0) ? 1 : 0;
7854 		pi->open = 1;
7855 		pi->buffer_size = ptrack->usrbuf.capacity;
7856 	}
7857 	pi->waiting = 0;		/* open never hangs */
7858 	pi->active = sc->sc_pbusy;
7859 
7860 	if (rtrack) {
7861 		ri->seek = audio_track_readablebytes(rtrack);
7862 		ri->samples = rtrack->stamp * rtrack->usrbuf_blksize;
7863 		ri->eof = 0;
7864 		ri->error = (rtrack->dropframes != 0) ? 1 : 0;
7865 		ri->open = 1;
7866 		ri->buffer_size = audio_track_inputblk_as_usrbyte(rtrack,
7867 		    rtrack->input->capacity);
7868 	}
7869 	ri->waiting = 0;		/* open never hangs */
7870 	ri->active = sc->sc_rbusy;
7871 
7872 	/*
7873 	 * XXX There may be different number of channels between playback
7874 	 *     and recording, so that blocksize also may be different.
7875 	 *     But struct audio_info has an united blocksize...
7876 	 *     Here, I use play info precedencely if ptrack is available,
7877 	 *     otherwise record info.
7878 	 *
7879 	 * XXX hiwat/lowat is a playback-only parameter.  What should I
7880 	 *     return for a record-only descriptor?
7881 	 */
7882 	track = ptrack ? ptrack : rtrack;
7883 	if (track) {
7884 		ai->blocksize = track->usrbuf_blksize;
7885 		ai->hiwat = track->usrbuf_usedhigh / track->usrbuf_blksize;
7886 		ai->lowat = track->usrbuf_usedlow / track->usrbuf_blksize;
7887 	}
7888 	ai->mode = file->mode;
7889 
7890 	/*
7891 	 * For backward compatibility, we have to pad these five fields
7892 	 * a fake non-zero value even if there are no tracks.
7893 	 */
7894 	if (ptrack == NULL)
7895 		pi->buffer_size = 65536;
7896 	if (rtrack == NULL)
7897 		ri->buffer_size = 65536;
7898 	if (ptrack == NULL && rtrack == NULL) {
7899 		ai->blocksize = 2048;
7900 		ai->hiwat = ai->play.buffer_size / ai->blocksize;
7901 		ai->lowat = ai->hiwat * 3 / 4;
7902 	}
7903 
7904 	if (need_mixerinfo) {
7905 		mutex_enter(sc->sc_lock);
7906 
7907 		pi->port = au_get_port(sc, &sc->sc_outports);
7908 		ri->port = au_get_port(sc, &sc->sc_inports);
7909 
7910 		pi->avail_ports = sc->sc_outports.allports;
7911 		ri->avail_ports = sc->sc_inports.allports;
7912 
7913 		au_get_gain(sc, &sc->sc_outports, &pi->gain, &pi->balance);
7914 		au_get_gain(sc, &sc->sc_inports, &ri->gain, &ri->balance);
7915 
7916 		if (sc->sc_monitor_port != -1) {
7917 			gain = au_get_monitor_gain(sc);
7918 			if (gain != -1)
7919 				ai->monitor_gain = gain;
7920 		}
7921 		mutex_exit(sc->sc_lock);
7922 	}
7923 
7924 	return 0;
7925 }
7926 
7927 /*
7928  * Return true if playback is configured.
7929  * This function can be used after audioattach.
7930  */
7931 static bool
audio_can_playback(struct audio_softc * sc)7932 audio_can_playback(struct audio_softc *sc)
7933 {
7934 
7935 	return (sc->sc_pmixer != NULL);
7936 }
7937 
7938 /*
7939  * Return true if recording is configured.
7940  * This function can be used after audioattach.
7941  */
7942 static bool
audio_can_capture(struct audio_softc * sc)7943 audio_can_capture(struct audio_softc *sc)
7944 {
7945 
7946 	return (sc->sc_rmixer != NULL);
7947 }
7948 
7949 /*
7950  * Get the afp->index'th item from the valid one of format[].
7951  * If found, stores it to afp->fmt and returns 0.  Otherwise return EINVAL.
7952  *
7953  * This is common routines for query_format.
7954  * If your hardware driver has struct audio_format[], the simplest case
7955  * you can write your query_format interface as follows:
7956  *
7957  * struct audio_format foo_format[] = { ... };
7958  *
7959  * int
7960  * foo_query_format(void *hdl, audio_format_query_t *afp)
7961  * {
7962  *   return audio_query_format(foo_format, __arraycount(foo_format), afp);
7963  * }
7964  */
7965 int
audio_query_format(const struct audio_format * format,int nformats,audio_format_query_t * afp)7966 audio_query_format(const struct audio_format *format, int nformats,
7967 	audio_format_query_t *afp)
7968 {
7969 	const struct audio_format *f;
7970 	int idx;
7971 	int i;
7972 
7973 	idx = 0;
7974 	for (i = 0; i < nformats; i++) {
7975 		f = &format[i];
7976 		if (!AUFMT_IS_VALID(f))
7977 			continue;
7978 		if (afp->index == idx) {
7979 			afp->fmt = *f;
7980 			return 0;
7981 		}
7982 		idx++;
7983 	}
7984 	return EINVAL;
7985 }
7986 
7987 /*
7988  * This function is provided for the hardware driver's set_format() to
7989  * find index matches with 'param' from array of audio_format_t 'formats'.
7990  * 'mode' is either of AUMODE_PLAY or AUMODE_RECORD.
7991  * It returns the matched index and never fails.  Because param passed to
7992  * set_format() is selected from query_format().
7993  * This function will be an alternative to auconv_set_converter() to
7994  * find index.
7995  */
7996 int
audio_indexof_format(const struct audio_format * formats,int nformats,int mode,const audio_params_t * param)7997 audio_indexof_format(const struct audio_format *formats, int nformats,
7998 	int mode, const audio_params_t *param)
7999 {
8000 	const struct audio_format *f;
8001 	int index;
8002 	int j;
8003 
8004 	for (index = 0; index < nformats; index++) {
8005 		f = &formats[index];
8006 
8007 		if (!AUFMT_IS_VALID(f))
8008 			continue;
8009 		if ((f->mode & mode) == 0)
8010 			continue;
8011 		if (f->encoding != param->encoding)
8012 			continue;
8013 		if (f->validbits != param->precision)
8014 			continue;
8015 		if (f->channels != param->channels)
8016 			continue;
8017 
8018 		if (f->frequency_type == 0) {
8019 			if (param->sample_rate < f->frequency[0] ||
8020 			    param->sample_rate > f->frequency[1])
8021 				continue;
8022 		} else {
8023 			for (j = 0; j < f->frequency_type; j++) {
8024 				if (param->sample_rate == f->frequency[j])
8025 					break;
8026 			}
8027 			if (j == f->frequency_type)
8028 				continue;
8029 		}
8030 
8031 		/* Then, matched */
8032 		return index;
8033 	}
8034 
8035 	/* Not matched.  This should not be happened. */
8036 	panic("%s: cannot find matched format\n", __func__);
8037 }
8038 
8039 /*
8040  * Get or set hardware blocksize in msec.
8041  * XXX It's for debug.
8042  */
8043 static int
audio_sysctl_blk_ms(SYSCTLFN_ARGS)8044 audio_sysctl_blk_ms(SYSCTLFN_ARGS)
8045 {
8046 	struct sysctlnode node;
8047 	struct audio_softc *sc;
8048 	audio_format2_t phwfmt;
8049 	audio_format2_t rhwfmt;
8050 	audio_filter_reg_t pfil;
8051 	audio_filter_reg_t rfil;
8052 	int t;
8053 	int old_blk_ms;
8054 	int mode;
8055 	int error;
8056 
8057 	node = *rnode;
8058 	sc = node.sysctl_data;
8059 
8060 	error = audio_exlock_enter(sc);
8061 	if (error)
8062 		return error;
8063 
8064 	old_blk_ms = sc->sc_blk_ms;
8065 	t = old_blk_ms;
8066 	node.sysctl_data = &t;
8067 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
8068 	if (error || newp == NULL)
8069 		goto abort;
8070 
8071 	if (t < 0) {
8072 		error = EINVAL;
8073 		goto abort;
8074 	}
8075 
8076 	if (sc->sc_popens + sc->sc_ropens > 0) {
8077 		error = EBUSY;
8078 		goto abort;
8079 	}
8080 	sc->sc_blk_ms = t;
8081 	mode = 0;
8082 	if (sc->sc_pmixer) {
8083 		mode |= AUMODE_PLAY;
8084 		phwfmt = sc->sc_pmixer->hwbuf.fmt;
8085 	}
8086 	if (sc->sc_rmixer) {
8087 		mode |= AUMODE_RECORD;
8088 		rhwfmt = sc->sc_rmixer->hwbuf.fmt;
8089 	}
8090 
8091 	/* re-init hardware */
8092 	memset(&pfil, 0, sizeof(pfil));
8093 	memset(&rfil, 0, sizeof(rfil));
8094 	error = audio_hw_set_format(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8095 	if (error) {
8096 		goto abort;
8097 	}
8098 
8099 	/* re-init track mixer */
8100 	error = audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8101 	if (error) {
8102 		/* Rollback */
8103 		sc->sc_blk_ms = old_blk_ms;
8104 		audio_mixers_init(sc, mode, &phwfmt, &rhwfmt, &pfil, &rfil);
8105 		goto abort;
8106 	}
8107 	error = 0;
8108 abort:
8109 	audio_exlock_exit(sc);
8110 	return error;
8111 }
8112 
8113 /*
8114  * Get or set multiuser mode.
8115  */
8116 static int
audio_sysctl_multiuser(SYSCTLFN_ARGS)8117 audio_sysctl_multiuser(SYSCTLFN_ARGS)
8118 {
8119 	struct sysctlnode node;
8120 	struct audio_softc *sc;
8121 	bool t;
8122 	int error;
8123 
8124 	node = *rnode;
8125 	sc = node.sysctl_data;
8126 
8127 	error = audio_exlock_enter(sc);
8128 	if (error)
8129 		return error;
8130 
8131 	t = sc->sc_multiuser;
8132 	node.sysctl_data = &t;
8133 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
8134 	if (error || newp == NULL)
8135 		goto abort;
8136 
8137 	sc->sc_multiuser = t;
8138 	error = 0;
8139 abort:
8140 	audio_exlock_exit(sc);
8141 	return error;
8142 }
8143 
8144 #if defined(AUDIO_DEBUG)
8145 /*
8146  * Get or set debug verbose level. (0..4)
8147  * XXX It's for debug.
8148  * XXX It is not separated per device.
8149  */
8150 static int
audio_sysctl_debug(SYSCTLFN_ARGS)8151 audio_sysctl_debug(SYSCTLFN_ARGS)
8152 {
8153 	struct sysctlnode node;
8154 	int t;
8155 	int error;
8156 
8157 	node = *rnode;
8158 	t = audiodebug;
8159 	node.sysctl_data = &t;
8160 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
8161 	if (error || newp == NULL)
8162 		return error;
8163 
8164 	if (t < 0 || t > 4)
8165 		return EINVAL;
8166 	audiodebug = t;
8167 	printf("audio: audiodebug = %d\n", audiodebug);
8168 	return 0;
8169 }
8170 #endif /* AUDIO_DEBUG */
8171 
8172 #ifdef AUDIO_PM_IDLE
8173 static void
audio_idle(void * arg)8174 audio_idle(void *arg)
8175 {
8176 	device_t dv = arg;
8177 	struct audio_softc *sc = device_private(dv);
8178 
8179 #ifdef PNP_DEBUG
8180 	extern int pnp_debug_idle;
8181 	if (pnp_debug_idle)
8182 		printf("%s: idle handler called\n", device_xname(dv));
8183 #endif
8184 
8185 	sc->sc_idle = true;
8186 
8187 	/* XXX joerg Make pmf_device_suspend handle children? */
8188 	if (!pmf_device_suspend(dv, PMF_Q_SELF))
8189 		return;
8190 
8191 	if (!pmf_device_suspend(sc->hw_dev, PMF_Q_SELF))
8192 		pmf_device_resume(dv, PMF_Q_SELF);
8193 }
8194 
8195 static void
audio_activity(device_t dv,devactive_t type)8196 audio_activity(device_t dv, devactive_t type)
8197 {
8198 	struct audio_softc *sc = device_private(dv);
8199 
8200 	if (type != DVA_SYSTEM)
8201 		return;
8202 
8203 	callout_schedule(&sc->sc_idle_counter, audio_idle_timeout * hz);
8204 
8205 	sc->sc_idle = false;
8206 	if (!device_is_active(dv)) {
8207 		/* XXX joerg How to deal with a failing resume... */
8208 		pmf_device_resume(sc->hw_dev, PMF_Q_SELF);
8209 		pmf_device_resume(dv, PMF_Q_SELF);
8210 	}
8211 }
8212 #endif
8213 
8214 static bool
audio_suspend(device_t dv,const pmf_qual_t * qual)8215 audio_suspend(device_t dv, const pmf_qual_t *qual)
8216 {
8217 	struct audio_softc *sc = device_private(dv);
8218 	int error;
8219 
8220 	error = audio_exlock_mutex_enter(sc);
8221 	if (error)
8222 		return error;
8223 	sc->sc_suspending = true;
8224 	audio_mixer_capture(sc);
8225 
8226 	if (sc->sc_pbusy) {
8227 		audio_pmixer_halt(sc);
8228 		/* Reuse this as need-to-restart flag while suspending */
8229 		sc->sc_pbusy = true;
8230 	}
8231 	if (sc->sc_rbusy) {
8232 		audio_rmixer_halt(sc);
8233 		/* Reuse this as need-to-restart flag while suspending */
8234 		sc->sc_rbusy = true;
8235 	}
8236 
8237 #ifdef AUDIO_PM_IDLE
8238 	callout_halt(&sc->sc_idle_counter, sc->sc_lock);
8239 #endif
8240 	audio_exlock_mutex_exit(sc);
8241 
8242 	return true;
8243 }
8244 
8245 static bool
audio_resume(device_t dv,const pmf_qual_t * qual)8246 audio_resume(device_t dv, const pmf_qual_t *qual)
8247 {
8248 	struct audio_softc *sc = device_private(dv);
8249 	struct audio_info ai;
8250 	int error;
8251 
8252 	error = audio_exlock_mutex_enter(sc);
8253 	if (error)
8254 		return error;
8255 
8256 	sc->sc_suspending = false;
8257 	audio_mixer_restore(sc);
8258 	/* XXX ? */
8259 	AUDIO_INITINFO(&ai);
8260 	audio_hw_setinfo(sc, &ai, NULL);
8261 
8262 	/*
8263 	 * During from suspend to resume here, sc_[pr]busy is used as
8264 	 * need-to-restart flag temporarily.  After this point,
8265 	 * sc_[pr]busy is returned to its original usage (busy flag).
8266 	 * And note that sc_[pr]busy must be false to call [pr]mixer_start().
8267 	 */
8268 	if (sc->sc_pbusy) {
8269 		/* pmixer_start() requires pbusy is false */
8270 		sc->sc_pbusy = false;
8271 		audio_pmixer_start(sc, true);
8272 	}
8273 	if (sc->sc_rbusy) {
8274 		/* rmixer_start() requires rbusy is false */
8275 		sc->sc_rbusy = false;
8276 		audio_rmixer_start(sc);
8277 	}
8278 
8279 	audio_exlock_mutex_exit(sc);
8280 
8281 	return true;
8282 }
8283 
8284 #if defined(AUDIO_DEBUG)
8285 static void
audio_format2_tostr(char * buf,size_t bufsize,const audio_format2_t * fmt)8286 audio_format2_tostr(char *buf, size_t bufsize, const audio_format2_t *fmt)
8287 {
8288 	int n;
8289 
8290 	n = 0;
8291 	n += snprintf(buf + n, bufsize - n, "%s",
8292 	    audio_encoding_name(fmt->encoding));
8293 	if (fmt->precision == fmt->stride) {
8294 		n += snprintf(buf + n, bufsize - n, " %dbit", fmt->precision);
8295 	} else {
8296 		n += snprintf(buf + n, bufsize - n, " %d/%dbit",
8297 			fmt->precision, fmt->stride);
8298 	}
8299 
8300 	snprintf(buf + n, bufsize - n, " %uch %uHz",
8301 	    fmt->channels, fmt->sample_rate);
8302 }
8303 #endif
8304 
8305 #if defined(AUDIO_DEBUG)
8306 static void
audio_print_format2(const char * s,const audio_format2_t * fmt)8307 audio_print_format2(const char *s, const audio_format2_t *fmt)
8308 {
8309 	char fmtstr[64];
8310 
8311 	audio_format2_tostr(fmtstr, sizeof(fmtstr), fmt);
8312 	printf("%s %s\n", s, fmtstr);
8313 }
8314 #endif
8315 
8316 #ifdef DIAGNOSTIC
8317 void
audio_diagnostic_format2(const char * where,const audio_format2_t * fmt)8318 audio_diagnostic_format2(const char *where, const audio_format2_t *fmt)
8319 {
8320 
8321 	KASSERTMSG(fmt, "called from %s", where);
8322 
8323 	/* XXX MSM6258 vs(4) only has 4bit stride format. */
8324 	if (fmt->encoding == AUDIO_ENCODING_ADPCM) {
8325 		KASSERTMSG(fmt->stride == 4 || fmt->stride == 8,
8326 		    "called from %s: fmt->stride=%d", where, fmt->stride);
8327 	} else {
8328 		KASSERTMSG(fmt->stride % NBBY == 0,
8329 		    "called from %s: fmt->stride=%d", where, fmt->stride);
8330 	}
8331 	KASSERTMSG(fmt->precision <= fmt->stride,
8332 	    "called from %s: fmt->precision=%d fmt->stride=%d",
8333 	    where, fmt->precision, fmt->stride);
8334 	KASSERTMSG(1 <= fmt->channels && fmt->channels <= AUDIO_MAX_CHANNELS,
8335 	    "called from %s: fmt->channels=%d", where, fmt->channels);
8336 
8337 	/* XXX No check for encodings? */
8338 }
8339 
8340 void
audio_diagnostic_filter_arg(const char * where,const audio_filter_arg_t * arg)8341 audio_diagnostic_filter_arg(const char *where, const audio_filter_arg_t *arg)
8342 {
8343 
8344 	KASSERT(arg != NULL);
8345 	KASSERT(arg->src != NULL);
8346 	KASSERT(arg->dst != NULL);
8347 	audio_diagnostic_format2(where, arg->srcfmt);
8348 	audio_diagnostic_format2(where, arg->dstfmt);
8349 	KASSERT(arg->count > 0);
8350 }
8351 
8352 void
audio_diagnostic_ring(const char * where,const audio_ring_t * ring)8353 audio_diagnostic_ring(const char *where, const audio_ring_t *ring)
8354 {
8355 
8356 	KASSERTMSG(ring, "called from %s", where);
8357 	audio_diagnostic_format2(where, &ring->fmt);
8358 	KASSERTMSG(0 <= ring->capacity && ring->capacity < INT_MAX / 2,
8359 	    "called from %s: ring->capacity=%d", where, ring->capacity);
8360 	KASSERTMSG(0 <= ring->used && ring->used <= ring->capacity,
8361 	    "called from %s: ring->used=%d ring->capacity=%d",
8362 	    where, ring->used, ring->capacity);
8363 	if (ring->capacity == 0) {
8364 		KASSERTMSG(ring->mem == NULL,
8365 		    "called from %s: capacity == 0 but mem != NULL", where);
8366 	} else {
8367 		KASSERTMSG(ring->mem != NULL,
8368 		    "called from %s: capacity != 0 but mem == NULL", where);
8369 		KASSERTMSG(0 <= ring->head && ring->head < ring->capacity,
8370 		    "called from %s: ring->head=%d ring->capacity=%d",
8371 		    where, ring->head, ring->capacity);
8372 	}
8373 }
8374 #endif /* DIAGNOSTIC */
8375 
8376 
8377 /*
8378  * Mixer driver
8379  */
8380 
8381 /*
8382  * Must be called without sc_lock held.
8383  */
8384 int
mixer_open(dev_t dev,struct audio_softc * sc,int flags,int ifmt,struct lwp * l)8385 mixer_open(dev_t dev, struct audio_softc *sc, int flags, int ifmt,
8386 	struct lwp *l)
8387 {
8388 	struct file *fp;
8389 	audio_file_t *af;
8390 	int error, fd;
8391 
8392 	TRACE(1, "flags=0x%x", flags);
8393 
8394 	error = fd_allocfile(&fp, &fd);
8395 	if (error)
8396 		return error;
8397 
8398 	af = kmem_zalloc(sizeof(*af), KM_SLEEP);
8399 	af->sc = sc;
8400 	af->dev = dev;
8401 
8402 	mutex_enter(sc->sc_lock);
8403 	if (sc->sc_dying) {
8404 		mutex_exit(sc->sc_lock);
8405 		kmem_free(af, sizeof(*af));
8406 		fd_abort(curproc, fp, fd);
8407 		return ENXIO;
8408 	}
8409 	mutex_enter(sc->sc_intr_lock);
8410 	SLIST_INSERT_HEAD(&sc->sc_files, af, entry);
8411 	mutex_exit(sc->sc_intr_lock);
8412 	mutex_exit(sc->sc_lock);
8413 
8414 	error = fd_clone(fp, fd, flags, &audio_fileops, af);
8415 	KASSERT(error == EMOVEFD);
8416 
8417 	return error;
8418 }
8419 
8420 /*
8421  * Add a process to those to be signalled on mixer activity.
8422  * If the process has already been added, do nothing.
8423  * Must be called with sc_exlock held and without sc_lock held.
8424  */
8425 static void
mixer_async_add(struct audio_softc * sc,pid_t pid)8426 mixer_async_add(struct audio_softc *sc, pid_t pid)
8427 {
8428 	int i;
8429 
8430 	KASSERT(sc->sc_exlock);
8431 
8432 	/* If already exists, returns without doing anything. */
8433 	for (i = 0; i < sc->sc_am_used; i++) {
8434 		if (sc->sc_am[i] == pid)
8435 			return;
8436 	}
8437 
8438 	/* Extend array if necessary. */
8439 	if (sc->sc_am_used >= sc->sc_am_capacity) {
8440 		sc->sc_am_capacity += AM_CAPACITY;
8441 		sc->sc_am = kern_realloc(sc->sc_am,
8442 		    sc->sc_am_capacity * sizeof(pid_t), M_WAITOK);
8443 		TRACE(2, "realloc am_capacity=%d", sc->sc_am_capacity);
8444 	}
8445 
8446 	TRACE(2, "am[%d]=%d", sc->sc_am_used, (int)pid);
8447 	sc->sc_am[sc->sc_am_used++] = pid;
8448 }
8449 
8450 /*
8451  * Remove a process from those to be signalled on mixer activity.
8452  * If the process has not been added, do nothing.
8453  * Must be called with sc_exlock held and without sc_lock held.
8454  */
8455 static void
mixer_async_remove(struct audio_softc * sc,pid_t pid)8456 mixer_async_remove(struct audio_softc *sc, pid_t pid)
8457 {
8458 	int i;
8459 
8460 	KASSERT(sc->sc_exlock);
8461 
8462 	for (i = 0; i < sc->sc_am_used; i++) {
8463 		if (sc->sc_am[i] == pid) {
8464 			sc->sc_am[i] = sc->sc_am[--sc->sc_am_used];
8465 			TRACE(2, "am[%d](%d) removed, used=%d",
8466 			    i, (int)pid, sc->sc_am_used);
8467 
8468 			/* Empty array if no longer necessary. */
8469 			if (sc->sc_am_used == 0) {
8470 				kern_free(sc->sc_am);
8471 				sc->sc_am = NULL;
8472 				sc->sc_am_capacity = 0;
8473 				TRACE(2, "released");
8474 			}
8475 			return;
8476 		}
8477 	}
8478 }
8479 
8480 /*
8481  * Signal all processes waiting for the mixer.
8482  * Must be called with sc_exlock held.
8483  */
8484 static void
mixer_signal(struct audio_softc * sc)8485 mixer_signal(struct audio_softc *sc)
8486 {
8487 	proc_t *p;
8488 	int i;
8489 
8490 	KASSERT(sc->sc_exlock);
8491 
8492 	for (i = 0; i < sc->sc_am_used; i++) {
8493 		mutex_enter(&proc_lock);
8494 		p = proc_find(sc->sc_am[i]);
8495 		if (p)
8496 			psignal(p, SIGIO);
8497 		mutex_exit(&proc_lock);
8498 	}
8499 }
8500 
8501 /*
8502  * Close a mixer device
8503  */
8504 int
mixer_close(struct audio_softc * sc,audio_file_t * file)8505 mixer_close(struct audio_softc *sc, audio_file_t *file)
8506 {
8507 	int error;
8508 
8509 	error = audio_exlock_enter(sc);
8510 	if (error)
8511 		return error;
8512 	TRACE(1, "called");
8513 	mixer_async_remove(sc, curproc->p_pid);
8514 	audio_exlock_exit(sc);
8515 
8516 	return 0;
8517 }
8518 
8519 /*
8520  * Must be called without sc_lock nor sc_exlock held.
8521  */
8522 int
mixer_ioctl(struct audio_softc * sc,u_long cmd,void * addr,int flag,struct lwp * l)8523 mixer_ioctl(struct audio_softc *sc, u_long cmd, void *addr, int flag,
8524 	struct lwp *l)
8525 {
8526 	mixer_devinfo_t *mi;
8527 	mixer_ctrl_t *mc;
8528 	int val;
8529 	int error;
8530 
8531 #if defined(AUDIO_DEBUG)
8532 	char pre[64];
8533 	snprintf(pre, sizeof(pre), "pid=%d.%d",
8534 	    (int)curproc->p_pid, (int)l->l_lid);
8535 #endif
8536 	error = EINVAL;
8537 
8538 	/* we can return cached values if we are sleeping */
8539 	if (cmd != AUDIO_MIXER_READ) {
8540 		mutex_enter(sc->sc_lock);
8541 		device_active(sc->sc_dev, DVA_SYSTEM);
8542 		mutex_exit(sc->sc_lock);
8543 	}
8544 
8545 	switch (cmd) {
8546 	case FIOASYNC:
8547 		val = *(int *)addr;
8548 		TRACE(2, "%s FIOASYNC %s", pre, val ? "on" : "off");
8549 		error = audio_exlock_enter(sc);
8550 		if (error)
8551 			break;
8552 		if (val) {
8553 			mixer_async_add(sc, curproc->p_pid);
8554 		} else {
8555 			mixer_async_remove(sc, curproc->p_pid);
8556 		}
8557 		audio_exlock_exit(sc);
8558 		break;
8559 
8560 	case AUDIO_GETDEV:
8561 		TRACE(2, "%s AUDIO_GETDEV", pre);
8562 		error = sc->hw_if->getdev(sc->hw_hdl, (audio_device_t *)addr);
8563 		break;
8564 
8565 	case AUDIO_MIXER_DEVINFO:
8566 		TRACE(2, "%s AUDIO_MIXER_DEVINFO", pre);
8567 		mi = (mixer_devinfo_t *)addr;
8568 
8569 		mi->un.v.delta = 0; /* default */
8570 		mutex_enter(sc->sc_lock);
8571 		error = audio_query_devinfo(sc, mi);
8572 		mutex_exit(sc->sc_lock);
8573 		break;
8574 
8575 	case AUDIO_MIXER_READ:
8576 		TRACE(2, "%s AUDIO_MIXER_READ", pre);
8577 		mc = (mixer_ctrl_t *)addr;
8578 
8579 		error = audio_exlock_mutex_enter(sc);
8580 		if (error)
8581 			break;
8582 		if (device_is_active(sc->hw_dev))
8583 			error = audio_get_port(sc, mc);
8584 		else if (mc->dev < 0 || mc->dev >= sc->sc_nmixer_states)
8585 			error = ENXIO;
8586 		else {
8587 			int dev = mc->dev;
8588 			memcpy(mc, &sc->sc_mixer_state[dev],
8589 			    sizeof(mixer_ctrl_t));
8590 			error = 0;
8591 		}
8592 		audio_exlock_mutex_exit(sc);
8593 		break;
8594 
8595 	case AUDIO_MIXER_WRITE:
8596 		TRACE(2, "%s AUDIO_MIXER_WRITE", pre);
8597 		error = audio_exlock_mutex_enter(sc);
8598 		if (error)
8599 			break;
8600 		error = audio_set_port(sc, (mixer_ctrl_t *)addr);
8601 		if (error) {
8602 			audio_exlock_mutex_exit(sc);
8603 			break;
8604 		}
8605 
8606 		if (sc->hw_if->commit_settings) {
8607 			error = sc->hw_if->commit_settings(sc->hw_hdl);
8608 			if (error) {
8609 				audio_exlock_mutex_exit(sc);
8610 				break;
8611 			}
8612 		}
8613 		mutex_exit(sc->sc_lock);
8614 		mixer_signal(sc);
8615 		audio_exlock_exit(sc);
8616 		break;
8617 
8618 	default:
8619 		TRACE(2, "(%lu,'%c',%lu)",
8620 		    IOCPARM_LEN(cmd), (char)IOCGROUP(cmd), cmd & 0xff);
8621 		if (sc->hw_if->dev_ioctl) {
8622 			mutex_enter(sc->sc_lock);
8623 			error = sc->hw_if->dev_ioctl(sc->hw_hdl,
8624 			    cmd, addr, flag, l);
8625 			mutex_exit(sc->sc_lock);
8626 		} else
8627 			error = EINVAL;
8628 		break;
8629 	}
8630 
8631 	if (error)
8632 		TRACE(2, "error=%d", error);
8633 	return error;
8634 }
8635 
8636 /*
8637  * Must be called with sc_lock held.
8638  */
8639 int
au_portof(struct audio_softc * sc,char * name,int class)8640 au_portof(struct audio_softc *sc, char *name, int class)
8641 {
8642 	mixer_devinfo_t mi;
8643 
8644 	KASSERT(mutex_owned(sc->sc_lock));
8645 
8646 	for (mi.index = 0; audio_query_devinfo(sc, &mi) == 0; mi.index++) {
8647 		if (mi.mixer_class == class && strcmp(mi.label.name, name) == 0)
8648 			return mi.index;
8649 	}
8650 	return -1;
8651 }
8652 
8653 /*
8654  * Must be called with sc_lock held.
8655  */
8656 void
au_setup_ports(struct audio_softc * sc,struct au_mixer_ports * ports,mixer_devinfo_t * mi,const struct portname * tbl)8657 au_setup_ports(struct audio_softc *sc, struct au_mixer_ports *ports,
8658 	mixer_devinfo_t *mi, const struct portname *tbl)
8659 {
8660 	int i, j;
8661 
8662 	KASSERT(mutex_owned(sc->sc_lock));
8663 
8664 	ports->index = mi->index;
8665 	if (mi->type == AUDIO_MIXER_ENUM) {
8666 		ports->isenum = true;
8667 		for(i = 0; tbl[i].name; i++)
8668 		    for(j = 0; j < mi->un.e.num_mem; j++)
8669 			if (strcmp(mi->un.e.member[j].label.name,
8670 						    tbl[i].name) == 0) {
8671 				ports->allports |= tbl[i].mask;
8672 				ports->aumask[ports->nports] = tbl[i].mask;
8673 				ports->misel[ports->nports] =
8674 				    mi->un.e.member[j].ord;
8675 				ports->miport[ports->nports] =
8676 				    au_portof(sc, mi->un.e.member[j].label.name,
8677 				    mi->mixer_class);
8678 				if (ports->mixerout != -1 &&
8679 				    ports->miport[ports->nports] != -1)
8680 					ports->isdual = true;
8681 				++ports->nports;
8682 			}
8683 	} else if (mi->type == AUDIO_MIXER_SET) {
8684 		for(i = 0; tbl[i].name; i++)
8685 		    for(j = 0; j < mi->un.s.num_mem; j++)
8686 			if (strcmp(mi->un.s.member[j].label.name,
8687 						tbl[i].name) == 0) {
8688 				ports->allports |= tbl[i].mask;
8689 				ports->aumask[ports->nports] = tbl[i].mask;
8690 				ports->misel[ports->nports] =
8691 				    mi->un.s.member[j].mask;
8692 				ports->miport[ports->nports] =
8693 				    au_portof(sc, mi->un.s.member[j].label.name,
8694 				    mi->mixer_class);
8695 				++ports->nports;
8696 			}
8697 	}
8698 }
8699 
8700 /*
8701  * Must be called with sc_lock && sc_exlock held.
8702  */
8703 int
au_set_lr_value(struct audio_softc * sc,mixer_ctrl_t * ct,int l,int r)8704 au_set_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int l, int r)
8705 {
8706 
8707 	KASSERT(mutex_owned(sc->sc_lock));
8708 	KASSERT(sc->sc_exlock);
8709 
8710 	ct->type = AUDIO_MIXER_VALUE;
8711 	ct->un.value.num_channels = 2;
8712 	ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
8713 	ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
8714 	if (audio_set_port(sc, ct) == 0)
8715 		return 0;
8716 	ct->un.value.num_channels = 1;
8717 	ct->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r)/2;
8718 	return audio_set_port(sc, ct);
8719 }
8720 
8721 /*
8722  * Must be called with sc_lock && sc_exlock held.
8723  */
8724 int
au_get_lr_value(struct audio_softc * sc,mixer_ctrl_t * ct,int * l,int * r)8725 au_get_lr_value(struct audio_softc *sc, mixer_ctrl_t *ct, int *l, int *r)
8726 {
8727 	int error;
8728 
8729 	KASSERT(mutex_owned(sc->sc_lock));
8730 	KASSERT(sc->sc_exlock);
8731 
8732 	ct->un.value.num_channels = 2;
8733 	if (audio_get_port(sc, ct) == 0) {
8734 		*l = ct->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
8735 		*r = ct->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
8736 	} else {
8737 		ct->un.value.num_channels = 1;
8738 		error = audio_get_port(sc, ct);
8739 		if (error)
8740 			return error;
8741 		*r = *l = ct->un.value.level[AUDIO_MIXER_LEVEL_MONO];
8742 	}
8743 	return 0;
8744 }
8745 
8746 /*
8747  * Must be called with sc_lock && sc_exlock held.
8748  */
8749 int
au_set_gain(struct audio_softc * sc,struct au_mixer_ports * ports,int gain,int balance)8750 au_set_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8751 	int gain, int balance)
8752 {
8753 	mixer_ctrl_t ct;
8754 	int i, error;
8755 	int l, r;
8756 	u_int mask;
8757 	int nset;
8758 
8759 	KASSERT(mutex_owned(sc->sc_lock));
8760 	KASSERT(sc->sc_exlock);
8761 
8762 	if (balance == AUDIO_MID_BALANCE) {
8763 		l = r = gain;
8764 	} else if (balance < AUDIO_MID_BALANCE) {
8765 		l = gain;
8766 		r = (balance * gain) / AUDIO_MID_BALANCE;
8767 	} else {
8768 		r = gain;
8769 		l = ((AUDIO_RIGHT_BALANCE - balance) * gain)
8770 		    / AUDIO_MID_BALANCE;
8771 	}
8772 	TRACE(2, "gain=%d balance=%d, l=%d r=%d", gain, balance, l, r);
8773 
8774 	if (ports->index == -1) {
8775 	usemaster:
8776 		if (ports->master == -1)
8777 			return 0; /* just ignore it silently */
8778 		ct.dev = ports->master;
8779 		error = au_set_lr_value(sc, &ct, l, r);
8780 	} else {
8781 		ct.dev = ports->index;
8782 		if (ports->isenum) {
8783 			ct.type = AUDIO_MIXER_ENUM;
8784 			error = audio_get_port(sc, &ct);
8785 			if (error)
8786 				return error;
8787 			if (ports->isdual) {
8788 				if (ports->cur_port == -1)
8789 					ct.dev = ports->master;
8790 				else
8791 					ct.dev = ports->miport[ports->cur_port];
8792 				error = au_set_lr_value(sc, &ct, l, r);
8793 			} else {
8794 				for(i = 0; i < ports->nports; i++)
8795 				    if (ports->misel[i] == ct.un.ord) {
8796 					    ct.dev = ports->miport[i];
8797 					    if (ct.dev == -1 ||
8798 						au_set_lr_value(sc, &ct, l, r))
8799 						    goto usemaster;
8800 					    else
8801 						    break;
8802 				    }
8803 			}
8804 		} else {
8805 			ct.type = AUDIO_MIXER_SET;
8806 			error = audio_get_port(sc, &ct);
8807 			if (error)
8808 				return error;
8809 			mask = ct.un.mask;
8810 			nset = 0;
8811 			for(i = 0; i < ports->nports; i++) {
8812 				if (ports->misel[i] & mask) {
8813 				    ct.dev = ports->miport[i];
8814 				    if (ct.dev != -1 &&
8815 					au_set_lr_value(sc, &ct, l, r) == 0)
8816 					    nset++;
8817 				}
8818 			}
8819 			if (nset == 0)
8820 				goto usemaster;
8821 		}
8822 	}
8823 	if (!error)
8824 		mixer_signal(sc);
8825 	return error;
8826 }
8827 
8828 /*
8829  * Must be called with sc_lock && sc_exlock held.
8830  */
8831 void
au_get_gain(struct audio_softc * sc,struct au_mixer_ports * ports,u_int * pgain,u_char * pbalance)8832 au_get_gain(struct audio_softc *sc, struct au_mixer_ports *ports,
8833 	u_int *pgain, u_char *pbalance)
8834 {
8835 	mixer_ctrl_t ct;
8836 	int i, l, r, n;
8837 	int lgain, rgain;
8838 
8839 	KASSERT(mutex_owned(sc->sc_lock));
8840 	KASSERT(sc->sc_exlock);
8841 
8842 	lgain = AUDIO_MAX_GAIN / 2;
8843 	rgain = AUDIO_MAX_GAIN / 2;
8844 	if (ports->index == -1) {
8845 	usemaster:
8846 		if (ports->master == -1)
8847 			goto bad;
8848 		ct.dev = ports->master;
8849 		ct.type = AUDIO_MIXER_VALUE;
8850 		if (au_get_lr_value(sc, &ct, &lgain, &rgain))
8851 			goto bad;
8852 	} else {
8853 		ct.dev = ports->index;
8854 		if (ports->isenum) {
8855 			ct.type = AUDIO_MIXER_ENUM;
8856 			if (audio_get_port(sc, &ct))
8857 				goto bad;
8858 			ct.type = AUDIO_MIXER_VALUE;
8859 			if (ports->isdual) {
8860 				if (ports->cur_port == -1)
8861 					ct.dev = ports->master;
8862 				else
8863 					ct.dev = ports->miport[ports->cur_port];
8864 				au_get_lr_value(sc, &ct, &lgain, &rgain);
8865 			} else {
8866 				for(i = 0; i < ports->nports; i++)
8867 				    if (ports->misel[i] == ct.un.ord) {
8868 					    ct.dev = ports->miport[i];
8869 					    if (ct.dev == -1 ||
8870 						au_get_lr_value(sc, &ct,
8871 								&lgain, &rgain))
8872 						    goto usemaster;
8873 					    else
8874 						    break;
8875 				    }
8876 			}
8877 		} else {
8878 			ct.type = AUDIO_MIXER_SET;
8879 			if (audio_get_port(sc, &ct))
8880 				goto bad;
8881 			ct.type = AUDIO_MIXER_VALUE;
8882 			lgain = rgain = n = 0;
8883 			for(i = 0; i < ports->nports; i++) {
8884 				if (ports->misel[i] & ct.un.mask) {
8885 					ct.dev = ports->miport[i];
8886 					if (ct.dev == -1 ||
8887 					    au_get_lr_value(sc, &ct, &l, &r))
8888 						goto usemaster;
8889 					else {
8890 						lgain += l;
8891 						rgain += r;
8892 						n++;
8893 					}
8894 				}
8895 			}
8896 			if (n != 0) {
8897 				lgain /= n;
8898 				rgain /= n;
8899 			}
8900 		}
8901 	}
8902 bad:
8903 	if (lgain == rgain) {	/* handles lgain==rgain==0 */
8904 		*pgain = lgain;
8905 		*pbalance = AUDIO_MID_BALANCE;
8906 	} else if (lgain < rgain) {
8907 		*pgain = rgain;
8908 		/* balance should be > AUDIO_MID_BALANCE */
8909 		*pbalance = AUDIO_RIGHT_BALANCE -
8910 			(AUDIO_MID_BALANCE * lgain) / rgain;
8911 	} else /* lgain > rgain */ {
8912 		*pgain = lgain;
8913 		/* balance should be < AUDIO_MID_BALANCE */
8914 		*pbalance = (AUDIO_MID_BALANCE * rgain) / lgain;
8915 	}
8916 }
8917 
8918 /*
8919  * Must be called with sc_lock && sc_exlock held.
8920  */
8921 int
au_set_port(struct audio_softc * sc,struct au_mixer_ports * ports,u_int port)8922 au_set_port(struct audio_softc *sc, struct au_mixer_ports *ports, u_int port)
8923 {
8924 	mixer_ctrl_t ct;
8925 	int i, error, use_mixerout;
8926 
8927 	KASSERT(mutex_owned(sc->sc_lock));
8928 	KASSERT(sc->sc_exlock);
8929 
8930 	use_mixerout = 1;
8931 	if (port == 0) {
8932 		if (ports->allports == 0)
8933 			return 0;		/* Allow this special case. */
8934 		else if (ports->isdual) {
8935 			if (ports->cur_port == -1) {
8936 				return 0;
8937 			} else {
8938 				port = ports->aumask[ports->cur_port];
8939 				ports->cur_port = -1;
8940 				use_mixerout = 0;
8941 			}
8942 		}
8943 	}
8944 	if (ports->index == -1)
8945 		return EINVAL;
8946 	ct.dev = ports->index;
8947 	if (ports->isenum) {
8948 		if (port & (port-1))
8949 			return EINVAL; /* Only one port allowed */
8950 		ct.type = AUDIO_MIXER_ENUM;
8951 		error = EINVAL;
8952 		for(i = 0; i < ports->nports; i++)
8953 			if (ports->aumask[i] == port) {
8954 				if (ports->isdual && use_mixerout) {
8955 					ct.un.ord = ports->mixerout;
8956 					ports->cur_port = i;
8957 				} else {
8958 					ct.un.ord = ports->misel[i];
8959 				}
8960 				error = audio_set_port(sc, &ct);
8961 				break;
8962 			}
8963 	} else {
8964 		ct.type = AUDIO_MIXER_SET;
8965 		ct.un.mask = 0;
8966 		for(i = 0; i < ports->nports; i++)
8967 			if (ports->aumask[i] & port)
8968 				ct.un.mask |= ports->misel[i];
8969 		if (port != 0 && ct.un.mask == 0)
8970 			error = EINVAL;
8971 		else
8972 			error = audio_set_port(sc, &ct);
8973 	}
8974 	if (!error)
8975 		mixer_signal(sc);
8976 	return error;
8977 }
8978 
8979 /*
8980  * Must be called with sc_lock && sc_exlock held.
8981  */
8982 int
au_get_port(struct audio_softc * sc,struct au_mixer_ports * ports)8983 au_get_port(struct audio_softc *sc, struct au_mixer_ports *ports)
8984 {
8985 	mixer_ctrl_t ct;
8986 	int i, aumask;
8987 
8988 	KASSERT(mutex_owned(sc->sc_lock));
8989 	KASSERT(sc->sc_exlock);
8990 
8991 	if (ports->index == -1)
8992 		return 0;
8993 	ct.dev = ports->index;
8994 	ct.type = ports->isenum ? AUDIO_MIXER_ENUM : AUDIO_MIXER_SET;
8995 	if (audio_get_port(sc, &ct))
8996 		return 0;
8997 	aumask = 0;
8998 	if (ports->isenum) {
8999 		if (ports->isdual && ports->cur_port != -1) {
9000 			if (ports->mixerout == ct.un.ord)
9001 				aumask = ports->aumask[ports->cur_port];
9002 			else
9003 				ports->cur_port = -1;
9004 		}
9005 		if (aumask == 0)
9006 			for(i = 0; i < ports->nports; i++)
9007 				if (ports->misel[i] == ct.un.ord)
9008 					aumask = ports->aumask[i];
9009 	} else {
9010 		for(i = 0; i < ports->nports; i++)
9011 			if (ct.un.mask & ports->misel[i])
9012 				aumask |= ports->aumask[i];
9013 	}
9014 	return aumask;
9015 }
9016 
9017 /*
9018  * It returns 0 if success, otherwise errno.
9019  * Must be called only if sc->sc_monitor_port != -1.
9020  * Must be called with sc_lock && sc_exlock held.
9021  */
9022 static int
au_set_monitor_gain(struct audio_softc * sc,int monitor_gain)9023 au_set_monitor_gain(struct audio_softc *sc, int monitor_gain)
9024 {
9025 	mixer_ctrl_t ct;
9026 
9027 	KASSERT(mutex_owned(sc->sc_lock));
9028 	KASSERT(sc->sc_exlock);
9029 
9030 	ct.dev = sc->sc_monitor_port;
9031 	ct.type = AUDIO_MIXER_VALUE;
9032 	ct.un.value.num_channels = 1;
9033 	ct.un.value.level[AUDIO_MIXER_LEVEL_MONO] = monitor_gain;
9034 	return audio_set_port(sc, &ct);
9035 }
9036 
9037 /*
9038  * It returns monitor gain if success, otherwise -1.
9039  * Must be called only if sc->sc_monitor_port != -1.
9040  * Must be called with sc_lock && sc_exlock held.
9041  */
9042 static int
au_get_monitor_gain(struct audio_softc * sc)9043 au_get_monitor_gain(struct audio_softc *sc)
9044 {
9045 	mixer_ctrl_t ct;
9046 
9047 	KASSERT(mutex_owned(sc->sc_lock));
9048 	KASSERT(sc->sc_exlock);
9049 
9050 	ct.dev = sc->sc_monitor_port;
9051 	ct.type = AUDIO_MIXER_VALUE;
9052 	ct.un.value.num_channels = 1;
9053 	if (audio_get_port(sc, &ct))
9054 		return -1;
9055 	return ct.un.value.level[AUDIO_MIXER_LEVEL_MONO];
9056 }
9057 
9058 /*
9059  * Must be called with sc_lock && sc_exlock held.
9060  */
9061 static int
audio_set_port(struct audio_softc * sc,mixer_ctrl_t * mc)9062 audio_set_port(struct audio_softc *sc, mixer_ctrl_t *mc)
9063 {
9064 
9065 	KASSERT(mutex_owned(sc->sc_lock));
9066 	KASSERT(sc->sc_exlock);
9067 
9068 	return sc->hw_if->set_port(sc->hw_hdl, mc);
9069 }
9070 
9071 /*
9072  * Must be called with sc_lock && sc_exlock held.
9073  */
9074 static int
audio_get_port(struct audio_softc * sc,mixer_ctrl_t * mc)9075 audio_get_port(struct audio_softc *sc, mixer_ctrl_t *mc)
9076 {
9077 
9078 	KASSERT(mutex_owned(sc->sc_lock));
9079 	KASSERT(sc->sc_exlock);
9080 
9081 	return sc->hw_if->get_port(sc->hw_hdl, mc);
9082 }
9083 
9084 /*
9085  * Must be called with sc_lock && sc_exlock held.
9086  */
9087 static void
audio_mixer_capture(struct audio_softc * sc)9088 audio_mixer_capture(struct audio_softc *sc)
9089 {
9090 	mixer_devinfo_t mi;
9091 	mixer_ctrl_t *mc;
9092 
9093 	KASSERT(mutex_owned(sc->sc_lock));
9094 	KASSERT(sc->sc_exlock);
9095 
9096 	for (mi.index = 0;; mi.index++) {
9097 		if (audio_query_devinfo(sc, &mi) != 0)
9098 			break;
9099 		KASSERT(mi.index < sc->sc_nmixer_states);
9100 		if (mi.type == AUDIO_MIXER_CLASS)
9101 			continue;
9102 		mc = &sc->sc_mixer_state[mi.index];
9103 		mc->dev = mi.index;
9104 		mc->type = mi.type;
9105 		mc->un.value.num_channels = mi.un.v.num_channels;
9106 		(void)audio_get_port(sc, mc);
9107 	}
9108 
9109 	return;
9110 }
9111 
9112 /*
9113  * Must be called with sc_lock && sc_exlock held.
9114  */
9115 static void
audio_mixer_restore(struct audio_softc * sc)9116 audio_mixer_restore(struct audio_softc *sc)
9117 {
9118 	mixer_devinfo_t mi;
9119 	mixer_ctrl_t *mc;
9120 
9121 	KASSERT(mutex_owned(sc->sc_lock));
9122 	KASSERT(sc->sc_exlock);
9123 
9124 	for (mi.index = 0; ; mi.index++) {
9125 		if (audio_query_devinfo(sc, &mi) != 0)
9126 			break;
9127 		if (mi.type == AUDIO_MIXER_CLASS)
9128 			continue;
9129 		mc = &sc->sc_mixer_state[mi.index];
9130 		(void)audio_set_port(sc, mc);
9131 	}
9132 	if (sc->hw_if->commit_settings)
9133 		sc->hw_if->commit_settings(sc->hw_hdl);
9134 
9135 	return;
9136 }
9137 
9138 static void
audio_volume_down(device_t dv)9139 audio_volume_down(device_t dv)
9140 {
9141 	struct audio_softc *sc = device_private(dv);
9142 	mixer_devinfo_t mi;
9143 	int newgain;
9144 	u_int gain;
9145 	u_char balance;
9146 
9147 	if (audio_exlock_mutex_enter(sc) != 0)
9148 		return;
9149 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9150 		mi.index = sc->sc_outports.master;
9151 		mi.un.v.delta = 0;
9152 		if (audio_query_devinfo(sc, &mi) == 0) {
9153 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9154 			/*
9155 			 * delta is optional. 16 gives us about 16 increments
9156 			 * to reach max or minimum gain which seems reasonable
9157 			 * for keyboard key presses.
9158 			 */
9159 			if (mi.un.v.delta == 0)
9160 				mi.un.v.delta = 16;
9161 			newgain = gain - mi.un.v.delta;
9162 			if (newgain < AUDIO_MIN_GAIN)
9163 				newgain = AUDIO_MIN_GAIN;
9164 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
9165 		}
9166 	}
9167 	audio_exlock_mutex_exit(sc);
9168 }
9169 
9170 static void
audio_volume_up(device_t dv)9171 audio_volume_up(device_t dv)
9172 {
9173 	struct audio_softc *sc = device_private(dv);
9174 	mixer_devinfo_t mi;
9175 	u_int gain, newgain;
9176 	u_char balance;
9177 
9178 	if (audio_exlock_mutex_enter(sc) != 0)
9179 		return;
9180 	if (sc->sc_outports.index == -1 && sc->sc_outports.master != -1) {
9181 		mi.index = sc->sc_outports.master;
9182 		mi.un.v.delta = 0;
9183 		if (audio_query_devinfo(sc, &mi) == 0) {
9184 			au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9185 			if (mi.un.v.delta == 0)
9186 				mi.un.v.delta = 16;
9187 			newgain = gain + mi.un.v.delta;
9188 			if (newgain > AUDIO_MAX_GAIN)
9189 				newgain = AUDIO_MAX_GAIN;
9190 			au_set_gain(sc, &sc->sc_outports, newgain, balance);
9191 		}
9192 	}
9193 	audio_exlock_mutex_exit(sc);
9194 }
9195 
9196 static void
audio_volume_toggle(device_t dv)9197 audio_volume_toggle(device_t dv)
9198 {
9199 	struct audio_softc *sc = device_private(dv);
9200 	u_int gain, newgain;
9201 	u_char balance;
9202 
9203 	if (audio_exlock_mutex_enter(sc) != 0)
9204 		return;
9205 	au_get_gain(sc, &sc->sc_outports, &gain, &balance);
9206 	if (gain != 0) {
9207 		sc->sc_lastgain = gain;
9208 		newgain = 0;
9209 	} else
9210 		newgain = sc->sc_lastgain;
9211 	au_set_gain(sc, &sc->sc_outports, newgain, balance);
9212 	audio_exlock_mutex_exit(sc);
9213 }
9214 
9215 /*
9216  * Must be called with sc_lock held.
9217  */
9218 static int
audio_query_devinfo(struct audio_softc * sc,mixer_devinfo_t * di)9219 audio_query_devinfo(struct audio_softc *sc, mixer_devinfo_t *di)
9220 {
9221 
9222 	KASSERT(mutex_owned(sc->sc_lock));
9223 
9224 	return sc->hw_if->query_devinfo(sc->hw_hdl, di);
9225 }
9226 
9227 void
audio_mixsample_to_linear(audio_filter_arg_t * arg)9228 audio_mixsample_to_linear(audio_filter_arg_t *arg)
9229 {
9230 	const audio_format2_t *fmt;
9231 	const aint2_t *m;
9232 	uint8_t *p;
9233 	u_int sample_count;
9234 	aint2_t v, xor;
9235 	u_int i, bps;
9236 	bool little;
9237 
9238 	DIAGNOSTIC_filter_arg(arg);
9239 	KASSERT(audio_format2_is_linear(arg->dstfmt));
9240 	KASSERT(arg->srcfmt->channels == arg->dstfmt->channels);
9241 
9242 	fmt = arg->dstfmt;
9243 	m = arg->src;
9244 	p = arg->dst;
9245 	sample_count = arg->count * fmt->channels;
9246 	little = arg->dstfmt->encoding == AUDIO_ENCODING_SLINEAR_LE;
9247 
9248 	bps = fmt->stride / NBBY;
9249 	xor = audio_format2_is_signed(fmt) ? 0 : (aint2_t)1 << 31;
9250 
9251 #if AUDIO_INTERNAL_BITS == 16
9252 	if (little) {
9253 		switch (bps) {
9254 		case 4:
9255 			for (i=0; i<sample_count; ++i) {
9256 				v = *m++ ^ xor;
9257 				*p++ = 0;
9258 				*p++ = 0;
9259 				*p++ = v;
9260 				*p++ = v >> 8;
9261 			}
9262 			break;
9263 		case 3:
9264 			for (i=0; i<sample_count; ++i) {
9265 				v = *m++ ^ xor;
9266 				*p++ = 0;
9267 				*p++ = v;
9268 				*p++ = v >> 8;
9269 			}
9270 			break;
9271 		case 2:
9272 			for (i=0; i<sample_count; ++i) {
9273 				v = *m++ ^ xor;
9274 				*p++ = v;
9275 				*p++ = v >> 8;
9276 			}
9277 			break;
9278 		case 1:
9279 			for (i=0; i<sample_count; ++i) {
9280 				v = *m++ ^ xor;
9281 				*p++ = v >> 8;
9282 			}
9283 			break;
9284 		}
9285 	} else {
9286 		switch (bps) {
9287 		case 4:
9288 			for (i=0; i<sample_count; ++i) {
9289 				v = *m++ ^ xor;
9290 				*p++ = v >> 8;
9291 				*p++ = v;
9292 				*p++ = 0;
9293 				*p++ = 0;
9294 			}
9295 			break;
9296 		case 3:
9297 			for (i=0; i<sample_count; ++i) {
9298 				v = *m++ ^ xor;
9299 				*p++ = v >> 8;
9300 				*p++ = v;
9301 				*p++ = 0;
9302 			}
9303 			break;
9304 		case 2:
9305 			for (i=0; i<sample_count; ++i) {
9306 				v = *m++ ^ xor;
9307 				*p++ = v >> 8;
9308 				*p++ = v;
9309 			}
9310 			break;
9311 		case 1:
9312 			for (i=0; i<sample_count; ++i) {
9313 				v = *m++ ^ xor;
9314 				*p++ = v >> 8;
9315 			}
9316 			break;
9317 		}
9318 	}
9319 #elif AUDIO_INTERNAL_BITS == 32
9320 	if (little) {
9321 		switch (bps) {
9322 		case 4:
9323 			for (i=0; i<sample_count; ++i) {
9324 				v = *m++ ^ xor;
9325 				*p++ = v;
9326 				*p++ = v >> 8;
9327 				*p++ = v >> 16;
9328 				*p++ = v >> 24;
9329 			}
9330 			break;
9331 		case 3:
9332 			for (i=0; i<sample_count; ++i) {
9333 				v = *m++ ^ xor;
9334 				*p++ = v >> 8;
9335 				*p++ = v >> 16;
9336 				*p++ = v >> 24;
9337 			}
9338 			break;
9339 		case 2:
9340 			for (i=0; i<sample_count; ++i) {
9341 				v = *m++ ^ xor;
9342 				*p++ = v >> 16;
9343 				*p++ = v >> 24;
9344 			}
9345 			break;
9346 		case 1:
9347 			for (i=0; i<sample_count; ++i) {
9348 				v = *m++ ^ xor;
9349 				*p++ = v >> 24;
9350 			}
9351 			break;
9352 		}
9353 	} else {
9354 		switch (bps) {
9355 		case 4:
9356 			for (i=0; i<sample_count; ++i) {
9357 				v = *m++ ^ xor;
9358 				*p++ = v >> 24;
9359 				*p++ = v >> 16;
9360 				*p++ = v >> 8;
9361 				*p++ = v;
9362 			}
9363 			break;
9364 		case 3:
9365 			for (i=0; i<sample_count; ++i) {
9366 				v = *m++ ^ xor;
9367 				*p++ = v >> 24;
9368 				*p++ = v >> 16;
9369 				*p++ = v >> 8;
9370 			}
9371 			break;
9372 		case 2:
9373 			for (i=0; i<sample_count; ++i) {
9374 				v = *m++ ^ xor;
9375 				*p++ = v >> 24;
9376 				*p++ = v >> 16;
9377 			}
9378 			break;
9379 		case 1:
9380 			for (i=0; i<sample_count; ++i) {
9381 				v = *m++ ^ xor;
9382 				*p++ = v >> 24;
9383 			}
9384 			break;
9385 		}
9386 	}
9387 #endif /* AUDIO_INTERNAL_BITS */
9388 
9389 }
9390 
9391 #endif /* NAUDIO > 0 */
9392 
9393 #if NAUDIO == 0 && (NMIDI > 0 || NMIDIBUS > 0)
9394 #include <sys/param.h>
9395 #include <sys/systm.h>
9396 #include <sys/device.h>
9397 #include <sys/audioio.h>
9398 #include <dev/audio/audio_if.h>
9399 #endif
9400 
9401 #if NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0)
9402 int
audioprint(void * aux,const char * pnp)9403 audioprint(void *aux, const char *pnp)
9404 {
9405 	struct audio_attach_args *arg;
9406 	const char *type;
9407 
9408 	if (pnp != NULL) {
9409 		arg = aux;
9410 		switch (arg->type) {
9411 		case AUDIODEV_TYPE_AUDIO:
9412 			type = "audio";
9413 			break;
9414 		case AUDIODEV_TYPE_MIDI:
9415 			type = "midi";
9416 			break;
9417 		case AUDIODEV_TYPE_OPL:
9418 			type = "opl";
9419 			break;
9420 		case AUDIODEV_TYPE_MPU:
9421 			type = "mpu";
9422 			break;
9423 		case AUDIODEV_TYPE_AUX:
9424 			type = "aux";
9425 			break;
9426 		default:
9427 			panic("audioprint: unknown type %d", arg->type);
9428 		}
9429 		aprint_normal("%s at %s", type, pnp);
9430 	}
9431 	return UNCONF;
9432 }
9433 
9434 #endif /* NAUDIO > 0 || (NMIDI > 0 || NMIDIBUS > 0) */
9435 
9436 #ifdef _MODULE
9437 
9438 devmajor_t audio_bmajor = -1, audio_cmajor = -1;
9439 
9440 #include "ioconf.c"
9441 
9442 #endif
9443 
9444 MODULE(MODULE_CLASS_DRIVER, audio, NULL);
9445 
9446 static int
audio_modcmd(modcmd_t cmd,void * arg)9447 audio_modcmd(modcmd_t cmd, void *arg)
9448 {
9449 	int error = 0;
9450 
9451 	switch (cmd) {
9452 	case MODULE_CMD_INIT:
9453 		/* XXX interrupt level? */
9454 		audio_psref_class = psref_class_create("audio", IPL_SOFTSERIAL);
9455 #ifdef _MODULE
9456 		error = devsw_attach(audio_cd.cd_name, NULL, &audio_bmajor,
9457 		    &audio_cdevsw, &audio_cmajor);
9458 		if (error)
9459 			break;
9460 
9461 		error = config_init_component(cfdriver_ioconf_audio,
9462 		    cfattach_ioconf_audio, cfdata_ioconf_audio);
9463 		if (error) {
9464 			devsw_detach(NULL, &audio_cdevsw);
9465 		}
9466 #endif
9467 		break;
9468 	case MODULE_CMD_FINI:
9469 #ifdef _MODULE
9470 		error = config_fini_component(cfdriver_ioconf_audio,
9471 		   cfattach_ioconf_audio, cfdata_ioconf_audio);
9472 		if (error == 0)
9473 			devsw_detach(NULL, &audio_cdevsw);
9474 #endif
9475 		if (error == 0)
9476 			psref_class_destroy(audio_psref_class);
9477 		break;
9478 	default:
9479 		error = ENOTTY;
9480 		break;
9481 	}
9482 
9483 	return error;
9484 }
9485