1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Decl nodes as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGBlocks.h" 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "ConstantEmitter.h" 22 #include "EHScopeStack.h" 23 #include "PatternInit.h" 24 #include "TargetInfo.h" 25 #include "clang/AST/ASTContext.h" 26 #include "clang/AST/Attr.h" 27 #include "clang/AST/CharUnits.h" 28 #include "clang/AST/Decl.h" 29 #include "clang/AST/DeclObjC.h" 30 #include "clang/AST/DeclOpenMP.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Sema/Sema.h" 35 #include "llvm/Analysis/ConstantFolding.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include <optional> 43 44 using namespace clang; 45 using namespace CodeGen; 46 47 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment, 48 "Clang max alignment greater than what LLVM supports?"); 49 50 void CodeGenFunction::EmitDecl(const Decl &D) { 51 switch (D.getKind()) { 52 case Decl::BuiltinTemplate: 53 case Decl::TranslationUnit: 54 case Decl::ExternCContext: 55 case Decl::Namespace: 56 case Decl::UnresolvedUsingTypename: 57 case Decl::ClassTemplateSpecialization: 58 case Decl::ClassTemplatePartialSpecialization: 59 case Decl::VarTemplateSpecialization: 60 case Decl::VarTemplatePartialSpecialization: 61 case Decl::TemplateTypeParm: 62 case Decl::UnresolvedUsingValue: 63 case Decl::NonTypeTemplateParm: 64 case Decl::CXXDeductionGuide: 65 case Decl::CXXMethod: 66 case Decl::CXXConstructor: 67 case Decl::CXXDestructor: 68 case Decl::CXXConversion: 69 case Decl::Field: 70 case Decl::MSProperty: 71 case Decl::IndirectField: 72 case Decl::ObjCIvar: 73 case Decl::ObjCAtDefsField: 74 case Decl::ParmVar: 75 case Decl::ImplicitParam: 76 case Decl::ClassTemplate: 77 case Decl::VarTemplate: 78 case Decl::FunctionTemplate: 79 case Decl::TypeAliasTemplate: 80 case Decl::TemplateTemplateParm: 81 case Decl::ObjCMethod: 82 case Decl::ObjCCategory: 83 case Decl::ObjCProtocol: 84 case Decl::ObjCInterface: 85 case Decl::ObjCCategoryImpl: 86 case Decl::ObjCImplementation: 87 case Decl::ObjCProperty: 88 case Decl::ObjCCompatibleAlias: 89 case Decl::PragmaComment: 90 case Decl::PragmaDetectMismatch: 91 case Decl::AccessSpec: 92 case Decl::LinkageSpec: 93 case Decl::Export: 94 case Decl::ObjCPropertyImpl: 95 case Decl::FileScopeAsm: 96 case Decl::TopLevelStmt: 97 case Decl::Friend: 98 case Decl::FriendTemplate: 99 case Decl::Block: 100 case Decl::OutlinedFunction: 101 case Decl::Captured: 102 case Decl::UsingShadow: 103 case Decl::ConstructorUsingShadow: 104 case Decl::ObjCTypeParam: 105 case Decl::Binding: 106 case Decl::UnresolvedUsingIfExists: 107 case Decl::HLSLBuffer: 108 llvm_unreachable("Declaration should not be in declstmts!"); 109 case Decl::Record: // struct/union/class X; 110 case Decl::CXXRecord: // struct/union/class X; [C++] 111 if (CGDebugInfo *DI = getDebugInfo()) 112 if (cast<RecordDecl>(D).getDefinition()) 113 DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D))); 114 return; 115 case Decl::Enum: // enum X; 116 if (CGDebugInfo *DI = getDebugInfo()) 117 if (cast<EnumDecl>(D).getDefinition()) 118 DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D))); 119 return; 120 case Decl::Function: // void X(); 121 case Decl::EnumConstant: // enum ? { X = ? } 122 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 123 case Decl::Label: // __label__ x; 124 case Decl::Import: 125 case Decl::MSGuid: // __declspec(uuid("...")) 126 case Decl::UnnamedGlobalConstant: 127 case Decl::TemplateParamObject: 128 case Decl::OMPThreadPrivate: 129 case Decl::OMPAllocate: 130 case Decl::OMPCapturedExpr: 131 case Decl::OMPRequires: 132 case Decl::Empty: 133 case Decl::Concept: 134 case Decl::ImplicitConceptSpecialization: 135 case Decl::LifetimeExtendedTemporary: 136 case Decl::RequiresExprBody: 137 // None of these decls require codegen support. 138 return; 139 140 case Decl::NamespaceAlias: 141 if (CGDebugInfo *DI = getDebugInfo()) 142 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); 143 return; 144 case Decl::Using: // using X; [C++] 145 if (CGDebugInfo *DI = getDebugInfo()) 146 DI->EmitUsingDecl(cast<UsingDecl>(D)); 147 return; 148 case Decl::UsingEnum: // using enum X; [C++] 149 if (CGDebugInfo *DI = getDebugInfo()) 150 DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D)); 151 return; 152 case Decl::UsingPack: 153 for (auto *Using : cast<UsingPackDecl>(D).expansions()) 154 EmitDecl(*Using); 155 return; 156 case Decl::UsingDirective: // using namespace X; [C++] 157 if (CGDebugInfo *DI = getDebugInfo()) 158 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); 159 return; 160 case Decl::Var: 161 case Decl::Decomposition: { 162 const VarDecl &VD = cast<VarDecl>(D); 163 assert(VD.isLocalVarDecl() && 164 "Should not see file-scope variables inside a function!"); 165 EmitVarDecl(VD); 166 if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) 167 for (auto *B : DD->flat_bindings()) 168 if (auto *HD = B->getHoldingVar()) 169 EmitVarDecl(*HD); 170 171 return; 172 } 173 174 case Decl::OMPDeclareReduction: 175 return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); 176 177 case Decl::OMPDeclareMapper: 178 return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this); 179 180 case Decl::Typedef: // typedef int X; 181 case Decl::TypeAlias: { // using X = int; [C++0x] 182 QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType(); 183 if (CGDebugInfo *DI = getDebugInfo()) 184 DI->EmitAndRetainType(Ty); 185 if (Ty->isVariablyModifiedType()) 186 EmitVariablyModifiedType(Ty); 187 return; 188 } 189 } 190 } 191 192 /// EmitVarDecl - This method handles emission of any variable declaration 193 /// inside a function, including static vars etc. 194 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 195 if (D.hasExternalStorage()) 196 // Don't emit it now, allow it to be emitted lazily on its first use. 197 return; 198 199 // Some function-scope variable does not have static storage but still 200 // needs to be emitted like a static variable, e.g. a function-scope 201 // variable in constant address space in OpenCL. 202 if (D.getStorageDuration() != SD_Automatic) { 203 // Static sampler variables translated to function calls. 204 if (D.getType()->isSamplerT()) 205 return; 206 207 llvm::GlobalValue::LinkageTypes Linkage = 208 CGM.getLLVMLinkageVarDefinition(&D); 209 210 // FIXME: We need to force the emission/use of a guard variable for 211 // some variables even if we can constant-evaluate them because 212 // we can't guarantee every translation unit will constant-evaluate them. 213 214 return EmitStaticVarDecl(D, Linkage); 215 } 216 217 if (D.getType().getAddressSpace() == LangAS::opencl_local) 218 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 219 220 assert(D.hasLocalStorage()); 221 return EmitAutoVarDecl(D); 222 } 223 224 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { 225 if (CGM.getLangOpts().CPlusPlus) 226 return CGM.getMangledName(&D).str(); 227 228 // If this isn't C++, we don't need a mangled name, just a pretty one. 229 assert(!D.isExternallyVisible() && "name shouldn't matter"); 230 std::string ContextName; 231 const DeclContext *DC = D.getDeclContext(); 232 if (auto *CD = dyn_cast<CapturedDecl>(DC)) 233 DC = cast<DeclContext>(CD->getNonClosureContext()); 234 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 235 ContextName = std::string(CGM.getMangledName(FD)); 236 else if (const auto *BD = dyn_cast<BlockDecl>(DC)) 237 ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD)); 238 else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) 239 ContextName = OMD->getSelector().getAsString(); 240 else 241 llvm_unreachable("Unknown context for static var decl"); 242 243 ContextName += "." + D.getNameAsString(); 244 return ContextName; 245 } 246 247 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( 248 const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { 249 // In general, we don't always emit static var decls once before we reference 250 // them. It is possible to reference them before emitting the function that 251 // contains them, and it is possible to emit the containing function multiple 252 // times. 253 if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) 254 return ExistingGV; 255 256 QualType Ty = D.getType(); 257 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 258 259 // Use the label if the variable is renamed with the asm-label extension. 260 std::string Name; 261 if (D.hasAttr<AsmLabelAttr>()) 262 Name = std::string(getMangledName(&D)); 263 else 264 Name = getStaticDeclName(*this, D); 265 266 llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); 267 LangAS AS = GetGlobalVarAddressSpace(&D); 268 unsigned TargetAS = getContext().getTargetAddressSpace(AS); 269 270 // OpenCL variables in local address space and CUDA shared 271 // variables cannot have an initializer. 272 llvm::Constant *Init = nullptr; 273 if (Ty.getAddressSpace() == LangAS::opencl_local || 274 D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>()) 275 Init = llvm::UndefValue::get(LTy); 276 else 277 Init = EmitNullConstant(Ty); 278 279 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 280 getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, 281 nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 282 GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign()); 283 284 if (supportsCOMDAT() && GV->isWeakForLinker()) 285 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 286 287 if (D.getTLSKind()) 288 setTLSMode(GV, D); 289 290 setGVProperties(GV, &D); 291 getTargetCodeGenInfo().setTargetAttributes(cast<Decl>(&D), GV, *this); 292 293 // Make sure the result is of the correct type. 294 LangAS ExpectedAS = Ty.getAddressSpace(); 295 llvm::Constant *Addr = GV; 296 if (AS != ExpectedAS) { 297 Addr = getTargetCodeGenInfo().performAddrSpaceCast( 298 *this, GV, AS, ExpectedAS, 299 llvm::PointerType::get(getLLVMContext(), 300 getContext().getTargetAddressSpace(ExpectedAS))); 301 } 302 303 setStaticLocalDeclAddress(&D, Addr); 304 305 // Ensure that the static local gets initialized by making sure the parent 306 // function gets emitted eventually. 307 const Decl *DC = cast<Decl>(D.getDeclContext()); 308 309 // We can't name blocks or captured statements directly, so try to emit their 310 // parents. 311 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { 312 DC = DC->getNonClosureContext(); 313 // FIXME: Ensure that global blocks get emitted. 314 if (!DC) 315 return Addr; 316 } 317 318 GlobalDecl GD; 319 if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) 320 GD = GlobalDecl(CD, Ctor_Base); 321 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) 322 GD = GlobalDecl(DD, Dtor_Base); 323 else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) 324 GD = GlobalDecl(FD); 325 else { 326 // Don't do anything for Obj-C method decls or global closures. We should 327 // never defer them. 328 assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); 329 } 330 if (GD.getDecl()) { 331 // Disable emission of the parent function for the OpenMP device codegen. 332 CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); 333 (void)GetAddrOfGlobal(GD); 334 } 335 336 return Addr; 337 } 338 339 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 340 /// global variable that has already been created for it. If the initializer 341 /// has a different type than GV does, this may free GV and return a different 342 /// one. Otherwise it just returns GV. 343 llvm::GlobalVariable * 344 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 345 llvm::GlobalVariable *GV) { 346 ConstantEmitter emitter(*this); 347 llvm::Constant *Init = emitter.tryEmitForInitializer(D); 348 349 // If constant emission failed, then this should be a C++ static 350 // initializer. 351 if (!Init) { 352 if (!getLangOpts().CPlusPlus) 353 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 354 else if (D.hasFlexibleArrayInit(getContext())) 355 CGM.ErrorUnsupported(D.getInit(), "flexible array initializer"); 356 else if (HaveInsertPoint()) { 357 // Since we have a static initializer, this global variable can't 358 // be constant. 359 GV->setConstant(false); 360 361 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 362 } 363 return GV; 364 } 365 366 PGO.markStmtMaybeUsed(D.getInit()); // FIXME: Too lazy 367 368 #ifndef NDEBUG 369 CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) + 370 D.getFlexibleArrayInitChars(getContext()); 371 CharUnits CstSize = CharUnits::fromQuantity( 372 CGM.getDataLayout().getTypeAllocSize(Init->getType())); 373 assert(VarSize == CstSize && "Emitted constant has unexpected size"); 374 #endif 375 376 bool NeedsDtor = 377 D.needsDestruction(getContext()) == QualType::DK_cxx_destructor; 378 379 GV->setConstant( 380 D.getType().isConstantStorage(getContext(), true, !NeedsDtor)); 381 GV->replaceInitializer(Init); 382 383 emitter.finalize(GV); 384 385 if (NeedsDtor && HaveInsertPoint()) { 386 // We have a constant initializer, but a nontrivial destructor. We still 387 // need to perform a guarded "initialization" in order to register the 388 // destructor. 389 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 390 } 391 392 return GV; 393 } 394 395 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 396 llvm::GlobalValue::LinkageTypes Linkage) { 397 // Check to see if we already have a global variable for this 398 // declaration. This can happen when double-emitting function 399 // bodies, e.g. with complete and base constructors. 400 llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); 401 CharUnits alignment = getContext().getDeclAlign(&D); 402 403 // Store into LocalDeclMap before generating initializer to handle 404 // circular references. 405 llvm::Type *elemTy = ConvertTypeForMem(D.getType()); 406 setAddrOfLocalVar(&D, Address(addr, elemTy, alignment)); 407 408 // We can't have a VLA here, but we can have a pointer to a VLA, 409 // even though that doesn't really make any sense. 410 // Make sure to evaluate VLA bounds now so that we have them for later. 411 if (D.getType()->isVariablyModifiedType()) 412 EmitVariablyModifiedType(D.getType()); 413 414 // Save the type in case adding the initializer forces a type change. 415 llvm::Type *expectedType = addr->getType(); 416 417 llvm::GlobalVariable *var = 418 cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 419 420 // CUDA's local and local static __shared__ variables should not 421 // have any non-empty initializers. This is ensured by Sema. 422 // Whatever initializer such variable may have when it gets here is 423 // a no-op and should not be emitted. 424 bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 425 D.hasAttr<CUDASharedAttr>(); 426 // If this value has an initializer, emit it. 427 if (D.getInit() && !isCudaSharedVar) 428 var = AddInitializerToStaticVarDecl(D, var); 429 430 var->setAlignment(alignment.getAsAlign()); 431 432 if (D.hasAttr<AnnotateAttr>()) 433 CGM.AddGlobalAnnotations(&D, var); 434 435 if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) 436 var->addAttribute("bss-section", SA->getName()); 437 if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) 438 var->addAttribute("data-section", SA->getName()); 439 if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) 440 var->addAttribute("rodata-section", SA->getName()); 441 if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>()) 442 var->addAttribute("relro-section", SA->getName()); 443 444 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 445 var->setSection(SA->getName()); 446 447 if (D.hasAttr<RetainAttr>()) 448 CGM.addUsedGlobal(var); 449 else if (D.hasAttr<UsedAttr>()) 450 CGM.addUsedOrCompilerUsedGlobal(var); 451 452 if (CGM.getCodeGenOpts().KeepPersistentStorageVariables) 453 CGM.addUsedOrCompilerUsedGlobal(var); 454 455 // We may have to cast the constant because of the initializer 456 // mismatch above. 457 // 458 // FIXME: It is really dangerous to store this in the map; if anyone 459 // RAUW's the GV uses of this constant will be invalid. 460 llvm::Constant *castedAddr = 461 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); 462 LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment); 463 CGM.setStaticLocalDeclAddress(&D, castedAddr); 464 465 CGM.getSanitizerMetadata()->reportGlobal(var, D); 466 467 // Emit global variable debug descriptor for static vars. 468 CGDebugInfo *DI = getDebugInfo(); 469 if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) { 470 DI->setLocation(D.getLocation()); 471 DI->EmitGlobalVariable(var, &D); 472 } 473 } 474 475 namespace { 476 struct DestroyObject final : EHScopeStack::Cleanup { 477 DestroyObject(Address addr, QualType type, 478 CodeGenFunction::Destroyer *destroyer, 479 bool useEHCleanupForArray) 480 : addr(addr), type(type), destroyer(destroyer), 481 useEHCleanupForArray(useEHCleanupForArray) {} 482 483 Address addr; 484 QualType type; 485 CodeGenFunction::Destroyer *destroyer; 486 bool useEHCleanupForArray; 487 488 void Emit(CodeGenFunction &CGF, Flags flags) override { 489 // Don't use an EH cleanup recursively from an EH cleanup. 490 bool useEHCleanupForArray = 491 flags.isForNormalCleanup() && this->useEHCleanupForArray; 492 493 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 494 } 495 }; 496 497 template <class Derived> 498 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 499 DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag) 500 : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {} 501 502 llvm::Value *NRVOFlag; 503 Address Loc; 504 QualType Ty; 505 506 void Emit(CodeGenFunction &CGF, Flags flags) override { 507 // Along the exceptions path we always execute the dtor. 508 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 509 510 llvm::BasicBlock *SkipDtorBB = nullptr; 511 if (NRVO) { 512 // If we exited via NRVO, we skip the destructor call. 513 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 514 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 515 llvm::Value *DidNRVO = 516 CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); 517 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 518 CGF.EmitBlock(RunDtorBB); 519 } 520 521 static_cast<Derived *>(this)->emitDestructorCall(CGF); 522 523 if (NRVO) CGF.EmitBlock(SkipDtorBB); 524 } 525 526 virtual ~DestroyNRVOVariable() = default; 527 }; 528 529 struct DestroyNRVOVariableCXX final 530 : DestroyNRVOVariable<DestroyNRVOVariableCXX> { 531 DestroyNRVOVariableCXX(Address addr, QualType type, 532 const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag) 533 : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag), 534 Dtor(Dtor) {} 535 536 const CXXDestructorDecl *Dtor; 537 538 void emitDestructorCall(CodeGenFunction &CGF) { 539 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 540 /*ForVirtualBase=*/false, 541 /*Delegating=*/false, Loc, Ty); 542 } 543 }; 544 545 struct DestroyNRVOVariableC final 546 : DestroyNRVOVariable<DestroyNRVOVariableC> { 547 DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) 548 : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {} 549 550 void emitDestructorCall(CodeGenFunction &CGF) { 551 CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); 552 } 553 }; 554 555 struct CallStackRestore final : EHScopeStack::Cleanup { 556 Address Stack; 557 CallStackRestore(Address Stack) : Stack(Stack) {} 558 bool isRedundantBeforeReturn() override { return true; } 559 void Emit(CodeGenFunction &CGF, Flags flags) override { 560 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 561 CGF.Builder.CreateStackRestore(V); 562 } 563 }; 564 565 struct KmpcAllocFree final : EHScopeStack::Cleanup { 566 std::pair<llvm::Value *, llvm::Value *> AddrSizePair; 567 KmpcAllocFree(const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) 568 : AddrSizePair(AddrSizePair) {} 569 void Emit(CodeGenFunction &CGF, Flags EmissionFlags) override { 570 auto &RT = CGF.CGM.getOpenMPRuntime(); 571 RT.getKmpcFreeShared(CGF, AddrSizePair); 572 } 573 }; 574 575 struct ExtendGCLifetime final : EHScopeStack::Cleanup { 576 const VarDecl &Var; 577 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 578 579 void Emit(CodeGenFunction &CGF, Flags flags) override { 580 // Compute the address of the local variable, in case it's a 581 // byref or something. 582 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 583 Var.getType(), VK_LValue, SourceLocation()); 584 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), 585 SourceLocation()); 586 CGF.EmitExtendGCLifetime(value); 587 } 588 }; 589 590 struct CallCleanupFunction final : EHScopeStack::Cleanup { 591 llvm::Constant *CleanupFn; 592 const CGFunctionInfo &FnInfo; 593 const VarDecl &Var; 594 595 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 596 const VarDecl *Var) 597 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 598 599 void Emit(CodeGenFunction &CGF, Flags flags) override { 600 DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, 601 Var.getType(), VK_LValue, SourceLocation()); 602 // Compute the address of the local variable, in case it's a byref 603 // or something. 604 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF); 605 606 // In some cases, the type of the function argument will be different from 607 // the type of the pointer. An example of this is 608 // void f(void* arg); 609 // __attribute__((cleanup(f))) void *g; 610 // 611 // To fix this we insert a bitcast here. 612 QualType ArgTy = FnInfo.arg_begin()->type; 613 llvm::Value *Arg = 614 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 615 616 CallArgList Args; 617 Args.add(RValue::get(Arg), 618 CGF.getContext().getPointerType(Var.getType())); 619 auto Callee = CGCallee::forDirect(CleanupFn); 620 CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); 621 } 622 }; 623 } // end anonymous namespace 624 625 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 626 /// variable with lifetime. 627 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 628 Address addr, 629 Qualifiers::ObjCLifetime lifetime) { 630 switch (lifetime) { 631 case Qualifiers::OCL_None: 632 llvm_unreachable("present but none"); 633 634 case Qualifiers::OCL_ExplicitNone: 635 // nothing to do 636 break; 637 638 case Qualifiers::OCL_Strong: { 639 CodeGenFunction::Destroyer *destroyer = 640 (var.hasAttr<ObjCPreciseLifetimeAttr>() 641 ? CodeGenFunction::destroyARCStrongPrecise 642 : CodeGenFunction::destroyARCStrongImprecise); 643 644 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 645 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 646 cleanupKind & EHCleanup); 647 break; 648 } 649 case Qualifiers::OCL_Autoreleasing: 650 // nothing to do 651 break; 652 653 case Qualifiers::OCL_Weak: 654 // __weak objects always get EH cleanups; otherwise, exceptions 655 // could cause really nasty crashes instead of mere leaks. 656 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 657 CodeGenFunction::destroyARCWeak, 658 /*useEHCleanup*/ true); 659 break; 660 } 661 } 662 663 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 664 if (const Expr *e = dyn_cast<Expr>(s)) { 665 // Skip the most common kinds of expressions that make 666 // hierarchy-walking expensive. 667 s = e = e->IgnoreParenCasts(); 668 669 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 670 return (ref->getDecl() == &var); 671 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 672 const BlockDecl *block = be->getBlockDecl(); 673 for (const auto &I : block->captures()) { 674 if (I.getVariable() == &var) 675 return true; 676 } 677 } 678 } 679 680 for (const Stmt *SubStmt : s->children()) 681 // SubStmt might be null; as in missing decl or conditional of an if-stmt. 682 if (SubStmt && isAccessedBy(var, SubStmt)) 683 return true; 684 685 return false; 686 } 687 688 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 689 if (!decl) return false; 690 if (!isa<VarDecl>(decl)) return false; 691 const VarDecl *var = cast<VarDecl>(decl); 692 return isAccessedBy(*var, e); 693 } 694 695 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, 696 const LValue &destLV, const Expr *init) { 697 bool needsCast = false; 698 699 while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { 700 switch (castExpr->getCastKind()) { 701 // Look through casts that don't require representation changes. 702 case CK_NoOp: 703 case CK_BitCast: 704 case CK_BlockPointerToObjCPointerCast: 705 needsCast = true; 706 break; 707 708 // If we find an l-value to r-value cast from a __weak variable, 709 // emit this operation as a copy or move. 710 case CK_LValueToRValue: { 711 const Expr *srcExpr = castExpr->getSubExpr(); 712 if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) 713 return false; 714 715 // Emit the source l-value. 716 LValue srcLV = CGF.EmitLValue(srcExpr); 717 718 // Handle a formal type change to avoid asserting. 719 auto srcAddr = srcLV.getAddress(); 720 if (needsCast) { 721 srcAddr = srcAddr.withElementType(destLV.getAddress().getElementType()); 722 } 723 724 // If it was an l-value, use objc_copyWeak. 725 if (srcExpr->isLValue()) { 726 CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); 727 } else { 728 assert(srcExpr->isXValue()); 729 CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); 730 } 731 return true; 732 } 733 734 // Stop at anything else. 735 default: 736 return false; 737 } 738 739 init = castExpr->getSubExpr(); 740 } 741 return false; 742 } 743 744 static void drillIntoBlockVariable(CodeGenFunction &CGF, 745 LValue &lvalue, 746 const VarDecl *var) { 747 lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); 748 } 749 750 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, 751 SourceLocation Loc) { 752 if (!SanOpts.has(SanitizerKind::NullabilityAssign)) 753 return; 754 755 auto Nullability = LHS.getType()->getNullability(); 756 if (!Nullability || *Nullability != NullabilityKind::NonNull) 757 return; 758 759 // Check if the right hand side of the assignment is nonnull, if the left 760 // hand side must be nonnull. 761 SanitizerScope SanScope(this); 762 llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); 763 llvm::Constant *StaticData[] = { 764 EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), 765 llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. 766 llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; 767 EmitCheck({{IsNotNull, SanitizerKind::SO_NullabilityAssign}}, 768 SanitizerHandler::TypeMismatch, StaticData, RHS); 769 } 770 771 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, 772 LValue lvalue, bool capturedByInit) { 773 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 774 if (!lifetime) { 775 llvm::Value *value = EmitScalarExpr(init); 776 if (capturedByInit) 777 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 778 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 779 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 780 return; 781 } 782 783 if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) 784 init = DIE->getExpr(); 785 786 // If we're emitting a value with lifetime, we have to do the 787 // initialization *before* we leave the cleanup scopes. 788 if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) { 789 CodeGenFunction::RunCleanupsScope Scope(*this); 790 return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit); 791 } 792 793 // We have to maintain the illusion that the variable is 794 // zero-initialized. If the variable might be accessed in its 795 // initializer, zero-initialize before running the initializer, then 796 // actually perform the initialization with an assign. 797 bool accessedByInit = false; 798 if (lifetime != Qualifiers::OCL_ExplicitNone) 799 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 800 if (accessedByInit) { 801 LValue tempLV = lvalue; 802 // Drill down to the __block object if necessary. 803 if (capturedByInit) { 804 // We can use a simple GEP for this because it can't have been 805 // moved yet. 806 tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), 807 cast<VarDecl>(D), 808 /*follow*/ false)); 809 } 810 811 auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); 812 llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); 813 814 // If __weak, we want to use a barrier under certain conditions. 815 if (lifetime == Qualifiers::OCL_Weak) 816 EmitARCInitWeak(tempLV.getAddress(), zero); 817 818 // Otherwise just do a simple store. 819 else 820 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 821 } 822 823 // Emit the initializer. 824 llvm::Value *value = nullptr; 825 826 switch (lifetime) { 827 case Qualifiers::OCL_None: 828 llvm_unreachable("present but none"); 829 830 case Qualifiers::OCL_Strong: { 831 if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { 832 value = EmitARCRetainScalarExpr(init); 833 break; 834 } 835 // If D is pseudo-strong, treat it like __unsafe_unretained here. This means 836 // that we omit the retain, and causes non-autoreleased return values to be 837 // immediately released. 838 [[fallthrough]]; 839 } 840 841 case Qualifiers::OCL_ExplicitNone: 842 value = EmitARCUnsafeUnretainedScalarExpr(init); 843 break; 844 845 case Qualifiers::OCL_Weak: { 846 // If it's not accessed by the initializer, try to emit the 847 // initialization with a copy or move. 848 if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { 849 return; 850 } 851 852 // No way to optimize a producing initializer into this. It's not 853 // worth optimizing for, because the value will immediately 854 // disappear in the common case. 855 value = EmitScalarExpr(init); 856 857 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 858 if (accessedByInit) 859 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 860 else 861 EmitARCInitWeak(lvalue.getAddress(), value); 862 return; 863 } 864 865 case Qualifiers::OCL_Autoreleasing: 866 value = EmitARCRetainAutoreleaseScalarExpr(init); 867 break; 868 } 869 870 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 871 872 EmitNullabilityCheck(lvalue, value, init->getExprLoc()); 873 874 // If the variable might have been accessed by its initializer, we 875 // might have to initialize with a barrier. We have to do this for 876 // both __weak and __strong, but __weak got filtered out above. 877 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 878 llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); 879 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 880 EmitARCRelease(oldValue, ARCImpreciseLifetime); 881 return; 882 } 883 884 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 885 } 886 887 /// Decide whether we can emit the non-zero parts of the specified initializer 888 /// with equal or fewer than NumStores scalar stores. 889 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, 890 unsigned &NumStores) { 891 // Zero and Undef never requires any extra stores. 892 if (isa<llvm::ConstantAggregateZero>(Init) || 893 isa<llvm::ConstantPointerNull>(Init) || 894 isa<llvm::UndefValue>(Init)) 895 return true; 896 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 897 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 898 isa<llvm::ConstantExpr>(Init)) 899 return Init->isNullValue() || NumStores--; 900 901 // See if we can emit each element. 902 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 903 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 904 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 905 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 906 return false; 907 } 908 return true; 909 } 910 911 if (llvm::ConstantDataSequential *CDS = 912 dyn_cast<llvm::ConstantDataSequential>(Init)) { 913 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 914 llvm::Constant *Elt = CDS->getElementAsConstant(i); 915 if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) 916 return false; 917 } 918 return true; 919 } 920 921 // Anything else is hard and scary. 922 return false; 923 } 924 925 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit 926 /// the scalar stores that would be required. 927 static void emitStoresForInitAfterBZero(CodeGenModule &CGM, 928 llvm::Constant *Init, Address Loc, 929 bool isVolatile, CGBuilderTy &Builder, 930 bool IsAutoInit) { 931 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 932 "called emitStoresForInitAfterBZero for zero or undef value."); 933 934 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 935 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 936 isa<llvm::ConstantExpr>(Init)) { 937 auto *I = Builder.CreateStore(Init, Loc, isVolatile); 938 if (IsAutoInit) 939 I->addAnnotationMetadata("auto-init"); 940 return; 941 } 942 943 if (llvm::ConstantDataSequential *CDS = 944 dyn_cast<llvm::ConstantDataSequential>(Init)) { 945 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 946 llvm::Constant *Elt = CDS->getElementAsConstant(i); 947 948 // If necessary, get a pointer to the element and emit it. 949 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 950 emitStoresForInitAfterBZero( 951 CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile, 952 Builder, IsAutoInit); 953 } 954 return; 955 } 956 957 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 958 "Unknown value type!"); 959 960 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 961 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 962 963 // If necessary, get a pointer to the element and emit it. 964 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 965 emitStoresForInitAfterBZero(CGM, Elt, 966 Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), 967 isVolatile, Builder, IsAutoInit); 968 } 969 } 970 971 /// Decide whether we should use bzero plus some stores to initialize a local 972 /// variable instead of using a memcpy from a constant global. It is beneficial 973 /// to use bzero if the global is all zeros, or mostly zeros and large. 974 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, 975 uint64_t GlobalSize) { 976 // If a global is all zeros, always use a bzero. 977 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 978 979 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 980 // do it if it will require 6 or fewer scalar stores. 981 // TODO: Should budget depends on the size? Avoiding a large global warrants 982 // plopping in more stores. 983 unsigned StoreBudget = 6; 984 uint64_t SizeLimit = 32; 985 986 return GlobalSize > SizeLimit && 987 canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); 988 } 989 990 /// Decide whether we should use memset to initialize a local variable instead 991 /// of using a memcpy from a constant global. Assumes we've already decided to 992 /// not user bzero. 993 /// FIXME We could be more clever, as we are for bzero above, and generate 994 /// memset followed by stores. It's unclear that's worth the effort. 995 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, 996 uint64_t GlobalSize, 997 const llvm::DataLayout &DL) { 998 uint64_t SizeLimit = 32; 999 if (GlobalSize <= SizeLimit) 1000 return nullptr; 1001 return llvm::isBytewiseValue(Init, DL); 1002 } 1003 1004 /// Decide whether we want to split a constant structure or array store into a 1005 /// sequence of its fields' stores. This may cost us code size and compilation 1006 /// speed, but plays better with store optimizations. 1007 static bool shouldSplitConstantStore(CodeGenModule &CGM, 1008 uint64_t GlobalByteSize) { 1009 // Don't break things that occupy more than one cacheline. 1010 uint64_t ByteSizeLimit = 64; 1011 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1012 return false; 1013 if (GlobalByteSize <= ByteSizeLimit) 1014 return true; 1015 return false; 1016 } 1017 1018 enum class IsPattern { No, Yes }; 1019 1020 /// Generate a constant filled with either a pattern or zeroes. 1021 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern, 1022 llvm::Type *Ty) { 1023 if (isPattern == IsPattern::Yes) 1024 return initializationPatternFor(CGM, Ty); 1025 else 1026 return llvm::Constant::getNullValue(Ty); 1027 } 1028 1029 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1030 llvm::Constant *constant); 1031 1032 /// Helper function for constWithPadding() to deal with padding in structures. 1033 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM, 1034 IsPattern isPattern, 1035 llvm::StructType *STy, 1036 llvm::Constant *constant) { 1037 const llvm::DataLayout &DL = CGM.getDataLayout(); 1038 const llvm::StructLayout *Layout = DL.getStructLayout(STy); 1039 llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); 1040 unsigned SizeSoFar = 0; 1041 SmallVector<llvm::Constant *, 8> Values; 1042 bool NestedIntact = true; 1043 for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) { 1044 unsigned CurOff = Layout->getElementOffset(i); 1045 if (SizeSoFar < CurOff) { 1046 assert(!STy->isPacked()); 1047 auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar); 1048 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1049 } 1050 llvm::Constant *CurOp; 1051 if (constant->isZeroValue()) 1052 CurOp = llvm::Constant::getNullValue(STy->getElementType(i)); 1053 else 1054 CurOp = cast<llvm::Constant>(constant->getAggregateElement(i)); 1055 auto *NewOp = constWithPadding(CGM, isPattern, CurOp); 1056 if (CurOp != NewOp) 1057 NestedIntact = false; 1058 Values.push_back(NewOp); 1059 SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType()); 1060 } 1061 unsigned TotalSize = Layout->getSizeInBytes(); 1062 if (SizeSoFar < TotalSize) { 1063 auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar); 1064 Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy)); 1065 } 1066 if (NestedIntact && Values.size() == STy->getNumElements()) 1067 return constant; 1068 return llvm::ConstantStruct::getAnon(Values, STy->isPacked()); 1069 } 1070 1071 /// Replace all padding bytes in a given constant with either a pattern byte or 1072 /// 0x00. 1073 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern, 1074 llvm::Constant *constant) { 1075 llvm::Type *OrigTy = constant->getType(); 1076 if (const auto STy = dyn_cast<llvm::StructType>(OrigTy)) 1077 return constStructWithPadding(CGM, isPattern, STy, constant); 1078 if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) { 1079 llvm::SmallVector<llvm::Constant *, 8> Values; 1080 uint64_t Size = ArrayTy->getNumElements(); 1081 if (!Size) 1082 return constant; 1083 llvm::Type *ElemTy = ArrayTy->getElementType(); 1084 bool ZeroInitializer = constant->isNullValue(); 1085 llvm::Constant *OpValue, *PaddedOp; 1086 if (ZeroInitializer) { 1087 OpValue = llvm::Constant::getNullValue(ElemTy); 1088 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1089 } 1090 for (unsigned Op = 0; Op != Size; ++Op) { 1091 if (!ZeroInitializer) { 1092 OpValue = constant->getAggregateElement(Op); 1093 PaddedOp = constWithPadding(CGM, isPattern, OpValue); 1094 } 1095 Values.push_back(PaddedOp); 1096 } 1097 auto *NewElemTy = Values[0]->getType(); 1098 if (NewElemTy == ElemTy) 1099 return constant; 1100 auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size); 1101 return llvm::ConstantArray::get(NewArrayTy, Values); 1102 } 1103 // FIXME: Add handling for tail padding in vectors. Vectors don't 1104 // have padding between or inside elements, but the total amount of 1105 // data can be less than the allocated size. 1106 return constant; 1107 } 1108 1109 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D, 1110 llvm::Constant *Constant, 1111 CharUnits Align) { 1112 auto FunctionName = [&](const DeclContext *DC) -> std::string { 1113 if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { 1114 if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) 1115 return CC->getNameAsString(); 1116 if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) 1117 return CD->getNameAsString(); 1118 return std::string(getMangledName(FD)); 1119 } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { 1120 return OM->getNameAsString(); 1121 } else if (isa<BlockDecl>(DC)) { 1122 return "<block>"; 1123 } else if (isa<CapturedDecl>(DC)) { 1124 return "<captured>"; 1125 } else { 1126 llvm_unreachable("expected a function or method"); 1127 } 1128 }; 1129 1130 // Form a simple per-variable cache of these values in case we find we 1131 // want to reuse them. 1132 llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D]; 1133 if (!CacheEntry || CacheEntry->getInitializer() != Constant) { 1134 auto *Ty = Constant->getType(); 1135 bool isConstant = true; 1136 llvm::GlobalVariable *InsertBefore = nullptr; 1137 unsigned AS = 1138 getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace()); 1139 std::string Name; 1140 if (D.hasGlobalStorage()) 1141 Name = getMangledName(&D).str() + ".const"; 1142 else if (const DeclContext *DC = D.getParentFunctionOrMethod()) 1143 Name = ("__const." + FunctionName(DC) + "." + D.getName()).str(); 1144 else 1145 llvm_unreachable("local variable has no parent function or method"); 1146 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 1147 getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, 1148 Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); 1149 GV->setAlignment(Align.getAsAlign()); 1150 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1151 CacheEntry = GV; 1152 } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) { 1153 CacheEntry->setAlignment(Align.getAsAlign()); 1154 } 1155 1156 return Address(CacheEntry, CacheEntry->getValueType(), Align); 1157 } 1158 1159 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM, 1160 const VarDecl &D, 1161 CGBuilderTy &Builder, 1162 llvm::Constant *Constant, 1163 CharUnits Align) { 1164 Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align); 1165 return SrcPtr.withElementType(CGM.Int8Ty); 1166 } 1167 1168 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, 1169 Address Loc, bool isVolatile, 1170 CGBuilderTy &Builder, 1171 llvm::Constant *constant, bool IsAutoInit) { 1172 auto *Ty = constant->getType(); 1173 uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); 1174 if (!ConstantSize) 1175 return; 1176 1177 bool canDoSingleStore = Ty->isIntOrIntVectorTy() || 1178 Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy(); 1179 if (canDoSingleStore) { 1180 auto *I = Builder.CreateStore(constant, Loc, isVolatile); 1181 if (IsAutoInit) 1182 I->addAnnotationMetadata("auto-init"); 1183 return; 1184 } 1185 1186 auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize); 1187 1188 // If the initializer is all or mostly the same, codegen with bzero / memset 1189 // then do a few stores afterward. 1190 if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { 1191 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), 1192 SizeVal, isVolatile); 1193 if (IsAutoInit) 1194 I->addAnnotationMetadata("auto-init"); 1195 1196 bool valueAlreadyCorrect = 1197 constant->isNullValue() || isa<llvm::UndefValue>(constant); 1198 if (!valueAlreadyCorrect) { 1199 Loc = Loc.withElementType(Ty); 1200 emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder, 1201 IsAutoInit); 1202 } 1203 return; 1204 } 1205 1206 // If the initializer is a repeated byte pattern, use memset. 1207 llvm::Value *Pattern = 1208 shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout()); 1209 if (Pattern) { 1210 uint64_t Value = 0x00; 1211 if (!isa<llvm::UndefValue>(Pattern)) { 1212 const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); 1213 assert(AP.getBitWidth() <= 8); 1214 Value = AP.getLimitedValue(); 1215 } 1216 auto *I = Builder.CreateMemSet( 1217 Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile); 1218 if (IsAutoInit) 1219 I->addAnnotationMetadata("auto-init"); 1220 return; 1221 } 1222 1223 // If the initializer is small or trivialAutoVarInit is set, use a handful of 1224 // stores. 1225 bool IsTrivialAutoVarInitPattern = 1226 CGM.getContext().getLangOpts().getTrivialAutoVarInit() == 1227 LangOptions::TrivialAutoVarInitKind::Pattern; 1228 if (shouldSplitConstantStore(CGM, ConstantSize)) { 1229 if (auto *STy = dyn_cast<llvm::StructType>(Ty)) { 1230 if (STy == Loc.getElementType() || 1231 (STy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) { 1232 const llvm::StructLayout *Layout = 1233 CGM.getDataLayout().getStructLayout(STy); 1234 for (unsigned i = 0; i != constant->getNumOperands(); i++) { 1235 CharUnits CurOff = 1236 CharUnits::fromQuantity(Layout->getElementOffset(i)); 1237 Address EltPtr = Builder.CreateConstInBoundsByteGEP( 1238 Loc.withElementType(CGM.Int8Ty), CurOff); 1239 emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder, 1240 constant->getAggregateElement(i), IsAutoInit); 1241 } 1242 return; 1243 } 1244 } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) { 1245 if (ATy == Loc.getElementType() || 1246 (ATy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) { 1247 for (unsigned i = 0; i != ATy->getNumElements(); i++) { 1248 Address EltPtr = Builder.CreateConstGEP( 1249 Loc.withElementType(ATy->getElementType()), i); 1250 emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder, 1251 constant->getAggregateElement(i), IsAutoInit); 1252 } 1253 return; 1254 } 1255 } 1256 } 1257 1258 // Copy from a global. 1259 auto *I = 1260 Builder.CreateMemCpy(Loc, 1261 createUnnamedGlobalForMemcpyFrom( 1262 CGM, D, Builder, constant, Loc.getAlignment()), 1263 SizeVal, isVolatile); 1264 if (IsAutoInit) 1265 I->addAnnotationMetadata("auto-init"); 1266 } 1267 1268 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, 1269 Address Loc, bool isVolatile, 1270 CGBuilderTy &Builder) { 1271 llvm::Type *ElTy = Loc.getElementType(); 1272 llvm::Constant *constant = 1273 constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy)); 1274 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1275 /*IsAutoInit=*/true); 1276 } 1277 1278 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, 1279 Address Loc, bool isVolatile, 1280 CGBuilderTy &Builder) { 1281 llvm::Type *ElTy = Loc.getElementType(); 1282 llvm::Constant *constant = constWithPadding( 1283 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1284 assert(!isa<llvm::UndefValue>(constant)); 1285 emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant, 1286 /*IsAutoInit=*/true); 1287 } 1288 1289 static bool containsUndef(llvm::Constant *constant) { 1290 auto *Ty = constant->getType(); 1291 if (isa<llvm::UndefValue>(constant)) 1292 return true; 1293 if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) 1294 for (llvm::Use &Op : constant->operands()) 1295 if (containsUndef(cast<llvm::Constant>(Op))) 1296 return true; 1297 return false; 1298 } 1299 1300 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern, 1301 llvm::Constant *constant) { 1302 auto *Ty = constant->getType(); 1303 if (isa<llvm::UndefValue>(constant)) 1304 return patternOrZeroFor(CGM, isPattern, Ty); 1305 if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) 1306 return constant; 1307 if (!containsUndef(constant)) 1308 return constant; 1309 llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); 1310 for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { 1311 auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); 1312 Values[Op] = replaceUndef(CGM, isPattern, OpValue); 1313 } 1314 if (Ty->isStructTy()) 1315 return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); 1316 if (Ty->isArrayTy()) 1317 return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); 1318 assert(Ty->isVectorTy()); 1319 return llvm::ConstantVector::get(Values); 1320 } 1321 1322 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 1323 /// variable declaration with auto, register, or no storage class specifier. 1324 /// These turn into simple stack objects, or GlobalValues depending on target. 1325 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 1326 AutoVarEmission emission = EmitAutoVarAlloca(D); 1327 EmitAutoVarInit(emission); 1328 EmitAutoVarCleanups(emission); 1329 } 1330 1331 /// Emit a lifetime.begin marker if some criteria are satisfied. 1332 /// \return a pointer to the temporary size Value if a marker was emitted, null 1333 /// otherwise 1334 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size, 1335 llvm::Value *Addr) { 1336 if (!ShouldEmitLifetimeMarkers) 1337 return nullptr; 1338 1339 assert(Addr->getType()->getPointerAddressSpace() == 1340 CGM.getDataLayout().getAllocaAddrSpace() && 1341 "Pointer should be in alloca address space"); 1342 llvm::Value *SizeV = llvm::ConstantInt::get( 1343 Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue()); 1344 llvm::CallInst *C = 1345 Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); 1346 C->setDoesNotThrow(); 1347 return SizeV; 1348 } 1349 1350 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { 1351 assert(Addr->getType()->getPointerAddressSpace() == 1352 CGM.getDataLayout().getAllocaAddrSpace() && 1353 "Pointer should be in alloca address space"); 1354 llvm::CallInst *C = 1355 Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); 1356 C->setDoesNotThrow(); 1357 } 1358 1359 void CodeGenFunction::EmitFakeUse(Address Addr) { 1360 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1361 llvm::Value *V = Builder.CreateLoad(Addr, "fake.use"); 1362 llvm::CallInst *C = Builder.CreateCall(CGM.getLLVMFakeUseFn(), {V}); 1363 C->setDoesNotThrow(); 1364 C->setTailCallKind(llvm::CallInst::TCK_NoTail); 1365 } 1366 1367 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( 1368 CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { 1369 // For each dimension stores its QualType and corresponding 1370 // size-expression Value. 1371 SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; 1372 SmallVector<const IdentifierInfo *, 4> VLAExprNames; 1373 1374 // Break down the array into individual dimensions. 1375 QualType Type1D = D.getType(); 1376 while (getContext().getAsVariableArrayType(Type1D)) { 1377 auto VlaSize = getVLAElements1D(Type1D); 1378 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1379 Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); 1380 else { 1381 // Generate a locally unique name for the size expression. 1382 Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); 1383 SmallString<12> Buffer; 1384 StringRef NameRef = Name.toStringRef(Buffer); 1385 auto &Ident = getContext().Idents.getOwn(NameRef); 1386 VLAExprNames.push_back(&Ident); 1387 auto SizeExprAddr = 1388 CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); 1389 Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); 1390 Dimensions.emplace_back(SizeExprAddr.getPointer(), 1391 Type1D.getUnqualifiedType()); 1392 } 1393 Type1D = VlaSize.Type; 1394 } 1395 1396 if (!EmitDebugInfo) 1397 return; 1398 1399 // Register each dimension's size-expression with a DILocalVariable, 1400 // so that it can be used by CGDebugInfo when instantiating a DISubrange 1401 // to describe this array. 1402 unsigned NameIdx = 0; 1403 for (auto &VlaSize : Dimensions) { 1404 llvm::Metadata *MD; 1405 if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) 1406 MD = llvm::ConstantAsMetadata::get(C); 1407 else { 1408 // Create an artificial VarDecl to generate debug info for. 1409 const IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; 1410 auto QT = getContext().getIntTypeForBitwidth( 1411 SizeTy->getScalarSizeInBits(), false); 1412 auto *ArtificialDecl = VarDecl::Create( 1413 getContext(), const_cast<DeclContext *>(D.getDeclContext()), 1414 D.getLocation(), D.getLocation(), NameIdent, QT, 1415 getContext().CreateTypeSourceInfo(QT), SC_Auto); 1416 ArtificialDecl->setImplicit(); 1417 1418 MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, 1419 Builder); 1420 } 1421 assert(MD && "No Size expression debug node created"); 1422 DI->registerVLASizeExpression(VlaSize.Type, MD); 1423 } 1424 } 1425 1426 /// Return the maximum size of an aggregate for which we generate a fake use 1427 /// intrinsic when -fextend-variable-liveness is in effect. 1428 static uint64_t maxFakeUseAggregateSize(const ASTContext &C) { 1429 return 4 * C.getTypeSize(C.UnsignedIntTy); 1430 } 1431 1432 // Helper function to determine whether a variable's or parameter's lifetime 1433 // should be extended. 1434 static bool shouldExtendLifetime(const ASTContext &Context, 1435 const Decl *FuncDecl, const VarDecl &D, 1436 ImplicitParamDecl *CXXABIThisDecl) { 1437 // When we're not inside a valid function it is unlikely that any 1438 // lifetime extension is useful. 1439 if (!FuncDecl) 1440 return false; 1441 if (FuncDecl->isImplicit()) 1442 return false; 1443 // Do not extend compiler-created variables except for the this pointer. 1444 if (D.isImplicit() && &D != CXXABIThisDecl) 1445 return false; 1446 QualType Ty = D.getType(); 1447 // No need to extend volatiles, they have a memory location. 1448 if (Ty.isVolatileQualified()) 1449 return false; 1450 // Don't extend variables that exceed a certain size. 1451 if (Context.getTypeSize(Ty) > maxFakeUseAggregateSize(Context)) 1452 return false; 1453 // Do not extend variables in nodebug or optnone functions. 1454 if (FuncDecl->hasAttr<NoDebugAttr>() || FuncDecl->hasAttr<OptimizeNoneAttr>()) 1455 return false; 1456 return true; 1457 } 1458 1459 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 1460 /// local variable. Does not emit initialization or destruction. 1461 CodeGenFunction::AutoVarEmission 1462 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 1463 QualType Ty = D.getType(); 1464 assert( 1465 Ty.getAddressSpace() == LangAS::Default || 1466 (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); 1467 1468 AutoVarEmission emission(D); 1469 1470 bool isEscapingByRef = D.isEscapingByref(); 1471 emission.IsEscapingByRef = isEscapingByRef; 1472 1473 CharUnits alignment = getContext().getDeclAlign(&D); 1474 1475 // If the type is variably-modified, emit all the VLA sizes for it. 1476 if (Ty->isVariablyModifiedType()) 1477 EmitVariablyModifiedType(Ty); 1478 1479 auto *DI = getDebugInfo(); 1480 bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo(); 1481 1482 Address address = Address::invalid(); 1483 RawAddress AllocaAddr = RawAddress::invalid(); 1484 Address OpenMPLocalAddr = Address::invalid(); 1485 if (CGM.getLangOpts().OpenMPIRBuilder) 1486 OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D); 1487 else 1488 OpenMPLocalAddr = 1489 getLangOpts().OpenMP 1490 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 1491 : Address::invalid(); 1492 1493 bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable(); 1494 1495 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 1496 address = OpenMPLocalAddr; 1497 AllocaAddr = OpenMPLocalAddr; 1498 } else if (Ty->isConstantSizeType()) { 1499 // If this value is an array or struct with a statically determinable 1500 // constant initializer, there are optimizations we can do. 1501 // 1502 // TODO: We should constant-evaluate the initializer of any variable, 1503 // as long as it is initialized by a constant expression. Currently, 1504 // isConstantInitializer produces wrong answers for structs with 1505 // reference or bitfield members, and a few other cases, and checking 1506 // for POD-ness protects us from some of these. 1507 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && 1508 (D.isConstexpr() || 1509 ((Ty.isPODType(getContext()) || 1510 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 1511 D.getInit()->isConstantInitializer(getContext(), false)))) { 1512 1513 // If the variable's a const type, and it's neither an NRVO 1514 // candidate nor a __block variable and has no mutable members, 1515 // emit it as a global instead. 1516 // Exception is if a variable is located in non-constant address space 1517 // in OpenCL. 1518 bool NeedsDtor = 1519 D.needsDestruction(getContext()) == QualType::DK_cxx_destructor; 1520 if ((!getLangOpts().OpenCL || 1521 Ty.getAddressSpace() == LangAS::opencl_constant) && 1522 (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && 1523 !isEscapingByRef && 1524 Ty.isConstantStorage(getContext(), true, !NeedsDtor))) { 1525 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 1526 1527 // Signal this condition to later callbacks. 1528 emission.Addr = Address::invalid(); 1529 assert(emission.wasEmittedAsGlobal()); 1530 return emission; 1531 } 1532 1533 // Otherwise, tell the initialization code that we're in this case. 1534 emission.IsConstantAggregate = true; 1535 } 1536 1537 // A normal fixed sized variable becomes an alloca in the entry block, 1538 // unless: 1539 // - it's an NRVO variable. 1540 // - we are compiling OpenMP and it's an OpenMP local variable. 1541 if (NRVO) { 1542 // The named return value optimization: allocate this variable in the 1543 // return slot, so that we can elide the copy when returning this 1544 // variable (C++0x [class.copy]p34). 1545 address = ReturnValue; 1546 AllocaAddr = 1547 RawAddress(ReturnValue.emitRawPointer(*this), 1548 ReturnValue.getElementType(), ReturnValue.getAlignment()); 1549 ; 1550 1551 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 1552 const auto *RD = RecordTy->getDecl(); 1553 const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); 1554 if ((CXXRD && !CXXRD->hasTrivialDestructor()) || 1555 RD->isNonTrivialToPrimitiveDestroy()) { 1556 // Create a flag that is used to indicate when the NRVO was applied 1557 // to this variable. Set it to zero to indicate that NRVO was not 1558 // applied. 1559 llvm::Value *Zero = Builder.getFalse(); 1560 RawAddress NRVOFlag = 1561 CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); 1562 EnsureInsertPoint(); 1563 Builder.CreateStore(Zero, NRVOFlag); 1564 1565 // Record the NRVO flag for this variable. 1566 NRVOFlags[&D] = NRVOFlag.getPointer(); 1567 emission.NRVOFlag = NRVOFlag.getPointer(); 1568 } 1569 } 1570 } else { 1571 CharUnits allocaAlignment; 1572 llvm::Type *allocaTy; 1573 if (isEscapingByRef) { 1574 auto &byrefInfo = getBlockByrefInfo(&D); 1575 allocaTy = byrefInfo.Type; 1576 allocaAlignment = byrefInfo.ByrefAlignment; 1577 } else { 1578 allocaTy = ConvertTypeForMem(Ty); 1579 allocaAlignment = alignment; 1580 } 1581 1582 // Create the alloca. Note that we set the name separately from 1583 // building the instruction so that it's there even in no-asserts 1584 // builds. 1585 address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), 1586 /*ArraySize=*/nullptr, &AllocaAddr); 1587 1588 // Don't emit lifetime markers for MSVC catch parameters. The lifetime of 1589 // the catch parameter starts in the catchpad instruction, and we can't 1590 // insert code in those basic blocks. 1591 bool IsMSCatchParam = 1592 D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); 1593 1594 // Emit a lifetime intrinsic if meaningful. There's no point in doing this 1595 // if we don't have a valid insertion point (?). 1596 if (HaveInsertPoint() && !IsMSCatchParam) { 1597 // If there's a jump into the lifetime of this variable, its lifetime 1598 // gets broken up into several regions in IR, which requires more work 1599 // to handle correctly. For now, just omit the intrinsics; this is a 1600 // rare case, and it's better to just be conservatively correct. 1601 // PR28267. 1602 // 1603 // We have to do this in all language modes if there's a jump past the 1604 // declaration. We also have to do it in C if there's a jump to an 1605 // earlier point in the current block because non-VLA lifetimes begin as 1606 // soon as the containing block is entered, not when its variables 1607 // actually come into scope; suppressing the lifetime annotations 1608 // completely in this case is unnecessarily pessimistic, but again, this 1609 // is rare. 1610 if (!Bypasses.IsBypassed(&D) && 1611 !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { 1612 llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy); 1613 emission.SizeForLifetimeMarkers = 1614 EmitLifetimeStart(Size, AllocaAddr.getPointer()); 1615 } 1616 } else { 1617 assert(!emission.useLifetimeMarkers()); 1618 } 1619 } 1620 } else { 1621 EnsureInsertPoint(); 1622 1623 // Delayed globalization for variable length declarations. This ensures that 1624 // the expression representing the length has been emitted and can be used 1625 // by the definition of the VLA. Since this is an escaped declaration, in 1626 // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching 1627 // deallocation call to __kmpc_free_shared() is emitted later. 1628 bool VarAllocated = false; 1629 if (getLangOpts().OpenMPIsTargetDevice) { 1630 auto &RT = CGM.getOpenMPRuntime(); 1631 if (RT.isDelayedVariableLengthDecl(*this, &D)) { 1632 // Emit call to __kmpc_alloc_shared() instead of the alloca. 1633 std::pair<llvm::Value *, llvm::Value *> AddrSizePair = 1634 RT.getKmpcAllocShared(*this, &D); 1635 1636 // Save the address of the allocation: 1637 LValue Base = MakeAddrLValue(AddrSizePair.first, D.getType(), 1638 CGM.getContext().getDeclAlign(&D), 1639 AlignmentSource::Decl); 1640 address = Base.getAddress(); 1641 1642 // Push a cleanup block to emit the call to __kmpc_free_shared in the 1643 // appropriate location at the end of the scope of the 1644 // __kmpc_alloc_shared functions: 1645 pushKmpcAllocFree(NormalCleanup, AddrSizePair); 1646 1647 // Mark variable as allocated: 1648 VarAllocated = true; 1649 } 1650 } 1651 1652 if (!VarAllocated) { 1653 if (!DidCallStackSave) { 1654 // Save the stack. 1655 Address Stack = 1656 CreateDefaultAlignTempAlloca(AllocaInt8PtrTy, "saved_stack"); 1657 1658 llvm::Value *V = Builder.CreateStackSave(); 1659 assert(V->getType() == AllocaInt8PtrTy); 1660 Builder.CreateStore(V, Stack); 1661 1662 DidCallStackSave = true; 1663 1664 // Push a cleanup block and restore the stack there. 1665 // FIXME: in general circumstances, this should be an EH cleanup. 1666 pushStackRestore(NormalCleanup, Stack); 1667 } 1668 1669 auto VlaSize = getVLASize(Ty); 1670 llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); 1671 1672 // Allocate memory for the array. 1673 address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, 1674 &AllocaAddr); 1675 } 1676 1677 // If we have debug info enabled, properly describe the VLA dimensions for 1678 // this type by registering the vla size expression for each of the 1679 // dimensions. 1680 EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); 1681 } 1682 1683 setAddrOfLocalVar(&D, address); 1684 emission.Addr = address; 1685 emission.AllocaAddr = AllocaAddr; 1686 1687 // Emit debug info for local var declaration. 1688 if (EmitDebugInfo && HaveInsertPoint()) { 1689 Address DebugAddr = address; 1690 bool UsePointerValue = NRVO && ReturnValuePointer.isValid(); 1691 DI->setLocation(D.getLocation()); 1692 1693 // If NRVO, use a pointer to the return address. 1694 if (UsePointerValue) { 1695 DebugAddr = ReturnValuePointer; 1696 AllocaAddr = ReturnValuePointer; 1697 } 1698 (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder, 1699 UsePointerValue); 1700 } 1701 1702 if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint()) 1703 EmitVarAnnotations(&D, address.emitRawPointer(*this)); 1704 1705 // Make sure we call @llvm.lifetime.end. 1706 if (emission.useLifetimeMarkers()) 1707 EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, 1708 emission.getOriginalAllocatedAddress(), 1709 emission.getSizeForLifetimeMarkers()); 1710 1711 // Analogous to lifetime markers, we use a 'cleanup' to emit fake.use 1712 // calls for local variables. We are exempting volatile variables and 1713 // non-scalars larger than 4 times the size of an unsigned int. Larger 1714 // non-scalars are often allocated in memory and may create unnecessary 1715 // overhead. 1716 if (CGM.getCodeGenOpts().getExtendVariableLiveness() == 1717 CodeGenOptions::ExtendVariableLivenessKind::All) { 1718 if (shouldExtendLifetime(getContext(), CurCodeDecl, D, CXXABIThisDecl)) 1719 EHStack.pushCleanup<FakeUse>(NormalFakeUse, 1720 emission.getAllocatedAddress()); 1721 } 1722 1723 return emission; 1724 } 1725 1726 static bool isCapturedBy(const VarDecl &, const Expr *); 1727 1728 /// Determines whether the given __block variable is potentially 1729 /// captured by the given statement. 1730 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { 1731 if (const Expr *E = dyn_cast<Expr>(S)) 1732 return isCapturedBy(Var, E); 1733 for (const Stmt *SubStmt : S->children()) 1734 if (isCapturedBy(Var, SubStmt)) 1735 return true; 1736 return false; 1737 } 1738 1739 /// Determines whether the given __block variable is potentially 1740 /// captured by the given expression. 1741 static bool isCapturedBy(const VarDecl &Var, const Expr *E) { 1742 // Skip the most common kinds of expressions that make 1743 // hierarchy-walking expensive. 1744 E = E->IgnoreParenCasts(); 1745 1746 if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { 1747 const BlockDecl *Block = BE->getBlockDecl(); 1748 for (const auto &I : Block->captures()) { 1749 if (I.getVariable() == &Var) 1750 return true; 1751 } 1752 1753 // No need to walk into the subexpressions. 1754 return false; 1755 } 1756 1757 if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { 1758 const CompoundStmt *CS = SE->getSubStmt(); 1759 for (const auto *BI : CS->body()) 1760 if (const auto *BIE = dyn_cast<Expr>(BI)) { 1761 if (isCapturedBy(Var, BIE)) 1762 return true; 1763 } 1764 else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { 1765 // special case declarations 1766 for (const auto *I : DS->decls()) { 1767 if (const auto *VD = dyn_cast<VarDecl>((I))) { 1768 const Expr *Init = VD->getInit(); 1769 if (Init && isCapturedBy(Var, Init)) 1770 return true; 1771 } 1772 } 1773 } 1774 else 1775 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 1776 // Later, provide code to poke into statements for capture analysis. 1777 return true; 1778 return false; 1779 } 1780 1781 for (const Stmt *SubStmt : E->children()) 1782 if (isCapturedBy(Var, SubStmt)) 1783 return true; 1784 1785 return false; 1786 } 1787 1788 /// Determine whether the given initializer is trivial in the sense 1789 /// that it requires no code to be generated. 1790 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { 1791 if (!Init) 1792 return true; 1793 1794 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 1795 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 1796 if (Constructor->isTrivial() && 1797 Constructor->isDefaultConstructor() && 1798 !Construct->requiresZeroInitialization()) 1799 return true; 1800 1801 return false; 1802 } 1803 1804 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type, 1805 const VarDecl &D, 1806 Address Loc) { 1807 auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit(); 1808 auto trivialAutoVarInitMaxSize = 1809 getContext().getLangOpts().TrivialAutoVarInitMaxSize; 1810 CharUnits Size = getContext().getTypeSizeInChars(type); 1811 bool isVolatile = type.isVolatileQualified(); 1812 if (!Size.isZero()) { 1813 // We skip auto-init variables by their alloc size. Take this as an example: 1814 // "struct Foo {int x; char buff[1024];}" Assume the max-size flag is 1023. 1815 // All Foo type variables will be skipped. Ideally, we only skip the buff 1816 // array and still auto-init X in this example. 1817 // TODO: Improve the size filtering to by member size. 1818 auto allocSize = CGM.getDataLayout().getTypeAllocSize(Loc.getElementType()); 1819 switch (trivialAutoVarInit) { 1820 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1821 llvm_unreachable("Uninitialized handled by caller"); 1822 case LangOptions::TrivialAutoVarInitKind::Zero: 1823 if (CGM.stopAutoInit()) 1824 return; 1825 if (trivialAutoVarInitMaxSize > 0 && 1826 allocSize > trivialAutoVarInitMaxSize) 1827 return; 1828 emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); 1829 break; 1830 case LangOptions::TrivialAutoVarInitKind::Pattern: 1831 if (CGM.stopAutoInit()) 1832 return; 1833 if (trivialAutoVarInitMaxSize > 0 && 1834 allocSize > trivialAutoVarInitMaxSize) 1835 return; 1836 emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); 1837 break; 1838 } 1839 return; 1840 } 1841 1842 // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to 1843 // them, so emit a memcpy with the VLA size to initialize each element. 1844 // Technically zero-sized or negative-sized VLAs are undefined, and UBSan 1845 // will catch that code, but there exists code which generates zero-sized 1846 // VLAs. Be nice and initialize whatever they requested. 1847 const auto *VlaType = getContext().getAsVariableArrayType(type); 1848 if (!VlaType) 1849 return; 1850 auto VlaSize = getVLASize(VlaType); 1851 auto SizeVal = VlaSize.NumElts; 1852 CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1853 switch (trivialAutoVarInit) { 1854 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 1855 llvm_unreachable("Uninitialized handled by caller"); 1856 1857 case LangOptions::TrivialAutoVarInitKind::Zero: { 1858 if (CGM.stopAutoInit()) 1859 return; 1860 if (!EltSize.isOne()) 1861 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1862 auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), 1863 SizeVal, isVolatile); 1864 I->addAnnotationMetadata("auto-init"); 1865 break; 1866 } 1867 1868 case LangOptions::TrivialAutoVarInitKind::Pattern: { 1869 if (CGM.stopAutoInit()) 1870 return; 1871 llvm::Type *ElTy = Loc.getElementType(); 1872 llvm::Constant *Constant = constWithPadding( 1873 CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy)); 1874 CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); 1875 llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); 1876 llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); 1877 llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); 1878 llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( 1879 SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), 1880 "vla.iszerosized"); 1881 Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); 1882 EmitBlock(SetupBB); 1883 if (!EltSize.isOne()) 1884 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); 1885 llvm::Value *BaseSizeInChars = 1886 llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); 1887 Address Begin = Loc.withElementType(Int8Ty); 1888 llvm::Value *End = Builder.CreateInBoundsGEP(Begin.getElementType(), 1889 Begin.emitRawPointer(*this), 1890 SizeVal, "vla.end"); 1891 llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); 1892 EmitBlock(LoopBB); 1893 llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); 1894 Cur->addIncoming(Begin.emitRawPointer(*this), OriginBB); 1895 CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); 1896 auto *I = 1897 Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign), 1898 createUnnamedGlobalForMemcpyFrom( 1899 CGM, D, Builder, Constant, ConstantAlign), 1900 BaseSizeInChars, isVolatile); 1901 I->addAnnotationMetadata("auto-init"); 1902 llvm::Value *Next = 1903 Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); 1904 llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); 1905 Builder.CreateCondBr(Done, ContBB, LoopBB); 1906 Cur->addIncoming(Next, LoopBB); 1907 EmitBlock(ContBB); 1908 } break; 1909 } 1910 } 1911 1912 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1913 assert(emission.Variable && "emission was not valid!"); 1914 1915 // If this was emitted as a global constant, we're done. 1916 if (emission.wasEmittedAsGlobal()) return; 1917 1918 const VarDecl &D = *emission.Variable; 1919 auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); 1920 QualType type = D.getType(); 1921 1922 // If this local has an initializer, emit it now. 1923 const Expr *Init = D.getInit(); 1924 1925 // If we are at an unreachable point, we don't need to emit the initializer 1926 // unless it contains a label. 1927 if (!HaveInsertPoint()) { 1928 if (!Init || !ContainsLabel(Init)) { 1929 PGO.markStmtMaybeUsed(Init); 1930 return; 1931 } 1932 EnsureInsertPoint(); 1933 } 1934 1935 // Initialize the structure of a __block variable. 1936 if (emission.IsEscapingByRef) 1937 emitByrefStructureInit(emission); 1938 1939 // Initialize the variable here if it doesn't have a initializer and it is a 1940 // C struct that is non-trivial to initialize or an array containing such a 1941 // struct. 1942 if (!Init && 1943 type.isNonTrivialToPrimitiveDefaultInitialize() == 1944 QualType::PDIK_Struct) { 1945 LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); 1946 if (emission.IsEscapingByRef) 1947 drillIntoBlockVariable(*this, Dst, &D); 1948 defaultInitNonTrivialCStructVar(Dst); 1949 return; 1950 } 1951 1952 // Check whether this is a byref variable that's potentially 1953 // captured and moved by its own initializer. If so, we'll need to 1954 // emit the initializer first, then copy into the variable. 1955 bool capturedByInit = 1956 Init && emission.IsEscapingByRef && isCapturedBy(D, Init); 1957 1958 bool locIsByrefHeader = !capturedByInit; 1959 const Address Loc = 1960 locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr; 1961 1962 auto hasNoTrivialAutoVarInitAttr = [&](const Decl *D) { 1963 return D && D->hasAttr<NoTrivialAutoVarInitAttr>(); 1964 }; 1965 // Note: constexpr already initializes everything correctly. 1966 LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = 1967 ((D.isConstexpr() || D.getAttr<UninitializedAttr>() || 1968 hasNoTrivialAutoVarInitAttr(type->getAsTagDecl()) || 1969 hasNoTrivialAutoVarInitAttr(CurFuncDecl)) 1970 ? LangOptions::TrivialAutoVarInitKind::Uninitialized 1971 : getContext().getLangOpts().getTrivialAutoVarInit()); 1972 1973 auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) { 1974 if (trivialAutoVarInit == 1975 LangOptions::TrivialAutoVarInitKind::Uninitialized) 1976 return; 1977 1978 // Only initialize a __block's storage: we always initialize the header. 1979 if (emission.IsEscapingByRef && !locIsByrefHeader) 1980 Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false); 1981 1982 return emitZeroOrPatternForAutoVarInit(type, D, Loc); 1983 }; 1984 1985 if (isTrivialInitializer(Init)) 1986 return initializeWhatIsTechnicallyUninitialized(Loc); 1987 1988 llvm::Constant *constant = nullptr; 1989 if (emission.IsConstantAggregate || 1990 D.mightBeUsableInConstantExpressions(getContext())) { 1991 assert(!capturedByInit && "constant init contains a capturing block?"); 1992 constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); 1993 if (constant && !constant->isZeroValue() && 1994 (trivialAutoVarInit != 1995 LangOptions::TrivialAutoVarInitKind::Uninitialized)) { 1996 IsPattern isPattern = 1997 (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern) 1998 ? IsPattern::Yes 1999 : IsPattern::No; 2000 // C guarantees that brace-init with fewer initializers than members in 2001 // the aggregate will initialize the rest of the aggregate as-if it were 2002 // static initialization. In turn static initialization guarantees that 2003 // padding is initialized to zero bits. We could instead pattern-init if D 2004 // has any ImplicitValueInitExpr, but that seems to be unintuitive 2005 // behavior. 2006 constant = constWithPadding(CGM, IsPattern::No, 2007 replaceUndef(CGM, isPattern, constant)); 2008 } 2009 2010 if (constant && type->isBitIntType() && 2011 CGM.getTypes().typeRequiresSplitIntoByteArray(type)) { 2012 // Constants for long _BitInt types are split into individual bytes. 2013 // Try to fold these back into an integer constant so it can be stored 2014 // properly. 2015 llvm::Type *LoadType = 2016 CGM.getTypes().convertTypeForLoadStore(type, constant->getType()); 2017 constant = llvm::ConstantFoldLoadFromConst( 2018 constant, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout()); 2019 } 2020 } 2021 2022 if (!constant) { 2023 if (trivialAutoVarInit != 2024 LangOptions::TrivialAutoVarInitKind::Uninitialized) { 2025 // At this point, we know D has an Init expression, but isn't a constant. 2026 // - If D is not a scalar, auto-var-init conservatively (members may be 2027 // left uninitialized by constructor Init expressions for example). 2028 // - If D is a scalar, we only need to auto-var-init if there is a 2029 // self-reference. Otherwise, the Init expression should be sufficient. 2030 // It may be that the Init expression uses other uninitialized memory, 2031 // but auto-var-init here would not help, as auto-init would get 2032 // overwritten by Init. 2033 if (!type->isScalarType() || capturedByInit || isAccessedBy(D, Init)) { 2034 initializeWhatIsTechnicallyUninitialized(Loc); 2035 } 2036 } 2037 LValue lv = MakeAddrLValue(Loc, type); 2038 lv.setNonGC(true); 2039 return EmitExprAsInit(Init, &D, lv, capturedByInit); 2040 } 2041 2042 PGO.markStmtMaybeUsed(Init); 2043 2044 if (!emission.IsConstantAggregate) { 2045 // For simple scalar/complex initialization, store the value directly. 2046 LValue lv = MakeAddrLValue(Loc, type); 2047 lv.setNonGC(true); 2048 return EmitStoreThroughLValue(RValue::get(constant), lv, true); 2049 } 2050 2051 emitStoresForConstant(CGM, D, Loc.withElementType(CGM.Int8Ty), 2052 type.isVolatileQualified(), Builder, constant, 2053 /*IsAutoInit=*/false); 2054 } 2055 2056 /// Emit an expression as an initializer for an object (variable, field, etc.) 2057 /// at the given location. The expression is not necessarily the normal 2058 /// initializer for the object, and the address is not necessarily 2059 /// its normal location. 2060 /// 2061 /// \param init the initializing expression 2062 /// \param D the object to act as if we're initializing 2063 /// \param lvalue the lvalue to initialize 2064 /// \param capturedByInit true if \p D is a __block variable 2065 /// whose address is potentially changed by the initializer 2066 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, 2067 LValue lvalue, bool capturedByInit) { 2068 QualType type = D->getType(); 2069 2070 if (type->isReferenceType()) { 2071 RValue rvalue = EmitReferenceBindingToExpr(init); 2072 if (capturedByInit) 2073 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 2074 EmitStoreThroughLValue(rvalue, lvalue, true); 2075 return; 2076 } 2077 switch (getEvaluationKind(type)) { 2078 case TEK_Scalar: 2079 EmitScalarInit(init, D, lvalue, capturedByInit); 2080 return; 2081 case TEK_Complex: { 2082 ComplexPairTy complex = EmitComplexExpr(init); 2083 if (capturedByInit) 2084 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 2085 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 2086 return; 2087 } 2088 case TEK_Aggregate: 2089 if (type->isAtomicType()) { 2090 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 2091 } else { 2092 AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; 2093 if (isa<VarDecl>(D)) 2094 Overlap = AggValueSlot::DoesNotOverlap; 2095 else if (auto *FD = dyn_cast<FieldDecl>(D)) 2096 Overlap = getOverlapForFieldInit(FD); 2097 // TODO: how can we delay here if D is captured by its initializer? 2098 EmitAggExpr(init, 2099 AggValueSlot::forLValue(lvalue, AggValueSlot::IsDestructed, 2100 AggValueSlot::DoesNotNeedGCBarriers, 2101 AggValueSlot::IsNotAliased, Overlap)); 2102 } 2103 return; 2104 } 2105 llvm_unreachable("bad evaluation kind"); 2106 } 2107 2108 /// Enter a destroy cleanup for the given local variable. 2109 void CodeGenFunction::emitAutoVarTypeCleanup( 2110 const CodeGenFunction::AutoVarEmission &emission, 2111 QualType::DestructionKind dtorKind) { 2112 assert(dtorKind != QualType::DK_none); 2113 2114 // Note that for __block variables, we want to destroy the 2115 // original stack object, not the possibly forwarded object. 2116 Address addr = emission.getObjectAddress(*this); 2117 2118 const VarDecl *var = emission.Variable; 2119 QualType type = var->getType(); 2120 2121 CleanupKind cleanupKind = NormalAndEHCleanup; 2122 CodeGenFunction::Destroyer *destroyer = nullptr; 2123 2124 switch (dtorKind) { 2125 case QualType::DK_none: 2126 llvm_unreachable("no cleanup for trivially-destructible variable"); 2127 2128 case QualType::DK_cxx_destructor: 2129 // If there's an NRVO flag on the emission, we need a different 2130 // cleanup. 2131 if (emission.NRVOFlag) { 2132 assert(!type->isArrayType()); 2133 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 2134 EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor, 2135 emission.NRVOFlag); 2136 return; 2137 } 2138 break; 2139 2140 case QualType::DK_objc_strong_lifetime: 2141 // Suppress cleanups for pseudo-strong variables. 2142 if (var->isARCPseudoStrong()) return; 2143 2144 // Otherwise, consider whether to use an EH cleanup or not. 2145 cleanupKind = getARCCleanupKind(); 2146 2147 // Use the imprecise destroyer by default. 2148 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 2149 destroyer = CodeGenFunction::destroyARCStrongImprecise; 2150 break; 2151 2152 case QualType::DK_objc_weak_lifetime: 2153 break; 2154 2155 case QualType::DK_nontrivial_c_struct: 2156 destroyer = CodeGenFunction::destroyNonTrivialCStruct; 2157 if (emission.NRVOFlag) { 2158 assert(!type->isArrayType()); 2159 EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, 2160 emission.NRVOFlag, type); 2161 return; 2162 } 2163 break; 2164 } 2165 2166 // If we haven't chosen a more specific destroyer, use the default. 2167 if (!destroyer) destroyer = getDestroyer(dtorKind); 2168 2169 // Use an EH cleanup in array destructors iff the destructor itself 2170 // is being pushed as an EH cleanup. 2171 bool useEHCleanup = (cleanupKind & EHCleanup); 2172 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 2173 useEHCleanup); 2174 } 2175 2176 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 2177 assert(emission.Variable && "emission was not valid!"); 2178 2179 // If this was emitted as a global constant, we're done. 2180 if (emission.wasEmittedAsGlobal()) return; 2181 2182 // If we don't have an insertion point, we're done. Sema prevents 2183 // us from jumping into any of these scopes anyway. 2184 if (!HaveInsertPoint()) return; 2185 2186 const VarDecl &D = *emission.Variable; 2187 2188 // Check the type for a cleanup. 2189 if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext())) 2190 emitAutoVarTypeCleanup(emission, dtorKind); 2191 2192 // In GC mode, honor objc_precise_lifetime. 2193 if (getLangOpts().getGC() != LangOptions::NonGC && 2194 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 2195 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 2196 } 2197 2198 // Handle the cleanup attribute. 2199 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 2200 const FunctionDecl *FD = CA->getFunctionDecl(); 2201 2202 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 2203 assert(F && "Could not find function!"); 2204 2205 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 2206 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 2207 } 2208 2209 // If this is a block variable, call _Block_object_destroy 2210 // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC 2211 // mode. 2212 if (emission.IsEscapingByRef && 2213 CGM.getLangOpts().getGC() != LangOptions::GCOnly) { 2214 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; 2215 if (emission.Variable->getType().isObjCGCWeak()) 2216 Flags |= BLOCK_FIELD_IS_WEAK; 2217 enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, 2218 /*LoadBlockVarAddr*/ false, 2219 cxxDestructorCanThrow(emission.Variable->getType())); 2220 } 2221 } 2222 2223 CodeGenFunction::Destroyer * 2224 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 2225 switch (kind) { 2226 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 2227 case QualType::DK_cxx_destructor: 2228 return destroyCXXObject; 2229 case QualType::DK_objc_strong_lifetime: 2230 return destroyARCStrongPrecise; 2231 case QualType::DK_objc_weak_lifetime: 2232 return destroyARCWeak; 2233 case QualType::DK_nontrivial_c_struct: 2234 return destroyNonTrivialCStruct; 2235 } 2236 llvm_unreachable("Unknown DestructionKind"); 2237 } 2238 2239 /// pushEHDestroy - Push the standard destructor for the given type as 2240 /// an EH-only cleanup. 2241 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 2242 Address addr, QualType type) { 2243 assert(dtorKind && "cannot push destructor for trivial type"); 2244 assert(needsEHCleanup(dtorKind)); 2245 2246 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 2247 } 2248 2249 /// pushDestroy - Push the standard destructor for the given type as 2250 /// at least a normal cleanup. 2251 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 2252 Address addr, QualType type) { 2253 assert(dtorKind && "cannot push destructor for trivial type"); 2254 2255 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2256 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 2257 cleanupKind & EHCleanup); 2258 } 2259 2260 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, 2261 QualType type, Destroyer *destroyer, 2262 bool useEHCleanupForArray) { 2263 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 2264 destroyer, useEHCleanupForArray); 2265 } 2266 2267 // Pushes a destroy and defers its deactivation until its 2268 // CleanupDeactivationScope is exited. 2269 void CodeGenFunction::pushDestroyAndDeferDeactivation( 2270 QualType::DestructionKind dtorKind, Address addr, QualType type) { 2271 assert(dtorKind && "cannot push destructor for trivial type"); 2272 2273 CleanupKind cleanupKind = getCleanupKind(dtorKind); 2274 pushDestroyAndDeferDeactivation( 2275 cleanupKind, addr, type, getDestroyer(dtorKind), cleanupKind & EHCleanup); 2276 } 2277 2278 void CodeGenFunction::pushDestroyAndDeferDeactivation( 2279 CleanupKind cleanupKind, Address addr, QualType type, Destroyer *destroyer, 2280 bool useEHCleanupForArray) { 2281 llvm::Instruction *DominatingIP = 2282 Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy)); 2283 pushDestroy(cleanupKind, addr, type, destroyer, useEHCleanupForArray); 2284 DeferredDeactivationCleanupStack.push_back( 2285 {EHStack.stable_begin(), DominatingIP}); 2286 } 2287 2288 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { 2289 EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); 2290 } 2291 2292 void CodeGenFunction::pushKmpcAllocFree( 2293 CleanupKind Kind, std::pair<llvm::Value *, llvm::Value *> AddrSizePair) { 2294 EHStack.pushCleanup<KmpcAllocFree>(Kind, AddrSizePair); 2295 } 2296 2297 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind, 2298 Address addr, QualType type, 2299 Destroyer *destroyer, 2300 bool useEHCleanupForArray) { 2301 // If we're not in a conditional branch, we don't need to bother generating a 2302 // conditional cleanup. 2303 if (!isInConditionalBranch()) { 2304 // FIXME: When popping normal cleanups, we need to keep this EH cleanup 2305 // around in case a temporary's destructor throws an exception. 2306 2307 // Add the cleanup to the EHStack. After the full-expr, this would be 2308 // deactivated before being popped from the stack. 2309 pushDestroyAndDeferDeactivation(cleanupKind, addr, type, destroyer, 2310 useEHCleanupForArray); 2311 2312 // Since this is lifetime-extended, push it once again to the EHStack after 2313 // the full expression. 2314 return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>( 2315 cleanupKind, Address::invalid(), addr, type, destroyer, 2316 useEHCleanupForArray); 2317 } 2318 2319 // Otherwise, we should only destroy the object if it's been initialized. 2320 2321 using ConditionalCleanupType = 2322 EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType, 2323 Destroyer *, bool>; 2324 DominatingValue<Address>::saved_type SavedAddr = saveValueInCond(addr); 2325 2326 // Remember to emit cleanup if we branch-out before end of full-expression 2327 // (eg: through stmt-expr or coro suspensions). 2328 AllocaTrackerRAII DeactivationAllocas(*this); 2329 Address ActiveFlagForDeactivation = createCleanupActiveFlag(); 2330 2331 pushCleanupAndDeferDeactivation<ConditionalCleanupType>( 2332 cleanupKind, SavedAddr, type, destroyer, useEHCleanupForArray); 2333 initFullExprCleanupWithFlag(ActiveFlagForDeactivation); 2334 EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin()); 2335 // Erase the active flag if the cleanup was not emitted. 2336 cleanup.AddAuxAllocas(std::move(DeactivationAllocas).Take()); 2337 2338 // Since this is lifetime-extended, push it once again to the EHStack after 2339 // the full expression. 2340 // The previous active flag would always be 'false' due to forced deferred 2341 // deactivation. Use a separate flag for lifetime-extension to correctly 2342 // remember if this branch was taken and the object was initialized. 2343 Address ActiveFlagForLifetimeExt = createCleanupActiveFlag(); 2344 pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>( 2345 cleanupKind, ActiveFlagForLifetimeExt, SavedAddr, type, destroyer, 2346 useEHCleanupForArray); 2347 } 2348 2349 /// emitDestroy - Immediately perform the destruction of the given 2350 /// object. 2351 /// 2352 /// \param addr - the address of the object; a type* 2353 /// \param type - the type of the object; if an array type, all 2354 /// objects are destroyed in reverse order 2355 /// \param destroyer - the function to call to destroy individual 2356 /// elements 2357 /// \param useEHCleanupForArray - whether an EH cleanup should be 2358 /// used when destroying array elements, in case one of the 2359 /// destructions throws an exception 2360 void CodeGenFunction::emitDestroy(Address addr, QualType type, 2361 Destroyer *destroyer, 2362 bool useEHCleanupForArray) { 2363 const ArrayType *arrayType = getContext().getAsArrayType(type); 2364 if (!arrayType) 2365 return destroyer(*this, addr, type); 2366 2367 llvm::Value *length = emitArrayLength(arrayType, type, addr); 2368 2369 CharUnits elementAlign = 2370 addr.getAlignment() 2371 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 2372 2373 // Normally we have to check whether the array is zero-length. 2374 bool checkZeroLength = true; 2375 2376 // But if the array length is constant, we can suppress that. 2377 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 2378 // ...and if it's constant zero, we can just skip the entire thing. 2379 if (constLength->isZero()) return; 2380 checkZeroLength = false; 2381 } 2382 2383 llvm::Value *begin = addr.emitRawPointer(*this); 2384 llvm::Value *end = 2385 Builder.CreateInBoundsGEP(addr.getElementType(), begin, length); 2386 emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2387 checkZeroLength, useEHCleanupForArray); 2388 } 2389 2390 /// emitArrayDestroy - Destroys all the elements of the given array, 2391 /// beginning from last to first. The array cannot be zero-length. 2392 /// 2393 /// \param begin - a type* denoting the first element of the array 2394 /// \param end - a type* denoting one past the end of the array 2395 /// \param elementType - the element type of the array 2396 /// \param destroyer - the function to call to destroy elements 2397 /// \param useEHCleanup - whether to push an EH cleanup to destroy 2398 /// the remaining elements in case the destruction of a single 2399 /// element throws 2400 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 2401 llvm::Value *end, 2402 QualType elementType, 2403 CharUnits elementAlign, 2404 Destroyer *destroyer, 2405 bool checkZeroLength, 2406 bool useEHCleanup) { 2407 assert(!elementType->isArrayType()); 2408 2409 // The basic structure here is a do-while loop, because we don't 2410 // need to check for the zero-element case. 2411 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 2412 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 2413 2414 if (checkZeroLength) { 2415 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 2416 "arraydestroy.isempty"); 2417 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 2418 } 2419 2420 // Enter the loop body, making that address the current address. 2421 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 2422 EmitBlock(bodyBB); 2423 llvm::PHINode *elementPast = 2424 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 2425 elementPast->addIncoming(end, entryBB); 2426 2427 // Shift the address back by one element. 2428 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 2429 llvm::Type *llvmElementType = ConvertTypeForMem(elementType); 2430 llvm::Value *element = Builder.CreateInBoundsGEP( 2431 llvmElementType, elementPast, negativeOne, "arraydestroy.element"); 2432 2433 if (useEHCleanup) 2434 pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, 2435 destroyer); 2436 2437 // Perform the actual destruction there. 2438 destroyer(*this, Address(element, llvmElementType, elementAlign), 2439 elementType); 2440 2441 if (useEHCleanup) 2442 PopCleanupBlock(); 2443 2444 // Check whether we've reached the end. 2445 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 2446 Builder.CreateCondBr(done, doneBB, bodyBB); 2447 elementPast->addIncoming(element, Builder.GetInsertBlock()); 2448 2449 // Done. 2450 EmitBlock(doneBB); 2451 } 2452 2453 /// Perform partial array destruction as if in an EH cleanup. Unlike 2454 /// emitArrayDestroy, the element type here may still be an array type. 2455 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 2456 llvm::Value *begin, llvm::Value *end, 2457 QualType type, CharUnits elementAlign, 2458 CodeGenFunction::Destroyer *destroyer) { 2459 llvm::Type *elemTy = CGF.ConvertTypeForMem(type); 2460 2461 // If the element type is itself an array, drill down. 2462 unsigned arrayDepth = 0; 2463 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 2464 // VLAs don't require a GEP index to walk into. 2465 if (!isa<VariableArrayType>(arrayType)) 2466 arrayDepth++; 2467 type = arrayType->getElementType(); 2468 } 2469 2470 if (arrayDepth) { 2471 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); 2472 2473 SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); 2474 begin = CGF.Builder.CreateInBoundsGEP( 2475 elemTy, begin, gepIndices, "pad.arraybegin"); 2476 end = CGF.Builder.CreateInBoundsGEP( 2477 elemTy, end, gepIndices, "pad.arrayend"); 2478 } 2479 2480 // Destroy the array. We don't ever need an EH cleanup because we 2481 // assume that we're in an EH cleanup ourselves, so a throwing 2482 // destructor causes an immediate terminate. 2483 CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, 2484 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 2485 } 2486 2487 namespace { 2488 /// RegularPartialArrayDestroy - a cleanup which performs a partial 2489 /// array destroy where the end pointer is regularly determined and 2490 /// does not need to be loaded from a local. 2491 class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2492 llvm::Value *ArrayBegin; 2493 llvm::Value *ArrayEnd; 2494 QualType ElementType; 2495 CodeGenFunction::Destroyer *Destroyer; 2496 CharUnits ElementAlign; 2497 public: 2498 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 2499 QualType elementType, CharUnits elementAlign, 2500 CodeGenFunction::Destroyer *destroyer) 2501 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 2502 ElementType(elementType), Destroyer(destroyer), 2503 ElementAlign(elementAlign) {} 2504 2505 void Emit(CodeGenFunction &CGF, Flags flags) override { 2506 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 2507 ElementType, ElementAlign, Destroyer); 2508 } 2509 }; 2510 2511 /// IrregularPartialArrayDestroy - a cleanup which performs a 2512 /// partial array destroy where the end pointer is irregularly 2513 /// determined and must be loaded from a local. 2514 class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { 2515 llvm::Value *ArrayBegin; 2516 Address ArrayEndPointer; 2517 QualType ElementType; 2518 CodeGenFunction::Destroyer *Destroyer; 2519 CharUnits ElementAlign; 2520 public: 2521 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 2522 Address arrayEndPointer, 2523 QualType elementType, 2524 CharUnits elementAlign, 2525 CodeGenFunction::Destroyer *destroyer) 2526 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 2527 ElementType(elementType), Destroyer(destroyer), 2528 ElementAlign(elementAlign) {} 2529 2530 void Emit(CodeGenFunction &CGF, Flags flags) override { 2531 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 2532 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 2533 ElementType, ElementAlign, Destroyer); 2534 } 2535 }; 2536 } // end anonymous namespace 2537 2538 /// pushIrregularPartialArrayCleanup - Push a NormalAndEHCleanup to 2539 /// destroy already-constructed elements of the given array. The cleanup may be 2540 /// popped with DeactivateCleanupBlock or PopCleanupBlock. 2541 /// 2542 /// \param elementType - the immediate element type of the array; 2543 /// possibly still an array type 2544 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 2545 Address arrayEndPointer, 2546 QualType elementType, 2547 CharUnits elementAlign, 2548 Destroyer *destroyer) { 2549 pushFullExprCleanup<IrregularPartialArrayDestroy>( 2550 NormalAndEHCleanup, arrayBegin, arrayEndPointer, elementType, 2551 elementAlign, destroyer); 2552 } 2553 2554 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 2555 /// already-constructed elements of the given array. The cleanup 2556 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 2557 /// 2558 /// \param elementType - the immediate element type of the array; 2559 /// possibly still an array type 2560 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 2561 llvm::Value *arrayEnd, 2562 QualType elementType, 2563 CharUnits elementAlign, 2564 Destroyer *destroyer) { 2565 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 2566 arrayBegin, arrayEnd, 2567 elementType, elementAlign, 2568 destroyer); 2569 } 2570 2571 /// Lazily declare the @llvm.lifetime.start intrinsic. 2572 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() { 2573 if (LifetimeStartFn) 2574 return LifetimeStartFn; 2575 LifetimeStartFn = llvm::Intrinsic::getOrInsertDeclaration( 2576 &getModule(), llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); 2577 return LifetimeStartFn; 2578 } 2579 2580 /// Lazily declare the @llvm.lifetime.end intrinsic. 2581 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() { 2582 if (LifetimeEndFn) 2583 return LifetimeEndFn; 2584 LifetimeEndFn = llvm::Intrinsic::getOrInsertDeclaration( 2585 &getModule(), llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); 2586 return LifetimeEndFn; 2587 } 2588 2589 /// Lazily declare the @llvm.fake.use intrinsic. 2590 llvm::Function *CodeGenModule::getLLVMFakeUseFn() { 2591 if (FakeUseFn) 2592 return FakeUseFn; 2593 FakeUseFn = llvm::Intrinsic::getOrInsertDeclaration( 2594 &getModule(), llvm::Intrinsic::fake_use); 2595 return FakeUseFn; 2596 } 2597 2598 namespace { 2599 /// A cleanup to perform a release of an object at the end of a 2600 /// function. This is used to balance out the incoming +1 of a 2601 /// ns_consumed argument when we can't reasonably do that just by 2602 /// not doing the initial retain for a __block argument. 2603 struct ConsumeARCParameter final : EHScopeStack::Cleanup { 2604 ConsumeARCParameter(llvm::Value *param, 2605 ARCPreciseLifetime_t precise) 2606 : Param(param), Precise(precise) {} 2607 2608 llvm::Value *Param; 2609 ARCPreciseLifetime_t Precise; 2610 2611 void Emit(CodeGenFunction &CGF, Flags flags) override { 2612 CGF.EmitARCRelease(Param, Precise); 2613 } 2614 }; 2615 } // end anonymous namespace 2616 2617 /// Emit an alloca (or GlobalValue depending on target) 2618 /// for the specified parameter and set up LocalDeclMap. 2619 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, 2620 unsigned ArgNo) { 2621 bool NoDebugInfo = false; 2622 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 2623 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 2624 "Invalid argument to EmitParmDecl"); 2625 2626 // Set the name of the parameter's initial value to make IR easier to 2627 // read. Don't modify the names of globals. 2628 if (!isa<llvm::GlobalValue>(Arg.getAnyValue())) 2629 Arg.getAnyValue()->setName(D.getName()); 2630 2631 QualType Ty = D.getType(); 2632 2633 // Use better IR generation for certain implicit parameters. 2634 if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { 2635 // The only implicit argument a block has is its literal. 2636 // This may be passed as an inalloca'ed value on Windows x86. 2637 if (BlockInfo) { 2638 llvm::Value *V = Arg.isIndirect() 2639 ? Builder.CreateLoad(Arg.getIndirectAddress()) 2640 : Arg.getDirectValue(); 2641 setBlockContextParameter(IPD, ArgNo, V); 2642 return; 2643 } 2644 // Suppressing debug info for ThreadPrivateVar parameters, else it hides 2645 // debug info of TLS variables. 2646 NoDebugInfo = 2647 (IPD->getParameterKind() == ImplicitParamKind::ThreadPrivateVar); 2648 } 2649 2650 Address DeclPtr = Address::invalid(); 2651 RawAddress AllocaPtr = Address::invalid(); 2652 bool DoStore = false; 2653 bool IsScalar = hasScalarEvaluationKind(Ty); 2654 bool UseIndirectDebugAddress = false; 2655 2656 // If we already have a pointer to the argument, reuse the input pointer. 2657 if (Arg.isIndirect()) { 2658 DeclPtr = Arg.getIndirectAddress(); 2659 DeclPtr = DeclPtr.withElementType(ConvertTypeForMem(Ty)); 2660 // Indirect argument is in alloca address space, which may be different 2661 // from the default address space. 2662 auto AllocaAS = CGM.getASTAllocaAddressSpace(); 2663 auto *V = DeclPtr.emitRawPointer(*this); 2664 AllocaPtr = RawAddress(V, DeclPtr.getElementType(), DeclPtr.getAlignment()); 2665 2666 // For truly ABI indirect arguments -- those that are not `byval` -- store 2667 // the address of the argument on the stack to preserve debug information. 2668 ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info; 2669 if (ArgInfo.isIndirect()) 2670 UseIndirectDebugAddress = !ArgInfo.getIndirectByVal(); 2671 if (UseIndirectDebugAddress) { 2672 auto PtrTy = getContext().getPointerType(Ty); 2673 AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy), 2674 D.getName() + ".indirect_addr"); 2675 EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy); 2676 } 2677 2678 auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; 2679 auto DestLangAS = 2680 getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; 2681 if (SrcLangAS != DestLangAS) { 2682 assert(getContext().getTargetAddressSpace(SrcLangAS) == 2683 CGM.getDataLayout().getAllocaAddrSpace()); 2684 auto DestAS = getContext().getTargetAddressSpace(DestLangAS); 2685 auto *T = llvm::PointerType::get(getLLVMContext(), DestAS); 2686 DeclPtr = 2687 DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast( 2688 *this, V, SrcLangAS, DestLangAS, T, true), 2689 DeclPtr.isKnownNonNull()); 2690 } 2691 2692 // Push a destructor cleanup for this parameter if the ABI requires it. 2693 // Don't push a cleanup in a thunk for a method that will also emit a 2694 // cleanup. 2695 if (Ty->isRecordType() && !CurFuncIsThunk && 2696 Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 2697 if (QualType::DestructionKind DtorKind = 2698 D.needsDestruction(getContext())) { 2699 assert((DtorKind == QualType::DK_cxx_destructor || 2700 DtorKind == QualType::DK_nontrivial_c_struct) && 2701 "unexpected destructor type"); 2702 pushDestroy(DtorKind, DeclPtr, Ty); 2703 CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = 2704 EHStack.stable_begin(); 2705 } 2706 } 2707 } else { 2708 // Check if the parameter address is controlled by OpenMP runtime. 2709 Address OpenMPLocalAddr = 2710 getLangOpts().OpenMP 2711 ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) 2712 : Address::invalid(); 2713 if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { 2714 DeclPtr = OpenMPLocalAddr; 2715 AllocaPtr = DeclPtr; 2716 } else { 2717 // Otherwise, create a temporary to hold the value. 2718 DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), 2719 D.getName() + ".addr", &AllocaPtr); 2720 } 2721 DoStore = true; 2722 } 2723 2724 llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); 2725 2726 LValue lv = MakeAddrLValue(DeclPtr, Ty); 2727 if (IsScalar) { 2728 Qualifiers qs = Ty.getQualifiers(); 2729 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 2730 // We honor __attribute__((ns_consumed)) for types with lifetime. 2731 // For __strong, it's handled by just skipping the initial retain; 2732 // otherwise we have to balance out the initial +1 with an extra 2733 // cleanup to do the release at the end of the function. 2734 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 2735 2736 // If a parameter is pseudo-strong then we can omit the implicit retain. 2737 if (D.isARCPseudoStrong()) { 2738 assert(lt == Qualifiers::OCL_Strong && 2739 "pseudo-strong variable isn't strong?"); 2740 assert(qs.hasConst() && "pseudo-strong variable should be const!"); 2741 lt = Qualifiers::OCL_ExplicitNone; 2742 } 2743 2744 // Load objects passed indirectly. 2745 if (Arg.isIndirect() && !ArgVal) 2746 ArgVal = Builder.CreateLoad(DeclPtr); 2747 2748 if (lt == Qualifiers::OCL_Strong) { 2749 if (!isConsumed) { 2750 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 2751 // use objc_storeStrong(&dest, value) for retaining the 2752 // object. But first, store a null into 'dest' because 2753 // objc_storeStrong attempts to release its old value. 2754 llvm::Value *Null = CGM.EmitNullConstant(D.getType()); 2755 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 2756 EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); 2757 DoStore = false; 2758 } 2759 else 2760 // Don't use objc_retainBlock for block pointers, because we 2761 // don't want to Block_copy something just because we got it 2762 // as a parameter. 2763 ArgVal = EmitARCRetainNonBlock(ArgVal); 2764 } 2765 } else { 2766 // Push the cleanup for a consumed parameter. 2767 if (isConsumed) { 2768 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 2769 ? ARCPreciseLifetime : ARCImpreciseLifetime); 2770 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, 2771 precise); 2772 } 2773 2774 if (lt == Qualifiers::OCL_Weak) { 2775 EmitARCInitWeak(DeclPtr, ArgVal); 2776 DoStore = false; // The weak init is a store, no need to do two. 2777 } 2778 } 2779 2780 // Enter the cleanup scope. 2781 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 2782 } 2783 } 2784 2785 // Store the initial value into the alloca. 2786 if (DoStore) 2787 EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); 2788 2789 setAddrOfLocalVar(&D, DeclPtr); 2790 2791 // Push a FakeUse 'cleanup' object onto the EHStack for the parameter, 2792 // which may be the 'this' pointer. This causes the emission of a fake.use 2793 // call with the parameter as argument at the end of the function. 2794 if (CGM.getCodeGenOpts().getExtendVariableLiveness() == 2795 CodeGenOptions::ExtendVariableLivenessKind::All || 2796 (CGM.getCodeGenOpts().getExtendVariableLiveness() == 2797 CodeGenOptions::ExtendVariableLivenessKind::This && 2798 &D == CXXABIThisDecl)) { 2799 if (shouldExtendLifetime(getContext(), CurCodeDecl, D, CXXABIThisDecl)) 2800 EHStack.pushCleanup<FakeUse>(NormalFakeUse, DeclPtr); 2801 } 2802 2803 // Emit debug info for param declarations in non-thunk functions. 2804 if (CGDebugInfo *DI = getDebugInfo()) { 2805 if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk && 2806 !NoDebugInfo) { 2807 llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable( 2808 &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress); 2809 if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D)) 2810 DI->getParamDbgMappings().insert({Var, DILocalVar}); 2811 } 2812 } 2813 2814 if (D.hasAttr<AnnotateAttr>()) 2815 EmitVarAnnotations(&D, DeclPtr.emitRawPointer(*this)); 2816 2817 // We can only check return value nullability if all arguments to the 2818 // function satisfy their nullability preconditions. This makes it necessary 2819 // to emit null checks for args in the function body itself. 2820 if (requiresReturnValueNullabilityCheck()) { 2821 auto Nullability = Ty->getNullability(); 2822 if (Nullability && *Nullability == NullabilityKind::NonNull) { 2823 SanitizerScope SanScope(this); 2824 RetValNullabilityPrecondition = 2825 Builder.CreateAnd(RetValNullabilityPrecondition, 2826 Builder.CreateIsNotNull(Arg.getAnyValue())); 2827 } 2828 } 2829 } 2830 2831 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, 2832 CodeGenFunction *CGF) { 2833 if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) 2834 return; 2835 getOpenMPRuntime().emitUserDefinedReduction(CGF, D); 2836 } 2837 2838 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D, 2839 CodeGenFunction *CGF) { 2840 if (!LangOpts.OpenMP || LangOpts.OpenMPSimd || 2841 (!LangOpts.EmitAllDecls && !D->isUsed())) 2842 return; 2843 getOpenMPRuntime().emitUserDefinedMapper(D, CGF); 2844 } 2845 2846 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { 2847 getOpenMPRuntime().processRequiresDirective(D); 2848 } 2849 2850 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) { 2851 for (const Expr *E : D->varlist()) { 2852 const auto *DE = cast<DeclRefExpr>(E); 2853 const auto *VD = cast<VarDecl>(DE->getDecl()); 2854 2855 // Skip all but globals. 2856 if (!VD->hasGlobalStorage()) 2857 continue; 2858 2859 // Check if the global has been materialized yet or not. If not, we are done 2860 // as any later generation will utilize the OMPAllocateDeclAttr. However, if 2861 // we already emitted the global we might have done so before the 2862 // OMPAllocateDeclAttr was attached, leading to the wrong address space 2863 // (potentially). While not pretty, common practise is to remove the old IR 2864 // global and generate a new one, so we do that here too. Uses are replaced 2865 // properly. 2866 StringRef MangledName = getMangledName(VD); 2867 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2868 if (!Entry) 2869 continue; 2870 2871 // We can also keep the existing global if the address space is what we 2872 // expect it to be, if not, it is replaced. 2873 QualType ASTTy = VD->getType(); 2874 clang::LangAS GVAS = GetGlobalVarAddressSpace(VD); 2875 auto TargetAS = getContext().getTargetAddressSpace(GVAS); 2876 if (Entry->getType()->getAddressSpace() == TargetAS) 2877 continue; 2878 2879 // Make a new global with the correct type / address space. 2880 llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); 2881 llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS); 2882 2883 // Replace all uses of the old global with a cast. Since we mutate the type 2884 // in place we neeed an intermediate that takes the spot of the old entry 2885 // until we can create the cast. 2886 llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable( 2887 getModule(), Entry->getValueType(), false, 2888 llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr, 2889 llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace()); 2890 Entry->replaceAllUsesWith(DummyGV); 2891 2892 Entry->mutateType(PTy); 2893 llvm::Constant *NewPtrForOldDecl = 2894 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 2895 Entry, DummyGV->getType()); 2896 2897 // Now we have a casted version of the changed global, the dummy can be 2898 // replaced and deleted. 2899 DummyGV->replaceAllUsesWith(NewPtrForOldDecl); 2900 DummyGV->eraseFromParent(); 2901 } 2902 } 2903 2904 std::optional<CharUnits> 2905 CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) { 2906 if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) { 2907 if (Expr *Alignment = AA->getAlignment()) { 2908 unsigned UserAlign = 2909 Alignment->EvaluateKnownConstInt(getContext()).getExtValue(); 2910 CharUnits NaturalAlign = 2911 getNaturalTypeAlignment(VD->getType().getNonReferenceType()); 2912 2913 // OpenMP5.1 pg 185 lines 7-10 2914 // Each item in the align modifier list must be aligned to the maximum 2915 // of the specified alignment and the type's natural alignment. 2916 return CharUnits::fromQuantity( 2917 std::max<unsigned>(UserAlign, NaturalAlign.getQuantity())); 2918 } 2919 } 2920 return std::nullopt; 2921 } 2922