xref: /llvm-project/clang/lib/CodeGen/CGDecl.cpp (revision abc8812df02599fc413d9ed77b992f8236ed2af9)
1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Decl nodes as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGBlocks.h"
14 #include "CGCXXABI.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGOpenMPRuntime.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "ConstantEmitter.h"
22 #include "EHScopeStack.h"
23 #include "PatternInit.h"
24 #include "TargetInfo.h"
25 #include "clang/AST/ASTContext.h"
26 #include "clang/AST/Attr.h"
27 #include "clang/AST/CharUnits.h"
28 #include "clang/AST/Decl.h"
29 #include "clang/AST/DeclObjC.h"
30 #include "clang/AST/DeclOpenMP.h"
31 #include "clang/Basic/CodeGenOptions.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/CodeGen/CGFunctionInfo.h"
34 #include "clang/Sema/Sema.h"
35 #include "llvm/Analysis/ConstantFolding.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Type.h"
42 #include <optional>
43 
44 using namespace clang;
45 using namespace CodeGen;
46 
47 static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
48               "Clang max alignment greater than what LLVM supports?");
49 
50 void CodeGenFunction::EmitDecl(const Decl &D) {
51   switch (D.getKind()) {
52   case Decl::BuiltinTemplate:
53   case Decl::TranslationUnit:
54   case Decl::ExternCContext:
55   case Decl::Namespace:
56   case Decl::UnresolvedUsingTypename:
57   case Decl::ClassTemplateSpecialization:
58   case Decl::ClassTemplatePartialSpecialization:
59   case Decl::VarTemplateSpecialization:
60   case Decl::VarTemplatePartialSpecialization:
61   case Decl::TemplateTypeParm:
62   case Decl::UnresolvedUsingValue:
63   case Decl::NonTypeTemplateParm:
64   case Decl::CXXDeductionGuide:
65   case Decl::CXXMethod:
66   case Decl::CXXConstructor:
67   case Decl::CXXDestructor:
68   case Decl::CXXConversion:
69   case Decl::Field:
70   case Decl::MSProperty:
71   case Decl::IndirectField:
72   case Decl::ObjCIvar:
73   case Decl::ObjCAtDefsField:
74   case Decl::ParmVar:
75   case Decl::ImplicitParam:
76   case Decl::ClassTemplate:
77   case Decl::VarTemplate:
78   case Decl::FunctionTemplate:
79   case Decl::TypeAliasTemplate:
80   case Decl::TemplateTemplateParm:
81   case Decl::ObjCMethod:
82   case Decl::ObjCCategory:
83   case Decl::ObjCProtocol:
84   case Decl::ObjCInterface:
85   case Decl::ObjCCategoryImpl:
86   case Decl::ObjCImplementation:
87   case Decl::ObjCProperty:
88   case Decl::ObjCCompatibleAlias:
89   case Decl::PragmaComment:
90   case Decl::PragmaDetectMismatch:
91   case Decl::AccessSpec:
92   case Decl::LinkageSpec:
93   case Decl::Export:
94   case Decl::ObjCPropertyImpl:
95   case Decl::FileScopeAsm:
96   case Decl::TopLevelStmt:
97   case Decl::Friend:
98   case Decl::FriendTemplate:
99   case Decl::Block:
100   case Decl::OutlinedFunction:
101   case Decl::Captured:
102   case Decl::UsingShadow:
103   case Decl::ConstructorUsingShadow:
104   case Decl::ObjCTypeParam:
105   case Decl::Binding:
106   case Decl::UnresolvedUsingIfExists:
107   case Decl::HLSLBuffer:
108     llvm_unreachable("Declaration should not be in declstmts!");
109   case Decl::Record:    // struct/union/class X;
110   case Decl::CXXRecord: // struct/union/class X; [C++]
111     if (CGDebugInfo *DI = getDebugInfo())
112       if (cast<RecordDecl>(D).getDefinition())
113         DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
114     return;
115   case Decl::Enum:      // enum X;
116     if (CGDebugInfo *DI = getDebugInfo())
117       if (cast<EnumDecl>(D).getDefinition())
118         DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
119     return;
120   case Decl::Function:     // void X();
121   case Decl::EnumConstant: // enum ? { X = ? }
122   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
123   case Decl::Label:        // __label__ x;
124   case Decl::Import:
125   case Decl::MSGuid:    // __declspec(uuid("..."))
126   case Decl::UnnamedGlobalConstant:
127   case Decl::TemplateParamObject:
128   case Decl::OMPThreadPrivate:
129   case Decl::OMPAllocate:
130   case Decl::OMPCapturedExpr:
131   case Decl::OMPRequires:
132   case Decl::Empty:
133   case Decl::Concept:
134   case Decl::ImplicitConceptSpecialization:
135   case Decl::LifetimeExtendedTemporary:
136   case Decl::RequiresExprBody:
137     // None of these decls require codegen support.
138     return;
139 
140   case Decl::NamespaceAlias:
141     if (CGDebugInfo *DI = getDebugInfo())
142         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
143     return;
144   case Decl::Using:          // using X; [C++]
145     if (CGDebugInfo *DI = getDebugInfo())
146         DI->EmitUsingDecl(cast<UsingDecl>(D));
147     return;
148   case Decl::UsingEnum: // using enum X; [C++]
149     if (CGDebugInfo *DI = getDebugInfo())
150       DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D));
151     return;
152   case Decl::UsingPack:
153     for (auto *Using : cast<UsingPackDecl>(D).expansions())
154       EmitDecl(*Using);
155     return;
156   case Decl::UsingDirective: // using namespace X; [C++]
157     if (CGDebugInfo *DI = getDebugInfo())
158       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
159     return;
160   case Decl::Var:
161   case Decl::Decomposition: {
162     const VarDecl &VD = cast<VarDecl>(D);
163     assert(VD.isLocalVarDecl() &&
164            "Should not see file-scope variables inside a function!");
165     EmitVarDecl(VD);
166     if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
167       for (auto *B : DD->flat_bindings())
168         if (auto *HD = B->getHoldingVar())
169           EmitVarDecl(*HD);
170 
171     return;
172   }
173 
174   case Decl::OMPDeclareReduction:
175     return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
176 
177   case Decl::OMPDeclareMapper:
178     return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
179 
180   case Decl::Typedef:      // typedef int X;
181   case Decl::TypeAlias: {  // using X = int; [C++0x]
182     QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
183     if (CGDebugInfo *DI = getDebugInfo())
184       DI->EmitAndRetainType(Ty);
185     if (Ty->isVariablyModifiedType())
186       EmitVariablyModifiedType(Ty);
187     return;
188   }
189   }
190 }
191 
192 /// EmitVarDecl - This method handles emission of any variable declaration
193 /// inside a function, including static vars etc.
194 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
195   if (D.hasExternalStorage())
196     // Don't emit it now, allow it to be emitted lazily on its first use.
197     return;
198 
199   // Some function-scope variable does not have static storage but still
200   // needs to be emitted like a static variable, e.g. a function-scope
201   // variable in constant address space in OpenCL.
202   if (D.getStorageDuration() != SD_Automatic) {
203     // Static sampler variables translated to function calls.
204     if (D.getType()->isSamplerT())
205       return;
206 
207     llvm::GlobalValue::LinkageTypes Linkage =
208         CGM.getLLVMLinkageVarDefinition(&D);
209 
210     // FIXME: We need to force the emission/use of a guard variable for
211     // some variables even if we can constant-evaluate them because
212     // we can't guarantee every translation unit will constant-evaluate them.
213 
214     return EmitStaticVarDecl(D, Linkage);
215   }
216 
217   if (D.getType().getAddressSpace() == LangAS::opencl_local)
218     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
219 
220   assert(D.hasLocalStorage());
221   return EmitAutoVarDecl(D);
222 }
223 
224 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
225   if (CGM.getLangOpts().CPlusPlus)
226     return CGM.getMangledName(&D).str();
227 
228   // If this isn't C++, we don't need a mangled name, just a pretty one.
229   assert(!D.isExternallyVisible() && "name shouldn't matter");
230   std::string ContextName;
231   const DeclContext *DC = D.getDeclContext();
232   if (auto *CD = dyn_cast<CapturedDecl>(DC))
233     DC = cast<DeclContext>(CD->getNonClosureContext());
234   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
235     ContextName = std::string(CGM.getMangledName(FD));
236   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
237     ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
238   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
239     ContextName = OMD->getSelector().getAsString();
240   else
241     llvm_unreachable("Unknown context for static var decl");
242 
243   ContextName += "." + D.getNameAsString();
244   return ContextName;
245 }
246 
247 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
248     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
249   // In general, we don't always emit static var decls once before we reference
250   // them. It is possible to reference them before emitting the function that
251   // contains them, and it is possible to emit the containing function multiple
252   // times.
253   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
254     return ExistingGV;
255 
256   QualType Ty = D.getType();
257   assert(Ty->isConstantSizeType() && "VLAs can't be static");
258 
259   // Use the label if the variable is renamed with the asm-label extension.
260   std::string Name;
261   if (D.hasAttr<AsmLabelAttr>())
262     Name = std::string(getMangledName(&D));
263   else
264     Name = getStaticDeclName(*this, D);
265 
266   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
267   LangAS AS = GetGlobalVarAddressSpace(&D);
268   unsigned TargetAS = getContext().getTargetAddressSpace(AS);
269 
270   // OpenCL variables in local address space and CUDA shared
271   // variables cannot have an initializer.
272   llvm::Constant *Init = nullptr;
273   if (Ty.getAddressSpace() == LangAS::opencl_local ||
274       D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
275     Init = llvm::UndefValue::get(LTy);
276   else
277     Init = EmitNullConstant(Ty);
278 
279   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
280       getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
281       nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
282   GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
283 
284   if (supportsCOMDAT() && GV->isWeakForLinker())
285     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
286 
287   if (D.getTLSKind())
288     setTLSMode(GV, D);
289 
290   setGVProperties(GV, &D);
291   getTargetCodeGenInfo().setTargetAttributes(cast<Decl>(&D), GV, *this);
292 
293   // Make sure the result is of the correct type.
294   LangAS ExpectedAS = Ty.getAddressSpace();
295   llvm::Constant *Addr = GV;
296   if (AS != ExpectedAS) {
297     Addr = getTargetCodeGenInfo().performAddrSpaceCast(
298         *this, GV, AS, ExpectedAS,
299         llvm::PointerType::get(getLLVMContext(),
300                                getContext().getTargetAddressSpace(ExpectedAS)));
301   }
302 
303   setStaticLocalDeclAddress(&D, Addr);
304 
305   // Ensure that the static local gets initialized by making sure the parent
306   // function gets emitted eventually.
307   const Decl *DC = cast<Decl>(D.getDeclContext());
308 
309   // We can't name blocks or captured statements directly, so try to emit their
310   // parents.
311   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
312     DC = DC->getNonClosureContext();
313     // FIXME: Ensure that global blocks get emitted.
314     if (!DC)
315       return Addr;
316   }
317 
318   GlobalDecl GD;
319   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
320     GD = GlobalDecl(CD, Ctor_Base);
321   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
322     GD = GlobalDecl(DD, Dtor_Base);
323   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
324     GD = GlobalDecl(FD);
325   else {
326     // Don't do anything for Obj-C method decls or global closures. We should
327     // never defer them.
328     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
329   }
330   if (GD.getDecl()) {
331     // Disable emission of the parent function for the OpenMP device codegen.
332     CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
333     (void)GetAddrOfGlobal(GD);
334   }
335 
336   return Addr;
337 }
338 
339 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
340 /// global variable that has already been created for it.  If the initializer
341 /// has a different type than GV does, this may free GV and return a different
342 /// one.  Otherwise it just returns GV.
343 llvm::GlobalVariable *
344 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
345                                                llvm::GlobalVariable *GV) {
346   ConstantEmitter emitter(*this);
347   llvm::Constant *Init = emitter.tryEmitForInitializer(D);
348 
349   // If constant emission failed, then this should be a C++ static
350   // initializer.
351   if (!Init) {
352     if (!getLangOpts().CPlusPlus)
353       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
354     else if (D.hasFlexibleArrayInit(getContext()))
355       CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
356     else if (HaveInsertPoint()) {
357       // Since we have a static initializer, this global variable can't
358       // be constant.
359       GV->setConstant(false);
360 
361       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
362     }
363     return GV;
364   }
365 
366   PGO.markStmtMaybeUsed(D.getInit()); // FIXME: Too lazy
367 
368 #ifndef NDEBUG
369   CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) +
370                       D.getFlexibleArrayInitChars(getContext());
371   CharUnits CstSize = CharUnits::fromQuantity(
372       CGM.getDataLayout().getTypeAllocSize(Init->getType()));
373   assert(VarSize == CstSize && "Emitted constant has unexpected size");
374 #endif
375 
376   bool NeedsDtor =
377       D.needsDestruction(getContext()) == QualType::DK_cxx_destructor;
378 
379   GV->setConstant(
380       D.getType().isConstantStorage(getContext(), true, !NeedsDtor));
381   GV->replaceInitializer(Init);
382 
383   emitter.finalize(GV);
384 
385   if (NeedsDtor && HaveInsertPoint()) {
386     // We have a constant initializer, but a nontrivial destructor. We still
387     // need to perform a guarded "initialization" in order to register the
388     // destructor.
389     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
390   }
391 
392   return GV;
393 }
394 
395 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
396                                       llvm::GlobalValue::LinkageTypes Linkage) {
397   // Check to see if we already have a global variable for this
398   // declaration.  This can happen when double-emitting function
399   // bodies, e.g. with complete and base constructors.
400   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
401   CharUnits alignment = getContext().getDeclAlign(&D);
402 
403   // Store into LocalDeclMap before generating initializer to handle
404   // circular references.
405   llvm::Type *elemTy = ConvertTypeForMem(D.getType());
406   setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
407 
408   // We can't have a VLA here, but we can have a pointer to a VLA,
409   // even though that doesn't really make any sense.
410   // Make sure to evaluate VLA bounds now so that we have them for later.
411   if (D.getType()->isVariablyModifiedType())
412     EmitVariablyModifiedType(D.getType());
413 
414   // Save the type in case adding the initializer forces a type change.
415   llvm::Type *expectedType = addr->getType();
416 
417   llvm::GlobalVariable *var =
418     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
419 
420   // CUDA's local and local static __shared__ variables should not
421   // have any non-empty initializers. This is ensured by Sema.
422   // Whatever initializer such variable may have when it gets here is
423   // a no-op and should not be emitted.
424   bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
425                          D.hasAttr<CUDASharedAttr>();
426   // If this value has an initializer, emit it.
427   if (D.getInit() && !isCudaSharedVar)
428     var = AddInitializerToStaticVarDecl(D, var);
429 
430   var->setAlignment(alignment.getAsAlign());
431 
432   if (D.hasAttr<AnnotateAttr>())
433     CGM.AddGlobalAnnotations(&D, var);
434 
435   if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
436     var->addAttribute("bss-section", SA->getName());
437   if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
438     var->addAttribute("data-section", SA->getName());
439   if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
440     var->addAttribute("rodata-section", SA->getName());
441   if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
442     var->addAttribute("relro-section", SA->getName());
443 
444   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
445     var->setSection(SA->getName());
446 
447   if (D.hasAttr<RetainAttr>())
448     CGM.addUsedGlobal(var);
449   else if (D.hasAttr<UsedAttr>())
450     CGM.addUsedOrCompilerUsedGlobal(var);
451 
452   if (CGM.getCodeGenOpts().KeepPersistentStorageVariables)
453     CGM.addUsedOrCompilerUsedGlobal(var);
454 
455   // We may have to cast the constant because of the initializer
456   // mismatch above.
457   //
458   // FIXME: It is really dangerous to store this in the map; if anyone
459   // RAUW's the GV uses of this constant will be invalid.
460   llvm::Constant *castedAddr =
461     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
462   LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment);
463   CGM.setStaticLocalDeclAddress(&D, castedAddr);
464 
465   CGM.getSanitizerMetadata()->reportGlobal(var, D);
466 
467   // Emit global variable debug descriptor for static vars.
468   CGDebugInfo *DI = getDebugInfo();
469   if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
470     DI->setLocation(D.getLocation());
471     DI->EmitGlobalVariable(var, &D);
472   }
473 }
474 
475 namespace {
476   struct DestroyObject final : EHScopeStack::Cleanup {
477     DestroyObject(Address addr, QualType type,
478                   CodeGenFunction::Destroyer *destroyer,
479                   bool useEHCleanupForArray)
480       : addr(addr), type(type), destroyer(destroyer),
481         useEHCleanupForArray(useEHCleanupForArray) {}
482 
483     Address addr;
484     QualType type;
485     CodeGenFunction::Destroyer *destroyer;
486     bool useEHCleanupForArray;
487 
488     void Emit(CodeGenFunction &CGF, Flags flags) override {
489       // Don't use an EH cleanup recursively from an EH cleanup.
490       bool useEHCleanupForArray =
491         flags.isForNormalCleanup() && this->useEHCleanupForArray;
492 
493       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
494     }
495   };
496 
497   template <class Derived>
498   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
499     DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
500         : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
501 
502     llvm::Value *NRVOFlag;
503     Address Loc;
504     QualType Ty;
505 
506     void Emit(CodeGenFunction &CGF, Flags flags) override {
507       // Along the exceptions path we always execute the dtor.
508       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
509 
510       llvm::BasicBlock *SkipDtorBB = nullptr;
511       if (NRVO) {
512         // If we exited via NRVO, we skip the destructor call.
513         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
514         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
515         llvm::Value *DidNRVO =
516           CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
517         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
518         CGF.EmitBlock(RunDtorBB);
519       }
520 
521       static_cast<Derived *>(this)->emitDestructorCall(CGF);
522 
523       if (NRVO) CGF.EmitBlock(SkipDtorBB);
524     }
525 
526     virtual ~DestroyNRVOVariable() = default;
527   };
528 
529   struct DestroyNRVOVariableCXX final
530       : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
531     DestroyNRVOVariableCXX(Address addr, QualType type,
532                            const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
533         : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
534           Dtor(Dtor) {}
535 
536     const CXXDestructorDecl *Dtor;
537 
538     void emitDestructorCall(CodeGenFunction &CGF) {
539       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
540                                 /*ForVirtualBase=*/false,
541                                 /*Delegating=*/false, Loc, Ty);
542     }
543   };
544 
545   struct DestroyNRVOVariableC final
546       : DestroyNRVOVariable<DestroyNRVOVariableC> {
547     DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
548         : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
549 
550     void emitDestructorCall(CodeGenFunction &CGF) {
551       CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
552     }
553   };
554 
555   struct CallStackRestore final : EHScopeStack::Cleanup {
556     Address Stack;
557     CallStackRestore(Address Stack) : Stack(Stack) {}
558     bool isRedundantBeforeReturn() override { return true; }
559     void Emit(CodeGenFunction &CGF, Flags flags) override {
560       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
561       CGF.Builder.CreateStackRestore(V);
562     }
563   };
564 
565   struct KmpcAllocFree final : EHScopeStack::Cleanup {
566     std::pair<llvm::Value *, llvm::Value *> AddrSizePair;
567     KmpcAllocFree(const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair)
568         : AddrSizePair(AddrSizePair) {}
569     void Emit(CodeGenFunction &CGF, Flags EmissionFlags) override {
570       auto &RT = CGF.CGM.getOpenMPRuntime();
571       RT.getKmpcFreeShared(CGF, AddrSizePair);
572     }
573   };
574 
575   struct ExtendGCLifetime final : EHScopeStack::Cleanup {
576     const VarDecl &Var;
577     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
578 
579     void Emit(CodeGenFunction &CGF, Flags flags) override {
580       // Compute the address of the local variable, in case it's a
581       // byref or something.
582       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
583                       Var.getType(), VK_LValue, SourceLocation());
584       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
585                                                 SourceLocation());
586       CGF.EmitExtendGCLifetime(value);
587     }
588   };
589 
590   struct CallCleanupFunction final : EHScopeStack::Cleanup {
591     llvm::Constant *CleanupFn;
592     const CGFunctionInfo &FnInfo;
593     const VarDecl &Var;
594 
595     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
596                         const VarDecl *Var)
597       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
598 
599     void Emit(CodeGenFunction &CGF, Flags flags) override {
600       DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
601                       Var.getType(), VK_LValue, SourceLocation());
602       // Compute the address of the local variable, in case it's a byref
603       // or something.
604       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
605 
606       // In some cases, the type of the function argument will be different from
607       // the type of the pointer. An example of this is
608       // void f(void* arg);
609       // __attribute__((cleanup(f))) void *g;
610       //
611       // To fix this we insert a bitcast here.
612       QualType ArgTy = FnInfo.arg_begin()->type;
613       llvm::Value *Arg =
614         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
615 
616       CallArgList Args;
617       Args.add(RValue::get(Arg),
618                CGF.getContext().getPointerType(Var.getType()));
619       auto Callee = CGCallee::forDirect(CleanupFn);
620       CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
621     }
622   };
623 } // end anonymous namespace
624 
625 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
626 /// variable with lifetime.
627 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
628                                     Address addr,
629                                     Qualifiers::ObjCLifetime lifetime) {
630   switch (lifetime) {
631   case Qualifiers::OCL_None:
632     llvm_unreachable("present but none");
633 
634   case Qualifiers::OCL_ExplicitNone:
635     // nothing to do
636     break;
637 
638   case Qualifiers::OCL_Strong: {
639     CodeGenFunction::Destroyer *destroyer =
640       (var.hasAttr<ObjCPreciseLifetimeAttr>()
641        ? CodeGenFunction::destroyARCStrongPrecise
642        : CodeGenFunction::destroyARCStrongImprecise);
643 
644     CleanupKind cleanupKind = CGF.getARCCleanupKind();
645     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
646                     cleanupKind & EHCleanup);
647     break;
648   }
649   case Qualifiers::OCL_Autoreleasing:
650     // nothing to do
651     break;
652 
653   case Qualifiers::OCL_Weak:
654     // __weak objects always get EH cleanups; otherwise, exceptions
655     // could cause really nasty crashes instead of mere leaks.
656     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
657                     CodeGenFunction::destroyARCWeak,
658                     /*useEHCleanup*/ true);
659     break;
660   }
661 }
662 
663 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
664   if (const Expr *e = dyn_cast<Expr>(s)) {
665     // Skip the most common kinds of expressions that make
666     // hierarchy-walking expensive.
667     s = e = e->IgnoreParenCasts();
668 
669     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
670       return (ref->getDecl() == &var);
671     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
672       const BlockDecl *block = be->getBlockDecl();
673       for (const auto &I : block->captures()) {
674         if (I.getVariable() == &var)
675           return true;
676       }
677     }
678   }
679 
680   for (const Stmt *SubStmt : s->children())
681     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
682     if (SubStmt && isAccessedBy(var, SubStmt))
683       return true;
684 
685   return false;
686 }
687 
688 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
689   if (!decl) return false;
690   if (!isa<VarDecl>(decl)) return false;
691   const VarDecl *var = cast<VarDecl>(decl);
692   return isAccessedBy(*var, e);
693 }
694 
695 static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
696                                    const LValue &destLV, const Expr *init) {
697   bool needsCast = false;
698 
699   while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
700     switch (castExpr->getCastKind()) {
701     // Look through casts that don't require representation changes.
702     case CK_NoOp:
703     case CK_BitCast:
704     case CK_BlockPointerToObjCPointerCast:
705       needsCast = true;
706       break;
707 
708     // If we find an l-value to r-value cast from a __weak variable,
709     // emit this operation as a copy or move.
710     case CK_LValueToRValue: {
711       const Expr *srcExpr = castExpr->getSubExpr();
712       if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
713         return false;
714 
715       // Emit the source l-value.
716       LValue srcLV = CGF.EmitLValue(srcExpr);
717 
718       // Handle a formal type change to avoid asserting.
719       auto srcAddr = srcLV.getAddress();
720       if (needsCast) {
721         srcAddr = srcAddr.withElementType(destLV.getAddress().getElementType());
722       }
723 
724       // If it was an l-value, use objc_copyWeak.
725       if (srcExpr->isLValue()) {
726         CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
727       } else {
728         assert(srcExpr->isXValue());
729         CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
730       }
731       return true;
732     }
733 
734     // Stop at anything else.
735     default:
736       return false;
737     }
738 
739     init = castExpr->getSubExpr();
740   }
741   return false;
742 }
743 
744 static void drillIntoBlockVariable(CodeGenFunction &CGF,
745                                    LValue &lvalue,
746                                    const VarDecl *var) {
747   lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
748 }
749 
750 void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
751                                            SourceLocation Loc) {
752   if (!SanOpts.has(SanitizerKind::NullabilityAssign))
753     return;
754 
755   auto Nullability = LHS.getType()->getNullability();
756   if (!Nullability || *Nullability != NullabilityKind::NonNull)
757     return;
758 
759   // Check if the right hand side of the assignment is nonnull, if the left
760   // hand side must be nonnull.
761   SanitizerScope SanScope(this);
762   llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
763   llvm::Constant *StaticData[] = {
764       EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
765       llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
766       llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
767   EmitCheck({{IsNotNull, SanitizerKind::SO_NullabilityAssign}},
768             SanitizerHandler::TypeMismatch, StaticData, RHS);
769 }
770 
771 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
772                                      LValue lvalue, bool capturedByInit) {
773   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
774   if (!lifetime) {
775     llvm::Value *value = EmitScalarExpr(init);
776     if (capturedByInit)
777       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
778     EmitNullabilityCheck(lvalue, value, init->getExprLoc());
779     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
780     return;
781   }
782 
783   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
784     init = DIE->getExpr();
785 
786   // If we're emitting a value with lifetime, we have to do the
787   // initialization *before* we leave the cleanup scopes.
788   if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) {
789     CodeGenFunction::RunCleanupsScope Scope(*this);
790     return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit);
791   }
792 
793   // We have to maintain the illusion that the variable is
794   // zero-initialized.  If the variable might be accessed in its
795   // initializer, zero-initialize before running the initializer, then
796   // actually perform the initialization with an assign.
797   bool accessedByInit = false;
798   if (lifetime != Qualifiers::OCL_ExplicitNone)
799     accessedByInit = (capturedByInit || isAccessedBy(D, init));
800   if (accessedByInit) {
801     LValue tempLV = lvalue;
802     // Drill down to the __block object if necessary.
803     if (capturedByInit) {
804       // We can use a simple GEP for this because it can't have been
805       // moved yet.
806       tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
807                                               cast<VarDecl>(D),
808                                               /*follow*/ false));
809     }
810 
811     auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
812     llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
813 
814     // If __weak, we want to use a barrier under certain conditions.
815     if (lifetime == Qualifiers::OCL_Weak)
816       EmitARCInitWeak(tempLV.getAddress(), zero);
817 
818     // Otherwise just do a simple store.
819     else
820       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
821   }
822 
823   // Emit the initializer.
824   llvm::Value *value = nullptr;
825 
826   switch (lifetime) {
827   case Qualifiers::OCL_None:
828     llvm_unreachable("present but none");
829 
830   case Qualifiers::OCL_Strong: {
831     if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
832       value = EmitARCRetainScalarExpr(init);
833       break;
834     }
835     // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
836     // that we omit the retain, and causes non-autoreleased return values to be
837     // immediately released.
838     [[fallthrough]];
839   }
840 
841   case Qualifiers::OCL_ExplicitNone:
842     value = EmitARCUnsafeUnretainedScalarExpr(init);
843     break;
844 
845   case Qualifiers::OCL_Weak: {
846     // If it's not accessed by the initializer, try to emit the
847     // initialization with a copy or move.
848     if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
849       return;
850     }
851 
852     // No way to optimize a producing initializer into this.  It's not
853     // worth optimizing for, because the value will immediately
854     // disappear in the common case.
855     value = EmitScalarExpr(init);
856 
857     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
858     if (accessedByInit)
859       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
860     else
861       EmitARCInitWeak(lvalue.getAddress(), value);
862     return;
863   }
864 
865   case Qualifiers::OCL_Autoreleasing:
866     value = EmitARCRetainAutoreleaseScalarExpr(init);
867     break;
868   }
869 
870   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
871 
872   EmitNullabilityCheck(lvalue, value, init->getExprLoc());
873 
874   // If the variable might have been accessed by its initializer, we
875   // might have to initialize with a barrier.  We have to do this for
876   // both __weak and __strong, but __weak got filtered out above.
877   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
878     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
879     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
880     EmitARCRelease(oldValue, ARCImpreciseLifetime);
881     return;
882   }
883 
884   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
885 }
886 
887 /// Decide whether we can emit the non-zero parts of the specified initializer
888 /// with equal or fewer than NumStores scalar stores.
889 static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
890                                                unsigned &NumStores) {
891   // Zero and Undef never requires any extra stores.
892   if (isa<llvm::ConstantAggregateZero>(Init) ||
893       isa<llvm::ConstantPointerNull>(Init) ||
894       isa<llvm::UndefValue>(Init))
895     return true;
896   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
897       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
898       isa<llvm::ConstantExpr>(Init))
899     return Init->isNullValue() || NumStores--;
900 
901   // See if we can emit each element.
902   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
903     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
904       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
905       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
906         return false;
907     }
908     return true;
909   }
910 
911   if (llvm::ConstantDataSequential *CDS =
912         dyn_cast<llvm::ConstantDataSequential>(Init)) {
913     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
914       llvm::Constant *Elt = CDS->getElementAsConstant(i);
915       if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
916         return false;
917     }
918     return true;
919   }
920 
921   // Anything else is hard and scary.
922   return false;
923 }
924 
925 /// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
926 /// the scalar stores that would be required.
927 static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
928                                         llvm::Constant *Init, Address Loc,
929                                         bool isVolatile, CGBuilderTy &Builder,
930                                         bool IsAutoInit) {
931   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
932          "called emitStoresForInitAfterBZero for zero or undef value.");
933 
934   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
935       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
936       isa<llvm::ConstantExpr>(Init)) {
937     auto *I = Builder.CreateStore(Init, Loc, isVolatile);
938     if (IsAutoInit)
939       I->addAnnotationMetadata("auto-init");
940     return;
941   }
942 
943   if (llvm::ConstantDataSequential *CDS =
944           dyn_cast<llvm::ConstantDataSequential>(Init)) {
945     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
946       llvm::Constant *Elt = CDS->getElementAsConstant(i);
947 
948       // If necessary, get a pointer to the element and emit it.
949       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
950         emitStoresForInitAfterBZero(
951             CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
952             Builder, IsAutoInit);
953     }
954     return;
955   }
956 
957   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
958          "Unknown value type!");
959 
960   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
961     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
962 
963     // If necessary, get a pointer to the element and emit it.
964     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
965       emitStoresForInitAfterBZero(CGM, Elt,
966                                   Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
967                                   isVolatile, Builder, IsAutoInit);
968   }
969 }
970 
971 /// Decide whether we should use bzero plus some stores to initialize a local
972 /// variable instead of using a memcpy from a constant global.  It is beneficial
973 /// to use bzero if the global is all zeros, or mostly zeros and large.
974 static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
975                                                  uint64_t GlobalSize) {
976   // If a global is all zeros, always use a bzero.
977   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
978 
979   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
980   // do it if it will require 6 or fewer scalar stores.
981   // TODO: Should budget depends on the size?  Avoiding a large global warrants
982   // plopping in more stores.
983   unsigned StoreBudget = 6;
984   uint64_t SizeLimit = 32;
985 
986   return GlobalSize > SizeLimit &&
987          canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
988 }
989 
990 /// Decide whether we should use memset to initialize a local variable instead
991 /// of using a memcpy from a constant global. Assumes we've already decided to
992 /// not user bzero.
993 /// FIXME We could be more clever, as we are for bzero above, and generate
994 ///       memset followed by stores. It's unclear that's worth the effort.
995 static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
996                                                 uint64_t GlobalSize,
997                                                 const llvm::DataLayout &DL) {
998   uint64_t SizeLimit = 32;
999   if (GlobalSize <= SizeLimit)
1000     return nullptr;
1001   return llvm::isBytewiseValue(Init, DL);
1002 }
1003 
1004 /// Decide whether we want to split a constant structure or array store into a
1005 /// sequence of its fields' stores. This may cost us code size and compilation
1006 /// speed, but plays better with store optimizations.
1007 static bool shouldSplitConstantStore(CodeGenModule &CGM,
1008                                      uint64_t GlobalByteSize) {
1009   // Don't break things that occupy more than one cacheline.
1010   uint64_t ByteSizeLimit = 64;
1011   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1012     return false;
1013   if (GlobalByteSize <= ByteSizeLimit)
1014     return true;
1015   return false;
1016 }
1017 
1018 enum class IsPattern { No, Yes };
1019 
1020 /// Generate a constant filled with either a pattern or zeroes.
1021 static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1022                                         llvm::Type *Ty) {
1023   if (isPattern == IsPattern::Yes)
1024     return initializationPatternFor(CGM, Ty);
1025   else
1026     return llvm::Constant::getNullValue(Ty);
1027 }
1028 
1029 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1030                                         llvm::Constant *constant);
1031 
1032 /// Helper function for constWithPadding() to deal with padding in structures.
1033 static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1034                                               IsPattern isPattern,
1035                                               llvm::StructType *STy,
1036                                               llvm::Constant *constant) {
1037   const llvm::DataLayout &DL = CGM.getDataLayout();
1038   const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1039   llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1040   unsigned SizeSoFar = 0;
1041   SmallVector<llvm::Constant *, 8> Values;
1042   bool NestedIntact = true;
1043   for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1044     unsigned CurOff = Layout->getElementOffset(i);
1045     if (SizeSoFar < CurOff) {
1046       assert(!STy->isPacked());
1047       auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1048       Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1049     }
1050     llvm::Constant *CurOp;
1051     if (constant->isZeroValue())
1052       CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1053     else
1054       CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1055     auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1056     if (CurOp != NewOp)
1057       NestedIntact = false;
1058     Values.push_back(NewOp);
1059     SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1060   }
1061   unsigned TotalSize = Layout->getSizeInBytes();
1062   if (SizeSoFar < TotalSize) {
1063     auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1064     Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1065   }
1066   if (NestedIntact && Values.size() == STy->getNumElements())
1067     return constant;
1068   return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1069 }
1070 
1071 /// Replace all padding bytes in a given constant with either a pattern byte or
1072 /// 0x00.
1073 static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1074                                         llvm::Constant *constant) {
1075   llvm::Type *OrigTy = constant->getType();
1076   if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1077     return constStructWithPadding(CGM, isPattern, STy, constant);
1078   if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1079     llvm::SmallVector<llvm::Constant *, 8> Values;
1080     uint64_t Size = ArrayTy->getNumElements();
1081     if (!Size)
1082       return constant;
1083     llvm::Type *ElemTy = ArrayTy->getElementType();
1084     bool ZeroInitializer = constant->isNullValue();
1085     llvm::Constant *OpValue, *PaddedOp;
1086     if (ZeroInitializer) {
1087       OpValue = llvm::Constant::getNullValue(ElemTy);
1088       PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1089     }
1090     for (unsigned Op = 0; Op != Size; ++Op) {
1091       if (!ZeroInitializer) {
1092         OpValue = constant->getAggregateElement(Op);
1093         PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1094       }
1095       Values.push_back(PaddedOp);
1096     }
1097     auto *NewElemTy = Values[0]->getType();
1098     if (NewElemTy == ElemTy)
1099       return constant;
1100     auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1101     return llvm::ConstantArray::get(NewArrayTy, Values);
1102   }
1103   // FIXME: Add handling for tail padding in vectors. Vectors don't
1104   // have padding between or inside elements, but the total amount of
1105   // data can be less than the allocated size.
1106   return constant;
1107 }
1108 
1109 Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1110                                                llvm::Constant *Constant,
1111                                                CharUnits Align) {
1112   auto FunctionName = [&](const DeclContext *DC) -> std::string {
1113     if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1114       if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1115         return CC->getNameAsString();
1116       if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1117         return CD->getNameAsString();
1118       return std::string(getMangledName(FD));
1119     } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1120       return OM->getNameAsString();
1121     } else if (isa<BlockDecl>(DC)) {
1122       return "<block>";
1123     } else if (isa<CapturedDecl>(DC)) {
1124       return "<captured>";
1125     } else {
1126       llvm_unreachable("expected a function or method");
1127     }
1128   };
1129 
1130   // Form a simple per-variable cache of these values in case we find we
1131   // want to reuse them.
1132   llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1133   if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1134     auto *Ty = Constant->getType();
1135     bool isConstant = true;
1136     llvm::GlobalVariable *InsertBefore = nullptr;
1137     unsigned AS =
1138         getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace());
1139     std::string Name;
1140     if (D.hasGlobalStorage())
1141       Name = getMangledName(&D).str() + ".const";
1142     else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1143       Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1144     else
1145       llvm_unreachable("local variable has no parent function or method");
1146     llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1147         getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1148         Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1149     GV->setAlignment(Align.getAsAlign());
1150     GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1151     CacheEntry = GV;
1152   } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) {
1153     CacheEntry->setAlignment(Align.getAsAlign());
1154   }
1155 
1156   return Address(CacheEntry, CacheEntry->getValueType(), Align);
1157 }
1158 
1159 static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1160                                                 const VarDecl &D,
1161                                                 CGBuilderTy &Builder,
1162                                                 llvm::Constant *Constant,
1163                                                 CharUnits Align) {
1164   Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1165   return SrcPtr.withElementType(CGM.Int8Ty);
1166 }
1167 
1168 static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1169                                   Address Loc, bool isVolatile,
1170                                   CGBuilderTy &Builder,
1171                                   llvm::Constant *constant, bool IsAutoInit) {
1172   auto *Ty = constant->getType();
1173   uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1174   if (!ConstantSize)
1175     return;
1176 
1177   bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1178                           Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1179   if (canDoSingleStore) {
1180     auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1181     if (IsAutoInit)
1182       I->addAnnotationMetadata("auto-init");
1183     return;
1184   }
1185 
1186   auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1187 
1188   // If the initializer is all or mostly the same, codegen with bzero / memset
1189   // then do a few stores afterward.
1190   if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1191     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1192                                    SizeVal, isVolatile);
1193     if (IsAutoInit)
1194       I->addAnnotationMetadata("auto-init");
1195 
1196     bool valueAlreadyCorrect =
1197         constant->isNullValue() || isa<llvm::UndefValue>(constant);
1198     if (!valueAlreadyCorrect) {
1199       Loc = Loc.withElementType(Ty);
1200       emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1201                                   IsAutoInit);
1202     }
1203     return;
1204   }
1205 
1206   // If the initializer is a repeated byte pattern, use memset.
1207   llvm::Value *Pattern =
1208       shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1209   if (Pattern) {
1210     uint64_t Value = 0x00;
1211     if (!isa<llvm::UndefValue>(Pattern)) {
1212       const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1213       assert(AP.getBitWidth() <= 8);
1214       Value = AP.getLimitedValue();
1215     }
1216     auto *I = Builder.CreateMemSet(
1217         Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1218     if (IsAutoInit)
1219       I->addAnnotationMetadata("auto-init");
1220     return;
1221   }
1222 
1223   // If the initializer is small or trivialAutoVarInit is set, use a handful of
1224   // stores.
1225   bool IsTrivialAutoVarInitPattern =
1226       CGM.getContext().getLangOpts().getTrivialAutoVarInit() ==
1227       LangOptions::TrivialAutoVarInitKind::Pattern;
1228   if (shouldSplitConstantStore(CGM, ConstantSize)) {
1229     if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1230       if (STy == Loc.getElementType() ||
1231           (STy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) {
1232         const llvm::StructLayout *Layout =
1233             CGM.getDataLayout().getStructLayout(STy);
1234         for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1235           CharUnits CurOff =
1236               CharUnits::fromQuantity(Layout->getElementOffset(i));
1237           Address EltPtr = Builder.CreateConstInBoundsByteGEP(
1238               Loc.withElementType(CGM.Int8Ty), CurOff);
1239           emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1240                                 constant->getAggregateElement(i), IsAutoInit);
1241         }
1242         return;
1243       }
1244     } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1245       if (ATy == Loc.getElementType() ||
1246           (ATy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) {
1247         for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1248           Address EltPtr = Builder.CreateConstGEP(
1249               Loc.withElementType(ATy->getElementType()), i);
1250           emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1251                                 constant->getAggregateElement(i), IsAutoInit);
1252         }
1253         return;
1254       }
1255     }
1256   }
1257 
1258   // Copy from a global.
1259   auto *I =
1260       Builder.CreateMemCpy(Loc,
1261                            createUnnamedGlobalForMemcpyFrom(
1262                                CGM, D, Builder, constant, Loc.getAlignment()),
1263                            SizeVal, isVolatile);
1264   if (IsAutoInit)
1265     I->addAnnotationMetadata("auto-init");
1266 }
1267 
1268 static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1269                                   Address Loc, bool isVolatile,
1270                                   CGBuilderTy &Builder) {
1271   llvm::Type *ElTy = Loc.getElementType();
1272   llvm::Constant *constant =
1273       constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1274   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1275                         /*IsAutoInit=*/true);
1276 }
1277 
1278 static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1279                                      Address Loc, bool isVolatile,
1280                                      CGBuilderTy &Builder) {
1281   llvm::Type *ElTy = Loc.getElementType();
1282   llvm::Constant *constant = constWithPadding(
1283       CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1284   assert(!isa<llvm::UndefValue>(constant));
1285   emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1286                         /*IsAutoInit=*/true);
1287 }
1288 
1289 static bool containsUndef(llvm::Constant *constant) {
1290   auto *Ty = constant->getType();
1291   if (isa<llvm::UndefValue>(constant))
1292     return true;
1293   if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1294     for (llvm::Use &Op : constant->operands())
1295       if (containsUndef(cast<llvm::Constant>(Op)))
1296         return true;
1297   return false;
1298 }
1299 
1300 static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1301                                     llvm::Constant *constant) {
1302   auto *Ty = constant->getType();
1303   if (isa<llvm::UndefValue>(constant))
1304     return patternOrZeroFor(CGM, isPattern, Ty);
1305   if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1306     return constant;
1307   if (!containsUndef(constant))
1308     return constant;
1309   llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1310   for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1311     auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1312     Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1313   }
1314   if (Ty->isStructTy())
1315     return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1316   if (Ty->isArrayTy())
1317     return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1318   assert(Ty->isVectorTy());
1319   return llvm::ConstantVector::get(Values);
1320 }
1321 
1322 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1323 /// variable declaration with auto, register, or no storage class specifier.
1324 /// These turn into simple stack objects, or GlobalValues depending on target.
1325 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1326   AutoVarEmission emission = EmitAutoVarAlloca(D);
1327   EmitAutoVarInit(emission);
1328   EmitAutoVarCleanups(emission);
1329 }
1330 
1331 /// Emit a lifetime.begin marker if some criteria are satisfied.
1332 /// \return a pointer to the temporary size Value if a marker was emitted, null
1333 /// otherwise
1334 llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size,
1335                                                 llvm::Value *Addr) {
1336   if (!ShouldEmitLifetimeMarkers)
1337     return nullptr;
1338 
1339   assert(Addr->getType()->getPointerAddressSpace() ==
1340              CGM.getDataLayout().getAllocaAddrSpace() &&
1341          "Pointer should be in alloca address space");
1342   llvm::Value *SizeV = llvm::ConstantInt::get(
1343       Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue());
1344   llvm::CallInst *C =
1345       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1346   C->setDoesNotThrow();
1347   return SizeV;
1348 }
1349 
1350 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1351   assert(Addr->getType()->getPointerAddressSpace() ==
1352              CGM.getDataLayout().getAllocaAddrSpace() &&
1353          "Pointer should be in alloca address space");
1354   llvm::CallInst *C =
1355       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1356   C->setDoesNotThrow();
1357 }
1358 
1359 void CodeGenFunction::EmitFakeUse(Address Addr) {
1360   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1361   llvm::Value *V = Builder.CreateLoad(Addr, "fake.use");
1362   llvm::CallInst *C = Builder.CreateCall(CGM.getLLVMFakeUseFn(), {V});
1363   C->setDoesNotThrow();
1364   C->setTailCallKind(llvm::CallInst::TCK_NoTail);
1365 }
1366 
1367 void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1368     CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1369   // For each dimension stores its QualType and corresponding
1370   // size-expression Value.
1371   SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1372   SmallVector<const IdentifierInfo *, 4> VLAExprNames;
1373 
1374   // Break down the array into individual dimensions.
1375   QualType Type1D = D.getType();
1376   while (getContext().getAsVariableArrayType(Type1D)) {
1377     auto VlaSize = getVLAElements1D(Type1D);
1378     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1379       Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1380     else {
1381       // Generate a locally unique name for the size expression.
1382       Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1383       SmallString<12> Buffer;
1384       StringRef NameRef = Name.toStringRef(Buffer);
1385       auto &Ident = getContext().Idents.getOwn(NameRef);
1386       VLAExprNames.push_back(&Ident);
1387       auto SizeExprAddr =
1388           CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1389       Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1390       Dimensions.emplace_back(SizeExprAddr.getPointer(),
1391                               Type1D.getUnqualifiedType());
1392     }
1393     Type1D = VlaSize.Type;
1394   }
1395 
1396   if (!EmitDebugInfo)
1397     return;
1398 
1399   // Register each dimension's size-expression with a DILocalVariable,
1400   // so that it can be used by CGDebugInfo when instantiating a DISubrange
1401   // to describe this array.
1402   unsigned NameIdx = 0;
1403   for (auto &VlaSize : Dimensions) {
1404     llvm::Metadata *MD;
1405     if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1406       MD = llvm::ConstantAsMetadata::get(C);
1407     else {
1408       // Create an artificial VarDecl to generate debug info for.
1409       const IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1410       auto QT = getContext().getIntTypeForBitwidth(
1411           SizeTy->getScalarSizeInBits(), false);
1412       auto *ArtificialDecl = VarDecl::Create(
1413           getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1414           D.getLocation(), D.getLocation(), NameIdent, QT,
1415           getContext().CreateTypeSourceInfo(QT), SC_Auto);
1416       ArtificialDecl->setImplicit();
1417 
1418       MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1419                                          Builder);
1420     }
1421     assert(MD && "No Size expression debug node created");
1422     DI->registerVLASizeExpression(VlaSize.Type, MD);
1423   }
1424 }
1425 
1426 /// Return the maximum size of an aggregate for which we generate a fake use
1427 /// intrinsic when -fextend-variable-liveness is in effect.
1428 static uint64_t maxFakeUseAggregateSize(const ASTContext &C) {
1429   return 4 * C.getTypeSize(C.UnsignedIntTy);
1430 }
1431 
1432 // Helper function to determine whether a variable's or parameter's lifetime
1433 // should be extended.
1434 static bool shouldExtendLifetime(const ASTContext &Context,
1435                                  const Decl *FuncDecl, const VarDecl &D,
1436                                  ImplicitParamDecl *CXXABIThisDecl) {
1437   // When we're not inside a valid function it is unlikely that any
1438   // lifetime extension is useful.
1439   if (!FuncDecl)
1440     return false;
1441   if (FuncDecl->isImplicit())
1442     return false;
1443   // Do not extend compiler-created variables except for the this pointer.
1444   if (D.isImplicit() && &D != CXXABIThisDecl)
1445     return false;
1446   QualType Ty = D.getType();
1447   // No need to extend volatiles, they have a memory location.
1448   if (Ty.isVolatileQualified())
1449     return false;
1450   // Don't extend variables that exceed a certain size.
1451   if (Context.getTypeSize(Ty) > maxFakeUseAggregateSize(Context))
1452     return false;
1453   // Do not extend variables in nodebug or optnone functions.
1454   if (FuncDecl->hasAttr<NoDebugAttr>() || FuncDecl->hasAttr<OptimizeNoneAttr>())
1455     return false;
1456   return true;
1457 }
1458 
1459 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
1460 /// local variable.  Does not emit initialization or destruction.
1461 CodeGenFunction::AutoVarEmission
1462 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1463   QualType Ty = D.getType();
1464   assert(
1465       Ty.getAddressSpace() == LangAS::Default ||
1466       (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1467 
1468   AutoVarEmission emission(D);
1469 
1470   bool isEscapingByRef = D.isEscapingByref();
1471   emission.IsEscapingByRef = isEscapingByRef;
1472 
1473   CharUnits alignment = getContext().getDeclAlign(&D);
1474 
1475   // If the type is variably-modified, emit all the VLA sizes for it.
1476   if (Ty->isVariablyModifiedType())
1477     EmitVariablyModifiedType(Ty);
1478 
1479   auto *DI = getDebugInfo();
1480   bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1481 
1482   Address address = Address::invalid();
1483   RawAddress AllocaAddr = RawAddress::invalid();
1484   Address OpenMPLocalAddr = Address::invalid();
1485   if (CGM.getLangOpts().OpenMPIRBuilder)
1486     OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1487   else
1488     OpenMPLocalAddr =
1489         getLangOpts().OpenMP
1490             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1491             : Address::invalid();
1492 
1493   bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1494 
1495   if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1496     address = OpenMPLocalAddr;
1497     AllocaAddr = OpenMPLocalAddr;
1498   } else if (Ty->isConstantSizeType()) {
1499     // If this value is an array or struct with a statically determinable
1500     // constant initializer, there are optimizations we can do.
1501     //
1502     // TODO: We should constant-evaluate the initializer of any variable,
1503     // as long as it is initialized by a constant expression. Currently,
1504     // isConstantInitializer produces wrong answers for structs with
1505     // reference or bitfield members, and a few other cases, and checking
1506     // for POD-ness protects us from some of these.
1507     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1508         (D.isConstexpr() ||
1509          ((Ty.isPODType(getContext()) ||
1510            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1511           D.getInit()->isConstantInitializer(getContext(), false)))) {
1512 
1513       // If the variable's a const type, and it's neither an NRVO
1514       // candidate nor a __block variable and has no mutable members,
1515       // emit it as a global instead.
1516       // Exception is if a variable is located in non-constant address space
1517       // in OpenCL.
1518       bool NeedsDtor =
1519           D.needsDestruction(getContext()) == QualType::DK_cxx_destructor;
1520       if ((!getLangOpts().OpenCL ||
1521            Ty.getAddressSpace() == LangAS::opencl_constant) &&
1522           (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1523            !isEscapingByRef &&
1524            Ty.isConstantStorage(getContext(), true, !NeedsDtor))) {
1525         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1526 
1527         // Signal this condition to later callbacks.
1528         emission.Addr = Address::invalid();
1529         assert(emission.wasEmittedAsGlobal());
1530         return emission;
1531       }
1532 
1533       // Otherwise, tell the initialization code that we're in this case.
1534       emission.IsConstantAggregate = true;
1535     }
1536 
1537     // A normal fixed sized variable becomes an alloca in the entry block,
1538     // unless:
1539     // - it's an NRVO variable.
1540     // - we are compiling OpenMP and it's an OpenMP local variable.
1541     if (NRVO) {
1542       // The named return value optimization: allocate this variable in the
1543       // return slot, so that we can elide the copy when returning this
1544       // variable (C++0x [class.copy]p34).
1545       address = ReturnValue;
1546       AllocaAddr =
1547           RawAddress(ReturnValue.emitRawPointer(*this),
1548                      ReturnValue.getElementType(), ReturnValue.getAlignment());
1549       ;
1550 
1551       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1552         const auto *RD = RecordTy->getDecl();
1553         const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1554         if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1555             RD->isNonTrivialToPrimitiveDestroy()) {
1556           // Create a flag that is used to indicate when the NRVO was applied
1557           // to this variable. Set it to zero to indicate that NRVO was not
1558           // applied.
1559           llvm::Value *Zero = Builder.getFalse();
1560           RawAddress NRVOFlag =
1561               CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1562           EnsureInsertPoint();
1563           Builder.CreateStore(Zero, NRVOFlag);
1564 
1565           // Record the NRVO flag for this variable.
1566           NRVOFlags[&D] = NRVOFlag.getPointer();
1567           emission.NRVOFlag = NRVOFlag.getPointer();
1568         }
1569       }
1570     } else {
1571       CharUnits allocaAlignment;
1572       llvm::Type *allocaTy;
1573       if (isEscapingByRef) {
1574         auto &byrefInfo = getBlockByrefInfo(&D);
1575         allocaTy = byrefInfo.Type;
1576         allocaAlignment = byrefInfo.ByrefAlignment;
1577       } else {
1578         allocaTy = ConvertTypeForMem(Ty);
1579         allocaAlignment = alignment;
1580       }
1581 
1582       // Create the alloca.  Note that we set the name separately from
1583       // building the instruction so that it's there even in no-asserts
1584       // builds.
1585       address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1586                                  /*ArraySize=*/nullptr, &AllocaAddr);
1587 
1588       // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1589       // the catch parameter starts in the catchpad instruction, and we can't
1590       // insert code in those basic blocks.
1591       bool IsMSCatchParam =
1592           D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1593 
1594       // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1595       // if we don't have a valid insertion point (?).
1596       if (HaveInsertPoint() && !IsMSCatchParam) {
1597         // If there's a jump into the lifetime of this variable, its lifetime
1598         // gets broken up into several regions in IR, which requires more work
1599         // to handle correctly. For now, just omit the intrinsics; this is a
1600         // rare case, and it's better to just be conservatively correct.
1601         // PR28267.
1602         //
1603         // We have to do this in all language modes if there's a jump past the
1604         // declaration. We also have to do it in C if there's a jump to an
1605         // earlier point in the current block because non-VLA lifetimes begin as
1606         // soon as the containing block is entered, not when its variables
1607         // actually come into scope; suppressing the lifetime annotations
1608         // completely in this case is unnecessarily pessimistic, but again, this
1609         // is rare.
1610         if (!Bypasses.IsBypassed(&D) &&
1611             !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1612           llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1613           emission.SizeForLifetimeMarkers =
1614               EmitLifetimeStart(Size, AllocaAddr.getPointer());
1615         }
1616       } else {
1617         assert(!emission.useLifetimeMarkers());
1618       }
1619     }
1620   } else {
1621     EnsureInsertPoint();
1622 
1623     // Delayed globalization for variable length declarations. This ensures that
1624     // the expression representing the length has been emitted and can be used
1625     // by the definition of the VLA. Since this is an escaped declaration, in
1626     // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching
1627     // deallocation call to __kmpc_free_shared() is emitted later.
1628     bool VarAllocated = false;
1629     if (getLangOpts().OpenMPIsTargetDevice) {
1630       auto &RT = CGM.getOpenMPRuntime();
1631       if (RT.isDelayedVariableLengthDecl(*this, &D)) {
1632         // Emit call to __kmpc_alloc_shared() instead of the alloca.
1633         std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1634             RT.getKmpcAllocShared(*this, &D);
1635 
1636         // Save the address of the allocation:
1637         LValue Base = MakeAddrLValue(AddrSizePair.first, D.getType(),
1638                                      CGM.getContext().getDeclAlign(&D),
1639                                      AlignmentSource::Decl);
1640         address = Base.getAddress();
1641 
1642         // Push a cleanup block to emit the call to __kmpc_free_shared in the
1643         // appropriate location at the end of the scope of the
1644         // __kmpc_alloc_shared functions:
1645         pushKmpcAllocFree(NormalCleanup, AddrSizePair);
1646 
1647         // Mark variable as allocated:
1648         VarAllocated = true;
1649       }
1650     }
1651 
1652     if (!VarAllocated) {
1653       if (!DidCallStackSave) {
1654         // Save the stack.
1655         Address Stack =
1656             CreateDefaultAlignTempAlloca(AllocaInt8PtrTy, "saved_stack");
1657 
1658         llvm::Value *V = Builder.CreateStackSave();
1659         assert(V->getType() == AllocaInt8PtrTy);
1660         Builder.CreateStore(V, Stack);
1661 
1662         DidCallStackSave = true;
1663 
1664         // Push a cleanup block and restore the stack there.
1665         // FIXME: in general circumstances, this should be an EH cleanup.
1666         pushStackRestore(NormalCleanup, Stack);
1667       }
1668 
1669       auto VlaSize = getVLASize(Ty);
1670       llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1671 
1672       // Allocate memory for the array.
1673       address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1674                                  &AllocaAddr);
1675     }
1676 
1677     // If we have debug info enabled, properly describe the VLA dimensions for
1678     // this type by registering the vla size expression for each of the
1679     // dimensions.
1680     EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1681   }
1682 
1683   setAddrOfLocalVar(&D, address);
1684   emission.Addr = address;
1685   emission.AllocaAddr = AllocaAddr;
1686 
1687   // Emit debug info for local var declaration.
1688   if (EmitDebugInfo && HaveInsertPoint()) {
1689     Address DebugAddr = address;
1690     bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1691     DI->setLocation(D.getLocation());
1692 
1693     // If NRVO, use a pointer to the return address.
1694     if (UsePointerValue) {
1695       DebugAddr = ReturnValuePointer;
1696       AllocaAddr = ReturnValuePointer;
1697     }
1698     (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder,
1699                                         UsePointerValue);
1700   }
1701 
1702   if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1703     EmitVarAnnotations(&D, address.emitRawPointer(*this));
1704 
1705   // Make sure we call @llvm.lifetime.end.
1706   if (emission.useLifetimeMarkers())
1707     EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1708                                          emission.getOriginalAllocatedAddress(),
1709                                          emission.getSizeForLifetimeMarkers());
1710 
1711   // Analogous to lifetime markers, we use a 'cleanup' to emit fake.use
1712   // calls for local variables. We are exempting volatile variables and
1713   // non-scalars larger than 4 times the size of an unsigned int. Larger
1714   // non-scalars are often allocated in memory and may create unnecessary
1715   // overhead.
1716   if (CGM.getCodeGenOpts().getExtendVariableLiveness() ==
1717       CodeGenOptions::ExtendVariableLivenessKind::All) {
1718     if (shouldExtendLifetime(getContext(), CurCodeDecl, D, CXXABIThisDecl))
1719       EHStack.pushCleanup<FakeUse>(NormalFakeUse,
1720                                    emission.getAllocatedAddress());
1721   }
1722 
1723   return emission;
1724 }
1725 
1726 static bool isCapturedBy(const VarDecl &, const Expr *);
1727 
1728 /// Determines whether the given __block variable is potentially
1729 /// captured by the given statement.
1730 static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1731   if (const Expr *E = dyn_cast<Expr>(S))
1732     return isCapturedBy(Var, E);
1733   for (const Stmt *SubStmt : S->children())
1734     if (isCapturedBy(Var, SubStmt))
1735       return true;
1736   return false;
1737 }
1738 
1739 /// Determines whether the given __block variable is potentially
1740 /// captured by the given expression.
1741 static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1742   // Skip the most common kinds of expressions that make
1743   // hierarchy-walking expensive.
1744   E = E->IgnoreParenCasts();
1745 
1746   if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1747     const BlockDecl *Block = BE->getBlockDecl();
1748     for (const auto &I : Block->captures()) {
1749       if (I.getVariable() == &Var)
1750         return true;
1751     }
1752 
1753     // No need to walk into the subexpressions.
1754     return false;
1755   }
1756 
1757   if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1758     const CompoundStmt *CS = SE->getSubStmt();
1759     for (const auto *BI : CS->body())
1760       if (const auto *BIE = dyn_cast<Expr>(BI)) {
1761         if (isCapturedBy(Var, BIE))
1762           return true;
1763       }
1764       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1765           // special case declarations
1766           for (const auto *I : DS->decls()) {
1767               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1768                 const Expr *Init = VD->getInit();
1769                 if (Init && isCapturedBy(Var, Init))
1770                   return true;
1771               }
1772           }
1773       }
1774       else
1775         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1776         // Later, provide code to poke into statements for capture analysis.
1777         return true;
1778     return false;
1779   }
1780 
1781   for (const Stmt *SubStmt : E->children())
1782     if (isCapturedBy(Var, SubStmt))
1783       return true;
1784 
1785   return false;
1786 }
1787 
1788 /// Determine whether the given initializer is trivial in the sense
1789 /// that it requires no code to be generated.
1790 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1791   if (!Init)
1792     return true;
1793 
1794   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1795     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1796       if (Constructor->isTrivial() &&
1797           Constructor->isDefaultConstructor() &&
1798           !Construct->requiresZeroInitialization())
1799         return true;
1800 
1801   return false;
1802 }
1803 
1804 void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1805                                                       const VarDecl &D,
1806                                                       Address Loc) {
1807   auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1808   auto trivialAutoVarInitMaxSize =
1809       getContext().getLangOpts().TrivialAutoVarInitMaxSize;
1810   CharUnits Size = getContext().getTypeSizeInChars(type);
1811   bool isVolatile = type.isVolatileQualified();
1812   if (!Size.isZero()) {
1813     // We skip auto-init variables by their alloc size. Take this as an example:
1814     // "struct Foo {int x; char buff[1024];}" Assume the max-size flag is 1023.
1815     // All Foo type variables will be skipped. Ideally, we only skip the buff
1816     // array and still auto-init X in this example.
1817     // TODO: Improve the size filtering to by member size.
1818     auto allocSize = CGM.getDataLayout().getTypeAllocSize(Loc.getElementType());
1819     switch (trivialAutoVarInit) {
1820     case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1821       llvm_unreachable("Uninitialized handled by caller");
1822     case LangOptions::TrivialAutoVarInitKind::Zero:
1823       if (CGM.stopAutoInit())
1824         return;
1825       if (trivialAutoVarInitMaxSize > 0 &&
1826           allocSize > trivialAutoVarInitMaxSize)
1827         return;
1828       emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1829       break;
1830     case LangOptions::TrivialAutoVarInitKind::Pattern:
1831       if (CGM.stopAutoInit())
1832         return;
1833       if (trivialAutoVarInitMaxSize > 0 &&
1834           allocSize > trivialAutoVarInitMaxSize)
1835         return;
1836       emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1837       break;
1838     }
1839     return;
1840   }
1841 
1842   // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1843   // them, so emit a memcpy with the VLA size to initialize each element.
1844   // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1845   // will catch that code, but there exists code which generates zero-sized
1846   // VLAs. Be nice and initialize whatever they requested.
1847   const auto *VlaType = getContext().getAsVariableArrayType(type);
1848   if (!VlaType)
1849     return;
1850   auto VlaSize = getVLASize(VlaType);
1851   auto SizeVal = VlaSize.NumElts;
1852   CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1853   switch (trivialAutoVarInit) {
1854   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1855     llvm_unreachable("Uninitialized handled by caller");
1856 
1857   case LangOptions::TrivialAutoVarInitKind::Zero: {
1858     if (CGM.stopAutoInit())
1859       return;
1860     if (!EltSize.isOne())
1861       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1862     auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1863                                    SizeVal, isVolatile);
1864     I->addAnnotationMetadata("auto-init");
1865     break;
1866   }
1867 
1868   case LangOptions::TrivialAutoVarInitKind::Pattern: {
1869     if (CGM.stopAutoInit())
1870       return;
1871     llvm::Type *ElTy = Loc.getElementType();
1872     llvm::Constant *Constant = constWithPadding(
1873         CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1874     CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1875     llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1876     llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1877     llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1878     llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1879         SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1880         "vla.iszerosized");
1881     Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1882     EmitBlock(SetupBB);
1883     if (!EltSize.isOne())
1884       SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1885     llvm::Value *BaseSizeInChars =
1886         llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1887     Address Begin = Loc.withElementType(Int8Ty);
1888     llvm::Value *End = Builder.CreateInBoundsGEP(Begin.getElementType(),
1889                                                  Begin.emitRawPointer(*this),
1890                                                  SizeVal, "vla.end");
1891     llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1892     EmitBlock(LoopBB);
1893     llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1894     Cur->addIncoming(Begin.emitRawPointer(*this), OriginBB);
1895     CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1896     auto *I =
1897         Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign),
1898                              createUnnamedGlobalForMemcpyFrom(
1899                                  CGM, D, Builder, Constant, ConstantAlign),
1900                              BaseSizeInChars, isVolatile);
1901     I->addAnnotationMetadata("auto-init");
1902     llvm::Value *Next =
1903         Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1904     llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1905     Builder.CreateCondBr(Done, ContBB, LoopBB);
1906     Cur->addIncoming(Next, LoopBB);
1907     EmitBlock(ContBB);
1908   } break;
1909   }
1910 }
1911 
1912 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1913   assert(emission.Variable && "emission was not valid!");
1914 
1915   // If this was emitted as a global constant, we're done.
1916   if (emission.wasEmittedAsGlobal()) return;
1917 
1918   const VarDecl &D = *emission.Variable;
1919   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1920   QualType type = D.getType();
1921 
1922   // If this local has an initializer, emit it now.
1923   const Expr *Init = D.getInit();
1924 
1925   // If we are at an unreachable point, we don't need to emit the initializer
1926   // unless it contains a label.
1927   if (!HaveInsertPoint()) {
1928     if (!Init || !ContainsLabel(Init)) {
1929       PGO.markStmtMaybeUsed(Init);
1930       return;
1931     }
1932     EnsureInsertPoint();
1933   }
1934 
1935   // Initialize the structure of a __block variable.
1936   if (emission.IsEscapingByRef)
1937     emitByrefStructureInit(emission);
1938 
1939   // Initialize the variable here if it doesn't have a initializer and it is a
1940   // C struct that is non-trivial to initialize or an array containing such a
1941   // struct.
1942   if (!Init &&
1943       type.isNonTrivialToPrimitiveDefaultInitialize() ==
1944           QualType::PDIK_Struct) {
1945     LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1946     if (emission.IsEscapingByRef)
1947       drillIntoBlockVariable(*this, Dst, &D);
1948     defaultInitNonTrivialCStructVar(Dst);
1949     return;
1950   }
1951 
1952   // Check whether this is a byref variable that's potentially
1953   // captured and moved by its own initializer.  If so, we'll need to
1954   // emit the initializer first, then copy into the variable.
1955   bool capturedByInit =
1956       Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1957 
1958   bool locIsByrefHeader = !capturedByInit;
1959   const Address Loc =
1960       locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1961 
1962   auto hasNoTrivialAutoVarInitAttr = [&](const Decl *D) {
1963     return D && D->hasAttr<NoTrivialAutoVarInitAttr>();
1964   };
1965   // Note: constexpr already initializes everything correctly.
1966   LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1967       ((D.isConstexpr() || D.getAttr<UninitializedAttr>() ||
1968         hasNoTrivialAutoVarInitAttr(type->getAsTagDecl()) ||
1969         hasNoTrivialAutoVarInitAttr(CurFuncDecl))
1970            ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1971            : getContext().getLangOpts().getTrivialAutoVarInit());
1972 
1973   auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1974     if (trivialAutoVarInit ==
1975         LangOptions::TrivialAutoVarInitKind::Uninitialized)
1976       return;
1977 
1978     // Only initialize a __block's storage: we always initialize the header.
1979     if (emission.IsEscapingByRef && !locIsByrefHeader)
1980       Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1981 
1982     return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1983   };
1984 
1985   if (isTrivialInitializer(Init))
1986     return initializeWhatIsTechnicallyUninitialized(Loc);
1987 
1988   llvm::Constant *constant = nullptr;
1989   if (emission.IsConstantAggregate ||
1990       D.mightBeUsableInConstantExpressions(getContext())) {
1991     assert(!capturedByInit && "constant init contains a capturing block?");
1992     constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1993     if (constant && !constant->isZeroValue() &&
1994         (trivialAutoVarInit !=
1995          LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1996       IsPattern isPattern =
1997           (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1998               ? IsPattern::Yes
1999               : IsPattern::No;
2000       // C guarantees that brace-init with fewer initializers than members in
2001       // the aggregate will initialize the rest of the aggregate as-if it were
2002       // static initialization. In turn static initialization guarantees that
2003       // padding is initialized to zero bits. We could instead pattern-init if D
2004       // has any ImplicitValueInitExpr, but that seems to be unintuitive
2005       // behavior.
2006       constant = constWithPadding(CGM, IsPattern::No,
2007                                   replaceUndef(CGM, isPattern, constant));
2008     }
2009 
2010     if (constant && type->isBitIntType() &&
2011         CGM.getTypes().typeRequiresSplitIntoByteArray(type)) {
2012       // Constants for long _BitInt types are split into individual bytes.
2013       // Try to fold these back into an integer constant so it can be stored
2014       // properly.
2015       llvm::Type *LoadType =
2016           CGM.getTypes().convertTypeForLoadStore(type, constant->getType());
2017       constant = llvm::ConstantFoldLoadFromConst(
2018           constant, LoadType, llvm::APInt::getZero(32), CGM.getDataLayout());
2019     }
2020   }
2021 
2022   if (!constant) {
2023     if (trivialAutoVarInit !=
2024         LangOptions::TrivialAutoVarInitKind::Uninitialized) {
2025       // At this point, we know D has an Init expression, but isn't a constant.
2026       // - If D is not a scalar, auto-var-init conservatively (members may be
2027       // left uninitialized by constructor Init expressions for example).
2028       // - If D is a scalar, we only need to auto-var-init if there is a
2029       // self-reference. Otherwise, the Init expression should be sufficient.
2030       // It may be that the Init expression uses other uninitialized memory,
2031       // but auto-var-init here would not help, as auto-init would get
2032       // overwritten by Init.
2033       if (!type->isScalarType() || capturedByInit || isAccessedBy(D, Init)) {
2034         initializeWhatIsTechnicallyUninitialized(Loc);
2035       }
2036     }
2037     LValue lv = MakeAddrLValue(Loc, type);
2038     lv.setNonGC(true);
2039     return EmitExprAsInit(Init, &D, lv, capturedByInit);
2040   }
2041 
2042   PGO.markStmtMaybeUsed(Init);
2043 
2044   if (!emission.IsConstantAggregate) {
2045     // For simple scalar/complex initialization, store the value directly.
2046     LValue lv = MakeAddrLValue(Loc, type);
2047     lv.setNonGC(true);
2048     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
2049   }
2050 
2051   emitStoresForConstant(CGM, D, Loc.withElementType(CGM.Int8Ty),
2052                         type.isVolatileQualified(), Builder, constant,
2053                         /*IsAutoInit=*/false);
2054 }
2055 
2056 /// Emit an expression as an initializer for an object (variable, field, etc.)
2057 /// at the given location.  The expression is not necessarily the normal
2058 /// initializer for the object, and the address is not necessarily
2059 /// its normal location.
2060 ///
2061 /// \param init the initializing expression
2062 /// \param D the object to act as if we're initializing
2063 /// \param lvalue the lvalue to initialize
2064 /// \param capturedByInit true if \p D is a __block variable
2065 ///   whose address is potentially changed by the initializer
2066 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
2067                                      LValue lvalue, bool capturedByInit) {
2068   QualType type = D->getType();
2069 
2070   if (type->isReferenceType()) {
2071     RValue rvalue = EmitReferenceBindingToExpr(init);
2072     if (capturedByInit)
2073       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
2074     EmitStoreThroughLValue(rvalue, lvalue, true);
2075     return;
2076   }
2077   switch (getEvaluationKind(type)) {
2078   case TEK_Scalar:
2079     EmitScalarInit(init, D, lvalue, capturedByInit);
2080     return;
2081   case TEK_Complex: {
2082     ComplexPairTy complex = EmitComplexExpr(init);
2083     if (capturedByInit)
2084       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
2085     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
2086     return;
2087   }
2088   case TEK_Aggregate:
2089     if (type->isAtomicType()) {
2090       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
2091     } else {
2092       AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
2093       if (isa<VarDecl>(D))
2094         Overlap = AggValueSlot::DoesNotOverlap;
2095       else if (auto *FD = dyn_cast<FieldDecl>(D))
2096         Overlap = getOverlapForFieldInit(FD);
2097       // TODO: how can we delay here if D is captured by its initializer?
2098       EmitAggExpr(init,
2099                   AggValueSlot::forLValue(lvalue, AggValueSlot::IsDestructed,
2100                                           AggValueSlot::DoesNotNeedGCBarriers,
2101                                           AggValueSlot::IsNotAliased, Overlap));
2102     }
2103     return;
2104   }
2105   llvm_unreachable("bad evaluation kind");
2106 }
2107 
2108 /// Enter a destroy cleanup for the given local variable.
2109 void CodeGenFunction::emitAutoVarTypeCleanup(
2110                             const CodeGenFunction::AutoVarEmission &emission,
2111                             QualType::DestructionKind dtorKind) {
2112   assert(dtorKind != QualType::DK_none);
2113 
2114   // Note that for __block variables, we want to destroy the
2115   // original stack object, not the possibly forwarded object.
2116   Address addr = emission.getObjectAddress(*this);
2117 
2118   const VarDecl *var = emission.Variable;
2119   QualType type = var->getType();
2120 
2121   CleanupKind cleanupKind = NormalAndEHCleanup;
2122   CodeGenFunction::Destroyer *destroyer = nullptr;
2123 
2124   switch (dtorKind) {
2125   case QualType::DK_none:
2126     llvm_unreachable("no cleanup for trivially-destructible variable");
2127 
2128   case QualType::DK_cxx_destructor:
2129     // If there's an NRVO flag on the emission, we need a different
2130     // cleanup.
2131     if (emission.NRVOFlag) {
2132       assert(!type->isArrayType());
2133       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
2134       EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
2135                                                   emission.NRVOFlag);
2136       return;
2137     }
2138     break;
2139 
2140   case QualType::DK_objc_strong_lifetime:
2141     // Suppress cleanups for pseudo-strong variables.
2142     if (var->isARCPseudoStrong()) return;
2143 
2144     // Otherwise, consider whether to use an EH cleanup or not.
2145     cleanupKind = getARCCleanupKind();
2146 
2147     // Use the imprecise destroyer by default.
2148     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
2149       destroyer = CodeGenFunction::destroyARCStrongImprecise;
2150     break;
2151 
2152   case QualType::DK_objc_weak_lifetime:
2153     break;
2154 
2155   case QualType::DK_nontrivial_c_struct:
2156     destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2157     if (emission.NRVOFlag) {
2158       assert(!type->isArrayType());
2159       EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2160                                                 emission.NRVOFlag, type);
2161       return;
2162     }
2163     break;
2164   }
2165 
2166   // If we haven't chosen a more specific destroyer, use the default.
2167   if (!destroyer) destroyer = getDestroyer(dtorKind);
2168 
2169   // Use an EH cleanup in array destructors iff the destructor itself
2170   // is being pushed as an EH cleanup.
2171   bool useEHCleanup = (cleanupKind & EHCleanup);
2172   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2173                                      useEHCleanup);
2174 }
2175 
2176 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2177   assert(emission.Variable && "emission was not valid!");
2178 
2179   // If this was emitted as a global constant, we're done.
2180   if (emission.wasEmittedAsGlobal()) return;
2181 
2182   // If we don't have an insertion point, we're done.  Sema prevents
2183   // us from jumping into any of these scopes anyway.
2184   if (!HaveInsertPoint()) return;
2185 
2186   const VarDecl &D = *emission.Variable;
2187 
2188   // Check the type for a cleanup.
2189   if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2190     emitAutoVarTypeCleanup(emission, dtorKind);
2191 
2192   // In GC mode, honor objc_precise_lifetime.
2193   if (getLangOpts().getGC() != LangOptions::NonGC &&
2194       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2195     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2196   }
2197 
2198   // Handle the cleanup attribute.
2199   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2200     const FunctionDecl *FD = CA->getFunctionDecl();
2201 
2202     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2203     assert(F && "Could not find function!");
2204 
2205     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2206     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2207   }
2208 
2209   // If this is a block variable, call _Block_object_destroy
2210   // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2211   // mode.
2212   if (emission.IsEscapingByRef &&
2213       CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2214     BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2215     if (emission.Variable->getType().isObjCGCWeak())
2216       Flags |= BLOCK_FIELD_IS_WEAK;
2217     enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2218                       /*LoadBlockVarAddr*/ false,
2219                       cxxDestructorCanThrow(emission.Variable->getType()));
2220   }
2221 }
2222 
2223 CodeGenFunction::Destroyer *
2224 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2225   switch (kind) {
2226   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2227   case QualType::DK_cxx_destructor:
2228     return destroyCXXObject;
2229   case QualType::DK_objc_strong_lifetime:
2230     return destroyARCStrongPrecise;
2231   case QualType::DK_objc_weak_lifetime:
2232     return destroyARCWeak;
2233   case QualType::DK_nontrivial_c_struct:
2234     return destroyNonTrivialCStruct;
2235   }
2236   llvm_unreachable("Unknown DestructionKind");
2237 }
2238 
2239 /// pushEHDestroy - Push the standard destructor for the given type as
2240 /// an EH-only cleanup.
2241 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2242                                     Address addr, QualType type) {
2243   assert(dtorKind && "cannot push destructor for trivial type");
2244   assert(needsEHCleanup(dtorKind));
2245 
2246   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2247 }
2248 
2249 /// pushDestroy - Push the standard destructor for the given type as
2250 /// at least a normal cleanup.
2251 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2252                                   Address addr, QualType type) {
2253   assert(dtorKind && "cannot push destructor for trivial type");
2254 
2255   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2256   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2257               cleanupKind & EHCleanup);
2258 }
2259 
2260 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2261                                   QualType type, Destroyer *destroyer,
2262                                   bool useEHCleanupForArray) {
2263   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2264                                      destroyer, useEHCleanupForArray);
2265 }
2266 
2267 // Pushes a destroy and defers its deactivation until its
2268 // CleanupDeactivationScope is exited.
2269 void CodeGenFunction::pushDestroyAndDeferDeactivation(
2270     QualType::DestructionKind dtorKind, Address addr, QualType type) {
2271   assert(dtorKind && "cannot push destructor for trivial type");
2272 
2273   CleanupKind cleanupKind = getCleanupKind(dtorKind);
2274   pushDestroyAndDeferDeactivation(
2275       cleanupKind, addr, type, getDestroyer(dtorKind), cleanupKind & EHCleanup);
2276 }
2277 
2278 void CodeGenFunction::pushDestroyAndDeferDeactivation(
2279     CleanupKind cleanupKind, Address addr, QualType type, Destroyer *destroyer,
2280     bool useEHCleanupForArray) {
2281   llvm::Instruction *DominatingIP =
2282       Builder.CreateFlagLoad(llvm::Constant::getNullValue(Int8PtrTy));
2283   pushDestroy(cleanupKind, addr, type, destroyer, useEHCleanupForArray);
2284   DeferredDeactivationCleanupStack.push_back(
2285       {EHStack.stable_begin(), DominatingIP});
2286 }
2287 
2288 void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2289   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2290 }
2291 
2292 void CodeGenFunction::pushKmpcAllocFree(
2293     CleanupKind Kind, std::pair<llvm::Value *, llvm::Value *> AddrSizePair) {
2294   EHStack.pushCleanup<KmpcAllocFree>(Kind, AddrSizePair);
2295 }
2296 
2297 void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2298                                                   Address addr, QualType type,
2299                                                   Destroyer *destroyer,
2300                                                   bool useEHCleanupForArray) {
2301   // If we're not in a conditional branch, we don't need to bother generating a
2302   // conditional cleanup.
2303   if (!isInConditionalBranch()) {
2304     // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2305     // around in case a temporary's destructor throws an exception.
2306 
2307     // Add the cleanup to the EHStack. After the full-expr, this would be
2308     // deactivated before being popped from the stack.
2309     pushDestroyAndDeferDeactivation(cleanupKind, addr, type, destroyer,
2310                                     useEHCleanupForArray);
2311 
2312     // Since this is lifetime-extended, push it once again to the EHStack after
2313     // the full expression.
2314     return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2315         cleanupKind, Address::invalid(), addr, type, destroyer,
2316         useEHCleanupForArray);
2317   }
2318 
2319   // Otherwise, we should only destroy the object if it's been initialized.
2320 
2321   using ConditionalCleanupType =
2322       EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2323                                        Destroyer *, bool>;
2324   DominatingValue<Address>::saved_type SavedAddr = saveValueInCond(addr);
2325 
2326   // Remember to emit cleanup if we branch-out before end of full-expression
2327   // (eg: through stmt-expr or coro suspensions).
2328   AllocaTrackerRAII DeactivationAllocas(*this);
2329   Address ActiveFlagForDeactivation = createCleanupActiveFlag();
2330 
2331   pushCleanupAndDeferDeactivation<ConditionalCleanupType>(
2332       cleanupKind, SavedAddr, type, destroyer, useEHCleanupForArray);
2333   initFullExprCleanupWithFlag(ActiveFlagForDeactivation);
2334   EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
2335   // Erase the active flag if the cleanup was not emitted.
2336   cleanup.AddAuxAllocas(std::move(DeactivationAllocas).Take());
2337 
2338   // Since this is lifetime-extended, push it once again to the EHStack after
2339   // the full expression.
2340   // The previous active flag would always be 'false' due to forced deferred
2341   // deactivation. Use a separate flag for lifetime-extension to correctly
2342   // remember if this branch was taken and the object was initialized.
2343   Address ActiveFlagForLifetimeExt = createCleanupActiveFlag();
2344   pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2345       cleanupKind, ActiveFlagForLifetimeExt, SavedAddr, type, destroyer,
2346       useEHCleanupForArray);
2347 }
2348 
2349 /// emitDestroy - Immediately perform the destruction of the given
2350 /// object.
2351 ///
2352 /// \param addr - the address of the object; a type*
2353 /// \param type - the type of the object; if an array type, all
2354 ///   objects are destroyed in reverse order
2355 /// \param destroyer - the function to call to destroy individual
2356 ///   elements
2357 /// \param useEHCleanupForArray - whether an EH cleanup should be
2358 ///   used when destroying array elements, in case one of the
2359 ///   destructions throws an exception
2360 void CodeGenFunction::emitDestroy(Address addr, QualType type,
2361                                   Destroyer *destroyer,
2362                                   bool useEHCleanupForArray) {
2363   const ArrayType *arrayType = getContext().getAsArrayType(type);
2364   if (!arrayType)
2365     return destroyer(*this, addr, type);
2366 
2367   llvm::Value *length = emitArrayLength(arrayType, type, addr);
2368 
2369   CharUnits elementAlign =
2370     addr.getAlignment()
2371         .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2372 
2373   // Normally we have to check whether the array is zero-length.
2374   bool checkZeroLength = true;
2375 
2376   // But if the array length is constant, we can suppress that.
2377   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2378     // ...and if it's constant zero, we can just skip the entire thing.
2379     if (constLength->isZero()) return;
2380     checkZeroLength = false;
2381   }
2382 
2383   llvm::Value *begin = addr.emitRawPointer(*this);
2384   llvm::Value *end =
2385       Builder.CreateInBoundsGEP(addr.getElementType(), begin, length);
2386   emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2387                    checkZeroLength, useEHCleanupForArray);
2388 }
2389 
2390 /// emitArrayDestroy - Destroys all the elements of the given array,
2391 /// beginning from last to first.  The array cannot be zero-length.
2392 ///
2393 /// \param begin - a type* denoting the first element of the array
2394 /// \param end - a type* denoting one past the end of the array
2395 /// \param elementType - the element type of the array
2396 /// \param destroyer - the function to call to destroy elements
2397 /// \param useEHCleanup - whether to push an EH cleanup to destroy
2398 ///   the remaining elements in case the destruction of a single
2399 ///   element throws
2400 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2401                                        llvm::Value *end,
2402                                        QualType elementType,
2403                                        CharUnits elementAlign,
2404                                        Destroyer *destroyer,
2405                                        bool checkZeroLength,
2406                                        bool useEHCleanup) {
2407   assert(!elementType->isArrayType());
2408 
2409   // The basic structure here is a do-while loop, because we don't
2410   // need to check for the zero-element case.
2411   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2412   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2413 
2414   if (checkZeroLength) {
2415     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2416                                                 "arraydestroy.isempty");
2417     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2418   }
2419 
2420   // Enter the loop body, making that address the current address.
2421   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2422   EmitBlock(bodyBB);
2423   llvm::PHINode *elementPast =
2424     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2425   elementPast->addIncoming(end, entryBB);
2426 
2427   // Shift the address back by one element.
2428   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2429   llvm::Type *llvmElementType = ConvertTypeForMem(elementType);
2430   llvm::Value *element = Builder.CreateInBoundsGEP(
2431       llvmElementType, elementPast, negativeOne, "arraydestroy.element");
2432 
2433   if (useEHCleanup)
2434     pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2435                                    destroyer);
2436 
2437   // Perform the actual destruction there.
2438   destroyer(*this, Address(element, llvmElementType, elementAlign),
2439             elementType);
2440 
2441   if (useEHCleanup)
2442     PopCleanupBlock();
2443 
2444   // Check whether we've reached the end.
2445   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2446   Builder.CreateCondBr(done, doneBB, bodyBB);
2447   elementPast->addIncoming(element, Builder.GetInsertBlock());
2448 
2449   // Done.
2450   EmitBlock(doneBB);
2451 }
2452 
2453 /// Perform partial array destruction as if in an EH cleanup.  Unlike
2454 /// emitArrayDestroy, the element type here may still be an array type.
2455 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2456                                     llvm::Value *begin, llvm::Value *end,
2457                                     QualType type, CharUnits elementAlign,
2458                                     CodeGenFunction::Destroyer *destroyer) {
2459   llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2460 
2461   // If the element type is itself an array, drill down.
2462   unsigned arrayDepth = 0;
2463   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2464     // VLAs don't require a GEP index to walk into.
2465     if (!isa<VariableArrayType>(arrayType))
2466       arrayDepth++;
2467     type = arrayType->getElementType();
2468   }
2469 
2470   if (arrayDepth) {
2471     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2472 
2473     SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2474     begin = CGF.Builder.CreateInBoundsGEP(
2475         elemTy, begin, gepIndices, "pad.arraybegin");
2476     end = CGF.Builder.CreateInBoundsGEP(
2477         elemTy, end, gepIndices, "pad.arrayend");
2478   }
2479 
2480   // Destroy the array.  We don't ever need an EH cleanup because we
2481   // assume that we're in an EH cleanup ourselves, so a throwing
2482   // destructor causes an immediate terminate.
2483   CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2484                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2485 }
2486 
2487 namespace {
2488   /// RegularPartialArrayDestroy - a cleanup which performs a partial
2489   /// array destroy where the end pointer is regularly determined and
2490   /// does not need to be loaded from a local.
2491   class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2492     llvm::Value *ArrayBegin;
2493     llvm::Value *ArrayEnd;
2494     QualType ElementType;
2495     CodeGenFunction::Destroyer *Destroyer;
2496     CharUnits ElementAlign;
2497   public:
2498     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2499                                QualType elementType, CharUnits elementAlign,
2500                                CodeGenFunction::Destroyer *destroyer)
2501       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2502         ElementType(elementType), Destroyer(destroyer),
2503         ElementAlign(elementAlign) {}
2504 
2505     void Emit(CodeGenFunction &CGF, Flags flags) override {
2506       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2507                               ElementType, ElementAlign, Destroyer);
2508     }
2509   };
2510 
2511   /// IrregularPartialArrayDestroy - a cleanup which performs a
2512   /// partial array destroy where the end pointer is irregularly
2513   /// determined and must be loaded from a local.
2514   class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2515     llvm::Value *ArrayBegin;
2516     Address ArrayEndPointer;
2517     QualType ElementType;
2518     CodeGenFunction::Destroyer *Destroyer;
2519     CharUnits ElementAlign;
2520   public:
2521     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2522                                  Address arrayEndPointer,
2523                                  QualType elementType,
2524                                  CharUnits elementAlign,
2525                                  CodeGenFunction::Destroyer *destroyer)
2526       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2527         ElementType(elementType), Destroyer(destroyer),
2528         ElementAlign(elementAlign) {}
2529 
2530     void Emit(CodeGenFunction &CGF, Flags flags) override {
2531       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2532       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2533                               ElementType, ElementAlign, Destroyer);
2534     }
2535   };
2536 } // end anonymous namespace
2537 
2538 /// pushIrregularPartialArrayCleanup - Push a NormalAndEHCleanup to
2539 /// destroy already-constructed elements of the given array.  The cleanup may be
2540 /// popped with DeactivateCleanupBlock or PopCleanupBlock.
2541 ///
2542 /// \param elementType - the immediate element type of the array;
2543 ///   possibly still an array type
2544 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2545                                                        Address arrayEndPointer,
2546                                                        QualType elementType,
2547                                                        CharUnits elementAlign,
2548                                                        Destroyer *destroyer) {
2549   pushFullExprCleanup<IrregularPartialArrayDestroy>(
2550       NormalAndEHCleanup, arrayBegin, arrayEndPointer, elementType,
2551       elementAlign, destroyer);
2552 }
2553 
2554 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2555 /// already-constructed elements of the given array.  The cleanup
2556 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2557 ///
2558 /// \param elementType - the immediate element type of the array;
2559 ///   possibly still an array type
2560 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2561                                                      llvm::Value *arrayEnd,
2562                                                      QualType elementType,
2563                                                      CharUnits elementAlign,
2564                                                      Destroyer *destroyer) {
2565   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2566                                                   arrayBegin, arrayEnd,
2567                                                   elementType, elementAlign,
2568                                                   destroyer);
2569 }
2570 
2571 /// Lazily declare the @llvm.lifetime.start intrinsic.
2572 llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2573   if (LifetimeStartFn)
2574     return LifetimeStartFn;
2575   LifetimeStartFn = llvm::Intrinsic::getOrInsertDeclaration(
2576       &getModule(), llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2577   return LifetimeStartFn;
2578 }
2579 
2580 /// Lazily declare the @llvm.lifetime.end intrinsic.
2581 llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2582   if (LifetimeEndFn)
2583     return LifetimeEndFn;
2584   LifetimeEndFn = llvm::Intrinsic::getOrInsertDeclaration(
2585       &getModule(), llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2586   return LifetimeEndFn;
2587 }
2588 
2589 /// Lazily declare the @llvm.fake.use intrinsic.
2590 llvm::Function *CodeGenModule::getLLVMFakeUseFn() {
2591   if (FakeUseFn)
2592     return FakeUseFn;
2593   FakeUseFn = llvm::Intrinsic::getOrInsertDeclaration(
2594       &getModule(), llvm::Intrinsic::fake_use);
2595   return FakeUseFn;
2596 }
2597 
2598 namespace {
2599   /// A cleanup to perform a release of an object at the end of a
2600   /// function.  This is used to balance out the incoming +1 of a
2601   /// ns_consumed argument when we can't reasonably do that just by
2602   /// not doing the initial retain for a __block argument.
2603   struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2604     ConsumeARCParameter(llvm::Value *param,
2605                         ARCPreciseLifetime_t precise)
2606       : Param(param), Precise(precise) {}
2607 
2608     llvm::Value *Param;
2609     ARCPreciseLifetime_t Precise;
2610 
2611     void Emit(CodeGenFunction &CGF, Flags flags) override {
2612       CGF.EmitARCRelease(Param, Precise);
2613     }
2614   };
2615 } // end anonymous namespace
2616 
2617 /// Emit an alloca (or GlobalValue depending on target)
2618 /// for the specified parameter and set up LocalDeclMap.
2619 void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2620                                    unsigned ArgNo) {
2621   bool NoDebugInfo = false;
2622   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2623   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2624          "Invalid argument to EmitParmDecl");
2625 
2626   // Set the name of the parameter's initial value to make IR easier to
2627   // read. Don't modify the names of globals.
2628   if (!isa<llvm::GlobalValue>(Arg.getAnyValue()))
2629     Arg.getAnyValue()->setName(D.getName());
2630 
2631   QualType Ty = D.getType();
2632 
2633   // Use better IR generation for certain implicit parameters.
2634   if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2635     // The only implicit argument a block has is its literal.
2636     // This may be passed as an inalloca'ed value on Windows x86.
2637     if (BlockInfo) {
2638       llvm::Value *V = Arg.isIndirect()
2639                            ? Builder.CreateLoad(Arg.getIndirectAddress())
2640                            : Arg.getDirectValue();
2641       setBlockContextParameter(IPD, ArgNo, V);
2642       return;
2643     }
2644     // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2645     // debug info of TLS variables.
2646     NoDebugInfo =
2647         (IPD->getParameterKind() == ImplicitParamKind::ThreadPrivateVar);
2648   }
2649 
2650   Address DeclPtr = Address::invalid();
2651   RawAddress AllocaPtr = Address::invalid();
2652   bool DoStore = false;
2653   bool IsScalar = hasScalarEvaluationKind(Ty);
2654   bool UseIndirectDebugAddress = false;
2655 
2656   // If we already have a pointer to the argument, reuse the input pointer.
2657   if (Arg.isIndirect()) {
2658     DeclPtr = Arg.getIndirectAddress();
2659     DeclPtr = DeclPtr.withElementType(ConvertTypeForMem(Ty));
2660     // Indirect argument is in alloca address space, which may be different
2661     // from the default address space.
2662     auto AllocaAS = CGM.getASTAllocaAddressSpace();
2663     auto *V = DeclPtr.emitRawPointer(*this);
2664     AllocaPtr = RawAddress(V, DeclPtr.getElementType(), DeclPtr.getAlignment());
2665 
2666     // For truly ABI indirect arguments -- those that are not `byval` -- store
2667     // the address of the argument on the stack to preserve debug information.
2668     ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info;
2669     if (ArgInfo.isIndirect())
2670       UseIndirectDebugAddress = !ArgInfo.getIndirectByVal();
2671     if (UseIndirectDebugAddress) {
2672       auto PtrTy = getContext().getPointerType(Ty);
2673       AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy),
2674                                 D.getName() + ".indirect_addr");
2675       EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy);
2676     }
2677 
2678     auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2679     auto DestLangAS =
2680         getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2681     if (SrcLangAS != DestLangAS) {
2682       assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2683              CGM.getDataLayout().getAllocaAddrSpace());
2684       auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2685       auto *T = llvm::PointerType::get(getLLVMContext(), DestAS);
2686       DeclPtr =
2687           DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast(
2688                                   *this, V, SrcLangAS, DestLangAS, T, true),
2689                               DeclPtr.isKnownNonNull());
2690     }
2691 
2692     // Push a destructor cleanup for this parameter if the ABI requires it.
2693     // Don't push a cleanup in a thunk for a method that will also emit a
2694     // cleanup.
2695     if (Ty->isRecordType() && !CurFuncIsThunk &&
2696         Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2697       if (QualType::DestructionKind DtorKind =
2698               D.needsDestruction(getContext())) {
2699         assert((DtorKind == QualType::DK_cxx_destructor ||
2700                 DtorKind == QualType::DK_nontrivial_c_struct) &&
2701                "unexpected destructor type");
2702         pushDestroy(DtorKind, DeclPtr, Ty);
2703         CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2704             EHStack.stable_begin();
2705       }
2706     }
2707   } else {
2708     // Check if the parameter address is controlled by OpenMP runtime.
2709     Address OpenMPLocalAddr =
2710         getLangOpts().OpenMP
2711             ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2712             : Address::invalid();
2713     if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2714       DeclPtr = OpenMPLocalAddr;
2715       AllocaPtr = DeclPtr;
2716     } else {
2717       // Otherwise, create a temporary to hold the value.
2718       DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2719                               D.getName() + ".addr", &AllocaPtr);
2720     }
2721     DoStore = true;
2722   }
2723 
2724   llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2725 
2726   LValue lv = MakeAddrLValue(DeclPtr, Ty);
2727   if (IsScalar) {
2728     Qualifiers qs = Ty.getQualifiers();
2729     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2730       // We honor __attribute__((ns_consumed)) for types with lifetime.
2731       // For __strong, it's handled by just skipping the initial retain;
2732       // otherwise we have to balance out the initial +1 with an extra
2733       // cleanup to do the release at the end of the function.
2734       bool isConsumed = D.hasAttr<NSConsumedAttr>();
2735 
2736       // If a parameter is pseudo-strong then we can omit the implicit retain.
2737       if (D.isARCPseudoStrong()) {
2738         assert(lt == Qualifiers::OCL_Strong &&
2739                "pseudo-strong variable isn't strong?");
2740         assert(qs.hasConst() && "pseudo-strong variable should be const!");
2741         lt = Qualifiers::OCL_ExplicitNone;
2742       }
2743 
2744       // Load objects passed indirectly.
2745       if (Arg.isIndirect() && !ArgVal)
2746         ArgVal = Builder.CreateLoad(DeclPtr);
2747 
2748       if (lt == Qualifiers::OCL_Strong) {
2749         if (!isConsumed) {
2750           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2751             // use objc_storeStrong(&dest, value) for retaining the
2752             // object. But first, store a null into 'dest' because
2753             // objc_storeStrong attempts to release its old value.
2754             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2755             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2756             EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
2757             DoStore = false;
2758           }
2759           else
2760           // Don't use objc_retainBlock for block pointers, because we
2761           // don't want to Block_copy something just because we got it
2762           // as a parameter.
2763             ArgVal = EmitARCRetainNonBlock(ArgVal);
2764         }
2765       } else {
2766         // Push the cleanup for a consumed parameter.
2767         if (isConsumed) {
2768           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2769                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
2770           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2771                                                    precise);
2772         }
2773 
2774         if (lt == Qualifiers::OCL_Weak) {
2775           EmitARCInitWeak(DeclPtr, ArgVal);
2776           DoStore = false; // The weak init is a store, no need to do two.
2777         }
2778       }
2779 
2780       // Enter the cleanup scope.
2781       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2782     }
2783   }
2784 
2785   // Store the initial value into the alloca.
2786   if (DoStore)
2787     EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2788 
2789   setAddrOfLocalVar(&D, DeclPtr);
2790 
2791   // Push a FakeUse 'cleanup' object onto the EHStack for the parameter,
2792   // which may be the 'this' pointer. This causes the emission of a fake.use
2793   // call with the parameter as argument at the end of the function.
2794   if (CGM.getCodeGenOpts().getExtendVariableLiveness() ==
2795           CodeGenOptions::ExtendVariableLivenessKind::All ||
2796       (CGM.getCodeGenOpts().getExtendVariableLiveness() ==
2797            CodeGenOptions::ExtendVariableLivenessKind::This &&
2798        &D == CXXABIThisDecl)) {
2799     if (shouldExtendLifetime(getContext(), CurCodeDecl, D, CXXABIThisDecl))
2800       EHStack.pushCleanup<FakeUse>(NormalFakeUse, DeclPtr);
2801   }
2802 
2803   // Emit debug info for param declarations in non-thunk functions.
2804   if (CGDebugInfo *DI = getDebugInfo()) {
2805     if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk &&
2806         !NoDebugInfo) {
2807       llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
2808           &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress);
2809       if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
2810         DI->getParamDbgMappings().insert({Var, DILocalVar});
2811     }
2812   }
2813 
2814   if (D.hasAttr<AnnotateAttr>())
2815     EmitVarAnnotations(&D, DeclPtr.emitRawPointer(*this));
2816 
2817   // We can only check return value nullability if all arguments to the
2818   // function satisfy their nullability preconditions. This makes it necessary
2819   // to emit null checks for args in the function body itself.
2820   if (requiresReturnValueNullabilityCheck()) {
2821     auto Nullability = Ty->getNullability();
2822     if (Nullability && *Nullability == NullabilityKind::NonNull) {
2823       SanitizerScope SanScope(this);
2824       RetValNullabilityPrecondition =
2825           Builder.CreateAnd(RetValNullabilityPrecondition,
2826                             Builder.CreateIsNotNull(Arg.getAnyValue()));
2827     }
2828   }
2829 }
2830 
2831 void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2832                                             CodeGenFunction *CGF) {
2833   if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2834     return;
2835   getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2836 }
2837 
2838 void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2839                                          CodeGenFunction *CGF) {
2840   if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2841       (!LangOpts.EmitAllDecls && !D->isUsed()))
2842     return;
2843   getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2844 }
2845 
2846 void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2847   getOpenMPRuntime().processRequiresDirective(D);
2848 }
2849 
2850 void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) {
2851   for (const Expr *E : D->varlist()) {
2852     const auto *DE = cast<DeclRefExpr>(E);
2853     const auto *VD = cast<VarDecl>(DE->getDecl());
2854 
2855     // Skip all but globals.
2856     if (!VD->hasGlobalStorage())
2857       continue;
2858 
2859     // Check if the global has been materialized yet or not. If not, we are done
2860     // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2861     // we already emitted the global we might have done so before the
2862     // OMPAllocateDeclAttr was attached, leading to the wrong address space
2863     // (potentially). While not pretty, common practise is to remove the old IR
2864     // global and generate a new one, so we do that here too. Uses are replaced
2865     // properly.
2866     StringRef MangledName = getMangledName(VD);
2867     llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2868     if (!Entry)
2869       continue;
2870 
2871     // We can also keep the existing global if the address space is what we
2872     // expect it to be, if not, it is replaced.
2873     QualType ASTTy = VD->getType();
2874     clang::LangAS GVAS = GetGlobalVarAddressSpace(VD);
2875     auto TargetAS = getContext().getTargetAddressSpace(GVAS);
2876     if (Entry->getType()->getAddressSpace() == TargetAS)
2877       continue;
2878 
2879     // Make a new global with the correct type / address space.
2880     llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
2881     llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS);
2882 
2883     // Replace all uses of the old global with a cast. Since we mutate the type
2884     // in place we neeed an intermediate that takes the spot of the old entry
2885     // until we can create the cast.
2886     llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable(
2887         getModule(), Entry->getValueType(), false,
2888         llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr,
2889         llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace());
2890     Entry->replaceAllUsesWith(DummyGV);
2891 
2892     Entry->mutateType(PTy);
2893     llvm::Constant *NewPtrForOldDecl =
2894         llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2895             Entry, DummyGV->getType());
2896 
2897     // Now we have a casted version of the changed global, the dummy can be
2898     // replaced and deleted.
2899     DummyGV->replaceAllUsesWith(NewPtrForOldDecl);
2900     DummyGV->eraseFromParent();
2901   }
2902 }
2903 
2904 std::optional<CharUnits>
2905 CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) {
2906   if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) {
2907     if (Expr *Alignment = AA->getAlignment()) {
2908       unsigned UserAlign =
2909           Alignment->EvaluateKnownConstInt(getContext()).getExtValue();
2910       CharUnits NaturalAlign =
2911           getNaturalTypeAlignment(VD->getType().getNonReferenceType());
2912 
2913       // OpenMP5.1 pg 185 lines 7-10
2914       //   Each item in the align modifier list must be aligned to the maximum
2915       //   of the specified alignment and the type's natural alignment.
2916       return CharUnits::fromQuantity(
2917           std::max<unsigned>(UserAlign, NaturalAlign.getQuantity()));
2918     }
2919   }
2920   return std::nullopt;
2921 }
2922