1 /* $OpenBSD: drm_linux.c,v 1.119 2024/09/30 12:21:17 jsg Exp $ */ 2 /* 3 * Copyright (c) 2013 Jonathan Gray <jsg@openbsd.org> 4 * Copyright (c) 2015, 2016 Mark Kettenis <kettenis@openbsd.org> 5 * 6 * Permission to use, copy, modify, and distribute this software for any 7 * purpose with or without fee is hereby granted, provided that the above 8 * copyright notice and this permission notice appear in all copies. 9 * 10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 17 */ 18 19 #include <sys/types.h> 20 #include <sys/systm.h> 21 #include <sys/param.h> 22 #include <sys/event.h> 23 #include <sys/filedesc.h> 24 #include <sys/kthread.h> 25 #include <sys/stat.h> 26 #include <sys/unistd.h> 27 #include <sys/proc.h> 28 #include <sys/pool.h> 29 #include <sys/fcntl.h> 30 31 #include <dev/pci/ppbreg.h> 32 33 #include <linux/dma-buf.h> 34 #include <linux/mod_devicetable.h> 35 #include <linux/acpi.h> 36 #include <linux/pagevec.h> 37 #include <linux/dma-fence-array.h> 38 #include <linux/dma-fence-chain.h> 39 #include <linux/interrupt.h> 40 #include <linux/err.h> 41 #include <linux/idr.h> 42 #include <linux/scatterlist.h> 43 #include <linux/i2c.h> 44 #include <linux/pci.h> 45 #include <linux/notifier.h> 46 #include <linux/backlight.h> 47 #include <linux/shrinker.h> 48 #include <linux/fb.h> 49 #include <linux/xarray.h> 50 #include <linux/interval_tree.h> 51 #include <linux/kthread.h> 52 #include <linux/processor.h> 53 #include <linux/sync_file.h> 54 #include <linux/suspend.h> 55 56 #include <drm/drm_device.h> 57 #include <drm/drm_connector.h> 58 #include <drm/drm_print.h> 59 60 #if defined(__amd64__) || defined(__i386__) 61 #include "bios.h" 62 #endif 63 64 /* allowed to sleep */ 65 void 66 tasklet_unlock_wait(struct tasklet_struct *ts) 67 { 68 while (test_bit(TASKLET_STATE_RUN, &ts->state)) 69 cpu_relax(); 70 } 71 72 /* must not sleep */ 73 void 74 tasklet_unlock_spin_wait(struct tasklet_struct *ts) 75 { 76 while (test_bit(TASKLET_STATE_RUN, &ts->state)) 77 cpu_relax(); 78 } 79 80 void 81 tasklet_run(void *arg) 82 { 83 struct tasklet_struct *ts = arg; 84 85 clear_bit(TASKLET_STATE_SCHED, &ts->state); 86 if (tasklet_trylock(ts)) { 87 if (!atomic_read(&ts->count)) { 88 if (ts->use_callback) 89 ts->callback(ts); 90 else 91 ts->func(ts->data); 92 } 93 tasklet_unlock(ts); 94 } 95 } 96 97 /* 32 bit powerpc lacks 64 bit atomics */ 98 #if defined(__powerpc__) && !defined(__powerpc64__) 99 struct mutex atomic64_mtx = MUTEX_INITIALIZER(IPL_HIGH); 100 #endif 101 102 void 103 set_current_state(int state) 104 { 105 int prio = state; 106 107 KASSERT(state != TASK_RUNNING); 108 /* check if already on the sleep list */ 109 if (curproc->p_wchan != NULL) 110 return; 111 sleep_setup(curproc, prio, "schto"); 112 } 113 114 void 115 __set_current_state(int state) 116 { 117 struct proc *p = curproc; 118 119 KASSERT(state == TASK_RUNNING); 120 SCHED_LOCK(); 121 unsleep(p); 122 p->p_stat = SONPROC; 123 atomic_clearbits_int(&p->p_flag, P_WSLEEP); 124 SCHED_UNLOCK(); 125 } 126 127 void 128 schedule(void) 129 { 130 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 131 } 132 133 long 134 schedule_timeout(long timeout) 135 { 136 unsigned long deadline; 137 int timo = 0; 138 139 KASSERT(!cold); 140 141 if (timeout != MAX_SCHEDULE_TIMEOUT) 142 timo = timeout; 143 if (timeout != MAX_SCHEDULE_TIMEOUT) 144 deadline = jiffies + timeout; 145 sleep_finish(timo, timeout > 0); 146 if (timeout != MAX_SCHEDULE_TIMEOUT) 147 timeout = deadline - jiffies; 148 149 return timeout > 0 ? timeout : 0; 150 } 151 152 long 153 schedule_timeout_uninterruptible(long timeout) 154 { 155 tsleep(curproc, PWAIT, "schtou", timeout); 156 return 0; 157 } 158 159 int 160 wake_up_process(struct proc *p) 161 { 162 int rv; 163 164 SCHED_LOCK(); 165 rv = wakeup_proc(p, 0); 166 SCHED_UNLOCK(); 167 return rv; 168 } 169 170 int 171 autoremove_wake_function(struct wait_queue_entry *wqe, unsigned int mode, 172 int sync, void *key) 173 { 174 if (wqe->private) 175 wake_up_process(wqe->private); 176 list_del_init(&wqe->entry); 177 return 0; 178 } 179 180 void 181 prepare_to_wait(wait_queue_head_t *wqh, wait_queue_entry_t *wqe, int state) 182 { 183 mtx_enter(&wqh->lock); 184 if (list_empty(&wqe->entry)) 185 __add_wait_queue(wqh, wqe); 186 mtx_leave(&wqh->lock); 187 188 set_current_state(state); 189 } 190 191 void 192 finish_wait(wait_queue_head_t *wqh, wait_queue_entry_t *wqe) 193 { 194 __set_current_state(TASK_RUNNING); 195 196 mtx_enter(&wqh->lock); 197 if (!list_empty(&wqe->entry)) 198 list_del_init(&wqe->entry); 199 mtx_leave(&wqh->lock); 200 } 201 202 void 203 flush_workqueue(struct workqueue_struct *wq) 204 { 205 if (cold) 206 return; 207 208 if (wq) 209 taskq_barrier((struct taskq *)wq); 210 } 211 212 bool 213 flush_work(struct work_struct *work) 214 { 215 if (cold) 216 return false; 217 218 if (work->tq) 219 taskq_barrier(work->tq); 220 return false; 221 } 222 223 bool 224 flush_delayed_work(struct delayed_work *dwork) 225 { 226 bool ret = false; 227 228 if (cold) 229 return false; 230 231 while (timeout_pending(&dwork->to)) { 232 tsleep(dwork, PWAIT, "fldwto", 1); 233 ret = true; 234 } 235 236 if (dwork->tq) 237 taskq_barrier(dwork->tq); 238 return ret; 239 } 240 241 struct kthread { 242 int (*func)(void *); 243 void *data; 244 struct proc *proc; 245 volatile u_int flags; 246 #define KTHREAD_SHOULDSTOP 0x0000001 247 #define KTHREAD_STOPPED 0x0000002 248 #define KTHREAD_SHOULDPARK 0x0000004 249 #define KTHREAD_PARKED 0x0000008 250 LIST_ENTRY(kthread) next; 251 }; 252 253 LIST_HEAD(, kthread) kthread_list = LIST_HEAD_INITIALIZER(kthread_list); 254 255 void 256 kthread_func(void *arg) 257 { 258 struct kthread *thread = arg; 259 int ret; 260 261 ret = thread->func(thread->data); 262 thread->flags |= KTHREAD_STOPPED; 263 wakeup(thread); 264 kthread_exit(ret); 265 } 266 267 struct proc * 268 kthread_run(int (*func)(void *), void *data, const char *name) 269 { 270 struct kthread *thread; 271 272 thread = malloc(sizeof(*thread), M_DRM, M_WAITOK); 273 thread->func = func; 274 thread->data = data; 275 thread->flags = 0; 276 277 if (kthread_create(kthread_func, thread, &thread->proc, name)) { 278 free(thread, M_DRM, sizeof(*thread)); 279 return ERR_PTR(-ENOMEM); 280 } 281 282 LIST_INSERT_HEAD(&kthread_list, thread, next); 283 return thread->proc; 284 } 285 286 struct kthread_worker * 287 kthread_create_worker(unsigned int flags, const char *fmt, ...) 288 { 289 char name[MAXCOMLEN+1]; 290 va_list ap; 291 292 struct kthread_worker *w = malloc(sizeof(*w), M_DRM, M_WAITOK); 293 va_start(ap, fmt); 294 vsnprintf(name, sizeof(name), fmt, ap); 295 va_end(ap); 296 w->tq = taskq_create(name, 1, IPL_HIGH, 0); 297 298 return w; 299 } 300 301 void 302 kthread_destroy_worker(struct kthread_worker *worker) 303 { 304 taskq_destroy(worker->tq); 305 free(worker, M_DRM, sizeof(*worker)); 306 307 } 308 309 void 310 kthread_init_work(struct kthread_work *work, void (*func)(struct kthread_work *)) 311 { 312 work->tq = NULL; 313 task_set(&work->task, (void (*)(void *))func, work); 314 } 315 316 bool 317 kthread_queue_work(struct kthread_worker *worker, struct kthread_work *work) 318 { 319 work->tq = worker->tq; 320 return task_add(work->tq, &work->task); 321 } 322 323 bool 324 kthread_cancel_work_sync(struct kthread_work *work) 325 { 326 return task_del(work->tq, &work->task); 327 } 328 329 void 330 kthread_flush_work(struct kthread_work *work) 331 { 332 if (cold) 333 return; 334 335 if (work->tq) 336 taskq_barrier(work->tq); 337 } 338 339 void 340 kthread_flush_worker(struct kthread_worker *worker) 341 { 342 if (cold) 343 return; 344 345 if (worker->tq) 346 taskq_barrier(worker->tq); 347 } 348 349 struct kthread * 350 kthread_lookup(struct proc *p) 351 { 352 struct kthread *thread; 353 354 LIST_FOREACH(thread, &kthread_list, next) { 355 if (thread->proc == p) 356 break; 357 } 358 KASSERT(thread); 359 360 return thread; 361 } 362 363 int 364 kthread_should_park(void) 365 { 366 struct kthread *thread = kthread_lookup(curproc); 367 return (thread->flags & KTHREAD_SHOULDPARK); 368 } 369 370 void 371 kthread_parkme(void) 372 { 373 struct kthread *thread = kthread_lookup(curproc); 374 375 while (thread->flags & KTHREAD_SHOULDPARK) { 376 thread->flags |= KTHREAD_PARKED; 377 wakeup(thread); 378 tsleep_nsec(thread, PPAUSE, "parkme", INFSLP); 379 thread->flags &= ~KTHREAD_PARKED; 380 } 381 } 382 383 void 384 kthread_park(struct proc *p) 385 { 386 struct kthread *thread = kthread_lookup(p); 387 388 while ((thread->flags & KTHREAD_PARKED) == 0) { 389 thread->flags |= KTHREAD_SHOULDPARK; 390 wake_up_process(thread->proc); 391 tsleep_nsec(thread, PPAUSE, "park", INFSLP); 392 } 393 } 394 395 void 396 kthread_unpark(struct proc *p) 397 { 398 struct kthread *thread = kthread_lookup(p); 399 400 thread->flags &= ~KTHREAD_SHOULDPARK; 401 wakeup(thread); 402 } 403 404 int 405 kthread_should_stop(void) 406 { 407 struct kthread *thread = kthread_lookup(curproc); 408 return (thread->flags & KTHREAD_SHOULDSTOP); 409 } 410 411 void 412 kthread_stop(struct proc *p) 413 { 414 struct kthread *thread = kthread_lookup(p); 415 416 while ((thread->flags & KTHREAD_STOPPED) == 0) { 417 thread->flags |= KTHREAD_SHOULDSTOP; 418 kthread_unpark(p); 419 wake_up_process(thread->proc); 420 tsleep_nsec(thread, PPAUSE, "stop", INFSLP); 421 } 422 LIST_REMOVE(thread, next); 423 free(thread, M_DRM, sizeof(*thread)); 424 } 425 426 #if NBIOS > 0 427 extern char smbios_board_vendor[]; 428 extern char smbios_board_prod[]; 429 extern char smbios_board_serial[]; 430 #endif 431 432 bool 433 dmi_match(int slot, const char *str) 434 { 435 switch (slot) { 436 case DMI_SYS_VENDOR: 437 if (hw_vendor != NULL && 438 !strcmp(hw_vendor, str)) 439 return true; 440 break; 441 case DMI_PRODUCT_NAME: 442 if (hw_prod != NULL && 443 !strcmp(hw_prod, str)) 444 return true; 445 break; 446 case DMI_PRODUCT_VERSION: 447 if (hw_ver != NULL && 448 !strcmp(hw_ver, str)) 449 return true; 450 break; 451 #if NBIOS > 0 452 case DMI_BOARD_VENDOR: 453 if (strcmp(smbios_board_vendor, str) == 0) 454 return true; 455 break; 456 case DMI_BOARD_NAME: 457 if (strcmp(smbios_board_prod, str) == 0) 458 return true; 459 break; 460 case DMI_BOARD_SERIAL: 461 if (strcmp(smbios_board_serial, str) == 0) 462 return true; 463 break; 464 #else 465 case DMI_BOARD_VENDOR: 466 if (hw_vendor != NULL && 467 !strcmp(hw_vendor, str)) 468 return true; 469 break; 470 case DMI_BOARD_NAME: 471 if (hw_prod != NULL && 472 !strcmp(hw_prod, str)) 473 return true; 474 break; 475 #endif 476 case DMI_NONE: 477 default: 478 return false; 479 } 480 481 return false; 482 } 483 484 static bool 485 dmi_found(const struct dmi_system_id *dsi) 486 { 487 int i, slot; 488 489 for (i = 0; i < nitems(dsi->matches); i++) { 490 slot = dsi->matches[i].slot; 491 if (slot == DMI_NONE) 492 break; 493 if (!dmi_match(slot, dsi->matches[i].substr)) 494 return false; 495 } 496 497 return true; 498 } 499 500 const struct dmi_system_id * 501 dmi_first_match(const struct dmi_system_id *sysid) 502 { 503 const struct dmi_system_id *dsi; 504 505 for (dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) { 506 if (dmi_found(dsi)) 507 return dsi; 508 } 509 510 return NULL; 511 } 512 513 #if NBIOS > 0 514 extern char smbios_bios_date[]; 515 extern char smbios_bios_version[]; 516 #endif 517 518 const char * 519 dmi_get_system_info(int slot) 520 { 521 #if NBIOS > 0 522 switch (slot) { 523 case DMI_BIOS_DATE: 524 return smbios_bios_date; 525 case DMI_BIOS_VERSION: 526 return smbios_bios_version; 527 default: 528 printf("%s slot %d not handled\n", __func__, slot); 529 } 530 #endif 531 return NULL; 532 } 533 534 int 535 dmi_check_system(const struct dmi_system_id *sysid) 536 { 537 const struct dmi_system_id *dsi; 538 int num = 0; 539 540 for (dsi = sysid; dsi->matches[0].slot != 0 ; dsi++) { 541 if (dmi_found(dsi)) { 542 num++; 543 if (dsi->callback && dsi->callback(dsi)) 544 break; 545 } 546 } 547 return (num); 548 } 549 550 struct vm_page * 551 alloc_pages(unsigned int gfp_mask, unsigned int order) 552 { 553 int flags = (gfp_mask & M_NOWAIT) ? UVM_PLA_NOWAIT : UVM_PLA_WAITOK; 554 struct uvm_constraint_range *constraint = &no_constraint; 555 struct pglist mlist; 556 557 if (gfp_mask & M_CANFAIL) 558 flags |= UVM_PLA_FAILOK; 559 if (gfp_mask & M_ZERO) 560 flags |= UVM_PLA_ZERO; 561 if (gfp_mask & __GFP_DMA32) 562 constraint = &dma_constraint; 563 564 TAILQ_INIT(&mlist); 565 if (uvm_pglistalloc(PAGE_SIZE << order, constraint->ucr_low, 566 constraint->ucr_high, PAGE_SIZE, 0, &mlist, 1, flags)) 567 return NULL; 568 return TAILQ_FIRST(&mlist); 569 } 570 571 void 572 __free_pages(struct vm_page *page, unsigned int order) 573 { 574 struct pglist mlist; 575 int i; 576 577 TAILQ_INIT(&mlist); 578 for (i = 0; i < (1 << order); i++) 579 TAILQ_INSERT_TAIL(&mlist, &page[i], pageq); 580 uvm_pglistfree(&mlist); 581 } 582 583 void 584 __pagevec_release(struct pagevec *pvec) 585 { 586 struct pglist mlist; 587 int i; 588 589 TAILQ_INIT(&mlist); 590 for (i = 0; i < pvec->nr; i++) 591 TAILQ_INSERT_TAIL(&mlist, pvec->pages[i], pageq); 592 uvm_pglistfree(&mlist); 593 pagevec_reinit(pvec); 594 } 595 596 static struct kmem_va_mode kv_physwait = { 597 .kv_map = &phys_map, 598 .kv_wait = 1, 599 }; 600 601 void * 602 kmap(struct vm_page *pg) 603 { 604 vaddr_t va; 605 606 #if defined (__HAVE_PMAP_DIRECT) 607 va = pmap_map_direct(pg); 608 #else 609 va = (vaddr_t)km_alloc(PAGE_SIZE, &kv_physwait, &kp_none, &kd_waitok); 610 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), PROT_READ | PROT_WRITE); 611 pmap_update(pmap_kernel()); 612 #endif 613 return (void *)va; 614 } 615 616 void 617 kunmap_va(void *addr) 618 { 619 vaddr_t va = (vaddr_t)addr; 620 621 #if defined (__HAVE_PMAP_DIRECT) 622 pmap_unmap_direct(va); 623 #else 624 pmap_kremove(va, PAGE_SIZE); 625 pmap_update(pmap_kernel()); 626 km_free((void *)va, PAGE_SIZE, &kv_physwait, &kp_none); 627 #endif 628 } 629 630 vaddr_t kmap_atomic_va; 631 int kmap_atomic_inuse; 632 633 void * 634 kmap_atomic_prot(struct vm_page *pg, pgprot_t prot) 635 { 636 KASSERT(!kmap_atomic_inuse); 637 638 kmap_atomic_inuse = 1; 639 pmap_kenter_pa(kmap_atomic_va, VM_PAGE_TO_PHYS(pg) | prot, 640 PROT_READ | PROT_WRITE); 641 return (void *)kmap_atomic_va; 642 } 643 644 void 645 kunmap_atomic(void *addr) 646 { 647 KASSERT(kmap_atomic_inuse); 648 649 pmap_kremove(kmap_atomic_va, PAGE_SIZE); 650 kmap_atomic_inuse = 0; 651 } 652 653 void * 654 vmap(struct vm_page **pages, unsigned int npages, unsigned long flags, 655 pgprot_t prot) 656 { 657 vaddr_t va; 658 paddr_t pa; 659 int i; 660 661 va = (vaddr_t)km_alloc(PAGE_SIZE * npages, &kv_any, &kp_none, 662 &kd_nowait); 663 if (va == 0) 664 return NULL; 665 for (i = 0; i < npages; i++) { 666 pa = VM_PAGE_TO_PHYS(pages[i]) | prot; 667 pmap_enter(pmap_kernel(), va + (i * PAGE_SIZE), pa, 668 PROT_READ | PROT_WRITE, 669 PROT_READ | PROT_WRITE | PMAP_WIRED); 670 pmap_update(pmap_kernel()); 671 } 672 673 return (void *)va; 674 } 675 676 void * 677 vmap_pfn(unsigned long *pfns, unsigned int npfn, pgprot_t prot) 678 { 679 vaddr_t va; 680 paddr_t pa; 681 int i; 682 683 va = (vaddr_t)km_alloc(PAGE_SIZE * npfn, &kv_any, &kp_none, 684 &kd_nowait); 685 if (va == 0) 686 return NULL; 687 for (i = 0; i < npfn; i++) { 688 pa = round_page(pfns[i]) | prot; 689 pmap_enter(pmap_kernel(), va + (i * PAGE_SIZE), pa, 690 PROT_READ | PROT_WRITE, 691 PROT_READ | PROT_WRITE | PMAP_WIRED); 692 pmap_update(pmap_kernel()); 693 } 694 695 return (void *)va; 696 } 697 698 void 699 vunmap(void *addr, size_t size) 700 { 701 vaddr_t va = (vaddr_t)addr; 702 703 pmap_remove(pmap_kernel(), va, va + size); 704 pmap_update(pmap_kernel()); 705 km_free((void *)va, size, &kv_any, &kp_none); 706 } 707 708 bool 709 is_vmalloc_addr(const void *p) 710 { 711 vaddr_t min, max, addr; 712 713 min = vm_map_min(kernel_map); 714 max = vm_map_max(kernel_map); 715 addr = (vaddr_t)p; 716 717 if (addr >= min && addr <= max) 718 return true; 719 else 720 return false; 721 } 722 723 void 724 print_hex_dump(const char *level, const char *prefix_str, int prefix_type, 725 int rowsize, int groupsize, const void *buf, size_t len, bool ascii) 726 { 727 const uint8_t *cbuf = buf; 728 int i; 729 730 for (i = 0; i < len; i++) { 731 if ((i % rowsize) == 0) 732 printf("%s", prefix_str); 733 printf("%02x", cbuf[i]); 734 if ((i % rowsize) == (rowsize - 1)) 735 printf("\n"); 736 else 737 printf(" "); 738 } 739 } 740 741 void * 742 memchr_inv(const void *s, int c, size_t n) 743 { 744 if (n != 0) { 745 const unsigned char *p = s; 746 747 do { 748 if (*p++ != (unsigned char)c) 749 return ((void *)(p - 1)); 750 } while (--n != 0); 751 } 752 return (NULL); 753 } 754 755 int 756 panic_cmp(struct rb_node *a, struct rb_node *b) 757 { 758 panic(__func__); 759 } 760 761 #undef RB_ROOT 762 #define RB_ROOT(head) (head)->rbh_root 763 764 RB_GENERATE(linux_root, rb_node, __entry, panic_cmp); 765 766 /* 767 * This is a fairly minimal implementation of the Linux "idr" API. It 768 * probably isn't very efficient, and definitely isn't RCU safe. The 769 * pre-load buffer is global instead of per-cpu; we rely on the kernel 770 * lock to make this work. We do randomize our IDs in order to make 771 * them harder to guess. 772 */ 773 774 int idr_cmp(struct idr_entry *, struct idr_entry *); 775 SPLAY_PROTOTYPE(idr_tree, idr_entry, entry, idr_cmp); 776 777 struct pool idr_pool; 778 struct idr_entry *idr_entry_cache; 779 780 void 781 idr_init(struct idr *idr) 782 { 783 SPLAY_INIT(&idr->tree); 784 } 785 786 void 787 idr_destroy(struct idr *idr) 788 { 789 struct idr_entry *id; 790 791 while ((id = SPLAY_MIN(idr_tree, &idr->tree))) { 792 SPLAY_REMOVE(idr_tree, &idr->tree, id); 793 pool_put(&idr_pool, id); 794 } 795 } 796 797 void 798 idr_preload(unsigned int gfp_mask) 799 { 800 int flags = (gfp_mask & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK; 801 802 KERNEL_ASSERT_LOCKED(); 803 804 if (idr_entry_cache == NULL) 805 idr_entry_cache = pool_get(&idr_pool, flags); 806 } 807 808 int 809 idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) 810 { 811 int flags = (gfp_mask & GFP_NOWAIT) ? PR_NOWAIT : PR_WAITOK; 812 struct idr_entry *id; 813 int begin; 814 815 KERNEL_ASSERT_LOCKED(); 816 817 if (idr_entry_cache) { 818 id = idr_entry_cache; 819 idr_entry_cache = NULL; 820 } else { 821 id = pool_get(&idr_pool, flags); 822 if (id == NULL) 823 return -ENOMEM; 824 } 825 826 if (end <= 0) 827 end = INT_MAX; 828 829 #ifdef notyet 830 id->id = begin = start + arc4random_uniform(end - start); 831 #else 832 id->id = begin = start; 833 #endif 834 while (SPLAY_INSERT(idr_tree, &idr->tree, id)) { 835 if (id->id == end) 836 id->id = start; 837 else 838 id->id++; 839 if (id->id == begin) { 840 pool_put(&idr_pool, id); 841 return -ENOSPC; 842 } 843 } 844 id->ptr = ptr; 845 return id->id; 846 } 847 848 void * 849 idr_replace(struct idr *idr, void *ptr, unsigned long id) 850 { 851 struct idr_entry find, *res; 852 void *old; 853 854 find.id = id; 855 res = SPLAY_FIND(idr_tree, &idr->tree, &find); 856 if (res == NULL) 857 return ERR_PTR(-ENOENT); 858 old = res->ptr; 859 res->ptr = ptr; 860 return old; 861 } 862 863 void * 864 idr_remove(struct idr *idr, unsigned long id) 865 { 866 struct idr_entry find, *res; 867 void *ptr = NULL; 868 869 find.id = id; 870 res = SPLAY_FIND(idr_tree, &idr->tree, &find); 871 if (res) { 872 SPLAY_REMOVE(idr_tree, &idr->tree, res); 873 ptr = res->ptr; 874 pool_put(&idr_pool, res); 875 } 876 return ptr; 877 } 878 879 void * 880 idr_find(struct idr *idr, unsigned long id) 881 { 882 struct idr_entry find, *res; 883 884 find.id = id; 885 res = SPLAY_FIND(idr_tree, &idr->tree, &find); 886 if (res == NULL) 887 return NULL; 888 return res->ptr; 889 } 890 891 void * 892 idr_get_next(struct idr *idr, int *id) 893 { 894 struct idr_entry *res; 895 896 SPLAY_FOREACH(res, idr_tree, &idr->tree) { 897 if (res->id >= *id) { 898 *id = res->id; 899 return res->ptr; 900 } 901 } 902 903 return NULL; 904 } 905 906 int 907 idr_for_each(struct idr *idr, int (*func)(int, void *, void *), void *data) 908 { 909 struct idr_entry *id; 910 int ret; 911 912 SPLAY_FOREACH(id, idr_tree, &idr->tree) { 913 ret = func(id->id, id->ptr, data); 914 if (ret) 915 return ret; 916 } 917 918 return 0; 919 } 920 921 int 922 idr_cmp(struct idr_entry *a, struct idr_entry *b) 923 { 924 return (a->id < b->id ? -1 : a->id > b->id); 925 } 926 927 SPLAY_GENERATE(idr_tree, idr_entry, entry, idr_cmp); 928 929 void 930 ida_init(struct ida *ida) 931 { 932 idr_init(&ida->idr); 933 } 934 935 void 936 ida_destroy(struct ida *ida) 937 { 938 idr_destroy(&ida->idr); 939 } 940 941 int 942 ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, 943 gfp_t gfp_mask) 944 { 945 return idr_alloc(&ida->idr, NULL, start, end, gfp_mask); 946 } 947 948 void 949 ida_simple_remove(struct ida *ida, unsigned int id) 950 { 951 idr_remove(&ida->idr, id); 952 } 953 954 int 955 ida_alloc_min(struct ida *ida, unsigned int min, gfp_t gfp) 956 { 957 return idr_alloc(&ida->idr, NULL, min, INT_MAX, gfp); 958 } 959 960 int 961 ida_alloc_max(struct ida *ida, unsigned int max, gfp_t gfp) 962 { 963 return idr_alloc(&ida->idr, NULL, 0, max - 1, gfp); 964 } 965 966 void 967 ida_free(struct ida *ida, unsigned int id) 968 { 969 idr_remove(&ida->idr, id); 970 } 971 972 int 973 xarray_cmp(struct xarray_entry *a, struct xarray_entry *b) 974 { 975 return (a->id < b->id ? -1 : a->id > b->id); 976 } 977 978 SPLAY_PROTOTYPE(xarray_tree, xarray_entry, entry, xarray_cmp); 979 struct pool xa_pool; 980 SPLAY_GENERATE(xarray_tree, xarray_entry, entry, xarray_cmp); 981 982 void 983 xa_init_flags(struct xarray *xa, gfp_t flags) 984 { 985 SPLAY_INIT(&xa->xa_tree); 986 if (flags & XA_FLAGS_LOCK_IRQ) 987 mtx_init(&xa->xa_lock, IPL_TTY); 988 else 989 mtx_init(&xa->xa_lock, IPL_NONE); 990 xa->xa_flags = flags; 991 } 992 993 void 994 xa_destroy(struct xarray *xa) 995 { 996 struct xarray_entry *id; 997 998 while ((id = SPLAY_MIN(xarray_tree, &xa->xa_tree))) { 999 SPLAY_REMOVE(xarray_tree, &xa->xa_tree, id); 1000 pool_put(&xa_pool, id); 1001 } 1002 } 1003 1004 /* Don't wrap ids. */ 1005 int 1006 __xa_alloc(struct xarray *xa, u32 *id, void *entry, struct xarray_range xr, 1007 gfp_t gfp) 1008 { 1009 struct xarray_entry *xid; 1010 uint32_t start = xr.start; 1011 uint32_t end = xr.end; 1012 1013 if (start == 0 && (xa->xa_flags & XA_FLAGS_ALLOC1)) 1014 start = 1; 1015 1016 if (gfp & GFP_NOWAIT) { 1017 xid = pool_get(&xa_pool, PR_NOWAIT); 1018 } else { 1019 mtx_leave(&xa->xa_lock); 1020 xid = pool_get(&xa_pool, PR_WAITOK); 1021 mtx_enter(&xa->xa_lock); 1022 } 1023 1024 if (xid == NULL) 1025 return -ENOMEM; 1026 1027 xid->id = start; 1028 1029 while (SPLAY_INSERT(xarray_tree, &xa->xa_tree, xid)) { 1030 if (xid->id == end) 1031 xid->id = start; 1032 else 1033 xid->id++; 1034 if (xid->id == start) { 1035 pool_put(&xa_pool, xid); 1036 return -EBUSY; 1037 } 1038 } 1039 xid->ptr = entry; 1040 *id = xid->id; 1041 return 0; 1042 } 1043 1044 /* 1045 * Wrap ids and store next id. 1046 * We walk the entire tree so don't special case wrapping. 1047 * The only caller of this (i915_drm_client.c) doesn't use next id. 1048 */ 1049 int 1050 __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry, 1051 struct xarray_range xr, u32 *next, gfp_t gfp) 1052 { 1053 int r = __xa_alloc(xa, id, entry, xr, gfp); 1054 *next = *id + 1; 1055 return r; 1056 } 1057 1058 void * 1059 __xa_erase(struct xarray *xa, unsigned long index) 1060 { 1061 struct xarray_entry find, *res; 1062 void *ptr = NULL; 1063 1064 find.id = index; 1065 res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find); 1066 if (res) { 1067 SPLAY_REMOVE(xarray_tree, &xa->xa_tree, res); 1068 ptr = res->ptr; 1069 pool_put(&xa_pool, res); 1070 } 1071 return ptr; 1072 } 1073 1074 void * 1075 __xa_load(struct xarray *xa, unsigned long index) 1076 { 1077 struct xarray_entry find, *res; 1078 1079 find.id = index; 1080 res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find); 1081 if (res == NULL) 1082 return NULL; 1083 return res->ptr; 1084 } 1085 1086 void * 1087 __xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp) 1088 { 1089 struct xarray_entry find, *res; 1090 void *prev; 1091 1092 if (entry == NULL) 1093 return __xa_erase(xa, index); 1094 1095 find.id = index; 1096 res = SPLAY_FIND(xarray_tree, &xa->xa_tree, &find); 1097 if (res != NULL) { 1098 /* index exists */ 1099 /* XXX Multislot entries updates not implemented yet */ 1100 prev = res->ptr; 1101 res->ptr = entry; 1102 return prev; 1103 } 1104 1105 /* index not found, add new */ 1106 if (gfp & GFP_NOWAIT) { 1107 res = pool_get(&xa_pool, PR_NOWAIT); 1108 } else { 1109 mtx_leave(&xa->xa_lock); 1110 res = pool_get(&xa_pool, PR_WAITOK); 1111 mtx_enter(&xa->xa_lock); 1112 } 1113 if (res == NULL) 1114 return XA_ERROR(-ENOMEM); 1115 res->id = index; 1116 res->ptr = entry; 1117 if (SPLAY_INSERT(xarray_tree, &xa->xa_tree, res) != NULL) 1118 return XA_ERROR(-EINVAL); 1119 return NULL; /* no prev entry at index */ 1120 } 1121 1122 void * 1123 xa_get_next(struct xarray *xa, unsigned long *index) 1124 { 1125 struct xarray_entry *res; 1126 1127 SPLAY_FOREACH(res, xarray_tree, &xa->xa_tree) { 1128 if (res->id >= *index) { 1129 *index = res->id; 1130 return res->ptr; 1131 } 1132 } 1133 1134 return NULL; 1135 } 1136 1137 int 1138 sg_alloc_table(struct sg_table *table, unsigned int nents, gfp_t gfp_mask) 1139 { 1140 table->sgl = mallocarray(nents, sizeof(struct scatterlist), 1141 M_DRM, gfp_mask | M_ZERO); 1142 if (table->sgl == NULL) 1143 return -ENOMEM; 1144 table->nents = table->orig_nents = nents; 1145 sg_mark_end(&table->sgl[nents - 1]); 1146 return 0; 1147 } 1148 1149 void 1150 sg_free_table(struct sg_table *table) 1151 { 1152 free(table->sgl, M_DRM, 1153 table->orig_nents * sizeof(struct scatterlist)); 1154 table->orig_nents = 0; 1155 table->sgl = NULL; 1156 } 1157 1158 size_t 1159 sg_copy_from_buffer(struct scatterlist *sgl, unsigned int nents, 1160 const void *buf, size_t buflen) 1161 { 1162 panic("%s", __func__); 1163 } 1164 1165 int 1166 i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 1167 { 1168 void *cmd = NULL; 1169 int cmdlen = 0; 1170 int err, ret = 0; 1171 int op; 1172 1173 iic_acquire_bus(&adap->ic, 0); 1174 1175 while (num > 2) { 1176 op = (msgs->flags & I2C_M_RD) ? I2C_OP_READ : I2C_OP_WRITE; 1177 err = iic_exec(&adap->ic, op, msgs->addr, NULL, 0, 1178 msgs->buf, msgs->len, 0); 1179 if (err) { 1180 ret = -err; 1181 goto fail; 1182 } 1183 msgs++; 1184 num--; 1185 ret++; 1186 } 1187 1188 if (num > 1) { 1189 cmd = msgs->buf; 1190 cmdlen = msgs->len; 1191 msgs++; 1192 num--; 1193 ret++; 1194 } 1195 1196 op = (msgs->flags & I2C_M_RD) ? 1197 I2C_OP_READ_WITH_STOP : I2C_OP_WRITE_WITH_STOP; 1198 err = iic_exec(&adap->ic, op, msgs->addr, cmd, cmdlen, 1199 msgs->buf, msgs->len, 0); 1200 if (err) { 1201 ret = -err; 1202 goto fail; 1203 } 1204 msgs++; 1205 ret++; 1206 1207 fail: 1208 iic_release_bus(&adap->ic, 0); 1209 1210 return ret; 1211 } 1212 1213 int 1214 __i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 1215 { 1216 int ret, retries; 1217 1218 retries = adap->retries; 1219 retry: 1220 if (adap->algo) 1221 ret = adap->algo->master_xfer(adap, msgs, num); 1222 else 1223 ret = i2c_master_xfer(adap, msgs, num); 1224 if (ret == -EAGAIN && retries > 0) { 1225 retries--; 1226 goto retry; 1227 } 1228 1229 return ret; 1230 } 1231 1232 int 1233 i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 1234 { 1235 int ret; 1236 1237 if (adap->lock_ops) 1238 adap->lock_ops->lock_bus(adap, 0); 1239 1240 ret = __i2c_transfer(adap, msgs, num); 1241 1242 if (adap->lock_ops) 1243 adap->lock_ops->unlock_bus(adap, 0); 1244 1245 return ret; 1246 } 1247 1248 int 1249 i2c_bb_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) 1250 { 1251 struct i2c_algo_bit_data *algo = adap->algo_data; 1252 struct i2c_adapter bb; 1253 1254 memset(&bb, 0, sizeof(bb)); 1255 bb.ic = algo->ic; 1256 bb.retries = adap->retries; 1257 return i2c_master_xfer(&bb, msgs, num); 1258 } 1259 1260 uint32_t 1261 i2c_bb_functionality(struct i2c_adapter *adap) 1262 { 1263 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; 1264 } 1265 1266 struct i2c_algorithm i2c_bit_algo = { 1267 .master_xfer = i2c_bb_master_xfer, 1268 .functionality = i2c_bb_functionality 1269 }; 1270 1271 int 1272 i2c_bit_add_bus(struct i2c_adapter *adap) 1273 { 1274 adap->algo = &i2c_bit_algo; 1275 adap->retries = 3; 1276 1277 return 0; 1278 } 1279 1280 #if defined(__amd64__) || defined(__i386__) 1281 1282 /* 1283 * This is a minimal implementation of the Linux vga_get/vga_put 1284 * interface. In all likelihood, it will only work for inteldrm(4) as 1285 * it assumes that if there is another active VGA device in the 1286 * system, it is sitting behind a PCI bridge. 1287 */ 1288 1289 extern int pci_enumerate_bus(struct pci_softc *, 1290 int (*)(struct pci_attach_args *), struct pci_attach_args *); 1291 1292 pcitag_t vga_bridge_tag; 1293 int vga_bridge_disabled; 1294 1295 int 1296 vga_disable_bridge(struct pci_attach_args *pa) 1297 { 1298 pcireg_t bhlc, bc; 1299 1300 if (pa->pa_domain != 0) 1301 return 0; 1302 1303 bhlc = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_BHLC_REG); 1304 if (PCI_HDRTYPE_TYPE(bhlc) != 1) 1305 return 0; 1306 1307 bc = pci_conf_read(pa->pa_pc, pa->pa_tag, PPB_REG_BRIDGECONTROL); 1308 if ((bc & PPB_BC_VGA_ENABLE) == 0) 1309 return 0; 1310 bc &= ~PPB_BC_VGA_ENABLE; 1311 pci_conf_write(pa->pa_pc, pa->pa_tag, PPB_REG_BRIDGECONTROL, bc); 1312 1313 vga_bridge_tag = pa->pa_tag; 1314 vga_bridge_disabled = 1; 1315 1316 return 1; 1317 } 1318 1319 void 1320 vga_get_uninterruptible(struct pci_dev *pdev, int rsrc) 1321 { 1322 if (pdev->pci->sc_bridgetag != NULL) 1323 return; 1324 pci_enumerate_bus(pdev->pci, vga_disable_bridge, NULL); 1325 } 1326 1327 void 1328 vga_put(struct pci_dev *pdev, int rsrc) 1329 { 1330 pcireg_t bc; 1331 1332 if (!vga_bridge_disabled) 1333 return; 1334 1335 bc = pci_conf_read(pdev->pc, vga_bridge_tag, PPB_REG_BRIDGECONTROL); 1336 bc |= PPB_BC_VGA_ENABLE; 1337 pci_conf_write(pdev->pc, vga_bridge_tag, PPB_REG_BRIDGECONTROL, bc); 1338 1339 vga_bridge_disabled = 0; 1340 } 1341 1342 #endif 1343 1344 suspend_state_t pm_suspend_target_state; 1345 1346 /* 1347 * ACPI types and interfaces. 1348 */ 1349 1350 #ifdef __HAVE_ACPI 1351 #include "acpi.h" 1352 #endif 1353 1354 #if NACPI > 0 1355 1356 #include <dev/acpi/acpireg.h> 1357 #include <dev/acpi/acpivar.h> 1358 #include <dev/acpi/amltypes.h> 1359 #include <dev/acpi/dsdt.h> 1360 1361 struct acpi_fadt acpi_gbl_FADT; 1362 1363 acpi_status 1364 acpi_get_table(const char *sig, int instance, 1365 struct acpi_table_header **hdr) 1366 { 1367 struct acpi_softc *sc = acpi_softc; 1368 struct acpi_q *entry; 1369 1370 KASSERT(instance == 1); 1371 1372 if (sc == NULL) 1373 return AE_NOT_FOUND; 1374 1375 SIMPLEQ_FOREACH(entry, &sc->sc_tables, q_next) { 1376 if (memcmp(entry->q_table, sig, strlen(sig)) == 0) { 1377 *hdr = entry->q_table; 1378 return 0; 1379 } 1380 } 1381 1382 return AE_NOT_FOUND; 1383 } 1384 1385 void 1386 acpi_put_table(struct acpi_table_header *hdr) 1387 { 1388 } 1389 1390 acpi_status 1391 acpi_get_handle(acpi_handle node, const char *name, acpi_handle *rnode) 1392 { 1393 node = aml_searchname(node, name); 1394 if (node == NULL) 1395 return AE_NOT_FOUND; 1396 1397 *rnode = node; 1398 return 0; 1399 } 1400 1401 acpi_status 1402 acpi_get_name(acpi_handle node, int type, struct acpi_buffer *buffer) 1403 { 1404 KASSERT(buffer->length != ACPI_ALLOCATE_BUFFER); 1405 KASSERT(type == ACPI_FULL_PATHNAME); 1406 strlcpy(buffer->pointer, aml_nodename(node), buffer->length); 1407 return 0; 1408 } 1409 1410 acpi_status 1411 acpi_evaluate_object(acpi_handle node, const char *name, 1412 struct acpi_object_list *params, struct acpi_buffer *result) 1413 { 1414 struct aml_value args[4], res; 1415 union acpi_object *obj; 1416 uint8_t *data; 1417 int i; 1418 1419 KASSERT(params->count <= nitems(args)); 1420 1421 for (i = 0; i < params->count; i++) { 1422 args[i].type = params->pointer[i].type; 1423 switch (args[i].type) { 1424 case AML_OBJTYPE_INTEGER: 1425 args[i].v_integer = params->pointer[i].integer.value; 1426 break; 1427 case AML_OBJTYPE_BUFFER: 1428 args[i].length = params->pointer[i].buffer.length; 1429 args[i].v_buffer = params->pointer[i].buffer.pointer; 1430 break; 1431 default: 1432 printf("%s: arg type 0x%02x", __func__, args[i].type); 1433 return AE_BAD_PARAMETER; 1434 } 1435 } 1436 1437 if (name) { 1438 node = aml_searchname(node, name); 1439 if (node == NULL) 1440 return AE_NOT_FOUND; 1441 } 1442 if (aml_evalnode(acpi_softc, node, params->count, args, &res)) { 1443 aml_freevalue(&res); 1444 return AE_ERROR; 1445 } 1446 1447 KASSERT(result->length == ACPI_ALLOCATE_BUFFER); 1448 1449 result->length = sizeof(union acpi_object); 1450 switch (res.type) { 1451 case AML_OBJTYPE_BUFFER: 1452 result->length += res.length; 1453 result->pointer = malloc(result->length, M_DRM, M_WAITOK); 1454 obj = (union acpi_object *)result->pointer; 1455 data = (uint8_t *)(obj + 1); 1456 obj->type = res.type; 1457 obj->buffer.length = res.length; 1458 obj->buffer.pointer = data; 1459 memcpy(data, res.v_buffer, res.length); 1460 break; 1461 default: 1462 printf("%s: return type 0x%02x", __func__, res.type); 1463 aml_freevalue(&res); 1464 return AE_ERROR; 1465 } 1466 1467 aml_freevalue(&res); 1468 return 0; 1469 } 1470 1471 SLIST_HEAD(, notifier_block) drm_linux_acpi_notify_list = 1472 SLIST_HEAD_INITIALIZER(drm_linux_acpi_notify_list); 1473 1474 int 1475 drm_linux_acpi_notify(struct aml_node *node, int notify, void *arg) 1476 { 1477 struct acpi_bus_event event; 1478 struct notifier_block *nb; 1479 1480 event.device_class = ACPI_VIDEO_CLASS; 1481 event.type = notify; 1482 1483 SLIST_FOREACH(nb, &drm_linux_acpi_notify_list, link) 1484 nb->notifier_call(nb, 0, &event); 1485 return 0; 1486 } 1487 1488 int 1489 register_acpi_notifier(struct notifier_block *nb) 1490 { 1491 SLIST_INSERT_HEAD(&drm_linux_acpi_notify_list, nb, link); 1492 return 0; 1493 } 1494 1495 int 1496 unregister_acpi_notifier(struct notifier_block *nb) 1497 { 1498 struct notifier_block *tmp; 1499 1500 SLIST_FOREACH(tmp, &drm_linux_acpi_notify_list, link) { 1501 if (tmp == nb) { 1502 SLIST_REMOVE(&drm_linux_acpi_notify_list, nb, 1503 notifier_block, link); 1504 return 0; 1505 } 1506 } 1507 1508 return -ENOENT; 1509 } 1510 1511 const char * 1512 acpi_format_exception(acpi_status status) 1513 { 1514 switch (status) { 1515 case AE_NOT_FOUND: 1516 return "not found"; 1517 case AE_BAD_PARAMETER: 1518 return "bad parameter"; 1519 default: 1520 return "unknown"; 1521 } 1522 } 1523 1524 int 1525 acpi_target_system_state(void) 1526 { 1527 return acpi_softc->sc_state; 1528 } 1529 1530 #endif 1531 1532 SLIST_HEAD(,backlight_device) backlight_device_list = 1533 SLIST_HEAD_INITIALIZER(backlight_device_list); 1534 1535 void 1536 backlight_do_update_status(void *arg) 1537 { 1538 backlight_update_status(arg); 1539 } 1540 1541 struct backlight_device * 1542 backlight_device_register(const char *name, void *kdev, void *data, 1543 const struct backlight_ops *ops, const struct backlight_properties *props) 1544 { 1545 struct backlight_device *bd; 1546 1547 bd = malloc(sizeof(*bd), M_DRM, M_WAITOK); 1548 bd->ops = ops; 1549 bd->props = *props; 1550 bd->data = data; 1551 1552 task_set(&bd->task, backlight_do_update_status, bd); 1553 1554 SLIST_INSERT_HEAD(&backlight_device_list, bd, next); 1555 bd->name = name; 1556 1557 return bd; 1558 } 1559 1560 void 1561 backlight_device_unregister(struct backlight_device *bd) 1562 { 1563 SLIST_REMOVE(&backlight_device_list, bd, backlight_device, next); 1564 free(bd, M_DRM, sizeof(*bd)); 1565 } 1566 1567 void 1568 backlight_schedule_update_status(struct backlight_device *bd) 1569 { 1570 task_add(systq, &bd->task); 1571 } 1572 1573 int 1574 backlight_enable(struct backlight_device *bd) 1575 { 1576 if (bd == NULL) 1577 return 0; 1578 1579 bd->props.power = FB_BLANK_UNBLANK; 1580 1581 return bd->ops->update_status(bd); 1582 } 1583 1584 int 1585 backlight_disable(struct backlight_device *bd) 1586 { 1587 if (bd == NULL) 1588 return 0; 1589 1590 bd->props.power = FB_BLANK_POWERDOWN; 1591 1592 return bd->ops->update_status(bd); 1593 } 1594 1595 struct backlight_device * 1596 backlight_device_get_by_name(const char *name) 1597 { 1598 struct backlight_device *bd; 1599 1600 SLIST_FOREACH(bd, &backlight_device_list, next) { 1601 if (strcmp(name, bd->name) == 0) 1602 return bd; 1603 } 1604 1605 return NULL; 1606 } 1607 1608 struct drvdata { 1609 struct device *dev; 1610 void *data; 1611 SLIST_ENTRY(drvdata) next; 1612 }; 1613 1614 SLIST_HEAD(,drvdata) drvdata_list = SLIST_HEAD_INITIALIZER(drvdata_list); 1615 1616 void 1617 dev_set_drvdata(struct device *dev, void *data) 1618 { 1619 struct drvdata *drvdata; 1620 1621 SLIST_FOREACH(drvdata, &drvdata_list, next) { 1622 if (drvdata->dev == dev) { 1623 drvdata->data = data; 1624 return; 1625 } 1626 } 1627 1628 if (data == NULL) 1629 return; 1630 1631 drvdata = malloc(sizeof(*drvdata), M_DRM, M_WAITOK); 1632 drvdata->dev = dev; 1633 drvdata->data = data; 1634 1635 SLIST_INSERT_HEAD(&drvdata_list, drvdata, next); 1636 } 1637 1638 void * 1639 dev_get_drvdata(struct device *dev) 1640 { 1641 struct drvdata *drvdata; 1642 1643 SLIST_FOREACH(drvdata, &drvdata_list, next) { 1644 if (drvdata->dev == dev) 1645 return drvdata->data; 1646 } 1647 1648 return NULL; 1649 } 1650 1651 void 1652 drm_sysfs_hotplug_event(struct drm_device *dev) 1653 { 1654 knote_locked(&dev->note, NOTE_CHANGE); 1655 } 1656 1657 void 1658 drm_sysfs_connector_hotplug_event(struct drm_connector *connector) 1659 { 1660 knote_locked(&connector->dev->note, NOTE_CHANGE); 1661 } 1662 1663 void 1664 drm_sysfs_connector_status_event(struct drm_connector *connector, 1665 struct drm_property *property) 1666 { 1667 STUB(); 1668 } 1669 1670 void 1671 drm_sysfs_connector_property_event(struct drm_connector *connector, 1672 struct drm_property *property) 1673 { 1674 STUB(); 1675 } 1676 1677 struct dma_fence * 1678 dma_fence_get(struct dma_fence *fence) 1679 { 1680 if (fence) 1681 kref_get(&fence->refcount); 1682 return fence; 1683 } 1684 1685 struct dma_fence * 1686 dma_fence_get_rcu(struct dma_fence *fence) 1687 { 1688 if (fence) 1689 kref_get(&fence->refcount); 1690 return fence; 1691 } 1692 1693 struct dma_fence * 1694 dma_fence_get_rcu_safe(struct dma_fence **dfp) 1695 { 1696 struct dma_fence *fence; 1697 if (dfp == NULL) 1698 return NULL; 1699 fence = *dfp; 1700 if (fence) 1701 kref_get(&fence->refcount); 1702 return fence; 1703 } 1704 1705 void 1706 dma_fence_release(struct kref *ref) 1707 { 1708 struct dma_fence *fence = container_of(ref, struct dma_fence, refcount); 1709 if (fence->ops && fence->ops->release) 1710 fence->ops->release(fence); 1711 else 1712 free(fence, M_DRM, 0); 1713 } 1714 1715 void 1716 dma_fence_put(struct dma_fence *fence) 1717 { 1718 if (fence) 1719 kref_put(&fence->refcount, dma_fence_release); 1720 } 1721 1722 int 1723 dma_fence_signal_timestamp_locked(struct dma_fence *fence, ktime_t timestamp) 1724 { 1725 struct dma_fence_cb *cur, *tmp; 1726 struct list_head cb_list; 1727 1728 if (fence == NULL) 1729 return -EINVAL; 1730 1731 if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1732 return -EINVAL; 1733 1734 list_replace(&fence->cb_list, &cb_list); 1735 1736 fence->timestamp = timestamp; 1737 set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags); 1738 1739 list_for_each_entry_safe(cur, tmp, &cb_list, node) { 1740 INIT_LIST_HEAD(&cur->node); 1741 cur->func(fence, cur); 1742 } 1743 1744 return 0; 1745 } 1746 1747 int 1748 dma_fence_signal(struct dma_fence *fence) 1749 { 1750 int r; 1751 1752 if (fence == NULL) 1753 return -EINVAL; 1754 1755 mtx_enter(fence->lock); 1756 r = dma_fence_signal_timestamp_locked(fence, ktime_get()); 1757 mtx_leave(fence->lock); 1758 1759 return r; 1760 } 1761 1762 int 1763 dma_fence_signal_locked(struct dma_fence *fence) 1764 { 1765 if (fence == NULL) 1766 return -EINVAL; 1767 1768 return dma_fence_signal_timestamp_locked(fence, ktime_get()); 1769 } 1770 1771 int 1772 dma_fence_signal_timestamp(struct dma_fence *fence, ktime_t timestamp) 1773 { 1774 int r; 1775 1776 if (fence == NULL) 1777 return -EINVAL; 1778 1779 mtx_enter(fence->lock); 1780 r = dma_fence_signal_timestamp_locked(fence, timestamp); 1781 mtx_leave(fence->lock); 1782 1783 return r; 1784 } 1785 1786 bool 1787 dma_fence_is_signaled(struct dma_fence *fence) 1788 { 1789 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1790 return true; 1791 1792 if (fence->ops->signaled && fence->ops->signaled(fence)) { 1793 dma_fence_signal(fence); 1794 return true; 1795 } 1796 1797 return false; 1798 } 1799 1800 bool 1801 dma_fence_is_signaled_locked(struct dma_fence *fence) 1802 { 1803 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1804 return true; 1805 1806 if (fence->ops->signaled && fence->ops->signaled(fence)) { 1807 dma_fence_signal_locked(fence); 1808 return true; 1809 } 1810 1811 return false; 1812 } 1813 1814 ktime_t 1815 dma_fence_timestamp(struct dma_fence *fence) 1816 { 1817 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1818 while (!test_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags)) 1819 CPU_BUSY_CYCLE(); 1820 return fence->timestamp; 1821 } else { 1822 return ktime_get(); 1823 } 1824 } 1825 1826 long 1827 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, long timeout) 1828 { 1829 if (timeout < 0) 1830 return -EINVAL; 1831 1832 if (fence->ops->wait) 1833 return fence->ops->wait(fence, intr, timeout); 1834 else 1835 return dma_fence_default_wait(fence, intr, timeout); 1836 } 1837 1838 long 1839 dma_fence_wait(struct dma_fence *fence, bool intr) 1840 { 1841 long ret; 1842 1843 ret = dma_fence_wait_timeout(fence, intr, MAX_SCHEDULE_TIMEOUT); 1844 if (ret < 0) 1845 return ret; 1846 1847 return 0; 1848 } 1849 1850 void 1851 dma_fence_enable_sw_signaling(struct dma_fence *fence) 1852 { 1853 if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags) && 1854 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && 1855 fence->ops->enable_signaling) { 1856 mtx_enter(fence->lock); 1857 if (!fence->ops->enable_signaling(fence)) 1858 dma_fence_signal_locked(fence); 1859 mtx_leave(fence->lock); 1860 } 1861 } 1862 1863 void 1864 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops, 1865 struct mutex *lock, uint64_t context, uint64_t seqno) 1866 { 1867 fence->ops = ops; 1868 fence->lock = lock; 1869 fence->context = context; 1870 fence->seqno = seqno; 1871 fence->flags = 0; 1872 fence->error = 0; 1873 kref_init(&fence->refcount); 1874 INIT_LIST_HEAD(&fence->cb_list); 1875 } 1876 1877 int 1878 dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb, 1879 dma_fence_func_t func) 1880 { 1881 int ret = 0; 1882 bool was_set; 1883 1884 if (WARN_ON(!fence || !func)) 1885 return -EINVAL; 1886 1887 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 1888 INIT_LIST_HEAD(&cb->node); 1889 return -ENOENT; 1890 } 1891 1892 mtx_enter(fence->lock); 1893 1894 was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags); 1895 1896 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1897 ret = -ENOENT; 1898 else if (!was_set && fence->ops->enable_signaling) { 1899 if (!fence->ops->enable_signaling(fence)) { 1900 dma_fence_signal_locked(fence); 1901 ret = -ENOENT; 1902 } 1903 } 1904 1905 if (!ret) { 1906 cb->func = func; 1907 list_add_tail(&cb->node, &fence->cb_list); 1908 } else 1909 INIT_LIST_HEAD(&cb->node); 1910 mtx_leave(fence->lock); 1911 1912 return ret; 1913 } 1914 1915 bool 1916 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb) 1917 { 1918 bool ret; 1919 1920 mtx_enter(fence->lock); 1921 1922 ret = !list_empty(&cb->node); 1923 if (ret) 1924 list_del_init(&cb->node); 1925 1926 mtx_leave(fence->lock); 1927 1928 return ret; 1929 } 1930 1931 static atomic64_t drm_fence_context_count = ATOMIC64_INIT(1); 1932 1933 uint64_t 1934 dma_fence_context_alloc(unsigned int num) 1935 { 1936 return atomic64_add_return(num, &drm_fence_context_count) - num; 1937 } 1938 1939 struct default_wait_cb { 1940 struct dma_fence_cb base; 1941 struct proc *proc; 1942 }; 1943 1944 static void 1945 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb) 1946 { 1947 struct default_wait_cb *wait = 1948 container_of(cb, struct default_wait_cb, base); 1949 wake_up_process(wait->proc); 1950 } 1951 1952 long 1953 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout) 1954 { 1955 long ret = timeout ? timeout : 1; 1956 unsigned long end; 1957 int err; 1958 struct default_wait_cb cb; 1959 bool was_set; 1960 1961 KASSERT(timeout <= INT_MAX); 1962 1963 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1964 return ret; 1965 1966 mtx_enter(fence->lock); 1967 1968 was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 1969 &fence->flags); 1970 1971 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1972 goto out; 1973 1974 if (!was_set && fence->ops->enable_signaling) { 1975 if (!fence->ops->enable_signaling(fence)) { 1976 dma_fence_signal_locked(fence); 1977 goto out; 1978 } 1979 } 1980 1981 if (timeout == 0) { 1982 ret = 0; 1983 goto out; 1984 } 1985 1986 cb.base.func = dma_fence_default_wait_cb; 1987 cb.proc = curproc; 1988 list_add(&cb.base.node, &fence->cb_list); 1989 1990 end = jiffies + timeout; 1991 for (ret = timeout; ret > 0; ret = MAX(0, end - jiffies)) { 1992 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) 1993 break; 1994 err = msleep(curproc, fence->lock, intr ? PCATCH : 0, 1995 "dmafence", ret); 1996 if (err == EINTR || err == ERESTART) { 1997 ret = -ERESTARTSYS; 1998 break; 1999 } 2000 } 2001 2002 if (!list_empty(&cb.base.node)) 2003 list_del(&cb.base.node); 2004 out: 2005 mtx_leave(fence->lock); 2006 2007 return ret; 2008 } 2009 2010 static bool 2011 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count, 2012 uint32_t *idx) 2013 { 2014 int i; 2015 2016 for (i = 0; i < count; ++i) { 2017 struct dma_fence *fence = fences[i]; 2018 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) { 2019 if (idx) 2020 *idx = i; 2021 return true; 2022 } 2023 } 2024 return false; 2025 } 2026 2027 long 2028 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count, 2029 bool intr, long timeout, uint32_t *idx) 2030 { 2031 struct default_wait_cb *cb; 2032 long ret = timeout; 2033 unsigned long end; 2034 int i, err; 2035 2036 KASSERT(timeout <= INT_MAX); 2037 2038 if (timeout == 0) { 2039 for (i = 0; i < count; i++) { 2040 if (dma_fence_is_signaled(fences[i])) { 2041 if (idx) 2042 *idx = i; 2043 return 1; 2044 } 2045 } 2046 return 0; 2047 } 2048 2049 cb = mallocarray(count, sizeof(*cb), M_DRM, M_WAITOK|M_CANFAIL|M_ZERO); 2050 if (cb == NULL) 2051 return -ENOMEM; 2052 2053 for (i = 0; i < count; i++) { 2054 struct dma_fence *fence = fences[i]; 2055 cb[i].proc = curproc; 2056 if (dma_fence_add_callback(fence, &cb[i].base, 2057 dma_fence_default_wait_cb)) { 2058 if (idx) 2059 *idx = i; 2060 goto cb_cleanup; 2061 } 2062 } 2063 2064 end = jiffies + timeout; 2065 for (ret = timeout; ret > 0; ret = MAX(0, end - jiffies)) { 2066 if (dma_fence_test_signaled_any(fences, count, idx)) 2067 break; 2068 err = tsleep(curproc, intr ? PCATCH : 0, "dfwat", ret); 2069 if (err == EINTR || err == ERESTART) { 2070 ret = -ERESTARTSYS; 2071 break; 2072 } 2073 } 2074 2075 cb_cleanup: 2076 while (i-- > 0) 2077 dma_fence_remove_callback(fences[i], &cb[i].base); 2078 free(cb, M_DRM, count * sizeof(*cb)); 2079 return ret; 2080 } 2081 2082 void 2083 dma_fence_set_deadline(struct dma_fence *f, ktime_t t) 2084 { 2085 if (f->ops->set_deadline == NULL) 2086 return; 2087 if (dma_fence_is_signaled(f) == false) 2088 f->ops->set_deadline(f, t); 2089 } 2090 2091 static struct dma_fence dma_fence_stub; 2092 static struct mutex dma_fence_stub_mtx = MUTEX_INITIALIZER(IPL_TTY); 2093 2094 static const char * 2095 dma_fence_stub_get_name(struct dma_fence *fence) 2096 { 2097 return "stub"; 2098 } 2099 2100 static const struct dma_fence_ops dma_fence_stub_ops = { 2101 .get_driver_name = dma_fence_stub_get_name, 2102 .get_timeline_name = dma_fence_stub_get_name, 2103 }; 2104 2105 struct dma_fence * 2106 dma_fence_get_stub(void) 2107 { 2108 mtx_enter(&dma_fence_stub_mtx); 2109 if (dma_fence_stub.ops == NULL) { 2110 dma_fence_init(&dma_fence_stub, &dma_fence_stub_ops, 2111 &dma_fence_stub_mtx, 0, 0); 2112 dma_fence_signal_locked(&dma_fence_stub); 2113 } 2114 mtx_leave(&dma_fence_stub_mtx); 2115 2116 return dma_fence_get(&dma_fence_stub); 2117 } 2118 2119 struct dma_fence * 2120 dma_fence_allocate_private_stub(ktime_t ts) 2121 { 2122 struct dma_fence *f = malloc(sizeof(*f), M_DRM, 2123 M_ZERO | M_WAITOK | M_CANFAIL); 2124 if (f == NULL) 2125 return NULL; 2126 dma_fence_init(f, &dma_fence_stub_ops, &dma_fence_stub_mtx, 0, 0); 2127 dma_fence_signal_timestamp(f, ts); 2128 return f; 2129 } 2130 2131 static const char * 2132 dma_fence_array_get_driver_name(struct dma_fence *fence) 2133 { 2134 return "dma_fence_array"; 2135 } 2136 2137 static const char * 2138 dma_fence_array_get_timeline_name(struct dma_fence *fence) 2139 { 2140 return "unbound"; 2141 } 2142 2143 static void 2144 irq_dma_fence_array_work(void *arg) 2145 { 2146 struct dma_fence_array *dfa = (struct dma_fence_array *)arg; 2147 dma_fence_signal(&dfa->base); 2148 dma_fence_put(&dfa->base); 2149 } 2150 2151 static void 2152 dma_fence_array_cb_func(struct dma_fence *f, struct dma_fence_cb *cb) 2153 { 2154 struct dma_fence_array_cb *array_cb = 2155 container_of(cb, struct dma_fence_array_cb, cb); 2156 struct dma_fence_array *dfa = array_cb->array; 2157 2158 if (atomic_dec_and_test(&dfa->num_pending)) 2159 timeout_add(&dfa->to, 1); 2160 else 2161 dma_fence_put(&dfa->base); 2162 } 2163 2164 static bool 2165 dma_fence_array_enable_signaling(struct dma_fence *fence) 2166 { 2167 struct dma_fence_array *dfa = to_dma_fence_array(fence); 2168 struct dma_fence_array_cb *cb = (void *)(&dfa[1]); 2169 int i; 2170 2171 for (i = 0; i < dfa->num_fences; ++i) { 2172 cb[i].array = dfa; 2173 dma_fence_get(&dfa->base); 2174 if (dma_fence_add_callback(dfa->fences[i], &cb[i].cb, 2175 dma_fence_array_cb_func)) { 2176 dma_fence_put(&dfa->base); 2177 if (atomic_dec_and_test(&dfa->num_pending)) 2178 return false; 2179 } 2180 } 2181 2182 return true; 2183 } 2184 2185 static bool 2186 dma_fence_array_signaled(struct dma_fence *fence) 2187 { 2188 struct dma_fence_array *dfa = to_dma_fence_array(fence); 2189 2190 return atomic_read(&dfa->num_pending) <= 0; 2191 } 2192 2193 static void 2194 dma_fence_array_release(struct dma_fence *fence) 2195 { 2196 struct dma_fence_array *dfa = to_dma_fence_array(fence); 2197 int i; 2198 2199 for (i = 0; i < dfa->num_fences; ++i) 2200 dma_fence_put(dfa->fences[i]); 2201 2202 free(dfa->fences, M_DRM, 0); 2203 dma_fence_free(fence); 2204 } 2205 2206 struct dma_fence_array * 2207 dma_fence_array_create(int num_fences, struct dma_fence **fences, u64 context, 2208 unsigned seqno, bool signal_on_any) 2209 { 2210 struct dma_fence_array *dfa = malloc(sizeof(*dfa) + 2211 (num_fences * sizeof(struct dma_fence_array_cb)), 2212 M_DRM, M_WAITOK|M_CANFAIL|M_ZERO); 2213 if (dfa == NULL) 2214 return NULL; 2215 2216 mtx_init(&dfa->lock, IPL_TTY); 2217 dma_fence_init(&dfa->base, &dma_fence_array_ops, &dfa->lock, 2218 context, seqno); 2219 timeout_set(&dfa->to, irq_dma_fence_array_work, dfa); 2220 2221 dfa->num_fences = num_fences; 2222 atomic_set(&dfa->num_pending, signal_on_any ? 1 : num_fences); 2223 dfa->fences = fences; 2224 2225 return dfa; 2226 } 2227 2228 struct dma_fence * 2229 dma_fence_array_first(struct dma_fence *f) 2230 { 2231 struct dma_fence_array *dfa; 2232 2233 if (f == NULL) 2234 return NULL; 2235 2236 if ((dfa = to_dma_fence_array(f)) == NULL) 2237 return f; 2238 2239 if (dfa->num_fences > 0) 2240 return dfa->fences[0]; 2241 2242 return NULL; 2243 } 2244 2245 struct dma_fence * 2246 dma_fence_array_next(struct dma_fence *f, unsigned int i) 2247 { 2248 struct dma_fence_array *dfa; 2249 2250 if (f == NULL) 2251 return NULL; 2252 2253 if ((dfa = to_dma_fence_array(f)) == NULL) 2254 return NULL; 2255 2256 if (i < dfa->num_fences) 2257 return dfa->fences[i]; 2258 2259 return NULL; 2260 } 2261 2262 const struct dma_fence_ops dma_fence_array_ops = { 2263 .get_driver_name = dma_fence_array_get_driver_name, 2264 .get_timeline_name = dma_fence_array_get_timeline_name, 2265 .enable_signaling = dma_fence_array_enable_signaling, 2266 .signaled = dma_fence_array_signaled, 2267 .release = dma_fence_array_release, 2268 }; 2269 2270 int 2271 dma_fence_chain_find_seqno(struct dma_fence **df, uint64_t seqno) 2272 { 2273 struct dma_fence_chain *chain; 2274 struct dma_fence *fence; 2275 2276 if (seqno == 0) 2277 return 0; 2278 2279 if ((chain = to_dma_fence_chain(*df)) == NULL) 2280 return -EINVAL; 2281 2282 fence = &chain->base; 2283 if (fence->seqno < seqno) 2284 return -EINVAL; 2285 2286 dma_fence_chain_for_each(*df, fence) { 2287 if ((*df)->context != fence->context) 2288 break; 2289 2290 chain = to_dma_fence_chain(*df); 2291 if (chain->prev_seqno < seqno) 2292 break; 2293 } 2294 dma_fence_put(fence); 2295 2296 return 0; 2297 } 2298 2299 void 2300 dma_fence_chain_init(struct dma_fence_chain *chain, struct dma_fence *prev, 2301 struct dma_fence *fence, uint64_t seqno) 2302 { 2303 uint64_t context; 2304 2305 chain->fence = fence; 2306 chain->prev = prev; 2307 mtx_init(&chain->lock, IPL_TTY); 2308 2309 /* if prev is a chain */ 2310 if (to_dma_fence_chain(prev) != NULL) { 2311 if (__dma_fence_is_later(seqno, prev->seqno, prev->ops)) { 2312 chain->prev_seqno = prev->seqno; 2313 context = prev->context; 2314 } else { 2315 chain->prev_seqno = 0; 2316 context = dma_fence_context_alloc(1); 2317 seqno = prev->seqno; 2318 } 2319 } else { 2320 chain->prev_seqno = 0; 2321 context = dma_fence_context_alloc(1); 2322 } 2323 2324 dma_fence_init(&chain->base, &dma_fence_chain_ops, &chain->lock, 2325 context, seqno); 2326 } 2327 2328 static const char * 2329 dma_fence_chain_get_driver_name(struct dma_fence *fence) 2330 { 2331 return "dma_fence_chain"; 2332 } 2333 2334 static const char * 2335 dma_fence_chain_get_timeline_name(struct dma_fence *fence) 2336 { 2337 return "unbound"; 2338 } 2339 2340 static bool dma_fence_chain_enable_signaling(struct dma_fence *); 2341 2342 static void 2343 dma_fence_chain_timo(void *arg) 2344 { 2345 struct dma_fence_chain *chain = (struct dma_fence_chain *)arg; 2346 2347 if (dma_fence_chain_enable_signaling(&chain->base) == false) 2348 dma_fence_signal(&chain->base); 2349 dma_fence_put(&chain->base); 2350 } 2351 2352 static void 2353 dma_fence_chain_cb(struct dma_fence *f, struct dma_fence_cb *cb) 2354 { 2355 struct dma_fence_chain *chain = 2356 container_of(cb, struct dma_fence_chain, cb); 2357 timeout_set(&chain->to, dma_fence_chain_timo, chain); 2358 timeout_add(&chain->to, 1); 2359 dma_fence_put(f); 2360 } 2361 2362 static bool 2363 dma_fence_chain_enable_signaling(struct dma_fence *fence) 2364 { 2365 struct dma_fence_chain *chain, *h; 2366 struct dma_fence *f; 2367 2368 h = to_dma_fence_chain(fence); 2369 dma_fence_get(&h->base); 2370 dma_fence_chain_for_each(fence, &h->base) { 2371 chain = to_dma_fence_chain(fence); 2372 if (chain == NULL) 2373 f = fence; 2374 else 2375 f = chain->fence; 2376 2377 dma_fence_get(f); 2378 if (!dma_fence_add_callback(f, &h->cb, dma_fence_chain_cb)) { 2379 dma_fence_put(fence); 2380 return true; 2381 } 2382 dma_fence_put(f); 2383 } 2384 dma_fence_put(&h->base); 2385 return false; 2386 } 2387 2388 static bool 2389 dma_fence_chain_signaled(struct dma_fence *fence) 2390 { 2391 struct dma_fence_chain *chain; 2392 struct dma_fence *f; 2393 2394 dma_fence_chain_for_each(fence, fence) { 2395 chain = to_dma_fence_chain(fence); 2396 if (chain == NULL) 2397 f = fence; 2398 else 2399 f = chain->fence; 2400 2401 if (dma_fence_is_signaled(f) == false) { 2402 dma_fence_put(fence); 2403 return false; 2404 } 2405 } 2406 return true; 2407 } 2408 2409 static void 2410 dma_fence_chain_release(struct dma_fence *fence) 2411 { 2412 struct dma_fence_chain *chain = to_dma_fence_chain(fence); 2413 struct dma_fence_chain *prev_chain; 2414 struct dma_fence *prev; 2415 2416 for (prev = chain->prev; prev != NULL; prev = chain->prev) { 2417 if (kref_read(&prev->refcount) > 1) 2418 break; 2419 if ((prev_chain = to_dma_fence_chain(prev)) == NULL) 2420 break; 2421 chain->prev = prev_chain->prev; 2422 prev_chain->prev = NULL; 2423 dma_fence_put(prev); 2424 } 2425 dma_fence_put(prev); 2426 dma_fence_put(chain->fence); 2427 dma_fence_free(fence); 2428 } 2429 2430 struct dma_fence * 2431 dma_fence_chain_walk(struct dma_fence *fence) 2432 { 2433 struct dma_fence_chain *chain = to_dma_fence_chain(fence), *prev_chain; 2434 struct dma_fence *prev, *new_prev, *tmp; 2435 2436 if (chain == NULL) { 2437 dma_fence_put(fence); 2438 return NULL; 2439 } 2440 2441 while ((prev = dma_fence_get(chain->prev)) != NULL) { 2442 prev_chain = to_dma_fence_chain(prev); 2443 if (prev_chain != NULL) { 2444 if (!dma_fence_is_signaled(prev_chain->fence)) 2445 break; 2446 new_prev = dma_fence_get(prev_chain->prev); 2447 } else { 2448 if (!dma_fence_is_signaled(prev)) 2449 break; 2450 new_prev = NULL; 2451 } 2452 tmp = atomic_cas_ptr(&chain->prev, prev, new_prev); 2453 dma_fence_put(tmp == prev ? prev : new_prev); 2454 dma_fence_put(prev); 2455 } 2456 2457 dma_fence_put(fence); 2458 return prev; 2459 } 2460 2461 const struct dma_fence_ops dma_fence_chain_ops = { 2462 .get_driver_name = dma_fence_chain_get_driver_name, 2463 .get_timeline_name = dma_fence_chain_get_timeline_name, 2464 .enable_signaling = dma_fence_chain_enable_signaling, 2465 .signaled = dma_fence_chain_signaled, 2466 .release = dma_fence_chain_release, 2467 .use_64bit_seqno = true, 2468 }; 2469 2470 bool 2471 dma_fence_is_container(struct dma_fence *fence) 2472 { 2473 return (fence->ops == &dma_fence_chain_ops) || 2474 (fence->ops == &dma_fence_array_ops); 2475 } 2476 2477 int 2478 dmabuf_read(struct file *fp, struct uio *uio, int fflags) 2479 { 2480 return (ENXIO); 2481 } 2482 2483 int 2484 dmabuf_write(struct file *fp, struct uio *uio, int fflags) 2485 { 2486 return (ENXIO); 2487 } 2488 2489 int 2490 dmabuf_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p) 2491 { 2492 return (ENOTTY); 2493 } 2494 2495 int 2496 dmabuf_kqfilter(struct file *fp, struct knote *kn) 2497 { 2498 return (EINVAL); 2499 } 2500 2501 int 2502 dmabuf_stat(struct file *fp, struct stat *st, struct proc *p) 2503 { 2504 struct dma_buf *dmabuf = fp->f_data; 2505 2506 memset(st, 0, sizeof(*st)); 2507 st->st_size = dmabuf->size; 2508 st->st_mode = S_IFIFO; /* XXX */ 2509 return (0); 2510 } 2511 2512 int 2513 dmabuf_close(struct file *fp, struct proc *p) 2514 { 2515 struct dma_buf *dmabuf = fp->f_data; 2516 2517 fp->f_data = NULL; 2518 KERNEL_LOCK(); 2519 dmabuf->ops->release(dmabuf); 2520 KERNEL_UNLOCK(); 2521 free(dmabuf, M_DRM, sizeof(struct dma_buf)); 2522 return (0); 2523 } 2524 2525 int 2526 dmabuf_seek(struct file *fp, off_t *offset, int whence, struct proc *p) 2527 { 2528 struct dma_buf *dmabuf = fp->f_data; 2529 off_t newoff; 2530 2531 if (*offset != 0) 2532 return (EINVAL); 2533 2534 switch (whence) { 2535 case SEEK_SET: 2536 newoff = 0; 2537 break; 2538 case SEEK_END: 2539 newoff = dmabuf->size; 2540 break; 2541 default: 2542 return (EINVAL); 2543 } 2544 mtx_enter(&fp->f_mtx); 2545 fp->f_offset = newoff; 2546 mtx_leave(&fp->f_mtx); 2547 *offset = newoff; 2548 return (0); 2549 } 2550 2551 const struct fileops dmabufops = { 2552 .fo_read = dmabuf_read, 2553 .fo_write = dmabuf_write, 2554 .fo_ioctl = dmabuf_ioctl, 2555 .fo_kqfilter = dmabuf_kqfilter, 2556 .fo_stat = dmabuf_stat, 2557 .fo_close = dmabuf_close, 2558 .fo_seek = dmabuf_seek, 2559 }; 2560 2561 struct dma_buf * 2562 dma_buf_export(const struct dma_buf_export_info *info) 2563 { 2564 struct proc *p = curproc; 2565 struct dma_buf *dmabuf; 2566 struct file *fp; 2567 2568 fp = fnew(p); 2569 if (fp == NULL) 2570 return ERR_PTR(-ENFILE); 2571 fp->f_type = DTYPE_DMABUF; 2572 fp->f_ops = &dmabufops; 2573 dmabuf = malloc(sizeof(struct dma_buf), M_DRM, M_WAITOK | M_ZERO); 2574 dmabuf->priv = info->priv; 2575 dmabuf->ops = info->ops; 2576 dmabuf->size = info->size; 2577 dmabuf->file = fp; 2578 fp->f_data = dmabuf; 2579 INIT_LIST_HEAD(&dmabuf->attachments); 2580 return dmabuf; 2581 } 2582 2583 struct dma_buf * 2584 dma_buf_get(int fd) 2585 { 2586 struct proc *p = curproc; 2587 struct filedesc *fdp = p->p_fd; 2588 struct file *fp; 2589 2590 if ((fp = fd_getfile(fdp, fd)) == NULL) 2591 return ERR_PTR(-EBADF); 2592 2593 if (fp->f_type != DTYPE_DMABUF) { 2594 FRELE(fp, p); 2595 return ERR_PTR(-EINVAL); 2596 } 2597 2598 return fp->f_data; 2599 } 2600 2601 void 2602 dma_buf_put(struct dma_buf *dmabuf) 2603 { 2604 KASSERT(dmabuf); 2605 KASSERT(dmabuf->file); 2606 2607 FRELE(dmabuf->file, curproc); 2608 } 2609 2610 int 2611 dma_buf_fd(struct dma_buf *dmabuf, int flags) 2612 { 2613 struct proc *p = curproc; 2614 struct filedesc *fdp = p->p_fd; 2615 struct file *fp = dmabuf->file; 2616 int fd, cloexec, error; 2617 2618 cloexec = (flags & O_CLOEXEC) ? UF_EXCLOSE : 0; 2619 2620 fdplock(fdp); 2621 restart: 2622 if ((error = fdalloc(p, 0, &fd)) != 0) { 2623 if (error == ENOSPC) { 2624 fdexpand(p); 2625 goto restart; 2626 } 2627 fdpunlock(fdp); 2628 return -error; 2629 } 2630 2631 fdinsert(fdp, fd, cloexec, fp); 2632 fdpunlock(fdp); 2633 2634 return fd; 2635 } 2636 2637 void 2638 get_dma_buf(struct dma_buf *dmabuf) 2639 { 2640 FREF(dmabuf->file); 2641 } 2642 2643 enum pci_bus_speed 2644 pcie_get_speed_cap(struct pci_dev *pdev) 2645 { 2646 pci_chipset_tag_t pc; 2647 pcitag_t tag; 2648 int pos ; 2649 pcireg_t xcap, lnkcap = 0, lnkcap2 = 0; 2650 pcireg_t id; 2651 enum pci_bus_speed cap = PCI_SPEED_UNKNOWN; 2652 int bus, device, function; 2653 2654 if (pdev == NULL) 2655 return PCI_SPEED_UNKNOWN; 2656 2657 pc = pdev->pc; 2658 tag = pdev->tag; 2659 2660 if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS, 2661 &pos, NULL)) 2662 return PCI_SPEED_UNKNOWN; 2663 2664 id = pci_conf_read(pc, tag, PCI_ID_REG); 2665 pci_decompose_tag(pc, tag, &bus, &device, &function); 2666 2667 /* we've been informed via and serverworks don't make the cut */ 2668 if (PCI_VENDOR(id) == PCI_VENDOR_VIATECH || 2669 PCI_VENDOR(id) == PCI_VENDOR_RCC) 2670 return PCI_SPEED_UNKNOWN; 2671 2672 lnkcap = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP); 2673 xcap = pci_conf_read(pc, tag, pos + PCI_PCIE_XCAP); 2674 if (PCI_PCIE_XCAP_VER(xcap) >= 2) 2675 lnkcap2 = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP2); 2676 2677 lnkcap &= 0x0f; 2678 lnkcap2 &= 0xfe; 2679 2680 if (lnkcap2) { /* PCIE GEN 3.0 */ 2681 if (lnkcap2 & 0x02) 2682 cap = PCIE_SPEED_2_5GT; 2683 if (lnkcap2 & 0x04) 2684 cap = PCIE_SPEED_5_0GT; 2685 if (lnkcap2 & 0x08) 2686 cap = PCIE_SPEED_8_0GT; 2687 if (lnkcap2 & 0x10) 2688 cap = PCIE_SPEED_16_0GT; 2689 if (lnkcap2 & 0x20) 2690 cap = PCIE_SPEED_32_0GT; 2691 if (lnkcap2 & 0x40) 2692 cap = PCIE_SPEED_64_0GT; 2693 } else { 2694 if (lnkcap & 0x01) 2695 cap = PCIE_SPEED_2_5GT; 2696 if (lnkcap & 0x02) 2697 cap = PCIE_SPEED_5_0GT; 2698 } 2699 2700 DRM_INFO("probing pcie caps for device %d:%d:%d 0x%04x:0x%04x = %x/%x\n", 2701 bus, device, function, PCI_VENDOR(id), PCI_PRODUCT(id), lnkcap, 2702 lnkcap2); 2703 return cap; 2704 } 2705 2706 enum pcie_link_width 2707 pcie_get_width_cap(struct pci_dev *pdev) 2708 { 2709 pci_chipset_tag_t pc = pdev->pc; 2710 pcitag_t tag = pdev->tag; 2711 int pos ; 2712 pcireg_t lnkcap = 0; 2713 pcireg_t id; 2714 int bus, device, function; 2715 2716 if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS, 2717 &pos, NULL)) 2718 return PCIE_LNK_WIDTH_UNKNOWN; 2719 2720 id = pci_conf_read(pc, tag, PCI_ID_REG); 2721 pci_decompose_tag(pc, tag, &bus, &device, &function); 2722 2723 lnkcap = pci_conf_read(pc, tag, pos + PCI_PCIE_LCAP); 2724 2725 DRM_INFO("probing pcie width for device %d:%d:%d 0x%04x:0x%04x = %x\n", 2726 bus, device, function, PCI_VENDOR(id), PCI_PRODUCT(id), lnkcap); 2727 2728 if (lnkcap) 2729 return (lnkcap & 0x3f0) >> 4; 2730 return PCIE_LNK_WIDTH_UNKNOWN; 2731 } 2732 2733 bool 2734 pcie_aspm_enabled(struct pci_dev *pdev) 2735 { 2736 pci_chipset_tag_t pc = pdev->pc; 2737 pcitag_t tag = pdev->tag; 2738 int pos ; 2739 pcireg_t lcsr; 2740 2741 if (!pci_get_capability(pc, tag, PCI_CAP_PCIEXPRESS, 2742 &pos, NULL)) 2743 return false; 2744 2745 lcsr = pci_conf_read(pc, tag, pos + PCI_PCIE_LCSR); 2746 if ((lcsr & (PCI_PCIE_LCSR_ASPM_L0S | PCI_PCIE_LCSR_ASPM_L1)) != 0) 2747 return true; 2748 2749 return false; 2750 } 2751 2752 static wait_queue_head_t bit_waitq; 2753 wait_queue_head_t var_waitq; 2754 struct mutex wait_bit_mtx = MUTEX_INITIALIZER(IPL_TTY); 2755 2756 int 2757 wait_on_bit(unsigned long *word, int bit, unsigned mode) 2758 { 2759 int err; 2760 2761 if (!test_bit(bit, word)) 2762 return 0; 2763 2764 mtx_enter(&wait_bit_mtx); 2765 while (test_bit(bit, word)) { 2766 err = msleep_nsec(word, &wait_bit_mtx, PWAIT | mode, "wtb", 2767 INFSLP); 2768 if (err) { 2769 mtx_leave(&wait_bit_mtx); 2770 return 1; 2771 } 2772 } 2773 mtx_leave(&wait_bit_mtx); 2774 return 0; 2775 } 2776 2777 int 2778 wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode, int timo) 2779 { 2780 int err; 2781 2782 if (!test_bit(bit, word)) 2783 return 0; 2784 2785 mtx_enter(&wait_bit_mtx); 2786 while (test_bit(bit, word)) { 2787 err = msleep(word, &wait_bit_mtx, PWAIT | mode, "wtb", timo); 2788 if (err) { 2789 mtx_leave(&wait_bit_mtx); 2790 return 1; 2791 } 2792 } 2793 mtx_leave(&wait_bit_mtx); 2794 return 0; 2795 } 2796 2797 void 2798 wake_up_bit(void *word, int bit) 2799 { 2800 mtx_enter(&wait_bit_mtx); 2801 wakeup(word); 2802 mtx_leave(&wait_bit_mtx); 2803 } 2804 2805 void 2806 clear_and_wake_up_bit(int bit, void *word) 2807 { 2808 clear_bit(bit, word); 2809 wake_up_bit(word, bit); 2810 } 2811 2812 wait_queue_head_t * 2813 bit_waitqueue(void *word, int bit) 2814 { 2815 /* XXX hash table of wait queues? */ 2816 return &bit_waitq; 2817 } 2818 2819 wait_queue_head_t * 2820 __var_waitqueue(void *p) 2821 { 2822 /* XXX hash table of wait queues? */ 2823 return &bit_waitq; 2824 } 2825 2826 struct workqueue_struct *system_wq; 2827 struct workqueue_struct *system_highpri_wq; 2828 struct workqueue_struct *system_unbound_wq; 2829 struct workqueue_struct *system_long_wq; 2830 struct taskq *taskletq; 2831 2832 void 2833 drm_linux_init(void) 2834 { 2835 system_wq = (struct workqueue_struct *) 2836 taskq_create("drmwq", 4, IPL_HIGH, 0); 2837 system_highpri_wq = (struct workqueue_struct *) 2838 taskq_create("drmhpwq", 4, IPL_HIGH, 0); 2839 system_unbound_wq = (struct workqueue_struct *) 2840 taskq_create("drmubwq", 4, IPL_HIGH, 0); 2841 system_long_wq = (struct workqueue_struct *) 2842 taskq_create("drmlwq", 4, IPL_HIGH, 0); 2843 2844 taskletq = taskq_create("drmtskl", 1, IPL_HIGH, 0); 2845 2846 init_waitqueue_head(&bit_waitq); 2847 init_waitqueue_head(&var_waitq); 2848 2849 pool_init(&idr_pool, sizeof(struct idr_entry), 0, IPL_TTY, 0, 2850 "idrpl", NULL); 2851 pool_init(&xa_pool, sizeof(struct xarray_entry), 0, IPL_NONE, 0, 2852 "xapl", NULL); 2853 2854 kmap_atomic_va = 2855 (vaddr_t)km_alloc(PAGE_SIZE, &kv_any, &kp_none, &kd_waitok); 2856 2857 #if NACPI > 0 2858 if (acpi_softc) { 2859 memcpy(&acpi_gbl_FADT, acpi_softc->sc_fadt, 2860 sizeof(acpi_gbl_FADT)); 2861 } 2862 #endif 2863 } 2864 2865 void 2866 drm_linux_exit(void) 2867 { 2868 pool_destroy(&xa_pool); 2869 pool_destroy(&idr_pool); 2870 2871 taskq_destroy(taskletq); 2872 2873 taskq_destroy((struct taskq *)system_long_wq); 2874 taskq_destroy((struct taskq *)system_unbound_wq); 2875 taskq_destroy((struct taskq *)system_highpri_wq); 2876 taskq_destroy((struct taskq *)system_wq); 2877 } 2878 2879 #define PCIE_ECAP_RESIZE_BAR 0x15 2880 #define RBCAP0 0x04 2881 #define RBCTRL0 0x08 2882 #define RBCTRL_BARINDEX_MASK 0x07 2883 #define RBCTRL_BARSIZE_MASK 0x1f00 2884 #define RBCTRL_BARSIZE_SHIFT 8 2885 2886 /* size in MB is 1 << nsize */ 2887 int 2888 pci_resize_resource(struct pci_dev *pdev, int bar, int nsize) 2889 { 2890 pcireg_t reg; 2891 uint32_t offset, capid; 2892 2893 KASSERT(bar == 0); 2894 2895 offset = PCI_PCIE_ECAP; 2896 2897 /* search PCI Express Extended Capabilities */ 2898 do { 2899 reg = pci_conf_read(pdev->pc, pdev->tag, offset); 2900 capid = PCI_PCIE_ECAP_ID(reg); 2901 if (capid == PCIE_ECAP_RESIZE_BAR) 2902 break; 2903 offset = PCI_PCIE_ECAP_NEXT(reg); 2904 } while (capid != 0); 2905 2906 if (capid == 0) { 2907 printf("%s: could not find resize bar cap!\n", __func__); 2908 return -ENOTSUP; 2909 } 2910 2911 reg = pci_conf_read(pdev->pc, pdev->tag, offset + RBCAP0); 2912 2913 if ((reg & (1 << (nsize + 4))) == 0) { 2914 printf("%s size not supported\n", __func__); 2915 return -ENOTSUP; 2916 } 2917 2918 reg = pci_conf_read(pdev->pc, pdev->tag, offset + RBCTRL0); 2919 if ((reg & RBCTRL_BARINDEX_MASK) != 0) { 2920 printf("%s BAR index not 0\n", __func__); 2921 return -EINVAL; 2922 } 2923 2924 reg &= ~RBCTRL_BARSIZE_MASK; 2925 reg |= (nsize << RBCTRL_BARSIZE_SHIFT) & RBCTRL_BARSIZE_MASK; 2926 2927 pci_conf_write(pdev->pc, pdev->tag, offset + RBCTRL0, reg); 2928 2929 return 0; 2930 } 2931 2932 TAILQ_HEAD(, shrinker) shrinkers = TAILQ_HEAD_INITIALIZER(shrinkers); 2933 2934 int 2935 register_shrinker(struct shrinker *shrinker, const char *format, ...) 2936 { 2937 TAILQ_INSERT_TAIL(&shrinkers, shrinker, next); 2938 return 0; 2939 } 2940 2941 void 2942 unregister_shrinker(struct shrinker *shrinker) 2943 { 2944 TAILQ_REMOVE(&shrinkers, shrinker, next); 2945 } 2946 2947 unsigned long 2948 drmbackoff(long npages) 2949 { 2950 struct shrink_control sc; 2951 struct shrinker *shrinker; 2952 u_long ret, freed = 0; 2953 2954 shrinker = TAILQ_FIRST(&shrinkers); 2955 while (shrinker && npages > 0) { 2956 sc.nr_to_scan = npages; 2957 ret = shrinker->scan_objects(shrinker, &sc); 2958 if (ret == SHRINK_STOP) 2959 break; 2960 npages -= ret; 2961 freed += ret; 2962 shrinker = TAILQ_NEXT(shrinker, next); 2963 } 2964 2965 return freed; 2966 } 2967 2968 void * 2969 bitmap_zalloc(u_int n, gfp_t flags) 2970 { 2971 return kcalloc(BITS_TO_LONGS(n), sizeof(long), flags); 2972 } 2973 2974 void 2975 bitmap_free(void *p) 2976 { 2977 kfree(p); 2978 } 2979 2980 int 2981 atomic_dec_and_mutex_lock(volatile int *v, struct rwlock *lock) 2982 { 2983 if (atomic_add_unless(v, -1, 1)) 2984 return 0; 2985 2986 rw_enter_write(lock); 2987 if (atomic_dec_return(v) == 0) 2988 return 1; 2989 rw_exit_write(lock); 2990 return 0; 2991 } 2992 2993 int 2994 printk(const char *fmt, ...) 2995 { 2996 int ret, level; 2997 va_list ap; 2998 2999 if (fmt != NULL && *fmt == '\001') { 3000 level = fmt[1]; 3001 #ifndef DRMDEBUG 3002 if (level >= KERN_INFO[1] && level <= '9') 3003 return 0; 3004 #endif 3005 fmt += 2; 3006 } 3007 3008 va_start(ap, fmt); 3009 ret = vprintf(fmt, ap); 3010 va_end(ap); 3011 3012 return ret; 3013 } 3014 3015 #define START(node) ((node)->start) 3016 #define LAST(node) ((node)->last) 3017 3018 struct interval_tree_node * 3019 interval_tree_iter_first(struct rb_root_cached *root, unsigned long start, 3020 unsigned long last) 3021 { 3022 struct interval_tree_node *node; 3023 struct rb_node *rb; 3024 3025 for (rb = rb_first_cached(root); rb; rb = rb_next(rb)) { 3026 node = rb_entry(rb, typeof(*node), rb); 3027 if (LAST(node) >= start && START(node) <= last) 3028 return node; 3029 } 3030 return NULL; 3031 } 3032 3033 void 3034 interval_tree_remove(struct interval_tree_node *node, 3035 struct rb_root_cached *root) 3036 { 3037 rb_erase_cached(&node->rb, root); 3038 } 3039 3040 void 3041 interval_tree_insert(struct interval_tree_node *node, 3042 struct rb_root_cached *root) 3043 { 3044 struct rb_node **iter = &root->rb_root.rb_node; 3045 struct rb_node *parent = NULL; 3046 struct interval_tree_node *iter_node; 3047 3048 while (*iter) { 3049 parent = *iter; 3050 iter_node = rb_entry(*iter, struct interval_tree_node, rb); 3051 3052 if (node->start < iter_node->start) 3053 iter = &(*iter)->rb_left; 3054 else 3055 iter = &(*iter)->rb_right; 3056 } 3057 3058 rb_link_node(&node->rb, parent, iter); 3059 rb_insert_color_cached(&node->rb, root, false); 3060 } 3061 3062 int 3063 syncfile_read(struct file *fp, struct uio *uio, int fflags) 3064 { 3065 return ENXIO; 3066 } 3067 3068 int 3069 syncfile_write(struct file *fp, struct uio *uio, int fflags) 3070 { 3071 return ENXIO; 3072 } 3073 3074 int 3075 syncfile_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p) 3076 { 3077 return ENOTTY; 3078 } 3079 3080 int 3081 syncfile_kqfilter(struct file *fp, struct knote *kn) 3082 { 3083 return EINVAL; 3084 } 3085 3086 int 3087 syncfile_stat(struct file *fp, struct stat *st, struct proc *p) 3088 { 3089 memset(st, 0, sizeof(*st)); 3090 st->st_mode = S_IFIFO; /* XXX */ 3091 return 0; 3092 } 3093 3094 int 3095 syncfile_close(struct file *fp, struct proc *p) 3096 { 3097 struct sync_file *sf = fp->f_data; 3098 3099 dma_fence_put(sf->fence); 3100 fp->f_data = NULL; 3101 free(sf, M_DRM, sizeof(struct sync_file)); 3102 return 0; 3103 } 3104 3105 int 3106 syncfile_seek(struct file *fp, off_t *offset, int whence, struct proc *p) 3107 { 3108 off_t newoff; 3109 3110 if (*offset != 0) 3111 return EINVAL; 3112 3113 switch (whence) { 3114 case SEEK_SET: 3115 newoff = 0; 3116 break; 3117 case SEEK_END: 3118 newoff = 0; 3119 break; 3120 default: 3121 return EINVAL; 3122 } 3123 mtx_enter(&fp->f_mtx); 3124 fp->f_offset = newoff; 3125 mtx_leave(&fp->f_mtx); 3126 *offset = newoff; 3127 return 0; 3128 } 3129 3130 const struct fileops syncfileops = { 3131 .fo_read = syncfile_read, 3132 .fo_write = syncfile_write, 3133 .fo_ioctl = syncfile_ioctl, 3134 .fo_kqfilter = syncfile_kqfilter, 3135 .fo_stat = syncfile_stat, 3136 .fo_close = syncfile_close, 3137 .fo_seek = syncfile_seek, 3138 }; 3139 3140 void 3141 fd_install(int fd, struct file *fp) 3142 { 3143 struct proc *p = curproc; 3144 struct filedesc *fdp = p->p_fd; 3145 3146 if (fp->f_type != DTYPE_SYNC) 3147 return; 3148 3149 fdplock(fdp); 3150 /* all callers use get_unused_fd_flags(O_CLOEXEC) */ 3151 fdinsert(fdp, fd, UF_EXCLOSE, fp); 3152 fdpunlock(fdp); 3153 } 3154 3155 void 3156 fput(struct file *fp) 3157 { 3158 if (fp->f_type != DTYPE_SYNC) 3159 return; 3160 3161 FRELE(fp, curproc); 3162 } 3163 3164 int 3165 get_unused_fd_flags(unsigned int flags) 3166 { 3167 struct proc *p = curproc; 3168 struct filedesc *fdp = p->p_fd; 3169 int error, fd; 3170 3171 KASSERT((flags & O_CLOEXEC) != 0); 3172 3173 fdplock(fdp); 3174 retryalloc: 3175 if ((error = fdalloc(p, 0, &fd)) != 0) { 3176 if (error == ENOSPC) { 3177 fdexpand(p); 3178 goto retryalloc; 3179 } 3180 fdpunlock(fdp); 3181 return -1; 3182 } 3183 fdpunlock(fdp); 3184 3185 return fd; 3186 } 3187 3188 void 3189 put_unused_fd(int fd) 3190 { 3191 struct filedesc *fdp = curproc->p_fd; 3192 3193 fdplock(fdp); 3194 fdremove(fdp, fd); 3195 fdpunlock(fdp); 3196 } 3197 3198 struct dma_fence * 3199 sync_file_get_fence(int fd) 3200 { 3201 struct proc *p = curproc; 3202 struct filedesc *fdp = p->p_fd; 3203 struct file *fp; 3204 struct sync_file *sf; 3205 struct dma_fence *f; 3206 3207 if ((fp = fd_getfile(fdp, fd)) == NULL) 3208 return NULL; 3209 3210 if (fp->f_type != DTYPE_SYNC) { 3211 FRELE(fp, p); 3212 return NULL; 3213 } 3214 sf = fp->f_data; 3215 f = dma_fence_get(sf->fence); 3216 FRELE(sf->file, p); 3217 return f; 3218 } 3219 3220 struct sync_file * 3221 sync_file_create(struct dma_fence *fence) 3222 { 3223 struct proc *p = curproc; 3224 struct sync_file *sf; 3225 struct file *fp; 3226 3227 fp = fnew(p); 3228 if (fp == NULL) 3229 return NULL; 3230 fp->f_type = DTYPE_SYNC; 3231 fp->f_ops = &syncfileops; 3232 sf = malloc(sizeof(struct sync_file), M_DRM, M_WAITOK | M_ZERO); 3233 sf->file = fp; 3234 sf->fence = dma_fence_get(fence); 3235 fp->f_data = sf; 3236 return sf; 3237 } 3238 3239 bool 3240 drm_firmware_drivers_only(void) 3241 { 3242 return false; 3243 } 3244 3245 3246 void * 3247 memremap(phys_addr_t phys_addr, size_t size, int flags) 3248 { 3249 STUB(); 3250 return NULL; 3251 } 3252 3253 void 3254 memunmap(void *addr) 3255 { 3256 STUB(); 3257 } 3258 3259 #include <linux/platform_device.h> 3260 3261 bus_dma_tag_t 3262 dma_tag_lookup(struct device *dev) 3263 { 3264 extern struct cfdriver drm_cd; 3265 struct drm_device *drm; 3266 int i; 3267 3268 for (i = 0; i < drm_cd.cd_ndevs; i++) { 3269 drm = drm_cd.cd_devs[i]; 3270 if (drm && drm->dev == dev) 3271 return drm->dmat; 3272 } 3273 3274 return ((struct platform_device *)dev)->dmat; 3275 } 3276 3277 LIST_HEAD(, drm_dmamem) dmamem_list = LIST_HEAD_INITIALIZER(dmamem_list); 3278 3279 void * 3280 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, 3281 int gfp) 3282 { 3283 bus_dma_tag_t dmat = dma_tag_lookup(dev); 3284 struct drm_dmamem *mem; 3285 3286 mem = drm_dmamem_alloc(dmat, size, PAGE_SIZE, 1, size, 3287 BUS_DMA_COHERENT, 0); 3288 if (mem == NULL) 3289 return NULL; 3290 *dma_handle = mem->map->dm_segs[0].ds_addr; 3291 LIST_INSERT_HEAD(&dmamem_list, mem, next); 3292 return mem->kva; 3293 } 3294 3295 void 3296 dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, 3297 dma_addr_t dma_handle) 3298 { 3299 bus_dma_tag_t dmat = dma_tag_lookup(dev); 3300 struct drm_dmamem *mem; 3301 3302 LIST_FOREACH(mem, &dmamem_list, next) { 3303 if (mem->kva == cpu_addr) 3304 break; 3305 } 3306 KASSERT(mem); 3307 KASSERT(mem->size == size); 3308 KASSERT(mem->map->dm_segs[0].ds_addr == dma_handle); 3309 3310 LIST_REMOVE(mem, next); 3311 drm_dmamem_free(dmat, mem); 3312 } 3313 3314 int 3315 dma_get_sgtable(struct device *dev, struct sg_table *sgt, void *cpu_addr, 3316 dma_addr_t dma_addr, size_t size) 3317 { 3318 paddr_t pa; 3319 int ret; 3320 3321 if (!pmap_extract(pmap_kernel(), (vaddr_t)cpu_addr, &pa)) 3322 return -EINVAL; 3323 3324 ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 3325 if (ret) 3326 return ret; 3327 3328 sg_set_page(sgt->sgl, PHYS_TO_VM_PAGE(pa), size, 0); 3329 return 0; 3330 } 3331 3332 dma_addr_t 3333 dma_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size, 3334 enum dma_data_direction dir, u_long attr) 3335 { 3336 bus_dma_tag_t dmat= dma_tag_lookup(dev); 3337 bus_dmamap_t map; 3338 bus_dma_segment_t seg; 3339 3340 if (bus_dmamap_create(dmat, size, 1, size, 0, 3341 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &map)) 3342 return DMA_MAPPING_ERROR; 3343 seg.ds_addr = phys_addr; 3344 seg.ds_len = size; 3345 if (bus_dmamap_load_raw(dmat, map, &seg, 1, size, BUS_DMA_WAITOK)) { 3346 bus_dmamap_destroy(dmat, map); 3347 return DMA_MAPPING_ERROR; 3348 } 3349 3350 return map->dm_segs[0].ds_addr; 3351 } 3352 3353 #ifdef BUS_DMA_FIXED 3354 3355 #include <linux/iommu.h> 3356 3357 size_t 3358 iommu_map_sgtable(struct iommu_domain *domain, u_long iova, 3359 struct sg_table *sgt, int prot) 3360 { 3361 bus_dma_segment_t seg; 3362 int error; 3363 3364 error = bus_dmamap_create(domain->dmat, sgt->sgl->length, 1, 3365 sgt->sgl->length, 0, BUS_DMA_WAITOK, &sgt->dmamap); 3366 if (error) 3367 return -ENOMEM; 3368 3369 sgt->dmamap->dm_segs[0].ds_addr = iova; 3370 sgt->dmamap->dm_segs[0].ds_len = sgt->sgl->length; 3371 sgt->dmamap->dm_nsegs = 1; 3372 seg.ds_addr = VM_PAGE_TO_PHYS(sgt->sgl->__page); 3373 seg.ds_len = sgt->sgl->length; 3374 error = bus_dmamap_load_raw(domain->dmat, sgt->dmamap, &seg, 1, 3375 sgt->sgl->length, BUS_DMA_WAITOK | BUS_DMA_FIXED); 3376 if (error) 3377 return -ENOMEM; 3378 3379 return sg_dma_len(sgt->sgl); 3380 } 3381 3382 size_t 3383 iommu_unmap(struct iommu_domain *domain, u_long iova, size_t size) 3384 { 3385 STUB(); 3386 return 0; 3387 } 3388 3389 struct iommu_domain * 3390 iommu_get_domain_for_dev(struct device *dev) 3391 { 3392 STUB(); 3393 return NULL; 3394 } 3395 3396 phys_addr_t 3397 iommu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova) 3398 { 3399 STUB(); 3400 return 0; 3401 } 3402 3403 struct iommu_domain * 3404 iommu_domain_alloc(struct bus_type *type) 3405 { 3406 return malloc(sizeof(struct iommu_domain), M_DEVBUF, M_WAITOK | M_ZERO); 3407 } 3408 3409 int 3410 iommu_attach_device(struct iommu_domain *domain, struct device *dev) 3411 { 3412 struct platform_device *pdev = (struct platform_device *)dev; 3413 3414 domain->dmat = pdev->dmat; 3415 return 0; 3416 } 3417 3418 #endif 3419 3420 #include <linux/component.h> 3421 3422 struct component { 3423 struct device *dev; 3424 struct device *adev; 3425 const struct component_ops *ops; 3426 SLIST_ENTRY(component) next; 3427 }; 3428 3429 SLIST_HEAD(,component) component_list = SLIST_HEAD_INITIALIZER(component_list); 3430 3431 int 3432 component_add(struct device *dev, const struct component_ops *ops) 3433 { 3434 struct component *component; 3435 3436 component = malloc(sizeof(*component), M_DEVBUF, M_WAITOK | M_ZERO); 3437 component->dev = dev; 3438 component->ops = ops; 3439 SLIST_INSERT_HEAD(&component_list, component, next); 3440 return 0; 3441 } 3442 3443 int 3444 component_add_typed(struct device *dev, const struct component_ops *ops, 3445 int type) 3446 { 3447 return component_add(dev, ops); 3448 } 3449 3450 int 3451 component_bind_all(struct device *dev, void *data) 3452 { 3453 struct component *component; 3454 int ret = 0; 3455 3456 SLIST_FOREACH(component, &component_list, next) { 3457 if (component->adev == dev) { 3458 ret = component->ops->bind(component->dev, NULL, data); 3459 if (ret) 3460 break; 3461 } 3462 } 3463 3464 return ret; 3465 } 3466 3467 struct component_match_entry { 3468 int (*compare)(struct device *, void *); 3469 void *data; 3470 }; 3471 3472 struct component_match { 3473 struct component_match_entry match[4]; 3474 int nmatches; 3475 }; 3476 3477 int 3478 component_master_add_with_match(struct device *dev, 3479 const struct component_master_ops *ops, struct component_match *match) 3480 { 3481 struct component *component; 3482 int found = 0; 3483 int i, ret; 3484 3485 SLIST_FOREACH(component, &component_list, next) { 3486 for (i = 0; i < match->nmatches; i++) { 3487 struct component_match_entry *m = &match->match[i]; 3488 if (m->compare(component->dev, m->data)) { 3489 component->adev = dev; 3490 found = 1; 3491 break; 3492 } 3493 } 3494 } 3495 3496 if (found) { 3497 ret = ops->bind(dev); 3498 if (ret) 3499 return ret; 3500 } 3501 3502 return 0; 3503 } 3504 3505 #ifdef __HAVE_FDT 3506 3507 #include <linux/platform_device.h> 3508 #include <dev/ofw/openfirm.h> 3509 #include <dev/ofw/fdt.h> 3510 #include <machine/fdt.h> 3511 3512 LIST_HEAD(, platform_device) pdev_list = LIST_HEAD_INITIALIZER(pdev_list); 3513 3514 void 3515 platform_device_register(struct platform_device *pdev) 3516 { 3517 int i; 3518 3519 pdev->num_resources = pdev->faa->fa_nreg; 3520 if (pdev->faa->fa_nreg > 0) { 3521 pdev->resource = mallocarray(pdev->faa->fa_nreg, 3522 sizeof(*pdev->resource), M_DEVBUF, M_WAITOK | M_ZERO); 3523 for (i = 0; i < pdev->faa->fa_nreg; i++) { 3524 pdev->resource[i].start = pdev->faa->fa_reg[i].addr; 3525 pdev->resource[i].end = pdev->faa->fa_reg[i].addr + 3526 pdev->faa->fa_reg[i].size - 1; 3527 } 3528 } 3529 3530 pdev->parent = pdev->dev.dv_parent; 3531 pdev->node = pdev->faa->fa_node; 3532 pdev->iot = pdev->faa->fa_iot; 3533 pdev->dmat = pdev->faa->fa_dmat; 3534 LIST_INSERT_HEAD(&pdev_list, pdev, next); 3535 } 3536 3537 3538 struct resource * 3539 platform_get_resource(struct platform_device *pdev, u_int type, u_int num) 3540 { 3541 KASSERT(num < pdev->num_resources); 3542 return &pdev->resource[num]; 3543 } 3544 3545 void __iomem * 3546 devm_platform_ioremap_resource_byname(struct platform_device *pdev, 3547 const char *name) 3548 { 3549 bus_space_handle_t ioh; 3550 int err, idx; 3551 3552 idx = OF_getindex(pdev->node, name, "reg-names"); 3553 if (idx == -1 || idx >= pdev->num_resources) 3554 return ERR_PTR(-EINVAL); 3555 3556 err = bus_space_map(pdev->iot, pdev->resource[idx].start, 3557 pdev->resource[idx].end - pdev->resource[idx].start + 1, 3558 BUS_SPACE_MAP_LINEAR, &ioh); 3559 if (err) 3560 return ERR_PTR(-err); 3561 3562 return bus_space_vaddr(pdev->iot, ioh); 3563 } 3564 3565 #include <dev/ofw/ofw_clock.h> 3566 #include <linux/clk.h> 3567 3568 struct clk * 3569 devm_clk_get(struct device *dev, const char *name) 3570 { 3571 struct platform_device *pdev = (struct platform_device *)dev; 3572 struct clk *clk; 3573 3574 clk = malloc(sizeof(*clk), M_DEVBUF, M_WAITOK); 3575 clk->freq = clock_get_frequency(pdev->node, name); 3576 return clk; 3577 } 3578 3579 u_long 3580 clk_get_rate(struct clk *clk) 3581 { 3582 return clk->freq; 3583 } 3584 3585 #include <linux/gpio/consumer.h> 3586 #include <dev/ofw/ofw_gpio.h> 3587 3588 struct gpio_desc { 3589 uint32_t gpios[4]; 3590 }; 3591 3592 struct gpio_desc * 3593 devm_gpiod_get_optional(struct device *dev, const char *name, int flags) 3594 { 3595 struct platform_device *pdev = (struct platform_device *)dev; 3596 struct gpio_desc *desc; 3597 char fullname[128]; 3598 int len; 3599 3600 snprintf(fullname, sizeof(fullname), "%s-gpios", name); 3601 3602 desc = malloc(sizeof(*desc), M_DEVBUF, M_WAITOK | M_ZERO); 3603 len = OF_getpropintarray(pdev->node, fullname, desc->gpios, 3604 sizeof(desc->gpios)); 3605 KASSERT(len <= sizeof(desc->gpios)); 3606 if (len < 0) { 3607 free(desc, M_DEVBUF, sizeof(*desc)); 3608 return NULL; 3609 } 3610 3611 switch (flags) { 3612 case GPIOD_IN: 3613 gpio_controller_config_pin(desc->gpios, GPIO_CONFIG_INPUT); 3614 break; 3615 case GPIOD_OUT_HIGH: 3616 gpio_controller_config_pin(desc->gpios, GPIO_CONFIG_OUTPUT); 3617 gpio_controller_set_pin(desc->gpios, 1); 3618 break; 3619 default: 3620 panic("%s: unimplemented flags 0x%x", __func__, flags); 3621 } 3622 3623 return desc; 3624 } 3625 3626 int 3627 gpiod_get_value_cansleep(const struct gpio_desc *desc) 3628 { 3629 return gpio_controller_get_pin(((struct gpio_desc *)desc)->gpios); 3630 } 3631 3632 struct phy { 3633 int node; 3634 const char *name; 3635 }; 3636 3637 struct phy * 3638 devm_phy_optional_get(struct device *dev, const char *name) 3639 { 3640 struct platform_device *pdev = (struct platform_device *)dev; 3641 struct phy *phy; 3642 int idx; 3643 3644 idx = OF_getindex(pdev->node, name, "phy-names"); 3645 if (idx == -1) 3646 return NULL; 3647 3648 phy = malloc(sizeof(*phy), M_DEVBUF, M_WAITOK); 3649 phy->node = pdev->node; 3650 phy->name = name; 3651 3652 return phy; 3653 } 3654 3655 struct bus_type platform_bus_type; 3656 3657 #include <dev/ofw/ofw_misc.h> 3658 3659 #include <linux/of.h> 3660 #include <linux/platform_device.h> 3661 3662 struct device_node * 3663 __of_devnode(void *arg) 3664 { 3665 struct device *dev = container_of(arg, struct device, of_node); 3666 struct platform_device *pdev = (struct platform_device *)dev; 3667 3668 return (struct device_node *)(uintptr_t)pdev->node; 3669 } 3670 3671 int 3672 __of_device_is_compatible(struct device_node *np, const char *compatible) 3673 { 3674 return OF_is_compatible((uintptr_t)np, compatible); 3675 } 3676 3677 int 3678 __of_property_present(struct device_node *np, const char *propname) 3679 { 3680 return OF_getpropbool((uintptr_t)np, (char *)propname); 3681 } 3682 3683 int 3684 __of_property_read_variable_u32_array(struct device_node *np, 3685 const char *propname, uint32_t *out_values, size_t sz_min, size_t sz_max) 3686 { 3687 int len; 3688 3689 len = OF_getpropintarray((uintptr_t)np, (char *)propname, out_values, 3690 sz_max * sizeof(*out_values)); 3691 if (len < 0) 3692 return -EINVAL; 3693 if (len == 0) 3694 return -ENODATA; 3695 if (len < sz_min * sizeof(*out_values) || 3696 len > sz_max * sizeof(*out_values)) 3697 return -EOVERFLOW; 3698 if (sz_min == 1 && sz_max == 1) 3699 return 0; 3700 return len / sizeof(*out_values); 3701 } 3702 3703 int 3704 __of_property_read_variable_u64_array(struct device_node *np, 3705 const char *propname, uint64_t *out_values, size_t sz_min, size_t sz_max) 3706 { 3707 int len; 3708 3709 len = OF_getpropint64array((uintptr_t)np, (char *)propname, out_values, 3710 sz_max * sizeof(*out_values)); 3711 if (len < 0) 3712 return -EINVAL; 3713 if (len == 0) 3714 return -ENODATA; 3715 if (len < sz_min * sizeof(*out_values) || 3716 len > sz_max * sizeof(*out_values)) 3717 return -EOVERFLOW; 3718 if (sz_min == 1 && sz_max == 1) 3719 return 0; 3720 return len / sizeof(*out_values); 3721 } 3722 3723 int 3724 __of_property_match_string(struct device_node *np, 3725 const char *propname, const char *str) 3726 { 3727 int idx; 3728 3729 idx = OF_getindex((uintptr_t)np, str, propname); 3730 if (idx == -1) 3731 return -ENODATA; 3732 return idx; 3733 } 3734 3735 struct device_node * 3736 __of_parse_phandle(struct device_node *np, const char *propname, int idx) 3737 { 3738 uint32_t phandles[16] = {}; 3739 int len, node; 3740 3741 len = OF_getpropintarray((uintptr_t)np, (char *)propname, phandles, 3742 sizeof(phandles)); 3743 if (len < (idx + 1) * sizeof(uint32_t)) 3744 return NULL; 3745 3746 node = OF_getnodebyphandle(phandles[idx]); 3747 if (node == 0) 3748 return NULL; 3749 3750 return (struct device_node *)(uintptr_t)node; 3751 } 3752 3753 int 3754 __of_parse_phandle_with_args(struct device_node *np, const char *propname, 3755 const char *cellsname, int idx, struct of_phandle_args *args) 3756 { 3757 uint32_t phandles[16] = {}; 3758 int i, len, node; 3759 3760 len = OF_getpropintarray((uintptr_t)np, (char *)propname, phandles, 3761 sizeof(phandles)); 3762 if (len < (idx + 1) * sizeof(uint32_t)) 3763 return -ENOENT; 3764 3765 node = OF_getnodebyphandle(phandles[idx]); 3766 if (node == 0) 3767 return -ENOENT; 3768 3769 args->np = (struct device_node *)(uintptr_t)node; 3770 args->args_count = OF_getpropint(node, (char *)cellsname, 0); 3771 for (i = 0; i < args->args_count; i++) 3772 args->args[i] = phandles[i + 1]; 3773 3774 return 0; 3775 } 3776 3777 int 3778 of_address_to_resource(struct device_node *np, int idx, struct resource *res) 3779 { 3780 uint64_t reg[16] = {}; 3781 int len; 3782 3783 KASSERT(idx < 8); 3784 3785 len = OF_getpropint64array((uintptr_t)np, "reg", reg, sizeof(reg)); 3786 if (len < 0 || idx >= (len / (2 * sizeof(uint64_t)))) 3787 return -EINVAL; 3788 3789 res->start = reg[2 * idx]; 3790 res->end = reg[2 * idx] + reg[2 * idx + 1] - 1; 3791 3792 return 0; 3793 } 3794 3795 static int 3796 next_node(int node) 3797 { 3798 int peer = OF_peer(node); 3799 3800 while (node && !peer) { 3801 node = OF_parent(node); 3802 if (node) 3803 peer = OF_peer(node); 3804 } 3805 3806 return peer; 3807 } 3808 3809 static int 3810 find_matching_node(int node, const struct of_device_id *id) 3811 { 3812 int child, match; 3813 int i; 3814 3815 for (child = OF_child(node); child; child = OF_peer(child)) { 3816 match = find_matching_node(child, id); 3817 if (match) 3818 return match; 3819 } 3820 3821 for (i = 0; id[i].compatible; i++) { 3822 if (OF_is_compatible(node, id[i].compatible)) 3823 return node; 3824 } 3825 3826 return 0; 3827 } 3828 3829 struct device_node * 3830 __matching_node(struct device_node *np, const struct of_device_id *id) 3831 { 3832 int node = OF_peer(0); 3833 int match; 3834 3835 if (np) 3836 node = next_node((uintptr_t)np); 3837 while (node) { 3838 match = find_matching_node(node, id); 3839 if (match) 3840 return (struct device_node *)(uintptr_t)match; 3841 node = next_node(node); 3842 } 3843 3844 return NULL; 3845 } 3846 3847 struct platform_device * 3848 of_platform_device_create(struct device_node *np, const char *bus_id, 3849 struct device *parent) 3850 { 3851 struct platform_device *pdev; 3852 3853 pdev = malloc(sizeof(*pdev), M_DEVBUF, M_WAITOK | M_ZERO); 3854 pdev->node = (intptr_t)np; 3855 pdev->parent = parent; 3856 3857 LIST_INSERT_HEAD(&pdev_list, pdev, next); 3858 3859 return pdev; 3860 } 3861 3862 struct platform_device * 3863 of_find_device_by_node(struct device_node *np) 3864 { 3865 struct platform_device *pdev; 3866 3867 LIST_FOREACH(pdev, &pdev_list, next) { 3868 if (pdev->node == (intptr_t)np) 3869 return pdev; 3870 } 3871 3872 return NULL; 3873 } 3874 3875 int 3876 of_device_is_available(struct device_node *np) 3877 { 3878 char status[32]; 3879 3880 if (OF_getprop((uintptr_t)np, "status", status, sizeof(status)) > 0 && 3881 strcmp(status, "disabled") == 0) 3882 return 0; 3883 3884 return 1; 3885 } 3886 3887 int 3888 of_dma_configure(struct device *dev, struct device_node *np, int force_dma) 3889 { 3890 struct platform_device *pdev = (struct platform_device *)dev; 3891 bus_dma_tag_t dmat = dma_tag_lookup(pdev->parent); 3892 3893 pdev->dmat = iommu_device_map(pdev->node, dmat); 3894 return 0; 3895 } 3896 3897 struct device_node * 3898 __of_get_compatible_child(void *p, const char *compat) 3899 { 3900 struct device *dev = container_of(p, struct device, of_node); 3901 struct platform_device *pdev = (struct platform_device *)dev; 3902 int child; 3903 3904 for (child = OF_child(pdev->node); child; child = OF_peer(child)) { 3905 if (OF_is_compatible(child, compat)) 3906 return (struct device_node *)(uintptr_t)child; 3907 } 3908 return NULL; 3909 } 3910 3911 struct device_node * 3912 __of_get_child_by_name(void *p, const char *name) 3913 { 3914 struct device *dev = container_of(p, struct device, of_node); 3915 struct platform_device *pdev = (struct platform_device *)dev; 3916 int child; 3917 3918 child = OF_getnodebyname(pdev->node, name); 3919 if (child == 0) 3920 return NULL; 3921 return (struct device_node *)(uintptr_t)child; 3922 } 3923 3924 int 3925 component_compare_of(struct device *dev, void *data) 3926 { 3927 struct platform_device *pdev = (struct platform_device *)dev; 3928 3929 return (pdev->node == (intptr_t)data); 3930 } 3931 3932 void 3933 drm_of_component_match_add(struct device *master, 3934 struct component_match **matchptr, 3935 int (*compare)(struct device *, void *), 3936 struct device_node *np) 3937 { 3938 struct component_match *match = *matchptr; 3939 3940 if (match == NULL) { 3941 match = malloc(sizeof(struct component_match), 3942 M_DEVBUF, M_WAITOK | M_ZERO); 3943 *matchptr = match; 3944 } 3945 3946 KASSERT(match->nmatches < nitems(match->match)); 3947 match->match[match->nmatches].compare = compare; 3948 match->match[match->nmatches].data = np; 3949 match->nmatches++; 3950 } 3951 3952 #endif 3953