xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/hashtable.h (revision 0a3071956a3a9fdebdbf7f338cf2d439b45fc728)
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 #include <bits/enable_special_members.h>
37 #if __cplusplus > 201402L
38 # include <bits/node_handle.h>
39 #endif
40 #include <bits/functional_hash.h>
41 #include <bits/stl_function.h> // equal_to, _Identity, _Select1st
42 
_GLIBCXX_VISIBILITY(default)43 namespace std _GLIBCXX_VISIBILITY(default)
44 {
45 _GLIBCXX_BEGIN_NAMESPACE_VERSION
46 /// @cond undocumented
47 
48   template<typename _Tp, typename _Hash>
49     using __cache_default
50       =  __not_<__and_<// Do not cache for fast hasher.
51 		       __is_fast_hash<_Hash>,
52 		       // Mandatory to have erase not throwing.
53 		       __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
54 
55   // Helper to conditionally delete the default constructor.
56   // The _Hash_node_base type is used to distinguish this specialization
57   // from any other potentially-overlapping subobjects of the hashtable.
58   template<typename _Equal, typename _Hash, typename _Allocator>
59     using _Hashtable_enable_default_ctor
60       = _Enable_default_constructor<__and_<is_default_constructible<_Equal>,
61 				       is_default_constructible<_Hash>,
62 				       is_default_constructible<_Allocator>>{},
63 				    __detail::_Hash_node_base>;
64 
65   /**
66    *  Primary class template _Hashtable.
67    *
68    *  @ingroup hashtable-detail
69    *
70    *  @tparam _Value  CopyConstructible type.
71    *
72    *  @tparam _Key    CopyConstructible type.
73    *
74    *  @tparam _Alloc  An allocator type
75    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
76    *  _Value.  As a conforming extension, we allow for
77    *  _Alloc::value_type != _Value.
78    *
79    *  @tparam _ExtractKey  Function object that takes an object of type
80    *  _Value and returns a value of type _Key.
81    *
82    *  @tparam _Equal  Function object that takes two objects of type k
83    *  and returns a bool-like value that is true if the two objects
84    *  are considered equal.
85    *
86    *  @tparam _Hash  The hash function. A unary function object with
87    *  argument type _Key and result type size_t. Return values should
88    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
89    *
90    *  @tparam _RangeHash  The range-hashing function (in the terminology of
91    *  Tavori and Dreizin).  A binary function object whose argument
92    *  types and result type are all size_t.  Given arguments r and N,
93    *  the return value is in the range [0, N).
94    *
95    *  @tparam _Unused  Not used.
96    *
97    *  @tparam _RehashPolicy  Policy class with three members, all of
98    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
99    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
100    *  bucket count appropriate for an element count of n.
101    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
102    *  current bucket count is n_bkt and the current element count is
103    *  n_elt, we need to increase the bucket count for n_ins insertions.
104    *  If so, returns make_pair(true, n), where n is the new bucket count. If
105    *  not, returns make_pair(false, <anything>)
106    *
107    *  @tparam _Traits  Compile-time class with three boolean
108    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
109    *   __unique_keys.
110    *
111    *  Each _Hashtable data structure has:
112    *
113    *  - _Bucket[]       _M_buckets
114    *  - _Hash_node_base _M_before_begin
115    *  - size_type       _M_bucket_count
116    *  - size_type       _M_element_count
117    *
118    *  with _Bucket being _Hash_node_base* and _Hash_node containing:
119    *
120    *  - _Hash_node*   _M_next
121    *  - Tp            _M_value
122    *  - size_t        _M_hash_code if cache_hash_code is true
123    *
124    *  In terms of Standard containers the hashtable is like the aggregation of:
125    *
126    *  - std::forward_list<_Node> containing the elements
127    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
128    *
129    *  The non-empty buckets contain the node before the first node in the
130    *  bucket. This design makes it possible to implement something like a
131    *  std::forward_list::insert_after on container insertion and
132    *  std::forward_list::erase_after on container erase
133    *  calls. _M_before_begin is equivalent to
134    *  std::forward_list::before_begin. Empty buckets contain
135    *  nullptr.  Note that one of the non-empty buckets contains
136    *  &_M_before_begin which is not a dereferenceable node so the
137    *  node pointer in a bucket shall never be dereferenced, only its
138    *  next node can be.
139    *
140    *  Walking through a bucket's nodes requires a check on the hash code to
141    *  see if each node is still in the bucket. Such a design assumes a
142    *  quite efficient hash functor and is one of the reasons it is
143    *  highly advisable to set __cache_hash_code to true.
144    *
145    *  The container iterators are simply built from nodes. This way
146    *  incrementing the iterator is perfectly efficient independent of
147    *  how many empty buckets there are in the container.
148    *
149    *  On insert we compute the element's hash code and use it to find the
150    *  bucket index. If the element must be inserted in an empty bucket
151    *  we add it at the beginning of the singly linked list and make the
152    *  bucket point to _M_before_begin. The bucket that used to point to
153    *  _M_before_begin, if any, is updated to point to its new before
154    *  begin node.
155    *
156    *  On erase, the simple iterator design requires using the hash
157    *  functor to get the index of the bucket to update. For this
158    *  reason, when __cache_hash_code is set to false the hash functor must
159    *  not throw and this is enforced by a static assertion.
160    *
161    *  Functionality is implemented by decomposition into base classes,
162    *  where the derived _Hashtable class is used in _Map_base,
163    *  _Insert, _Rehash_base, and _Equality base classes to access the
164    *  "this" pointer. _Hashtable_base is used in the base classes as a
165    *  non-recursive, fully-completed-type so that detailed nested type
166    *  information, such as iterator type and node type, can be
167    *  used. This is similar to the "Curiously Recurring Template
168    *  Pattern" (CRTP) technique, but uses a reconstructed, not
169    *  explicitly passed, template pattern.
170    *
171    *  Base class templates are:
172    *    - __detail::_Hashtable_base
173    *    - __detail::_Map_base
174    *    - __detail::_Insert
175    *    - __detail::_Rehash_base
176    *    - __detail::_Equality
177    */
178   template<typename _Key, typename _Value, typename _Alloc,
179 	   typename _ExtractKey, typename _Equal,
180 	   typename _Hash, typename _RangeHash, typename _Unused,
181 	   typename _RehashPolicy, typename _Traits>
182     class _Hashtable
183     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
184 				       _Hash, _RangeHash, _Unused, _Traits>,
185       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
186 				 _Hash, _RangeHash, _Unused,
187 				 _RehashPolicy, _Traits>,
188       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
189 			       _Hash, _RangeHash, _Unused,
190 			       _RehashPolicy, _Traits>,
191       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
192 				    _Hash, _RangeHash, _Unused,
193 				    _RehashPolicy, _Traits>,
194       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
195 				 _Hash, _RangeHash, _Unused,
196 				 _RehashPolicy, _Traits>,
197       private __detail::_Hashtable_alloc<
198 	__alloc_rebind<_Alloc,
199 		       __detail::_Hash_node<_Value,
200 					    _Traits::__hash_cached::value>>>,
201       private _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>
202     {
203       static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
204 	  "unordered container must have a non-const, non-volatile value_type");
205 #if __cplusplus > 201703L || defined __STRICT_ANSI__
206       static_assert(is_same<typename _Alloc::value_type, _Value>{},
207 	  "unordered container must have the same value_type as its allocator");
208 #endif
209 
210       using __traits_type = _Traits;
211       using __hash_cached = typename __traits_type::__hash_cached;
212       using __constant_iterators = typename __traits_type::__constant_iterators;
213       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
214       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
215 
216       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
217 
218       using __node_value_type =
219 	__detail::_Hash_node_value<_Value, __hash_cached::value>;
220       using __node_ptr = typename __hashtable_alloc::__node_ptr;
221       using __value_alloc_traits =
222 	typename __hashtable_alloc::__value_alloc_traits;
223       using __node_alloc_traits =
224 	typename __hashtable_alloc::__node_alloc_traits;
225       using __node_base = typename __hashtable_alloc::__node_base;
226       using __node_base_ptr = typename __hashtable_alloc::__node_base_ptr;
227       using __buckets_ptr = typename __hashtable_alloc::__buckets_ptr;
228 
229       using __insert_base = __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey,
230 					      _Equal, _Hash,
231 					      _RangeHash, _Unused,
232 					      _RehashPolicy, _Traits>;
233       using __enable_default_ctor
234 	= _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>;
235 
236     public:
237       typedef _Key						key_type;
238       typedef _Value						value_type;
239       typedef _Alloc						allocator_type;
240       typedef _Equal						key_equal;
241 
242       // mapped_type, if present, comes from _Map_base.
243       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
244       typedef typename __value_alloc_traits::pointer		pointer;
245       typedef typename __value_alloc_traits::const_pointer	const_pointer;
246       typedef value_type&					reference;
247       typedef const value_type&					const_reference;
248 
249       using iterator = typename __insert_base::iterator;
250 
251       using const_iterator = typename __insert_base::const_iterator;
252 
253       using local_iterator = __detail::_Local_iterator<key_type, _Value,
254 			_ExtractKey, _Hash, _RangeHash, _Unused,
255 					     __constant_iterators::value,
256 					     __hash_cached::value>;
257 
258       using const_local_iterator = __detail::_Local_const_iterator<
259 			key_type, _Value,
260 			_ExtractKey, _Hash, _RangeHash, _Unused,
261 			__constant_iterators::value, __hash_cached::value>;
262 
263     private:
264       using __rehash_type = _RehashPolicy;
265       using __rehash_state = typename __rehash_type::_State;
266 
267       using __unique_keys = typename __traits_type::__unique_keys;
268 
269       using __hashtable_base = __detail::
270 	_Hashtable_base<_Key, _Value, _ExtractKey,
271 			_Equal, _Hash, _RangeHash, _Unused, _Traits>;
272 
273       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
274       using __hash_code =  typename __hashtable_base::__hash_code;
275       using __ireturn_type = typename __insert_base::__ireturn_type;
276 
277       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
278 					     _Equal, _Hash, _RangeHash, _Unused,
279 					     _RehashPolicy, _Traits>;
280 
281       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
282 						   _ExtractKey, _Equal,
283 						   _Hash, _RangeHash, _Unused,
284 						   _RehashPolicy, _Traits>;
285 
286       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
287 					    _Equal, _Hash, _RangeHash, _Unused,
288 					    _RehashPolicy, _Traits>;
289 
290       using __reuse_or_alloc_node_gen_t =
291 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
292       using __alloc_node_gen_t =
293 	__detail::_AllocNode<__node_alloc_type>;
294       using __node_builder_t =
295 	__detail::_NodeBuilder<_ExtractKey>;
296 
297       // Simple RAII type for managing a node containing an element
298       struct _Scoped_node
299       {
300 	// Take ownership of a node with a constructed element.
301 	_Scoped_node(__node_ptr __n, __hashtable_alloc* __h)
302 	: _M_h(__h), _M_node(__n) { }
303 
304 	// Allocate a node and construct an element within it.
305 	template<typename... _Args>
306 	  _Scoped_node(__hashtable_alloc* __h, _Args&&... __args)
307 	  : _M_h(__h),
308 	    _M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...))
309 	  { }
310 
311 	// Destroy element and deallocate node.
312 	~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); };
313 
314 	_Scoped_node(const _Scoped_node&) = delete;
315 	_Scoped_node& operator=(const _Scoped_node&) = delete;
316 
317 	__hashtable_alloc* _M_h;
318 	__node_ptr _M_node;
319       };
320 
321       template<typename _Ht>
322 	static constexpr
323 	__conditional_t<std::is_lvalue_reference<_Ht>::value,
324 			const value_type&, value_type&&>
325 	__fwd_value_for(value_type& __val) noexcept
326 	{ return std::move(__val); }
327 
328       // Compile-time diagnostics.
329 
330       // _Hash_code_base has everything protected, so use this derived type to
331       // access it.
332       struct __hash_code_base_access : __hash_code_base
333       { using __hash_code_base::_M_bucket_index; };
334 
335       // To get bucket index we need _RangeHash not to throw.
336       static_assert(is_nothrow_default_constructible<_RangeHash>::value,
337 		    "Functor used to map hash code to bucket index"
338 		    " must be nothrow default constructible");
339       static_assert(noexcept(
340 	std::declval<const _RangeHash&>()((std::size_t)0, (std::size_t)0)),
341 		    "Functor used to map hash code to bucket index must be"
342 		    " noexcept");
343 
344       // To compute bucket index we also need _ExtratKey not to throw.
345       static_assert(is_nothrow_default_constructible<_ExtractKey>::value,
346 		    "_ExtractKey must be nothrow default constructible");
347       static_assert(noexcept(
348 	std::declval<const _ExtractKey&>()(std::declval<_Value>())),
349 		    "_ExtractKey functor must be noexcept invocable");
350 
351       template<typename _Keya, typename _Valuea, typename _Alloca,
352 	       typename _ExtractKeya, typename _Equala,
353 	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
354 	       typename _RehashPolicya, typename _Traitsa,
355 	       bool _Unique_keysa>
356 	friend struct __detail::_Map_base;
357 
358       template<typename _Keya, typename _Valuea, typename _Alloca,
359 	       typename _ExtractKeya, typename _Equala,
360 	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
361 	       typename _RehashPolicya, typename _Traitsa>
362 	friend struct __detail::_Insert_base;
363 
364       template<typename _Keya, typename _Valuea, typename _Alloca,
365 	       typename _ExtractKeya, typename _Equala,
366 	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
367 	       typename _RehashPolicya, typename _Traitsa,
368 	       bool _Constant_iteratorsa>
369 	friend struct __detail::_Insert;
370 
371       template<typename _Keya, typename _Valuea, typename _Alloca,
372 	       typename _ExtractKeya, typename _Equala,
373 	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
374 	       typename _RehashPolicya, typename _Traitsa,
375 	       bool _Unique_keysa>
376 	friend struct __detail::_Equality;
377 
378     public:
379       using size_type = typename __hashtable_base::size_type;
380       using difference_type = typename __hashtable_base::difference_type;
381 
382 #if __cplusplus > 201402L
383       using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
384       using insert_return_type = _Node_insert_return<iterator, node_type>;
385 #endif
386 
387     private:
388       __buckets_ptr		_M_buckets		= &_M_single_bucket;
389       size_type			_M_bucket_count		= 1;
390       __node_base		_M_before_begin;
391       size_type			_M_element_count	= 0;
392       _RehashPolicy		_M_rehash_policy;
393 
394       // A single bucket used when only need for 1 bucket. Especially
395       // interesting in move semantic to leave hashtable with only 1 bucket
396       // which is not allocated so that we can have those operations noexcept
397       // qualified.
398       // Note that we can't leave hashtable with 0 bucket without adding
399       // numerous checks in the code to avoid 0 modulus.
400       __node_base_ptr		_M_single_bucket	= nullptr;
401 
402       void
403       _M_update_bbegin()
404       {
405 	if (_M_begin())
406 	  _M_buckets[_M_bucket_index(*_M_begin())] = &_M_before_begin;
407       }
408 
409       void
410       _M_update_bbegin(__node_ptr __n)
411       {
412 	_M_before_begin._M_nxt = __n;
413 	_M_update_bbegin();
414       }
415 
416       bool
417       _M_uses_single_bucket(__buckets_ptr __bkts) const
418       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
419 
420       bool
421       _M_uses_single_bucket() const
422       { return _M_uses_single_bucket(_M_buckets); }
423 
424       static constexpr size_t
425       __small_size_threshold() noexcept
426       {
427 	return
428 	  __detail::_Hashtable_hash_traits<_Hash>::__small_size_threshold();
429       }
430 
431       __hashtable_alloc&
432       _M_base_alloc() { return *this; }
433 
434       __buckets_ptr
435       _M_allocate_buckets(size_type __bkt_count)
436       {
437 	if (__builtin_expect(__bkt_count == 1, false))
438 	  {
439 	    _M_single_bucket = nullptr;
440 	    return &_M_single_bucket;
441 	  }
442 
443 	return __hashtable_alloc::_M_allocate_buckets(__bkt_count);
444       }
445 
446       void
447       _M_deallocate_buckets(__buckets_ptr __bkts, size_type __bkt_count)
448       {
449 	if (_M_uses_single_bucket(__bkts))
450 	  return;
451 
452 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count);
453       }
454 
455       void
456       _M_deallocate_buckets()
457       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
458 
459       // Gets bucket begin, deals with the fact that non-empty buckets contain
460       // their before begin node.
461       __node_ptr
462       _M_bucket_begin(size_type __bkt) const;
463 
464       __node_ptr
465       _M_begin() const
466       { return static_cast<__node_ptr>(_M_before_begin._M_nxt); }
467 
468       // Assign *this using another _Hashtable instance. Whether elements
469       // are copied or moved depends on the _Ht reference.
470       template<typename _Ht>
471 	void
472 	_M_assign_elements(_Ht&&);
473 
474       template<typename _Ht, typename _NodeGenerator>
475 	void
476 	_M_assign(_Ht&&, const _NodeGenerator&);
477 
478       void
479       _M_move_assign(_Hashtable&&, true_type);
480 
481       void
482       _M_move_assign(_Hashtable&&, false_type);
483 
484       void
485       _M_reset() noexcept;
486 
487       _Hashtable(const _Hash& __h, const _Equal& __eq,
488 		 const allocator_type& __a)
489       : __hashtable_base(__h, __eq),
490 	__hashtable_alloc(__node_alloc_type(__a)),
491 	__enable_default_ctor(_Enable_default_constructor_tag{})
492       { }
493 
494       template<bool _No_realloc = true>
495 	static constexpr bool
496 	_S_nothrow_move()
497 	{
498 #if __cplusplus <= 201402L
499 	  return __and_<__bool_constant<_No_realloc>,
500 			is_nothrow_copy_constructible<_Hash>,
501 			is_nothrow_copy_constructible<_Equal>>::value;
502 #else
503 	  if constexpr (_No_realloc)
504 	    if constexpr (is_nothrow_copy_constructible<_Hash>())
505 	      return is_nothrow_copy_constructible<_Equal>();
506 	  return false;
507 #endif
508 	}
509 
510       _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
511 		 true_type /* alloc always equal */)
512 	noexcept(_S_nothrow_move());
513 
514       _Hashtable(_Hashtable&&, __node_alloc_type&&,
515 		 false_type /* alloc always equal */);
516 
517       template<typename _InputIterator>
518 	_Hashtable(_InputIterator __first, _InputIterator __last,
519 		   size_type __bkt_count_hint,
520 		   const _Hash&, const _Equal&, const allocator_type&,
521 		   true_type __uks);
522 
523       template<typename _InputIterator>
524 	_Hashtable(_InputIterator __first, _InputIterator __last,
525 		   size_type __bkt_count_hint,
526 		   const _Hash&, const _Equal&, const allocator_type&,
527 		   false_type __uks);
528 
529     public:
530       // Constructor, destructor, assignment, swap
531       _Hashtable() = default;
532 
533       _Hashtable(const _Hashtable&);
534 
535       _Hashtable(const _Hashtable&, const allocator_type&);
536 
537       explicit
538       _Hashtable(size_type __bkt_count_hint,
539 		 const _Hash& __hf = _Hash(),
540 		 const key_equal& __eql = key_equal(),
541 		 const allocator_type& __a = allocator_type());
542 
543       // Use delegating constructors.
544       _Hashtable(_Hashtable&& __ht)
545 	noexcept(_S_nothrow_move())
546       : _Hashtable(std::move(__ht), std::move(__ht._M_node_allocator()),
547 		   true_type{})
548       { }
549 
550       _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
551 	noexcept(_S_nothrow_move<__node_alloc_traits::_S_always_equal()>())
552       : _Hashtable(std::move(__ht), __node_alloc_type(__a),
553 		   typename __node_alloc_traits::is_always_equal{})
554       { }
555 
556       explicit
557       _Hashtable(const allocator_type& __a)
558       : __hashtable_alloc(__node_alloc_type(__a)),
559 	__enable_default_ctor(_Enable_default_constructor_tag{})
560       { }
561 
562       template<typename _InputIterator>
563 	_Hashtable(_InputIterator __f, _InputIterator __l,
564 		   size_type __bkt_count_hint = 0,
565 		   const _Hash& __hf = _Hash(),
566 		   const key_equal& __eql = key_equal(),
567 		   const allocator_type& __a = allocator_type())
568 	: _Hashtable(__f, __l, __bkt_count_hint, __hf, __eql, __a,
569 		     __unique_keys{})
570 	{ }
571 
572       _Hashtable(initializer_list<value_type> __l,
573 		 size_type __bkt_count_hint = 0,
574 		 const _Hash& __hf = _Hash(),
575 		 const key_equal& __eql = key_equal(),
576 		 const allocator_type& __a = allocator_type())
577       : _Hashtable(__l.begin(), __l.end(), __bkt_count_hint,
578 		   __hf, __eql, __a, __unique_keys{})
579       { }
580 
581       _Hashtable&
582       operator=(const _Hashtable& __ht);
583 
584       _Hashtable&
585       operator=(_Hashtable&& __ht)
586       noexcept(__node_alloc_traits::_S_nothrow_move()
587 	       && is_nothrow_move_assignable<_Hash>::value
588 	       && is_nothrow_move_assignable<_Equal>::value)
589       {
590 	constexpr bool __move_storage =
591 	  __node_alloc_traits::_S_propagate_on_move_assign()
592 	  || __node_alloc_traits::_S_always_equal();
593 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
594 	return *this;
595       }
596 
597       _Hashtable&
598       operator=(initializer_list<value_type> __l)
599       {
600 	__reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
601 	_M_before_begin._M_nxt = nullptr;
602 	clear();
603 
604 	// We consider that all elements of __l are going to be inserted.
605 	auto __l_bkt_count = _M_rehash_policy._M_bkt_for_elements(__l.size());
606 
607 	// Do not shrink to keep potential user reservation.
608 	if (_M_bucket_count < __l_bkt_count)
609 	  rehash(__l_bkt_count);
610 
611 	this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys{});
612 	return *this;
613       }
614 
615       ~_Hashtable() noexcept;
616 
617       void
618       swap(_Hashtable&)
619       noexcept(__and_<__is_nothrow_swappable<_Hash>,
620 		      __is_nothrow_swappable<_Equal>>::value);
621 
622       // Basic container operations
623       iterator
624       begin() noexcept
625       { return iterator(_M_begin()); }
626 
627       const_iterator
628       begin() const noexcept
629       { return const_iterator(_M_begin()); }
630 
631       iterator
632       end() noexcept
633       { return iterator(nullptr); }
634 
635       const_iterator
636       end() const noexcept
637       { return const_iterator(nullptr); }
638 
639       const_iterator
640       cbegin() const noexcept
641       { return const_iterator(_M_begin()); }
642 
643       const_iterator
644       cend() const noexcept
645       { return const_iterator(nullptr); }
646 
647       size_type
648       size() const noexcept
649       { return _M_element_count; }
650 
651       _GLIBCXX_NODISCARD bool
652       empty() const noexcept
653       { return size() == 0; }
654 
655       allocator_type
656       get_allocator() const noexcept
657       { return allocator_type(this->_M_node_allocator()); }
658 
659       size_type
660       max_size() const noexcept
661       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
662 
663       // Observers
664       key_equal
665       key_eq() const
666       { return this->_M_eq(); }
667 
668       // hash_function, if present, comes from _Hash_code_base.
669 
670       // Bucket operations
671       size_type
672       bucket_count() const noexcept
673       { return _M_bucket_count; }
674 
675       size_type
676       max_bucket_count() const noexcept
677       { return max_size(); }
678 
679       size_type
680       bucket_size(size_type __bkt) const
681       { return std::distance(begin(__bkt), end(__bkt)); }
682 
683       size_type
684       bucket(const key_type& __k) const
685       { return _M_bucket_index(this->_M_hash_code(__k)); }
686 
687       local_iterator
688       begin(size_type __bkt)
689       {
690 	return local_iterator(*this, _M_bucket_begin(__bkt),
691 			      __bkt, _M_bucket_count);
692       }
693 
694       local_iterator
695       end(size_type __bkt)
696       { return local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
697 
698       const_local_iterator
699       begin(size_type __bkt) const
700       {
701 	return const_local_iterator(*this, _M_bucket_begin(__bkt),
702 				    __bkt, _M_bucket_count);
703       }
704 
705       const_local_iterator
706       end(size_type __bkt) const
707       { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
708 
709       // DR 691.
710       const_local_iterator
711       cbegin(size_type __bkt) const
712       {
713 	return const_local_iterator(*this, _M_bucket_begin(__bkt),
714 				    __bkt, _M_bucket_count);
715       }
716 
717       const_local_iterator
718       cend(size_type __bkt) const
719       { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
720 
721       float
722       load_factor() const noexcept
723       {
724 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
725       }
726 
727       // max_load_factor, if present, comes from _Rehash_base.
728 
729       // Generalization of max_load_factor.  Extension, not found in
730       // TR1.  Only useful if _RehashPolicy is something other than
731       // the default.
732       const _RehashPolicy&
733       __rehash_policy() const
734       { return _M_rehash_policy; }
735 
736       void
737       __rehash_policy(const _RehashPolicy& __pol)
738       { _M_rehash_policy = __pol; }
739 
740       // Lookup.
741       iterator
742       find(const key_type& __k);
743 
744       const_iterator
745       find(const key_type& __k) const;
746 
747       size_type
748       count(const key_type& __k) const;
749 
750       std::pair<iterator, iterator>
751       equal_range(const key_type& __k);
752 
753       std::pair<const_iterator, const_iterator>
754       equal_range(const key_type& __k) const;
755 
756 #if __cplusplus >= 202002L
757 #define __cpp_lib_generic_unordered_lookup 201811L
758 
759       template<typename _Kt,
760 	       typename = __has_is_transparent_t<_Hash, _Kt>,
761 	       typename = __has_is_transparent_t<_Equal, _Kt>>
762 	iterator
763 	_M_find_tr(const _Kt& __k);
764 
765       template<typename _Kt,
766 	       typename = __has_is_transparent_t<_Hash, _Kt>,
767 	       typename = __has_is_transparent_t<_Equal, _Kt>>
768 	const_iterator
769 	_M_find_tr(const _Kt& __k) const;
770 
771       template<typename _Kt,
772 	       typename = __has_is_transparent_t<_Hash, _Kt>,
773 	       typename = __has_is_transparent_t<_Equal, _Kt>>
774 	size_type
775 	_M_count_tr(const _Kt& __k) const;
776 
777       template<typename _Kt,
778 	       typename = __has_is_transparent_t<_Hash, _Kt>,
779 	       typename = __has_is_transparent_t<_Equal, _Kt>>
780 	pair<iterator, iterator>
781 	_M_equal_range_tr(const _Kt& __k);
782 
783       template<typename _Kt,
784 	       typename = __has_is_transparent_t<_Hash, _Kt>,
785 	       typename = __has_is_transparent_t<_Equal, _Kt>>
786 	pair<const_iterator, const_iterator>
787 	_M_equal_range_tr(const _Kt& __k) const;
788 #endif // C++20
789 
790     private:
791       // Bucket index computation helpers.
792       size_type
793       _M_bucket_index(const __node_value_type& __n) const noexcept
794       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
795 
796       size_type
797       _M_bucket_index(__hash_code __c) const
798       { return __hash_code_base::_M_bucket_index(__c, _M_bucket_count); }
799 
800       __node_base_ptr
801       _M_find_before_node(const key_type&);
802 
803       // Find and insert helper functions and types
804       // Find the node before the one matching the criteria.
805       __node_base_ptr
806       _M_find_before_node(size_type, const key_type&, __hash_code) const;
807 
808       template<typename _Kt>
809 	__node_base_ptr
810 	_M_find_before_node_tr(size_type, const _Kt&, __hash_code) const;
811 
812       __node_ptr
813       _M_find_node(size_type __bkt, const key_type& __key,
814 		   __hash_code __c) const
815       {
816 	__node_base_ptr __before_n = _M_find_before_node(__bkt, __key, __c);
817 	if (__before_n)
818 	  return static_cast<__node_ptr>(__before_n->_M_nxt);
819 	return nullptr;
820       }
821 
822       template<typename _Kt>
823 	__node_ptr
824 	_M_find_node_tr(size_type __bkt, const _Kt& __key,
825 			__hash_code __c) const
826 	{
827 	  auto __before_n = _M_find_before_node_tr(__bkt, __key, __c);
828 	  if (__before_n)
829 	    return static_cast<__node_ptr>(__before_n->_M_nxt);
830 	  return nullptr;
831 	}
832 
833       // Insert a node at the beginning of a bucket.
834       void
835       _M_insert_bucket_begin(size_type, __node_ptr);
836 
837       // Remove the bucket first node
838       void
839       _M_remove_bucket_begin(size_type __bkt, __node_ptr __next_n,
840 			     size_type __next_bkt);
841 
842       // Get the node before __n in the bucket __bkt
843       __node_base_ptr
844       _M_get_previous_node(size_type __bkt, __node_ptr __n);
845 
846       pair<const_iterator, __hash_code>
847       _M_compute_hash_code(const_iterator __hint, const key_type& __k) const;
848 
849       // Insert node __n with hash code __code, in bucket __bkt if no
850       // rehash (assumes no element with same key already present).
851       // Takes ownership of __n if insertion succeeds, throws otherwise.
852       iterator
853       _M_insert_unique_node(size_type __bkt, __hash_code,
854 			    __node_ptr __n, size_type __n_elt = 1);
855 
856       // Insert node __n with key __k and hash code __code.
857       // Takes ownership of __n if insertion succeeds, throws otherwise.
858       iterator
859       _M_insert_multi_node(__node_ptr __hint,
860 			   __hash_code __code, __node_ptr __n);
861 
862       template<typename... _Args>
863 	std::pair<iterator, bool>
864 	_M_emplace(true_type __uks, _Args&&... __args);
865 
866       template<typename... _Args>
867 	iterator
868 	_M_emplace(false_type __uks, _Args&&... __args)
869 	{ return _M_emplace(cend(), __uks, std::forward<_Args>(__args)...); }
870 
871       // Emplace with hint, useless when keys are unique.
872       template<typename... _Args>
873 	iterator
874 	_M_emplace(const_iterator, true_type __uks, _Args&&... __args)
875 	{ return _M_emplace(__uks, std::forward<_Args>(__args)...).first; }
876 
877       template<typename... _Args>
878 	iterator
879 	_M_emplace(const_iterator, false_type __uks, _Args&&... __args);
880 
881       template<typename _Kt, typename _Arg, typename _NodeGenerator>
882 	std::pair<iterator, bool>
883 	_M_insert_unique(_Kt&&, _Arg&&, const _NodeGenerator&);
884 
885       template<typename _Kt>
886 	static __conditional_t<
887 	  __and_<__is_nothrow_invocable<_Hash&, const key_type&>,
888 		 __not_<__is_nothrow_invocable<_Hash&, _Kt>>>::value,
889 	  key_type, _Kt&&>
890 	_S_forward_key(_Kt&& __k)
891 	{ return std::forward<_Kt>(__k); }
892 
893       static const key_type&
894       _S_forward_key(const key_type& __k)
895       { return __k; }
896 
897       static key_type&&
898       _S_forward_key(key_type&& __k)
899       { return std::move(__k); }
900 
901       template<typename _Arg, typename _NodeGenerator>
902 	std::pair<iterator, bool>
903 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
904 		  true_type /* __uks */)
905 	{
906 	  return _M_insert_unique(
907 	    _S_forward_key(_ExtractKey{}(std::forward<_Arg>(__arg))),
908 	    std::forward<_Arg>(__arg), __node_gen);
909 	}
910 
911       template<typename _Arg, typename _NodeGenerator>
912 	iterator
913 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
914 		  false_type __uks)
915 	{
916 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
917 			   __uks);
918 	}
919 
920       // Insert with hint, not used when keys are unique.
921       template<typename _Arg, typename _NodeGenerator>
922 	iterator
923 	_M_insert(const_iterator, _Arg&& __arg,
924 		  const _NodeGenerator& __node_gen, true_type __uks)
925 	{
926 	  return
927 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uks).first;
928 	}
929 
930       // Insert with hint when keys are not unique.
931       template<typename _Arg, typename _NodeGenerator>
932 	iterator
933 	_M_insert(const_iterator, _Arg&&,
934 		  const _NodeGenerator&, false_type __uks);
935 
936       size_type
937       _M_erase(true_type __uks, const key_type&);
938 
939       size_type
940       _M_erase(false_type __uks, const key_type&);
941 
942       iterator
943       _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n);
944 
945     public:
946       // Emplace
947       template<typename... _Args>
948 	__ireturn_type
949 	emplace(_Args&&... __args)
950 	{ return _M_emplace(__unique_keys{}, std::forward<_Args>(__args)...); }
951 
952       template<typename... _Args>
953 	iterator
954 	emplace_hint(const_iterator __hint, _Args&&... __args)
955 	{
956 	  return _M_emplace(__hint, __unique_keys{},
957 			    std::forward<_Args>(__args)...);
958 	}
959 
960       // Insert member functions via inheritance.
961 
962       // Erase
963       iterator
964       erase(const_iterator);
965 
966       // LWG 2059.
967       iterator
968       erase(iterator __it)
969       { return erase(const_iterator(__it)); }
970 
971       size_type
972       erase(const key_type& __k)
973       { return _M_erase(__unique_keys{}, __k); }
974 
975       iterator
976       erase(const_iterator, const_iterator);
977 
978       void
979       clear() noexcept;
980 
981       // Set number of buckets keeping it appropriate for container's number
982       // of elements.
983       void rehash(size_type __bkt_count);
984 
985       // DR 1189.
986       // reserve, if present, comes from _Rehash_base.
987 
988 #if __cplusplus > 201404L
989       /// Re-insert an extracted node into a container with unique keys.
990       insert_return_type
991       _M_reinsert_node(node_type&& __nh)
992       {
993 	insert_return_type __ret;
994 	if (__nh.empty())
995 	  __ret.position = end();
996 	else
997 	  {
998 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
999 
1000 	    const key_type& __k = __nh._M_key();
1001 	    __hash_code __code = this->_M_hash_code(__k);
1002 	    size_type __bkt = _M_bucket_index(__code);
1003 	    if (__node_ptr __n = _M_find_node(__bkt, __k, __code))
1004 	      {
1005 		__ret.node = std::move(__nh);
1006 		__ret.position = iterator(__n);
1007 		__ret.inserted = false;
1008 	      }
1009 	    else
1010 	      {
1011 		__ret.position
1012 		  = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
1013 		__nh.release();
1014 		__ret.inserted = true;
1015 	      }
1016 	  }
1017 	return __ret;
1018       }
1019 
1020       /// Re-insert an extracted node into a container with equivalent keys.
1021       iterator
1022       _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
1023       {
1024 	if (__nh.empty())
1025 	  return end();
1026 
1027 	__glibcxx_assert(get_allocator() == __nh.get_allocator());
1028 
1029 	const key_type& __k = __nh._M_key();
1030 	auto __code = this->_M_hash_code(__k);
1031 	auto __ret
1032 	  = _M_insert_multi_node(__hint._M_cur, __code, __nh._M_ptr);
1033 	__nh.release();
1034 	return __ret;
1035       }
1036 
1037     private:
1038       node_type
1039       _M_extract_node(size_t __bkt, __node_base_ptr __prev_n)
1040       {
1041 	__node_ptr __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
1042 	if (__prev_n == _M_buckets[__bkt])
1043 	  _M_remove_bucket_begin(__bkt, __n->_M_next(),
1044 	     __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
1045 	else if (__n->_M_nxt)
1046 	  {
1047 	    size_type __next_bkt = _M_bucket_index(*__n->_M_next());
1048 	    if (__next_bkt != __bkt)
1049 	      _M_buckets[__next_bkt] = __prev_n;
1050 	  }
1051 
1052 	__prev_n->_M_nxt = __n->_M_nxt;
1053 	__n->_M_nxt = nullptr;
1054 	--_M_element_count;
1055 	return { __n, this->_M_node_allocator() };
1056       }
1057 
1058       // Only use the possibly cached node's hash code if its hash function
1059       // _H2 matches _Hash and is stateless. Otherwise recompute it using _Hash.
1060       template<typename _H2>
1061 	__hash_code
1062 	_M_src_hash_code(const _H2&, const key_type& __k,
1063 			 const __node_value_type& __src_n) const
1064 	{
1065 	  if constexpr (std::is_same_v<_H2, _Hash>)
1066 	    if constexpr (std::is_empty_v<_Hash>)
1067 	      return this->_M_hash_code(__src_n);
1068 
1069 	  return this->_M_hash_code(__k);
1070 	}
1071 
1072     public:
1073       // Extract a node.
1074       node_type
1075       extract(const_iterator __pos)
1076       {
1077 	size_t __bkt = _M_bucket_index(*__pos._M_cur);
1078 	return _M_extract_node(__bkt,
1079 			       _M_get_previous_node(__bkt, __pos._M_cur));
1080       }
1081 
1082       /// Extract a node.
1083       node_type
1084       extract(const _Key& __k)
1085       {
1086 	node_type __nh;
1087 	__hash_code __code = this->_M_hash_code(__k);
1088 	std::size_t __bkt = _M_bucket_index(__code);
1089 	if (__node_base_ptr __prev_node = _M_find_before_node(__bkt, __k, __code))
1090 	  __nh = _M_extract_node(__bkt, __prev_node);
1091 	return __nh;
1092       }
1093 
1094       /// Merge from a compatible container into one with unique keys.
1095       template<typename _Compatible_Hashtable>
1096 	void
1097 	_M_merge_unique(_Compatible_Hashtable& __src)
1098 	{
1099 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
1100 	      node_type>, "Node types are compatible");
1101 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
1102 
1103 	  auto __n_elt = __src.size();
1104 	  for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
1105 	    {
1106 	      auto __pos = __i++;
1107 	      const key_type& __k = _ExtractKey{}(*__pos);
1108 	      __hash_code __code
1109 		= _M_src_hash_code(__src.hash_function(), __k, *__pos._M_cur);
1110 	      size_type __bkt = _M_bucket_index(__code);
1111 	      if (_M_find_node(__bkt, __k, __code) == nullptr)
1112 		{
1113 		  auto __nh = __src.extract(__pos);
1114 		  _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
1115 		  __nh.release();
1116 		  __n_elt = 1;
1117 		}
1118 	      else if (__n_elt != 1)
1119 		--__n_elt;
1120 	    }
1121 	}
1122 
1123       /// Merge from a compatible container into one with equivalent keys.
1124       template<typename _Compatible_Hashtable>
1125 	void
1126 	_M_merge_multi(_Compatible_Hashtable& __src)
1127 	{
1128 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
1129 	      node_type>, "Node types are compatible");
1130 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
1131 
1132 	  __node_ptr __hint = nullptr;
1133 	  this->reserve(size() + __src.size());
1134 	  for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
1135 	    {
1136 	      auto __pos = __i++;
1137 	      const key_type& __k = _ExtractKey{}(*__pos);
1138 	      __hash_code __code
1139 		= _M_src_hash_code(__src.hash_function(), __k, *__pos._M_cur);
1140 	      auto __nh = __src.extract(__pos);
1141 	      __hint = _M_insert_multi_node(__hint, __code, __nh._M_ptr)._M_cur;
1142 	      __nh.release();
1143 	    }
1144 	}
1145 #endif // C++17
1146 
1147     private:
1148       // Helper rehash method used when keys are unique.
1149       void _M_rehash_aux(size_type __bkt_count, true_type __uks);
1150 
1151       // Helper rehash method used when keys can be non-unique.
1152       void _M_rehash_aux(size_type __bkt_count, false_type __uks);
1153 
1154       // Unconditionally change size of bucket array to n, restore
1155       // hash policy state to __state on exception.
1156       void _M_rehash(size_type __bkt_count, const __rehash_state& __state);
1157     };
1158 
1159   // Definitions of class template _Hashtable's out-of-line member functions.
1160   template<typename _Key, typename _Value, typename _Alloc,
1161 	   typename _ExtractKey, typename _Equal,
1162 	   typename _Hash, typename _RangeHash, typename _Unused,
1163 	   typename _RehashPolicy, typename _Traits>
1164     auto
1165     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1166 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1167     _M_bucket_begin(size_type __bkt) const
1168     -> __node_ptr
1169     {
1170       __node_base_ptr __n = _M_buckets[__bkt];
1171       return __n ? static_cast<__node_ptr>(__n->_M_nxt) : nullptr;
1172     }
1173 
1174   template<typename _Key, typename _Value, typename _Alloc,
1175 	   typename _ExtractKey, typename _Equal,
1176 	   typename _Hash, typename _RangeHash, typename _Unused,
1177 	   typename _RehashPolicy, typename _Traits>
1178     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1179 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1180     _Hashtable(size_type __bkt_count_hint,
1181 	       const _Hash& __h, const _Equal& __eq, const allocator_type& __a)
1182     : _Hashtable(__h, __eq, __a)
1183     {
1184       auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint);
1185       if (__bkt_count > _M_bucket_count)
1186 	{
1187 	  _M_buckets = _M_allocate_buckets(__bkt_count);
1188 	  _M_bucket_count = __bkt_count;
1189 	}
1190     }
1191 
1192   template<typename _Key, typename _Value, typename _Alloc,
1193 	   typename _ExtractKey, typename _Equal,
1194 	   typename _Hash, typename _RangeHash, typename _Unused,
1195 	   typename _RehashPolicy, typename _Traits>
1196     template<typename _InputIterator>
1197       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1198 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1199       _Hashtable(_InputIterator __f, _InputIterator __l,
1200 		 size_type __bkt_count_hint,
1201 		 const _Hash& __h, const _Equal& __eq,
1202 		 const allocator_type& __a, true_type /* __uks */)
1203       : _Hashtable(__bkt_count_hint, __h, __eq, __a)
1204       {
1205 	for (; __f != __l; ++__f)
1206 	  this->insert(*__f);
1207       }
1208 
1209   template<typename _Key, typename _Value, typename _Alloc,
1210 	   typename _ExtractKey, typename _Equal,
1211 	   typename _Hash, typename _RangeHash, typename _Unused,
1212 	   typename _RehashPolicy, typename _Traits>
1213     template<typename _InputIterator>
1214       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1215 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1216       _Hashtable(_InputIterator __f, _InputIterator __l,
1217 		 size_type __bkt_count_hint,
1218 		 const _Hash& __h, const _Equal& __eq,
1219 		 const allocator_type& __a, false_type /* __uks */)
1220       : _Hashtable(__h, __eq, __a)
1221       {
1222 	auto __nb_elems = __detail::__distance_fw(__f, __l);
1223 	auto __bkt_count =
1224 	  _M_rehash_policy._M_next_bkt(
1225 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
1226 		     __bkt_count_hint));
1227 
1228 	if (__bkt_count > _M_bucket_count)
1229 	  {
1230 	    _M_buckets = _M_allocate_buckets(__bkt_count);
1231 	    _M_bucket_count = __bkt_count;
1232 	  }
1233 
1234 	for (; __f != __l; ++__f)
1235 	  this->insert(*__f);
1236       }
1237 
1238   template<typename _Key, typename _Value, typename _Alloc,
1239 	   typename _ExtractKey, typename _Equal,
1240 	   typename _Hash, typename _RangeHash, typename _Unused,
1241 	   typename _RehashPolicy, typename _Traits>
1242     auto
1243     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1244 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1245     operator=(const _Hashtable& __ht)
1246     -> _Hashtable&
1247     {
1248       if (&__ht == this)
1249 	return *this;
1250 
1251       if (__node_alloc_traits::_S_propagate_on_copy_assign())
1252 	{
1253 	  auto& __this_alloc = this->_M_node_allocator();
1254 	  auto& __that_alloc = __ht._M_node_allocator();
1255 	  if (!__node_alloc_traits::_S_always_equal()
1256 	      && __this_alloc != __that_alloc)
1257 	    {
1258 	      // Replacement allocator cannot free existing storage.
1259 	      this->_M_deallocate_nodes(_M_begin());
1260 	      _M_before_begin._M_nxt = nullptr;
1261 	      _M_deallocate_buckets();
1262 	      _M_buckets = nullptr;
1263 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
1264 	      __hashtable_base::operator=(__ht);
1265 	      _M_bucket_count = __ht._M_bucket_count;
1266 	      _M_element_count = __ht._M_element_count;
1267 	      _M_rehash_policy = __ht._M_rehash_policy;
1268 	      __alloc_node_gen_t __alloc_node_gen(*this);
1269 	      __try
1270 		{
1271 		  _M_assign(__ht, __alloc_node_gen);
1272 		}
1273 	      __catch(...)
1274 		{
1275 		  // _M_assign took care of deallocating all memory. Now we
1276 		  // must make sure this instance remains in a usable state.
1277 		  _M_reset();
1278 		  __throw_exception_again;
1279 		}
1280 	      return *this;
1281 	    }
1282 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
1283 	}
1284 
1285       // Reuse allocated buckets and nodes.
1286       _M_assign_elements(__ht);
1287       return *this;
1288     }
1289 
1290   template<typename _Key, typename _Value, typename _Alloc,
1291 	   typename _ExtractKey, typename _Equal,
1292 	   typename _Hash, typename _RangeHash, typename _Unused,
1293 	   typename _RehashPolicy, typename _Traits>
1294     template<typename _Ht>
1295       void
1296       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1297 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1298       _M_assign_elements(_Ht&& __ht)
1299       {
1300 	__buckets_ptr __former_buckets = nullptr;
1301 	std::size_t __former_bucket_count = _M_bucket_count;
1302 	const __rehash_state& __former_state = _M_rehash_policy._M_state();
1303 
1304 	if (_M_bucket_count != __ht._M_bucket_count)
1305 	  {
1306 	    __former_buckets = _M_buckets;
1307 	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1308 	    _M_bucket_count = __ht._M_bucket_count;
1309 	  }
1310 	else
1311 	  __builtin_memset(_M_buckets, 0,
1312 			   _M_bucket_count * sizeof(__node_base_ptr));
1313 
1314 	__try
1315 	  {
1316 	    __hashtable_base::operator=(std::forward<_Ht>(__ht));
1317 	    _M_element_count = __ht._M_element_count;
1318 	    _M_rehash_policy = __ht._M_rehash_policy;
1319 	    __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
1320 	    _M_before_begin._M_nxt = nullptr;
1321 	    _M_assign(std::forward<_Ht>(__ht), __roan);
1322 	    if (__former_buckets)
1323 	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1324 	  }
1325 	__catch(...)
1326 	  {
1327 	    if (__former_buckets)
1328 	      {
1329 		// Restore previous buckets.
1330 		_M_deallocate_buckets();
1331 		_M_rehash_policy._M_reset(__former_state);
1332 		_M_buckets = __former_buckets;
1333 		_M_bucket_count = __former_bucket_count;
1334 	      }
1335 	    __builtin_memset(_M_buckets, 0,
1336 			     _M_bucket_count * sizeof(__node_base_ptr));
1337 	    __throw_exception_again;
1338 	  }
1339       }
1340 
1341   template<typename _Key, typename _Value, typename _Alloc,
1342 	   typename _ExtractKey, typename _Equal,
1343 	   typename _Hash, typename _RangeHash, typename _Unused,
1344 	   typename _RehashPolicy, typename _Traits>
1345     template<typename _Ht, typename _NodeGenerator>
1346       void
1347       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1348 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1349       _M_assign(_Ht&& __ht, const _NodeGenerator& __node_gen)
1350       {
1351 	__buckets_ptr __buckets = nullptr;
1352 	if (!_M_buckets)
1353 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1354 
1355 	__try
1356 	  {
1357 	    if (!__ht._M_before_begin._M_nxt)
1358 	      return;
1359 
1360 	    // First deal with the special first node pointed to by
1361 	    // _M_before_begin.
1362 	    __node_ptr __ht_n = __ht._M_begin();
1363 	    __node_ptr __this_n
1364 	      = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1365 	    this->_M_copy_code(*__this_n, *__ht_n);
1366 	    _M_update_bbegin(__this_n);
1367 
1368 	    // Then deal with other nodes.
1369 	    __node_ptr __prev_n = __this_n;
1370 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1371 	      {
1372 		__this_n = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1373 		__prev_n->_M_nxt = __this_n;
1374 		this->_M_copy_code(*__this_n, *__ht_n);
1375 		size_type __bkt = _M_bucket_index(*__this_n);
1376 		if (!_M_buckets[__bkt])
1377 		  _M_buckets[__bkt] = __prev_n;
1378 		__prev_n = __this_n;
1379 	      }
1380 	  }
1381 	__catch(...)
1382 	  {
1383 	    clear();
1384 	    if (__buckets)
1385 	      _M_deallocate_buckets();
1386 	    __throw_exception_again;
1387 	  }
1388       }
1389 
1390   template<typename _Key, typename _Value, typename _Alloc,
1391 	   typename _ExtractKey, typename _Equal,
1392 	   typename _Hash, typename _RangeHash, typename _Unused,
1393 	   typename _RehashPolicy, typename _Traits>
1394     void
1395     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1396 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1397     _M_reset() noexcept
1398     {
1399       _M_rehash_policy._M_reset();
1400       _M_bucket_count = 1;
1401       _M_single_bucket = nullptr;
1402       _M_buckets = &_M_single_bucket;
1403       _M_before_begin._M_nxt = nullptr;
1404       _M_element_count = 0;
1405     }
1406 
1407   template<typename _Key, typename _Value, typename _Alloc,
1408 	   typename _ExtractKey, typename _Equal,
1409 	   typename _Hash, typename _RangeHash, typename _Unused,
1410 	   typename _RehashPolicy, typename _Traits>
1411     void
1412     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1413 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1414     _M_move_assign(_Hashtable&& __ht, true_type)
1415     {
1416       if (__builtin_expect(std::__addressof(__ht) == this, false))
1417 	return;
1418 
1419       this->_M_deallocate_nodes(_M_begin());
1420       _M_deallocate_buckets();
1421       __hashtable_base::operator=(std::move(__ht));
1422       _M_rehash_policy = __ht._M_rehash_policy;
1423       if (!__ht._M_uses_single_bucket())
1424 	_M_buckets = __ht._M_buckets;
1425       else
1426 	{
1427 	  _M_buckets = &_M_single_bucket;
1428 	  _M_single_bucket = __ht._M_single_bucket;
1429 	}
1430 
1431       _M_bucket_count = __ht._M_bucket_count;
1432       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1433       _M_element_count = __ht._M_element_count;
1434       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1435 
1436       // Fix bucket containing the _M_before_begin pointer that can't be moved.
1437       _M_update_bbegin();
1438       __ht._M_reset();
1439     }
1440 
1441   template<typename _Key, typename _Value, typename _Alloc,
1442 	   typename _ExtractKey, typename _Equal,
1443 	   typename _Hash, typename _RangeHash, typename _Unused,
1444 	   typename _RehashPolicy, typename _Traits>
1445     void
1446     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1447 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1448     _M_move_assign(_Hashtable&& __ht, false_type)
1449     {
1450       if (__ht._M_node_allocator() == this->_M_node_allocator())
1451 	_M_move_assign(std::move(__ht), true_type{});
1452       else
1453 	{
1454 	  // Can't move memory, move elements then.
1455 	  _M_assign_elements(std::move(__ht));
1456 	  __ht.clear();
1457 	}
1458     }
1459 
1460   template<typename _Key, typename _Value, typename _Alloc,
1461 	   typename _ExtractKey, typename _Equal,
1462 	   typename _Hash, typename _RangeHash, typename _Unused,
1463 	   typename _RehashPolicy, typename _Traits>
1464     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1465 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1466     _Hashtable(const _Hashtable& __ht)
1467     : __hashtable_base(__ht),
1468       __map_base(__ht),
1469       __rehash_base(__ht),
1470       __hashtable_alloc(
1471 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1472       __enable_default_ctor(__ht),
1473       _M_buckets(nullptr),
1474       _M_bucket_count(__ht._M_bucket_count),
1475       _M_element_count(__ht._M_element_count),
1476       _M_rehash_policy(__ht._M_rehash_policy)
1477     {
1478       __alloc_node_gen_t __alloc_node_gen(*this);
1479       _M_assign(__ht, __alloc_node_gen);
1480     }
1481 
1482   template<typename _Key, typename _Value, typename _Alloc,
1483 	   typename _ExtractKey, typename _Equal,
1484 	   typename _Hash, typename _RangeHash, typename _Unused,
1485 	   typename _RehashPolicy, typename _Traits>
1486     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1487 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1488     _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1489 	       true_type /* alloc always equal */)
1490     noexcept(_S_nothrow_move())
1491     : __hashtable_base(__ht),
1492       __map_base(__ht),
1493       __rehash_base(__ht),
1494       __hashtable_alloc(std::move(__a)),
1495       __enable_default_ctor(__ht),
1496       _M_buckets(__ht._M_buckets),
1497       _M_bucket_count(__ht._M_bucket_count),
1498       _M_before_begin(__ht._M_before_begin._M_nxt),
1499       _M_element_count(__ht._M_element_count),
1500       _M_rehash_policy(__ht._M_rehash_policy)
1501     {
1502       // Update buckets if __ht is using its single bucket.
1503       if (__ht._M_uses_single_bucket())
1504 	{
1505 	  _M_buckets = &_M_single_bucket;
1506 	  _M_single_bucket = __ht._M_single_bucket;
1507 	}
1508 
1509       // Fix bucket containing the _M_before_begin pointer that can't be moved.
1510       _M_update_bbegin();
1511 
1512       __ht._M_reset();
1513     }
1514 
1515   template<typename _Key, typename _Value, typename _Alloc,
1516 	   typename _ExtractKey, typename _Equal,
1517 	   typename _Hash, typename _RangeHash, typename _Unused,
1518 	   typename _RehashPolicy, typename _Traits>
1519     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1520 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1521     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1522     : __hashtable_base(__ht),
1523       __map_base(__ht),
1524       __rehash_base(__ht),
1525       __hashtable_alloc(__node_alloc_type(__a)),
1526       __enable_default_ctor(__ht),
1527       _M_buckets(),
1528       _M_bucket_count(__ht._M_bucket_count),
1529       _M_element_count(__ht._M_element_count),
1530       _M_rehash_policy(__ht._M_rehash_policy)
1531     {
1532       __alloc_node_gen_t __alloc_node_gen(*this);
1533       _M_assign(__ht, __alloc_node_gen);
1534     }
1535 
1536   template<typename _Key, typename _Value, typename _Alloc,
1537 	   typename _ExtractKey, typename _Equal,
1538 	   typename _Hash, typename _RangeHash, typename _Unused,
1539 	   typename _RehashPolicy, typename _Traits>
1540     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1541 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1542     _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1543 	       false_type /* alloc always equal */)
1544     : __hashtable_base(__ht),
1545       __map_base(__ht),
1546       __rehash_base(__ht),
1547       __hashtable_alloc(std::move(__a)),
1548       __enable_default_ctor(__ht),
1549       _M_buckets(nullptr),
1550       _M_bucket_count(__ht._M_bucket_count),
1551       _M_element_count(__ht._M_element_count),
1552       _M_rehash_policy(__ht._M_rehash_policy)
1553     {
1554       if (__ht._M_node_allocator() == this->_M_node_allocator())
1555 	{
1556 	  if (__ht._M_uses_single_bucket())
1557 	    {
1558 	      _M_buckets = &_M_single_bucket;
1559 	      _M_single_bucket = __ht._M_single_bucket;
1560 	    }
1561 	  else
1562 	    _M_buckets = __ht._M_buckets;
1563 
1564 	  // Fix bucket containing the _M_before_begin pointer that can't be
1565 	  // moved.
1566 	  _M_update_bbegin(__ht._M_begin());
1567 
1568 	  __ht._M_reset();
1569 	}
1570       else
1571 	{
1572 	  __alloc_node_gen_t __alloc_gen(*this);
1573 
1574 	  using _Fwd_Ht = __conditional_t<
1575 	    __move_if_noexcept_cond<value_type>::value,
1576 	    const _Hashtable&, _Hashtable&&>;
1577 	  _M_assign(std::forward<_Fwd_Ht>(__ht), __alloc_gen);
1578 	  __ht.clear();
1579 	}
1580     }
1581 
1582   template<typename _Key, typename _Value, typename _Alloc,
1583 	   typename _ExtractKey, typename _Equal,
1584 	   typename _Hash, typename _RangeHash, typename _Unused,
1585 	   typename _RehashPolicy, typename _Traits>
1586     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1587 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1588     ~_Hashtable() noexcept
1589     {
1590       // Getting a bucket index from a node shall not throw because it is used
1591       // in methods (erase, swap...) that shall not throw. Need a complete
1592       // type to check this, so do it in the destructor not at class scope.
1593       static_assert(noexcept(declval<const __hash_code_base_access&>()
1594 			._M_bucket_index(declval<const __node_value_type&>(),
1595 					 (std::size_t)0)),
1596 		    "Cache the hash code or qualify your functors involved"
1597 		    " in hash code and bucket index computation with noexcept");
1598 
1599       clear();
1600       _M_deallocate_buckets();
1601     }
1602 
1603   template<typename _Key, typename _Value, typename _Alloc,
1604 	   typename _ExtractKey, typename _Equal,
1605 	   typename _Hash, typename _RangeHash, typename _Unused,
1606 	   typename _RehashPolicy, typename _Traits>
1607     void
1608     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1609 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1610     swap(_Hashtable& __x)
1611     noexcept(__and_<__is_nothrow_swappable<_Hash>,
1612 			__is_nothrow_swappable<_Equal>>::value)
1613     {
1614       // The only base class with member variables is hash_code_base.
1615       // We define _Hash_code_base::_M_swap because different
1616       // specializations have different members.
1617       this->_M_swap(__x);
1618 
1619       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1620       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1621 
1622       // Deal properly with potentially moved instances.
1623       if (this->_M_uses_single_bucket())
1624 	{
1625 	  if (!__x._M_uses_single_bucket())
1626 	    {
1627 	      _M_buckets = __x._M_buckets;
1628 	      __x._M_buckets = &__x._M_single_bucket;
1629 	    }
1630 	}
1631       else if (__x._M_uses_single_bucket())
1632 	{
1633 	  __x._M_buckets = _M_buckets;
1634 	  _M_buckets = &_M_single_bucket;
1635 	}
1636       else
1637 	std::swap(_M_buckets, __x._M_buckets);
1638 
1639       std::swap(_M_bucket_count, __x._M_bucket_count);
1640       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1641       std::swap(_M_element_count, __x._M_element_count);
1642       std::swap(_M_single_bucket, __x._M_single_bucket);
1643 
1644       // Fix buckets containing the _M_before_begin pointers that can't be
1645       // swapped.
1646       _M_update_bbegin();
1647       __x._M_update_bbegin();
1648     }
1649 
1650   template<typename _Key, typename _Value, typename _Alloc,
1651 	   typename _ExtractKey, typename _Equal,
1652 	   typename _Hash, typename _RangeHash, typename _Unused,
1653 	   typename _RehashPolicy, typename _Traits>
1654     auto
1655     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1656 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1657     find(const key_type& __k)
1658     -> iterator
1659     {
1660       if (size() <= __small_size_threshold())
1661 	{
1662 	  for (auto __it = begin(); __it != end(); ++__it)
1663 	    if (this->_M_key_equals(__k, *__it._M_cur))
1664 	      return __it;
1665 	  return end();
1666 	}
1667 
1668       __hash_code __code = this->_M_hash_code(__k);
1669       std::size_t __bkt = _M_bucket_index(__code);
1670       return iterator(_M_find_node(__bkt, __k, __code));
1671     }
1672 
1673   template<typename _Key, typename _Value, typename _Alloc,
1674 	   typename _ExtractKey, typename _Equal,
1675 	   typename _Hash, typename _RangeHash, typename _Unused,
1676 	   typename _RehashPolicy, typename _Traits>
1677     auto
1678     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1679 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1680     find(const key_type& __k) const
1681     -> const_iterator
1682     {
1683       if (size() <= __small_size_threshold())
1684 	{
1685 	  for (auto __it = begin(); __it != end(); ++__it)
1686 	    if (this->_M_key_equals(__k, *__it._M_cur))
1687 	      return __it;
1688 	  return end();
1689 	}
1690 
1691       __hash_code __code = this->_M_hash_code(__k);
1692       std::size_t __bkt = _M_bucket_index(__code);
1693       return const_iterator(_M_find_node(__bkt, __k, __code));
1694     }
1695 
1696 #if __cplusplus > 201703L
1697   template<typename _Key, typename _Value, typename _Alloc,
1698 	   typename _ExtractKey, typename _Equal,
1699 	   typename _Hash, typename _RangeHash, typename _Unused,
1700 	   typename _RehashPolicy, typename _Traits>
1701     template<typename _Kt, typename, typename>
1702       auto
1703       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1704 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1705       _M_find_tr(const _Kt& __k)
1706       -> iterator
1707       {
1708 	__hash_code __code = this->_M_hash_code_tr(__k);
1709 	std::size_t __bkt = _M_bucket_index(__code);
1710 	return iterator(_M_find_node_tr(__bkt, __k, __code));
1711       }
1712 
1713   template<typename _Key, typename _Value, typename _Alloc,
1714 	   typename _ExtractKey, typename _Equal,
1715 	   typename _Hash, typename _RangeHash, typename _Unused,
1716 	   typename _RehashPolicy, typename _Traits>
1717     template<typename _Kt, typename, typename>
1718       auto
1719       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1720 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1721       _M_find_tr(const _Kt& __k) const
1722       -> const_iterator
1723       {
1724 	__hash_code __code = this->_M_hash_code_tr(__k);
1725 	std::size_t __bkt = _M_bucket_index(__code);
1726 	return const_iterator(_M_find_node_tr(__bkt, __k, __code));
1727       }
1728 #endif
1729 
1730   template<typename _Key, typename _Value, typename _Alloc,
1731 	   typename _ExtractKey, typename _Equal,
1732 	   typename _Hash, typename _RangeHash, typename _Unused,
1733 	   typename _RehashPolicy, typename _Traits>
1734     auto
1735     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1736 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1737     count(const key_type& __k) const
1738     -> size_type
1739     {
1740       auto __it = find(__k);
1741       if (!__it._M_cur)
1742 	return 0;
1743 
1744       if (__unique_keys::value)
1745 	return 1;
1746 
1747       // All equivalent values are next to each other, if we find a
1748       // non-equivalent value after an equivalent one it means that we won't
1749       // find any new equivalent value.
1750       size_type __result = 1;
1751       for (auto __ref = __it++;
1752 	   __it._M_cur && this->_M_node_equals(*__ref._M_cur, *__it._M_cur);
1753 	   ++__it)
1754 	++__result;
1755 
1756       return __result;
1757     }
1758 
1759 #if __cplusplus > 201703L
1760   template<typename _Key, typename _Value, typename _Alloc,
1761 	   typename _ExtractKey, typename _Equal,
1762 	   typename _Hash, typename _RangeHash, typename _Unused,
1763 	   typename _RehashPolicy, typename _Traits>
1764     template<typename _Kt, typename, typename>
1765       auto
1766       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1767 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1768       _M_count_tr(const _Kt& __k) const
1769       -> size_type
1770       {
1771 	__hash_code __code = this->_M_hash_code_tr(__k);
1772 	std::size_t __bkt = _M_bucket_index(__code);
1773 	auto __n = _M_find_node_tr(__bkt, __k, __code);
1774 	if (!__n)
1775 	  return 0;
1776 
1777 	// All equivalent values are next to each other, if we find a
1778 	// non-equivalent value after an equivalent one it means that we won't
1779 	// find any new equivalent value.
1780 	iterator __it(__n);
1781 	size_type __result = 1;
1782 	for (++__it;
1783 	     __it._M_cur && this->_M_equals_tr(__k, __code, *__it._M_cur);
1784 	     ++__it)
1785 	  ++__result;
1786 
1787 	return __result;
1788       }
1789 #endif
1790 
1791   template<typename _Key, typename _Value, typename _Alloc,
1792 	   typename _ExtractKey, typename _Equal,
1793 	   typename _Hash, typename _RangeHash, typename _Unused,
1794 	   typename _RehashPolicy, typename _Traits>
1795     auto
1796     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1797 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1798     equal_range(const key_type& __k)
1799     -> pair<iterator, iterator>
1800     {
1801       auto __ite = find(__k);
1802       if (!__ite._M_cur)
1803 	return { __ite, __ite };
1804 
1805       auto __beg = __ite++;
1806       if (__unique_keys::value)
1807 	return { __beg, __ite };
1808 
1809       // All equivalent values are next to each other, if we find a
1810       // non-equivalent value after an equivalent one it means that we won't
1811       // find any new equivalent value.
1812       while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
1813 	++__ite;
1814 
1815       return { __beg, __ite };
1816     }
1817 
1818   template<typename _Key, typename _Value, typename _Alloc,
1819 	   typename _ExtractKey, typename _Equal,
1820 	   typename _Hash, typename _RangeHash, typename _Unused,
1821 	   typename _RehashPolicy, typename _Traits>
1822     auto
1823     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1824 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1825     equal_range(const key_type& __k) const
1826     -> pair<const_iterator, const_iterator>
1827     {
1828       auto __ite = find(__k);
1829       if (!__ite._M_cur)
1830 	return { __ite, __ite };
1831 
1832       auto __beg = __ite++;
1833       if (__unique_keys::value)
1834 	return { __beg, __ite };
1835 
1836       // All equivalent values are next to each other, if we find a
1837       // non-equivalent value after an equivalent one it means that we won't
1838       // find any new equivalent value.
1839       while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
1840 	++__ite;
1841 
1842       return { __beg, __ite };
1843     }
1844 
1845 #if __cplusplus > 201703L
1846   template<typename _Key, typename _Value, typename _Alloc,
1847 	   typename _ExtractKey, typename _Equal,
1848 	   typename _Hash, typename _RangeHash, typename _Unused,
1849 	   typename _RehashPolicy, typename _Traits>
1850     template<typename _Kt, typename, typename>
1851       auto
1852       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1853 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1854       _M_equal_range_tr(const _Kt& __k)
1855       -> pair<iterator, iterator>
1856       {
1857 	__hash_code __code = this->_M_hash_code_tr(__k);
1858 	std::size_t __bkt = _M_bucket_index(__code);
1859 	auto __n = _M_find_node_tr(__bkt, __k, __code);
1860 	iterator __ite(__n);
1861 	if (!__n)
1862 	  return { __ite, __ite };
1863 
1864 	// All equivalent values are next to each other, if we find a
1865 	// non-equivalent value after an equivalent one it means that we won't
1866 	// find any new equivalent value.
1867 	auto __beg = __ite++;
1868 	while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
1869 	  ++__ite;
1870 
1871 	return { __beg, __ite };
1872       }
1873 
1874   template<typename _Key, typename _Value, typename _Alloc,
1875 	   typename _ExtractKey, typename _Equal,
1876 	   typename _Hash, typename _RangeHash, typename _Unused,
1877 	   typename _RehashPolicy, typename _Traits>
1878     template<typename _Kt, typename, typename>
1879       auto
1880       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1881 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1882       _M_equal_range_tr(const _Kt& __k) const
1883       -> pair<const_iterator, const_iterator>
1884       {
1885 	__hash_code __code = this->_M_hash_code_tr(__k);
1886 	std::size_t __bkt = _M_bucket_index(__code);
1887 	auto __n = _M_find_node_tr(__bkt, __k, __code);
1888 	const_iterator __ite(__n);
1889 	if (!__n)
1890 	  return { __ite, __ite };
1891 
1892 	// All equivalent values are next to each other, if we find a
1893 	// non-equivalent value after an equivalent one it means that we won't
1894 	// find any new equivalent value.
1895 	auto __beg = __ite++;
1896 	while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
1897 	  ++__ite;
1898 
1899 	return { __beg, __ite };
1900       }
1901 #endif
1902 
1903   // Find the node before the one whose key compares equal to k.
1904   // Return nullptr if no node is found.
1905   template<typename _Key, typename _Value, typename _Alloc,
1906 	   typename _ExtractKey, typename _Equal,
1907 	   typename _Hash, typename _RangeHash, typename _Unused,
1908 	   typename _RehashPolicy, typename _Traits>
1909     auto
1910     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1911 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1912     _M_find_before_node(const key_type& __k)
1913     -> __node_base_ptr
1914     {
1915       __node_base_ptr __prev_p = &_M_before_begin;
1916       if (!__prev_p->_M_nxt)
1917 	return nullptr;
1918 
1919       for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);
1920 	   __p != nullptr;
1921 	   __p = __p->_M_next())
1922 	{
1923 	  if (this->_M_key_equals(__k, *__p))
1924 	    return __prev_p;
1925 
1926 	  __prev_p = __p;
1927 	}
1928 
1929       return nullptr;
1930     }
1931 
1932   // Find the node before the one whose key compares equal to k in the bucket
1933   // bkt. Return nullptr if no node is found.
1934   template<typename _Key, typename _Value, typename _Alloc,
1935 	   typename _ExtractKey, typename _Equal,
1936 	   typename _Hash, typename _RangeHash, typename _Unused,
1937 	   typename _RehashPolicy, typename _Traits>
1938     auto
1939     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1940 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1941     _M_find_before_node(size_type __bkt, const key_type& __k,
1942 			__hash_code __code) const
1943     -> __node_base_ptr
1944     {
1945       __node_base_ptr __prev_p = _M_buckets[__bkt];
1946       if (!__prev_p)
1947 	return nullptr;
1948 
1949       for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
1950 	   __p = __p->_M_next())
1951 	{
1952 	  if (this->_M_equals(__k, __code, *__p))
1953 	    return __prev_p;
1954 
1955 	  if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
1956 	    break;
1957 	  __prev_p = __p;
1958 	}
1959 
1960       return nullptr;
1961     }
1962 
1963   template<typename _Key, typename _Value, typename _Alloc,
1964 	   typename _ExtractKey, typename _Equal,
1965 	   typename _Hash, typename _RangeHash, typename _Unused,
1966 	   typename _RehashPolicy, typename _Traits>
1967     template<typename _Kt>
1968       auto
1969       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1970 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1971       _M_find_before_node_tr(size_type __bkt, const _Kt& __k,
1972 			     __hash_code __code) const
1973       -> __node_base_ptr
1974       {
1975 	__node_base_ptr __prev_p = _M_buckets[__bkt];
1976 	if (!__prev_p)
1977 	  return nullptr;
1978 
1979 	for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
1980 	     __p = __p->_M_next())
1981 	  {
1982 	    if (this->_M_equals_tr(__k, __code, *__p))
1983 	      return __prev_p;
1984 
1985 	    if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
1986 	      break;
1987 	    __prev_p = __p;
1988 	  }
1989 
1990 	return nullptr;
1991       }
1992 
1993   template<typename _Key, typename _Value, typename _Alloc,
1994 	   typename _ExtractKey, typename _Equal,
1995 	   typename _Hash, typename _RangeHash, typename _Unused,
1996 	   typename _RehashPolicy, typename _Traits>
1997     void
1998     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1999 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2000     _M_insert_bucket_begin(size_type __bkt, __node_ptr __node)
2001     {
2002       if (_M_buckets[__bkt])
2003 	{
2004 	  // Bucket is not empty, we just need to insert the new node
2005 	  // after the bucket before begin.
2006 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
2007 	  _M_buckets[__bkt]->_M_nxt = __node;
2008 	}
2009       else
2010 	{
2011 	  // The bucket is empty, the new node is inserted at the
2012 	  // beginning of the singly-linked list and the bucket will
2013 	  // contain _M_before_begin pointer.
2014 	  __node->_M_nxt = _M_before_begin._M_nxt;
2015 	  _M_before_begin._M_nxt = __node;
2016 
2017 	  if (__node->_M_nxt)
2018 	    // We must update former begin bucket that is pointing to
2019 	    // _M_before_begin.
2020 	    _M_buckets[_M_bucket_index(*__node->_M_next())] = __node;
2021 
2022 	  _M_buckets[__bkt] = &_M_before_begin;
2023 	}
2024     }
2025 
2026   template<typename _Key, typename _Value, typename _Alloc,
2027 	   typename _ExtractKey, typename _Equal,
2028 	   typename _Hash, typename _RangeHash, typename _Unused,
2029 	   typename _RehashPolicy, typename _Traits>
2030     void
2031     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2032 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2033     _M_remove_bucket_begin(size_type __bkt, __node_ptr __next,
2034 			   size_type __next_bkt)
2035     {
2036       if (!__next || __next_bkt != __bkt)
2037 	{
2038 	  // Bucket is now empty
2039 	  // First update next bucket if any
2040 	  if (__next)
2041 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
2042 
2043 	  // Second update before begin node if necessary
2044 	  if (&_M_before_begin == _M_buckets[__bkt])
2045 	    _M_before_begin._M_nxt = __next;
2046 	  _M_buckets[__bkt] = nullptr;
2047 	}
2048     }
2049 
2050   template<typename _Key, typename _Value, typename _Alloc,
2051 	   typename _ExtractKey, typename _Equal,
2052 	   typename _Hash, typename _RangeHash, typename _Unused,
2053 	   typename _RehashPolicy, typename _Traits>
2054     auto
2055     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2056 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2057     _M_get_previous_node(size_type __bkt, __node_ptr __n)
2058     -> __node_base_ptr
2059     {
2060       __node_base_ptr __prev_n = _M_buckets[__bkt];
2061       while (__prev_n->_M_nxt != __n)
2062 	__prev_n = __prev_n->_M_nxt;
2063       return __prev_n;
2064     }
2065 
2066   template<typename _Key, typename _Value, typename _Alloc,
2067 	   typename _ExtractKey, typename _Equal,
2068 	   typename _Hash, typename _RangeHash, typename _Unused,
2069 	   typename _RehashPolicy, typename _Traits>
2070     template<typename... _Args>
2071       auto
2072       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2073 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2074       _M_emplace(true_type /* __uks */, _Args&&... __args)
2075       -> pair<iterator, bool>
2076       {
2077 	// First build the node to get access to the hash code
2078 	_Scoped_node __node { this, std::forward<_Args>(__args)...  };
2079 	const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
2080 	if (size() <= __small_size_threshold())
2081 	  {
2082 	    for (auto __it = begin(); __it != end(); ++__it)
2083 	      if (this->_M_key_equals(__k, *__it._M_cur))
2084 		// There is already an equivalent node, no insertion
2085 		return { __it, false };
2086 	  }
2087 
2088 	__hash_code __code = this->_M_hash_code(__k);
2089 	size_type __bkt = _M_bucket_index(__code);
2090 	if (size() > __small_size_threshold())
2091 	  if (__node_ptr __p = _M_find_node(__bkt, __k, __code))
2092 	    // There is already an equivalent node, no insertion
2093 	    return { iterator(__p), false };
2094 
2095 	// Insert the node
2096 	auto __pos = _M_insert_unique_node(__bkt, __code, __node._M_node);
2097 	__node._M_node = nullptr;
2098 	return { __pos, true };
2099       }
2100 
2101   template<typename _Key, typename _Value, typename _Alloc,
2102 	   typename _ExtractKey, typename _Equal,
2103 	   typename _Hash, typename _RangeHash, typename _Unused,
2104 	   typename _RehashPolicy, typename _Traits>
2105     template<typename... _Args>
2106       auto
2107       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2108 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2109       _M_emplace(const_iterator __hint, false_type /* __uks */,
2110 		 _Args&&... __args)
2111       -> iterator
2112       {
2113 	// First build the node to get its hash code.
2114 	_Scoped_node __node { this, std::forward<_Args>(__args)...  };
2115 	const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
2116 
2117 	auto __res = this->_M_compute_hash_code(__hint, __k);
2118 	auto __pos
2119 	  = _M_insert_multi_node(__res.first._M_cur, __res.second,
2120 				 __node._M_node);
2121 	__node._M_node = nullptr;
2122 	return __pos;
2123       }
2124 
2125   template<typename _Key, typename _Value, typename _Alloc,
2126 	   typename _ExtractKey, typename _Equal,
2127 	   typename _Hash, typename _RangeHash, typename _Unused,
2128 	   typename _RehashPolicy, typename _Traits>
2129     auto
2130     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2131 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2132     _M_compute_hash_code(const_iterator __hint, const key_type& __k) const
2133     -> pair<const_iterator, __hash_code>
2134     {
2135       if (size() <= __small_size_threshold())
2136 	{
2137 	  if (__hint != cend())
2138 	    {
2139 	      for (auto __it = __hint; __it != cend(); ++__it)
2140 		if (this->_M_key_equals(__k, *__it._M_cur))
2141 		  return { __it, this->_M_hash_code(*__it._M_cur) };
2142 	    }
2143 
2144 	  for (auto __it = cbegin(); __it != __hint; ++__it)
2145 	    if (this->_M_key_equals(__k, *__it._M_cur))
2146 	      return { __it, this->_M_hash_code(*__it._M_cur) };
2147 	}
2148 
2149       return { __hint, this->_M_hash_code(__k) };
2150     }
2151 
2152   template<typename _Key, typename _Value, typename _Alloc,
2153 	   typename _ExtractKey, typename _Equal,
2154 	   typename _Hash, typename _RangeHash, typename _Unused,
2155 	   typename _RehashPolicy, typename _Traits>
2156     auto
2157     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2158 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2159     _M_insert_unique_node(size_type __bkt, __hash_code __code,
2160 			  __node_ptr __node, size_type __n_elt)
2161     -> iterator
2162     {
2163       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2164       std::pair<bool, std::size_t> __do_rehash
2165 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
2166 					  __n_elt);
2167 
2168       if (__do_rehash.first)
2169 	{
2170 	  _M_rehash(__do_rehash.second, __saved_state);
2171 	  __bkt = _M_bucket_index(__code);
2172 	}
2173 
2174       this->_M_store_code(*__node, __code);
2175 
2176       // Always insert at the beginning of the bucket.
2177       _M_insert_bucket_begin(__bkt, __node);
2178       ++_M_element_count;
2179       return iterator(__node);
2180     }
2181 
2182   template<typename _Key, typename _Value, typename _Alloc,
2183 	   typename _ExtractKey, typename _Equal,
2184 	   typename _Hash, typename _RangeHash, typename _Unused,
2185 	   typename _RehashPolicy, typename _Traits>
2186     auto
2187     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2188 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2189     _M_insert_multi_node(__node_ptr __hint,
2190 			 __hash_code __code, __node_ptr __node)
2191     -> iterator
2192     {
2193       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2194       std::pair<bool, std::size_t> __do_rehash
2195 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
2196 
2197       if (__do_rehash.first)
2198 	_M_rehash(__do_rehash.second, __saved_state);
2199 
2200       this->_M_store_code(*__node, __code);
2201       const key_type& __k = _ExtractKey{}(__node->_M_v());
2202       size_type __bkt = _M_bucket_index(__code);
2203 
2204       // Find the node before an equivalent one or use hint if it exists and
2205       // if it is equivalent.
2206       __node_base_ptr __prev
2207 	= __builtin_expect(__hint != nullptr, false)
2208 	  && this->_M_equals(__k, __code, *__hint)
2209 	    ? __hint
2210 	    : _M_find_before_node(__bkt, __k, __code);
2211 
2212       if (__prev)
2213 	{
2214 	  // Insert after the node before the equivalent one.
2215 	  __node->_M_nxt = __prev->_M_nxt;
2216 	  __prev->_M_nxt = __node;
2217 	  if (__builtin_expect(__prev == __hint, false))
2218 	    // hint might be the last bucket node, in this case we need to
2219 	    // update next bucket.
2220 	    if (__node->_M_nxt
2221 		&& !this->_M_equals(__k, __code, *__node->_M_next()))
2222 	      {
2223 		size_type __next_bkt = _M_bucket_index(*__node->_M_next());
2224 		if (__next_bkt != __bkt)
2225 		  _M_buckets[__next_bkt] = __node;
2226 	      }
2227 	}
2228       else
2229 	// The inserted node has no equivalent in the hashtable. We must
2230 	// insert the new node at the beginning of the bucket to preserve
2231 	// equivalent elements' relative positions.
2232 	_M_insert_bucket_begin(__bkt, __node);
2233       ++_M_element_count;
2234       return iterator(__node);
2235     }
2236 
2237   // Insert v if no element with its key is already present.
2238   template<typename _Key, typename _Value, typename _Alloc,
2239 	   typename _ExtractKey, typename _Equal,
2240 	   typename _Hash, typename _RangeHash, typename _Unused,
2241 	   typename _RehashPolicy, typename _Traits>
2242     template<typename _Kt, typename _Arg, typename _NodeGenerator>
2243       auto
2244       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2245 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2246       _M_insert_unique(_Kt&& __k, _Arg&& __v,
2247 		       const _NodeGenerator& __node_gen)
2248       -> pair<iterator, bool>
2249       {
2250 	if (size() <= __small_size_threshold())
2251 	  for (auto __it = begin(); __it != end(); ++__it)
2252 	    if (this->_M_key_equals_tr(__k, *__it._M_cur))
2253 	      return { __it, false };
2254 
2255 	__hash_code __code = this->_M_hash_code_tr(__k);
2256 	size_type __bkt = _M_bucket_index(__code);
2257 
2258 	if (size() > __small_size_threshold())
2259 	  if (__node_ptr __node = _M_find_node_tr(__bkt, __k, __code))
2260 	    return { iterator(__node), false };
2261 
2262 	_Scoped_node __node {
2263 	  __node_builder_t::_S_build(std::forward<_Kt>(__k),
2264 				     std::forward<_Arg>(__v),
2265 				     __node_gen),
2266 	  this
2267 	};
2268 	auto __pos
2269 	  = _M_insert_unique_node(__bkt, __code, __node._M_node);
2270 	__node._M_node = nullptr;
2271 	return { __pos, true };
2272       }
2273 
2274   // Insert v unconditionally.
2275   template<typename _Key, typename _Value, typename _Alloc,
2276 	   typename _ExtractKey, typename _Equal,
2277 	   typename _Hash, typename _RangeHash, typename _Unused,
2278 	   typename _RehashPolicy, typename _Traits>
2279     template<typename _Arg, typename _NodeGenerator>
2280       auto
2281       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2282 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2283       _M_insert(const_iterator __hint, _Arg&& __v,
2284 		const _NodeGenerator& __node_gen,
2285 		false_type /* __uks */)
2286       -> iterator
2287       {
2288 	// First allocate new node so that we don't do anything if it throws.
2289 	_Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
2290 
2291 	// Second compute the hash code so that we don't rehash if it throws.
2292 	auto __res = this->_M_compute_hash_code(
2293 	  __hint, _ExtractKey{}(__node._M_node->_M_v()));
2294 
2295 	auto __pos
2296 	  = _M_insert_multi_node(__res.first._M_cur, __res.second,
2297 				 __node._M_node);
2298 	__node._M_node = nullptr;
2299 	return __pos;
2300       }
2301 
2302   template<typename _Key, typename _Value, typename _Alloc,
2303 	   typename _ExtractKey, typename _Equal,
2304 	   typename _Hash, typename _RangeHash, typename _Unused,
2305 	   typename _RehashPolicy, typename _Traits>
2306     auto
2307     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2308 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2309     erase(const_iterator __it)
2310     -> iterator
2311     {
2312       __node_ptr __n = __it._M_cur;
2313       std::size_t __bkt = _M_bucket_index(*__n);
2314 
2315       // Look for previous node to unlink it from the erased one, this
2316       // is why we need buckets to contain the before begin to make
2317       // this search fast.
2318       __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
2319       return _M_erase(__bkt, __prev_n, __n);
2320     }
2321 
2322   template<typename _Key, typename _Value, typename _Alloc,
2323 	   typename _ExtractKey, typename _Equal,
2324 	   typename _Hash, typename _RangeHash, typename _Unused,
2325 	   typename _RehashPolicy, typename _Traits>
2326     auto
2327     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2328 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2329     _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n)
2330     -> iterator
2331     {
2332       if (__prev_n == _M_buckets[__bkt])
2333 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
2334 	  __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
2335       else if (__n->_M_nxt)
2336 	{
2337 	  size_type __next_bkt = _M_bucket_index(*__n->_M_next());
2338 	  if (__next_bkt != __bkt)
2339 	    _M_buckets[__next_bkt] = __prev_n;
2340 	}
2341 
2342       __prev_n->_M_nxt = __n->_M_nxt;
2343       iterator __result(__n->_M_next());
2344       this->_M_deallocate_node(__n);
2345       --_M_element_count;
2346 
2347       return __result;
2348     }
2349 
2350   template<typename _Key, typename _Value, typename _Alloc,
2351 	   typename _ExtractKey, typename _Equal,
2352 	   typename _Hash, typename _RangeHash, typename _Unused,
2353 	   typename _RehashPolicy, typename _Traits>
2354     auto
2355     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2356 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2357     _M_erase(true_type /* __uks */, const key_type& __k)
2358     -> size_type
2359     {
2360       __node_base_ptr __prev_n;
2361       __node_ptr __n;
2362       std::size_t __bkt;
2363       if (size() <= __small_size_threshold())
2364 	{
2365 	  __prev_n = _M_find_before_node(__k);
2366 	  if (!__prev_n)
2367 	    return 0;
2368 
2369 	  // We found a matching node, erase it.
2370 	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2371 	  __bkt = _M_bucket_index(*__n);
2372 	}
2373       else
2374 	{
2375 	  __hash_code __code = this->_M_hash_code(__k);
2376 	  __bkt = _M_bucket_index(__code);
2377 
2378 	  // Look for the node before the first matching node.
2379 	  __prev_n = _M_find_before_node(__bkt, __k, __code);
2380 	  if (!__prev_n)
2381 	    return 0;
2382 
2383 	  // We found a matching node, erase it.
2384 	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2385 	}
2386 
2387       _M_erase(__bkt, __prev_n, __n);
2388       return 1;
2389     }
2390 
2391   template<typename _Key, typename _Value, typename _Alloc,
2392 	   typename _ExtractKey, typename _Equal,
2393 	   typename _Hash, typename _RangeHash, typename _Unused,
2394 	   typename _RehashPolicy, typename _Traits>
2395     auto
2396     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2397 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2398     _M_erase(false_type /* __uks */, const key_type& __k)
2399     -> size_type
2400     {
2401       std::size_t __bkt;
2402       __node_base_ptr __prev_n;
2403       __node_ptr __n;
2404       if (size() <= __small_size_threshold())
2405 	{
2406 	  __prev_n = _M_find_before_node(__k);
2407 	  if (!__prev_n)
2408 	    return 0;
2409 
2410 	  // We found a matching node, erase it.
2411 	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2412 	  __bkt = _M_bucket_index(*__n);
2413 	}
2414       else
2415 	{
2416 	  __hash_code __code = this->_M_hash_code(__k);
2417 	  __bkt = _M_bucket_index(__code);
2418 
2419 	  // Look for the node before the first matching node.
2420 	  __prev_n = _M_find_before_node(__bkt, __k, __code);
2421 	  if (!__prev_n)
2422 	    return 0;
2423 
2424 	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2425 	}
2426 
2427       // _GLIBCXX_RESOLVE_LIB_DEFECTS
2428       // 526. Is it undefined if a function in the standard changes
2429       // in parameters?
2430       // We use one loop to find all matching nodes and another to deallocate
2431       // them so that the key stays valid during the first loop. It might be
2432       // invalidated indirectly when destroying nodes.
2433       __node_ptr __n_last = __n->_M_next();
2434       while (__n_last && this->_M_node_equals(*__n, *__n_last))
2435 	__n_last = __n_last->_M_next();
2436 
2437       std::size_t __n_last_bkt = __n_last ? _M_bucket_index(*__n_last) : __bkt;
2438 
2439       // Deallocate nodes.
2440       size_type __result = 0;
2441       do
2442 	{
2443 	  __node_ptr __p = __n->_M_next();
2444 	  this->_M_deallocate_node(__n);
2445 	  __n = __p;
2446 	  ++__result;
2447 	}
2448       while (__n != __n_last);
2449 
2450       _M_element_count -= __result;
2451       if (__prev_n == _M_buckets[__bkt])
2452 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
2453       else if (__n_last_bkt != __bkt)
2454 	_M_buckets[__n_last_bkt] = __prev_n;
2455       __prev_n->_M_nxt = __n_last;
2456       return __result;
2457     }
2458 
2459   template<typename _Key, typename _Value, typename _Alloc,
2460 	   typename _ExtractKey, typename _Equal,
2461 	   typename _Hash, typename _RangeHash, typename _Unused,
2462 	   typename _RehashPolicy, typename _Traits>
2463     auto
2464     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2465 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2466     erase(const_iterator __first, const_iterator __last)
2467     -> iterator
2468     {
2469       __node_ptr __n = __first._M_cur;
2470       __node_ptr __last_n = __last._M_cur;
2471       if (__n == __last_n)
2472 	return iterator(__n);
2473 
2474       std::size_t __bkt = _M_bucket_index(*__n);
2475 
2476       __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
2477       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
2478       std::size_t __n_bkt = __bkt;
2479       for (;;)
2480 	{
2481 	  do
2482 	    {
2483 	      __node_ptr __tmp = __n;
2484 	      __n = __n->_M_next();
2485 	      this->_M_deallocate_node(__tmp);
2486 	      --_M_element_count;
2487 	      if (!__n)
2488 		break;
2489 	      __n_bkt = _M_bucket_index(*__n);
2490 	    }
2491 	  while (__n != __last_n && __n_bkt == __bkt);
2492 	  if (__is_bucket_begin)
2493 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2494 	  if (__n == __last_n)
2495 	    break;
2496 	  __is_bucket_begin = true;
2497 	  __bkt = __n_bkt;
2498 	}
2499 
2500       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2501 	_M_buckets[__n_bkt] = __prev_n;
2502       __prev_n->_M_nxt = __n;
2503       return iterator(__n);
2504     }
2505 
2506   template<typename _Key, typename _Value, typename _Alloc,
2507 	   typename _ExtractKey, typename _Equal,
2508 	   typename _Hash, typename _RangeHash, typename _Unused,
2509 	   typename _RehashPolicy, typename _Traits>
2510     void
2511     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2512 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2513     clear() noexcept
2514     {
2515       this->_M_deallocate_nodes(_M_begin());
2516       __builtin_memset(_M_buckets, 0,
2517 		       _M_bucket_count * sizeof(__node_base_ptr));
2518       _M_element_count = 0;
2519       _M_before_begin._M_nxt = nullptr;
2520     }
2521 
2522   template<typename _Key, typename _Value, typename _Alloc,
2523 	   typename _ExtractKey, typename _Equal,
2524 	   typename _Hash, typename _RangeHash, typename _Unused,
2525 	   typename _RehashPolicy, typename _Traits>
2526     void
2527     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2528 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2529     rehash(size_type __bkt_count)
2530     {
2531       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2532       __bkt_count
2533 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2534 		   __bkt_count);
2535       __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count);
2536 
2537       if (__bkt_count != _M_bucket_count)
2538 	_M_rehash(__bkt_count, __saved_state);
2539       else
2540 	// No rehash, restore previous state to keep it consistent with
2541 	// container state.
2542 	_M_rehash_policy._M_reset(__saved_state);
2543     }
2544 
2545   template<typename _Key, typename _Value, typename _Alloc,
2546 	   typename _ExtractKey, typename _Equal,
2547 	   typename _Hash, typename _RangeHash, typename _Unused,
2548 	   typename _RehashPolicy, typename _Traits>
2549     void
2550     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2551 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2552     _M_rehash(size_type __bkt_count, const __rehash_state& __state)
2553     {
2554       __try
2555 	{
2556 	  _M_rehash_aux(__bkt_count, __unique_keys{});
2557 	}
2558       __catch(...)
2559 	{
2560 	  // A failure here means that buckets allocation failed.  We only
2561 	  // have to restore hash policy previous state.
2562 	  _M_rehash_policy._M_reset(__state);
2563 	  __throw_exception_again;
2564 	}
2565     }
2566 
2567   // Rehash when there is no equivalent elements.
2568   template<typename _Key, typename _Value, typename _Alloc,
2569 	   typename _ExtractKey, typename _Equal,
2570 	   typename _Hash, typename _RangeHash, typename _Unused,
2571 	   typename _RehashPolicy, typename _Traits>
2572     void
2573     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2574 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2575     _M_rehash_aux(size_type __bkt_count, true_type /* __uks */)
2576     {
2577       __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
2578       __node_ptr __p = _M_begin();
2579       _M_before_begin._M_nxt = nullptr;
2580       std::size_t __bbegin_bkt = 0;
2581       while (__p)
2582 	{
2583 	  __node_ptr __next = __p->_M_next();
2584 	  std::size_t __bkt
2585 	    = __hash_code_base::_M_bucket_index(*__p, __bkt_count);
2586 	  if (!__new_buckets[__bkt])
2587 	    {
2588 	      __p->_M_nxt = _M_before_begin._M_nxt;
2589 	      _M_before_begin._M_nxt = __p;
2590 	      __new_buckets[__bkt] = &_M_before_begin;
2591 	      if (__p->_M_nxt)
2592 		__new_buckets[__bbegin_bkt] = __p;
2593 	      __bbegin_bkt = __bkt;
2594 	    }
2595 	  else
2596 	    {
2597 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2598 	      __new_buckets[__bkt]->_M_nxt = __p;
2599 	    }
2600 
2601 	  __p = __next;
2602 	}
2603 
2604       _M_deallocate_buckets();
2605       _M_bucket_count = __bkt_count;
2606       _M_buckets = __new_buckets;
2607     }
2608 
2609   // Rehash when there can be equivalent elements, preserve their relative
2610   // order.
2611   template<typename _Key, typename _Value, typename _Alloc,
2612 	   typename _ExtractKey, typename _Equal,
2613 	   typename _Hash, typename _RangeHash, typename _Unused,
2614 	   typename _RehashPolicy, typename _Traits>
2615     void
2616     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2617 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2618     _M_rehash_aux(size_type __bkt_count, false_type /* __uks */)
2619     {
2620       __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
2621       __node_ptr __p = _M_begin();
2622       _M_before_begin._M_nxt = nullptr;
2623       std::size_t __bbegin_bkt = 0;
2624       std::size_t __prev_bkt = 0;
2625       __node_ptr __prev_p = nullptr;
2626       bool __check_bucket = false;
2627 
2628       while (__p)
2629 	{
2630 	  __node_ptr __next = __p->_M_next();
2631 	  std::size_t __bkt
2632 	    = __hash_code_base::_M_bucket_index(*__p, __bkt_count);
2633 
2634 	  if (__prev_p && __prev_bkt == __bkt)
2635 	    {
2636 	      // Previous insert was already in this bucket, we insert after
2637 	      // the previously inserted one to preserve equivalent elements
2638 	      // relative order.
2639 	      __p->_M_nxt = __prev_p->_M_nxt;
2640 	      __prev_p->_M_nxt = __p;
2641 
2642 	      // Inserting after a node in a bucket require to check that we
2643 	      // haven't change the bucket last node, in this case next
2644 	      // bucket containing its before begin node must be updated. We
2645 	      // schedule a check as soon as we move out of the sequence of
2646 	      // equivalent nodes to limit the number of checks.
2647 	      __check_bucket = true;
2648 	    }
2649 	  else
2650 	    {
2651 	      if (__check_bucket)
2652 		{
2653 		  // Check if we shall update the next bucket because of
2654 		  // insertions into __prev_bkt bucket.
2655 		  if (__prev_p->_M_nxt)
2656 		    {
2657 		      std::size_t __next_bkt
2658 			= __hash_code_base::_M_bucket_index(
2659 			  *__prev_p->_M_next(), __bkt_count);
2660 		      if (__next_bkt != __prev_bkt)
2661 			__new_buckets[__next_bkt] = __prev_p;
2662 		    }
2663 		  __check_bucket = false;
2664 		}
2665 
2666 	      if (!__new_buckets[__bkt])
2667 		{
2668 		  __p->_M_nxt = _M_before_begin._M_nxt;
2669 		  _M_before_begin._M_nxt = __p;
2670 		  __new_buckets[__bkt] = &_M_before_begin;
2671 		  if (__p->_M_nxt)
2672 		    __new_buckets[__bbegin_bkt] = __p;
2673 		  __bbegin_bkt = __bkt;
2674 		}
2675 	      else
2676 		{
2677 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2678 		  __new_buckets[__bkt]->_M_nxt = __p;
2679 		}
2680 	    }
2681 	  __prev_p = __p;
2682 	  __prev_bkt = __bkt;
2683 	  __p = __next;
2684 	}
2685 
2686       if (__check_bucket && __prev_p->_M_nxt)
2687 	{
2688 	  std::size_t __next_bkt
2689 	    = __hash_code_base::_M_bucket_index(*__prev_p->_M_next(),
2690 						__bkt_count);
2691 	  if (__next_bkt != __prev_bkt)
2692 	    __new_buckets[__next_bkt] = __prev_p;
2693 	}
2694 
2695       _M_deallocate_buckets();
2696       _M_bucket_count = __bkt_count;
2697       _M_buckets = __new_buckets;
2698     }
2699 
2700 #if __cplusplus > 201402L
2701   template<typename, typename, typename> class _Hash_merge_helper { };
2702 #endif // C++17
2703 
2704 #if __cpp_deduction_guides >= 201606
2705   // Used to constrain deduction guides
2706   template<typename _Hash>
2707     using _RequireNotAllocatorOrIntegral
2708       = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2709 #endif
2710 
2711 /// @endcond
2712 _GLIBCXX_END_NAMESPACE_VERSION
2713 } // namespace std
2714 
2715 #endif // _HASHTABLE_H
2716