1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <sys/param.h> 30 #include <sys/fcntl.h> 31 #include <sys/specdev.h> 32 #include <sys/vnode.h> 33 34 #include <machine/bus.h> 35 36 #ifdef __HAVE_ACPI 37 #include <dev/acpi/acpidev.h> 38 #include <dev/acpi/acpivar.h> 39 #include <dev/acpi/dsdt.h> 40 #endif 41 42 #include <linux/debugfs.h> 43 #include <linux/fs.h> 44 #include <linux/module.h> 45 #include <linux/moduleparam.h> 46 #include <linux/mount.h> 47 #include <linux/pseudo_fs.h> 48 #include <linux/slab.h> 49 #include <linux/srcu.h> 50 #include <linux/xarray.h> 51 #include <linux/suspend.h> 52 53 #include <drm/drm_accel.h> 54 #include <drm/drm_cache.h> 55 #include <drm/drm_client.h> 56 #include <drm/drm_color_mgmt.h> 57 #include <drm/drm_drv.h> 58 #include <drm/drm_file.h> 59 #include <drm/drm_managed.h> 60 #include <drm/drm_mode_object.h> 61 #include <drm/drm_print.h> 62 #include <drm/drm_privacy_screen_machine.h> 63 64 #include <drm/drm_gem.h> 65 66 #include "drm_crtc_internal.h" 67 #include "drm_internal.h" 68 #include "drm_legacy.h" 69 70 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 71 MODULE_DESCRIPTION("DRM shared core routines"); 72 MODULE_LICENSE("GPL and additional rights"); 73 74 DEFINE_XARRAY_ALLOC(drm_minors_xa); 75 76 /* 77 * If the drm core fails to init for whatever reason, 78 * we should prevent any drivers from registering with it. 79 * It's best to check this at drm_dev_init(), as some drivers 80 * prefer to embed struct drm_device into their own device 81 * structure and call drm_dev_init() themselves. 82 */ 83 static bool drm_core_init_complete; 84 85 static struct dentry *drm_debugfs_root; 86 87 #ifdef notyet 88 DEFINE_STATIC_SRCU(drm_unplug_srcu); 89 #endif 90 91 /* 92 * Some functions are only called once on init regardless of how many times 93 * drm attaches. In linux this is handled via module_init()/module_exit() 94 */ 95 int drm_refcnt; 96 97 struct drm_softc { 98 struct device sc_dev; 99 struct drm_device *sc_drm; 100 int sc_allocated; 101 }; 102 103 struct drm_attach_args { 104 struct drm_device *drm; 105 const struct drm_driver *driver; 106 char *busid; 107 bus_dma_tag_t dmat; 108 bus_space_tag_t bst; 109 size_t busid_len; 110 int is_agp; 111 struct pci_attach_args *pa; 112 int primary; 113 }; 114 115 void drm_linux_init(void); 116 void drm_linux_exit(void); 117 int drm_linux_acpi_notify(struct aml_node *, int, void *); 118 119 int drm_dequeue_event(struct drm_device *, struct drm_file *, size_t, 120 struct drm_pending_event **); 121 122 int drmprint(void *, const char *); 123 int drmsubmatch(struct device *, void *, void *); 124 const struct pci_device_id * 125 drm_find_description(int, int, const struct pci_device_id *); 126 127 int drm_file_cmp(struct drm_file *, struct drm_file *); 128 SPLAY_PROTOTYPE(drm_file_tree, drm_file, link, drm_file_cmp); 129 130 #define DRMDEVCF_PRIMARY 0 131 #define drmdevcf_primary cf_loc[DRMDEVCF_PRIMARY] /* spec'd as primary? */ 132 #define DRMDEVCF_PRIMARY_UNK -1 133 134 /* 135 * DRM Minors 136 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 137 * of them is represented by a drm_minor object. Depending on the capabilities 138 * of the device-driver, different interfaces are registered. 139 * 140 * Minors can be accessed via dev->$minor_name. This pointer is either 141 * NULL or a valid drm_minor pointer and stays valid as long as the device is 142 * valid. This means, DRM minors have the same life-time as the underlying 143 * device. However, this doesn't mean that the minor is active. Minors are 144 * registered and unregistered dynamically according to device-state. 145 */ 146 147 static struct xarray *drm_minor_get_xa(enum drm_minor_type type) 148 { 149 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER) 150 return &drm_minors_xa; 151 #if IS_ENABLED(CONFIG_DRM_ACCEL) 152 else if (type == DRM_MINOR_ACCEL) 153 return &accel_minors_xa; 154 #endif 155 else 156 return ERR_PTR(-EOPNOTSUPP); 157 } 158 159 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 160 enum drm_minor_type type) 161 { 162 switch (type) { 163 case DRM_MINOR_PRIMARY: 164 return &dev->primary; 165 case DRM_MINOR_RENDER: 166 return &dev->render; 167 case DRM_MINOR_ACCEL: 168 return &dev->accel; 169 default: 170 BUG(); 171 } 172 } 173 174 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 175 { 176 struct drm_minor *minor = data; 177 178 WARN_ON(dev != minor->dev); 179 180 #ifdef __linux__ 181 put_device(minor->kdev); 182 #endif 183 184 xa_erase(drm_minor_get_xa(minor->type), minor->index); 185 } 186 187 /* 188 * DRM used to support 64 devices, for backwards compatibility we need to maintain the 189 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes, 190 * and 128-191 are render nodes. 191 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve. 192 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX 193 * range. 194 */ 195 #define DRM_MINOR_LIMIT(t) ({ \ 196 typeof(t) _t = (t); \ 197 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \ 198 }) 199 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1) 200 201 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type) 202 { 203 struct drm_minor *minor; 204 int r; 205 206 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 207 if (!minor) 208 return -ENOMEM; 209 210 minor->type = type; 211 minor->dev = dev; 212 213 r = xa_alloc(drm_minor_get_xa(type), &minor->index, 214 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL); 215 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)) 216 r = xa_alloc(&drm_minors_xa, &minor->index, 217 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL); 218 if (r < 0) 219 return r; 220 221 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 222 if (r) 223 return r; 224 225 #ifdef __linux__ 226 minor->kdev = drm_sysfs_minor_alloc(minor); 227 if (IS_ERR(minor->kdev)) 228 return PTR_ERR(minor->kdev); 229 #endif 230 231 *drm_minor_get_slot(dev, type) = minor; 232 return 0; 233 } 234 235 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type) 236 { 237 struct drm_minor *minor; 238 void *entry; 239 int ret; 240 241 DRM_DEBUG("\n"); 242 243 minor = *drm_minor_get_slot(dev, type); 244 if (!minor) 245 return 0; 246 247 #ifdef __linux__ 248 if (minor->type == DRM_MINOR_ACCEL) { 249 accel_debugfs_init(minor, minor->index); 250 } else { 251 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); 252 if (ret) { 253 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 254 goto err_debugfs; 255 } 256 } 257 258 ret = device_add(minor->kdev); 259 if (ret) 260 goto err_debugfs; 261 #else 262 drm_debugfs_root = NULL; 263 #endif 264 265 /* replace NULL with @minor so lookups will succeed from now on */ 266 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL); 267 if (xa_is_err(entry)) { 268 ret = xa_err(entry); 269 goto err_debugfs; 270 } 271 WARN_ON(entry); 272 273 DRM_DEBUG("new minor registered %d\n", minor->index); 274 return 0; 275 276 err_debugfs: 277 #ifdef __linux__ 278 drm_debugfs_cleanup(minor); 279 #endif 280 return ret; 281 } 282 283 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type) 284 { 285 struct drm_minor *minor; 286 287 minor = *drm_minor_get_slot(dev, type); 288 #ifdef __linux__ 289 if (!minor || !device_is_registered(minor->kdev)) 290 #else 291 if (!minor) 292 #endif 293 return; 294 295 /* replace @minor with NULL so lookups will fail from now on */ 296 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL); 297 298 #ifdef __linux__ 299 device_del(minor->kdev); 300 #endif 301 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 302 drm_debugfs_cleanup(minor); 303 } 304 305 /* 306 * Looks up the given minor-ID and returns the respective DRM-minor object. The 307 * refence-count of the underlying device is increased so you must release this 308 * object with drm_minor_release(). 309 * 310 * As long as you hold this minor, it is guaranteed that the object and the 311 * minor->dev pointer will stay valid! However, the device may get unplugged and 312 * unregistered while you hold the minor. 313 */ 314 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id) 315 { 316 struct drm_minor *minor; 317 318 xa_lock(minor_xa); 319 minor = xa_load(minor_xa, minor_id); 320 if (minor) 321 drm_dev_get(minor->dev); 322 xa_unlock(minor_xa); 323 324 if (!minor) { 325 return ERR_PTR(-ENODEV); 326 } else if (drm_dev_is_unplugged(minor->dev)) { 327 drm_dev_put(minor->dev); 328 return ERR_PTR(-ENODEV); 329 } 330 331 return minor; 332 } 333 334 void drm_minor_release(struct drm_minor *minor) 335 { 336 drm_dev_put(minor->dev); 337 } 338 339 /** 340 * DOC: driver instance overview 341 * 342 * A device instance for a drm driver is represented by &struct drm_device. This 343 * is allocated and initialized with devm_drm_dev_alloc(), usually from 344 * bus-specific ->probe() callbacks implemented by the driver. The driver then 345 * needs to initialize all the various subsystems for the drm device like memory 346 * management, vblank handling, modesetting support and initial output 347 * configuration plus obviously initialize all the corresponding hardware bits. 348 * Finally when everything is up and running and ready for userspace the device 349 * instance can be published using drm_dev_register(). 350 * 351 * There is also deprecated support for initializing device instances using 352 * bus-specific helpers and the &drm_driver.load callback. But due to 353 * backwards-compatibility needs the device instance have to be published too 354 * early, which requires unpretty global locking to make safe and is therefore 355 * only support for existing drivers not yet converted to the new scheme. 356 * 357 * When cleaning up a device instance everything needs to be done in reverse: 358 * First unpublish the device instance with drm_dev_unregister(). Then clean up 359 * any other resources allocated at device initialization and drop the driver's 360 * reference to &drm_device using drm_dev_put(). 361 * 362 * Note that any allocation or resource which is visible to userspace must be 363 * released only when the final drm_dev_put() is called, and not when the 364 * driver is unbound from the underlying physical struct &device. Best to use 365 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 366 * related functions. 367 * 368 * devres managed resources like devm_kmalloc() can only be used for resources 369 * directly related to the underlying hardware device, and only used in code 370 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 371 * 372 * Display driver example 373 * ~~~~~~~~~~~~~~~~~~~~~~ 374 * 375 * The following example shows a typical structure of a DRM display driver. 376 * The example focus on the probe() function and the other functions that is 377 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 378 * 379 * .. code-block:: c 380 * 381 * struct driver_device { 382 * struct drm_device drm; 383 * void *userspace_facing; 384 * struct clk *pclk; 385 * }; 386 * 387 * static const struct drm_driver driver_drm_driver = { 388 * [...] 389 * }; 390 * 391 * static int driver_probe(struct platform_device *pdev) 392 * { 393 * struct driver_device *priv; 394 * struct drm_device *drm; 395 * int ret; 396 * 397 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 398 * struct driver_device, drm); 399 * if (IS_ERR(priv)) 400 * return PTR_ERR(priv); 401 * drm = &priv->drm; 402 * 403 * ret = drmm_mode_config_init(drm); 404 * if (ret) 405 * return ret; 406 * 407 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 408 * if (!priv->userspace_facing) 409 * return -ENOMEM; 410 * 411 * priv->pclk = devm_clk_get(dev, "PCLK"); 412 * if (IS_ERR(priv->pclk)) 413 * return PTR_ERR(priv->pclk); 414 * 415 * // Further setup, display pipeline etc 416 * 417 * platform_set_drvdata(pdev, drm); 418 * 419 * drm_mode_config_reset(drm); 420 * 421 * ret = drm_dev_register(drm); 422 * if (ret) 423 * return ret; 424 * 425 * drm_fbdev_generic_setup(drm, 32); 426 * 427 * return 0; 428 * } 429 * 430 * // This function is called before the devm_ resources are released 431 * static int driver_remove(struct platform_device *pdev) 432 * { 433 * struct drm_device *drm = platform_get_drvdata(pdev); 434 * 435 * drm_dev_unregister(drm); 436 * drm_atomic_helper_shutdown(drm) 437 * 438 * return 0; 439 * } 440 * 441 * // This function is called on kernel restart and shutdown 442 * static void driver_shutdown(struct platform_device *pdev) 443 * { 444 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 445 * } 446 * 447 * static int __maybe_unused driver_pm_suspend(struct device *dev) 448 * { 449 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 450 * } 451 * 452 * static int __maybe_unused driver_pm_resume(struct device *dev) 453 * { 454 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 455 * 456 * return 0; 457 * } 458 * 459 * static const struct dev_pm_ops driver_pm_ops = { 460 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 461 * }; 462 * 463 * static struct platform_driver driver_driver = { 464 * .driver = { 465 * [...] 466 * .pm = &driver_pm_ops, 467 * }, 468 * .probe = driver_probe, 469 * .remove = driver_remove, 470 * .shutdown = driver_shutdown, 471 * }; 472 * module_platform_driver(driver_driver); 473 * 474 * Drivers that want to support device unplugging (USB, DT overlay unload) should 475 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 476 * regions that is accessing device resources to prevent use after they're 477 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 478 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 479 * drm_atomic_helper_shutdown() is called. This means that if the disable code 480 * paths are protected, they will not run on regular driver module unload, 481 * possibly leaving the hardware enabled. 482 */ 483 484 /** 485 * drm_put_dev - Unregister and release a DRM device 486 * @dev: DRM device 487 * 488 * Called at module unload time or when a PCI device is unplugged. 489 * 490 * Cleans up all DRM device, calling drm_lastclose(). 491 * 492 * Note: Use of this function is deprecated. It will eventually go away 493 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 494 * instead to make sure that the device isn't userspace accessible any more 495 * while teardown is in progress, ensuring that userspace can't access an 496 * inconsistent state. 497 */ 498 void drm_put_dev(struct drm_device *dev) 499 { 500 DRM_DEBUG("\n"); 501 502 if (!dev) { 503 DRM_ERROR("cleanup called no dev\n"); 504 return; 505 } 506 507 drm_dev_unregister(dev); 508 drm_dev_put(dev); 509 } 510 EXPORT_SYMBOL(drm_put_dev); 511 512 /** 513 * drm_dev_enter - Enter device critical section 514 * @dev: DRM device 515 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 516 * 517 * This function marks and protects the beginning of a section that should not 518 * be entered after the device has been unplugged. The section end is marked 519 * with drm_dev_exit(). Calls to this function can be nested. 520 * 521 * Returns: 522 * True if it is OK to enter the section, false otherwise. 523 */ 524 bool drm_dev_enter(struct drm_device *dev, int *idx) 525 { 526 #ifdef notyet 527 *idx = srcu_read_lock(&drm_unplug_srcu); 528 529 if (dev->unplugged) { 530 srcu_read_unlock(&drm_unplug_srcu, *idx); 531 return false; 532 } 533 #endif 534 535 return true; 536 } 537 EXPORT_SYMBOL(drm_dev_enter); 538 539 /** 540 * drm_dev_exit - Exit device critical section 541 * @idx: index returned from drm_dev_enter() 542 * 543 * This function marks the end of a section that should not be entered after 544 * the device has been unplugged. 545 */ 546 void drm_dev_exit(int idx) 547 { 548 #ifdef notyet 549 srcu_read_unlock(&drm_unplug_srcu, idx); 550 #endif 551 } 552 EXPORT_SYMBOL(drm_dev_exit); 553 554 /** 555 * drm_dev_unplug - unplug a DRM device 556 * @dev: DRM device 557 * 558 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 559 * userspace operations. Entry-points can use drm_dev_enter() and 560 * drm_dev_exit() to protect device resources in a race free manner. This 561 * essentially unregisters the device like drm_dev_unregister(), but can be 562 * called while there are still open users of @dev. 563 */ 564 void drm_dev_unplug(struct drm_device *dev) 565 { 566 STUB(); 567 #ifdef notyet 568 /* 569 * After synchronizing any critical read section is guaranteed to see 570 * the new value of ->unplugged, and any critical section which might 571 * still have seen the old value of ->unplugged is guaranteed to have 572 * finished. 573 */ 574 dev->unplugged = true; 575 synchronize_srcu(&drm_unplug_srcu); 576 577 drm_dev_unregister(dev); 578 579 /* Clear all CPU mappings pointing to this device */ 580 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 581 #endif 582 } 583 EXPORT_SYMBOL(drm_dev_unplug); 584 585 #ifdef __linux__ 586 /* 587 * DRM internal mount 588 * We want to be able to allocate our own "struct address_space" to control 589 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 590 * stand-alone address_space objects, so we need an underlying inode. As there 591 * is no way to allocate an independent inode easily, we need a fake internal 592 * VFS mount-point. 593 * 594 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 595 * frees it again. You are allowed to use iget() and iput() to get references to 596 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 597 * drm_fs_inode_free() call (which does not have to be the last iput()). 598 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 599 * between multiple inode-users. You could, technically, call 600 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 601 * iput(), but this way you'd end up with a new vfsmount for each inode. 602 */ 603 604 static int drm_fs_cnt; 605 static struct vfsmount *drm_fs_mnt; 606 607 static int drm_fs_init_fs_context(struct fs_context *fc) 608 { 609 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 610 } 611 612 static struct file_system_type drm_fs_type = { 613 .name = "drm", 614 .owner = THIS_MODULE, 615 .init_fs_context = drm_fs_init_fs_context, 616 .kill_sb = kill_anon_super, 617 }; 618 619 static struct inode *drm_fs_inode_new(void) 620 { 621 struct inode *inode; 622 int r; 623 624 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 625 if (r < 0) { 626 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 627 return ERR_PTR(r); 628 } 629 630 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 631 if (IS_ERR(inode)) 632 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 633 634 return inode; 635 } 636 637 static void drm_fs_inode_free(struct inode *inode) 638 { 639 if (inode) { 640 iput(inode); 641 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 642 } 643 } 644 645 #endif /* __linux__ */ 646 647 /** 648 * DOC: component helper usage recommendations 649 * 650 * DRM drivers that drive hardware where a logical device consists of a pile of 651 * independent hardware blocks are recommended to use the :ref:`component helper 652 * library<component>`. For consistency and better options for code reuse the 653 * following guidelines apply: 654 * 655 * - The entire device initialization procedure should be run from the 656 * &component_master_ops.master_bind callback, starting with 657 * devm_drm_dev_alloc(), then binding all components with 658 * component_bind_all() and finishing with drm_dev_register(). 659 * 660 * - The opaque pointer passed to all components through component_bind_all() 661 * should point at &struct drm_device of the device instance, not some driver 662 * specific private structure. 663 * 664 * - The component helper fills the niche where further standardization of 665 * interfaces is not practical. When there already is, or will be, a 666 * standardized interface like &drm_bridge or &drm_panel, providing its own 667 * functions to find such components at driver load time, like 668 * drm_of_find_panel_or_bridge(), then the component helper should not be 669 * used. 670 */ 671 672 static void drm_dev_init_release(struct drm_device *dev, void *res) 673 { 674 drm_legacy_ctxbitmap_cleanup(dev); 675 drm_legacy_remove_map_hash(dev); 676 #ifdef __linux__ 677 drm_fs_inode_free(dev->anon_inode); 678 679 put_device(dev->dev); 680 #endif 681 /* Prevent use-after-free in drm_managed_release when debugging is 682 * enabled. Slightly awkward, but can't really be helped. */ 683 dev->dev = NULL; 684 mutex_destroy(&dev->master_mutex); 685 mutex_destroy(&dev->clientlist_mutex); 686 mutex_destroy(&dev->filelist_mutex); 687 mutex_destroy(&dev->struct_mutex); 688 mutex_destroy(&dev->debugfs_mutex); 689 drm_legacy_destroy_members(dev); 690 } 691 692 #ifdef notyet 693 694 static int drm_dev_init(struct drm_device *dev, 695 const struct drm_driver *driver, 696 struct device *parent) 697 { 698 struct inode *inode; 699 int ret; 700 701 if (!drm_core_init_complete) { 702 DRM_ERROR("DRM core is not initialized\n"); 703 return -ENODEV; 704 } 705 706 if (WARN_ON(!parent)) 707 return -EINVAL; 708 709 kref_init(&dev->ref); 710 dev->dev = get_device(parent); 711 dev->driver = driver; 712 713 INIT_LIST_HEAD(&dev->managed.resources); 714 spin_lock_init(&dev->managed.lock); 715 716 /* no per-device feature limits by default */ 717 dev->driver_features = ~0u; 718 719 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && 720 (drm_core_check_feature(dev, DRIVER_RENDER) || 721 drm_core_check_feature(dev, DRIVER_MODESET))) { 722 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); 723 return -EINVAL; 724 } 725 726 drm_legacy_init_members(dev); 727 INIT_LIST_HEAD(&dev->filelist); 728 INIT_LIST_HEAD(&dev->filelist_internal); 729 INIT_LIST_HEAD(&dev->clientlist); 730 INIT_LIST_HEAD(&dev->vblank_event_list); 731 INIT_LIST_HEAD(&dev->debugfs_list); 732 733 spin_lock_init(&dev->event_lock); 734 mutex_init(&dev->struct_mutex); 735 mutex_init(&dev->filelist_mutex); 736 mutex_init(&dev->clientlist_mutex); 737 mutex_init(&dev->master_mutex); 738 mutex_init(&dev->debugfs_mutex); 739 740 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 741 if (ret) 742 return ret; 743 744 inode = drm_fs_inode_new(); 745 if (IS_ERR(inode)) { 746 ret = PTR_ERR(inode); 747 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 748 goto err; 749 } 750 751 dev->anon_inode = inode; 752 753 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { 754 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); 755 if (ret) 756 goto err; 757 } else { 758 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 759 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 760 if (ret) 761 goto err; 762 } 763 764 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 765 if (ret) 766 goto err; 767 } 768 769 ret = drm_legacy_create_map_hash(dev); 770 if (ret) 771 goto err; 772 773 drm_legacy_ctxbitmap_init(dev); 774 775 if (drm_core_check_feature(dev, DRIVER_GEM)) { 776 ret = drm_gem_init(dev); 777 if (ret) { 778 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 779 goto err; 780 } 781 } 782 783 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL); 784 if (!dev->unique) { 785 ret = -ENOMEM; 786 goto err; 787 } 788 789 return 0; 790 791 err: 792 drm_managed_release(dev); 793 794 return ret; 795 } 796 797 static void devm_drm_dev_init_release(void *data) 798 { 799 drm_dev_put(data); 800 } 801 802 static int devm_drm_dev_init(struct device *parent, 803 struct drm_device *dev, 804 const struct drm_driver *driver) 805 { 806 int ret; 807 808 ret = drm_dev_init(dev, driver, parent); 809 if (ret) 810 return ret; 811 812 return devm_add_action_or_reset(parent, 813 devm_drm_dev_init_release, dev); 814 } 815 816 #endif 817 818 void *__devm_drm_dev_alloc(struct device *parent, 819 const struct drm_driver *driver, 820 size_t size, size_t offset) 821 { 822 void *container; 823 struct drm_device *drm; 824 #ifdef notyet 825 int ret; 826 #endif 827 828 container = kzalloc(size, GFP_KERNEL); 829 if (!container) 830 return ERR_PTR(-ENOMEM); 831 832 drm = container + offset; 833 #ifdef notyet 834 ret = devm_drm_dev_init(parent, drm, driver); 835 if (ret) { 836 kfree(container); 837 return ERR_PTR(ret); 838 } 839 drmm_add_final_kfree(drm, container); 840 #endif 841 842 return container; 843 } 844 EXPORT_SYMBOL(__devm_drm_dev_alloc); 845 846 #ifdef notyet 847 848 /** 849 * drm_dev_alloc - Allocate new DRM device 850 * @driver: DRM driver to allocate device for 851 * @parent: Parent device object 852 * 853 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 854 * subclassing through embedding the struct &drm_device in a driver private 855 * structure, and which does not support automatic cleanup through devres. 856 * 857 * RETURNS: 858 * Pointer to new DRM device, or ERR_PTR on failure. 859 */ 860 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 861 struct device *parent) 862 { 863 struct drm_device *dev; 864 int ret; 865 866 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 867 if (!dev) 868 return ERR_PTR(-ENOMEM); 869 870 ret = drm_dev_init(dev, driver, parent); 871 if (ret) { 872 kfree(dev); 873 return ERR_PTR(ret); 874 } 875 876 drmm_add_final_kfree(dev, dev); 877 878 return dev; 879 } 880 EXPORT_SYMBOL(drm_dev_alloc); 881 882 #endif 883 884 static void drm_dev_release(struct kref *ref) 885 { 886 struct drm_device *dev = container_of(ref, struct drm_device, ref); 887 888 if (dev->driver->release) 889 dev->driver->release(dev); 890 891 drm_managed_release(dev); 892 893 kfree(dev->managed.final_kfree); 894 } 895 896 /** 897 * drm_dev_get - Take reference of a DRM device 898 * @dev: device to take reference of or NULL 899 * 900 * This increases the ref-count of @dev by one. You *must* already own a 901 * reference when calling this. Use drm_dev_put() to drop this reference 902 * again. 903 * 904 * This function never fails. However, this function does not provide *any* 905 * guarantee whether the device is alive or running. It only provides a 906 * reference to the object and the memory associated with it. 907 */ 908 void drm_dev_get(struct drm_device *dev) 909 { 910 if (dev) 911 kref_get(&dev->ref); 912 } 913 EXPORT_SYMBOL(drm_dev_get); 914 915 /** 916 * drm_dev_put - Drop reference of a DRM device 917 * @dev: device to drop reference of or NULL 918 * 919 * This decreases the ref-count of @dev by one. The device is destroyed if the 920 * ref-count drops to zero. 921 */ 922 void drm_dev_put(struct drm_device *dev) 923 { 924 if (dev) 925 kref_put(&dev->ref, drm_dev_release); 926 } 927 EXPORT_SYMBOL(drm_dev_put); 928 929 static int create_compat_control_link(struct drm_device *dev) 930 { 931 struct drm_minor *minor; 932 char *name; 933 int ret; 934 935 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 936 return 0; 937 938 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 939 if (!minor) 940 return 0; 941 942 /* 943 * Some existing userspace out there uses the existing of the controlD* 944 * sysfs files to figure out whether it's a modeset driver. It only does 945 * readdir, hence a symlink is sufficient (and the least confusing 946 * option). Otherwise controlD* is entirely unused. 947 * 948 * Old controlD chardev have been allocated in the range 949 * 64-127. 950 */ 951 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 952 if (!name) 953 return -ENOMEM; 954 955 ret = sysfs_create_link(minor->kdev->kobj.parent, 956 &minor->kdev->kobj, 957 name); 958 959 kfree(name); 960 961 return ret; 962 } 963 964 static void remove_compat_control_link(struct drm_device *dev) 965 { 966 struct drm_minor *minor; 967 char *name; 968 969 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 970 return; 971 972 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 973 if (!minor) 974 return; 975 976 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 977 if (!name) 978 return; 979 980 sysfs_remove_link(minor->kdev->kobj.parent, name); 981 982 kfree(name); 983 } 984 985 /** 986 * drm_dev_register - Register DRM device 987 * @dev: Device to register 988 * @flags: Flags passed to the driver's .load() function 989 * 990 * Register the DRM device @dev with the system, advertise device to user-space 991 * and start normal device operation. @dev must be initialized via drm_dev_init() 992 * previously. 993 * 994 * Never call this twice on any device! 995 * 996 * NOTE: To ensure backward compatibility with existing drivers method this 997 * function calls the &drm_driver.load method after registering the device 998 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 999 * therefore deprecated, drivers must perform all initialization before calling 1000 * drm_dev_register(). 1001 * 1002 * RETURNS: 1003 * 0 on success, negative error code on failure. 1004 */ 1005 int drm_dev_register(struct drm_device *dev, unsigned long flags) 1006 { 1007 const struct drm_driver *driver = dev->driver; 1008 int ret; 1009 1010 if (!driver->load) 1011 drm_mode_config_validate(dev); 1012 1013 WARN_ON(!dev->managed.final_kfree); 1014 1015 if (drm_dev_needs_global_mutex(dev)) 1016 mutex_lock(&drm_global_mutex); 1017 1018 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 1019 if (ret) 1020 goto err_minors; 1021 1022 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 1023 if (ret) 1024 goto err_minors; 1025 1026 ret = drm_minor_register(dev, DRM_MINOR_ACCEL); 1027 if (ret) 1028 goto err_minors; 1029 1030 ret = create_compat_control_link(dev); 1031 if (ret) 1032 goto err_minors; 1033 1034 dev->registered = true; 1035 1036 if (driver->load) { 1037 ret = driver->load(dev, flags); 1038 if (ret) 1039 goto err_minors; 1040 } 1041 1042 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1043 ret = drm_modeset_register_all(dev); 1044 if (ret) 1045 goto err_unload; 1046 } 1047 1048 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n", 1049 driver->name, driver->major, driver->minor, 1050 driver->patchlevel, driver->date, 1051 dev->dev ? dev_name(dev->dev) : "virtual device", 1052 dev->primary ? dev->primary->index : dev->accel->index); 1053 1054 goto out_unlock; 1055 1056 err_unload: 1057 if (dev->driver->unload) 1058 dev->driver->unload(dev); 1059 err_minors: 1060 remove_compat_control_link(dev); 1061 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1062 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1063 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1064 out_unlock: 1065 if (drm_dev_needs_global_mutex(dev)) 1066 mutex_unlock(&drm_global_mutex); 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(drm_dev_register); 1070 1071 /** 1072 * drm_dev_unregister - Unregister DRM device 1073 * @dev: Device to unregister 1074 * 1075 * Unregister the DRM device from the system. This does the reverse of 1076 * drm_dev_register() but does not deallocate the device. The caller must call 1077 * drm_dev_put() to drop their final reference, unless it is managed with devres 1078 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is 1079 * already an unwind action registered. 1080 * 1081 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1082 * which can be called while there are still open users of @dev. 1083 * 1084 * This should be called first in the device teardown code to make sure 1085 * userspace can't access the device instance any more. 1086 */ 1087 void drm_dev_unregister(struct drm_device *dev) 1088 { 1089 if (drm_core_check_feature(dev, DRIVER_LEGACY)) 1090 drm_lastclose(dev); 1091 1092 dev->registered = false; 1093 1094 drm_client_dev_unregister(dev); 1095 1096 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1097 drm_modeset_unregister_all(dev); 1098 1099 if (dev->driver->unload) 1100 dev->driver->unload(dev); 1101 1102 drm_legacy_pci_agp_destroy(dev); 1103 drm_legacy_rmmaps(dev); 1104 1105 remove_compat_control_link(dev); 1106 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1107 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1108 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1109 } 1110 EXPORT_SYMBOL(drm_dev_unregister); 1111 1112 /* 1113 * DRM Core 1114 * The DRM core module initializes all global DRM objects and makes them 1115 * available to drivers. Once setup, drivers can probe their respective 1116 * devices. 1117 * Currently, core management includes: 1118 * - The "DRM-Global" key/value database 1119 * - Global ID management for connectors 1120 * - DRM major number allocation 1121 * - DRM minor management 1122 * - DRM sysfs class 1123 * - DRM debugfs root 1124 * 1125 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1126 * interface registered on a DRM device, you can request minor numbers from DRM 1127 * core. DRM core takes care of major-number management and char-dev 1128 * registration. A stub ->open() callback forwards any open() requests to the 1129 * registered minor. 1130 */ 1131 1132 #ifdef __linux__ 1133 static int drm_stub_open(struct inode *inode, struct file *filp) 1134 { 1135 const struct file_operations *new_fops; 1136 struct drm_minor *minor; 1137 int err; 1138 1139 DRM_DEBUG("\n"); 1140 1141 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode)); 1142 if (IS_ERR(minor)) 1143 return PTR_ERR(minor); 1144 1145 new_fops = fops_get(minor->dev->driver->fops); 1146 if (!new_fops) { 1147 err = -ENODEV; 1148 goto out; 1149 } 1150 1151 replace_fops(filp, new_fops); 1152 if (filp->f_op->open) 1153 err = filp->f_op->open(inode, filp); 1154 else 1155 err = 0; 1156 1157 out: 1158 drm_minor_release(minor); 1159 1160 return err; 1161 } 1162 1163 static const struct file_operations drm_stub_fops = { 1164 .owner = THIS_MODULE, 1165 .open = drm_stub_open, 1166 .llseek = noop_llseek, 1167 }; 1168 #endif /* __linux__ */ 1169 1170 static void drm_core_exit(void) 1171 { 1172 drm_privacy_screen_lookup_exit(); 1173 accel_core_exit(); 1174 #ifdef __linux__ 1175 unregister_chrdev(DRM_MAJOR, "drm"); 1176 debugfs_remove(drm_debugfs_root); 1177 drm_sysfs_destroy(); 1178 #endif 1179 WARN_ON(!xa_empty(&drm_minors_xa)); 1180 drm_connector_ida_destroy(); 1181 } 1182 1183 static int __init drm_core_init(void) 1184 { 1185 #ifdef __linux__ 1186 int ret; 1187 #endif 1188 1189 drm_connector_ida_init(); 1190 drm_memcpy_init_early(); 1191 1192 #ifdef __linux__ 1193 ret = drm_sysfs_init(); 1194 if (ret < 0) { 1195 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1196 goto error; 1197 } 1198 1199 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1200 1201 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1202 if (ret < 0) 1203 goto error; 1204 1205 ret = accel_core_init(); 1206 if (ret < 0) 1207 goto error; 1208 #endif 1209 1210 drm_privacy_screen_lookup_init(); 1211 1212 drm_core_init_complete = true; 1213 1214 DRM_DEBUG("Initialized\n"); 1215 return 0; 1216 #ifdef __linux__ 1217 error: 1218 drm_core_exit(); 1219 return ret; 1220 #endif 1221 } 1222 1223 #ifdef __linux__ 1224 module_init(drm_core_init); 1225 module_exit(drm_core_exit); 1226 #endif 1227 1228 void 1229 drm_attach_platform(struct drm_driver *driver, bus_space_tag_t iot, 1230 bus_dma_tag_t dmat, struct device *dev, struct drm_device *drm) 1231 { 1232 struct drm_attach_args arg; 1233 1234 memset(&arg, 0, sizeof(arg)); 1235 arg.driver = driver; 1236 arg.bst = iot; 1237 arg.dmat = dmat; 1238 arg.drm = drm; 1239 1240 arg.busid = dev->dv_xname; 1241 arg.busid_len = strlen(dev->dv_xname) + 1; 1242 config_found_sm(dev, &arg, drmprint, drmsubmatch); 1243 } 1244 1245 struct drm_device * 1246 drm_attach_pci(const struct drm_driver *driver, struct pci_attach_args *pa, 1247 int is_agp, int primary, struct device *dev, struct drm_device *drm) 1248 { 1249 struct drm_attach_args arg; 1250 struct drm_softc *sc; 1251 1252 arg.drm = drm; 1253 arg.driver = driver; 1254 arg.dmat = pa->pa_dmat; 1255 arg.bst = pa->pa_memt; 1256 arg.is_agp = is_agp; 1257 arg.primary = primary; 1258 arg.pa = pa; 1259 1260 arg.busid_len = 20; 1261 arg.busid = malloc(arg.busid_len + 1, M_DRM, M_NOWAIT); 1262 if (arg.busid == NULL) { 1263 printf("%s: no memory for drm\n", dev->dv_xname); 1264 return (NULL); 1265 } 1266 snprintf(arg.busid, arg.busid_len, "pci:%04x:%02x:%02x.%1x", 1267 pa->pa_domain, pa->pa_bus, pa->pa_device, pa->pa_function); 1268 1269 sc = (struct drm_softc *)config_found_sm(dev, &arg, drmprint, drmsubmatch); 1270 if (sc == NULL) 1271 return NULL; 1272 1273 return sc->sc_drm; 1274 } 1275 1276 int 1277 drmprint(void *aux, const char *pnp) 1278 { 1279 if (pnp != NULL) 1280 printf("drm at %s", pnp); 1281 return (UNCONF); 1282 } 1283 1284 int 1285 drmsubmatch(struct device *parent, void *match, void *aux) 1286 { 1287 extern struct cfdriver drm_cd; 1288 struct cfdata *cf = match; 1289 1290 /* only allow drm to attach */ 1291 if (cf->cf_driver == &drm_cd) 1292 return ((*cf->cf_attach->ca_match)(parent, match, aux)); 1293 return (0); 1294 } 1295 1296 int 1297 drm_pciprobe(struct pci_attach_args *pa, const struct pci_device_id *idlist) 1298 { 1299 const struct pci_device_id *id_entry; 1300 1301 id_entry = drm_find_description(PCI_VENDOR(pa->pa_id), 1302 PCI_PRODUCT(pa->pa_id), idlist); 1303 if (id_entry != NULL) 1304 return 1; 1305 1306 return 0; 1307 } 1308 1309 int 1310 drm_probe(struct device *parent, void *match, void *aux) 1311 { 1312 struct cfdata *cf = match; 1313 struct drm_attach_args *da = aux; 1314 1315 if (cf->drmdevcf_primary != DRMDEVCF_PRIMARY_UNK) { 1316 /* 1317 * If primary-ness of device specified, either match 1318 * exactly (at high priority), or fail. 1319 */ 1320 if (cf->drmdevcf_primary != 0 && da->primary != 0) 1321 return (10); 1322 else 1323 return (0); 1324 } 1325 1326 /* If primary-ness unspecified, it wins. */ 1327 return (1); 1328 } 1329 1330 int drm_buddy_module_init(void); 1331 void drm_buddy_module_exit(void); 1332 1333 void 1334 drm_attach(struct device *parent, struct device *self, void *aux) 1335 { 1336 struct drm_softc *sc = (struct drm_softc *)self; 1337 struct drm_attach_args *da = aux; 1338 struct drm_device *dev = da->drm; 1339 int ret; 1340 1341 if (drm_refcnt == 0) { 1342 drm_linux_init(); 1343 drm_core_init(); 1344 drm_buddy_module_init(); 1345 } 1346 drm_refcnt++; 1347 1348 if (dev == NULL) { 1349 dev = malloc(sizeof(struct drm_device), M_DRM, 1350 M_WAITOK | M_ZERO); 1351 sc->sc_allocated = 1; 1352 } 1353 1354 sc->sc_drm = dev; 1355 1356 kref_init(&dev->ref); 1357 dev->dev = self; 1358 dev->dev_private = parent; 1359 dev->driver = da->driver; 1360 1361 INIT_LIST_HEAD(&dev->managed.resources); 1362 mtx_init(&dev->managed.lock, IPL_TTY); 1363 1364 /* no per-device feature limits by default */ 1365 dev->driver_features = ~0u; 1366 1367 dev->dmat = da->dmat; 1368 dev->bst = da->bst; 1369 dev->unique = da->busid; 1370 1371 if (da->pa) { 1372 struct pci_attach_args *pa = da->pa; 1373 pcireg_t subsys; 1374 1375 subsys = pci_conf_read(pa->pa_pc, pa->pa_tag, 1376 PCI_SUBSYS_ID_REG); 1377 1378 dev->pdev = &dev->_pdev; 1379 dev->pdev->vendor = PCI_VENDOR(pa->pa_id); 1380 dev->pdev->device = PCI_PRODUCT(pa->pa_id); 1381 dev->pdev->subsystem_vendor = PCI_VENDOR(subsys); 1382 dev->pdev->subsystem_device = PCI_PRODUCT(subsys); 1383 dev->pdev->revision = PCI_REVISION(pa->pa_class); 1384 dev->pdev->class = (PCI_CLASS(pa->pa_class) << 16) | 1385 (PCI_SUBCLASS(pa->pa_class) << 8) | 1386 PCI_INTERFACE(pa->pa_class); 1387 1388 dev->pdev->devfn = PCI_DEVFN(pa->pa_device, pa->pa_function); 1389 dev->pdev->bus = &dev->pdev->_bus; 1390 dev->pdev->bus->pc = pa->pa_pc; 1391 dev->pdev->bus->number = pa->pa_bus; 1392 dev->pdev->bus->domain_nr = pa->pa_domain; 1393 dev->pdev->bus->bridgetag = pa->pa_bridgetag; 1394 1395 if (pa->pa_bridgetag != NULL) { 1396 dev->pdev->bus->self = malloc(sizeof(struct pci_dev), 1397 M_DRM, M_WAITOK | M_ZERO); 1398 dev->pdev->bus->self->pc = pa->pa_pc; 1399 dev->pdev->bus->self->tag = *pa->pa_bridgetag; 1400 } 1401 1402 dev->pdev->pc = pa->pa_pc; 1403 dev->pdev->tag = pa->pa_tag; 1404 dev->pdev->pci = (struct pci_softc *)parent->dv_parent; 1405 dev->pdev->_dev = parent; 1406 1407 #ifdef CONFIG_ACPI 1408 dev->pdev->dev.node = acpi_find_pci(pa->pa_pc, pa->pa_tag); 1409 aml_register_notify(dev->pdev->dev.node, NULL, 1410 drm_linux_acpi_notify, NULL, ACPIDEV_NOPOLL); 1411 #endif 1412 } 1413 1414 mtx_init(&dev->quiesce_mtx, IPL_NONE); 1415 mtx_init(&dev->event_lock, IPL_TTY); 1416 rw_init(&dev->struct_mutex, "drmdevlk"); 1417 rw_init(&dev->filelist_mutex, "drmflist"); 1418 rw_init(&dev->clientlist_mutex, "drmclist"); 1419 rw_init(&dev->master_mutex, "drmmast"); 1420 1421 ret = drmm_add_action(dev, drm_dev_init_release, NULL); 1422 if (ret) 1423 goto error; 1424 1425 SPLAY_INIT(&dev->files); 1426 INIT_LIST_HEAD(&dev->filelist_internal); 1427 INIT_LIST_HEAD(&dev->clientlist); 1428 INIT_LIST_HEAD(&dev->vblank_event_list); 1429 1430 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 1431 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 1432 if (ret) 1433 goto error; 1434 } 1435 1436 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 1437 if (ret) 1438 goto error; 1439 1440 #ifdef CONFIG_DRM_LEGACY 1441 if (drm_core_check_feature(dev, DRIVER_USE_AGP)) { 1442 #if IS_ENABLED(CONFIG_AGP) 1443 if (da->is_agp) 1444 dev->agp = drm_agp_init(); 1445 #endif 1446 if (dev->agp != NULL) { 1447 if (drm_mtrr_add(dev->agp->info.ai_aperture_base, 1448 dev->agp->info.ai_aperture_size, DRM_MTRR_WC) == 0) 1449 dev->agp->mtrr = 1; 1450 } 1451 } 1452 #endif 1453 1454 if (dev->driver->gem_size > 0) { 1455 KASSERT(dev->driver->gem_size >= sizeof(struct drm_gem_object)); 1456 /* XXX unique name */ 1457 pool_init(&dev->objpl, dev->driver->gem_size, 0, IPL_NONE, 0, 1458 "drmobjpl", NULL); 1459 } 1460 1461 if (drm_core_check_feature(dev, DRIVER_GEM)) { 1462 ret = drm_gem_init(dev); 1463 if (ret) { 1464 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 1465 goto error; 1466 } 1467 } 1468 1469 drmm_add_final_kfree(dev, dev); 1470 1471 printf("\n"); 1472 return; 1473 1474 error: 1475 drm_managed_release(dev); 1476 dev->dev_private = NULL; 1477 } 1478 1479 int 1480 drm_detach(struct device *self, int flags) 1481 { 1482 struct drm_softc *sc = (struct drm_softc *)self; 1483 struct drm_device *dev = sc->sc_drm; 1484 1485 drm_refcnt--; 1486 if (drm_refcnt == 0) { 1487 drm_buddy_module_exit(); 1488 drm_core_exit(); 1489 drm_linux_exit(); 1490 } 1491 1492 drm_lastclose(dev); 1493 1494 if (drm_core_check_feature(dev, DRIVER_GEM)) { 1495 if (dev->driver->gem_size > 0) 1496 pool_destroy(&dev->objpl); 1497 } 1498 1499 #ifdef CONFIG_DRM_LEGACY 1500 if (dev->agp && dev->agp->mtrr) { 1501 int retcode; 1502 1503 retcode = drm_mtrr_del(0, dev->agp->info.ai_aperture_base, 1504 dev->agp->info.ai_aperture_size, DRM_MTRR_WC); 1505 DRM_DEBUG("mtrr_del = %d", retcode); 1506 } 1507 1508 free(dev->agp, M_DRM, 0); 1509 #endif 1510 if (dev->pdev && dev->pdev->bus) 1511 free(dev->pdev->bus->self, M_DRM, sizeof(struct pci_dev)); 1512 1513 if (sc->sc_allocated) 1514 free(dev, M_DRM, sizeof(struct drm_device)); 1515 1516 return 0; 1517 } 1518 1519 void 1520 drm_quiesce(struct drm_device *dev) 1521 { 1522 mtx_enter(&dev->quiesce_mtx); 1523 dev->quiesce = 1; 1524 while (dev->quiesce_count > 0) { 1525 msleep_nsec(&dev->quiesce_count, &dev->quiesce_mtx, 1526 PZERO, "drmqui", INFSLP); 1527 } 1528 mtx_leave(&dev->quiesce_mtx); 1529 } 1530 1531 void 1532 drm_wakeup(struct drm_device *dev) 1533 { 1534 mtx_enter(&dev->quiesce_mtx); 1535 dev->quiesce = 0; 1536 wakeup(&dev->quiesce); 1537 mtx_leave(&dev->quiesce_mtx); 1538 } 1539 1540 int 1541 drm_activate(struct device *self, int act) 1542 { 1543 struct drm_softc *sc = (struct drm_softc *)self; 1544 struct drm_device *dev = sc->sc_drm; 1545 1546 switch (act) { 1547 case DVACT_QUIESCE: 1548 #ifdef CONFIG_ACPI 1549 if (acpi_softc) { 1550 switch (acpi_softc->sc_state) { 1551 case ACPI_STATE_S0: 1552 pm_suspend_target_state = PM_SUSPEND_TO_IDLE; 1553 break; 1554 case ACPI_STATE_S3: 1555 pm_suspend_target_state = PM_SUSPEND_MEM; 1556 break; 1557 } 1558 } 1559 #else 1560 pm_suspend_target_state = PM_SUSPEND_TO_IDLE; 1561 #endif 1562 drm_quiesce(dev); 1563 break; 1564 case DVACT_WAKEUP: 1565 drm_wakeup(dev); 1566 pm_suspend_target_state = PM_SUSPEND_ON; 1567 break; 1568 } 1569 1570 return (0); 1571 } 1572 1573 const struct cfattach drm_ca = { 1574 sizeof(struct drm_softc), drm_probe, drm_attach, 1575 drm_detach, drm_activate 1576 }; 1577 1578 struct cfdriver drm_cd = { 1579 NULL, "drm", DV_DULL 1580 }; 1581 1582 const struct pci_device_id * 1583 drm_find_description(int vendor, int device, const struct pci_device_id *idlist) 1584 { 1585 int i = 0; 1586 1587 for (i = 0; idlist[i].vendor != 0; i++) { 1588 if ((idlist[i].vendor == vendor) && 1589 (idlist[i].device == device || 1590 idlist[i].device == PCI_ANY_ID) && 1591 (idlist[i].subvendor == PCI_ANY_ID) && 1592 (idlist[i].subdevice == PCI_ANY_ID)) 1593 return &idlist[i]; 1594 } 1595 return NULL; 1596 } 1597 1598 int 1599 drm_file_cmp(struct drm_file *f1, struct drm_file *f2) 1600 { 1601 return (f1->fminor < f2->fminor ? -1 : f1->fminor > f2->fminor); 1602 } 1603 1604 SPLAY_GENERATE(drm_file_tree, drm_file, link, drm_file_cmp); 1605 1606 struct drm_file * 1607 drm_find_file_by_minor(struct drm_device *dev, int minor) 1608 { 1609 struct drm_file key; 1610 1611 key.fminor = minor; 1612 return (SPLAY_FIND(drm_file_tree, &dev->files, &key)); 1613 } 1614 1615 struct drm_device * 1616 drm_get_device_from_kdev(dev_t kdev) 1617 { 1618 int unit = minor(kdev) & ((1 << CLONE_SHIFT) - 1); 1619 /* render */ 1620 if (unit >= 128) 1621 unit -= 128; 1622 struct drm_softc *sc; 1623 1624 if (unit < drm_cd.cd_ndevs) { 1625 sc = (struct drm_softc *)drm_cd.cd_devs[unit]; 1626 if (sc) 1627 return sc->sc_drm; 1628 } 1629 1630 return NULL; 1631 } 1632 1633 void 1634 filt_drmdetach(struct knote *kn) 1635 { 1636 struct drm_device *dev = kn->kn_hook; 1637 int s; 1638 1639 s = spltty(); 1640 klist_remove_locked(&dev->note, kn); 1641 splx(s); 1642 } 1643 1644 int 1645 filt_drmkms(struct knote *kn, long hint) 1646 { 1647 if (kn->kn_sfflags & hint) 1648 kn->kn_fflags |= hint; 1649 return (kn->kn_fflags != 0); 1650 } 1651 1652 void 1653 filt_drmreaddetach(struct knote *kn) 1654 { 1655 struct drm_file *file_priv = kn->kn_hook; 1656 int s; 1657 1658 s = spltty(); 1659 klist_remove_locked(&file_priv->rsel.si_note, kn); 1660 splx(s); 1661 } 1662 1663 int 1664 filt_drmread(struct knote *kn, long hint) 1665 { 1666 struct drm_file *file_priv = kn->kn_hook; 1667 int val = 0; 1668 1669 if ((hint & NOTE_SUBMIT) == 0) 1670 mtx_enter(&file_priv->minor->dev->event_lock); 1671 val = !list_empty(&file_priv->event_list); 1672 if ((hint & NOTE_SUBMIT) == 0) 1673 mtx_leave(&file_priv->minor->dev->event_lock); 1674 return (val); 1675 } 1676 1677 const struct filterops drm_filtops = { 1678 .f_flags = FILTEROP_ISFD, 1679 .f_attach = NULL, 1680 .f_detach = filt_drmdetach, 1681 .f_event = filt_drmkms, 1682 }; 1683 1684 const struct filterops drmread_filtops = { 1685 .f_flags = FILTEROP_ISFD, 1686 .f_attach = NULL, 1687 .f_detach = filt_drmreaddetach, 1688 .f_event = filt_drmread, 1689 }; 1690 1691 int 1692 drmkqfilter(dev_t kdev, struct knote *kn) 1693 { 1694 struct drm_device *dev = NULL; 1695 struct drm_file *file_priv = NULL; 1696 int s; 1697 1698 dev = drm_get_device_from_kdev(kdev); 1699 if (dev == NULL || dev->dev_private == NULL) 1700 return (ENXIO); 1701 1702 switch (kn->kn_filter) { 1703 case EVFILT_READ: 1704 mutex_lock(&dev->struct_mutex); 1705 file_priv = drm_find_file_by_minor(dev, minor(kdev)); 1706 mutex_unlock(&dev->struct_mutex); 1707 if (file_priv == NULL) 1708 return (ENXIO); 1709 1710 kn->kn_fop = &drmread_filtops; 1711 kn->kn_hook = file_priv; 1712 1713 s = spltty(); 1714 klist_insert_locked(&file_priv->rsel.si_note, kn); 1715 splx(s); 1716 break; 1717 case EVFILT_DEVICE: 1718 kn->kn_fop = &drm_filtops; 1719 kn->kn_hook = dev; 1720 1721 s = spltty(); 1722 klist_insert_locked(&dev->note, kn); 1723 splx(s); 1724 break; 1725 default: 1726 return (EINVAL); 1727 } 1728 1729 return (0); 1730 } 1731 1732 int 1733 drmopen(dev_t kdev, int flags, int fmt, struct proc *p) 1734 { 1735 struct drm_device *dev = NULL; 1736 struct drm_file *file_priv; 1737 struct drm_minor *dm; 1738 int ret = 0; 1739 int dminor, realminor, minor_type; 1740 int need_setup = 0; 1741 1742 dev = drm_get_device_from_kdev(kdev); 1743 if (dev == NULL || dev->dev_private == NULL) 1744 return (ENXIO); 1745 1746 DRM_DEBUG("open_count = %d\n", atomic_read(&dev->open_count)); 1747 1748 if (flags & O_EXCL) 1749 return (EBUSY); /* No exclusive opens */ 1750 1751 if (drm_dev_needs_global_mutex(dev)) 1752 mutex_lock(&drm_global_mutex); 1753 1754 if (!atomic_fetch_inc(&dev->open_count)) 1755 need_setup = 1; 1756 1757 dminor = minor(kdev); 1758 realminor = dminor & ((1 << CLONE_SHIFT) - 1); 1759 if (realminor < 64) 1760 minor_type = DRM_MINOR_PRIMARY; 1761 else if (realminor >= 128 && realminor < 192) 1762 minor_type = DRM_MINOR_RENDER; 1763 else { 1764 ret = ENXIO; 1765 goto err; 1766 } 1767 1768 dm = *drm_minor_get_slot(dev, minor_type); 1769 if (dm == NULL) { 1770 ret = ENXIO; 1771 goto err; 1772 } 1773 dm->index = minor(kdev); 1774 1775 file_priv = drm_file_alloc(dm); 1776 if (IS_ERR(file_priv)) { 1777 ret = ENOMEM; 1778 goto err; 1779 } 1780 1781 /* first opener automatically becomes master */ 1782 if (drm_is_primary_client(file_priv)) { 1783 ret = drm_master_open(file_priv); 1784 if (ret != 0) 1785 goto out_file_free; 1786 } 1787 1788 file_priv->filp = (void *)file_priv; 1789 file_priv->fminor = minor(kdev); 1790 1791 mutex_lock(&dev->filelist_mutex); 1792 SPLAY_INSERT(drm_file_tree, &dev->files, file_priv); 1793 mutex_unlock(&dev->filelist_mutex); 1794 1795 if (need_setup) { 1796 ret = drm_legacy_setup(dev); 1797 if (ret) 1798 goto out_file_free; 1799 } 1800 1801 if (drm_dev_needs_global_mutex(dev)) 1802 mutex_unlock(&drm_global_mutex); 1803 1804 return 0; 1805 1806 out_file_free: 1807 drm_file_free(file_priv); 1808 err: 1809 atomic_dec(&dev->open_count); 1810 if (drm_dev_needs_global_mutex(dev)) 1811 mutex_unlock(&drm_global_mutex); 1812 return (ret); 1813 } 1814 1815 int 1816 drmclose(dev_t kdev, int flags, int fmt, struct proc *p) 1817 { 1818 struct drm_device *dev = drm_get_device_from_kdev(kdev); 1819 struct drm_file *file_priv; 1820 int retcode = 0; 1821 1822 if (dev == NULL) 1823 return (ENXIO); 1824 1825 if (drm_dev_needs_global_mutex(dev)) 1826 mutex_lock(&drm_global_mutex); 1827 1828 DRM_DEBUG("open_count = %d\n", atomic_read(&dev->open_count)); 1829 1830 mutex_lock(&dev->filelist_mutex); 1831 file_priv = drm_find_file_by_minor(dev, minor(kdev)); 1832 if (file_priv == NULL) { 1833 DRM_ERROR("can't find authenticator\n"); 1834 retcode = EINVAL; 1835 mutex_unlock(&dev->filelist_mutex); 1836 goto done; 1837 } 1838 1839 SPLAY_REMOVE(drm_file_tree, &dev->files, file_priv); 1840 mutex_unlock(&dev->filelist_mutex); 1841 drm_file_free(file_priv); 1842 done: 1843 if (atomic_dec_and_test(&dev->open_count)) 1844 drm_lastclose(dev); 1845 1846 if (drm_dev_needs_global_mutex(dev)) 1847 mutex_unlock(&drm_global_mutex); 1848 1849 return (retcode); 1850 } 1851 1852 int 1853 drmread(dev_t kdev, struct uio *uio, int ioflag) 1854 { 1855 struct drm_device *dev = drm_get_device_from_kdev(kdev); 1856 struct drm_file *file_priv; 1857 struct drm_pending_event *ev; 1858 int error = 0; 1859 1860 if (dev == NULL) 1861 return (ENXIO); 1862 1863 mutex_lock(&dev->filelist_mutex); 1864 file_priv = drm_find_file_by_minor(dev, minor(kdev)); 1865 mutex_unlock(&dev->filelist_mutex); 1866 if (file_priv == NULL) 1867 return (ENXIO); 1868 1869 /* 1870 * The semantics are a little weird here. We will wait until we 1871 * have events to process, but as soon as we have events we will 1872 * only deliver as many as we have. 1873 * Note that events are atomic, if the read buffer will not fit in 1874 * a whole event, we won't read any of it out. 1875 */ 1876 mtx_enter(&dev->event_lock); 1877 while (error == 0 && list_empty(&file_priv->event_list)) { 1878 if (ioflag & IO_NDELAY) { 1879 mtx_leave(&dev->event_lock); 1880 return (EAGAIN); 1881 } 1882 error = msleep_nsec(&file_priv->event_wait, &dev->event_lock, 1883 PWAIT | PCATCH, "drmread", INFSLP); 1884 } 1885 if (error) { 1886 mtx_leave(&dev->event_lock); 1887 return (error); 1888 } 1889 while (drm_dequeue_event(dev, file_priv, uio->uio_resid, &ev)) { 1890 MUTEX_ASSERT_UNLOCKED(&dev->event_lock); 1891 /* XXX we always destroy the event on error. */ 1892 error = uiomove(ev->event, ev->event->length, uio); 1893 kfree(ev); 1894 if (error) 1895 break; 1896 mtx_enter(&dev->event_lock); 1897 } 1898 MUTEX_ASSERT_UNLOCKED(&dev->event_lock); 1899 1900 return (error); 1901 } 1902 1903 /* 1904 * Deqeue an event from the file priv in question. returning 1 if an 1905 * event was found. We take the resid from the read as a parameter because 1906 * we will only dequeue and event if the read buffer has space to fit the 1907 * entire thing. 1908 * 1909 * We are called locked, but we will *unlock* the queue on return so that 1910 * we may sleep to copyout the event. 1911 */ 1912 int 1913 drm_dequeue_event(struct drm_device *dev, struct drm_file *file_priv, 1914 size_t resid, struct drm_pending_event **out) 1915 { 1916 struct drm_pending_event *e = NULL; 1917 int gotone = 0; 1918 1919 MUTEX_ASSERT_LOCKED(&dev->event_lock); 1920 1921 *out = NULL; 1922 if (list_empty(&file_priv->event_list)) 1923 goto out; 1924 e = list_first_entry(&file_priv->event_list, 1925 struct drm_pending_event, link); 1926 if (e->event->length > resid) 1927 goto out; 1928 1929 file_priv->event_space += e->event->length; 1930 list_del(&e->link); 1931 *out = e; 1932 gotone = 1; 1933 1934 out: 1935 mtx_leave(&dev->event_lock); 1936 1937 return (gotone); 1938 } 1939 1940 paddr_t 1941 drmmmap(dev_t kdev, off_t offset, int prot) 1942 { 1943 return -1; 1944 } 1945 1946 struct drm_dmamem * 1947 drm_dmamem_alloc(bus_dma_tag_t dmat, bus_size_t size, bus_size_t alignment, 1948 int nsegments, bus_size_t maxsegsz, int mapflags, int loadflags) 1949 { 1950 struct drm_dmamem *mem; 1951 size_t strsize; 1952 /* 1953 * segs is the last member of the struct since we modify the size 1954 * to allow extra segments if more than one are allowed. 1955 */ 1956 strsize = sizeof(*mem) + (sizeof(bus_dma_segment_t) * (nsegments - 1)); 1957 mem = malloc(strsize, M_DRM, M_NOWAIT | M_ZERO); 1958 if (mem == NULL) 1959 return (NULL); 1960 1961 mem->size = size; 1962 1963 if (bus_dmamap_create(dmat, size, nsegments, maxsegsz, 0, 1964 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mem->map) != 0) 1965 goto strfree; 1966 1967 if (bus_dmamem_alloc(dmat, size, alignment, 0, mem->segs, nsegments, 1968 &mem->nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO) != 0) 1969 goto destroy; 1970 1971 if (bus_dmamem_map(dmat, mem->segs, mem->nsegs, size, 1972 &mem->kva, BUS_DMA_NOWAIT | mapflags) != 0) 1973 goto free; 1974 1975 if (bus_dmamap_load(dmat, mem->map, mem->kva, size, 1976 NULL, BUS_DMA_NOWAIT | loadflags) != 0) 1977 goto unmap; 1978 1979 return (mem); 1980 1981 unmap: 1982 bus_dmamem_unmap(dmat, mem->kva, size); 1983 free: 1984 bus_dmamem_free(dmat, mem->segs, mem->nsegs); 1985 destroy: 1986 bus_dmamap_destroy(dmat, mem->map); 1987 strfree: 1988 free(mem, M_DRM, 0); 1989 1990 return (NULL); 1991 } 1992 1993 void 1994 drm_dmamem_free(bus_dma_tag_t dmat, struct drm_dmamem *mem) 1995 { 1996 if (mem == NULL) 1997 return; 1998 1999 bus_dmamap_unload(dmat, mem->map); 2000 bus_dmamem_unmap(dmat, mem->kva, mem->size); 2001 bus_dmamem_free(dmat, mem->segs, mem->nsegs); 2002 bus_dmamap_destroy(dmat, mem->map); 2003 free(mem, M_DRM, 0); 2004 } 2005 2006 struct drm_dma_handle * 2007 drm_pci_alloc(struct drm_device *dev, size_t size, size_t align) 2008 { 2009 struct drm_dma_handle *dmah; 2010 2011 dmah = malloc(sizeof(*dmah), M_DRM, M_WAITOK); 2012 dmah->mem = drm_dmamem_alloc(dev->dmat, size, align, 1, size, 2013 BUS_DMA_NOCACHE, 0); 2014 if (dmah->mem == NULL) { 2015 free(dmah, M_DRM, sizeof(*dmah)); 2016 return NULL; 2017 } 2018 dmah->busaddr = dmah->mem->segs[0].ds_addr; 2019 dmah->size = dmah->mem->size; 2020 dmah->vaddr = dmah->mem->kva; 2021 return (dmah); 2022 } 2023 2024 void 2025 drm_pci_free(struct drm_device *dev, struct drm_dma_handle *dmah) 2026 { 2027 if (dmah == NULL) 2028 return; 2029 2030 drm_dmamem_free(dev->dmat, dmah->mem); 2031 free(dmah, M_DRM, sizeof(*dmah)); 2032 } 2033 2034 /* 2035 * Compute order. Can be made faster. 2036 */ 2037 int 2038 drm_order(unsigned long size) 2039 { 2040 int order; 2041 unsigned long tmp; 2042 2043 for (order = 0, tmp = size; tmp >>= 1; ++order) 2044 ; 2045 2046 if (size & ~(1 << order)) 2047 ++order; 2048 2049 return order; 2050 } 2051 2052 int 2053 drm_getpciinfo(struct drm_device *dev, void *data, struct drm_file *file_priv) 2054 { 2055 struct drm_pciinfo *info = data; 2056 2057 if (dev->pdev == NULL) 2058 return -ENOTTY; 2059 2060 info->domain = dev->pdev->bus->domain_nr; 2061 info->bus = dev->pdev->bus->number; 2062 info->dev = PCI_SLOT(dev->pdev->devfn); 2063 info->func = PCI_FUNC(dev->pdev->devfn); 2064 info->vendor_id = dev->pdev->vendor; 2065 info->device_id = dev->pdev->device; 2066 info->subvendor_id = dev->pdev->subsystem_vendor; 2067 info->subdevice_id = dev->pdev->subsystem_device; 2068 info->revision_id = 0; 2069 2070 return 0; 2071 } 2072