xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitcodeCommon.h"
28 #include "llvm/Bitcode/BitcodeReader.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Bitstream/BitCodes.h"
31 #include "llvm/Bitstream/BitstreamWriter.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 static cl::opt<unsigned>
86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                    cl::desc("Number of metadatas above which we emit an index "
88                             "to enable lazy-loading"));
89 static cl::opt<uint32_t> FlushThreshold(
90     "bitcode-flush-threshold", cl::Hidden, cl::init(512),
91     cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
92 
93 static cl::opt<bool> WriteRelBFToSummary(
94     "write-relbf-to-summary", cl::Hidden, cl::init(false),
95     cl::desc("Write relative block frequency to function summary "));
96 
97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
98 
99 namespace {
100 
101 /// These are manifest constants used by the bitcode writer. They do not need to
102 /// be kept in sync with the reader, but need to be consistent within this file.
103 enum {
104   // VALUE_SYMTAB_BLOCK abbrev id's.
105   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
106   VST_ENTRY_7_ABBREV,
107   VST_ENTRY_6_ABBREV,
108   VST_BBENTRY_6_ABBREV,
109 
110   // CONSTANTS_BLOCK abbrev id's.
111   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
112   CONSTANTS_INTEGER_ABBREV,
113   CONSTANTS_CE_CAST_Abbrev,
114   CONSTANTS_NULL_Abbrev,
115 
116   // FUNCTION_BLOCK abbrev id's.
117   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
118   FUNCTION_INST_UNOP_ABBREV,
119   FUNCTION_INST_UNOP_FLAGS_ABBREV,
120   FUNCTION_INST_BINOP_ABBREV,
121   FUNCTION_INST_BINOP_FLAGS_ABBREV,
122   FUNCTION_INST_CAST_ABBREV,
123   FUNCTION_INST_RET_VOID_ABBREV,
124   FUNCTION_INST_RET_VAL_ABBREV,
125   FUNCTION_INST_UNREACHABLE_ABBREV,
126   FUNCTION_INST_GEP_ABBREV,
127 };
128 
129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
130 /// file type.
131 class BitcodeWriterBase {
132 protected:
133   /// The stream created and owned by the client.
134   BitstreamWriter &Stream;
135 
136   StringTableBuilder &StrtabBuilder;
137 
138 public:
139   /// Constructs a BitcodeWriterBase object that writes to the provided
140   /// \p Stream.
BitcodeWriterBase(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder)141   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
142       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
143 
144 protected:
145   void writeBitcodeHeader();
146   void writeModuleVersion();
147 };
148 
writeModuleVersion()149 void BitcodeWriterBase::writeModuleVersion() {
150   // VERSION: [version#]
151   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
152 }
153 
154 /// Base class to manage the module bitcode writing, currently subclassed for
155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
156 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
157 protected:
158   /// The Module to write to bitcode.
159   const Module &M;
160 
161   /// Enumerates ids for all values in the module.
162   ValueEnumerator VE;
163 
164   /// Optional per-module index to write for ThinLTO.
165   const ModuleSummaryIndex *Index;
166 
167   /// Map that holds the correspondence between GUIDs in the summary index,
168   /// that came from indirect call profiles, and a value id generated by this
169   /// class to use in the VST and summary block records.
170   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
171 
172   /// Tracks the last value id recorded in the GUIDToValueMap.
173   unsigned GlobalValueId;
174 
175   /// Saves the offset of the VSTOffset record that must eventually be
176   /// backpatched with the offset of the actual VST.
177   uint64_t VSTOffsetPlaceholder = 0;
178 
179 public:
180   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
181   /// writing to the provided \p Buffer.
ModuleBitcodeWriterBase(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index)182   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
183                           BitstreamWriter &Stream,
184                           bool ShouldPreserveUseListOrder,
185                           const ModuleSummaryIndex *Index)
186       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
187         VE(M, ShouldPreserveUseListOrder), Index(Index) {
188     // Assign ValueIds to any callee values in the index that came from
189     // indirect call profiles and were recorded as a GUID not a Value*
190     // (which would have been assigned an ID by the ValueEnumerator).
191     // The starting ValueId is just after the number of values in the
192     // ValueEnumerator, so that they can be emitted in the VST.
193     GlobalValueId = VE.getValues().size();
194     if (!Index)
195       return;
196     for (const auto &GUIDSummaryLists : *Index)
197       // Examine all summaries for this GUID.
198       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
199         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
200           // For each call in the function summary, see if the call
201           // is to a GUID (which means it is for an indirect call,
202           // otherwise we would have a Value for it). If so, synthesize
203           // a value id.
204           for (auto &CallEdge : FS->calls())
205             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
206               assignValueId(CallEdge.first.getGUID());
207   }
208 
209 protected:
210   void writePerModuleGlobalValueSummary();
211 
212 private:
213   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
214                                            GlobalValueSummary *Summary,
215                                            unsigned ValueID,
216                                            unsigned FSCallsAbbrev,
217                                            unsigned FSCallsProfileAbbrev,
218                                            const Function &F);
219   void writeModuleLevelReferences(const GlobalVariable &V,
220                                   SmallVector<uint64_t, 64> &NameVals,
221                                   unsigned FSModRefsAbbrev,
222                                   unsigned FSModVTableRefsAbbrev);
223 
assignValueId(GlobalValue::GUID ValGUID)224   void assignValueId(GlobalValue::GUID ValGUID) {
225     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
226   }
227 
getValueId(GlobalValue::GUID ValGUID)228   unsigned getValueId(GlobalValue::GUID ValGUID) {
229     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
230     // Expect that any GUID value had a value Id assigned by an
231     // earlier call to assignValueId.
232     assert(VMI != GUIDToValueIdMap.end() &&
233            "GUID does not have assigned value Id");
234     return VMI->second;
235   }
236 
237   // Helper to get the valueId for the type of value recorded in VI.
getValueId(ValueInfo VI)238   unsigned getValueId(ValueInfo VI) {
239     if (!VI.haveGVs() || !VI.getValue())
240       return getValueId(VI.getGUID());
241     return VE.getValueID(VI.getValue());
242   }
243 
valueIds()244   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
245 };
246 
247 /// Class to manage the bitcode writing for a module.
248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
249   /// Pointer to the buffer allocated by caller for bitcode writing.
250   const SmallVectorImpl<char> &Buffer;
251 
252   /// True if a module hash record should be written.
253   bool GenerateHash;
254 
255   /// If non-null, when GenerateHash is true, the resulting hash is written
256   /// into ModHash.
257   ModuleHash *ModHash;
258 
259   SHA1 Hasher;
260 
261   /// The start bit of the identification block.
262   uint64_t BitcodeStartBit;
263 
264 public:
265   /// Constructs a ModuleBitcodeWriter object for the given Module,
266   /// writing to the provided \p Buffer.
ModuleBitcodeWriter(const Module & M,SmallVectorImpl<char> & Buffer,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash=nullptr)267   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
268                       StringTableBuilder &StrtabBuilder,
269                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
270                       const ModuleSummaryIndex *Index, bool GenerateHash,
271                       ModuleHash *ModHash = nullptr)
272       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
273                                 ShouldPreserveUseListOrder, Index),
274         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
275         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
276 
277   /// Emit the current module to the bitstream.
278   void write();
279 
280 private:
bitcodeStartBit()281   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
282 
283   size_t addToStrtab(StringRef Str);
284 
285   void writeAttributeGroupTable();
286   void writeAttributeTable();
287   void writeTypeTable();
288   void writeComdats();
289   void writeValueSymbolTableForwardDecl();
290   void writeModuleInfo();
291   void writeValueAsMetadata(const ValueAsMetadata *MD,
292                             SmallVectorImpl<uint64_t> &Record);
293   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
294                     unsigned Abbrev);
295   unsigned createDILocationAbbrev();
296   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
297                        unsigned &Abbrev);
298   unsigned createGenericDINodeAbbrev();
299   void writeGenericDINode(const GenericDINode *N,
300                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
301   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
302                        unsigned Abbrev);
303   void writeDIGenericSubrange(const DIGenericSubrange *N,
304                               SmallVectorImpl<uint64_t> &Record,
305                               unsigned Abbrev);
306   void writeDIEnumerator(const DIEnumerator *N,
307                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
308   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
309                         unsigned Abbrev);
310   void writeDIStringType(const DIStringType *N,
311                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
312   void writeDIDerivedType(const DIDerivedType *N,
313                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
314   void writeDICompositeType(const DICompositeType *N,
315                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
316   void writeDISubroutineType(const DISubroutineType *N,
317                              SmallVectorImpl<uint64_t> &Record,
318                              unsigned Abbrev);
319   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
320                    unsigned Abbrev);
321   void writeDICompileUnit(const DICompileUnit *N,
322                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
323   void writeDISubprogram(const DISubprogram *N,
324                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
325   void writeDILexicalBlock(const DILexicalBlock *N,
326                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
327   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
328                                SmallVectorImpl<uint64_t> &Record,
329                                unsigned Abbrev);
330   void writeDICommonBlock(const DICommonBlock *N,
331                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
332   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
333                         unsigned Abbrev);
334   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
335                     unsigned Abbrev);
336   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
337                         unsigned Abbrev);
338   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
339                       unsigned Abbrev);
340   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
341                      unsigned Abbrev);
342   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
343                                     SmallVectorImpl<uint64_t> &Record,
344                                     unsigned Abbrev);
345   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
346                                      SmallVectorImpl<uint64_t> &Record,
347                                      unsigned Abbrev);
348   void writeDIGlobalVariable(const DIGlobalVariable *N,
349                              SmallVectorImpl<uint64_t> &Record,
350                              unsigned Abbrev);
351   void writeDILocalVariable(const DILocalVariable *N,
352                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
353   void writeDILabel(const DILabel *N,
354                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
355   void writeDIExpression(const DIExpression *N,
356                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
357   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
358                                        SmallVectorImpl<uint64_t> &Record,
359                                        unsigned Abbrev);
360   void writeDIObjCProperty(const DIObjCProperty *N,
361                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
362   void writeDIImportedEntity(const DIImportedEntity *N,
363                              SmallVectorImpl<uint64_t> &Record,
364                              unsigned Abbrev);
365   unsigned createNamedMetadataAbbrev();
366   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
367   unsigned createMetadataStringsAbbrev();
368   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
369                             SmallVectorImpl<uint64_t> &Record);
370   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
371                             SmallVectorImpl<uint64_t> &Record,
372                             std::vector<unsigned> *MDAbbrevs = nullptr,
373                             std::vector<uint64_t> *IndexPos = nullptr);
374   void writeModuleMetadata();
375   void writeFunctionMetadata(const Function &F);
376   void writeFunctionMetadataAttachment(const Function &F);
377   void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV);
378   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
379                                     const GlobalObject &GO);
380   void writeModuleMetadataKinds();
381   void writeOperandBundleTags();
382   void writeSyncScopeNames();
383   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
384   void writeModuleConstants();
385   bool pushValueAndType(const Value *V, unsigned InstID,
386                         SmallVectorImpl<unsigned> &Vals);
387   void writeOperandBundles(const CallBase &CB, unsigned InstID);
388   void pushValue(const Value *V, unsigned InstID,
389                  SmallVectorImpl<unsigned> &Vals);
390   void pushValueSigned(const Value *V, unsigned InstID,
391                        SmallVectorImpl<uint64_t> &Vals);
392   void writeInstruction(const Instruction &I, unsigned InstID,
393                         SmallVectorImpl<unsigned> &Vals);
394   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
395   void writeGlobalValueSymbolTable(
396       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
397   void writeUseList(UseListOrder &&Order);
398   void writeUseListBlock(const Function *F);
399   void
400   writeFunction(const Function &F,
401                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
402   void writeBlockInfo();
403   void writeModuleHash(size_t BlockStartPos);
404 
getEncodedSyncScopeID(SyncScope::ID SSID)405   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
406     return unsigned(SSID);
407   }
408 
getEncodedAlign(MaybeAlign Alignment)409   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
410 };
411 
412 /// Class to manage the bitcode writing for a combined index.
413 class IndexBitcodeWriter : public BitcodeWriterBase {
414   /// The combined index to write to bitcode.
415   const ModuleSummaryIndex &Index;
416 
417   /// When writing a subset of the index for distributed backends, client
418   /// provides a map of modules to the corresponding GUIDs/summaries to write.
419   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
420 
421   /// Map that holds the correspondence between the GUID used in the combined
422   /// index and a value id generated by this class to use in references.
423   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
424 
425   /// Tracks the last value id recorded in the GUIDToValueMap.
426   unsigned GlobalValueId = 0;
427 
428 public:
429   /// Constructs a IndexBitcodeWriter object for the given combined index,
430   /// writing to the provided \p Buffer. When writing a subset of the index
431   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
IndexBitcodeWriter(BitstreamWriter & Stream,StringTableBuilder & StrtabBuilder,const ModuleSummaryIndex & Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex=nullptr)432   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
433                      const ModuleSummaryIndex &Index,
434                      const std::map<std::string, GVSummaryMapTy>
435                          *ModuleToSummariesForIndex = nullptr)
436       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
437         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
438     // Assign unique value ids to all summaries to be written, for use
439     // in writing out the call graph edges. Save the mapping from GUID
440     // to the new global value id to use when writing those edges, which
441     // are currently saved in the index in terms of GUID.
442     forEachSummary([&](GVInfo I, bool) {
443       GUIDToValueIdMap[I.first] = ++GlobalValueId;
444     });
445   }
446 
447   /// The below iterator returns the GUID and associated summary.
448   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
449 
450   /// Calls the callback for each value GUID and summary to be written to
451   /// bitcode. This hides the details of whether they are being pulled from the
452   /// entire index or just those in a provided ModuleToSummariesForIndex map.
453   template<typename Functor>
forEachSummary(Functor Callback)454   void forEachSummary(Functor Callback) {
455     if (ModuleToSummariesForIndex) {
456       for (auto &M : *ModuleToSummariesForIndex)
457         for (auto &Summary : M.second) {
458           Callback(Summary, false);
459           // Ensure aliasee is handled, e.g. for assigning a valueId,
460           // even if we are not importing the aliasee directly (the
461           // imported alias will contain a copy of aliasee).
462           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
463             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
464         }
465     } else {
466       for (auto &Summaries : Index)
467         for (auto &Summary : Summaries.second.SummaryList)
468           Callback({Summaries.first, Summary.get()}, false);
469     }
470   }
471 
472   /// Calls the callback for each entry in the modulePaths StringMap that
473   /// should be written to the module path string table. This hides the details
474   /// of whether they are being pulled from the entire index or just those in a
475   /// provided ModuleToSummariesForIndex map.
forEachModule(Functor Callback)476   template <typename Functor> void forEachModule(Functor Callback) {
477     if (ModuleToSummariesForIndex) {
478       for (const auto &M : *ModuleToSummariesForIndex) {
479         const auto &MPI = Index.modulePaths().find(M.first);
480         if (MPI == Index.modulePaths().end()) {
481           // This should only happen if the bitcode file was empty, in which
482           // case we shouldn't be importing (the ModuleToSummariesForIndex
483           // would only include the module we are writing and index for).
484           assert(ModuleToSummariesForIndex->size() == 1);
485           continue;
486         }
487         Callback(*MPI);
488       }
489     } else {
490       for (const auto &MPSE : Index.modulePaths())
491         Callback(MPSE);
492     }
493   }
494 
495   /// Main entry point for writing a combined index to bitcode.
496   void write();
497 
498 private:
499   void writeModStrings();
500   void writeCombinedGlobalValueSummary();
501 
getValueId(GlobalValue::GUID ValGUID)502   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
503     auto VMI = GUIDToValueIdMap.find(ValGUID);
504     if (VMI == GUIDToValueIdMap.end())
505       return None;
506     return VMI->second;
507   }
508 
valueIds()509   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
510 };
511 
512 } // end anonymous namespace
513 
getEncodedCastOpcode(unsigned Opcode)514 static unsigned getEncodedCastOpcode(unsigned Opcode) {
515   switch (Opcode) {
516   default: llvm_unreachable("Unknown cast instruction!");
517   case Instruction::Trunc   : return bitc::CAST_TRUNC;
518   case Instruction::ZExt    : return bitc::CAST_ZEXT;
519   case Instruction::SExt    : return bitc::CAST_SEXT;
520   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
521   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
522   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
523   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
524   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
525   case Instruction::FPExt   : return bitc::CAST_FPEXT;
526   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
527   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
528   case Instruction::BitCast : return bitc::CAST_BITCAST;
529   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
530   }
531 }
532 
getEncodedUnaryOpcode(unsigned Opcode)533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
534   switch (Opcode) {
535   default: llvm_unreachable("Unknown binary instruction!");
536   case Instruction::FNeg: return bitc::UNOP_FNEG;
537   }
538 }
539 
getEncodedBinaryOpcode(unsigned Opcode)540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
541   switch (Opcode) {
542   default: llvm_unreachable("Unknown binary instruction!");
543   case Instruction::Add:
544   case Instruction::FAdd: return bitc::BINOP_ADD;
545   case Instruction::Sub:
546   case Instruction::FSub: return bitc::BINOP_SUB;
547   case Instruction::Mul:
548   case Instruction::FMul: return bitc::BINOP_MUL;
549   case Instruction::UDiv: return bitc::BINOP_UDIV;
550   case Instruction::FDiv:
551   case Instruction::SDiv: return bitc::BINOP_SDIV;
552   case Instruction::URem: return bitc::BINOP_UREM;
553   case Instruction::FRem:
554   case Instruction::SRem: return bitc::BINOP_SREM;
555   case Instruction::Shl:  return bitc::BINOP_SHL;
556   case Instruction::LShr: return bitc::BINOP_LSHR;
557   case Instruction::AShr: return bitc::BINOP_ASHR;
558   case Instruction::And:  return bitc::BINOP_AND;
559   case Instruction::Or:   return bitc::BINOP_OR;
560   case Instruction::Xor:  return bitc::BINOP_XOR;
561   }
562 }
563 
getEncodedRMWOperation(AtomicRMWInst::BinOp Op)564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
565   switch (Op) {
566   default: llvm_unreachable("Unknown RMW operation!");
567   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
568   case AtomicRMWInst::Add: return bitc::RMW_ADD;
569   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
570   case AtomicRMWInst::And: return bitc::RMW_AND;
571   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
572   case AtomicRMWInst::Or: return bitc::RMW_OR;
573   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
574   case AtomicRMWInst::Max: return bitc::RMW_MAX;
575   case AtomicRMWInst::Min: return bitc::RMW_MIN;
576   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
577   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
578   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
579   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
580   }
581 }
582 
getEncodedOrdering(AtomicOrdering Ordering)583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
584   switch (Ordering) {
585   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
586   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
587   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
588   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
589   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
590   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
591   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
592   }
593   llvm_unreachable("Invalid ordering");
594 }
595 
writeStringRecord(BitstreamWriter & Stream,unsigned Code,StringRef Str,unsigned AbbrevToUse)596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
597                               StringRef Str, unsigned AbbrevToUse) {
598   SmallVector<unsigned, 64> Vals;
599 
600   // Code: [strchar x N]
601   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
602     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
603       AbbrevToUse = 0;
604     Vals.push_back(Str[i]);
605   }
606 
607   // Emit the finished record.
608   Stream.EmitRecord(Code, Vals, AbbrevToUse);
609 }
610 
getAttrKindEncoding(Attribute::AttrKind Kind)611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
612   switch (Kind) {
613   case Attribute::Alignment:
614     return bitc::ATTR_KIND_ALIGNMENT;
615   case Attribute::AllocSize:
616     return bitc::ATTR_KIND_ALLOC_SIZE;
617   case Attribute::AlwaysInline:
618     return bitc::ATTR_KIND_ALWAYS_INLINE;
619   case Attribute::ArgMemOnly:
620     return bitc::ATTR_KIND_ARGMEMONLY;
621   case Attribute::Builtin:
622     return bitc::ATTR_KIND_BUILTIN;
623   case Attribute::ByVal:
624     return bitc::ATTR_KIND_BY_VAL;
625   case Attribute::Convergent:
626     return bitc::ATTR_KIND_CONVERGENT;
627   case Attribute::InAlloca:
628     return bitc::ATTR_KIND_IN_ALLOCA;
629   case Attribute::Cold:
630     return bitc::ATTR_KIND_COLD;
631   case Attribute::Hot:
632     return bitc::ATTR_KIND_HOT;
633   case Attribute::InaccessibleMemOnly:
634     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
635   case Attribute::InaccessibleMemOrArgMemOnly:
636     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
637   case Attribute::InlineHint:
638     return bitc::ATTR_KIND_INLINE_HINT;
639   case Attribute::InReg:
640     return bitc::ATTR_KIND_IN_REG;
641   case Attribute::JumpTable:
642     return bitc::ATTR_KIND_JUMP_TABLE;
643   case Attribute::MinSize:
644     return bitc::ATTR_KIND_MIN_SIZE;
645   case Attribute::Naked:
646     return bitc::ATTR_KIND_NAKED;
647   case Attribute::Nest:
648     return bitc::ATTR_KIND_NEST;
649   case Attribute::NoAlias:
650     return bitc::ATTR_KIND_NO_ALIAS;
651   case Attribute::NoBuiltin:
652     return bitc::ATTR_KIND_NO_BUILTIN;
653   case Attribute::NoCallback:
654     return bitc::ATTR_KIND_NO_CALLBACK;
655   case Attribute::NoCapture:
656     return bitc::ATTR_KIND_NO_CAPTURE;
657   case Attribute::NoDuplicate:
658     return bitc::ATTR_KIND_NO_DUPLICATE;
659   case Attribute::NoFree:
660     return bitc::ATTR_KIND_NOFREE;
661   case Attribute::NoImplicitFloat:
662     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
663   case Attribute::NoInline:
664     return bitc::ATTR_KIND_NO_INLINE;
665   case Attribute::NoRecurse:
666     return bitc::ATTR_KIND_NO_RECURSE;
667   case Attribute::NoMerge:
668     return bitc::ATTR_KIND_NO_MERGE;
669   case Attribute::NonLazyBind:
670     return bitc::ATTR_KIND_NON_LAZY_BIND;
671   case Attribute::NonNull:
672     return bitc::ATTR_KIND_NON_NULL;
673   case Attribute::Dereferenceable:
674     return bitc::ATTR_KIND_DEREFERENCEABLE;
675   case Attribute::DereferenceableOrNull:
676     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
677   case Attribute::NoRedZone:
678     return bitc::ATTR_KIND_NO_RED_ZONE;
679   case Attribute::NoReturn:
680     return bitc::ATTR_KIND_NO_RETURN;
681   case Attribute::NoSync:
682     return bitc::ATTR_KIND_NOSYNC;
683   case Attribute::NoCfCheck:
684     return bitc::ATTR_KIND_NOCF_CHECK;
685   case Attribute::NoProfile:
686     return bitc::ATTR_KIND_NO_PROFILE;
687   case Attribute::NoUnwind:
688     return bitc::ATTR_KIND_NO_UNWIND;
689   case Attribute::NullPointerIsValid:
690     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
691   case Attribute::OptForFuzzing:
692     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
693   case Attribute::OptimizeForSize:
694     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
695   case Attribute::OptimizeNone:
696     return bitc::ATTR_KIND_OPTIMIZE_NONE;
697   case Attribute::ReadNone:
698     return bitc::ATTR_KIND_READ_NONE;
699   case Attribute::ReadOnly:
700     return bitc::ATTR_KIND_READ_ONLY;
701   case Attribute::Returned:
702     return bitc::ATTR_KIND_RETURNED;
703   case Attribute::ReturnsTwice:
704     return bitc::ATTR_KIND_RETURNS_TWICE;
705   case Attribute::SExt:
706     return bitc::ATTR_KIND_S_EXT;
707   case Attribute::Speculatable:
708     return bitc::ATTR_KIND_SPECULATABLE;
709   case Attribute::StackAlignment:
710     return bitc::ATTR_KIND_STACK_ALIGNMENT;
711   case Attribute::StackProtect:
712     return bitc::ATTR_KIND_STACK_PROTECT;
713   case Attribute::StackProtectReq:
714     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
715   case Attribute::StackProtectStrong:
716     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
717   case Attribute::SafeStack:
718     return bitc::ATTR_KIND_SAFESTACK;
719   case Attribute::ShadowCallStack:
720     return bitc::ATTR_KIND_SHADOWCALLSTACK;
721   case Attribute::StrictFP:
722     return bitc::ATTR_KIND_STRICT_FP;
723   case Attribute::StructRet:
724     return bitc::ATTR_KIND_STRUCT_RET;
725   case Attribute::SanitizeAddress:
726     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
727   case Attribute::SanitizeHWAddress:
728     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
729   case Attribute::SanitizeThread:
730     return bitc::ATTR_KIND_SANITIZE_THREAD;
731   case Attribute::SanitizeMemory:
732     return bitc::ATTR_KIND_SANITIZE_MEMORY;
733   case Attribute::SpeculativeLoadHardening:
734     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
735   case Attribute::SwiftError:
736     return bitc::ATTR_KIND_SWIFT_ERROR;
737   case Attribute::SwiftSelf:
738     return bitc::ATTR_KIND_SWIFT_SELF;
739   case Attribute::SwiftAsync:
740     return bitc::ATTR_KIND_SWIFT_ASYNC;
741   case Attribute::UWTable:
742     return bitc::ATTR_KIND_UW_TABLE;
743   case Attribute::VScaleRange:
744     return bitc::ATTR_KIND_VSCALE_RANGE;
745   case Attribute::WillReturn:
746     return bitc::ATTR_KIND_WILLRETURN;
747   case Attribute::WriteOnly:
748     return bitc::ATTR_KIND_WRITEONLY;
749   case Attribute::ZExt:
750     return bitc::ATTR_KIND_Z_EXT;
751   case Attribute::ImmArg:
752     return bitc::ATTR_KIND_IMMARG;
753   case Attribute::SanitizeMemTag:
754     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
755   case Attribute::Preallocated:
756     return bitc::ATTR_KIND_PREALLOCATED;
757   case Attribute::NoUndef:
758     return bitc::ATTR_KIND_NOUNDEF;
759   case Attribute::ByRef:
760     return bitc::ATTR_KIND_BYREF;
761   case Attribute::MustProgress:
762     return bitc::ATTR_KIND_MUSTPROGRESS;
763   case Attribute::EndAttrKinds:
764     llvm_unreachable("Can not encode end-attribute kinds marker.");
765   case Attribute::None:
766     llvm_unreachable("Can not encode none-attribute.");
767   case Attribute::EmptyKey:
768   case Attribute::TombstoneKey:
769     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
770   }
771 
772   llvm_unreachable("Trying to encode unknown attribute");
773 }
774 
writeAttributeGroupTable()775 void ModuleBitcodeWriter::writeAttributeGroupTable() {
776   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
777       VE.getAttributeGroups();
778   if (AttrGrps.empty()) return;
779 
780   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
781 
782   SmallVector<uint64_t, 64> Record;
783   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
784     unsigned AttrListIndex = Pair.first;
785     AttributeSet AS = Pair.second;
786     Record.push_back(VE.getAttributeGroupID(Pair));
787     Record.push_back(AttrListIndex);
788 
789     for (Attribute Attr : AS) {
790       if (Attr.isEnumAttribute()) {
791         Record.push_back(0);
792         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
793       } else if (Attr.isIntAttribute()) {
794         Record.push_back(1);
795         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
796         Record.push_back(Attr.getValueAsInt());
797       } else if (Attr.isStringAttribute()) {
798         StringRef Kind = Attr.getKindAsString();
799         StringRef Val = Attr.getValueAsString();
800 
801         Record.push_back(Val.empty() ? 3 : 4);
802         Record.append(Kind.begin(), Kind.end());
803         Record.push_back(0);
804         if (!Val.empty()) {
805           Record.append(Val.begin(), Val.end());
806           Record.push_back(0);
807         }
808       } else {
809         assert(Attr.isTypeAttribute());
810         Type *Ty = Attr.getValueAsType();
811         Record.push_back(Ty ? 6 : 5);
812         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
813         if (Ty)
814           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
815       }
816     }
817 
818     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
819     Record.clear();
820   }
821 
822   Stream.ExitBlock();
823 }
824 
writeAttributeTable()825 void ModuleBitcodeWriter::writeAttributeTable() {
826   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
827   if (Attrs.empty()) return;
828 
829   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
830 
831   SmallVector<uint64_t, 64> Record;
832   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
833     AttributeList AL = Attrs[i];
834     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
835       AttributeSet AS = AL.getAttributes(i);
836       if (AS.hasAttributes())
837         Record.push_back(VE.getAttributeGroupID({i, AS}));
838     }
839 
840     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
841     Record.clear();
842   }
843 
844   Stream.ExitBlock();
845 }
846 
847 /// WriteTypeTable - Write out the type table for a module.
writeTypeTable()848 void ModuleBitcodeWriter::writeTypeTable() {
849   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
850 
851   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
852   SmallVector<uint64_t, 64> TypeVals;
853 
854   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
855 
856   // Abbrev for TYPE_CODE_POINTER.
857   auto Abbv = std::make_shared<BitCodeAbbrev>();
858   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
859   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
860   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
861   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
862 
863   // Abbrev for TYPE_CODE_OPAQUE_POINTER.
864   Abbv = std::make_shared<BitCodeAbbrev>();
865   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
866   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
867   unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
868 
869   // Abbrev for TYPE_CODE_FUNCTION.
870   Abbv = std::make_shared<BitCodeAbbrev>();
871   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
872   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
873   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
874   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
875   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
876 
877   // Abbrev for TYPE_CODE_STRUCT_ANON.
878   Abbv = std::make_shared<BitCodeAbbrev>();
879   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
880   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
881   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
882   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
883   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
884 
885   // Abbrev for TYPE_CODE_STRUCT_NAME.
886   Abbv = std::make_shared<BitCodeAbbrev>();
887   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
888   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
889   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
890   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
891 
892   // Abbrev for TYPE_CODE_STRUCT_NAMED.
893   Abbv = std::make_shared<BitCodeAbbrev>();
894   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
895   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
896   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
897   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
898   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
899 
900   // Abbrev for TYPE_CODE_ARRAY.
901   Abbv = std::make_shared<BitCodeAbbrev>();
902   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
903   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
904   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
905   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
906 
907   // Emit an entry count so the reader can reserve space.
908   TypeVals.push_back(TypeList.size());
909   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
910   TypeVals.clear();
911 
912   // Loop over all of the types, emitting each in turn.
913   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
914     Type *T = TypeList[i];
915     int AbbrevToUse = 0;
916     unsigned Code = 0;
917 
918     switch (T->getTypeID()) {
919     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
920     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
921     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
922     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
923     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
924     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
925     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
926     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
927     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
928     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
929     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
930     case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
931     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
932     case Type::IntegerTyID:
933       // INTEGER: [width]
934       Code = bitc::TYPE_CODE_INTEGER;
935       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
936       break;
937     case Type::PointerTyID: {
938       PointerType *PTy = cast<PointerType>(T);
939       unsigned AddressSpace = PTy->getAddressSpace();
940       if (PTy->isOpaque()) {
941         // OPAQUE_POINTER: [address space]
942         Code = bitc::TYPE_CODE_OPAQUE_POINTER;
943         TypeVals.push_back(AddressSpace);
944         if (AddressSpace == 0)
945           AbbrevToUse = OpaquePtrAbbrev;
946       } else {
947         // POINTER: [pointee type, address space]
948         Code = bitc::TYPE_CODE_POINTER;
949         TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
950         TypeVals.push_back(AddressSpace);
951         if (AddressSpace == 0)
952           AbbrevToUse = PtrAbbrev;
953       }
954       break;
955     }
956     case Type::FunctionTyID: {
957       FunctionType *FT = cast<FunctionType>(T);
958       // FUNCTION: [isvararg, retty, paramty x N]
959       Code = bitc::TYPE_CODE_FUNCTION;
960       TypeVals.push_back(FT->isVarArg());
961       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
962       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
963         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
964       AbbrevToUse = FunctionAbbrev;
965       break;
966     }
967     case Type::StructTyID: {
968       StructType *ST = cast<StructType>(T);
969       // STRUCT: [ispacked, eltty x N]
970       TypeVals.push_back(ST->isPacked());
971       // Output all of the element types.
972       for (StructType::element_iterator I = ST->element_begin(),
973            E = ST->element_end(); I != E; ++I)
974         TypeVals.push_back(VE.getTypeID(*I));
975 
976       if (ST->isLiteral()) {
977         Code = bitc::TYPE_CODE_STRUCT_ANON;
978         AbbrevToUse = StructAnonAbbrev;
979       } else {
980         if (ST->isOpaque()) {
981           Code = bitc::TYPE_CODE_OPAQUE;
982         } else {
983           Code = bitc::TYPE_CODE_STRUCT_NAMED;
984           AbbrevToUse = StructNamedAbbrev;
985         }
986 
987         // Emit the name if it is present.
988         if (!ST->getName().empty())
989           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
990                             StructNameAbbrev);
991       }
992       break;
993     }
994     case Type::ArrayTyID: {
995       ArrayType *AT = cast<ArrayType>(T);
996       // ARRAY: [numelts, eltty]
997       Code = bitc::TYPE_CODE_ARRAY;
998       TypeVals.push_back(AT->getNumElements());
999       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1000       AbbrevToUse = ArrayAbbrev;
1001       break;
1002     }
1003     case Type::FixedVectorTyID:
1004     case Type::ScalableVectorTyID: {
1005       VectorType *VT = cast<VectorType>(T);
1006       // VECTOR [numelts, eltty] or
1007       //        [numelts, eltty, scalable]
1008       Code = bitc::TYPE_CODE_VECTOR;
1009       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1010       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1011       if (isa<ScalableVectorType>(VT))
1012         TypeVals.push_back(true);
1013       break;
1014     }
1015     }
1016 
1017     // Emit the finished record.
1018     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1019     TypeVals.clear();
1020   }
1021 
1022   Stream.ExitBlock();
1023 }
1024 
getEncodedLinkage(const GlobalValue::LinkageTypes Linkage)1025 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1026   switch (Linkage) {
1027   case GlobalValue::ExternalLinkage:
1028     return 0;
1029   case GlobalValue::WeakAnyLinkage:
1030     return 16;
1031   case GlobalValue::AppendingLinkage:
1032     return 2;
1033   case GlobalValue::InternalLinkage:
1034     return 3;
1035   case GlobalValue::LinkOnceAnyLinkage:
1036     return 18;
1037   case GlobalValue::ExternalWeakLinkage:
1038     return 7;
1039   case GlobalValue::CommonLinkage:
1040     return 8;
1041   case GlobalValue::PrivateLinkage:
1042     return 9;
1043   case GlobalValue::WeakODRLinkage:
1044     return 17;
1045   case GlobalValue::LinkOnceODRLinkage:
1046     return 19;
1047   case GlobalValue::AvailableExternallyLinkage:
1048     return 12;
1049   }
1050   llvm_unreachable("Invalid linkage");
1051 }
1052 
getEncodedLinkage(const GlobalValue & GV)1053 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1054   return getEncodedLinkage(GV.getLinkage());
1055 }
1056 
getEncodedFFlags(FunctionSummary::FFlags Flags)1057 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1058   uint64_t RawFlags = 0;
1059   RawFlags |= Flags.ReadNone;
1060   RawFlags |= (Flags.ReadOnly << 1);
1061   RawFlags |= (Flags.NoRecurse << 2);
1062   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1063   RawFlags |= (Flags.NoInline << 4);
1064   RawFlags |= (Flags.AlwaysInline << 5);
1065   return RawFlags;
1066 }
1067 
1068 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1069 // in BitcodeReader.cpp.
getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags)1070 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1071   uint64_t RawFlags = 0;
1072 
1073   RawFlags |= Flags.NotEligibleToImport; // bool
1074   RawFlags |= (Flags.Live << 1);
1075   RawFlags |= (Flags.DSOLocal << 2);
1076   RawFlags |= (Flags.CanAutoHide << 3);
1077 
1078   // Linkage don't need to be remapped at that time for the summary. Any future
1079   // change to the getEncodedLinkage() function will need to be taken into
1080   // account here as well.
1081   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1082 
1083   RawFlags |= (Flags.Visibility << 8); // 2 bits
1084 
1085   return RawFlags;
1086 }
1087 
getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags)1088 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1089   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1090                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1091   return RawFlags;
1092 }
1093 
getEncodedVisibility(const GlobalValue & GV)1094 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1095   switch (GV.getVisibility()) {
1096   case GlobalValue::DefaultVisibility:   return 0;
1097   case GlobalValue::HiddenVisibility:    return 1;
1098   case GlobalValue::ProtectedVisibility: return 2;
1099   }
1100   llvm_unreachable("Invalid visibility");
1101 }
1102 
getEncodedDLLStorageClass(const GlobalValue & GV)1103 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1104   switch (GV.getDLLStorageClass()) {
1105   case GlobalValue::DefaultStorageClass:   return 0;
1106   case GlobalValue::DLLImportStorageClass: return 1;
1107   case GlobalValue::DLLExportStorageClass: return 2;
1108   }
1109   llvm_unreachable("Invalid DLL storage class");
1110 }
1111 
getEncodedThreadLocalMode(const GlobalValue & GV)1112 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1113   switch (GV.getThreadLocalMode()) {
1114     case GlobalVariable::NotThreadLocal:         return 0;
1115     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1116     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1117     case GlobalVariable::InitialExecTLSModel:    return 3;
1118     case GlobalVariable::LocalExecTLSModel:      return 4;
1119   }
1120   llvm_unreachable("Invalid TLS model");
1121 }
1122 
getEncodedComdatSelectionKind(const Comdat & C)1123 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1124   switch (C.getSelectionKind()) {
1125   case Comdat::Any:
1126     return bitc::COMDAT_SELECTION_KIND_ANY;
1127   case Comdat::ExactMatch:
1128     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1129   case Comdat::Largest:
1130     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1131   case Comdat::NoDuplicates:
1132     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1133   case Comdat::SameSize:
1134     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1135   }
1136   llvm_unreachable("Invalid selection kind");
1137 }
1138 
getEncodedUnnamedAddr(const GlobalValue & GV)1139 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1140   switch (GV.getUnnamedAddr()) {
1141   case GlobalValue::UnnamedAddr::None:   return 0;
1142   case GlobalValue::UnnamedAddr::Local:  return 2;
1143   case GlobalValue::UnnamedAddr::Global: return 1;
1144   }
1145   llvm_unreachable("Invalid unnamed_addr");
1146 }
1147 
addToStrtab(StringRef Str)1148 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1149   if (GenerateHash)
1150     Hasher.update(Str);
1151   return StrtabBuilder.add(Str);
1152 }
1153 
writeComdats()1154 void ModuleBitcodeWriter::writeComdats() {
1155   SmallVector<unsigned, 64> Vals;
1156   for (const Comdat *C : VE.getComdats()) {
1157     // COMDAT: [strtab offset, strtab size, selection_kind]
1158     Vals.push_back(addToStrtab(C->getName()));
1159     Vals.push_back(C->getName().size());
1160     Vals.push_back(getEncodedComdatSelectionKind(*C));
1161     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1162     Vals.clear();
1163   }
1164 }
1165 
1166 /// Write a record that will eventually hold the word offset of the
1167 /// module-level VST. For now the offset is 0, which will be backpatched
1168 /// after the real VST is written. Saves the bit offset to backpatch.
writeValueSymbolTableForwardDecl()1169 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1170   // Write a placeholder value in for the offset of the real VST,
1171   // which is written after the function blocks so that it can include
1172   // the offset of each function. The placeholder offset will be
1173   // updated when the real VST is written.
1174   auto Abbv = std::make_shared<BitCodeAbbrev>();
1175   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1176   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1177   // hold the real VST offset. Must use fixed instead of VBR as we don't
1178   // know how many VBR chunks to reserve ahead of time.
1179   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1180   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1181 
1182   // Emit the placeholder
1183   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1184   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1185 
1186   // Compute and save the bit offset to the placeholder, which will be
1187   // patched when the real VST is written. We can simply subtract the 32-bit
1188   // fixed size from the current bit number to get the location to backpatch.
1189   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1190 }
1191 
1192 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1193 
1194 /// Determine the encoding to use for the given string name and length.
getStringEncoding(StringRef Str)1195 static StringEncoding getStringEncoding(StringRef Str) {
1196   bool isChar6 = true;
1197   for (char C : Str) {
1198     if (isChar6)
1199       isChar6 = BitCodeAbbrevOp::isChar6(C);
1200     if ((unsigned char)C & 128)
1201       // don't bother scanning the rest.
1202       return SE_Fixed8;
1203   }
1204   if (isChar6)
1205     return SE_Char6;
1206   return SE_Fixed7;
1207 }
1208 
1209 /// Emit top-level description of module, including target triple, inline asm,
1210 /// descriptors for global variables, and function prototype info.
1211 /// Returns the bit offset to backpatch with the location of the real VST.
writeModuleInfo()1212 void ModuleBitcodeWriter::writeModuleInfo() {
1213   // Emit various pieces of data attached to a module.
1214   if (!M.getTargetTriple().empty())
1215     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1216                       0 /*TODO*/);
1217   const std::string &DL = M.getDataLayoutStr();
1218   if (!DL.empty())
1219     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1220   if (!M.getModuleInlineAsm().empty())
1221     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1222                       0 /*TODO*/);
1223 
1224   // Emit information about sections and GC, computing how many there are. Also
1225   // compute the maximum alignment value.
1226   std::map<std::string, unsigned> SectionMap;
1227   std::map<std::string, unsigned> GCMap;
1228   MaybeAlign MaxAlignment;
1229   unsigned MaxGlobalType = 0;
1230   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1231     if (A)
1232       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1233   };
1234   for (const GlobalVariable &GV : M.globals()) {
1235     UpdateMaxAlignment(GV.getAlign());
1236     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1237     if (GV.hasSection()) {
1238       // Give section names unique ID's.
1239       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1240       if (!Entry) {
1241         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1242                           0 /*TODO*/);
1243         Entry = SectionMap.size();
1244       }
1245     }
1246   }
1247   for (const Function &F : M) {
1248     UpdateMaxAlignment(F.getAlign());
1249     if (F.hasSection()) {
1250       // Give section names unique ID's.
1251       unsigned &Entry = SectionMap[std::string(F.getSection())];
1252       if (!Entry) {
1253         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1254                           0 /*TODO*/);
1255         Entry = SectionMap.size();
1256       }
1257     }
1258     if (F.hasGC()) {
1259       // Same for GC names.
1260       unsigned &Entry = GCMap[F.getGC()];
1261       if (!Entry) {
1262         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1263                           0 /*TODO*/);
1264         Entry = GCMap.size();
1265       }
1266     }
1267   }
1268 
1269   // Emit abbrev for globals, now that we know # sections and max alignment.
1270   unsigned SimpleGVarAbbrev = 0;
1271   if (!M.global_empty()) {
1272     // Add an abbrev for common globals with no visibility or thread localness.
1273     auto Abbv = std::make_shared<BitCodeAbbrev>();
1274     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1275     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1276     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1277     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1278                               Log2_32_Ceil(MaxGlobalType+1)));
1279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1280                                                            //| explicitType << 1
1281                                                            //| constant
1282     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1283     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1284     if (!MaxAlignment)                                     // Alignment.
1285       Abbv->Add(BitCodeAbbrevOp(0));
1286     else {
1287       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1288       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1289                                Log2_32_Ceil(MaxEncAlignment+1)));
1290     }
1291     if (SectionMap.empty())                                    // Section.
1292       Abbv->Add(BitCodeAbbrevOp(0));
1293     else
1294       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1295                                Log2_32_Ceil(SectionMap.size()+1)));
1296     // Don't bother emitting vis + thread local.
1297     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1298   }
1299 
1300   SmallVector<unsigned, 64> Vals;
1301   // Emit the module's source file name.
1302   {
1303     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1304     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1305     if (Bits == SE_Char6)
1306       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1307     else if (Bits == SE_Fixed7)
1308       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1309 
1310     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1311     auto Abbv = std::make_shared<BitCodeAbbrev>();
1312     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1313     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1314     Abbv->Add(AbbrevOpToUse);
1315     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1316 
1317     for (const auto P : M.getSourceFileName())
1318       Vals.push_back((unsigned char)P);
1319 
1320     // Emit the finished record.
1321     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1322     Vals.clear();
1323   }
1324 
1325   // Emit the global variable information.
1326   for (const GlobalVariable &GV : M.globals()) {
1327     unsigned AbbrevToUse = 0;
1328 
1329     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1330     //             linkage, alignment, section, visibility, threadlocal,
1331     //             unnamed_addr, externally_initialized, dllstorageclass,
1332     //             comdat, attributes, DSO_Local]
1333     Vals.push_back(addToStrtab(GV.getName()));
1334     Vals.push_back(GV.getName().size());
1335     Vals.push_back(VE.getTypeID(GV.getValueType()));
1336     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1337     Vals.push_back(GV.isDeclaration() ? 0 :
1338                    (VE.getValueID(GV.getInitializer()) + 1));
1339     Vals.push_back(getEncodedLinkage(GV));
1340     Vals.push_back(getEncodedAlign(GV.getAlign()));
1341     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1342                                    : 0);
1343     if (GV.isThreadLocal() ||
1344         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1345         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1346         GV.isExternallyInitialized() ||
1347         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1348         GV.hasComdat() ||
1349         GV.hasAttributes() ||
1350         GV.isDSOLocal() ||
1351         GV.hasPartition()) {
1352       Vals.push_back(getEncodedVisibility(GV));
1353       Vals.push_back(getEncodedThreadLocalMode(GV));
1354       Vals.push_back(getEncodedUnnamedAddr(GV));
1355       Vals.push_back(GV.isExternallyInitialized());
1356       Vals.push_back(getEncodedDLLStorageClass(GV));
1357       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1358 
1359       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1360       Vals.push_back(VE.getAttributeListID(AL));
1361 
1362       Vals.push_back(GV.isDSOLocal());
1363       Vals.push_back(addToStrtab(GV.getPartition()));
1364       Vals.push_back(GV.getPartition().size());
1365     } else {
1366       AbbrevToUse = SimpleGVarAbbrev;
1367     }
1368 
1369     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1370     Vals.clear();
1371   }
1372 
1373   // Emit the function proto information.
1374   for (const Function &F : M) {
1375     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1376     //             linkage, paramattrs, alignment, section, visibility, gc,
1377     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1378     //             prefixdata, personalityfn, DSO_Local, addrspace]
1379     Vals.push_back(addToStrtab(F.getName()));
1380     Vals.push_back(F.getName().size());
1381     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1382     Vals.push_back(F.getCallingConv());
1383     Vals.push_back(F.isDeclaration());
1384     Vals.push_back(getEncodedLinkage(F));
1385     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1386     Vals.push_back(getEncodedAlign(F.getAlign()));
1387     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1388                                   : 0);
1389     Vals.push_back(getEncodedVisibility(F));
1390     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1391     Vals.push_back(getEncodedUnnamedAddr(F));
1392     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1393                                        : 0);
1394     Vals.push_back(getEncodedDLLStorageClass(F));
1395     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1396     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1397                                      : 0);
1398     Vals.push_back(
1399         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1400 
1401     Vals.push_back(F.isDSOLocal());
1402     Vals.push_back(F.getAddressSpace());
1403     Vals.push_back(addToStrtab(F.getPartition()));
1404     Vals.push_back(F.getPartition().size());
1405 
1406     unsigned AbbrevToUse = 0;
1407     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1408     Vals.clear();
1409   }
1410 
1411   // Emit the alias information.
1412   for (const GlobalAlias &A : M.aliases()) {
1413     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1414     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1415     //         DSO_Local]
1416     Vals.push_back(addToStrtab(A.getName()));
1417     Vals.push_back(A.getName().size());
1418     Vals.push_back(VE.getTypeID(A.getValueType()));
1419     Vals.push_back(A.getType()->getAddressSpace());
1420     Vals.push_back(VE.getValueID(A.getAliasee()));
1421     Vals.push_back(getEncodedLinkage(A));
1422     Vals.push_back(getEncodedVisibility(A));
1423     Vals.push_back(getEncodedDLLStorageClass(A));
1424     Vals.push_back(getEncodedThreadLocalMode(A));
1425     Vals.push_back(getEncodedUnnamedAddr(A));
1426     Vals.push_back(A.isDSOLocal());
1427     Vals.push_back(addToStrtab(A.getPartition()));
1428     Vals.push_back(A.getPartition().size());
1429 
1430     unsigned AbbrevToUse = 0;
1431     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1432     Vals.clear();
1433   }
1434 
1435   // Emit the ifunc information.
1436   for (const GlobalIFunc &I : M.ifuncs()) {
1437     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1438     //         val#, linkage, visibility, DSO_Local]
1439     Vals.push_back(addToStrtab(I.getName()));
1440     Vals.push_back(I.getName().size());
1441     Vals.push_back(VE.getTypeID(I.getValueType()));
1442     Vals.push_back(I.getType()->getAddressSpace());
1443     Vals.push_back(VE.getValueID(I.getResolver()));
1444     Vals.push_back(getEncodedLinkage(I));
1445     Vals.push_back(getEncodedVisibility(I));
1446     Vals.push_back(I.isDSOLocal());
1447     Vals.push_back(addToStrtab(I.getPartition()));
1448     Vals.push_back(I.getPartition().size());
1449     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1450     Vals.clear();
1451   }
1452 
1453   writeValueSymbolTableForwardDecl();
1454 }
1455 
getOptimizationFlags(const Value * V)1456 static uint64_t getOptimizationFlags(const Value *V) {
1457   uint64_t Flags = 0;
1458 
1459   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1460     if (OBO->hasNoSignedWrap())
1461       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1462     if (OBO->hasNoUnsignedWrap())
1463       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1464   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1465     if (PEO->isExact())
1466       Flags |= 1 << bitc::PEO_EXACT;
1467   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1468     if (FPMO->hasAllowReassoc())
1469       Flags |= bitc::AllowReassoc;
1470     if (FPMO->hasNoNaNs())
1471       Flags |= bitc::NoNaNs;
1472     if (FPMO->hasNoInfs())
1473       Flags |= bitc::NoInfs;
1474     if (FPMO->hasNoSignedZeros())
1475       Flags |= bitc::NoSignedZeros;
1476     if (FPMO->hasAllowReciprocal())
1477       Flags |= bitc::AllowReciprocal;
1478     if (FPMO->hasAllowContract())
1479       Flags |= bitc::AllowContract;
1480     if (FPMO->hasApproxFunc())
1481       Flags |= bitc::ApproxFunc;
1482   }
1483 
1484   return Flags;
1485 }
1486 
writeValueAsMetadata(const ValueAsMetadata * MD,SmallVectorImpl<uint64_t> & Record)1487 void ModuleBitcodeWriter::writeValueAsMetadata(
1488     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1489   // Mimic an MDNode with a value as one operand.
1490   Value *V = MD->getValue();
1491   Record.push_back(VE.getTypeID(V->getType()));
1492   Record.push_back(VE.getValueID(V));
1493   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1494   Record.clear();
1495 }
1496 
writeMDTuple(const MDTuple * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1497 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1498                                        SmallVectorImpl<uint64_t> &Record,
1499                                        unsigned Abbrev) {
1500   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1501     Metadata *MD = N->getOperand(i);
1502     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1503            "Unexpected function-local metadata");
1504     Record.push_back(VE.getMetadataOrNullID(MD));
1505   }
1506   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1507                                     : bitc::METADATA_NODE,
1508                     Record, Abbrev);
1509   Record.clear();
1510 }
1511 
createDILocationAbbrev()1512 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1513   // Assume the column is usually under 128, and always output the inlined-at
1514   // location (it's never more expensive than building an array size 1).
1515   auto Abbv = std::make_shared<BitCodeAbbrev>();
1516   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1517   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1518   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1519   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1520   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1521   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1522   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1523   return Stream.EmitAbbrev(std::move(Abbv));
1524 }
1525 
writeDILocation(const DILocation * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1526 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1527                                           SmallVectorImpl<uint64_t> &Record,
1528                                           unsigned &Abbrev) {
1529   if (!Abbrev)
1530     Abbrev = createDILocationAbbrev();
1531 
1532   Record.push_back(N->isDistinct());
1533   Record.push_back(N->getLine());
1534   Record.push_back(N->getColumn());
1535   Record.push_back(VE.getMetadataID(N->getScope()));
1536   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1537   Record.push_back(N->isImplicitCode());
1538 
1539   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1540   Record.clear();
1541 }
1542 
createGenericDINodeAbbrev()1543 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1544   // Assume the column is usually under 128, and always output the inlined-at
1545   // location (it's never more expensive than building an array size 1).
1546   auto Abbv = std::make_shared<BitCodeAbbrev>();
1547   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1548   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1549   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1550   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1551   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1552   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1553   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1554   return Stream.EmitAbbrev(std::move(Abbv));
1555 }
1556 
writeGenericDINode(const GenericDINode * N,SmallVectorImpl<uint64_t> & Record,unsigned & Abbrev)1557 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1558                                              SmallVectorImpl<uint64_t> &Record,
1559                                              unsigned &Abbrev) {
1560   if (!Abbrev)
1561     Abbrev = createGenericDINodeAbbrev();
1562 
1563   Record.push_back(N->isDistinct());
1564   Record.push_back(N->getTag());
1565   Record.push_back(0); // Per-tag version field; unused for now.
1566 
1567   for (auto &I : N->operands())
1568     Record.push_back(VE.getMetadataOrNullID(I));
1569 
1570   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1571   Record.clear();
1572 }
1573 
writeDISubrange(const DISubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1574 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1575                                           SmallVectorImpl<uint64_t> &Record,
1576                                           unsigned Abbrev) {
1577   const uint64_t Version = 2 << 1;
1578   Record.push_back((uint64_t)N->isDistinct() | Version);
1579   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1580   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1581   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1582   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1583 
1584   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1585   Record.clear();
1586 }
1587 
writeDIGenericSubrange(const DIGenericSubrange * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1588 void ModuleBitcodeWriter::writeDIGenericSubrange(
1589     const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1590     unsigned Abbrev) {
1591   Record.push_back((uint64_t)N->isDistinct());
1592   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1593   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1594   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1595   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1596 
1597   Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1598   Record.clear();
1599 }
1600 
emitSignedInt64(SmallVectorImpl<uint64_t> & Vals,uint64_t V)1601 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1602   if ((int64_t)V >= 0)
1603     Vals.push_back(V << 1);
1604   else
1605     Vals.push_back((-V << 1) | 1);
1606 }
1607 
emitWideAPInt(SmallVectorImpl<uint64_t> & Vals,const APInt & A)1608 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1609   // We have an arbitrary precision integer value to write whose
1610   // bit width is > 64. However, in canonical unsigned integer
1611   // format it is likely that the high bits are going to be zero.
1612   // So, we only write the number of active words.
1613   unsigned NumWords = A.getActiveWords();
1614   const uint64_t *RawData = A.getRawData();
1615   for (unsigned i = 0; i < NumWords; i++)
1616     emitSignedInt64(Vals, RawData[i]);
1617 }
1618 
writeDIEnumerator(const DIEnumerator * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1619 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1620                                             SmallVectorImpl<uint64_t> &Record,
1621                                             unsigned Abbrev) {
1622   const uint64_t IsBigInt = 1 << 2;
1623   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1624   Record.push_back(N->getValue().getBitWidth());
1625   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1626   emitWideAPInt(Record, N->getValue());
1627 
1628   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1629   Record.clear();
1630 }
1631 
writeDIBasicType(const DIBasicType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1632 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1633                                            SmallVectorImpl<uint64_t> &Record,
1634                                            unsigned Abbrev) {
1635   Record.push_back(N->isDistinct());
1636   Record.push_back(N->getTag());
1637   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1638   Record.push_back(N->getSizeInBits());
1639   Record.push_back(N->getAlignInBits());
1640   Record.push_back(N->getEncoding());
1641   Record.push_back(N->getFlags());
1642 
1643   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1644   Record.clear();
1645 }
1646 
writeDIStringType(const DIStringType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1647 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1648                                             SmallVectorImpl<uint64_t> &Record,
1649                                             unsigned Abbrev) {
1650   Record.push_back(N->isDistinct());
1651   Record.push_back(N->getTag());
1652   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1653   Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1654   Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1655   Record.push_back(N->getSizeInBits());
1656   Record.push_back(N->getAlignInBits());
1657   Record.push_back(N->getEncoding());
1658 
1659   Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1660   Record.clear();
1661 }
1662 
writeDIDerivedType(const DIDerivedType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1663 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1664                                              SmallVectorImpl<uint64_t> &Record,
1665                                              unsigned Abbrev) {
1666   Record.push_back(N->isDistinct());
1667   Record.push_back(N->getTag());
1668   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1669   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1670   Record.push_back(N->getLine());
1671   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1672   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1673   Record.push_back(N->getSizeInBits());
1674   Record.push_back(N->getAlignInBits());
1675   Record.push_back(N->getOffsetInBits());
1676   Record.push_back(N->getFlags());
1677   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1678 
1679   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1680   // that there is no DWARF address space associated with DIDerivedType.
1681   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1682     Record.push_back(*DWARFAddressSpace + 1);
1683   else
1684     Record.push_back(0);
1685 
1686   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1687   Record.clear();
1688 }
1689 
writeDICompositeType(const DICompositeType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1690 void ModuleBitcodeWriter::writeDICompositeType(
1691     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1692     unsigned Abbrev) {
1693   const unsigned IsNotUsedInOldTypeRef = 0x2;
1694   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1695   Record.push_back(N->getTag());
1696   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1697   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1698   Record.push_back(N->getLine());
1699   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1700   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1701   Record.push_back(N->getSizeInBits());
1702   Record.push_back(N->getAlignInBits());
1703   Record.push_back(N->getOffsetInBits());
1704   Record.push_back(N->getFlags());
1705   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1706   Record.push_back(N->getRuntimeLang());
1707   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1708   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1709   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1710   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1711   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1712   Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1713   Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1714   Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1715 
1716   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1717   Record.clear();
1718 }
1719 
writeDISubroutineType(const DISubroutineType * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1720 void ModuleBitcodeWriter::writeDISubroutineType(
1721     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1722     unsigned Abbrev) {
1723   const unsigned HasNoOldTypeRefs = 0x2;
1724   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1725   Record.push_back(N->getFlags());
1726   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1727   Record.push_back(N->getCC());
1728 
1729   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1730   Record.clear();
1731 }
1732 
writeDIFile(const DIFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1733 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1734                                       SmallVectorImpl<uint64_t> &Record,
1735                                       unsigned Abbrev) {
1736   Record.push_back(N->isDistinct());
1737   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1738   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1739   if (N->getRawChecksum()) {
1740     Record.push_back(N->getRawChecksum()->Kind);
1741     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1742   } else {
1743     // Maintain backwards compatibility with the old internal representation of
1744     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1745     Record.push_back(0);
1746     Record.push_back(VE.getMetadataOrNullID(nullptr));
1747   }
1748   auto Source = N->getRawSource();
1749   if (Source)
1750     Record.push_back(VE.getMetadataOrNullID(*Source));
1751 
1752   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1753   Record.clear();
1754 }
1755 
writeDICompileUnit(const DICompileUnit * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1756 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1757                                              SmallVectorImpl<uint64_t> &Record,
1758                                              unsigned Abbrev) {
1759   assert(N->isDistinct() && "Expected distinct compile units");
1760   Record.push_back(/* IsDistinct */ true);
1761   Record.push_back(N->getSourceLanguage());
1762   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1763   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1764   Record.push_back(N->isOptimized());
1765   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1766   Record.push_back(N->getRuntimeVersion());
1767   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1768   Record.push_back(N->getEmissionKind());
1769   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1770   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1771   Record.push_back(/* subprograms */ 0);
1772   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1773   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1774   Record.push_back(N->getDWOId());
1775   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1776   Record.push_back(N->getSplitDebugInlining());
1777   Record.push_back(N->getDebugInfoForProfiling());
1778   Record.push_back((unsigned)N->getNameTableKind());
1779   Record.push_back(N->getRangesBaseAddress());
1780   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1781   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1782 
1783   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1784   Record.clear();
1785 }
1786 
writeDISubprogram(const DISubprogram * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1787 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1788                                             SmallVectorImpl<uint64_t> &Record,
1789                                             unsigned Abbrev) {
1790   const uint64_t HasUnitFlag = 1 << 1;
1791   const uint64_t HasSPFlagsFlag = 1 << 2;
1792   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1793   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1794   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1795   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1796   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1797   Record.push_back(N->getLine());
1798   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1799   Record.push_back(N->getScopeLine());
1800   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1801   Record.push_back(N->getSPFlags());
1802   Record.push_back(N->getVirtualIndex());
1803   Record.push_back(N->getFlags());
1804   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1805   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1806   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1807   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1808   Record.push_back(N->getThisAdjustment());
1809   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1810 
1811   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1812   Record.clear();
1813 }
1814 
writeDILexicalBlock(const DILexicalBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1815 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1816                                               SmallVectorImpl<uint64_t> &Record,
1817                                               unsigned Abbrev) {
1818   Record.push_back(N->isDistinct());
1819   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1820   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1821   Record.push_back(N->getLine());
1822   Record.push_back(N->getColumn());
1823 
1824   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1825   Record.clear();
1826 }
1827 
writeDILexicalBlockFile(const DILexicalBlockFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1828 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1829     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1830     unsigned Abbrev) {
1831   Record.push_back(N->isDistinct());
1832   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1833   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1834   Record.push_back(N->getDiscriminator());
1835 
1836   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1837   Record.clear();
1838 }
1839 
writeDICommonBlock(const DICommonBlock * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1840 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1841                                              SmallVectorImpl<uint64_t> &Record,
1842                                              unsigned Abbrev) {
1843   Record.push_back(N->isDistinct());
1844   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1845   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1846   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1847   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1848   Record.push_back(N->getLineNo());
1849 
1850   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1851   Record.clear();
1852 }
1853 
writeDINamespace(const DINamespace * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1854 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1855                                            SmallVectorImpl<uint64_t> &Record,
1856                                            unsigned Abbrev) {
1857   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1858   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1859   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1860 
1861   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1862   Record.clear();
1863 }
1864 
writeDIMacro(const DIMacro * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1865 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1866                                        SmallVectorImpl<uint64_t> &Record,
1867                                        unsigned Abbrev) {
1868   Record.push_back(N->isDistinct());
1869   Record.push_back(N->getMacinfoType());
1870   Record.push_back(N->getLine());
1871   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1872   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1873 
1874   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1875   Record.clear();
1876 }
1877 
writeDIMacroFile(const DIMacroFile * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1878 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1879                                            SmallVectorImpl<uint64_t> &Record,
1880                                            unsigned Abbrev) {
1881   Record.push_back(N->isDistinct());
1882   Record.push_back(N->getMacinfoType());
1883   Record.push_back(N->getLine());
1884   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1885   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1886 
1887   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1888   Record.clear();
1889 }
1890 
writeDIArgList(const DIArgList * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1891 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
1892                                          SmallVectorImpl<uint64_t> &Record,
1893                                          unsigned Abbrev) {
1894   Record.reserve(N->getArgs().size());
1895   for (ValueAsMetadata *MD : N->getArgs())
1896     Record.push_back(VE.getMetadataID(MD));
1897 
1898   Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev);
1899   Record.clear();
1900 }
1901 
writeDIModule(const DIModule * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1902 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1903                                         SmallVectorImpl<uint64_t> &Record,
1904                                         unsigned Abbrev) {
1905   Record.push_back(N->isDistinct());
1906   for (auto &I : N->operands())
1907     Record.push_back(VE.getMetadataOrNullID(I));
1908   Record.push_back(N->getLineNo());
1909   Record.push_back(N->getIsDecl());
1910 
1911   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1912   Record.clear();
1913 }
1914 
writeDITemplateTypeParameter(const DITemplateTypeParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1915 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1916     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1917     unsigned Abbrev) {
1918   Record.push_back(N->isDistinct());
1919   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1920   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1921   Record.push_back(N->isDefault());
1922 
1923   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1924   Record.clear();
1925 }
1926 
writeDITemplateValueParameter(const DITemplateValueParameter * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1927 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1928     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1929     unsigned Abbrev) {
1930   Record.push_back(N->isDistinct());
1931   Record.push_back(N->getTag());
1932   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1933   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1934   Record.push_back(N->isDefault());
1935   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1936 
1937   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1938   Record.clear();
1939 }
1940 
writeDIGlobalVariable(const DIGlobalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1941 void ModuleBitcodeWriter::writeDIGlobalVariable(
1942     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1943     unsigned Abbrev) {
1944   const uint64_t Version = 2 << 1;
1945   Record.push_back((uint64_t)N->isDistinct() | Version);
1946   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1947   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1948   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1949   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1950   Record.push_back(N->getLine());
1951   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1952   Record.push_back(N->isLocalToUnit());
1953   Record.push_back(N->isDefinition());
1954   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1955   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1956   Record.push_back(N->getAlignInBits());
1957 
1958   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1959   Record.clear();
1960 }
1961 
writeDILocalVariable(const DILocalVariable * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1962 void ModuleBitcodeWriter::writeDILocalVariable(
1963     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1964     unsigned Abbrev) {
1965   // In order to support all possible bitcode formats in BitcodeReader we need
1966   // to distinguish the following cases:
1967   // 1) Record has no artificial tag (Record[1]),
1968   //   has no obsolete inlinedAt field (Record[9]).
1969   //   In this case Record size will be 8, HasAlignment flag is false.
1970   // 2) Record has artificial tag (Record[1]),
1971   //   has no obsolete inlignedAt field (Record[9]).
1972   //   In this case Record size will be 9, HasAlignment flag is false.
1973   // 3) Record has both artificial tag (Record[1]) and
1974   //   obsolete inlignedAt field (Record[9]).
1975   //   In this case Record size will be 10, HasAlignment flag is false.
1976   // 4) Record has neither artificial tag, nor inlignedAt field, but
1977   //   HasAlignment flag is true and Record[8] contains alignment value.
1978   const uint64_t HasAlignmentFlag = 1 << 1;
1979   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1980   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1981   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1982   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1983   Record.push_back(N->getLine());
1984   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1985   Record.push_back(N->getArg());
1986   Record.push_back(N->getFlags());
1987   Record.push_back(N->getAlignInBits());
1988 
1989   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1990   Record.clear();
1991 }
1992 
writeDILabel(const DILabel * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)1993 void ModuleBitcodeWriter::writeDILabel(
1994     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
1995     unsigned Abbrev) {
1996   Record.push_back((uint64_t)N->isDistinct());
1997   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1998   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1999   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2000   Record.push_back(N->getLine());
2001 
2002   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2003   Record.clear();
2004 }
2005 
writeDIExpression(const DIExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2006 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2007                                             SmallVectorImpl<uint64_t> &Record,
2008                                             unsigned Abbrev) {
2009   Record.reserve(N->getElements().size() + 1);
2010   const uint64_t Version = 3 << 1;
2011   Record.push_back((uint64_t)N->isDistinct() | Version);
2012   Record.append(N->elements_begin(), N->elements_end());
2013 
2014   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2015   Record.clear();
2016 }
2017 
writeDIGlobalVariableExpression(const DIGlobalVariableExpression * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2018 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2019     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2020     unsigned Abbrev) {
2021   Record.push_back(N->isDistinct());
2022   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2023   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2024 
2025   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2026   Record.clear();
2027 }
2028 
writeDIObjCProperty(const DIObjCProperty * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2029 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2030                                               SmallVectorImpl<uint64_t> &Record,
2031                                               unsigned Abbrev) {
2032   Record.push_back(N->isDistinct());
2033   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2034   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2035   Record.push_back(N->getLine());
2036   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2037   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2038   Record.push_back(N->getAttributes());
2039   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2040 
2041   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2042   Record.clear();
2043 }
2044 
writeDIImportedEntity(const DIImportedEntity * N,SmallVectorImpl<uint64_t> & Record,unsigned Abbrev)2045 void ModuleBitcodeWriter::writeDIImportedEntity(
2046     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2047     unsigned Abbrev) {
2048   Record.push_back(N->isDistinct());
2049   Record.push_back(N->getTag());
2050   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2051   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2052   Record.push_back(N->getLine());
2053   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2054   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2055 
2056   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2057   Record.clear();
2058 }
2059 
createNamedMetadataAbbrev()2060 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2061   auto Abbv = std::make_shared<BitCodeAbbrev>();
2062   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2063   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2064   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2065   return Stream.EmitAbbrev(std::move(Abbv));
2066 }
2067 
writeNamedMetadata(SmallVectorImpl<uint64_t> & Record)2068 void ModuleBitcodeWriter::writeNamedMetadata(
2069     SmallVectorImpl<uint64_t> &Record) {
2070   if (M.named_metadata_empty())
2071     return;
2072 
2073   unsigned Abbrev = createNamedMetadataAbbrev();
2074   for (const NamedMDNode &NMD : M.named_metadata()) {
2075     // Write name.
2076     StringRef Str = NMD.getName();
2077     Record.append(Str.bytes_begin(), Str.bytes_end());
2078     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2079     Record.clear();
2080 
2081     // Write named metadata operands.
2082     for (const MDNode *N : NMD.operands())
2083       Record.push_back(VE.getMetadataID(N));
2084     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2085     Record.clear();
2086   }
2087 }
2088 
createMetadataStringsAbbrev()2089 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2090   auto Abbv = std::make_shared<BitCodeAbbrev>();
2091   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2092   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2093   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2094   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2095   return Stream.EmitAbbrev(std::move(Abbv));
2096 }
2097 
2098 /// Write out a record for MDString.
2099 ///
2100 /// All the metadata strings in a metadata block are emitted in a single
2101 /// record.  The sizes and strings themselves are shoved into a blob.
writeMetadataStrings(ArrayRef<const Metadata * > Strings,SmallVectorImpl<uint64_t> & Record)2102 void ModuleBitcodeWriter::writeMetadataStrings(
2103     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2104   if (Strings.empty())
2105     return;
2106 
2107   // Start the record with the number of strings.
2108   Record.push_back(bitc::METADATA_STRINGS);
2109   Record.push_back(Strings.size());
2110 
2111   // Emit the sizes of the strings in the blob.
2112   SmallString<256> Blob;
2113   {
2114     BitstreamWriter W(Blob);
2115     for (const Metadata *MD : Strings)
2116       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2117     W.FlushToWord();
2118   }
2119 
2120   // Add the offset to the strings to the record.
2121   Record.push_back(Blob.size());
2122 
2123   // Add the strings to the blob.
2124   for (const Metadata *MD : Strings)
2125     Blob.append(cast<MDString>(MD)->getString());
2126 
2127   // Emit the final record.
2128   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2129   Record.clear();
2130 }
2131 
2132 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2133 enum MetadataAbbrev : unsigned {
2134 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2135 #include "llvm/IR/Metadata.def"
2136   LastPlusOne
2137 };
2138 
writeMetadataRecords(ArrayRef<const Metadata * > MDs,SmallVectorImpl<uint64_t> & Record,std::vector<unsigned> * MDAbbrevs,std::vector<uint64_t> * IndexPos)2139 void ModuleBitcodeWriter::writeMetadataRecords(
2140     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2141     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2142   if (MDs.empty())
2143     return;
2144 
2145   // Initialize MDNode abbreviations.
2146 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2147 #include "llvm/IR/Metadata.def"
2148 
2149   for (const Metadata *MD : MDs) {
2150     if (IndexPos)
2151       IndexPos->push_back(Stream.GetCurrentBitNo());
2152     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2153       assert(N->isResolved() && "Expected forward references to be resolved");
2154 
2155       switch (N->getMetadataID()) {
2156       default:
2157         llvm_unreachable("Invalid MDNode subclass");
2158 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2159   case Metadata::CLASS##Kind:                                                  \
2160     if (MDAbbrevs)                                                             \
2161       write##CLASS(cast<CLASS>(N), Record,                                     \
2162                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2163     else                                                                       \
2164       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2165     continue;
2166 #include "llvm/IR/Metadata.def"
2167       }
2168     }
2169     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2170   }
2171 }
2172 
writeModuleMetadata()2173 void ModuleBitcodeWriter::writeModuleMetadata() {
2174   if (!VE.hasMDs() && M.named_metadata_empty())
2175     return;
2176 
2177   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2178   SmallVector<uint64_t, 64> Record;
2179 
2180   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2181   // block and load any metadata.
2182   std::vector<unsigned> MDAbbrevs;
2183 
2184   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2185   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2186   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2187       createGenericDINodeAbbrev();
2188 
2189   auto Abbv = std::make_shared<BitCodeAbbrev>();
2190   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2191   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2192   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2193   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2194 
2195   Abbv = std::make_shared<BitCodeAbbrev>();
2196   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2197   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2198   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2199   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2200 
2201   // Emit MDStrings together upfront.
2202   writeMetadataStrings(VE.getMDStrings(), Record);
2203 
2204   // We only emit an index for the metadata record if we have more than a given
2205   // (naive) threshold of metadatas, otherwise it is not worth it.
2206   if (VE.getNonMDStrings().size() > IndexThreshold) {
2207     // Write a placeholder value in for the offset of the metadata index,
2208     // which is written after the records, so that it can include
2209     // the offset of each entry. The placeholder offset will be
2210     // updated after all records are emitted.
2211     uint64_t Vals[] = {0, 0};
2212     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2213   }
2214 
2215   // Compute and save the bit offset to the current position, which will be
2216   // patched when we emit the index later. We can simply subtract the 64-bit
2217   // fixed size from the current bit number to get the location to backpatch.
2218   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2219 
2220   // This index will contain the bitpos for each individual record.
2221   std::vector<uint64_t> IndexPos;
2222   IndexPos.reserve(VE.getNonMDStrings().size());
2223 
2224   // Write all the records
2225   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2226 
2227   if (VE.getNonMDStrings().size() > IndexThreshold) {
2228     // Now that we have emitted all the records we will emit the index. But
2229     // first
2230     // backpatch the forward reference so that the reader can skip the records
2231     // efficiently.
2232     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2233                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2234 
2235     // Delta encode the index.
2236     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2237     for (auto &Elt : IndexPos) {
2238       auto EltDelta = Elt - PreviousValue;
2239       PreviousValue = Elt;
2240       Elt = EltDelta;
2241     }
2242     // Emit the index record.
2243     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2244     IndexPos.clear();
2245   }
2246 
2247   // Write the named metadata now.
2248   writeNamedMetadata(Record);
2249 
2250   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2251     SmallVector<uint64_t, 4> Record;
2252     Record.push_back(VE.getValueID(&GO));
2253     pushGlobalMetadataAttachment(Record, GO);
2254     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2255   };
2256   for (const Function &F : M)
2257     if (F.isDeclaration() && F.hasMetadata())
2258       AddDeclAttachedMetadata(F);
2259   // FIXME: Only store metadata for declarations here, and move data for global
2260   // variable definitions to a separate block (PR28134).
2261   for (const GlobalVariable &GV : M.globals())
2262     if (GV.hasMetadata())
2263       AddDeclAttachedMetadata(GV);
2264 
2265   Stream.ExitBlock();
2266 }
2267 
writeFunctionMetadata(const Function & F)2268 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2269   if (!VE.hasMDs())
2270     return;
2271 
2272   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2273   SmallVector<uint64_t, 64> Record;
2274   writeMetadataStrings(VE.getMDStrings(), Record);
2275   writeMetadataRecords(VE.getNonMDStrings(), Record);
2276   Stream.ExitBlock();
2277 }
2278 
pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> & Record,const GlobalObject & GO)2279 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2280     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2281   // [n x [id, mdnode]]
2282   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2283   GO.getAllMetadata(MDs);
2284   for (const auto &I : MDs) {
2285     Record.push_back(I.first);
2286     Record.push_back(VE.getMetadataID(I.second));
2287   }
2288 }
2289 
writeFunctionMetadataAttachment(const Function & F)2290 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2291   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2292 
2293   SmallVector<uint64_t, 64> Record;
2294 
2295   if (F.hasMetadata()) {
2296     pushGlobalMetadataAttachment(Record, F);
2297     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2298     Record.clear();
2299   }
2300 
2301   // Write metadata attachments
2302   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2303   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2304   for (const BasicBlock &BB : F)
2305     for (const Instruction &I : BB) {
2306       MDs.clear();
2307       I.getAllMetadataOtherThanDebugLoc(MDs);
2308 
2309       // If no metadata, ignore instruction.
2310       if (MDs.empty()) continue;
2311 
2312       Record.push_back(VE.getInstructionID(&I));
2313 
2314       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2315         Record.push_back(MDs[i].first);
2316         Record.push_back(VE.getMetadataID(MDs[i].second));
2317       }
2318       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2319       Record.clear();
2320     }
2321 
2322   Stream.ExitBlock();
2323 }
2324 
writeModuleMetadataKinds()2325 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2326   SmallVector<uint64_t, 64> Record;
2327 
2328   // Write metadata kinds
2329   // METADATA_KIND - [n x [id, name]]
2330   SmallVector<StringRef, 8> Names;
2331   M.getMDKindNames(Names);
2332 
2333   if (Names.empty()) return;
2334 
2335   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2336 
2337   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2338     Record.push_back(MDKindID);
2339     StringRef KName = Names[MDKindID];
2340     Record.append(KName.begin(), KName.end());
2341 
2342     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2343     Record.clear();
2344   }
2345 
2346   Stream.ExitBlock();
2347 }
2348 
writeOperandBundleTags()2349 void ModuleBitcodeWriter::writeOperandBundleTags() {
2350   // Write metadata kinds
2351   //
2352   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2353   //
2354   // OPERAND_BUNDLE_TAG - [strchr x N]
2355 
2356   SmallVector<StringRef, 8> Tags;
2357   M.getOperandBundleTags(Tags);
2358 
2359   if (Tags.empty())
2360     return;
2361 
2362   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2363 
2364   SmallVector<uint64_t, 64> Record;
2365 
2366   for (auto Tag : Tags) {
2367     Record.append(Tag.begin(), Tag.end());
2368 
2369     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2370     Record.clear();
2371   }
2372 
2373   Stream.ExitBlock();
2374 }
2375 
writeSyncScopeNames()2376 void ModuleBitcodeWriter::writeSyncScopeNames() {
2377   SmallVector<StringRef, 8> SSNs;
2378   M.getContext().getSyncScopeNames(SSNs);
2379   if (SSNs.empty())
2380     return;
2381 
2382   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2383 
2384   SmallVector<uint64_t, 64> Record;
2385   for (auto SSN : SSNs) {
2386     Record.append(SSN.begin(), SSN.end());
2387     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2388     Record.clear();
2389   }
2390 
2391   Stream.ExitBlock();
2392 }
2393 
writeConstants(unsigned FirstVal,unsigned LastVal,bool isGlobal)2394 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2395                                          bool isGlobal) {
2396   if (FirstVal == LastVal) return;
2397 
2398   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2399 
2400   unsigned AggregateAbbrev = 0;
2401   unsigned String8Abbrev = 0;
2402   unsigned CString7Abbrev = 0;
2403   unsigned CString6Abbrev = 0;
2404   // If this is a constant pool for the module, emit module-specific abbrevs.
2405   if (isGlobal) {
2406     // Abbrev for CST_CODE_AGGREGATE.
2407     auto Abbv = std::make_shared<BitCodeAbbrev>();
2408     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2409     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2410     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2411     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2412 
2413     // Abbrev for CST_CODE_STRING.
2414     Abbv = std::make_shared<BitCodeAbbrev>();
2415     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2416     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2417     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2418     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2419     // Abbrev for CST_CODE_CSTRING.
2420     Abbv = std::make_shared<BitCodeAbbrev>();
2421     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2422     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2423     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2424     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2425     // Abbrev for CST_CODE_CSTRING.
2426     Abbv = std::make_shared<BitCodeAbbrev>();
2427     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2428     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2429     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2430     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2431   }
2432 
2433   SmallVector<uint64_t, 64> Record;
2434 
2435   const ValueEnumerator::ValueList &Vals = VE.getValues();
2436   Type *LastTy = nullptr;
2437   for (unsigned i = FirstVal; i != LastVal; ++i) {
2438     const Value *V = Vals[i].first;
2439     // If we need to switch types, do so now.
2440     if (V->getType() != LastTy) {
2441       LastTy = V->getType();
2442       Record.push_back(VE.getTypeID(LastTy));
2443       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2444                         CONSTANTS_SETTYPE_ABBREV);
2445       Record.clear();
2446     }
2447 
2448     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2449       Record.push_back(
2450           unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2451           unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2452 
2453       // Add the asm string.
2454       const std::string &AsmStr = IA->getAsmString();
2455       Record.push_back(AsmStr.size());
2456       Record.append(AsmStr.begin(), AsmStr.end());
2457 
2458       // Add the constraint string.
2459       const std::string &ConstraintStr = IA->getConstraintString();
2460       Record.push_back(ConstraintStr.size());
2461       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2462       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2463       Record.clear();
2464       continue;
2465     }
2466     const Constant *C = cast<Constant>(V);
2467     unsigned Code = -1U;
2468     unsigned AbbrevToUse = 0;
2469     if (C->isNullValue()) {
2470       Code = bitc::CST_CODE_NULL;
2471     } else if (isa<PoisonValue>(C)) {
2472       Code = bitc::CST_CODE_POISON;
2473     } else if (isa<UndefValue>(C)) {
2474       Code = bitc::CST_CODE_UNDEF;
2475     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2476       if (IV->getBitWidth() <= 64) {
2477         uint64_t V = IV->getSExtValue();
2478         emitSignedInt64(Record, V);
2479         Code = bitc::CST_CODE_INTEGER;
2480         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2481       } else {                             // Wide integers, > 64 bits in size.
2482         emitWideAPInt(Record, IV->getValue());
2483         Code = bitc::CST_CODE_WIDE_INTEGER;
2484       }
2485     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2486       Code = bitc::CST_CODE_FLOAT;
2487       Type *Ty = CFP->getType();
2488       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2489           Ty->isDoubleTy()) {
2490         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2491       } else if (Ty->isX86_FP80Ty()) {
2492         // api needed to prevent premature destruction
2493         // bits are not in the same order as a normal i80 APInt, compensate.
2494         APInt api = CFP->getValueAPF().bitcastToAPInt();
2495         const uint64_t *p = api.getRawData();
2496         Record.push_back((p[1] << 48) | (p[0] >> 16));
2497         Record.push_back(p[0] & 0xffffLL);
2498       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2499         APInt api = CFP->getValueAPF().bitcastToAPInt();
2500         const uint64_t *p = api.getRawData();
2501         Record.push_back(p[0]);
2502         Record.push_back(p[1]);
2503       } else {
2504         assert(0 && "Unknown FP type!");
2505       }
2506     } else if (isa<ConstantDataSequential>(C) &&
2507                cast<ConstantDataSequential>(C)->isString()) {
2508       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2509       // Emit constant strings specially.
2510       unsigned NumElts = Str->getNumElements();
2511       // If this is a null-terminated string, use the denser CSTRING encoding.
2512       if (Str->isCString()) {
2513         Code = bitc::CST_CODE_CSTRING;
2514         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2515       } else {
2516         Code = bitc::CST_CODE_STRING;
2517         AbbrevToUse = String8Abbrev;
2518       }
2519       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2520       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2521       for (unsigned i = 0; i != NumElts; ++i) {
2522         unsigned char V = Str->getElementAsInteger(i);
2523         Record.push_back(V);
2524         isCStr7 &= (V & 128) == 0;
2525         if (isCStrChar6)
2526           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2527       }
2528 
2529       if (isCStrChar6)
2530         AbbrevToUse = CString6Abbrev;
2531       else if (isCStr7)
2532         AbbrevToUse = CString7Abbrev;
2533     } else if (const ConstantDataSequential *CDS =
2534                   dyn_cast<ConstantDataSequential>(C)) {
2535       Code = bitc::CST_CODE_DATA;
2536       Type *EltTy = CDS->getElementType();
2537       if (isa<IntegerType>(EltTy)) {
2538         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2539           Record.push_back(CDS->getElementAsInteger(i));
2540       } else {
2541         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2542           Record.push_back(
2543               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2544       }
2545     } else if (isa<ConstantAggregate>(C)) {
2546       Code = bitc::CST_CODE_AGGREGATE;
2547       for (const Value *Op : C->operands())
2548         Record.push_back(VE.getValueID(Op));
2549       AbbrevToUse = AggregateAbbrev;
2550     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2551       switch (CE->getOpcode()) {
2552       default:
2553         if (Instruction::isCast(CE->getOpcode())) {
2554           Code = bitc::CST_CODE_CE_CAST;
2555           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2556           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2557           Record.push_back(VE.getValueID(C->getOperand(0)));
2558           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2559         } else {
2560           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2561           Code = bitc::CST_CODE_CE_BINOP;
2562           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2563           Record.push_back(VE.getValueID(C->getOperand(0)));
2564           Record.push_back(VE.getValueID(C->getOperand(1)));
2565           uint64_t Flags = getOptimizationFlags(CE);
2566           if (Flags != 0)
2567             Record.push_back(Flags);
2568         }
2569         break;
2570       case Instruction::FNeg: {
2571         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2572         Code = bitc::CST_CODE_CE_UNOP;
2573         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2574         Record.push_back(VE.getValueID(C->getOperand(0)));
2575         uint64_t Flags = getOptimizationFlags(CE);
2576         if (Flags != 0)
2577           Record.push_back(Flags);
2578         break;
2579       }
2580       case Instruction::GetElementPtr: {
2581         Code = bitc::CST_CODE_CE_GEP;
2582         const auto *GO = cast<GEPOperator>(C);
2583         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2584         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2585           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2586           Record.push_back((*Idx << 1) | GO->isInBounds());
2587         } else if (GO->isInBounds())
2588           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2589         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2590           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2591           Record.push_back(VE.getValueID(C->getOperand(i)));
2592         }
2593         break;
2594       }
2595       case Instruction::Select:
2596         Code = bitc::CST_CODE_CE_SELECT;
2597         Record.push_back(VE.getValueID(C->getOperand(0)));
2598         Record.push_back(VE.getValueID(C->getOperand(1)));
2599         Record.push_back(VE.getValueID(C->getOperand(2)));
2600         break;
2601       case Instruction::ExtractElement:
2602         Code = bitc::CST_CODE_CE_EXTRACTELT;
2603         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2604         Record.push_back(VE.getValueID(C->getOperand(0)));
2605         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2606         Record.push_back(VE.getValueID(C->getOperand(1)));
2607         break;
2608       case Instruction::InsertElement:
2609         Code = bitc::CST_CODE_CE_INSERTELT;
2610         Record.push_back(VE.getValueID(C->getOperand(0)));
2611         Record.push_back(VE.getValueID(C->getOperand(1)));
2612         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2613         Record.push_back(VE.getValueID(C->getOperand(2)));
2614         break;
2615       case Instruction::ShuffleVector:
2616         // If the return type and argument types are the same, this is a
2617         // standard shufflevector instruction.  If the types are different,
2618         // then the shuffle is widening or truncating the input vectors, and
2619         // the argument type must also be encoded.
2620         if (C->getType() == C->getOperand(0)->getType()) {
2621           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2622         } else {
2623           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2624           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2625         }
2626         Record.push_back(VE.getValueID(C->getOperand(0)));
2627         Record.push_back(VE.getValueID(C->getOperand(1)));
2628         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2629         break;
2630       case Instruction::ICmp:
2631       case Instruction::FCmp:
2632         Code = bitc::CST_CODE_CE_CMP;
2633         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2634         Record.push_back(VE.getValueID(C->getOperand(0)));
2635         Record.push_back(VE.getValueID(C->getOperand(1)));
2636         Record.push_back(CE->getPredicate());
2637         break;
2638       }
2639     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2640       Code = bitc::CST_CODE_BLOCKADDRESS;
2641       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2642       Record.push_back(VE.getValueID(BA->getFunction()));
2643       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2644     } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2645       Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2646       Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2647       Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2648     } else {
2649 #ifndef NDEBUG
2650       C->dump();
2651 #endif
2652       llvm_unreachable("Unknown constant!");
2653     }
2654     Stream.EmitRecord(Code, Record, AbbrevToUse);
2655     Record.clear();
2656   }
2657 
2658   Stream.ExitBlock();
2659 }
2660 
writeModuleConstants()2661 void ModuleBitcodeWriter::writeModuleConstants() {
2662   const ValueEnumerator::ValueList &Vals = VE.getValues();
2663 
2664   // Find the first constant to emit, which is the first non-globalvalue value.
2665   // We know globalvalues have been emitted by WriteModuleInfo.
2666   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2667     if (!isa<GlobalValue>(Vals[i].first)) {
2668       writeConstants(i, Vals.size(), true);
2669       return;
2670     }
2671   }
2672 }
2673 
2674 /// pushValueAndType - The file has to encode both the value and type id for
2675 /// many values, because we need to know what type to create for forward
2676 /// references.  However, most operands are not forward references, so this type
2677 /// field is not needed.
2678 ///
2679 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2680 /// instruction ID, then it is a forward reference, and it also includes the
2681 /// type ID.  The value ID that is written is encoded relative to the InstID.
pushValueAndType(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2682 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2683                                            SmallVectorImpl<unsigned> &Vals) {
2684   unsigned ValID = VE.getValueID(V);
2685   // Make encoding relative to the InstID.
2686   Vals.push_back(InstID - ValID);
2687   if (ValID >= InstID) {
2688     Vals.push_back(VE.getTypeID(V->getType()));
2689     return true;
2690   }
2691   return false;
2692 }
2693 
writeOperandBundles(const CallBase & CS,unsigned InstID)2694 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2695                                               unsigned InstID) {
2696   SmallVector<unsigned, 64> Record;
2697   LLVMContext &C = CS.getContext();
2698 
2699   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2700     const auto &Bundle = CS.getOperandBundleAt(i);
2701     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2702 
2703     for (auto &Input : Bundle.Inputs)
2704       pushValueAndType(Input, InstID, Record);
2705 
2706     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2707     Record.clear();
2708   }
2709 }
2710 
2711 /// pushValue - Like pushValueAndType, but where the type of the value is
2712 /// omitted (perhaps it was already encoded in an earlier operand).
pushValue(const Value * V,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2713 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2714                                     SmallVectorImpl<unsigned> &Vals) {
2715   unsigned ValID = VE.getValueID(V);
2716   Vals.push_back(InstID - ValID);
2717 }
2718 
pushValueSigned(const Value * V,unsigned InstID,SmallVectorImpl<uint64_t> & Vals)2719 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2720                                           SmallVectorImpl<uint64_t> &Vals) {
2721   unsigned ValID = VE.getValueID(V);
2722   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2723   emitSignedInt64(Vals, diff);
2724 }
2725 
2726 /// WriteInstruction - Emit an instruction to the specified stream.
writeInstruction(const Instruction & I,unsigned InstID,SmallVectorImpl<unsigned> & Vals)2727 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2728                                            unsigned InstID,
2729                                            SmallVectorImpl<unsigned> &Vals) {
2730   unsigned Code = 0;
2731   unsigned AbbrevToUse = 0;
2732   VE.setInstructionID(&I);
2733   switch (I.getOpcode()) {
2734   default:
2735     if (Instruction::isCast(I.getOpcode())) {
2736       Code = bitc::FUNC_CODE_INST_CAST;
2737       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2738         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2739       Vals.push_back(VE.getTypeID(I.getType()));
2740       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2741     } else {
2742       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2743       Code = bitc::FUNC_CODE_INST_BINOP;
2744       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2745         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2746       pushValue(I.getOperand(1), InstID, Vals);
2747       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2748       uint64_t Flags = getOptimizationFlags(&I);
2749       if (Flags != 0) {
2750         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2751           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2752         Vals.push_back(Flags);
2753       }
2754     }
2755     break;
2756   case Instruction::FNeg: {
2757     Code = bitc::FUNC_CODE_INST_UNOP;
2758     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2759       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2760     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2761     uint64_t Flags = getOptimizationFlags(&I);
2762     if (Flags != 0) {
2763       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2764         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2765       Vals.push_back(Flags);
2766     }
2767     break;
2768   }
2769   case Instruction::GetElementPtr: {
2770     Code = bitc::FUNC_CODE_INST_GEP;
2771     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2772     auto &GEPInst = cast<GetElementPtrInst>(I);
2773     Vals.push_back(GEPInst.isInBounds());
2774     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2775     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2776       pushValueAndType(I.getOperand(i), InstID, Vals);
2777     break;
2778   }
2779   case Instruction::ExtractValue: {
2780     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2781     pushValueAndType(I.getOperand(0), InstID, Vals);
2782     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2783     Vals.append(EVI->idx_begin(), EVI->idx_end());
2784     break;
2785   }
2786   case Instruction::InsertValue: {
2787     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2788     pushValueAndType(I.getOperand(0), InstID, Vals);
2789     pushValueAndType(I.getOperand(1), InstID, Vals);
2790     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2791     Vals.append(IVI->idx_begin(), IVI->idx_end());
2792     break;
2793   }
2794   case Instruction::Select: {
2795     Code = bitc::FUNC_CODE_INST_VSELECT;
2796     pushValueAndType(I.getOperand(1), InstID, Vals);
2797     pushValue(I.getOperand(2), InstID, Vals);
2798     pushValueAndType(I.getOperand(0), InstID, Vals);
2799     uint64_t Flags = getOptimizationFlags(&I);
2800     if (Flags != 0)
2801       Vals.push_back(Flags);
2802     break;
2803   }
2804   case Instruction::ExtractElement:
2805     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2806     pushValueAndType(I.getOperand(0), InstID, Vals);
2807     pushValueAndType(I.getOperand(1), InstID, Vals);
2808     break;
2809   case Instruction::InsertElement:
2810     Code = bitc::FUNC_CODE_INST_INSERTELT;
2811     pushValueAndType(I.getOperand(0), InstID, Vals);
2812     pushValue(I.getOperand(1), InstID, Vals);
2813     pushValueAndType(I.getOperand(2), InstID, Vals);
2814     break;
2815   case Instruction::ShuffleVector:
2816     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2817     pushValueAndType(I.getOperand(0), InstID, Vals);
2818     pushValue(I.getOperand(1), InstID, Vals);
2819     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2820               Vals);
2821     break;
2822   case Instruction::ICmp:
2823   case Instruction::FCmp: {
2824     // compare returning Int1Ty or vector of Int1Ty
2825     Code = bitc::FUNC_CODE_INST_CMP2;
2826     pushValueAndType(I.getOperand(0), InstID, Vals);
2827     pushValue(I.getOperand(1), InstID, Vals);
2828     Vals.push_back(cast<CmpInst>(I).getPredicate());
2829     uint64_t Flags = getOptimizationFlags(&I);
2830     if (Flags != 0)
2831       Vals.push_back(Flags);
2832     break;
2833   }
2834 
2835   case Instruction::Ret:
2836     {
2837       Code = bitc::FUNC_CODE_INST_RET;
2838       unsigned NumOperands = I.getNumOperands();
2839       if (NumOperands == 0)
2840         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2841       else if (NumOperands == 1) {
2842         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2843           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2844       } else {
2845         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2846           pushValueAndType(I.getOperand(i), InstID, Vals);
2847       }
2848     }
2849     break;
2850   case Instruction::Br:
2851     {
2852       Code = bitc::FUNC_CODE_INST_BR;
2853       const BranchInst &II = cast<BranchInst>(I);
2854       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2855       if (II.isConditional()) {
2856         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2857         pushValue(II.getCondition(), InstID, Vals);
2858       }
2859     }
2860     break;
2861   case Instruction::Switch:
2862     {
2863       Code = bitc::FUNC_CODE_INST_SWITCH;
2864       const SwitchInst &SI = cast<SwitchInst>(I);
2865       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2866       pushValue(SI.getCondition(), InstID, Vals);
2867       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2868       for (auto Case : SI.cases()) {
2869         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2870         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2871       }
2872     }
2873     break;
2874   case Instruction::IndirectBr:
2875     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2876     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2877     // Encode the address operand as relative, but not the basic blocks.
2878     pushValue(I.getOperand(0), InstID, Vals);
2879     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2880       Vals.push_back(VE.getValueID(I.getOperand(i)));
2881     break;
2882 
2883   case Instruction::Invoke: {
2884     const InvokeInst *II = cast<InvokeInst>(&I);
2885     const Value *Callee = II->getCalledOperand();
2886     FunctionType *FTy = II->getFunctionType();
2887 
2888     if (II->hasOperandBundles())
2889       writeOperandBundles(*II, InstID);
2890 
2891     Code = bitc::FUNC_CODE_INST_INVOKE;
2892 
2893     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2894     Vals.push_back(II->getCallingConv() | 1 << 13);
2895     Vals.push_back(VE.getValueID(II->getNormalDest()));
2896     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2897     Vals.push_back(VE.getTypeID(FTy));
2898     pushValueAndType(Callee, InstID, Vals);
2899 
2900     // Emit value #'s for the fixed parameters.
2901     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2902       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2903 
2904     // Emit type/value pairs for varargs params.
2905     if (FTy->isVarArg()) {
2906       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2907            i != e; ++i)
2908         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2909     }
2910     break;
2911   }
2912   case Instruction::Resume:
2913     Code = bitc::FUNC_CODE_INST_RESUME;
2914     pushValueAndType(I.getOperand(0), InstID, Vals);
2915     break;
2916   case Instruction::CleanupRet: {
2917     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2918     const auto &CRI = cast<CleanupReturnInst>(I);
2919     pushValue(CRI.getCleanupPad(), InstID, Vals);
2920     if (CRI.hasUnwindDest())
2921       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2922     break;
2923   }
2924   case Instruction::CatchRet: {
2925     Code = bitc::FUNC_CODE_INST_CATCHRET;
2926     const auto &CRI = cast<CatchReturnInst>(I);
2927     pushValue(CRI.getCatchPad(), InstID, Vals);
2928     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2929     break;
2930   }
2931   case Instruction::CleanupPad:
2932   case Instruction::CatchPad: {
2933     const auto &FuncletPad = cast<FuncletPadInst>(I);
2934     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2935                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2936     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2937 
2938     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2939     Vals.push_back(NumArgOperands);
2940     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2941       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2942     break;
2943   }
2944   case Instruction::CatchSwitch: {
2945     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2946     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2947 
2948     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2949 
2950     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2951     Vals.push_back(NumHandlers);
2952     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2953       Vals.push_back(VE.getValueID(CatchPadBB));
2954 
2955     if (CatchSwitch.hasUnwindDest())
2956       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2957     break;
2958   }
2959   case Instruction::CallBr: {
2960     const CallBrInst *CBI = cast<CallBrInst>(&I);
2961     const Value *Callee = CBI->getCalledOperand();
2962     FunctionType *FTy = CBI->getFunctionType();
2963 
2964     if (CBI->hasOperandBundles())
2965       writeOperandBundles(*CBI, InstID);
2966 
2967     Code = bitc::FUNC_CODE_INST_CALLBR;
2968 
2969     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2970 
2971     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2972                    1 << bitc::CALL_EXPLICIT_TYPE);
2973 
2974     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2975     Vals.push_back(CBI->getNumIndirectDests());
2976     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2977       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2978 
2979     Vals.push_back(VE.getTypeID(FTy));
2980     pushValueAndType(Callee, InstID, Vals);
2981 
2982     // Emit value #'s for the fixed parameters.
2983     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2984       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2985 
2986     // Emit type/value pairs for varargs params.
2987     if (FTy->isVarArg()) {
2988       for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2989            i != e; ++i)
2990         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2991     }
2992     break;
2993   }
2994   case Instruction::Unreachable:
2995     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2996     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
2997     break;
2998 
2999   case Instruction::PHI: {
3000     const PHINode &PN = cast<PHINode>(I);
3001     Code = bitc::FUNC_CODE_INST_PHI;
3002     // With the newer instruction encoding, forward references could give
3003     // negative valued IDs.  This is most common for PHIs, so we use
3004     // signed VBRs.
3005     SmallVector<uint64_t, 128> Vals64;
3006     Vals64.push_back(VE.getTypeID(PN.getType()));
3007     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3008       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3009       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3010     }
3011 
3012     uint64_t Flags = getOptimizationFlags(&I);
3013     if (Flags != 0)
3014       Vals64.push_back(Flags);
3015 
3016     // Emit a Vals64 vector and exit.
3017     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3018     Vals64.clear();
3019     return;
3020   }
3021 
3022   case Instruction::LandingPad: {
3023     const LandingPadInst &LP = cast<LandingPadInst>(I);
3024     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3025     Vals.push_back(VE.getTypeID(LP.getType()));
3026     Vals.push_back(LP.isCleanup());
3027     Vals.push_back(LP.getNumClauses());
3028     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3029       if (LP.isCatch(I))
3030         Vals.push_back(LandingPadInst::Catch);
3031       else
3032         Vals.push_back(LandingPadInst::Filter);
3033       pushValueAndType(LP.getClause(I), InstID, Vals);
3034     }
3035     break;
3036   }
3037 
3038   case Instruction::Alloca: {
3039     Code = bitc::FUNC_CODE_INST_ALLOCA;
3040     const AllocaInst &AI = cast<AllocaInst>(I);
3041     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3042     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3043     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3044     using APV = AllocaPackedValues;
3045     unsigned Record = 0;
3046     Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign()));
3047     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3048     Bitfield::set<APV::ExplicitType>(Record, true);
3049     Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3050     Vals.push_back(Record);
3051     break;
3052   }
3053 
3054   case Instruction::Load:
3055     if (cast<LoadInst>(I).isAtomic()) {
3056       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3057       pushValueAndType(I.getOperand(0), InstID, Vals);
3058     } else {
3059       Code = bitc::FUNC_CODE_INST_LOAD;
3060       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3061         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3062     }
3063     Vals.push_back(VE.getTypeID(I.getType()));
3064     Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3065     Vals.push_back(cast<LoadInst>(I).isVolatile());
3066     if (cast<LoadInst>(I).isAtomic()) {
3067       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3068       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3069     }
3070     break;
3071   case Instruction::Store:
3072     if (cast<StoreInst>(I).isAtomic())
3073       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3074     else
3075       Code = bitc::FUNC_CODE_INST_STORE;
3076     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3077     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3078     Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3079     Vals.push_back(cast<StoreInst>(I).isVolatile());
3080     if (cast<StoreInst>(I).isAtomic()) {
3081       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3082       Vals.push_back(
3083           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3084     }
3085     break;
3086   case Instruction::AtomicCmpXchg:
3087     Code = bitc::FUNC_CODE_INST_CMPXCHG;
3088     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3089     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3090     pushValue(I.getOperand(2), InstID, Vals);        // newval.
3091     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3092     Vals.push_back(
3093         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3094     Vals.push_back(
3095         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3096     Vals.push_back(
3097         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3098     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3099     Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3100     break;
3101   case Instruction::AtomicRMW:
3102     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3103     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3104     pushValue(I.getOperand(1), InstID, Vals);        // val.
3105     Vals.push_back(
3106         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3107     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3108     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3109     Vals.push_back(
3110         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3111     Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3112     break;
3113   case Instruction::Fence:
3114     Code = bitc::FUNC_CODE_INST_FENCE;
3115     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3116     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3117     break;
3118   case Instruction::Call: {
3119     const CallInst &CI = cast<CallInst>(I);
3120     FunctionType *FTy = CI.getFunctionType();
3121 
3122     if (CI.hasOperandBundles())
3123       writeOperandBundles(CI, InstID);
3124 
3125     Code = bitc::FUNC_CODE_INST_CALL;
3126 
3127     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3128 
3129     unsigned Flags = getOptimizationFlags(&I);
3130     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3131                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3132                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3133                    1 << bitc::CALL_EXPLICIT_TYPE |
3134                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3135                    unsigned(Flags != 0) << bitc::CALL_FMF);
3136     if (Flags != 0)
3137       Vals.push_back(Flags);
3138 
3139     Vals.push_back(VE.getTypeID(FTy));
3140     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3141 
3142     // Emit value #'s for the fixed parameters.
3143     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3144       // Check for labels (can happen with asm labels).
3145       if (FTy->getParamType(i)->isLabelTy())
3146         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3147       else
3148         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3149     }
3150 
3151     // Emit type/value pairs for varargs params.
3152     if (FTy->isVarArg()) {
3153       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3154            i != e; ++i)
3155         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3156     }
3157     break;
3158   }
3159   case Instruction::VAArg:
3160     Code = bitc::FUNC_CODE_INST_VAARG;
3161     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3162     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3163     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3164     break;
3165   case Instruction::Freeze:
3166     Code = bitc::FUNC_CODE_INST_FREEZE;
3167     pushValueAndType(I.getOperand(0), InstID, Vals);
3168     break;
3169   }
3170 
3171   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3172   Vals.clear();
3173 }
3174 
3175 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3176 /// to allow clients to efficiently find the function body.
writeGlobalValueSymbolTable(DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3177 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3178   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3179   // Get the offset of the VST we are writing, and backpatch it into
3180   // the VST forward declaration record.
3181   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3182   // The BitcodeStartBit was the stream offset of the identification block.
3183   VSTOffset -= bitcodeStartBit();
3184   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3185   // Note that we add 1 here because the offset is relative to one word
3186   // before the start of the identification block, which was historically
3187   // always the start of the regular bitcode header.
3188   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3189 
3190   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3191 
3192   auto Abbv = std::make_shared<BitCodeAbbrev>();
3193   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3194   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3195   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3196   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3197 
3198   for (const Function &F : M) {
3199     uint64_t Record[2];
3200 
3201     if (F.isDeclaration())
3202       continue;
3203 
3204     Record[0] = VE.getValueID(&F);
3205 
3206     // Save the word offset of the function (from the start of the
3207     // actual bitcode written to the stream).
3208     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3209     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3210     // Note that we add 1 here because the offset is relative to one word
3211     // before the start of the identification block, which was historically
3212     // always the start of the regular bitcode header.
3213     Record[1] = BitcodeIndex / 32 + 1;
3214 
3215     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3216   }
3217 
3218   Stream.ExitBlock();
3219 }
3220 
3221 /// Emit names for arguments, instructions and basic blocks in a function.
writeFunctionLevelValueSymbolTable(const ValueSymbolTable & VST)3222 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3223     const ValueSymbolTable &VST) {
3224   if (VST.empty())
3225     return;
3226 
3227   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3228 
3229   // FIXME: Set up the abbrev, we know how many values there are!
3230   // FIXME: We know if the type names can use 7-bit ascii.
3231   SmallVector<uint64_t, 64> NameVals;
3232 
3233   for (const ValueName &Name : VST) {
3234     // Figure out the encoding to use for the name.
3235     StringEncoding Bits = getStringEncoding(Name.getKey());
3236 
3237     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3238     NameVals.push_back(VE.getValueID(Name.getValue()));
3239 
3240     // VST_CODE_ENTRY:   [valueid, namechar x N]
3241     // VST_CODE_BBENTRY: [bbid, namechar x N]
3242     unsigned Code;
3243     if (isa<BasicBlock>(Name.getValue())) {
3244       Code = bitc::VST_CODE_BBENTRY;
3245       if (Bits == SE_Char6)
3246         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3247     } else {
3248       Code = bitc::VST_CODE_ENTRY;
3249       if (Bits == SE_Char6)
3250         AbbrevToUse = VST_ENTRY_6_ABBREV;
3251       else if (Bits == SE_Fixed7)
3252         AbbrevToUse = VST_ENTRY_7_ABBREV;
3253     }
3254 
3255     for (const auto P : Name.getKey())
3256       NameVals.push_back((unsigned char)P);
3257 
3258     // Emit the finished record.
3259     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3260     NameVals.clear();
3261   }
3262 
3263   Stream.ExitBlock();
3264 }
3265 
writeUseList(UseListOrder && Order)3266 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3267   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3268   unsigned Code;
3269   if (isa<BasicBlock>(Order.V))
3270     Code = bitc::USELIST_CODE_BB;
3271   else
3272     Code = bitc::USELIST_CODE_DEFAULT;
3273 
3274   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3275   Record.push_back(VE.getValueID(Order.V));
3276   Stream.EmitRecord(Code, Record);
3277 }
3278 
writeUseListBlock(const Function * F)3279 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3280   assert(VE.shouldPreserveUseListOrder() &&
3281          "Expected to be preserving use-list order");
3282 
3283   auto hasMore = [&]() {
3284     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3285   };
3286   if (!hasMore())
3287     // Nothing to do.
3288     return;
3289 
3290   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3291   while (hasMore()) {
3292     writeUseList(std::move(VE.UseListOrders.back()));
3293     VE.UseListOrders.pop_back();
3294   }
3295   Stream.ExitBlock();
3296 }
3297 
3298 /// Emit a function body to the module stream.
writeFunction(const Function & F,DenseMap<const Function *,uint64_t> & FunctionToBitcodeIndex)3299 void ModuleBitcodeWriter::writeFunction(
3300     const Function &F,
3301     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3302   // Save the bitcode index of the start of this function block for recording
3303   // in the VST.
3304   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3305 
3306   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3307   VE.incorporateFunction(F);
3308 
3309   SmallVector<unsigned, 64> Vals;
3310 
3311   // Emit the number of basic blocks, so the reader can create them ahead of
3312   // time.
3313   Vals.push_back(VE.getBasicBlocks().size());
3314   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3315   Vals.clear();
3316 
3317   // If there are function-local constants, emit them now.
3318   unsigned CstStart, CstEnd;
3319   VE.getFunctionConstantRange(CstStart, CstEnd);
3320   writeConstants(CstStart, CstEnd, false);
3321 
3322   // If there is function-local metadata, emit it now.
3323   writeFunctionMetadata(F);
3324 
3325   // Keep a running idea of what the instruction ID is.
3326   unsigned InstID = CstEnd;
3327 
3328   bool NeedsMetadataAttachment = F.hasMetadata();
3329 
3330   DILocation *LastDL = nullptr;
3331   // Finally, emit all the instructions, in order.
3332   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3333     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3334          I != E; ++I) {
3335       writeInstruction(*I, InstID, Vals);
3336 
3337       if (!I->getType()->isVoidTy())
3338         ++InstID;
3339 
3340       // If the instruction has metadata, write a metadata attachment later.
3341       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3342 
3343       // If the instruction has a debug location, emit it.
3344       DILocation *DL = I->getDebugLoc();
3345       if (!DL)
3346         continue;
3347 
3348       if (DL == LastDL) {
3349         // Just repeat the same debug loc as last time.
3350         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3351         continue;
3352       }
3353 
3354       Vals.push_back(DL->getLine());
3355       Vals.push_back(DL->getColumn());
3356       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3357       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3358       Vals.push_back(DL->isImplicitCode());
3359       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3360       Vals.clear();
3361 
3362       LastDL = DL;
3363     }
3364 
3365   // Emit names for all the instructions etc.
3366   if (auto *Symtab = F.getValueSymbolTable())
3367     writeFunctionLevelValueSymbolTable(*Symtab);
3368 
3369   if (NeedsMetadataAttachment)
3370     writeFunctionMetadataAttachment(F);
3371   if (VE.shouldPreserveUseListOrder())
3372     writeUseListBlock(&F);
3373   VE.purgeFunction();
3374   Stream.ExitBlock();
3375 }
3376 
3377 // Emit blockinfo, which defines the standard abbreviations etc.
writeBlockInfo()3378 void ModuleBitcodeWriter::writeBlockInfo() {
3379   // We only want to emit block info records for blocks that have multiple
3380   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3381   // Other blocks can define their abbrevs inline.
3382   Stream.EnterBlockInfoBlock();
3383 
3384   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3385     auto Abbv = std::make_shared<BitCodeAbbrev>();
3386     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3387     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3388     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3389     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3390     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3391         VST_ENTRY_8_ABBREV)
3392       llvm_unreachable("Unexpected abbrev ordering!");
3393   }
3394 
3395   { // 7-bit fixed width VST_CODE_ENTRY strings.
3396     auto Abbv = std::make_shared<BitCodeAbbrev>();
3397     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3398     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3399     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3400     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3401     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3402         VST_ENTRY_7_ABBREV)
3403       llvm_unreachable("Unexpected abbrev ordering!");
3404   }
3405   { // 6-bit char6 VST_CODE_ENTRY strings.
3406     auto Abbv = std::make_shared<BitCodeAbbrev>();
3407     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3408     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3409     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3410     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3411     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3412         VST_ENTRY_6_ABBREV)
3413       llvm_unreachable("Unexpected abbrev ordering!");
3414   }
3415   { // 6-bit char6 VST_CODE_BBENTRY strings.
3416     auto Abbv = std::make_shared<BitCodeAbbrev>();
3417     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3418     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3419     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3420     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3421     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3422         VST_BBENTRY_6_ABBREV)
3423       llvm_unreachable("Unexpected abbrev ordering!");
3424   }
3425 
3426   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3427     auto Abbv = std::make_shared<BitCodeAbbrev>();
3428     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3429     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3430                               VE.computeBitsRequiredForTypeIndicies()));
3431     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3432         CONSTANTS_SETTYPE_ABBREV)
3433       llvm_unreachable("Unexpected abbrev ordering!");
3434   }
3435 
3436   { // INTEGER abbrev for CONSTANTS_BLOCK.
3437     auto Abbv = std::make_shared<BitCodeAbbrev>();
3438     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3439     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3440     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3441         CONSTANTS_INTEGER_ABBREV)
3442       llvm_unreachable("Unexpected abbrev ordering!");
3443   }
3444 
3445   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3446     auto Abbv = std::make_shared<BitCodeAbbrev>();
3447     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3448     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3449     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3450                               VE.computeBitsRequiredForTypeIndicies()));
3451     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3452 
3453     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3454         CONSTANTS_CE_CAST_Abbrev)
3455       llvm_unreachable("Unexpected abbrev ordering!");
3456   }
3457   { // NULL abbrev for CONSTANTS_BLOCK.
3458     auto Abbv = std::make_shared<BitCodeAbbrev>();
3459     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3460     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3461         CONSTANTS_NULL_Abbrev)
3462       llvm_unreachable("Unexpected abbrev ordering!");
3463   }
3464 
3465   // FIXME: This should only use space for first class types!
3466 
3467   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3468     auto Abbv = std::make_shared<BitCodeAbbrev>();
3469     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3470     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3471     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3472                               VE.computeBitsRequiredForTypeIndicies()));
3473     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3474     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3475     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3476         FUNCTION_INST_LOAD_ABBREV)
3477       llvm_unreachable("Unexpected abbrev ordering!");
3478   }
3479   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3480     auto Abbv = std::make_shared<BitCodeAbbrev>();
3481     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3482     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3483     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3484     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3485         FUNCTION_INST_UNOP_ABBREV)
3486       llvm_unreachable("Unexpected abbrev ordering!");
3487   }
3488   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3489     auto Abbv = std::make_shared<BitCodeAbbrev>();
3490     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3491     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3492     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3493     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3494     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3495         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3496       llvm_unreachable("Unexpected abbrev ordering!");
3497   }
3498   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3499     auto Abbv = std::make_shared<BitCodeAbbrev>();
3500     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3501     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3502     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3503     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3504     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3505         FUNCTION_INST_BINOP_ABBREV)
3506       llvm_unreachable("Unexpected abbrev ordering!");
3507   }
3508   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3509     auto Abbv = std::make_shared<BitCodeAbbrev>();
3510     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3511     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3512     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3513     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3514     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3515     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3516         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3517       llvm_unreachable("Unexpected abbrev ordering!");
3518   }
3519   { // INST_CAST abbrev for FUNCTION_BLOCK.
3520     auto Abbv = std::make_shared<BitCodeAbbrev>();
3521     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3522     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3523     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3524                               VE.computeBitsRequiredForTypeIndicies()));
3525     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3526     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3527         FUNCTION_INST_CAST_ABBREV)
3528       llvm_unreachable("Unexpected abbrev ordering!");
3529   }
3530 
3531   { // INST_RET abbrev for FUNCTION_BLOCK.
3532     auto Abbv = std::make_shared<BitCodeAbbrev>();
3533     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3534     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3535         FUNCTION_INST_RET_VOID_ABBREV)
3536       llvm_unreachable("Unexpected abbrev ordering!");
3537   }
3538   { // INST_RET abbrev for FUNCTION_BLOCK.
3539     auto Abbv = std::make_shared<BitCodeAbbrev>();
3540     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3541     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3542     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3543         FUNCTION_INST_RET_VAL_ABBREV)
3544       llvm_unreachable("Unexpected abbrev ordering!");
3545   }
3546   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3547     auto Abbv = std::make_shared<BitCodeAbbrev>();
3548     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3549     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3550         FUNCTION_INST_UNREACHABLE_ABBREV)
3551       llvm_unreachable("Unexpected abbrev ordering!");
3552   }
3553   {
3554     auto Abbv = std::make_shared<BitCodeAbbrev>();
3555     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3556     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3557     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3558                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3559     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3560     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3561     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3562         FUNCTION_INST_GEP_ABBREV)
3563       llvm_unreachable("Unexpected abbrev ordering!");
3564   }
3565 
3566   Stream.ExitBlock();
3567 }
3568 
3569 /// Write the module path strings, currently only used when generating
3570 /// a combined index file.
writeModStrings()3571 void IndexBitcodeWriter::writeModStrings() {
3572   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3573 
3574   // TODO: See which abbrev sizes we actually need to emit
3575 
3576   // 8-bit fixed-width MST_ENTRY strings.
3577   auto Abbv = std::make_shared<BitCodeAbbrev>();
3578   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3579   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3580   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3581   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3582   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3583 
3584   // 7-bit fixed width MST_ENTRY strings.
3585   Abbv = std::make_shared<BitCodeAbbrev>();
3586   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3587   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3588   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3589   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3590   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3591 
3592   // 6-bit char6 MST_ENTRY strings.
3593   Abbv = std::make_shared<BitCodeAbbrev>();
3594   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3595   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3596   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3597   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3598   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3599 
3600   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3601   Abbv = std::make_shared<BitCodeAbbrev>();
3602   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3603   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3604   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3605   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3606   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3607   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3608   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3609 
3610   SmallVector<unsigned, 64> Vals;
3611   forEachModule(
3612       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3613         StringRef Key = MPSE.getKey();
3614         const auto &Value = MPSE.getValue();
3615         StringEncoding Bits = getStringEncoding(Key);
3616         unsigned AbbrevToUse = Abbrev8Bit;
3617         if (Bits == SE_Char6)
3618           AbbrevToUse = Abbrev6Bit;
3619         else if (Bits == SE_Fixed7)
3620           AbbrevToUse = Abbrev7Bit;
3621 
3622         Vals.push_back(Value.first);
3623         Vals.append(Key.begin(), Key.end());
3624 
3625         // Emit the finished record.
3626         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3627 
3628         // Emit an optional hash for the module now
3629         const auto &Hash = Value.second;
3630         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3631           Vals.assign(Hash.begin(), Hash.end());
3632           // Emit the hash record.
3633           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3634         }
3635 
3636         Vals.clear();
3637       });
3638   Stream.ExitBlock();
3639 }
3640 
3641 /// Write the function type metadata related records that need to appear before
3642 /// a function summary entry (whether per-module or combined).
3643 template <typename Fn>
writeFunctionTypeMetadataRecords(BitstreamWriter & Stream,FunctionSummary * FS,Fn GetValueID)3644 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3645                                              FunctionSummary *FS,
3646                                              Fn GetValueID) {
3647   if (!FS->type_tests().empty())
3648     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3649 
3650   SmallVector<uint64_t, 64> Record;
3651 
3652   auto WriteVFuncIdVec = [&](uint64_t Ty,
3653                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3654     if (VFs.empty())
3655       return;
3656     Record.clear();
3657     for (auto &VF : VFs) {
3658       Record.push_back(VF.GUID);
3659       Record.push_back(VF.Offset);
3660     }
3661     Stream.EmitRecord(Ty, Record);
3662   };
3663 
3664   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3665                   FS->type_test_assume_vcalls());
3666   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3667                   FS->type_checked_load_vcalls());
3668 
3669   auto WriteConstVCallVec = [&](uint64_t Ty,
3670                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3671     for (auto &VC : VCs) {
3672       Record.clear();
3673       Record.push_back(VC.VFunc.GUID);
3674       Record.push_back(VC.VFunc.Offset);
3675       llvm::append_range(Record, VC.Args);
3676       Stream.EmitRecord(Ty, Record);
3677     }
3678   };
3679 
3680   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3681                      FS->type_test_assume_const_vcalls());
3682   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3683                      FS->type_checked_load_const_vcalls());
3684 
3685   auto WriteRange = [&](ConstantRange Range) {
3686     Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3687     assert(Range.getLower().getNumWords() == 1);
3688     assert(Range.getUpper().getNumWords() == 1);
3689     emitSignedInt64(Record, *Range.getLower().getRawData());
3690     emitSignedInt64(Record, *Range.getUpper().getRawData());
3691   };
3692 
3693   if (!FS->paramAccesses().empty()) {
3694     Record.clear();
3695     for (auto &Arg : FS->paramAccesses()) {
3696       size_t UndoSize = Record.size();
3697       Record.push_back(Arg.ParamNo);
3698       WriteRange(Arg.Use);
3699       Record.push_back(Arg.Calls.size());
3700       for (auto &Call : Arg.Calls) {
3701         Record.push_back(Call.ParamNo);
3702         Optional<unsigned> ValueID = GetValueID(Call.Callee);
3703         if (!ValueID) {
3704           // If ValueID is unknown we can't drop just this call, we must drop
3705           // entire parameter.
3706           Record.resize(UndoSize);
3707           break;
3708         }
3709         Record.push_back(*ValueID);
3710         WriteRange(Call.Offsets);
3711       }
3712     }
3713     if (!Record.empty())
3714       Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3715   }
3716 }
3717 
3718 /// Collect type IDs from type tests used by function.
3719 static void
getReferencedTypeIds(FunctionSummary * FS,std::set<GlobalValue::GUID> & ReferencedTypeIds)3720 getReferencedTypeIds(FunctionSummary *FS,
3721                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3722   if (!FS->type_tests().empty())
3723     for (auto &TT : FS->type_tests())
3724       ReferencedTypeIds.insert(TT);
3725 
3726   auto GetReferencedTypesFromVFuncIdVec =
3727       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3728         for (auto &VF : VFs)
3729           ReferencedTypeIds.insert(VF.GUID);
3730       };
3731 
3732   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3733   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3734 
3735   auto GetReferencedTypesFromConstVCallVec =
3736       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3737         for (auto &VC : VCs)
3738           ReferencedTypeIds.insert(VC.VFunc.GUID);
3739       };
3740 
3741   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3742   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3743 }
3744 
writeWholeProgramDevirtResolutionByArg(SmallVector<uint64_t,64> & NameVals,const std::vector<uint64_t> & args,const WholeProgramDevirtResolution::ByArg & ByArg)3745 static void writeWholeProgramDevirtResolutionByArg(
3746     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3747     const WholeProgramDevirtResolution::ByArg &ByArg) {
3748   NameVals.push_back(args.size());
3749   llvm::append_range(NameVals, args);
3750 
3751   NameVals.push_back(ByArg.TheKind);
3752   NameVals.push_back(ByArg.Info);
3753   NameVals.push_back(ByArg.Byte);
3754   NameVals.push_back(ByArg.Bit);
3755 }
3756 
writeWholeProgramDevirtResolution(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,uint64_t Id,const WholeProgramDevirtResolution & Wpd)3757 static void writeWholeProgramDevirtResolution(
3758     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3759     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3760   NameVals.push_back(Id);
3761 
3762   NameVals.push_back(Wpd.TheKind);
3763   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3764   NameVals.push_back(Wpd.SingleImplName.size());
3765 
3766   NameVals.push_back(Wpd.ResByArg.size());
3767   for (auto &A : Wpd.ResByArg)
3768     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3769 }
3770 
writeTypeIdSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdSummary & Summary)3771 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3772                                      StringTableBuilder &StrtabBuilder,
3773                                      const std::string &Id,
3774                                      const TypeIdSummary &Summary) {
3775   NameVals.push_back(StrtabBuilder.add(Id));
3776   NameVals.push_back(Id.size());
3777 
3778   NameVals.push_back(Summary.TTRes.TheKind);
3779   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3780   NameVals.push_back(Summary.TTRes.AlignLog2);
3781   NameVals.push_back(Summary.TTRes.SizeM1);
3782   NameVals.push_back(Summary.TTRes.BitMask);
3783   NameVals.push_back(Summary.TTRes.InlineBits);
3784 
3785   for (auto &W : Summary.WPDRes)
3786     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3787                                       W.second);
3788 }
3789 
writeTypeIdCompatibleVtableSummaryRecord(SmallVector<uint64_t,64> & NameVals,StringTableBuilder & StrtabBuilder,const std::string & Id,const TypeIdCompatibleVtableInfo & Summary,ValueEnumerator & VE)3790 static void writeTypeIdCompatibleVtableSummaryRecord(
3791     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3792     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3793     ValueEnumerator &VE) {
3794   NameVals.push_back(StrtabBuilder.add(Id));
3795   NameVals.push_back(Id.size());
3796 
3797   for (auto &P : Summary) {
3798     NameVals.push_back(P.AddressPointOffset);
3799     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3800   }
3801 }
3802 
3803 // Helper to emit a single function summary record.
writePerModuleFunctionSummaryRecord(SmallVector<uint64_t,64> & NameVals,GlobalValueSummary * Summary,unsigned ValueID,unsigned FSCallsAbbrev,unsigned FSCallsProfileAbbrev,const Function & F)3804 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3805     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3806     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3807     const Function &F) {
3808   NameVals.push_back(ValueID);
3809 
3810   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3811 
3812   writeFunctionTypeMetadataRecords(
3813       Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> {
3814         return {VE.getValueID(VI.getValue())};
3815       });
3816 
3817   auto SpecialRefCnts = FS->specialRefCounts();
3818   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3819   NameVals.push_back(FS->instCount());
3820   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3821   NameVals.push_back(FS->refs().size());
3822   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3823   NameVals.push_back(SpecialRefCnts.second); // worefcnt
3824 
3825   for (auto &RI : FS->refs())
3826     NameVals.push_back(VE.getValueID(RI.getValue()));
3827 
3828   bool HasProfileData =
3829       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3830   for (auto &ECI : FS->calls()) {
3831     NameVals.push_back(getValueId(ECI.first));
3832     if (HasProfileData)
3833       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3834     else if (WriteRelBFToSummary)
3835       NameVals.push_back(ECI.second.RelBlockFreq);
3836   }
3837 
3838   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3839   unsigned Code =
3840       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3841                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3842                                              : bitc::FS_PERMODULE));
3843 
3844   // Emit the finished record.
3845   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3846   NameVals.clear();
3847 }
3848 
3849 // Collect the global value references in the given variable's initializer,
3850 // and emit them in a summary record.
writeModuleLevelReferences(const GlobalVariable & V,SmallVector<uint64_t,64> & NameVals,unsigned FSModRefsAbbrev,unsigned FSModVTableRefsAbbrev)3851 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3852     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3853     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3854   auto VI = Index->getValueInfo(V.getGUID());
3855   if (!VI || VI.getSummaryList().empty()) {
3856     // Only declarations should not have a summary (a declaration might however
3857     // have a summary if the def was in module level asm).
3858     assert(V.isDeclaration());
3859     return;
3860   }
3861   auto *Summary = VI.getSummaryList()[0].get();
3862   NameVals.push_back(VE.getValueID(&V));
3863   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3864   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3865   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3866 
3867   auto VTableFuncs = VS->vTableFuncs();
3868   if (!VTableFuncs.empty())
3869     NameVals.push_back(VS->refs().size());
3870 
3871   unsigned SizeBeforeRefs = NameVals.size();
3872   for (auto &RI : VS->refs())
3873     NameVals.push_back(VE.getValueID(RI.getValue()));
3874   // Sort the refs for determinism output, the vector returned by FS->refs() has
3875   // been initialized from a DenseSet.
3876   llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
3877 
3878   if (VTableFuncs.empty())
3879     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3880                       FSModRefsAbbrev);
3881   else {
3882     // VTableFuncs pairs should already be sorted by offset.
3883     for (auto &P : VTableFuncs) {
3884       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3885       NameVals.push_back(P.VTableOffset);
3886     }
3887 
3888     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3889                       FSModVTableRefsAbbrev);
3890   }
3891   NameVals.clear();
3892 }
3893 
3894 /// Emit the per-module summary section alongside the rest of
3895 /// the module's bitcode.
writePerModuleGlobalValueSummary()3896 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3897   // By default we compile with ThinLTO if the module has a summary, but the
3898   // client can request full LTO with a module flag.
3899   bool IsThinLTO = true;
3900   if (auto *MD =
3901           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3902     IsThinLTO = MD->getZExtValue();
3903   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3904                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3905                        4);
3906 
3907   Stream.EmitRecord(
3908       bitc::FS_VERSION,
3909       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3910 
3911   // Write the index flags.
3912   uint64_t Flags = 0;
3913   // Bits 1-3 are set only in the combined index, skip them.
3914   if (Index->enableSplitLTOUnit())
3915     Flags |= 0x8;
3916   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3917 
3918   if (Index->begin() == Index->end()) {
3919     Stream.ExitBlock();
3920     return;
3921   }
3922 
3923   for (const auto &GVI : valueIds()) {
3924     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3925                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3926   }
3927 
3928   // Abbrev for FS_PERMODULE_PROFILE.
3929   auto Abbv = std::make_shared<BitCodeAbbrev>();
3930   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3931   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3932   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3933   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3934   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3935   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3936   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3937   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3938   // numrefs x valueid, n x (valueid, hotness)
3939   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3940   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3941   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3942 
3943   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3944   Abbv = std::make_shared<BitCodeAbbrev>();
3945   if (WriteRelBFToSummary)
3946     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3947   else
3948     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3949   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3950   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3951   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3952   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3953   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3954   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3955   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3956   // numrefs x valueid, n x (valueid [, rel_block_freq])
3957   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3958   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3959   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3960 
3961   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3962   Abbv = std::make_shared<BitCodeAbbrev>();
3963   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3964   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3965   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3966   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3967   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3968   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3969 
3970   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3971   Abbv = std::make_shared<BitCodeAbbrev>();
3972   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3973   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3974   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3975   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3976   // numrefs x valueid, n x (valueid , offset)
3977   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3978   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3979   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3980 
3981   // Abbrev for FS_ALIAS.
3982   Abbv = std::make_shared<BitCodeAbbrev>();
3983   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3984   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3985   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3986   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3987   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3988 
3989   // Abbrev for FS_TYPE_ID_METADATA
3990   Abbv = std::make_shared<BitCodeAbbrev>();
3991   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3992   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3993   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3994   // n x (valueid , offset)
3995   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3996   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3997   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3998 
3999   SmallVector<uint64_t, 64> NameVals;
4000   // Iterate over the list of functions instead of the Index to
4001   // ensure the ordering is stable.
4002   for (const Function &F : M) {
4003     // Summary emission does not support anonymous functions, they have to
4004     // renamed using the anonymous function renaming pass.
4005     if (!F.hasName())
4006       report_fatal_error("Unexpected anonymous function when writing summary");
4007 
4008     ValueInfo VI = Index->getValueInfo(F.getGUID());
4009     if (!VI || VI.getSummaryList().empty()) {
4010       // Only declarations should not have a summary (a declaration might
4011       // however have a summary if the def was in module level asm).
4012       assert(F.isDeclaration());
4013       continue;
4014     }
4015     auto *Summary = VI.getSummaryList()[0].get();
4016     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
4017                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
4018   }
4019 
4020   // Capture references from GlobalVariable initializers, which are outside
4021   // of a function scope.
4022   for (const GlobalVariable &G : M.globals())
4023     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4024                                FSModVTableRefsAbbrev);
4025 
4026   for (const GlobalAlias &A : M.aliases()) {
4027     auto *Aliasee = A.getBaseObject();
4028     if (!Aliasee->hasName())
4029       // Nameless function don't have an entry in the summary, skip it.
4030       continue;
4031     auto AliasId = VE.getValueID(&A);
4032     auto AliaseeId = VE.getValueID(Aliasee);
4033     NameVals.push_back(AliasId);
4034     auto *Summary = Index->getGlobalValueSummary(A);
4035     AliasSummary *AS = cast<AliasSummary>(Summary);
4036     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4037     NameVals.push_back(AliaseeId);
4038     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4039     NameVals.clear();
4040   }
4041 
4042   for (auto &S : Index->typeIdCompatibleVtableMap()) {
4043     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4044                                              S.second, VE);
4045     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4046                       TypeIdCompatibleVtableAbbrev);
4047     NameVals.clear();
4048   }
4049 
4050   Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4051                     ArrayRef<uint64_t>{Index->getBlockCount()});
4052 
4053   Stream.ExitBlock();
4054 }
4055 
4056 /// Emit the combined summary section into the combined index file.
writeCombinedGlobalValueSummary()4057 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4058   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
4059   Stream.EmitRecord(
4060       bitc::FS_VERSION,
4061       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4062 
4063   // Write the index flags.
4064   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4065 
4066   for (const auto &GVI : valueIds()) {
4067     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4068                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4069   }
4070 
4071   // Abbrev for FS_COMBINED.
4072   auto Abbv = std::make_shared<BitCodeAbbrev>();
4073   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4074   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4075   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4076   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4077   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4078   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4079   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4080   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4081   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4082   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4083   // numrefs x valueid, n x (valueid)
4084   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4085   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4086   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4087 
4088   // Abbrev for FS_COMBINED_PROFILE.
4089   Abbv = std::make_shared<BitCodeAbbrev>();
4090   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4091   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4092   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4093   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4094   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4095   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4096   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4097   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4098   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4099   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4100   // numrefs x valueid, n x (valueid, hotness)
4101   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4102   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4103   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4104 
4105   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4106   Abbv = std::make_shared<BitCodeAbbrev>();
4107   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4108   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4109   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4110   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4111   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4112   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4113   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4114 
4115   // Abbrev for FS_COMBINED_ALIAS.
4116   Abbv = std::make_shared<BitCodeAbbrev>();
4117   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4118   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4119   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4120   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4121   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4122   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4123 
4124   // The aliases are emitted as a post-pass, and will point to the value
4125   // id of the aliasee. Save them in a vector for post-processing.
4126   SmallVector<AliasSummary *, 64> Aliases;
4127 
4128   // Save the value id for each summary for alias emission.
4129   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4130 
4131   SmallVector<uint64_t, 64> NameVals;
4132 
4133   // Set that will be populated during call to writeFunctionTypeMetadataRecords
4134   // with the type ids referenced by this index file.
4135   std::set<GlobalValue::GUID> ReferencedTypeIds;
4136 
4137   // For local linkage, we also emit the original name separately
4138   // immediately after the record.
4139   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4140     if (!GlobalValue::isLocalLinkage(S.linkage()))
4141       return;
4142     NameVals.push_back(S.getOriginalName());
4143     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4144     NameVals.clear();
4145   };
4146 
4147   std::set<GlobalValue::GUID> DefOrUseGUIDs;
4148   forEachSummary([&](GVInfo I, bool IsAliasee) {
4149     GlobalValueSummary *S = I.second;
4150     assert(S);
4151     DefOrUseGUIDs.insert(I.first);
4152     for (const ValueInfo &VI : S->refs())
4153       DefOrUseGUIDs.insert(VI.getGUID());
4154 
4155     auto ValueId = getValueId(I.first);
4156     assert(ValueId);
4157     SummaryToValueIdMap[S] = *ValueId;
4158 
4159     // If this is invoked for an aliasee, we want to record the above
4160     // mapping, but then not emit a summary entry (if the aliasee is
4161     // to be imported, we will invoke this separately with IsAliasee=false).
4162     if (IsAliasee)
4163       return;
4164 
4165     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4166       // Will process aliases as a post-pass because the reader wants all
4167       // global to be loaded first.
4168       Aliases.push_back(AS);
4169       return;
4170     }
4171 
4172     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4173       NameVals.push_back(*ValueId);
4174       NameVals.push_back(Index.getModuleId(VS->modulePath()));
4175       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4176       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4177       for (auto &RI : VS->refs()) {
4178         auto RefValueId = getValueId(RI.getGUID());
4179         if (!RefValueId)
4180           continue;
4181         NameVals.push_back(*RefValueId);
4182       }
4183 
4184       // Emit the finished record.
4185       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4186                         FSModRefsAbbrev);
4187       NameVals.clear();
4188       MaybeEmitOriginalName(*S);
4189       return;
4190     }
4191 
4192     auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> {
4193       GlobalValue::GUID GUID = VI.getGUID();
4194       Optional<unsigned> CallValueId = getValueId(GUID);
4195       if (CallValueId)
4196         return CallValueId;
4197       // For SamplePGO, the indirect call targets for local functions will
4198       // have its original name annotated in profile. We try to find the
4199       // corresponding PGOFuncName as the GUID.
4200       GUID = Index.getGUIDFromOriginalID(GUID);
4201       if (!GUID)
4202         return None;
4203       CallValueId = getValueId(GUID);
4204       if (!CallValueId)
4205         return None;
4206       // The mapping from OriginalId to GUID may return a GUID
4207       // that corresponds to a static variable. Filter it out here.
4208       // This can happen when
4209       // 1) There is a call to a library function which does not have
4210       // a CallValidId;
4211       // 2) There is a static variable with the  OriginalGUID identical
4212       // to the GUID of the library function in 1);
4213       // When this happens, the logic for SamplePGO kicks in and
4214       // the static variable in 2) will be found, which needs to be
4215       // filtered out.
4216       auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4217       if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4218         return None;
4219       return CallValueId;
4220     };
4221 
4222     auto *FS = cast<FunctionSummary>(S);
4223     writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4224     getReferencedTypeIds(FS, ReferencedTypeIds);
4225 
4226     NameVals.push_back(*ValueId);
4227     NameVals.push_back(Index.getModuleId(FS->modulePath()));
4228     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4229     NameVals.push_back(FS->instCount());
4230     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4231     NameVals.push_back(FS->entryCount());
4232 
4233     // Fill in below
4234     NameVals.push_back(0); // numrefs
4235     NameVals.push_back(0); // rorefcnt
4236     NameVals.push_back(0); // worefcnt
4237 
4238     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4239     for (auto &RI : FS->refs()) {
4240       auto RefValueId = getValueId(RI.getGUID());
4241       if (!RefValueId)
4242         continue;
4243       NameVals.push_back(*RefValueId);
4244       if (RI.isReadOnly())
4245         RORefCnt++;
4246       else if (RI.isWriteOnly())
4247         WORefCnt++;
4248       Count++;
4249     }
4250     NameVals[6] = Count;
4251     NameVals[7] = RORefCnt;
4252     NameVals[8] = WORefCnt;
4253 
4254     bool HasProfileData = false;
4255     for (auto &EI : FS->calls()) {
4256       HasProfileData |=
4257           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4258       if (HasProfileData)
4259         break;
4260     }
4261 
4262     for (auto &EI : FS->calls()) {
4263       // If this GUID doesn't have a value id, it doesn't have a function
4264       // summary and we don't need to record any calls to it.
4265       Optional<unsigned> CallValueId = GetValueId(EI.first);
4266       if (!CallValueId)
4267         continue;
4268       NameVals.push_back(*CallValueId);
4269       if (HasProfileData)
4270         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4271     }
4272 
4273     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4274     unsigned Code =
4275         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4276 
4277     // Emit the finished record.
4278     Stream.EmitRecord(Code, NameVals, FSAbbrev);
4279     NameVals.clear();
4280     MaybeEmitOriginalName(*S);
4281   });
4282 
4283   for (auto *AS : Aliases) {
4284     auto AliasValueId = SummaryToValueIdMap[AS];
4285     assert(AliasValueId);
4286     NameVals.push_back(AliasValueId);
4287     NameVals.push_back(Index.getModuleId(AS->modulePath()));
4288     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4289     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4290     assert(AliaseeValueId);
4291     NameVals.push_back(AliaseeValueId);
4292 
4293     // Emit the finished record.
4294     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4295     NameVals.clear();
4296     MaybeEmitOriginalName(*AS);
4297 
4298     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4299       getReferencedTypeIds(FS, ReferencedTypeIds);
4300   }
4301 
4302   if (!Index.cfiFunctionDefs().empty()) {
4303     for (auto &S : Index.cfiFunctionDefs()) {
4304       if (DefOrUseGUIDs.count(
4305               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4306         NameVals.push_back(StrtabBuilder.add(S));
4307         NameVals.push_back(S.size());
4308       }
4309     }
4310     if (!NameVals.empty()) {
4311       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4312       NameVals.clear();
4313     }
4314   }
4315 
4316   if (!Index.cfiFunctionDecls().empty()) {
4317     for (auto &S : Index.cfiFunctionDecls()) {
4318       if (DefOrUseGUIDs.count(
4319               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4320         NameVals.push_back(StrtabBuilder.add(S));
4321         NameVals.push_back(S.size());
4322       }
4323     }
4324     if (!NameVals.empty()) {
4325       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4326       NameVals.clear();
4327     }
4328   }
4329 
4330   // Walk the GUIDs that were referenced, and write the
4331   // corresponding type id records.
4332   for (auto &T : ReferencedTypeIds) {
4333     auto TidIter = Index.typeIds().equal_range(T);
4334     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4335       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4336                                It->second.second);
4337       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4338       NameVals.clear();
4339     }
4340   }
4341 
4342   Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4343                     ArrayRef<uint64_t>{Index.getBlockCount()});
4344 
4345   Stream.ExitBlock();
4346 }
4347 
4348 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4349 /// current llvm version, and a record for the epoch number.
writeIdentificationBlock(BitstreamWriter & Stream)4350 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4351   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4352 
4353   // Write the "user readable" string identifying the bitcode producer
4354   auto Abbv = std::make_shared<BitCodeAbbrev>();
4355   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4356   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4357   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4358   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4359   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4360                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4361 
4362   // Write the epoch version
4363   Abbv = std::make_shared<BitCodeAbbrev>();
4364   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4365   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4366   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4367   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4368   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4369   Stream.ExitBlock();
4370 }
4371 
writeModuleHash(size_t BlockStartPos)4372 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4373   // Emit the module's hash.
4374   // MODULE_CODE_HASH: [5*i32]
4375   if (GenerateHash) {
4376     uint32_t Vals[5];
4377     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4378                                     Buffer.size() - BlockStartPos));
4379     StringRef Hash = Hasher.result();
4380     for (int Pos = 0; Pos < 20; Pos += 4) {
4381       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4382     }
4383 
4384     // Emit the finished record.
4385     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4386 
4387     if (ModHash)
4388       // Save the written hash value.
4389       llvm::copy(Vals, std::begin(*ModHash));
4390   }
4391 }
4392 
write()4393 void ModuleBitcodeWriter::write() {
4394   writeIdentificationBlock(Stream);
4395 
4396   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4397   size_t BlockStartPos = Buffer.size();
4398 
4399   writeModuleVersion();
4400 
4401   // Emit blockinfo, which defines the standard abbreviations etc.
4402   writeBlockInfo();
4403 
4404   // Emit information describing all of the types in the module.
4405   writeTypeTable();
4406 
4407   // Emit information about attribute groups.
4408   writeAttributeGroupTable();
4409 
4410   // Emit information about parameter attributes.
4411   writeAttributeTable();
4412 
4413   writeComdats();
4414 
4415   // Emit top-level description of module, including target triple, inline asm,
4416   // descriptors for global variables, and function prototype info.
4417   writeModuleInfo();
4418 
4419   // Emit constants.
4420   writeModuleConstants();
4421 
4422   // Emit metadata kind names.
4423   writeModuleMetadataKinds();
4424 
4425   // Emit metadata.
4426   writeModuleMetadata();
4427 
4428   // Emit module-level use-lists.
4429   if (VE.shouldPreserveUseListOrder())
4430     writeUseListBlock(nullptr);
4431 
4432   writeOperandBundleTags();
4433   writeSyncScopeNames();
4434 
4435   // Emit function bodies.
4436   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4437   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4438     if (!F->isDeclaration())
4439       writeFunction(*F, FunctionToBitcodeIndex);
4440 
4441   // Need to write after the above call to WriteFunction which populates
4442   // the summary information in the index.
4443   if (Index)
4444     writePerModuleGlobalValueSummary();
4445 
4446   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4447 
4448   writeModuleHash(BlockStartPos);
4449 
4450   Stream.ExitBlock();
4451 }
4452 
writeInt32ToBuffer(uint32_t Value,SmallVectorImpl<char> & Buffer,uint32_t & Position)4453 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4454                                uint32_t &Position) {
4455   support::endian::write32le(&Buffer[Position], Value);
4456   Position += 4;
4457 }
4458 
4459 /// If generating a bc file on darwin, we have to emit a
4460 /// header and trailer to make it compatible with the system archiver.  To do
4461 /// this we emit the following header, and then emit a trailer that pads the
4462 /// file out to be a multiple of 16 bytes.
4463 ///
4464 /// struct bc_header {
4465 ///   uint32_t Magic;         // 0x0B17C0DE
4466 ///   uint32_t Version;       // Version, currently always 0.
4467 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4468 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4469 ///   uint32_t CPUType;       // CPU specifier.
4470 ///   ... potentially more later ...
4471 /// };
emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> & Buffer,const Triple & TT)4472 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4473                                          const Triple &TT) {
4474   unsigned CPUType = ~0U;
4475 
4476   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4477   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4478   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4479   // specific constants here because they are implicitly part of the Darwin ABI.
4480   enum {
4481     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4482     DARWIN_CPU_TYPE_X86        = 7,
4483     DARWIN_CPU_TYPE_ARM        = 12,
4484     DARWIN_CPU_TYPE_POWERPC    = 18
4485   };
4486 
4487   Triple::ArchType Arch = TT.getArch();
4488   if (Arch == Triple::x86_64)
4489     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4490   else if (Arch == Triple::x86)
4491     CPUType = DARWIN_CPU_TYPE_X86;
4492   else if (Arch == Triple::ppc)
4493     CPUType = DARWIN_CPU_TYPE_POWERPC;
4494   else if (Arch == Triple::ppc64)
4495     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4496   else if (Arch == Triple::arm || Arch == Triple::thumb)
4497     CPUType = DARWIN_CPU_TYPE_ARM;
4498 
4499   // Traditional Bitcode starts after header.
4500   assert(Buffer.size() >= BWH_HeaderSize &&
4501          "Expected header size to be reserved");
4502   unsigned BCOffset = BWH_HeaderSize;
4503   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4504 
4505   // Write the magic and version.
4506   unsigned Position = 0;
4507   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4508   writeInt32ToBuffer(0, Buffer, Position); // Version.
4509   writeInt32ToBuffer(BCOffset, Buffer, Position);
4510   writeInt32ToBuffer(BCSize, Buffer, Position);
4511   writeInt32ToBuffer(CPUType, Buffer, Position);
4512 
4513   // If the file is not a multiple of 16 bytes, insert dummy padding.
4514   while (Buffer.size() & 15)
4515     Buffer.push_back(0);
4516 }
4517 
4518 /// Helper to write the header common to all bitcode files.
writeBitcodeHeader(BitstreamWriter & Stream)4519 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4520   // Emit the file header.
4521   Stream.Emit((unsigned)'B', 8);
4522   Stream.Emit((unsigned)'C', 8);
4523   Stream.Emit(0x0, 4);
4524   Stream.Emit(0xC, 4);
4525   Stream.Emit(0xE, 4);
4526   Stream.Emit(0xD, 4);
4527 }
4528 
BitcodeWriter(SmallVectorImpl<char> & Buffer,raw_fd_stream * FS)4529 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4530     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4531   writeBitcodeHeader(*Stream);
4532 }
4533 
~BitcodeWriter()4534 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4535 
writeBlob(unsigned Block,unsigned Record,StringRef Blob)4536 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4537   Stream->EnterSubblock(Block, 3);
4538 
4539   auto Abbv = std::make_shared<BitCodeAbbrev>();
4540   Abbv->Add(BitCodeAbbrevOp(Record));
4541   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4542   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4543 
4544   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4545 
4546   Stream->ExitBlock();
4547 }
4548 
writeSymtab()4549 void BitcodeWriter::writeSymtab() {
4550   assert(!WroteStrtab && !WroteSymtab);
4551 
4552   // If any module has module-level inline asm, we will require a registered asm
4553   // parser for the target so that we can create an accurate symbol table for
4554   // the module.
4555   for (Module *M : Mods) {
4556     if (M->getModuleInlineAsm().empty())
4557       continue;
4558 
4559     std::string Err;
4560     const Triple TT(M->getTargetTriple());
4561     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4562     if (!T || !T->hasMCAsmParser())
4563       return;
4564   }
4565 
4566   WroteSymtab = true;
4567   SmallVector<char, 0> Symtab;
4568   // The irsymtab::build function may be unable to create a symbol table if the
4569   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4570   // table is not required for correctness, but we still want to be able to
4571   // write malformed modules to bitcode files, so swallow the error.
4572   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4573     consumeError(std::move(E));
4574     return;
4575   }
4576 
4577   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4578             {Symtab.data(), Symtab.size()});
4579 }
4580 
writeStrtab()4581 void BitcodeWriter::writeStrtab() {
4582   assert(!WroteStrtab);
4583 
4584   std::vector<char> Strtab;
4585   StrtabBuilder.finalizeInOrder();
4586   Strtab.resize(StrtabBuilder.getSize());
4587   StrtabBuilder.write((uint8_t *)Strtab.data());
4588 
4589   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4590             {Strtab.data(), Strtab.size()});
4591 
4592   WroteStrtab = true;
4593 }
4594 
copyStrtab(StringRef Strtab)4595 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4596   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4597   WroteStrtab = true;
4598 }
4599 
writeModule(const Module & M,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4600 void BitcodeWriter::writeModule(const Module &M,
4601                                 bool ShouldPreserveUseListOrder,
4602                                 const ModuleSummaryIndex *Index,
4603                                 bool GenerateHash, ModuleHash *ModHash) {
4604   assert(!WroteStrtab);
4605 
4606   // The Mods vector is used by irsymtab::build, which requires non-const
4607   // Modules in case it needs to materialize metadata. But the bitcode writer
4608   // requires that the module is materialized, so we can cast to non-const here,
4609   // after checking that it is in fact materialized.
4610   assert(M.isMaterialized());
4611   Mods.push_back(const_cast<Module *>(&M));
4612 
4613   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4614                                    ShouldPreserveUseListOrder, Index,
4615                                    GenerateHash, ModHash);
4616   ModuleWriter.write();
4617 }
4618 
writeIndex(const ModuleSummaryIndex * Index,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4619 void BitcodeWriter::writeIndex(
4620     const ModuleSummaryIndex *Index,
4621     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4622   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4623                                  ModuleToSummariesForIndex);
4624   IndexWriter.write();
4625 }
4626 
4627 /// Write the specified module to the specified output stream.
WriteBitcodeToFile(const Module & M,raw_ostream & Out,bool ShouldPreserveUseListOrder,const ModuleSummaryIndex * Index,bool GenerateHash,ModuleHash * ModHash)4628 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4629                               bool ShouldPreserveUseListOrder,
4630                               const ModuleSummaryIndex *Index,
4631                               bool GenerateHash, ModuleHash *ModHash) {
4632   SmallVector<char, 0> Buffer;
4633   Buffer.reserve(256*1024);
4634 
4635   // If this is darwin or another generic macho target, reserve space for the
4636   // header.
4637   Triple TT(M.getTargetTriple());
4638   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4639     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4640 
4641   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4642   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4643                      ModHash);
4644   Writer.writeSymtab();
4645   Writer.writeStrtab();
4646 
4647   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4648     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4649 
4650   // Write the generated bitstream to "Out".
4651   if (!Buffer.empty())
4652     Out.write((char *)&Buffer.front(), Buffer.size());
4653 }
4654 
write()4655 void IndexBitcodeWriter::write() {
4656   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4657 
4658   writeModuleVersion();
4659 
4660   // Write the module paths in the combined index.
4661   writeModStrings();
4662 
4663   // Write the summary combined index records.
4664   writeCombinedGlobalValueSummary();
4665 
4666   Stream.ExitBlock();
4667 }
4668 
4669 // Write the specified module summary index to the given raw output stream,
4670 // where it will be written in a new bitcode block. This is used when
4671 // writing the combined index file for ThinLTO. When writing a subset of the
4672 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
WriteIndexToFile(const ModuleSummaryIndex & Index,raw_ostream & Out,const std::map<std::string,GVSummaryMapTy> * ModuleToSummariesForIndex)4673 void llvm::WriteIndexToFile(
4674     const ModuleSummaryIndex &Index, raw_ostream &Out,
4675     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4676   SmallVector<char, 0> Buffer;
4677   Buffer.reserve(256 * 1024);
4678 
4679   BitcodeWriter Writer(Buffer);
4680   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4681   Writer.writeStrtab();
4682 
4683   Out.write((char *)&Buffer.front(), Buffer.size());
4684 }
4685 
4686 namespace {
4687 
4688 /// Class to manage the bitcode writing for a thin link bitcode file.
4689 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4690   /// ModHash is for use in ThinLTO incremental build, generated while writing
4691   /// the module bitcode file.
4692   const ModuleHash *ModHash;
4693 
4694 public:
ThinLinkBitcodeWriter(const Module & M,StringTableBuilder & StrtabBuilder,BitstreamWriter & Stream,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4695   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4696                         BitstreamWriter &Stream,
4697                         const ModuleSummaryIndex &Index,
4698                         const ModuleHash &ModHash)
4699       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4700                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4701         ModHash(&ModHash) {}
4702 
4703   void write();
4704 
4705 private:
4706   void writeSimplifiedModuleInfo();
4707 };
4708 
4709 } // end anonymous namespace
4710 
4711 // This function writes a simpilified module info for thin link bitcode file.
4712 // It only contains the source file name along with the name(the offset and
4713 // size in strtab) and linkage for global values. For the global value info
4714 // entry, in order to keep linkage at offset 5, there are three zeros used
4715 // as padding.
writeSimplifiedModuleInfo()4716 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4717   SmallVector<unsigned, 64> Vals;
4718   // Emit the module's source file name.
4719   {
4720     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4721     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4722     if (Bits == SE_Char6)
4723       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4724     else if (Bits == SE_Fixed7)
4725       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4726 
4727     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4728     auto Abbv = std::make_shared<BitCodeAbbrev>();
4729     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4730     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4731     Abbv->Add(AbbrevOpToUse);
4732     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4733 
4734     for (const auto P : M.getSourceFileName())
4735       Vals.push_back((unsigned char)P);
4736 
4737     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4738     Vals.clear();
4739   }
4740 
4741   // Emit the global variable information.
4742   for (const GlobalVariable &GV : M.globals()) {
4743     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4744     Vals.push_back(StrtabBuilder.add(GV.getName()));
4745     Vals.push_back(GV.getName().size());
4746     Vals.push_back(0);
4747     Vals.push_back(0);
4748     Vals.push_back(0);
4749     Vals.push_back(getEncodedLinkage(GV));
4750 
4751     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4752     Vals.clear();
4753   }
4754 
4755   // Emit the function proto information.
4756   for (const Function &F : M) {
4757     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4758     Vals.push_back(StrtabBuilder.add(F.getName()));
4759     Vals.push_back(F.getName().size());
4760     Vals.push_back(0);
4761     Vals.push_back(0);
4762     Vals.push_back(0);
4763     Vals.push_back(getEncodedLinkage(F));
4764 
4765     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4766     Vals.clear();
4767   }
4768 
4769   // Emit the alias information.
4770   for (const GlobalAlias &A : M.aliases()) {
4771     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4772     Vals.push_back(StrtabBuilder.add(A.getName()));
4773     Vals.push_back(A.getName().size());
4774     Vals.push_back(0);
4775     Vals.push_back(0);
4776     Vals.push_back(0);
4777     Vals.push_back(getEncodedLinkage(A));
4778 
4779     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4780     Vals.clear();
4781   }
4782 
4783   // Emit the ifunc information.
4784   for (const GlobalIFunc &I : M.ifuncs()) {
4785     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4786     Vals.push_back(StrtabBuilder.add(I.getName()));
4787     Vals.push_back(I.getName().size());
4788     Vals.push_back(0);
4789     Vals.push_back(0);
4790     Vals.push_back(0);
4791     Vals.push_back(getEncodedLinkage(I));
4792 
4793     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4794     Vals.clear();
4795   }
4796 }
4797 
write()4798 void ThinLinkBitcodeWriter::write() {
4799   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4800 
4801   writeModuleVersion();
4802 
4803   writeSimplifiedModuleInfo();
4804 
4805   writePerModuleGlobalValueSummary();
4806 
4807   // Write module hash.
4808   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4809 
4810   Stream.ExitBlock();
4811 }
4812 
writeThinLinkBitcode(const Module & M,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4813 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4814                                          const ModuleSummaryIndex &Index,
4815                                          const ModuleHash &ModHash) {
4816   assert(!WroteStrtab);
4817 
4818   // The Mods vector is used by irsymtab::build, which requires non-const
4819   // Modules in case it needs to materialize metadata. But the bitcode writer
4820   // requires that the module is materialized, so we can cast to non-const here,
4821   // after checking that it is in fact materialized.
4822   assert(M.isMaterialized());
4823   Mods.push_back(const_cast<Module *>(&M));
4824 
4825   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4826                                        ModHash);
4827   ThinLinkWriter.write();
4828 }
4829 
4830 // Write the specified thin link bitcode file to the given raw output stream,
4831 // where it will be written in a new bitcode block. This is used when
4832 // writing the per-module index file for ThinLTO.
WriteThinLinkBitcodeToFile(const Module & M,raw_ostream & Out,const ModuleSummaryIndex & Index,const ModuleHash & ModHash)4833 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4834                                       const ModuleSummaryIndex &Index,
4835                                       const ModuleHash &ModHash) {
4836   SmallVector<char, 0> Buffer;
4837   Buffer.reserve(256 * 1024);
4838 
4839   BitcodeWriter Writer(Buffer);
4840   Writer.writeThinLinkBitcode(M, Index, ModHash);
4841   Writer.writeSymtab();
4842   Writer.writeStrtab();
4843 
4844   Out.write((char *)&Buffer.front(), Buffer.size());
4845 }
4846 
getSectionNameForBitcode(const Triple & T)4847 static const char *getSectionNameForBitcode(const Triple &T) {
4848   switch (T.getObjectFormat()) {
4849   case Triple::MachO:
4850     return "__LLVM,__bitcode";
4851   case Triple::COFF:
4852   case Triple::ELF:
4853   case Triple::Wasm:
4854   case Triple::UnknownObjectFormat:
4855     return ".llvmbc";
4856   case Triple::GOFF:
4857     llvm_unreachable("GOFF is not yet implemented");
4858     break;
4859   case Triple::XCOFF:
4860     llvm_unreachable("XCOFF is not yet implemented");
4861     break;
4862   }
4863   llvm_unreachable("Unimplemented ObjectFormatType");
4864 }
4865 
getSectionNameForCommandline(const Triple & T)4866 static const char *getSectionNameForCommandline(const Triple &T) {
4867   switch (T.getObjectFormat()) {
4868   case Triple::MachO:
4869     return "__LLVM,__cmdline";
4870   case Triple::COFF:
4871   case Triple::ELF:
4872   case Triple::Wasm:
4873   case Triple::UnknownObjectFormat:
4874     return ".llvmcmd";
4875   case Triple::GOFF:
4876     llvm_unreachable("GOFF is not yet implemented");
4877     break;
4878   case Triple::XCOFF:
4879     llvm_unreachable("XCOFF is not yet implemented");
4880     break;
4881   }
4882   llvm_unreachable("Unimplemented ObjectFormatType");
4883 }
4884 
EmbedBitcodeInModule(llvm::Module & M,llvm::MemoryBufferRef Buf,bool EmbedBitcode,bool EmbedCmdline,const std::vector<uint8_t> & CmdArgs)4885 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4886                                 bool EmbedBitcode, bool EmbedCmdline,
4887                                 const std::vector<uint8_t> &CmdArgs) {
4888   // Save llvm.compiler.used and remove it.
4889   SmallVector<Constant *, 2> UsedArray;
4890   SmallVector<GlobalValue *, 4> UsedGlobals;
4891   Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4892   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4893   for (auto *GV : UsedGlobals) {
4894     if (GV->getName() != "llvm.embedded.module" &&
4895         GV->getName() != "llvm.cmdline")
4896       UsedArray.push_back(
4897           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4898   }
4899   if (Used)
4900     Used->eraseFromParent();
4901 
4902   // Embed the bitcode for the llvm module.
4903   std::string Data;
4904   ArrayRef<uint8_t> ModuleData;
4905   Triple T(M.getTargetTriple());
4906 
4907   if (EmbedBitcode) {
4908     if (Buf.getBufferSize() == 0 ||
4909         !isBitcode((const unsigned char *)Buf.getBufferStart(),
4910                    (const unsigned char *)Buf.getBufferEnd())) {
4911       // If the input is LLVM Assembly, bitcode is produced by serializing
4912       // the module. Use-lists order need to be preserved in this case.
4913       llvm::raw_string_ostream OS(Data);
4914       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4915       ModuleData =
4916           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4917     } else
4918       // If the input is LLVM bitcode, write the input byte stream directly.
4919       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4920                                      Buf.getBufferSize());
4921   }
4922   llvm::Constant *ModuleConstant =
4923       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4924   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4925       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4926       ModuleConstant);
4927   GV->setSection(getSectionNameForBitcode(T));
4928   // Set alignment to 1 to prevent padding between two contributions from input
4929   // sections after linking.
4930   GV->setAlignment(Align(1));
4931   UsedArray.push_back(
4932       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4933   if (llvm::GlobalVariable *Old =
4934           M.getGlobalVariable("llvm.embedded.module", true)) {
4935     assert(Old->hasOneUse() &&
4936            "llvm.embedded.module can only be used once in llvm.compiler.used");
4937     GV->takeName(Old);
4938     Old->eraseFromParent();
4939   } else {
4940     GV->setName("llvm.embedded.module");
4941   }
4942 
4943   // Skip if only bitcode needs to be embedded.
4944   if (EmbedCmdline) {
4945     // Embed command-line options.
4946     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
4947                               CmdArgs.size());
4948     llvm::Constant *CmdConstant =
4949         llvm::ConstantDataArray::get(M.getContext(), CmdData);
4950     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
4951                                   llvm::GlobalValue::PrivateLinkage,
4952                                   CmdConstant);
4953     GV->setSection(getSectionNameForCommandline(T));
4954     GV->setAlignment(Align(1));
4955     UsedArray.push_back(
4956         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4957     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
4958       assert(Old->hasOneUse() &&
4959              "llvm.cmdline can only be used once in llvm.compiler.used");
4960       GV->takeName(Old);
4961       Old->eraseFromParent();
4962     } else {
4963       GV->setName("llvm.cmdline");
4964     }
4965   }
4966 
4967   if (UsedArray.empty())
4968     return;
4969 
4970   // Recreate llvm.compiler.used.
4971   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
4972   auto *NewUsed = new GlobalVariable(
4973       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
4974       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
4975   NewUsed->setSection("llvm.metadata");
4976 }
4977