xref: /llvm-project/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp (revision 754ed95b6672b9a678a994cc652862a91cdc4406)
1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interfaces that Hexagon uses to lower LLVM code
10 // into a selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "HexagonISelLowering.h"
15 #include "Hexagon.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonRegisterInfo.h"
18 #include "HexagonSubtarget.h"
19 #include "HexagonTargetMachine.h"
20 #include "HexagonTargetObjectFile.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringSwitch.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetCallingConv.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/BasicBlock.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/DiagnosticPrinter.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InlineAsm.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsHexagon.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/Value.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CodeGen.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <limits>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "hexagon-lowering"
67 
68 static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
69   cl::init(true), cl::Hidden,
70   cl::desc("Control jump table emission on Hexagon target"));
71 
72 static cl::opt<bool>
73     EnableHexSDNodeSched("enable-hexagon-sdnode-sched", cl::Hidden,
74                          cl::desc("Enable Hexagon SDNode scheduling"));
75 
76 static cl::opt<bool> EnableFastMath("ffast-math", cl::Hidden,
77                                     cl::desc("Enable Fast Math processing"));
78 
79 static cl::opt<int> MinimumJumpTables("minimum-jump-tables", cl::Hidden,
80                                       cl::init(5),
81                                       cl::desc("Set minimum jump tables"));
82 
83 static cl::opt<int>
84     MaxStoresPerMemcpyCL("max-store-memcpy", cl::Hidden, cl::init(6),
85                          cl::desc("Max #stores to inline memcpy"));
86 
87 static cl::opt<int>
88     MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", cl::Hidden, cl::init(4),
89                                 cl::desc("Max #stores to inline memcpy"));
90 
91 static cl::opt<int>
92     MaxStoresPerMemmoveCL("max-store-memmove", cl::Hidden, cl::init(6),
93                           cl::desc("Max #stores to inline memmove"));
94 
95 static cl::opt<int>
96     MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", cl::Hidden,
97                                  cl::init(4),
98                                  cl::desc("Max #stores to inline memmove"));
99 
100 static cl::opt<int>
101     MaxStoresPerMemsetCL("max-store-memset", cl::Hidden, cl::init(8),
102                          cl::desc("Max #stores to inline memset"));
103 
104 static cl::opt<int>
105     MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", cl::Hidden, cl::init(4),
106                                 cl::desc("Max #stores to inline memset"));
107 
108 static cl::opt<bool> AlignLoads("hexagon-align-loads",
109   cl::Hidden, cl::init(false),
110   cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
111 
112 static cl::opt<bool>
113     DisableArgsMinAlignment("hexagon-disable-args-min-alignment", cl::Hidden,
114                             cl::init(false),
115                             cl::desc("Disable minimum alignment of 1 for "
116                                      "arguments passed by value on stack"));
117 
118 namespace {
119 
120   class HexagonCCState : public CCState {
121     unsigned NumNamedVarArgParams = 0;
122 
123   public:
124     HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
125                    SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
126                    unsigned NumNamedArgs)
127         : CCState(CC, IsVarArg, MF, locs, C),
128           NumNamedVarArgParams(NumNamedArgs) {}
129     unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
130   };
131 
132 } // end anonymous namespace
133 
134 
135 // Implement calling convention for Hexagon.
136 
137 static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
138                        CCValAssign::LocInfo &LocInfo,
139                        ISD::ArgFlagsTy &ArgFlags, CCState &State) {
140   static const MCPhysReg ArgRegs[] = {
141     Hexagon::R0, Hexagon::R1, Hexagon::R2,
142     Hexagon::R3, Hexagon::R4, Hexagon::R5
143   };
144   const unsigned NumArgRegs = std::size(ArgRegs);
145   unsigned RegNum = State.getFirstUnallocated(ArgRegs);
146 
147   // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
148   if (RegNum != NumArgRegs && RegNum % 2 == 1)
149     State.AllocateReg(ArgRegs[RegNum]);
150 
151   // Always return false here, as this function only makes sure that the first
152   // unallocated register has an even register number and does not actually
153   // allocate a register for the current argument.
154   return false;
155 }
156 
157 #include "HexagonGenCallingConv.inc"
158 
159 
160 SDValue
161 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
162       const {
163   return SDValue();
164 }
165 
166 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
167 /// by "Src" to address "Dst" of size "Size".  Alignment information is
168 /// specified by the specific parameter attribute. The copy will be passed as
169 /// a byval function parameter.  Sometimes what we are copying is the end of a
170 /// larger object, the part that does not fit in registers.
171 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
172                                          SDValue Chain, ISD::ArgFlagsTy Flags,
173                                          SelectionDAG &DAG, const SDLoc &dl) {
174   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
175   return DAG.getMemcpy(
176       Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(),
177       /*isVolatile=*/false, /*AlwaysInline=*/false,
178       /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo());
179 }
180 
181 bool
182 HexagonTargetLowering::CanLowerReturn(
183     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
184     const SmallVectorImpl<ISD::OutputArg> &Outs,
185     LLVMContext &Context, const Type *RetTy) const {
186   SmallVector<CCValAssign, 16> RVLocs;
187   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
188 
189   if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
190     return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
191   return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
192 }
193 
194 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
195 // passed by value, the function prototype is modified to return void and
196 // the value is stored in memory pointed by a pointer passed by caller.
197 SDValue
198 HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
199                                    bool IsVarArg,
200                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
201                                    const SmallVectorImpl<SDValue> &OutVals,
202                                    const SDLoc &dl, SelectionDAG &DAG) const {
203   // CCValAssign - represent the assignment of the return value to locations.
204   SmallVector<CCValAssign, 16> RVLocs;
205 
206   // CCState - Info about the registers and stack slot.
207   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
208                  *DAG.getContext());
209 
210   // Analyze return values of ISD::RET
211   if (Subtarget.useHVXOps())
212     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
213   else
214     CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
215 
216   SDValue Glue;
217   SmallVector<SDValue, 4> RetOps(1, Chain);
218 
219   // Copy the result values into the output registers.
220   for (unsigned i = 0; i != RVLocs.size(); ++i) {
221     CCValAssign &VA = RVLocs[i];
222     SDValue Val = OutVals[i];
223 
224     switch (VA.getLocInfo()) {
225       default:
226         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
227         llvm_unreachable("Unknown loc info!");
228       case CCValAssign::Full:
229         break;
230       case CCValAssign::BCvt:
231         Val = DAG.getBitcast(VA.getLocVT(), Val);
232         break;
233       case CCValAssign::SExt:
234         Val = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Val);
235         break;
236       case CCValAssign::ZExt:
237         Val = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Val);
238         break;
239       case CCValAssign::AExt:
240         Val = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Val);
241         break;
242     }
243 
244     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Val, Glue);
245 
246     // Guarantee that all emitted copies are stuck together with flags.
247     Glue = Chain.getValue(1);
248     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
249   }
250 
251   RetOps[0] = Chain;  // Update chain.
252 
253   // Add the glue if we have it.
254   if (Glue.getNode())
255     RetOps.push_back(Glue);
256 
257   return DAG.getNode(HexagonISD::RET_GLUE, dl, MVT::Other, RetOps);
258 }
259 
260 bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
261   // If either no tail call or told not to tail call at all, don't.
262   return CI->isTailCall();
263 }
264 
265 Register HexagonTargetLowering::getRegisterByName(
266       const char* RegName, LLT VT, const MachineFunction &) const {
267   // Just support r19, the linux kernel uses it.
268   Register Reg = StringSwitch<Register>(RegName)
269                      .Case("r0", Hexagon::R0)
270                      .Case("r1", Hexagon::R1)
271                      .Case("r2", Hexagon::R2)
272                      .Case("r3", Hexagon::R3)
273                      .Case("r4", Hexagon::R4)
274                      .Case("r5", Hexagon::R5)
275                      .Case("r6", Hexagon::R6)
276                      .Case("r7", Hexagon::R7)
277                      .Case("r8", Hexagon::R8)
278                      .Case("r9", Hexagon::R9)
279                      .Case("r10", Hexagon::R10)
280                      .Case("r11", Hexagon::R11)
281                      .Case("r12", Hexagon::R12)
282                      .Case("r13", Hexagon::R13)
283                      .Case("r14", Hexagon::R14)
284                      .Case("r15", Hexagon::R15)
285                      .Case("r16", Hexagon::R16)
286                      .Case("r17", Hexagon::R17)
287                      .Case("r18", Hexagon::R18)
288                      .Case("r19", Hexagon::R19)
289                      .Case("r20", Hexagon::R20)
290                      .Case("r21", Hexagon::R21)
291                      .Case("r22", Hexagon::R22)
292                      .Case("r23", Hexagon::R23)
293                      .Case("r24", Hexagon::R24)
294                      .Case("r25", Hexagon::R25)
295                      .Case("r26", Hexagon::R26)
296                      .Case("r27", Hexagon::R27)
297                      .Case("r28", Hexagon::R28)
298                      .Case("r29", Hexagon::R29)
299                      .Case("r30", Hexagon::R30)
300                      .Case("r31", Hexagon::R31)
301                      .Case("r1:0", Hexagon::D0)
302                      .Case("r3:2", Hexagon::D1)
303                      .Case("r5:4", Hexagon::D2)
304                      .Case("r7:6", Hexagon::D3)
305                      .Case("r9:8", Hexagon::D4)
306                      .Case("r11:10", Hexagon::D5)
307                      .Case("r13:12", Hexagon::D6)
308                      .Case("r15:14", Hexagon::D7)
309                      .Case("r17:16", Hexagon::D8)
310                      .Case("r19:18", Hexagon::D9)
311                      .Case("r21:20", Hexagon::D10)
312                      .Case("r23:22", Hexagon::D11)
313                      .Case("r25:24", Hexagon::D12)
314                      .Case("r27:26", Hexagon::D13)
315                      .Case("r29:28", Hexagon::D14)
316                      .Case("r31:30", Hexagon::D15)
317                      .Case("sp", Hexagon::R29)
318                      .Case("fp", Hexagon::R30)
319                      .Case("lr", Hexagon::R31)
320                      .Case("p0", Hexagon::P0)
321                      .Case("p1", Hexagon::P1)
322                      .Case("p2", Hexagon::P2)
323                      .Case("p3", Hexagon::P3)
324                      .Case("sa0", Hexagon::SA0)
325                      .Case("lc0", Hexagon::LC0)
326                      .Case("sa1", Hexagon::SA1)
327                      .Case("lc1", Hexagon::LC1)
328                      .Case("m0", Hexagon::M0)
329                      .Case("m1", Hexagon::M1)
330                      .Case("usr", Hexagon::USR)
331                      .Case("ugp", Hexagon::UGP)
332                      .Case("cs0", Hexagon::CS0)
333                      .Case("cs1", Hexagon::CS1)
334                      .Default(Register());
335   if (Reg)
336     return Reg;
337 
338   report_fatal_error("Invalid register name global variable");
339 }
340 
341 /// LowerCallResult - Lower the result values of an ISD::CALL into the
342 /// appropriate copies out of appropriate physical registers.  This assumes that
343 /// Chain/Glue are the input chain/glue to use, and that TheCall is the call
344 /// being lowered. Returns a SDNode with the same number of values as the
345 /// ISD::CALL.
346 SDValue HexagonTargetLowering::LowerCallResult(
347     SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
348     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
349     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
350     const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
351   // Assign locations to each value returned by this call.
352   SmallVector<CCValAssign, 16> RVLocs;
353 
354   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
355                  *DAG.getContext());
356 
357   if (Subtarget.useHVXOps())
358     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
359   else
360     CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
361 
362   // Copy all of the result registers out of their specified physreg.
363   for (unsigned i = 0; i != RVLocs.size(); ++i) {
364     SDValue RetVal;
365     if (RVLocs[i].getValVT() == MVT::i1) {
366       // Return values of type MVT::i1 require special handling. The reason
367       // is that MVT::i1 is associated with the PredRegs register class, but
368       // values of that type are still returned in R0. Generate an explicit
369       // copy into a predicate register from R0, and treat the value of the
370       // predicate register as the call result.
371       auto &MRI = DAG.getMachineFunction().getRegInfo();
372       SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
373                                        MVT::i32, Glue);
374       // FR0 = (Value, Chain, Glue)
375       Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
376       SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
377                                      FR0.getValue(0), FR0.getValue(2));
378       // TPR = (Chain, Glue)
379       // Don't glue this CopyFromReg, because it copies from a virtual
380       // register. If it is glued to the call, InstrEmitter will add it
381       // as an implicit def to the call (EmitMachineNode).
382       RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
383       Glue = TPR.getValue(1);
384       Chain = TPR.getValue(0);
385     } else {
386       RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
387                                   RVLocs[i].getValVT(), Glue);
388       Glue = RetVal.getValue(2);
389       Chain = RetVal.getValue(1);
390     }
391     InVals.push_back(RetVal.getValue(0));
392   }
393 
394   return Chain;
395 }
396 
397 /// LowerCall - Functions arguments are copied from virtual regs to
398 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
399 SDValue
400 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
401                                  SmallVectorImpl<SDValue> &InVals) const {
402   SelectionDAG &DAG                     = CLI.DAG;
403   SDLoc &dl                             = CLI.DL;
404   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
405   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
406   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
407   SDValue Chain                         = CLI.Chain;
408   SDValue Callee                        = CLI.Callee;
409   CallingConv::ID CallConv              = CLI.CallConv;
410   bool IsVarArg                         = CLI.IsVarArg;
411   bool DoesNotReturn                    = CLI.DoesNotReturn;
412 
413   bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
414   MachineFunction &MF = DAG.getMachineFunction();
415   MachineFrameInfo &MFI = MF.getFrameInfo();
416   auto PtrVT = getPointerTy(MF.getDataLayout());
417 
418   unsigned NumParams = CLI.CB ? CLI.CB->getFunctionType()->getNumParams() : 0;
419   if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
420     Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
421 
422   // Linux ABI treats var-arg calls the same way as regular ones.
423   bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
424 
425   // Analyze operands of the call, assigning locations to each operand.
426   SmallVector<CCValAssign, 16> ArgLocs;
427   HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs, *DAG.getContext(),
428                         NumParams);
429 
430   if (Subtarget.useHVXOps())
431     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
432   else if (DisableArgsMinAlignment)
433     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_Legacy);
434   else
435     CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
436 
437   if (CLI.IsTailCall) {
438     bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
439     CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
440                         IsVarArg, IsStructRet, StructAttrFlag, Outs,
441                         OutVals, Ins, DAG);
442     for (const CCValAssign &VA : ArgLocs) {
443       if (VA.isMemLoc()) {
444         CLI.IsTailCall = false;
445         break;
446       }
447     }
448     LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
449                                          : "Argument must be passed on stack. "
450                                            "Not eligible for Tail Call\n"));
451   }
452   // Get a count of how many bytes are to be pushed on the stack.
453   unsigned NumBytes = CCInfo.getStackSize();
454   SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
455   SmallVector<SDValue, 8> MemOpChains;
456 
457   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
458   SDValue StackPtr =
459       DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
460 
461   bool NeedsArgAlign = false;
462   Align LargestAlignSeen;
463   // Walk the register/memloc assignments, inserting copies/loads.
464   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
465     CCValAssign &VA = ArgLocs[i];
466     SDValue Arg = OutVals[i];
467     ISD::ArgFlagsTy Flags = Outs[i].Flags;
468     // Record if we need > 8 byte alignment on an argument.
469     bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
470     NeedsArgAlign |= ArgAlign;
471 
472     // Promote the value if needed.
473     switch (VA.getLocInfo()) {
474       default:
475         // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
476         llvm_unreachable("Unknown loc info!");
477       case CCValAssign::Full:
478         break;
479       case CCValAssign::BCvt:
480         Arg = DAG.getBitcast(VA.getLocVT(), Arg);
481         break;
482       case CCValAssign::SExt:
483         Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
484         break;
485       case CCValAssign::ZExt:
486         Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
487         break;
488       case CCValAssign::AExt:
489         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
490         break;
491     }
492 
493     if (VA.isMemLoc()) {
494       unsigned LocMemOffset = VA.getLocMemOffset();
495       SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
496                                         StackPtr.getValueType());
497       MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
498       if (ArgAlign)
499         LargestAlignSeen = std::max(
500             LargestAlignSeen, Align(VA.getLocVT().getStoreSizeInBits() / 8));
501       if (Flags.isByVal()) {
502         // The argument is a struct passed by value. According to LLVM, "Arg"
503         // is a pointer.
504         MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
505                                                         Flags, DAG, dl));
506       } else {
507         MachinePointerInfo LocPI = MachinePointerInfo::getStack(
508             DAG.getMachineFunction(), LocMemOffset);
509         SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
510         MemOpChains.push_back(S);
511       }
512       continue;
513     }
514 
515     // Arguments that can be passed on register must be kept at RegsToPass
516     // vector.
517     if (VA.isRegLoc())
518       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
519   }
520 
521   if (NeedsArgAlign && Subtarget.hasV60Ops()) {
522     LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
523     Align VecAlign = HRI.getSpillAlign(Hexagon::HvxVRRegClass);
524     LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
525     MFI.ensureMaxAlignment(LargestAlignSeen);
526   }
527   // Transform all store nodes into one single node because all store
528   // nodes are independent of each other.
529   if (!MemOpChains.empty())
530     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
531 
532   SDValue Glue;
533   if (!CLI.IsTailCall) {
534     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
535     Glue = Chain.getValue(1);
536   }
537 
538   // Build a sequence of copy-to-reg nodes chained together with token
539   // chain and flag operands which copy the outgoing args into registers.
540   // The Glue is necessary since all emitted instructions must be
541   // stuck together.
542   if (!CLI.IsTailCall) {
543     for (const auto &R : RegsToPass) {
544       Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
545       Glue = Chain.getValue(1);
546     }
547   } else {
548     // For tail calls lower the arguments to the 'real' stack slot.
549     //
550     // Force all the incoming stack arguments to be loaded from the stack
551     // before any new outgoing arguments are stored to the stack, because the
552     // outgoing stack slots may alias the incoming argument stack slots, and
553     // the alias isn't otherwise explicit. This is slightly more conservative
554     // than necessary, because it means that each store effectively depends
555     // on every argument instead of just those arguments it would clobber.
556     //
557     // Do not flag preceding copytoreg stuff together with the following stuff.
558     Glue = SDValue();
559     for (const auto &R : RegsToPass) {
560       Chain = DAG.getCopyToReg(Chain, dl, R.first, R.second, Glue);
561       Glue = Chain.getValue(1);
562     }
563     Glue = SDValue();
564   }
565 
566   bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
567   unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
568 
569   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
570   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
571   // node so that legalize doesn't hack it.
572   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
573     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
574   } else if (ExternalSymbolSDNode *S =
575              dyn_cast<ExternalSymbolSDNode>(Callee)) {
576     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
577   }
578 
579   // Returns a chain & a flag for retval copy to use.
580   SmallVector<SDValue, 8> Ops;
581   Ops.push_back(Chain);
582   Ops.push_back(Callee);
583 
584   // Add argument registers to the end of the list so that they are
585   // known live into the call.
586   for (const auto &R : RegsToPass)
587     Ops.push_back(DAG.getRegister(R.first, R.second.getValueType()));
588 
589   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
590   assert(Mask && "Missing call preserved mask for calling convention");
591   Ops.push_back(DAG.getRegisterMask(Mask));
592 
593   if (Glue.getNode())
594     Ops.push_back(Glue);
595 
596   if (CLI.IsTailCall) {
597     MFI.setHasTailCall();
598     return DAG.getNode(HexagonISD::TC_RETURN, dl, MVT::Other, Ops);
599   }
600 
601   // Set this here because we need to know this for "hasFP" in frame lowering.
602   // The target-independent code calls getFrameRegister before setting it, and
603   // getFrameRegister uses hasFP to determine whether the function has FP.
604   MFI.setHasCalls(true);
605 
606   unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
607   Chain = DAG.getNode(OpCode, dl, {MVT::Other, MVT::Glue}, Ops);
608   Glue = Chain.getValue(1);
609 
610   // Create the CALLSEQ_END node.
611   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, Glue, dl);
612   Glue = Chain.getValue(1);
613 
614   // Handle result values, copying them out of physregs into vregs that we
615   // return.
616   return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
617                          InVals, OutVals, Callee);
618 }
619 
620 /// Returns true by value, base pointer and offset pointer and addressing
621 /// mode by reference if this node can be combined with a load / store to
622 /// form a post-indexed load / store.
623 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
624       SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
625       SelectionDAG &DAG) const {
626   LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
627   if (!LSN)
628     return false;
629   EVT VT = LSN->getMemoryVT();
630   if (!VT.isSimple())
631     return false;
632   bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
633                      VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
634                      VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
635                      VT == MVT::v4i16 || VT == MVT::v8i8 ||
636                      Subtarget.isHVXVectorType(VT.getSimpleVT());
637   if (!IsLegalType)
638     return false;
639 
640   if (Op->getOpcode() != ISD::ADD)
641     return false;
642   Base = Op->getOperand(0);
643   Offset = Op->getOperand(1);
644   if (!isa<ConstantSDNode>(Offset.getNode()))
645     return false;
646   AM = ISD::POST_INC;
647 
648   int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
649   return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
650 }
651 
652 SDValue HexagonTargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
653   if (DAG.getMachineFunction().getFunction().hasOptSize())
654     return SDValue();
655   else
656     return Op;
657 }
658 
659 SDValue
660 HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
661   MachineFunction &MF = DAG.getMachineFunction();
662   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
663   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
664   unsigned LR = HRI.getRARegister();
665 
666   if ((Op.getOpcode() != ISD::INLINEASM &&
667        Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
668     return Op;
669 
670   unsigned NumOps = Op.getNumOperands();
671   if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
672     --NumOps;  // Ignore the flag operand.
673 
674   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
675     const InlineAsm::Flag Flags(Op.getConstantOperandVal(i));
676     unsigned NumVals = Flags.getNumOperandRegisters();
677     ++i;  // Skip the ID value.
678 
679     switch (Flags.getKind()) {
680     default:
681       llvm_unreachable("Bad flags!");
682     case InlineAsm::Kind::RegUse:
683     case InlineAsm::Kind::Imm:
684     case InlineAsm::Kind::Mem:
685       i += NumVals;
686       break;
687     case InlineAsm::Kind::Clobber:
688     case InlineAsm::Kind::RegDef:
689     case InlineAsm::Kind::RegDefEarlyClobber: {
690       for (; NumVals; --NumVals, ++i) {
691         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
692         if (Reg != LR)
693           continue;
694         HMFI.setHasClobberLR(true);
695         return Op;
696       }
697       break;
698       }
699       }
700   }
701 
702   return Op;
703 }
704 
705 // Need to transform ISD::PREFETCH into something that doesn't inherit
706 // all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
707 // SDNPMayStore.
708 SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
709                                              SelectionDAG &DAG) const {
710   SDValue Chain = Op.getOperand(0);
711   SDValue Addr = Op.getOperand(1);
712   // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
713   // if the "reg" is fed by an "add".
714   SDLoc DL(Op);
715   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
716   return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
717 }
718 
719 // Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
720 // is marked as having side-effects, while the register read on Hexagon does
721 // not have any. TableGen refuses to accept the direct pattern from that node
722 // to the A4_tfrcpp.
723 SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
724                                                      SelectionDAG &DAG) const {
725   SDValue Chain = Op.getOperand(0);
726   SDLoc dl(Op);
727   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
728   return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
729 }
730 
731 // Custom-handle ISD::READSTEADYCOUNTER because the target-independent SDNode
732 // is marked as having side-effects, while the register read on Hexagon does
733 // not have any. TableGen refuses to accept the direct pattern from that node
734 // to the A4_tfrcpp.
735 SDValue HexagonTargetLowering::LowerREADSTEADYCOUNTER(SDValue Op,
736                                                       SelectionDAG &DAG) const {
737   SDValue Chain = Op.getOperand(0);
738   SDLoc dl(Op);
739   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other);
740   return DAG.getNode(HexagonISD::READTIMER, dl, VTs, Chain);
741 }
742 
743 SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
744       SelectionDAG &DAG) const {
745   SDValue Chain = Op.getOperand(0);
746   unsigned IntNo = Op.getConstantOperandVal(1);
747   // Lower the hexagon_prefetch builtin to DCFETCH, as above.
748   if (IntNo == Intrinsic::hexagon_prefetch) {
749     SDValue Addr = Op.getOperand(2);
750     SDLoc DL(Op);
751     SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
752     return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
753   }
754   return SDValue();
755 }
756 
757 SDValue
758 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
759                                                SelectionDAG &DAG) const {
760   SDValue Chain = Op.getOperand(0);
761   SDValue Size = Op.getOperand(1);
762   SDValue Align = Op.getOperand(2);
763   SDLoc dl(Op);
764 
765   ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
766   assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
767 
768   unsigned A = AlignConst->getSExtValue();
769   auto &HFI = *Subtarget.getFrameLowering();
770   // "Zero" means natural stack alignment.
771   if (A == 0)
772     A = HFI.getStackAlign().value();
773 
774   LLVM_DEBUG({
775     dbgs () << __func__ << " Align: " << A << " Size: ";
776     Size.getNode()->dump(&DAG);
777     dbgs() << "\n";
778   });
779 
780   SDValue AC = DAG.getConstant(A, dl, MVT::i32);
781   SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
782   SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
783 
784   DAG.ReplaceAllUsesOfValueWith(Op, AA);
785   return AA;
786 }
787 
788 SDValue HexagonTargetLowering::LowerFormalArguments(
789     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
790     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
791     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
792   MachineFunction &MF = DAG.getMachineFunction();
793   MachineFrameInfo &MFI = MF.getFrameInfo();
794   MachineRegisterInfo &MRI = MF.getRegInfo();
795 
796   // Linux ABI treats var-arg calls the same way as regular ones.
797   bool TreatAsVarArg = !Subtarget.isEnvironmentMusl() && IsVarArg;
798 
799   // Assign locations to all of the incoming arguments.
800   SmallVector<CCValAssign, 16> ArgLocs;
801   HexagonCCState CCInfo(CallConv, TreatAsVarArg, MF, ArgLocs,
802                         *DAG.getContext(),
803                         MF.getFunction().getFunctionType()->getNumParams());
804 
805   if (Subtarget.useHVXOps())
806     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
807   else if (DisableArgsMinAlignment)
808     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_Legacy);
809   else
810     CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
811 
812   // For LLVM, in the case when returning a struct by value (>8byte),
813   // the first argument is a pointer that points to the location on caller's
814   // stack where the return value will be stored. For Hexagon, the location on
815   // caller's stack is passed only when the struct size is smaller than (and
816   // equal to) 8 bytes. If not, no address will be passed into callee and
817   // callee return the result direclty through R0/R1.
818   auto NextSingleReg = [] (const TargetRegisterClass &RC, unsigned Reg) {
819     switch (RC.getID()) {
820     case Hexagon::IntRegsRegClassID:
821       return Reg - Hexagon::R0 + 1;
822     case Hexagon::DoubleRegsRegClassID:
823       return (Reg - Hexagon::D0 + 1) * 2;
824     case Hexagon::HvxVRRegClassID:
825       return Reg - Hexagon::V0 + 1;
826     case Hexagon::HvxWRRegClassID:
827       return (Reg - Hexagon::W0 + 1) * 2;
828     }
829     llvm_unreachable("Unexpected register class");
830   };
831 
832   auto &HFL = const_cast<HexagonFrameLowering&>(*Subtarget.getFrameLowering());
833   auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
834   HFL.FirstVarArgSavedReg = 0;
835   HMFI.setFirstNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
836 
837   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
838     CCValAssign &VA = ArgLocs[i];
839     ISD::ArgFlagsTy Flags = Ins[i].Flags;
840     bool ByVal = Flags.isByVal();
841 
842     // Arguments passed in registers:
843     // 1. 32- and 64-bit values and HVX vectors are passed directly,
844     // 2. Large structs are passed via an address, and the address is
845     //    passed in a register.
846     if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
847       llvm_unreachable("ByValSize must be bigger than 8 bytes");
848 
849     bool InReg = VA.isRegLoc() &&
850                  (!ByVal || (ByVal && Flags.getByValSize() > 8));
851 
852     if (InReg) {
853       MVT RegVT = VA.getLocVT();
854       if (VA.getLocInfo() == CCValAssign::BCvt)
855         RegVT = VA.getValVT();
856 
857       const TargetRegisterClass *RC = getRegClassFor(RegVT);
858       Register VReg = MRI.createVirtualRegister(RC);
859       SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
860 
861       // Treat values of type MVT::i1 specially: they are passed in
862       // registers of type i32, but they need to remain as values of
863       // type i1 for consistency of the argument lowering.
864       if (VA.getValVT() == MVT::i1) {
865         assert(RegVT.getSizeInBits() <= 32);
866         SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
867                                 Copy, DAG.getConstant(1, dl, RegVT));
868         Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
869                             ISD::SETNE);
870       } else {
871 #ifndef NDEBUG
872         unsigned RegSize = RegVT.getSizeInBits();
873         assert(RegSize == 32 || RegSize == 64 ||
874                Subtarget.isHVXVectorType(RegVT));
875 #endif
876       }
877       InVals.push_back(Copy);
878       MRI.addLiveIn(VA.getLocReg(), VReg);
879       HFL.FirstVarArgSavedReg = NextSingleReg(*RC, VA.getLocReg());
880     } else {
881       assert(VA.isMemLoc() && "Argument should be passed in memory");
882 
883       // If it's a byval parameter, then we need to compute the
884       // "real" size, not the size of the pointer.
885       unsigned ObjSize = Flags.isByVal()
886                             ? Flags.getByValSize()
887                             : VA.getLocVT().getStoreSizeInBits() / 8;
888 
889       // Create the frame index object for this incoming parameter.
890       int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
891       int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
892       SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
893 
894       if (Flags.isByVal()) {
895         // If it's a pass-by-value aggregate, then do not dereference the stack
896         // location. Instead, we should generate a reference to the stack
897         // location.
898         InVals.push_back(FIN);
899       } else {
900         SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
901                                 MachinePointerInfo::getFixedStack(MF, FI, 0));
902         InVals.push_back(L);
903       }
904     }
905   }
906 
907   if (IsVarArg && Subtarget.isEnvironmentMusl()) {
908     for (int i = HFL.FirstVarArgSavedReg; i < 6; i++)
909       MRI.addLiveIn(Hexagon::R0+i);
910   }
911 
912   if (IsVarArg && Subtarget.isEnvironmentMusl()) {
913     HMFI.setFirstNamedArgFrameIndex(HMFI.getFirstNamedArgFrameIndex() - 1);
914     HMFI.setLastNamedArgFrameIndex(-int(MFI.getNumFixedObjects()));
915 
916     // Create Frame index for the start of register saved area.
917     int NumVarArgRegs = 6 - HFL.FirstVarArgSavedReg;
918     bool RequiresPadding = (NumVarArgRegs & 1);
919     int RegSaveAreaSizePlusPadding = RequiresPadding
920                                         ? (NumVarArgRegs + 1) * 4
921                                         : NumVarArgRegs * 4;
922 
923     if (RegSaveAreaSizePlusPadding > 0) {
924       // The offset to saved register area should be 8 byte aligned.
925       int RegAreaStart = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
926       if (!(RegAreaStart % 8))
927         RegAreaStart = (RegAreaStart + 7) & -8;
928 
929       int RegSaveAreaFrameIndex =
930         MFI.CreateFixedObject(RegSaveAreaSizePlusPadding, RegAreaStart, true);
931       HMFI.setRegSavedAreaStartFrameIndex(RegSaveAreaFrameIndex);
932 
933       // This will point to the next argument passed via stack.
934       int Offset = RegAreaStart + RegSaveAreaSizePlusPadding;
935       int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
936       HMFI.setVarArgsFrameIndex(FI);
937     } else {
938       // This will point to the next argument passed via stack, when
939       // there is no saved register area.
940       int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
941       int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
942       HMFI.setRegSavedAreaStartFrameIndex(FI);
943       HMFI.setVarArgsFrameIndex(FI);
944     }
945   }
946 
947 
948   if (IsVarArg && !Subtarget.isEnvironmentMusl()) {
949     // This will point to the next argument passed via stack.
950     int Offset = HEXAGON_LRFP_SIZE + CCInfo.getStackSize();
951     int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
952     HMFI.setVarArgsFrameIndex(FI);
953   }
954 
955   return Chain;
956 }
957 
958 SDValue
959 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
960   // VASTART stores the address of the VarArgsFrameIndex slot into the
961   // memory location argument.
962   MachineFunction &MF = DAG.getMachineFunction();
963   HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
964   SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
965   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
966 
967   if (!Subtarget.isEnvironmentMusl()) {
968     return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
969                         MachinePointerInfo(SV));
970   }
971   auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
972   auto &HFL = *Subtarget.getFrameLowering();
973   SDLoc DL(Op);
974   SmallVector<SDValue, 8> MemOps;
975 
976   // Get frame index of va_list.
977   SDValue FIN = Op.getOperand(1);
978 
979   // If first Vararg register is odd, add 4 bytes to start of
980   // saved register area to point to the first register location.
981   // This is because the saved register area has to be 8 byte aligned.
982   // Incase of an odd start register, there will be 4 bytes of padding in
983   // the beginning of saved register area. If all registers area used up,
984   // the following condition will handle it correctly.
985   SDValue SavedRegAreaStartFrameIndex =
986     DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(), MVT::i32);
987 
988   auto PtrVT = getPointerTy(DAG.getDataLayout());
989 
990   if (HFL.FirstVarArgSavedReg & 1)
991     SavedRegAreaStartFrameIndex =
992       DAG.getNode(ISD::ADD, DL, PtrVT,
993                   DAG.getFrameIndex(FuncInfo.getRegSavedAreaStartFrameIndex(),
994                                     MVT::i32),
995                   DAG.getIntPtrConstant(4, DL));
996 
997   // Store the saved register area start pointer.
998   SDValue Store =
999     DAG.getStore(Op.getOperand(0), DL,
1000                  SavedRegAreaStartFrameIndex,
1001                  FIN, MachinePointerInfo(SV));
1002   MemOps.push_back(Store);
1003 
1004   // Store saved register area end pointer.
1005   FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1006                     FIN, DAG.getIntPtrConstant(4, DL));
1007   Store = DAG.getStore(Op.getOperand(0), DL,
1008                        DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1009                                          PtrVT),
1010                        FIN, MachinePointerInfo(SV, 4));
1011   MemOps.push_back(Store);
1012 
1013   // Store overflow area pointer.
1014   FIN = DAG.getNode(ISD::ADD, DL, PtrVT,
1015                     FIN, DAG.getIntPtrConstant(4, DL));
1016   Store = DAG.getStore(Op.getOperand(0), DL,
1017                        DAG.getFrameIndex(FuncInfo.getVarArgsFrameIndex(),
1018                                          PtrVT),
1019                        FIN, MachinePointerInfo(SV, 8));
1020   MemOps.push_back(Store);
1021 
1022   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
1023 }
1024 
1025 SDValue
1026 HexagonTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
1027   // Assert that the linux ABI is enabled for the current compilation.
1028   assert(Subtarget.isEnvironmentMusl() && "Linux ABI should be enabled");
1029   SDValue Chain = Op.getOperand(0);
1030   SDValue DestPtr = Op.getOperand(1);
1031   SDValue SrcPtr = Op.getOperand(2);
1032   const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
1033   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
1034   SDLoc DL(Op);
1035   // Size of the va_list is 12 bytes as it has 3 pointers. Therefore,
1036   // we need to memcopy 12 bytes from va_list to another similar list.
1037   return DAG.getMemcpy(
1038       Chain, DL, DestPtr, SrcPtr, DAG.getIntPtrConstant(12, DL), Align(4),
1039       /*isVolatile*/ false, false, /*CI=*/nullptr, std::nullopt,
1040       MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV));
1041 }
1042 
1043 SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1044   const SDLoc &dl(Op);
1045   SDValue LHS = Op.getOperand(0);
1046   SDValue RHS = Op.getOperand(1);
1047   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1048   MVT ResTy = ty(Op);
1049   MVT OpTy = ty(LHS);
1050 
1051   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1052     MVT ElemTy = OpTy.getVectorElementType();
1053     assert(ElemTy.isScalarInteger());
1054     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1055                                   OpTy.getVectorNumElements());
1056     return DAG.getSetCC(dl, ResTy,
1057                         DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
1058                         DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
1059   }
1060 
1061   // Treat all other vector types as legal.
1062   if (ResTy.isVector())
1063     return Op;
1064 
1065   // Comparisons of short integers should use sign-extend, not zero-extend,
1066   // since we can represent small negative values in the compare instructions.
1067   // The LLVM default is to use zero-extend arbitrarily in these cases.
1068   auto isSExtFree = [this](SDValue N) {
1069     switch (N.getOpcode()) {
1070       case ISD::TRUNCATE: {
1071         // A sign-extend of a truncate of a sign-extend is free.
1072         SDValue Op = N.getOperand(0);
1073         if (Op.getOpcode() != ISD::AssertSext)
1074           return false;
1075         EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
1076         unsigned ThisBW = ty(N).getSizeInBits();
1077         unsigned OrigBW = OrigTy.getSizeInBits();
1078         // The type that was sign-extended to get the AssertSext must be
1079         // narrower than the type of N (so that N has still the same value
1080         // as the original).
1081         return ThisBW >= OrigBW;
1082       }
1083       case ISD::LOAD:
1084         // We have sign-extended loads.
1085         return true;
1086     }
1087     return false;
1088   };
1089 
1090   if (OpTy == MVT::i8 || OpTy == MVT::i16) {
1091     ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
1092     bool IsNegative = C && C->getAPIntValue().isNegative();
1093     if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
1094       return DAG.getSetCC(dl, ResTy,
1095                           DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
1096                           DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
1097   }
1098 
1099   return SDValue();
1100 }
1101 
1102 SDValue
1103 HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
1104   SDValue PredOp = Op.getOperand(0);
1105   SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
1106   MVT OpTy = ty(Op1);
1107   const SDLoc &dl(Op);
1108 
1109   if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
1110     MVT ElemTy = OpTy.getVectorElementType();
1111     assert(ElemTy.isScalarInteger());
1112     MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
1113                                   OpTy.getVectorNumElements());
1114     // Generate (trunc (select (_, sext, sext))).
1115     return DAG.getSExtOrTrunc(
1116               DAG.getSelect(dl, WideTy, PredOp,
1117                             DAG.getSExtOrTrunc(Op1, dl, WideTy),
1118                             DAG.getSExtOrTrunc(Op2, dl, WideTy)),
1119               dl, OpTy);
1120   }
1121 
1122   return SDValue();
1123 }
1124 
1125 SDValue
1126 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
1127   EVT ValTy = Op.getValueType();
1128   ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
1129   Constant *CVal = nullptr;
1130   bool isVTi1Type = false;
1131   if (auto *CV = dyn_cast<ConstantVector>(CPN->getConstVal())) {
1132     if (cast<VectorType>(CV->getType())->getElementType()->isIntegerTy(1)) {
1133       IRBuilder<> IRB(CV->getContext());
1134       SmallVector<Constant*, 128> NewConst;
1135       unsigned VecLen = CV->getNumOperands();
1136       assert(isPowerOf2_32(VecLen) &&
1137              "conversion only supported for pow2 VectorSize");
1138       for (unsigned i = 0; i < VecLen; ++i)
1139         NewConst.push_back(IRB.getInt8(CV->getOperand(i)->isZeroValue()));
1140 
1141       CVal = ConstantVector::get(NewConst);
1142       isVTi1Type = true;
1143     }
1144   }
1145   Align Alignment = CPN->getAlign();
1146   bool IsPositionIndependent = isPositionIndependent();
1147   unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
1148 
1149   unsigned Offset = 0;
1150   SDValue T;
1151   if (CPN->isMachineConstantPoolEntry())
1152     T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Alignment,
1153                                   Offset, TF);
1154   else if (isVTi1Type)
1155     T = DAG.getTargetConstantPool(CVal, ValTy, Alignment, Offset, TF);
1156   else
1157     T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Alignment, Offset,
1158                                   TF);
1159 
1160   assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
1161          "Inconsistent target flag encountered");
1162 
1163   if (IsPositionIndependent)
1164     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1165   return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1166 }
1167 
1168 SDValue
1169 HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1170   EVT VT = Op.getValueType();
1171   int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1172   if (isPositionIndependent()) {
1173     SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1174     return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1175   }
1176 
1177   SDValue T = DAG.getTargetJumpTable(Idx, VT);
1178   return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1179 }
1180 
1181 SDValue
1182 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1183   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1184   MachineFunction &MF = DAG.getMachineFunction();
1185   MachineFrameInfo &MFI = MF.getFrameInfo();
1186   MFI.setReturnAddressIsTaken(true);
1187 
1188   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1189     return SDValue();
1190 
1191   EVT VT = Op.getValueType();
1192   SDLoc dl(Op);
1193   unsigned Depth = Op.getConstantOperandVal(0);
1194   if (Depth) {
1195     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1196     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1197     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1198                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1199                        MachinePointerInfo());
1200   }
1201 
1202   // Return LR, which contains the return address. Mark it an implicit live-in.
1203   Register Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1204   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1205 }
1206 
1207 SDValue
1208 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1209   const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1210   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1211   MFI.setFrameAddressIsTaken(true);
1212 
1213   EVT VT = Op.getValueType();
1214   SDLoc dl(Op);
1215   unsigned Depth = Op.getConstantOperandVal(0);
1216   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1217                                          HRI.getFrameRegister(), VT);
1218   while (Depth--)
1219     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1220                             MachinePointerInfo());
1221   return FrameAddr;
1222 }
1223 
1224 SDValue
1225 HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1226   SDLoc dl(Op);
1227   return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1228 }
1229 
1230 SDValue
1231 HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1232   SDLoc dl(Op);
1233   auto *GAN = cast<GlobalAddressSDNode>(Op);
1234   auto PtrVT = getPointerTy(DAG.getDataLayout());
1235   auto *GV = GAN->getGlobal();
1236   int64_t Offset = GAN->getOffset();
1237 
1238   auto &HLOF = *HTM.getObjFileLowering();
1239   Reloc::Model RM = HTM.getRelocationModel();
1240 
1241   if (RM == Reloc::Static) {
1242     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1243     const GlobalObject *GO = GV->getAliaseeObject();
1244     if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1245       return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1246     return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1247   }
1248 
1249   bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(GV);
1250   if (UsePCRel) {
1251     SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1252                                             HexagonII::MO_PCREL);
1253     return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1254   }
1255 
1256   // Use GOT index.
1257   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1258   SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1259   SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1260   return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1261 }
1262 
1263 // Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1264 SDValue
1265 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1266   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1267   SDLoc dl(Op);
1268   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1269 
1270   Reloc::Model RM = HTM.getRelocationModel();
1271   if (RM == Reloc::Static) {
1272     SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1273     return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1274   }
1275 
1276   SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1277   return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1278 }
1279 
1280 SDValue
1281 HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1282       const {
1283   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1284   SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1285                                                HexagonII::MO_PCREL);
1286   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1287 }
1288 
1289 SDValue
1290 HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1291       GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1292       unsigned char OperandFlags) const {
1293   MachineFunction &MF = DAG.getMachineFunction();
1294   MachineFrameInfo &MFI = MF.getFrameInfo();
1295   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1296   SDLoc dl(GA);
1297   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1298                                            GA->getValueType(0),
1299                                            GA->getOffset(),
1300                                            OperandFlags);
1301   // Create Operands for the call.The Operands should have the following:
1302   // 1. Chain SDValue
1303   // 2. Callee which in this case is the Global address value.
1304   // 3. Registers live into the call.In this case its R0, as we
1305   //    have just one argument to be passed.
1306   // 4. Glue.
1307   // Note: The order is important.
1308 
1309   const auto &HRI = *Subtarget.getRegisterInfo();
1310   const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1311   assert(Mask && "Missing call preserved mask for calling convention");
1312   SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1313                     DAG.getRegisterMask(Mask), Glue };
1314   Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1315 
1316   // Inform MFI that function has calls.
1317   MFI.setAdjustsStack(true);
1318 
1319   Glue = Chain.getValue(1);
1320   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1321 }
1322 
1323 //
1324 // Lower using the intial executable model for TLS addresses
1325 //
1326 SDValue
1327 HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1328       SelectionDAG &DAG) const {
1329   SDLoc dl(GA);
1330   int64_t Offset = GA->getOffset();
1331   auto PtrVT = getPointerTy(DAG.getDataLayout());
1332 
1333   // Get the thread pointer.
1334   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1335 
1336   bool IsPositionIndependent = isPositionIndependent();
1337   unsigned char TF =
1338       IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1339 
1340   // First generate the TLS symbol address
1341   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1342                                            Offset, TF);
1343 
1344   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1345 
1346   if (IsPositionIndependent) {
1347     // Generate the GOT pointer in case of position independent code
1348     SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1349 
1350     // Add the TLS Symbol address to GOT pointer.This gives
1351     // GOT relative relocation for the symbol.
1352     Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1353   }
1354 
1355   // Load the offset value for TLS symbol.This offset is relative to
1356   // thread pointer.
1357   SDValue LoadOffset =
1358       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1359 
1360   // Address of the thread local variable is the add of thread
1361   // pointer and the offset of the variable.
1362   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1363 }
1364 
1365 //
1366 // Lower using the local executable model for TLS addresses
1367 //
1368 SDValue
1369 HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1370       SelectionDAG &DAG) const {
1371   SDLoc dl(GA);
1372   int64_t Offset = GA->getOffset();
1373   auto PtrVT = getPointerTy(DAG.getDataLayout());
1374 
1375   // Get the thread pointer.
1376   SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1377   // Generate the TLS symbol address
1378   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1379                                            HexagonII::MO_TPREL);
1380   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1381 
1382   // Address of the thread local variable is the add of thread
1383   // pointer and the offset of the variable.
1384   return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1385 }
1386 
1387 //
1388 // Lower using the general dynamic model for TLS addresses
1389 //
1390 SDValue
1391 HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1392       SelectionDAG &DAG) const {
1393   SDLoc dl(GA);
1394   int64_t Offset = GA->getOffset();
1395   auto PtrVT = getPointerTy(DAG.getDataLayout());
1396 
1397   // First generate the TLS symbol address
1398   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1399                                            HexagonII::MO_GDGOT);
1400 
1401   // Then, generate the GOT pointer
1402   SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1403 
1404   // Add the TLS symbol and the GOT pointer
1405   SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1406   SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1407 
1408   // Copy over the argument to R0
1409   SDValue InGlue;
1410   Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InGlue);
1411   InGlue = Chain.getValue(1);
1412 
1413   unsigned Flags = DAG.getSubtarget<HexagonSubtarget>().useLongCalls()
1414                        ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1415                        : HexagonII::MO_GDPLT;
1416 
1417   return GetDynamicTLSAddr(DAG, Chain, GA, InGlue, PtrVT,
1418                            Hexagon::R0, Flags);
1419 }
1420 
1421 //
1422 // Lower TLS addresses.
1423 //
1424 // For now for dynamic models, we only support the general dynamic model.
1425 //
1426 SDValue
1427 HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1428       SelectionDAG &DAG) const {
1429   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1430 
1431   switch (HTM.getTLSModel(GA->getGlobal())) {
1432     case TLSModel::GeneralDynamic:
1433     case TLSModel::LocalDynamic:
1434       return LowerToTLSGeneralDynamicModel(GA, DAG);
1435     case TLSModel::InitialExec:
1436       return LowerToTLSInitialExecModel(GA, DAG);
1437     case TLSModel::LocalExec:
1438       return LowerToTLSLocalExecModel(GA, DAG);
1439   }
1440   llvm_unreachable("Bogus TLS model");
1441 }
1442 
1443 //===----------------------------------------------------------------------===//
1444 // TargetLowering Implementation
1445 //===----------------------------------------------------------------------===//
1446 
1447 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1448                                              const HexagonSubtarget &ST)
1449     : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1450       Subtarget(ST) {
1451   auto &HRI = *Subtarget.getRegisterInfo();
1452 
1453   setPrefLoopAlignment(Align(16));
1454   setMinFunctionAlignment(Align(4));
1455   setPrefFunctionAlignment(Align(16));
1456   setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1457   setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1458   setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1459 
1460   setMaxAtomicSizeInBitsSupported(64);
1461   setMinCmpXchgSizeInBits(32);
1462 
1463   if (EnableHexSDNodeSched)
1464     setSchedulingPreference(Sched::VLIW);
1465   else
1466     setSchedulingPreference(Sched::Source);
1467 
1468   // Limits for inline expansion of memcpy/memmove
1469   MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1470   MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1471   MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1472   MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1473   MaxStoresPerMemset = MaxStoresPerMemsetCL;
1474   MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1475 
1476   //
1477   // Set up register classes.
1478   //
1479 
1480   addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1481   addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1482   addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1483   addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1484   addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1485   addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1486   addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1487   addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1488   addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1489   addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1490   addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1491 
1492   addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1493   addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1494 
1495   //
1496   // Handling of scalar operations.
1497   //
1498   // All operations default to "legal", except:
1499   // - indexed loads and stores (pre-/post-incremented),
1500   // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1501   //   ConstantFP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1502   //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1503   //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1504   // which default to "expand" for at least one type.
1505 
1506   // Misc operations.
1507   setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
1508   setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
1509   setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
1510   setOperationAction(ISD::DEBUGTRAP,            MVT::Other, Legal);
1511   setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
1512   setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
1513   setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
1514   setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
1515   setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
1516   setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
1517   setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
1518   setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
1519   setOperationAction(ISD::READSTEADYCOUNTER,    MVT::i64,   Custom);
1520   setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
1521   setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
1522   setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
1523   setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
1524   setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
1525 
1526   // Custom legalize GlobalAddress nodes into CONST32.
1527   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1528   setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1529   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1530 
1531   // Hexagon needs to optimize cases with negative constants.
1532   setOperationAction(ISD::SETCC, MVT::i8,    Custom);
1533   setOperationAction(ISD::SETCC, MVT::i16,   Custom);
1534   setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
1535   setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1536 
1537   // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1538   setOperationAction(ISD::VASTART, MVT::Other, Custom);
1539   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1540   setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1541   if (Subtarget.isEnvironmentMusl())
1542     setOperationAction(ISD::VACOPY, MVT::Other, Custom);
1543   else
1544     setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
1545 
1546   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1547   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1548   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1549 
1550   if (EmitJumpTables)
1551     setMinimumJumpTableEntries(MinimumJumpTables);
1552   else
1553     setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1554   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1555 
1556   for (unsigned LegalIntOp :
1557        {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) {
1558     setOperationAction(LegalIntOp, MVT::i32, Legal);
1559     setOperationAction(LegalIntOp, MVT::i64, Legal);
1560   }
1561 
1562   // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1563   // but they only operate on i64.
1564   for (MVT VT : MVT::integer_valuetypes()) {
1565     setOperationAction(ISD::UADDO, VT, Custom);
1566     setOperationAction(ISD::USUBO, VT, Custom);
1567     setOperationAction(ISD::SADDO, VT, Expand);
1568     setOperationAction(ISD::SSUBO, VT, Expand);
1569     setOperationAction(ISD::UADDO_CARRY, VT, Expand);
1570     setOperationAction(ISD::USUBO_CARRY, VT, Expand);
1571   }
1572   setOperationAction(ISD::UADDO_CARRY, MVT::i64, Custom);
1573   setOperationAction(ISD::USUBO_CARRY, MVT::i64, Custom);
1574 
1575   setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1576   setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1577   setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1578   setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1579 
1580   // Popcount can count # of 1s in i64 but returns i32.
1581   setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1582   setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1583   setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1584   setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1585 
1586   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1587   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1588   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1589   setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1590 
1591   setOperationAction(ISD::FSHL, MVT::i32, Legal);
1592   setOperationAction(ISD::FSHL, MVT::i64, Legal);
1593   setOperationAction(ISD::FSHR, MVT::i32, Legal);
1594   setOperationAction(ISD::FSHR, MVT::i64, Legal);
1595 
1596   for (unsigned IntExpOp :
1597        {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1598         ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1599         ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1600         ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1601     for (MVT VT : MVT::integer_valuetypes())
1602       setOperationAction(IntExpOp, VT, Expand);
1603   }
1604 
1605   for (unsigned FPExpOp :
1606        {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1607         ISD::FPOW, ISD::FCOPYSIGN}) {
1608     for (MVT VT : MVT::fp_valuetypes())
1609       setOperationAction(FPExpOp, VT, Expand);
1610   }
1611 
1612   // No extending loads from i32.
1613   for (MVT VT : MVT::integer_valuetypes()) {
1614     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1615     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1616     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1617   }
1618   // Turn FP truncstore into trunc + store.
1619   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1620   // Turn FP extload into load/fpextend.
1621   for (MVT VT : MVT::fp_valuetypes())
1622     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1623 
1624   // Expand BR_CC and SELECT_CC for all integer and fp types.
1625   for (MVT VT : MVT::integer_valuetypes()) {
1626     setOperationAction(ISD::BR_CC,     VT, Expand);
1627     setOperationAction(ISD::SELECT_CC, VT, Expand);
1628   }
1629   for (MVT VT : MVT::fp_valuetypes()) {
1630     setOperationAction(ISD::BR_CC,     VT, Expand);
1631     setOperationAction(ISD::SELECT_CC, VT, Expand);
1632   }
1633   setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1634 
1635   //
1636   // Handling of vector operations.
1637   //
1638 
1639   // Set the action for vector operations to "expand", then override it with
1640   // either "custom" or "legal" for specific cases.
1641   static const unsigned VectExpOps[] = {
1642     // Integer arithmetic:
1643     ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
1644     ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
1645     ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1646     // Logical/bit:
1647     ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1648     ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,    ISD::BSWAP,   ISD::BITREVERSE,
1649     // Floating point arithmetic/math functions:
1650     ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1651     ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1652     ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1653     ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1654     ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1655     ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, ISD::FLDEXP,
1656     // Misc:
1657     ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
1658     // Vector:
1659     ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1660     ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1661     ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1662     ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE,
1663     ISD::SPLAT_VECTOR,
1664   };
1665 
1666   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1667     for (unsigned VectExpOp : VectExpOps)
1668       setOperationAction(VectExpOp, VT, Expand);
1669 
1670     // Expand all extending loads and truncating stores:
1671     for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1672       if (TargetVT == VT)
1673         continue;
1674       setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1675       setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1676       setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1677       setTruncStoreAction(VT, TargetVT, Expand);
1678     }
1679 
1680     // Normalize all inputs to SELECT to be vectors of i32.
1681     if (VT.getVectorElementType() != MVT::i32) {
1682       MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1683       setOperationAction(ISD::SELECT, VT, Promote);
1684       AddPromotedToType(ISD::SELECT, VT, VT32);
1685     }
1686     setOperationAction(ISD::SRA, VT, Custom);
1687     setOperationAction(ISD::SHL, VT, Custom);
1688     setOperationAction(ISD::SRL, VT, Custom);
1689   }
1690 
1691   // Extending loads from (native) vectors of i8 into (native) vectors of i16
1692   // are legal.
1693   setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
1694   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1695   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1696   setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
1697   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1698   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1699 
1700   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1701   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1702   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1703 
1704   // Types natively supported:
1705   for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1706                        MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1707     setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1708     setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1709     setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1710     setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1711     setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1712     setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1713 
1714     setOperationAction(ISD::ADD, NativeVT, Legal);
1715     setOperationAction(ISD::SUB, NativeVT, Legal);
1716     setOperationAction(ISD::MUL, NativeVT, Legal);
1717     setOperationAction(ISD::AND, NativeVT, Legal);
1718     setOperationAction(ISD::OR,  NativeVT, Legal);
1719     setOperationAction(ISD::XOR, NativeVT, Legal);
1720 
1721     if (NativeVT.getVectorElementType() != MVT::i1) {
1722       setOperationAction(ISD::SPLAT_VECTOR, NativeVT, Legal);
1723       setOperationAction(ISD::BSWAP,        NativeVT, Legal);
1724       setOperationAction(ISD::BITREVERSE,   NativeVT, Legal);
1725     }
1726   }
1727 
1728   for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32}) {
1729     setOperationAction(ISD::SMIN, VT, Legal);
1730     setOperationAction(ISD::SMAX, VT, Legal);
1731     setOperationAction(ISD::UMIN, VT, Legal);
1732     setOperationAction(ISD::UMAX, VT, Legal);
1733   }
1734 
1735   // Custom lower unaligned loads.
1736   // Also, for both loads and stores, verify the alignment of the address
1737   // in case it is a compile-time constant. This is a usability feature to
1738   // provide a meaningful error message to users.
1739   for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1740                  MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1741     setOperationAction(ISD::LOAD,  VT, Custom);
1742     setOperationAction(ISD::STORE, VT, Custom);
1743   }
1744 
1745   // Custom-lower load/stores of boolean vectors.
1746   for (MVT VT : {MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1747     setOperationAction(ISD::LOAD,  VT, Custom);
1748     setOperationAction(ISD::STORE, VT, Custom);
1749   }
1750 
1751   // Normalize integer compares to EQ/GT/UGT
1752   for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1753                  MVT::v2i32}) {
1754     setCondCodeAction(ISD::SETNE,  VT, Expand);
1755     setCondCodeAction(ISD::SETLE,  VT, Expand);
1756     setCondCodeAction(ISD::SETGE,  VT, Expand);
1757     setCondCodeAction(ISD::SETLT,  VT, Expand);
1758     setCondCodeAction(ISD::SETULE, VT, Expand);
1759     setCondCodeAction(ISD::SETUGE, VT, Expand);
1760     setCondCodeAction(ISD::SETULT, VT, Expand);
1761   }
1762 
1763   // Normalize boolean compares to [U]LE/[U]LT
1764   for (MVT VT : {MVT::i1, MVT::v2i1, MVT::v4i1, MVT::v8i1}) {
1765     setCondCodeAction(ISD::SETGE,  VT, Expand);
1766     setCondCodeAction(ISD::SETGT,  VT, Expand);
1767     setCondCodeAction(ISD::SETUGE, VT, Expand);
1768     setCondCodeAction(ISD::SETUGT, VT, Expand);
1769   }
1770 
1771   // Custom-lower bitcasts from i8 to v8i1.
1772   setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
1773   setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1774   setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
1775   setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1776   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
1777   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1778   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1779 
1780   // V5+.
1781   setOperationAction(ISD::FMA,  MVT::f64, Expand);
1782   setOperationAction(ISD::FADD, MVT::f64, Expand);
1783   setOperationAction(ISD::FSUB, MVT::f64, Expand);
1784   setOperationAction(ISD::FMUL, MVT::f64, Expand);
1785   setOperationAction(ISD::FDIV, MVT::f32, Custom);
1786 
1787   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1788   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1789 
1790   setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1791   setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1792   setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1793   setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1794   setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1795   setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1796   setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1797   setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1798   setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1799   setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1800   setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1801   setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1802 
1803   // Special handling for half-precision floating point conversions.
1804   // Lower half float conversions into library calls.
1805   setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1806   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1807   setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1808   setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1809 
1810   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
1811   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
1812   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1813   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1814 
1815   // Handling of indexed loads/stores: default is "expand".
1816   //
1817   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1818                  MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1819     setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1820     setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1821   }
1822 
1823   // Subtarget-specific operation actions.
1824   //
1825   if (Subtarget.hasV60Ops()) {
1826     setOperationAction(ISD::ROTL, MVT::i32, Legal);
1827     setOperationAction(ISD::ROTL, MVT::i64, Legal);
1828     setOperationAction(ISD::ROTR, MVT::i32, Legal);
1829     setOperationAction(ISD::ROTR, MVT::i64, Legal);
1830   }
1831   if (Subtarget.hasV66Ops()) {
1832     setOperationAction(ISD::FADD, MVT::f64, Legal);
1833     setOperationAction(ISD::FSUB, MVT::f64, Legal);
1834   }
1835   if (Subtarget.hasV67Ops()) {
1836     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1837     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1838     setOperationAction(ISD::FMUL,    MVT::f64, Legal);
1839   }
1840 
1841   setTargetDAGCombine(ISD::OR);
1842   setTargetDAGCombine(ISD::TRUNCATE);
1843   setTargetDAGCombine(ISD::VSELECT);
1844 
1845   if (Subtarget.useHVXOps())
1846     initializeHVXLowering();
1847 
1848   computeRegisterProperties(&HRI);
1849 
1850   //
1851   // Library calls for unsupported operations
1852   //
1853   bool FastMath  = EnableFastMath;
1854 
1855   setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1856   setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1857   setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1858   setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1859   setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1860   setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1861   setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1862   setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1863 
1864   // This is the only fast library function for sqrtd.
1865   if (FastMath)
1866     setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1867 
1868   // Prefix is: nothing  for "slow-math",
1869   //            "fast2_" for V5+ fast-math double-precision
1870   // (actually, keep fast-math and fast-math2 separate for now)
1871   if (FastMath) {
1872     setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1873     setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1874     setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1875     setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1876     setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1877   } else {
1878     setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1879     setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1880     setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1881     setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1882     setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1883   }
1884 
1885   if (FastMath)
1886     setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1887   else
1888     setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1889 
1890   // Routines to handle fp16 storage type.
1891   setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
1892   setLibcallName(RTLIB::FPROUND_F64_F16, "__truncdfhf2");
1893   setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
1894 }
1895 
1896 const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1897   switch ((HexagonISD::NodeType)Opcode) {
1898   case HexagonISD::ADDC:          return "HexagonISD::ADDC";
1899   case HexagonISD::SUBC:          return "HexagonISD::SUBC";
1900   case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
1901   case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
1902   case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
1903   case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
1904   case HexagonISD::CALL:          return "HexagonISD::CALL";
1905   case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
1906   case HexagonISD::CALLR:         return "HexagonISD::CALLR";
1907   case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
1908   case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
1909   case HexagonISD::CONST32:       return "HexagonISD::CONST32";
1910   case HexagonISD::CP:            return "HexagonISD::CP";
1911   case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
1912   case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
1913   case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
1914   case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
1915   case HexagonISD::INSERT:        return "HexagonISD::INSERT";
1916   case HexagonISD::JT:            return "HexagonISD::JT";
1917   case HexagonISD::RET_GLUE:      return "HexagonISD::RET_GLUE";
1918   case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
1919   case HexagonISD::VASL:          return "HexagonISD::VASL";
1920   case HexagonISD::VASR:          return "HexagonISD::VASR";
1921   case HexagonISD::VLSR:          return "HexagonISD::VLSR";
1922   case HexagonISD::MFSHL:         return "HexagonISD::MFSHL";
1923   case HexagonISD::MFSHR:         return "HexagonISD::MFSHR";
1924   case HexagonISD::SSAT:          return "HexagonISD::SSAT";
1925   case HexagonISD::USAT:          return "HexagonISD::USAT";
1926   case HexagonISD::SMUL_LOHI:     return "HexagonISD::SMUL_LOHI";
1927   case HexagonISD::UMUL_LOHI:     return "HexagonISD::UMUL_LOHI";
1928   case HexagonISD::USMUL_LOHI:    return "HexagonISD::USMUL_LOHI";
1929   case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
1930   case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
1931   case HexagonISD::VROR:          return "HexagonISD::VROR";
1932   case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
1933   case HexagonISD::READTIMER:     return "HexagonISD::READTIMER";
1934   case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
1935   case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
1936   case HexagonISD::D2P:           return "HexagonISD::D2P";
1937   case HexagonISD::P2D:           return "HexagonISD::P2D";
1938   case HexagonISD::V2Q:           return "HexagonISD::V2Q";
1939   case HexagonISD::Q2V:           return "HexagonISD::Q2V";
1940   case HexagonISD::QCAT:          return "HexagonISD::QCAT";
1941   case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
1942   case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
1943   case HexagonISD::TL_EXTEND:     return "HexagonISD::TL_EXTEND";
1944   case HexagonISD::TL_TRUNCATE:   return "HexagonISD::TL_TRUNCATE";
1945   case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
1946   case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
1947   case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
1948   case HexagonISD::ISEL:          return "HexagonISD::ISEL";
1949   case HexagonISD::OP_END:        break;
1950   }
1951   return nullptr;
1952 }
1953 
1954 bool
1955 HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, Align NeedAlign,
1956       const SDLoc &dl, SelectionDAG &DAG) const {
1957   auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1958   if (!CA)
1959     return true;
1960   unsigned Addr = CA->getZExtValue();
1961   Align HaveAlign =
1962       Addr != 0 ? Align(1ull << llvm::countr_zero(Addr)) : NeedAlign;
1963   if (HaveAlign >= NeedAlign)
1964     return true;
1965 
1966   static int DK_MisalignedTrap = llvm::getNextAvailablePluginDiagnosticKind();
1967 
1968   struct DiagnosticInfoMisalignedTrap : public DiagnosticInfo {
1969     DiagnosticInfoMisalignedTrap(StringRef M)
1970       : DiagnosticInfo(DK_MisalignedTrap, DS_Remark), Msg(M) {}
1971     void print(DiagnosticPrinter &DP) const override {
1972       DP << Msg;
1973     }
1974     static bool classof(const DiagnosticInfo *DI) {
1975       return DI->getKind() == DK_MisalignedTrap;
1976     }
1977     StringRef Msg;
1978   };
1979 
1980   std::string ErrMsg;
1981   raw_string_ostream O(ErrMsg);
1982   O << "Misaligned constant address: " << format_hex(Addr, 10)
1983     << " has alignment " << HaveAlign.value()
1984     << ", but the memory access requires " << NeedAlign.value();
1985   if (DebugLoc DL = dl.getDebugLoc())
1986     DL.print(O << ", at ");
1987   O << ". The instruction has been replaced with a trap.";
1988 
1989   DAG.getContext()->diagnose(DiagnosticInfoMisalignedTrap(O.str()));
1990   return false;
1991 }
1992 
1993 SDValue
1994 HexagonTargetLowering::replaceMemWithUndef(SDValue Op, SelectionDAG &DAG)
1995       const {
1996   const SDLoc &dl(Op);
1997   auto *LS = cast<LSBaseSDNode>(Op.getNode());
1998   assert(!LS->isIndexed() && "Not expecting indexed ops on constant address");
1999 
2000   SDValue Chain = LS->getChain();
2001   SDValue Trap = DAG.getNode(ISD::TRAP, dl, MVT::Other, Chain);
2002   if (LS->getOpcode() == ISD::LOAD)
2003     return DAG.getMergeValues({DAG.getUNDEF(ty(Op)), Trap}, dl);
2004   return Trap;
2005 }
2006 
2007 // Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
2008 // intrinsic.
2009 static bool isBrevLdIntrinsic(const Value *Inst) {
2010   unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
2011   return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
2012           ID == Intrinsic::hexagon_L2_loadri_pbr ||
2013           ID == Intrinsic::hexagon_L2_loadrh_pbr ||
2014           ID == Intrinsic::hexagon_L2_loadruh_pbr ||
2015           ID == Intrinsic::hexagon_L2_loadrb_pbr ||
2016           ID == Intrinsic::hexagon_L2_loadrub_pbr);
2017 }
2018 
2019 // Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
2020 // instruction. So far we only handle bitcast, extract value and bit reverse
2021 // load intrinsic instructions. Should we handle CGEP ?
2022 static Value *getBrevLdObject(Value *V) {
2023   if (Operator::getOpcode(V) == Instruction::ExtractValue ||
2024       Operator::getOpcode(V) == Instruction::BitCast)
2025     V = cast<Operator>(V)->getOperand(0);
2026   else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
2027     V = cast<Instruction>(V)->getOperand(0);
2028   return V;
2029 }
2030 
2031 // Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
2032 // a back edge. If the back edge comes from the intrinsic itself, the incoming
2033 // edge is returned.
2034 static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
2035   const BasicBlock *Parent = PN->getParent();
2036   int Idx = -1;
2037   for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
2038     BasicBlock *Blk = PN->getIncomingBlock(i);
2039     // Determine if the back edge is originated from intrinsic.
2040     if (Blk == Parent) {
2041       Value *BackEdgeVal = PN->getIncomingValue(i);
2042       Value *BaseVal;
2043       // Loop over till we return the same Value or we hit the IntrBaseVal.
2044       do {
2045         BaseVal = BackEdgeVal;
2046         BackEdgeVal = getBrevLdObject(BackEdgeVal);
2047       } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
2048       // If the getBrevLdObject returns IntrBaseVal, we should return the
2049       // incoming edge.
2050       if (IntrBaseVal == BackEdgeVal)
2051         continue;
2052       Idx = i;
2053       break;
2054     } else // Set the node to incoming edge.
2055       Idx = i;
2056   }
2057   assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
2058   return PN->getIncomingValue(Idx);
2059 }
2060 
2061 // Bit-reverse Load Intrinsic: Figure out the underlying object the base
2062 // pointer points to, for the bit-reverse load intrinsic. Setting this to
2063 // memoperand might help alias analysis to figure out the dependencies.
2064 static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
2065   Value *IntrBaseVal = V;
2066   Value *BaseVal;
2067   // Loop over till we return the same Value, implies we either figure out
2068   // the object or we hit a PHI
2069   do {
2070     BaseVal = V;
2071     V = getBrevLdObject(V);
2072   } while (BaseVal != V);
2073 
2074   // Identify the object from PHINode.
2075   if (const PHINode *PN = dyn_cast<PHINode>(V))
2076     return returnEdge(PN, IntrBaseVal);
2077   // For non PHI nodes, the object is the last value returned by getBrevLdObject
2078   else
2079     return V;
2080 }
2081 
2082 /// Given an intrinsic, checks if on the target the intrinsic will need to map
2083 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
2084 /// true and store the intrinsic information into the IntrinsicInfo that was
2085 /// passed to the function.
2086 bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
2087                                                const CallInst &I,
2088                                                MachineFunction &MF,
2089                                                unsigned Intrinsic) const {
2090   switch (Intrinsic) {
2091   case Intrinsic::hexagon_L2_loadrd_pbr:
2092   case Intrinsic::hexagon_L2_loadri_pbr:
2093   case Intrinsic::hexagon_L2_loadrh_pbr:
2094   case Intrinsic::hexagon_L2_loadruh_pbr:
2095   case Intrinsic::hexagon_L2_loadrb_pbr:
2096   case Intrinsic::hexagon_L2_loadrub_pbr: {
2097     Info.opc = ISD::INTRINSIC_W_CHAIN;
2098     auto &DL = I.getDataLayout();
2099     auto &Cont = I.getCalledFunction()->getParent()->getContext();
2100     // The intrinsic function call is of the form { ElTy, i8* }
2101     // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
2102     // should be derived from ElTy.
2103     Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
2104     Info.memVT = MVT::getVT(ElTy);
2105     llvm::Value *BasePtrVal = I.getOperand(0);
2106     Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
2107     // The offset value comes through Modifier register. For now, assume the
2108     // offset is 0.
2109     Info.offset = 0;
2110     Info.align = DL.getABITypeAlign(Info.memVT.getTypeForEVT(Cont));
2111     Info.flags = MachineMemOperand::MOLoad;
2112     return true;
2113   }
2114   case Intrinsic::hexagon_V6_vgathermw:
2115   case Intrinsic::hexagon_V6_vgathermw_128B:
2116   case Intrinsic::hexagon_V6_vgathermh:
2117   case Intrinsic::hexagon_V6_vgathermh_128B:
2118   case Intrinsic::hexagon_V6_vgathermhw:
2119   case Intrinsic::hexagon_V6_vgathermhw_128B:
2120   case Intrinsic::hexagon_V6_vgathermwq:
2121   case Intrinsic::hexagon_V6_vgathermwq_128B:
2122   case Intrinsic::hexagon_V6_vgathermhq:
2123   case Intrinsic::hexagon_V6_vgathermhq_128B:
2124   case Intrinsic::hexagon_V6_vgathermhwq:
2125   case Intrinsic::hexagon_V6_vgathermhwq_128B: {
2126     const Module &M = *I.getParent()->getParent()->getParent();
2127     Info.opc = ISD::INTRINSIC_W_CHAIN;
2128     Type *VecTy = I.getArgOperand(1)->getType();
2129     Info.memVT = MVT::getVT(VecTy);
2130     Info.ptrVal = I.getArgOperand(0);
2131     Info.offset = 0;
2132     Info.align =
2133         MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
2134     Info.flags = MachineMemOperand::MOLoad |
2135                  MachineMemOperand::MOStore |
2136                  MachineMemOperand::MOVolatile;
2137     return true;
2138   }
2139   default:
2140     break;
2141   }
2142   return false;
2143 }
2144 
2145 bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
2146   return X.getValueType().isScalarInteger(); // 'tstbit'
2147 }
2148 
2149 bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
2150   return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
2151 }
2152 
2153 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
2154   if (!VT1.isSimple() || !VT2.isSimple())
2155     return false;
2156   return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
2157 }
2158 
2159 bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
2160     const MachineFunction &MF, EVT VT) const {
2161   return isOperationLegalOrCustom(ISD::FMA, VT);
2162 }
2163 
2164 // Should we expand the build vector with shuffles?
2165 bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
2166       unsigned DefinedValues) const {
2167   return false;
2168 }
2169 
2170 bool HexagonTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
2171       unsigned Index) const {
2172   assert(ResVT.getVectorElementType() == SrcVT.getVectorElementType());
2173   if (!ResVT.isSimple() || !SrcVT.isSimple())
2174     return false;
2175 
2176   MVT ResTy = ResVT.getSimpleVT(), SrcTy = SrcVT.getSimpleVT();
2177   if (ResTy.getVectorElementType() != MVT::i1)
2178     return true;
2179 
2180   // Non-HVX bool vectors are relatively cheap.
2181   return SrcTy.getVectorNumElements() <= 8;
2182 }
2183 
2184 bool HexagonTargetLowering::isTargetCanonicalConstantNode(SDValue Op) const {
2185   return Op.getOpcode() == ISD::CONCAT_VECTORS ||
2186          TargetLowering::isTargetCanonicalConstantNode(Op);
2187 }
2188 
2189 bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
2190                                                EVT VT) const {
2191   return true;
2192 }
2193 
2194 TargetLoweringBase::LegalizeTypeAction
2195 HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
2196   unsigned VecLen = VT.getVectorMinNumElements();
2197   MVT ElemTy = VT.getVectorElementType();
2198 
2199   if (VecLen == 1 || VT.isScalableVector())
2200     return TargetLoweringBase::TypeScalarizeVector;
2201 
2202   if (Subtarget.useHVXOps()) {
2203     unsigned Action = getPreferredHvxVectorAction(VT);
2204     if (Action != ~0u)
2205       return static_cast<TargetLoweringBase::LegalizeTypeAction>(Action);
2206   }
2207 
2208   // Always widen (remaining) vectors of i1.
2209   if (ElemTy == MVT::i1)
2210     return TargetLoweringBase::TypeWidenVector;
2211   // Widen non-power-of-2 vectors. Such types cannot be split right now,
2212   // and computeRegisterProperties will override "split" with "widen",
2213   // which can cause other issues.
2214   if (!isPowerOf2_32(VecLen))
2215     return TargetLoweringBase::TypeWidenVector;
2216 
2217   return TargetLoweringBase::TypeSplitVector;
2218 }
2219 
2220 TargetLoweringBase::LegalizeAction
2221 HexagonTargetLowering::getCustomOperationAction(SDNode &Op) const {
2222   if (Subtarget.useHVXOps()) {
2223     unsigned Action = getCustomHvxOperationAction(Op);
2224     if (Action != ~0u)
2225       return static_cast<TargetLoweringBase::LegalizeAction>(Action);
2226   }
2227   return TargetLoweringBase::Legal;
2228 }
2229 
2230 std::pair<SDValue, int>
2231 HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
2232   if (Addr.getOpcode() == ISD::ADD) {
2233     SDValue Op1 = Addr.getOperand(1);
2234     if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
2235       return { Addr.getOperand(0), CN->getSExtValue() };
2236   }
2237   return { Addr, 0 };
2238 }
2239 
2240 // Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
2241 // to select data from, V3 is the permutation.
2242 SDValue
2243 HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
2244       const {
2245   const auto *SVN = cast<ShuffleVectorSDNode>(Op);
2246   ArrayRef<int> AM = SVN->getMask();
2247   assert(AM.size() <= 8 && "Unexpected shuffle mask");
2248   unsigned VecLen = AM.size();
2249 
2250   MVT VecTy = ty(Op);
2251   assert(!Subtarget.isHVXVectorType(VecTy, true) &&
2252          "HVX shuffles should be legal");
2253   assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
2254 
2255   SDValue Op0 = Op.getOperand(0);
2256   SDValue Op1 = Op.getOperand(1);
2257   const SDLoc &dl(Op);
2258 
2259   // If the inputs are not the same as the output, bail. This is not an
2260   // error situation, but complicates the handling and the default expansion
2261   // (into BUILD_VECTOR) should be adequate.
2262   if (ty(Op0) != VecTy || ty(Op1) != VecTy)
2263     return SDValue();
2264 
2265   // Normalize the mask so that the first non-negative index comes from
2266   // the first operand.
2267   SmallVector<int, 8> Mask(AM);
2268   unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
2269   if (F == AM.size())
2270     return DAG.getUNDEF(VecTy);
2271   if (AM[F] >= int(VecLen)) {
2272     ShuffleVectorSDNode::commuteMask(Mask);
2273     std::swap(Op0, Op1);
2274   }
2275 
2276   // Express the shuffle mask in terms of bytes.
2277   SmallVector<int,8> ByteMask;
2278   unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2279   for (int M : Mask) {
2280     if (M < 0) {
2281       for (unsigned j = 0; j != ElemBytes; ++j)
2282         ByteMask.push_back(-1);
2283     } else {
2284       for (unsigned j = 0; j != ElemBytes; ++j)
2285         ByteMask.push_back(M*ElemBytes + j);
2286     }
2287   }
2288   assert(ByteMask.size() <= 8);
2289 
2290   // All non-undef (non-negative) indexes are well within [0..127], so they
2291   // fit in a single byte. Build two 64-bit words:
2292   // - MaskIdx where each byte is the corresponding index (for non-negative
2293   //   indexes), and 0xFF for negative indexes, and
2294   // - MaskUnd that has 0xFF for each negative index.
2295   uint64_t MaskIdx = 0;
2296   uint64_t MaskUnd = 0;
2297   for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2298     unsigned S = 8*i;
2299     uint64_t M = ByteMask[i] & 0xFF;
2300     if (M == 0xFF)
2301       MaskUnd |= M << S;
2302     MaskIdx |= M << S;
2303   }
2304 
2305   if (ByteMask.size() == 4) {
2306     // Identity.
2307     if (MaskIdx == (0x03020100 | MaskUnd))
2308       return Op0;
2309     // Byte swap.
2310     if (MaskIdx == (0x00010203 | MaskUnd)) {
2311       SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2312       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2313       return DAG.getBitcast(VecTy, T1);
2314     }
2315 
2316     // Byte packs.
2317     SDValue Concat10 =
2318         getCombine(Op1, Op0, dl, typeJoin({ty(Op1), ty(Op0)}), DAG);
2319     if (MaskIdx == (0x06040200 | MaskUnd))
2320       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2321     if (MaskIdx == (0x07050301 | MaskUnd))
2322       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2323 
2324     SDValue Concat01 =
2325         getCombine(Op0, Op1, dl, typeJoin({ty(Op0), ty(Op1)}), DAG);
2326     if (MaskIdx == (0x02000604 | MaskUnd))
2327       return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2328     if (MaskIdx == (0x03010705 | MaskUnd))
2329       return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2330   }
2331 
2332   if (ByteMask.size() == 8) {
2333     // Identity.
2334     if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2335       return Op0;
2336     // Byte swap.
2337     if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2338       SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2339       SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2340       return DAG.getBitcast(VecTy, T1);
2341     }
2342 
2343     // Halfword picks.
2344     if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2345       return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2346     if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2347       return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2348     if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2349       return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2350     if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2351       return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2352     if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2353       VectorPair P = opSplit(Op0, dl, DAG);
2354       return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2355     }
2356 
2357     // Byte packs.
2358     if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2359       return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2360     if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2361       return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2362   }
2363 
2364   return SDValue();
2365 }
2366 
2367 SDValue
2368 HexagonTargetLowering::getSplatValue(SDValue Op, SelectionDAG &DAG) const {
2369   switch (Op.getOpcode()) {
2370     case ISD::BUILD_VECTOR:
2371       if (SDValue S = cast<BuildVectorSDNode>(Op)->getSplatValue())
2372         return S;
2373       break;
2374     case ISD::SPLAT_VECTOR:
2375       return Op.getOperand(0);
2376   }
2377   return SDValue();
2378 }
2379 
2380 // Create a Hexagon-specific node for shifting a vector by an integer.
2381 SDValue
2382 HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2383       const {
2384   unsigned NewOpc;
2385   switch (Op.getOpcode()) {
2386     case ISD::SHL:
2387       NewOpc = HexagonISD::VASL;
2388       break;
2389     case ISD::SRA:
2390       NewOpc = HexagonISD::VASR;
2391       break;
2392     case ISD::SRL:
2393       NewOpc = HexagonISD::VLSR;
2394       break;
2395     default:
2396       llvm_unreachable("Unexpected shift opcode");
2397   }
2398 
2399   if (SDValue Sp = getSplatValue(Op.getOperand(1), DAG))
2400     return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), Sp);
2401   return SDValue();
2402 }
2403 
2404 SDValue
2405 HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2406   const SDLoc &dl(Op);
2407 
2408   // First try to convert the shift (by vector) to a shift by a scalar.
2409   // If we first split the shift, the shift amount will become 'extract
2410   // subvector', and will no longer be recognized as scalar.
2411   SDValue Res = Op;
2412   if (SDValue S = getVectorShiftByInt(Op, DAG))
2413     Res = S;
2414 
2415   unsigned Opc = Res.getOpcode();
2416   switch (Opc) {
2417   case HexagonISD::VASR:
2418   case HexagonISD::VLSR:
2419   case HexagonISD::VASL:
2420     break;
2421   default:
2422     // No instructions for shifts by non-scalars.
2423     return SDValue();
2424   }
2425 
2426   MVT ResTy = ty(Res);
2427   if (ResTy.getVectorElementType() != MVT::i8)
2428     return Res;
2429 
2430   // For shifts of i8, extend the inputs to i16, then truncate back to i8.
2431   assert(ResTy.getVectorElementType() == MVT::i8);
2432   SDValue Val = Res.getOperand(0), Amt = Res.getOperand(1);
2433 
2434   auto ShiftPartI8 = [&dl, &DAG, this](unsigned Opc, SDValue V, SDValue A) {
2435     MVT Ty = ty(V);
2436     MVT ExtTy = MVT::getVectorVT(MVT::i16, Ty.getVectorNumElements());
2437     SDValue ExtV = Opc == HexagonISD::VASR ? DAG.getSExtOrTrunc(V, dl, ExtTy)
2438                                            : DAG.getZExtOrTrunc(V, dl, ExtTy);
2439     SDValue ExtS = DAG.getNode(Opc, dl, ExtTy, {ExtV, A});
2440     return DAG.getZExtOrTrunc(ExtS, dl, Ty);
2441   };
2442 
2443   if (ResTy.getSizeInBits() == 32)
2444     return ShiftPartI8(Opc, Val, Amt);
2445 
2446   auto [LoV, HiV] = opSplit(Val, dl, DAG);
2447   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy,
2448                      {ShiftPartI8(Opc, LoV, Amt), ShiftPartI8(Opc, HiV, Amt)});
2449 }
2450 
2451 SDValue
2452 HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2453   if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2454     return Op;
2455   return SDValue();
2456 }
2457 
2458 SDValue
2459 HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2460   MVT ResTy = ty(Op);
2461   SDValue InpV = Op.getOperand(0);
2462   MVT InpTy = ty(InpV);
2463   assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2464   const SDLoc &dl(Op);
2465 
2466   // Handle conversion from i8 to v8i1.
2467   if (InpTy == MVT::i8) {
2468     if (ResTy == MVT::v8i1) {
2469       SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2470       SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2471       return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2472     }
2473     return SDValue();
2474   }
2475 
2476   return Op;
2477 }
2478 
2479 bool
2480 HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2481       MVT VecTy, SelectionDAG &DAG,
2482       MutableArrayRef<ConstantInt*> Consts) const {
2483   MVT ElemTy = VecTy.getVectorElementType();
2484   unsigned ElemWidth = ElemTy.getSizeInBits();
2485   IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2486   bool AllConst = true;
2487 
2488   for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2489     SDValue V = Values[i];
2490     if (V.isUndef()) {
2491       Consts[i] = ConstantInt::get(IntTy, 0);
2492       continue;
2493     }
2494     // Make sure to always cast to IntTy.
2495     if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2496       const ConstantInt *CI = CN->getConstantIntValue();
2497       Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2498     } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2499       const ConstantFP *CF = CN->getConstantFPValue();
2500       APInt A = CF->getValueAPF().bitcastToAPInt();
2501       Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2502     } else {
2503       AllConst = false;
2504     }
2505   }
2506   return AllConst;
2507 }
2508 
2509 SDValue
2510 HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2511                                      MVT VecTy, SelectionDAG &DAG) const {
2512   MVT ElemTy = VecTy.getVectorElementType();
2513   assert(VecTy.getVectorNumElements() == Elem.size());
2514 
2515   SmallVector<ConstantInt*,4> Consts(Elem.size());
2516   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2517 
2518   unsigned First, Num = Elem.size();
2519   for (First = 0; First != Num; ++First) {
2520     if (!isUndef(Elem[First]))
2521       break;
2522   }
2523   if (First == Num)
2524     return DAG.getUNDEF(VecTy);
2525 
2526   if (AllConst &&
2527       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2528     return getZero(dl, VecTy, DAG);
2529 
2530   if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2531     assert(Elem.size() == 2);
2532     if (AllConst) {
2533       // The 'Consts' array will have all values as integers regardless
2534       // of the vector element type.
2535       uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2536                    Consts[1]->getZExtValue() << 16;
2537       return DAG.getBitcast(VecTy, DAG.getConstant(V, dl, MVT::i32));
2538     }
2539     SDValue E0, E1;
2540     if (ElemTy == MVT::f16) {
2541       E0 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[0]), dl, MVT::i32);
2542       E1 = DAG.getZExtOrTrunc(DAG.getBitcast(MVT::i16, Elem[1]), dl, MVT::i32);
2543     } else {
2544       E0 = Elem[0];
2545       E1 = Elem[1];
2546     }
2547     SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {E1, E0}, DAG);
2548     return DAG.getBitcast(VecTy, N);
2549   }
2550 
2551   if (ElemTy == MVT::i8) {
2552     // First try generating a constant.
2553     if (AllConst) {
2554       uint32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2555                    (Consts[1]->getZExtValue() & 0xFF) << 8 |
2556                    (Consts[2]->getZExtValue() & 0xFF) << 16 |
2557                    Consts[3]->getZExtValue() << 24;
2558       return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2559     }
2560 
2561     // Then try splat.
2562     bool IsSplat = true;
2563     for (unsigned i = First+1; i != Num; ++i) {
2564       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2565         continue;
2566       IsSplat = false;
2567       break;
2568     }
2569     if (IsSplat) {
2570       // Legalize the operand of SPLAT_VECTOR.
2571       SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2572       return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2573     }
2574 
2575     // Generate
2576     //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2577     //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2578     assert(Elem.size() == 4);
2579     SDValue Vs[4];
2580     for (unsigned i = 0; i != 4; ++i) {
2581       Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2582       Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2583     }
2584     SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2585     SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2586     SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2587     SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2588     SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2589 
2590     SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2591     return DAG.getBitcast(MVT::v4i8, R);
2592   }
2593 
2594 #ifndef NDEBUG
2595   dbgs() << "VecTy: " << VecTy << '\n';
2596 #endif
2597   llvm_unreachable("Unexpected vector element type");
2598 }
2599 
2600 SDValue
2601 HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2602                                      MVT VecTy, SelectionDAG &DAG) const {
2603   MVT ElemTy = VecTy.getVectorElementType();
2604   assert(VecTy.getVectorNumElements() == Elem.size());
2605 
2606   SmallVector<ConstantInt*,8> Consts(Elem.size());
2607   bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2608 
2609   unsigned First, Num = Elem.size();
2610   for (First = 0; First != Num; ++First) {
2611     if (!isUndef(Elem[First]))
2612       break;
2613   }
2614   if (First == Num)
2615     return DAG.getUNDEF(VecTy);
2616 
2617   if (AllConst &&
2618       llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2619     return getZero(dl, VecTy, DAG);
2620 
2621   // First try splat if possible.
2622   if (ElemTy == MVT::i16 || ElemTy == MVT::f16) {
2623     bool IsSplat = true;
2624     for (unsigned i = First+1; i != Num; ++i) {
2625       if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2626         continue;
2627       IsSplat = false;
2628       break;
2629     }
2630     if (IsSplat) {
2631       // Legalize the operand of SPLAT_VECTOR
2632       SDValue S = ElemTy == MVT::f16 ? DAG.getBitcast(MVT::i16, Elem[First])
2633                                      : Elem[First];
2634       SDValue Ext = DAG.getZExtOrTrunc(S, dl, MVT::i32);
2635       return DAG.getNode(ISD::SPLAT_VECTOR, dl, VecTy, Ext);
2636     }
2637   }
2638 
2639   // Then try constant.
2640   if (AllConst) {
2641     uint64_t Val = 0;
2642     unsigned W = ElemTy.getSizeInBits();
2643     uint64_t Mask = (1ull << W) - 1;
2644     for (unsigned i = 0; i != Num; ++i)
2645       Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2646     SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2647     return DAG.getBitcast(VecTy, V0);
2648   }
2649 
2650   // Build two 32-bit vectors and concatenate.
2651   MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2652   SDValue L = (ElemTy == MVT::i32)
2653                 ? Elem[0]
2654                 : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2655   SDValue H = (ElemTy == MVT::i32)
2656                 ? Elem[1]
2657                 : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2658   return getCombine(H, L, dl, VecTy, DAG);
2659 }
2660 
2661 SDValue
2662 HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2663                                      const SDLoc &dl, MVT ValTy, MVT ResTy,
2664                                      SelectionDAG &DAG) const {
2665   MVT VecTy = ty(VecV);
2666   assert(!ValTy.isVector() ||
2667          VecTy.getVectorElementType() == ValTy.getVectorElementType());
2668   if (VecTy.getVectorElementType() == MVT::i1)
2669     return extractVectorPred(VecV, IdxV, dl, ValTy, ResTy, DAG);
2670 
2671   unsigned VecWidth = VecTy.getSizeInBits();
2672   unsigned ValWidth = ValTy.getSizeInBits();
2673   unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2674   assert((VecWidth % ElemWidth) == 0);
2675   assert(VecWidth == 32 || VecWidth == 64);
2676 
2677   // Cast everything to scalar integer types.
2678   MVT ScalarTy = tyScalar(VecTy);
2679   VecV = DAG.getBitcast(ScalarTy, VecV);
2680 
2681   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2682   SDValue ExtV;
2683 
2684   if (auto *IdxN = dyn_cast<ConstantSDNode>(IdxV)) {
2685     unsigned Off = IdxN->getZExtValue() * ElemWidth;
2686     if (VecWidth == 64 && ValWidth == 32) {
2687       assert(Off == 0 || Off == 32);
2688       ExtV = Off == 0 ? LoHalf(VecV, DAG) : HiHalf(VecV, DAG);
2689     } else if (Off == 0 && (ValWidth % 8) == 0) {
2690       ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2691     } else {
2692       SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2693       // The return type of EXTRACTU must be the same as the type of the
2694       // input vector.
2695       ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2696                          {VecV, WidthV, OffV});
2697     }
2698   } else {
2699     if (ty(IdxV) != MVT::i32)
2700       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2701     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2702                                DAG.getConstant(ElemWidth, dl, MVT::i32));
2703     ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2704                        {VecV, WidthV, OffV});
2705   }
2706 
2707   // Cast ExtV to the requested result type.
2708   ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2709   ExtV = DAG.getBitcast(ResTy, ExtV);
2710   return ExtV;
2711 }
2712 
2713 SDValue
2714 HexagonTargetLowering::extractVectorPred(SDValue VecV, SDValue IdxV,
2715                                          const SDLoc &dl, MVT ValTy, MVT ResTy,
2716                                          SelectionDAG &DAG) const {
2717   // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2718   // without any coprocessors).
2719   MVT VecTy = ty(VecV);
2720   unsigned VecWidth = VecTy.getSizeInBits();
2721   unsigned ValWidth = ValTy.getSizeInBits();
2722   assert(VecWidth == VecTy.getVectorNumElements() &&
2723          "Vector elements should equal vector width size");
2724   assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2725 
2726   // Check if this is an extract of the lowest bit.
2727   if (isNullConstant(IdxV) && ValTy.getSizeInBits() == 1) {
2728     // Extracting the lowest bit is a no-op, but it changes the type,
2729     // so it must be kept as an operation to avoid errors related to
2730     // type mismatches.
2731     return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2732   }
2733 
2734   // If the value extracted is a single bit, use tstbit.
2735   if (ValWidth == 1) {
2736     SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2737     SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2738     SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2739     return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2740   }
2741 
2742   // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2743   // a predicate register. The elements of the vector are repeated
2744   // in the register (if necessary) so that the total number is 8.
2745   // The extracted subvector will need to be expanded in such a way.
2746   unsigned Scale = VecWidth / ValWidth;
2747 
2748   // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2749   // position 0.
2750   assert(ty(IdxV) == MVT::i32);
2751   unsigned VecRep = 8 / VecWidth;
2752   SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2753                            DAG.getConstant(8*VecRep, dl, MVT::i32));
2754   SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2755   SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2756   while (Scale > 1) {
2757     // The longest possible subvector is at most 32 bits, so it is always
2758     // contained in the low subregister.
2759     T1 = LoHalf(T1, DAG);
2760     T1 = expandPredicate(T1, dl, DAG);
2761     Scale /= 2;
2762   }
2763 
2764   return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2765 }
2766 
2767 SDValue
2768 HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2769                                     const SDLoc &dl, MVT ValTy,
2770                                     SelectionDAG &DAG) const {
2771   MVT VecTy = ty(VecV);
2772   if (VecTy.getVectorElementType() == MVT::i1)
2773     return insertVectorPred(VecV, ValV, IdxV, dl, ValTy, DAG);
2774 
2775   unsigned VecWidth = VecTy.getSizeInBits();
2776   unsigned ValWidth = ValTy.getSizeInBits();
2777   assert(VecWidth == 32 || VecWidth == 64);
2778   assert((VecWidth % ValWidth) == 0);
2779 
2780   // Cast everything to scalar integer types.
2781   MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2782   // The actual type of ValV may be different than ValTy (which is related
2783   // to the vector type).
2784   unsigned VW = ty(ValV).getSizeInBits();
2785   ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2786   VecV = DAG.getBitcast(ScalarTy, VecV);
2787   if (VW != VecWidth)
2788     ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2789 
2790   SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2791   SDValue InsV;
2792 
2793   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2794     unsigned W = C->getZExtValue() * ValWidth;
2795     SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2796     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2797                        {VecV, ValV, WidthV, OffV});
2798   } else {
2799     if (ty(IdxV) != MVT::i32)
2800       IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2801     SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2802     InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2803                        {VecV, ValV, WidthV, OffV});
2804   }
2805 
2806   return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2807 }
2808 
2809 SDValue
2810 HexagonTargetLowering::insertVectorPred(SDValue VecV, SDValue ValV,
2811                                         SDValue IdxV, const SDLoc &dl,
2812                                         MVT ValTy, SelectionDAG &DAG) const {
2813   MVT VecTy = ty(VecV);
2814   unsigned VecLen = VecTy.getVectorNumElements();
2815 
2816   if (ValTy == MVT::i1) {
2817     SDValue ToReg = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2818     SDValue Ext = DAG.getSExtOrTrunc(ValV, dl, MVT::i32);
2819     SDValue Width = DAG.getConstant(8 / VecLen, dl, MVT::i32);
2820     SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2821     SDValue Ins =
2822         DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, {ToReg, Ext, Width, Idx});
2823     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Ins}, DAG);
2824   }
2825 
2826   assert(ValTy.getVectorElementType() == MVT::i1);
2827   SDValue ValR = ValTy.isVector()
2828                      ? DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV)
2829                      : DAG.getSExtOrTrunc(ValV, dl, MVT::i64);
2830 
2831   unsigned Scale = VecLen / ValTy.getVectorNumElements();
2832   assert(Scale > 1);
2833 
2834   for (unsigned R = Scale; R > 1; R /= 2) {
2835     ValR = contractPredicate(ValR, dl, DAG);
2836     ValR = getCombine(DAG.getUNDEF(MVT::i32), ValR, dl, MVT::i64, DAG);
2837   }
2838 
2839   SDValue Width = DAG.getConstant(64 / Scale, dl, MVT::i32);
2840   SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, Width);
2841   SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2842   SDValue Ins =
2843       DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, {VecR, ValR, Width, Idx});
2844   return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2845 }
2846 
2847 SDValue
2848 HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2849                                        SelectionDAG &DAG) const {
2850   assert(ty(Vec32).getSizeInBits() == 32);
2851   if (isUndef(Vec32))
2852     return DAG.getUNDEF(MVT::i64);
2853   SDValue P = DAG.getBitcast(MVT::v4i8, Vec32);
2854   SDValue X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i16, P);
2855   return DAG.getBitcast(MVT::i64, X);
2856 }
2857 
2858 SDValue
2859 HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2860                                          SelectionDAG &DAG) const {
2861   assert(ty(Vec64).getSizeInBits() == 64);
2862   if (isUndef(Vec64))
2863     return DAG.getUNDEF(MVT::i32);
2864   // Collect even bytes:
2865   SDValue A = DAG.getBitcast(MVT::v8i8, Vec64);
2866   SDValue S = DAG.getVectorShuffle(MVT::v8i8, dl, A, DAG.getUNDEF(MVT::v8i8),
2867                                    {0, 2, 4, 6, 1, 3, 5, 7});
2868   return extractVector(S, DAG.getConstant(0, dl, MVT::i32), dl, MVT::v4i8,
2869                        MVT::i32, DAG);
2870 }
2871 
2872 SDValue
2873 HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2874       const {
2875   if (Ty.isVector()) {
2876     unsigned W = Ty.getSizeInBits();
2877     if (W <= 64)
2878       return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2879     return DAG.getNode(ISD::SPLAT_VECTOR, dl, Ty, getZero(dl, MVT::i32, DAG));
2880   }
2881 
2882   if (Ty.isInteger())
2883     return DAG.getConstant(0, dl, Ty);
2884   if (Ty.isFloatingPoint())
2885     return DAG.getConstantFP(0.0, dl, Ty);
2886   llvm_unreachable("Invalid type for zero");
2887 }
2888 
2889 SDValue
2890 HexagonTargetLowering::appendUndef(SDValue Val, MVT ResTy, SelectionDAG &DAG)
2891       const {
2892   MVT ValTy = ty(Val);
2893   assert(ValTy.getVectorElementType() == ResTy.getVectorElementType());
2894 
2895   unsigned ValLen = ValTy.getVectorNumElements();
2896   unsigned ResLen = ResTy.getVectorNumElements();
2897   if (ValLen == ResLen)
2898     return Val;
2899 
2900   const SDLoc &dl(Val);
2901   assert(ValLen < ResLen);
2902   assert(ResLen % ValLen == 0);
2903 
2904   SmallVector<SDValue, 4> Concats = {Val};
2905   for (unsigned i = 1, e = ResLen / ValLen; i < e; ++i)
2906     Concats.push_back(DAG.getUNDEF(ValTy));
2907 
2908   return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, Concats);
2909 }
2910 
2911 SDValue
2912 HexagonTargetLowering::getCombine(SDValue Hi, SDValue Lo, const SDLoc &dl,
2913                                   MVT ResTy, SelectionDAG &DAG) const {
2914   MVT ElemTy = ty(Hi);
2915   assert(ElemTy == ty(Lo));
2916 
2917   if (!ElemTy.isVector()) {
2918     assert(ElemTy.isScalarInteger());
2919     MVT PairTy = MVT::getIntegerVT(2 * ElemTy.getSizeInBits());
2920     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, PairTy, Lo, Hi);
2921     return DAG.getBitcast(ResTy, Pair);
2922   }
2923 
2924   unsigned Width = ElemTy.getSizeInBits();
2925   MVT IntTy = MVT::getIntegerVT(Width);
2926   MVT PairTy = MVT::getIntegerVT(2 * Width);
2927   SDValue Pair =
2928       DAG.getNode(ISD::BUILD_PAIR, dl, PairTy,
2929                   {DAG.getBitcast(IntTy, Lo), DAG.getBitcast(IntTy, Hi)});
2930   return DAG.getBitcast(ResTy, Pair);
2931 }
2932 
2933 SDValue
2934 HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2935   MVT VecTy = ty(Op);
2936   unsigned BW = VecTy.getSizeInBits();
2937   const SDLoc &dl(Op);
2938   SmallVector<SDValue,8> Ops;
2939   for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2940     Ops.push_back(Op.getOperand(i));
2941 
2942   if (BW == 32)
2943     return buildVector32(Ops, dl, VecTy, DAG);
2944   if (BW == 64)
2945     return buildVector64(Ops, dl, VecTy, DAG);
2946 
2947   if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2948     // Check if this is a special case or all-0 or all-1.
2949     bool All0 = true, All1 = true;
2950     for (SDValue P : Ops) {
2951       auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2952       if (CN == nullptr) {
2953         All0 = All1 = false;
2954         break;
2955       }
2956       uint32_t C = CN->getZExtValue();
2957       All0 &= (C == 0);
2958       All1 &= (C == 1);
2959     }
2960     if (All0)
2961       return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2962     if (All1)
2963       return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2964 
2965     // For each i1 element in the resulting predicate register, put 1
2966     // shifted by the index of the element into a general-purpose register,
2967     // then or them together and transfer it back into a predicate register.
2968     SDValue Rs[8];
2969     SDValue Z = getZero(dl, MVT::i32, DAG);
2970     // Always produce 8 bits, repeat inputs if necessary.
2971     unsigned Rep = 8 / VecTy.getVectorNumElements();
2972     for (unsigned i = 0; i != 8; ++i) {
2973       SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2974       Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2975     }
2976     for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2977       for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2978         Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2979     }
2980     // Move the value directly to a predicate register.
2981     return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2982   }
2983 
2984   return SDValue();
2985 }
2986 
2987 SDValue
2988 HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2989                                            SelectionDAG &DAG) const {
2990   MVT VecTy = ty(Op);
2991   const SDLoc &dl(Op);
2992   if (VecTy.getSizeInBits() == 64) {
2993     assert(Op.getNumOperands() == 2);
2994     return getCombine(Op.getOperand(1), Op.getOperand(0), dl, VecTy, DAG);
2995   }
2996 
2997   MVT ElemTy = VecTy.getVectorElementType();
2998   if (ElemTy == MVT::i1) {
2999     assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
3000     MVT OpTy = ty(Op.getOperand(0));
3001     // Scale is how many times the operands need to be contracted to match
3002     // the representation in the target register.
3003     unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
3004     assert(Scale == Op.getNumOperands() && Scale > 1);
3005 
3006     // First, convert all bool vectors to integers, then generate pairwise
3007     // inserts to form values of doubled length. Up until there are only
3008     // two values left to concatenate, all of these values will fit in a
3009     // 32-bit integer, so keep them as i32 to use 32-bit inserts.
3010     SmallVector<SDValue,4> Words[2];
3011     unsigned IdxW = 0;
3012 
3013     for (SDValue P : Op.getNode()->op_values()) {
3014       SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
3015       for (unsigned R = Scale; R > 1; R /= 2) {
3016         W = contractPredicate(W, dl, DAG);
3017         W = getCombine(DAG.getUNDEF(MVT::i32), W, dl, MVT::i64, DAG);
3018       }
3019       W = LoHalf(W, DAG);
3020       Words[IdxW].push_back(W);
3021     }
3022 
3023     while (Scale > 2) {
3024       SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
3025       Words[IdxW ^ 1].clear();
3026 
3027       for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
3028         SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
3029         // Insert W1 into W0 right next to the significant bits of W0.
3030         SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
3031                                 {W0, W1, WidthV, WidthV});
3032         Words[IdxW ^ 1].push_back(T);
3033       }
3034       IdxW ^= 1;
3035       Scale /= 2;
3036     }
3037 
3038     // At this point there should only be two words left, and Scale should be 2.
3039     assert(Scale == 2 && Words[IdxW].size() == 2);
3040 
3041     SDValue WW = getCombine(Words[IdxW][1], Words[IdxW][0], dl, MVT::i64, DAG);
3042     return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
3043   }
3044 
3045   return SDValue();
3046 }
3047 
3048 SDValue
3049 HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
3050                                                SelectionDAG &DAG) const {
3051   SDValue Vec = Op.getOperand(0);
3052   MVT ElemTy = ty(Vec).getVectorElementType();
3053   return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
3054 }
3055 
3056 SDValue
3057 HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
3058                                               SelectionDAG &DAG) const {
3059   return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
3060                        ty(Op), ty(Op), DAG);
3061 }
3062 
3063 SDValue
3064 HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
3065                                               SelectionDAG &DAG) const {
3066   return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
3067                       SDLoc(Op), ty(Op).getVectorElementType(), DAG);
3068 }
3069 
3070 SDValue
3071 HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
3072                                              SelectionDAG &DAG) const {
3073   SDValue ValV = Op.getOperand(1);
3074   return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
3075                       SDLoc(Op), ty(ValV), DAG);
3076 }
3077 
3078 bool
3079 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
3080   // Assuming the caller does not have either a signext or zeroext modifier, and
3081   // only one value is accepted, any reasonable truncation is allowed.
3082   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
3083     return false;
3084 
3085   // FIXME: in principle up to 64-bit could be made safe, but it would be very
3086   // fragile at the moment: any support for multiple value returns would be
3087   // liable to disallow tail calls involving i64 -> iN truncation in many cases.
3088   return Ty1->getPrimitiveSizeInBits() <= 32;
3089 }
3090 
3091 SDValue
3092 HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
3093   MVT Ty = ty(Op);
3094   const SDLoc &dl(Op);
3095   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3096   MVT MemTy = LN->getMemoryVT().getSimpleVT();
3097   ISD::LoadExtType ET = LN->getExtensionType();
3098 
3099   bool LoadPred = MemTy == MVT::v2i1 || MemTy == MVT::v4i1 || MemTy == MVT::v8i1;
3100   if (LoadPred) {
3101     SDValue NL = DAG.getLoad(
3102         LN->getAddressingMode(), ISD::ZEXTLOAD, MVT::i32, dl, LN->getChain(),
3103         LN->getBasePtr(), LN->getOffset(), LN->getPointerInfo(),
3104         /*MemoryVT*/ MVT::i8, LN->getAlign(), LN->getMemOperand()->getFlags(),
3105         LN->getAAInfo(), LN->getRanges());
3106     LN = cast<LoadSDNode>(NL.getNode());
3107   }
3108 
3109   Align ClaimAlign = LN->getAlign();
3110   if (!validateConstPtrAlignment(LN->getBasePtr(), ClaimAlign, dl, DAG))
3111     return replaceMemWithUndef(Op, DAG);
3112 
3113   // Call LowerUnalignedLoad for all loads, it recognizes loads that
3114   // don't need extra aligning.
3115   SDValue LU = LowerUnalignedLoad(SDValue(LN, 0), DAG);
3116   if (LoadPred) {
3117     SDValue TP = getInstr(Hexagon::C2_tfrrp, dl, MemTy, {LU}, DAG);
3118     if (ET == ISD::SEXTLOAD) {
3119       TP = DAG.getSExtOrTrunc(TP, dl, Ty);
3120     } else if (ET != ISD::NON_EXTLOAD) {
3121       TP = DAG.getZExtOrTrunc(TP, dl, Ty);
3122     }
3123     SDValue Ch = cast<LoadSDNode>(LU.getNode())->getChain();
3124     return DAG.getMergeValues({TP, Ch}, dl);
3125   }
3126   return LU;
3127 }
3128 
3129 SDValue
3130 HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
3131   const SDLoc &dl(Op);
3132   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
3133   SDValue Val = SN->getValue();
3134   MVT Ty = ty(Val);
3135 
3136   if (Ty == MVT::v2i1 || Ty == MVT::v4i1 || Ty == MVT::v8i1) {
3137     // Store the exact predicate (all bits).
3138     SDValue TR = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {Val}, DAG);
3139     SDValue NS = DAG.getTruncStore(SN->getChain(), dl, TR, SN->getBasePtr(),
3140                                    MVT::i8, SN->getMemOperand());
3141     if (SN->isIndexed()) {
3142       NS = DAG.getIndexedStore(NS, dl, SN->getBasePtr(), SN->getOffset(),
3143                                SN->getAddressingMode());
3144     }
3145     SN = cast<StoreSDNode>(NS.getNode());
3146   }
3147 
3148   Align ClaimAlign = SN->getAlign();
3149   if (!validateConstPtrAlignment(SN->getBasePtr(), ClaimAlign, dl, DAG))
3150     return replaceMemWithUndef(Op, DAG);
3151 
3152   MVT StoreTy = SN->getMemoryVT().getSimpleVT();
3153   Align NeedAlign = Subtarget.getTypeAlignment(StoreTy);
3154   if (ClaimAlign < NeedAlign)
3155     return expandUnalignedStore(SN, DAG);
3156   return SDValue(SN, 0);
3157 }
3158 
3159 SDValue
3160 HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
3161       const {
3162   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
3163   MVT LoadTy = ty(Op);
3164   unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy).value();
3165   unsigned HaveAlign = LN->getAlign().value();
3166   if (HaveAlign >= NeedAlign)
3167     return Op;
3168 
3169   const SDLoc &dl(Op);
3170   const DataLayout &DL = DAG.getDataLayout();
3171   LLVMContext &Ctx = *DAG.getContext();
3172 
3173   // If the load aligning is disabled or the load can be broken up into two
3174   // smaller legal loads, do the default (target-independent) expansion.
3175   bool DoDefault = false;
3176   // Handle it in the default way if this is an indexed load.
3177   if (!LN->isUnindexed())
3178     DoDefault = true;
3179 
3180   if (!AlignLoads) {
3181     if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
3182                                        *LN->getMemOperand()))
3183       return Op;
3184     DoDefault = true;
3185   }
3186   if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
3187     // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
3188     MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
3189                                 : MVT::getVectorVT(MVT::i8, HaveAlign);
3190     DoDefault =
3191         allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
3192   }
3193   if (DoDefault) {
3194     std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
3195     return DAG.getMergeValues({P.first, P.second}, dl);
3196   }
3197 
3198   // The code below generates two loads, both aligned as NeedAlign, and
3199   // with the distance of NeedAlign between them. For that to cover the
3200   // bits that need to be loaded (and without overlapping), the size of
3201   // the loads should be equal to NeedAlign. This is true for all loadable
3202   // types, but add an assertion in case something changes in the future.
3203   assert(LoadTy.getSizeInBits() == 8*NeedAlign);
3204 
3205   unsigned LoadLen = NeedAlign;
3206   SDValue Base = LN->getBasePtr();
3207   SDValue Chain = LN->getChain();
3208   auto BO = getBaseAndOffset(Base);
3209   unsigned BaseOpc = BO.first.getOpcode();
3210   if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
3211     return Op;
3212 
3213   if (BO.second % LoadLen != 0) {
3214     BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
3215                            DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
3216     BO.second -= BO.second % LoadLen;
3217   }
3218   SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
3219       ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
3220                     DAG.getConstant(NeedAlign, dl, MVT::i32))
3221       : BO.first;
3222   SDValue Base0 =
3223       DAG.getMemBasePlusOffset(BaseNoOff, TypeSize::getFixed(BO.second), dl);
3224   SDValue Base1 = DAG.getMemBasePlusOffset(
3225       BaseNoOff, TypeSize::getFixed(BO.second + LoadLen), dl);
3226 
3227   MachineMemOperand *WideMMO = nullptr;
3228   if (MachineMemOperand *MMO = LN->getMemOperand()) {
3229     MachineFunction &MF = DAG.getMachineFunction();
3230     WideMMO = MF.getMachineMemOperand(
3231         MMO->getPointerInfo(), MMO->getFlags(), 2 * LoadLen, Align(LoadLen),
3232         MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
3233         MMO->getSuccessOrdering(), MMO->getFailureOrdering());
3234   }
3235 
3236   SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
3237   SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
3238 
3239   SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
3240                                 {Load1, Load0, BaseNoOff.getOperand(0)});
3241   SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3242                                  Load0.getValue(1), Load1.getValue(1));
3243   SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
3244   return M;
3245 }
3246 
3247 SDValue
3248 HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
3249   SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
3250   auto *CY = dyn_cast<ConstantSDNode>(Y);
3251   if (!CY)
3252     return SDValue();
3253 
3254   const SDLoc &dl(Op);
3255   SDVTList VTs = Op.getNode()->getVTList();
3256   assert(VTs.NumVTs == 2);
3257   assert(VTs.VTs[1] == MVT::i1);
3258   unsigned Opc = Op.getOpcode();
3259 
3260   if (CY) {
3261     uint64_t VY = CY->getZExtValue();
3262     assert(VY != 0 && "This should have been folded");
3263     // X +/- 1
3264     if (VY != 1)
3265       return SDValue();
3266 
3267     if (Opc == ISD::UADDO) {
3268       SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
3269       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
3270                                 ISD::SETEQ);
3271       return DAG.getMergeValues({Op, Ov}, dl);
3272     }
3273     if (Opc == ISD::USUBO) {
3274       SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
3275       SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
3276                                 DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
3277       return DAG.getMergeValues({Op, Ov}, dl);
3278     }
3279   }
3280 
3281   return SDValue();
3282 }
3283 
3284 SDValue HexagonTargetLowering::LowerUAddSubOCarry(SDValue Op,
3285                                                   SelectionDAG &DAG) const {
3286   const SDLoc &dl(Op);
3287   unsigned Opc = Op.getOpcode();
3288   SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
3289 
3290   if (Opc == ISD::UADDO_CARRY)
3291     return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
3292                        { X, Y, C });
3293 
3294   EVT CarryTy = C.getValueType();
3295   SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
3296                              { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
3297   SDValue Out[] = { SubC.getValue(0),
3298                     DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
3299   return DAG.getMergeValues(Out, dl);
3300 }
3301 
3302 SDValue
3303 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
3304   SDValue Chain     = Op.getOperand(0);
3305   SDValue Offset    = Op.getOperand(1);
3306   SDValue Handler   = Op.getOperand(2);
3307   SDLoc dl(Op);
3308   auto PtrVT = getPointerTy(DAG.getDataLayout());
3309 
3310   // Mark function as containing a call to EH_RETURN.
3311   HexagonMachineFunctionInfo *FuncInfo =
3312     DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
3313   FuncInfo->setHasEHReturn();
3314 
3315   unsigned OffsetReg = Hexagon::R28;
3316 
3317   SDValue StoreAddr =
3318       DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
3319                   DAG.getIntPtrConstant(4, dl));
3320   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
3321   Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
3322 
3323   // Not needed we already use it as explict input to EH_RETURN.
3324   // MF.getRegInfo().addLiveOut(OffsetReg);
3325 
3326   return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
3327 }
3328 
3329 SDValue
3330 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
3331   unsigned Opc = Op.getOpcode();
3332 
3333   // Handle INLINEASM first.
3334   if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
3335     return LowerINLINEASM(Op, DAG);
3336 
3337   if (isHvxOperation(Op.getNode(), DAG)) {
3338     // If HVX lowering returns nothing, try the default lowering.
3339     if (SDValue V = LowerHvxOperation(Op, DAG))
3340       return V;
3341   }
3342 
3343   switch (Opc) {
3344     default:
3345 #ifndef NDEBUG
3346       Op.getNode()->dumpr(&DAG);
3347       if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
3348         errs() << "Error: check for a non-legal type in this operation\n";
3349 #endif
3350       llvm_unreachable("Should not custom lower this!");
3351 
3352     case ISD::FDIV:
3353       return LowerFDIV(Op, DAG);
3354     case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
3355     case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
3356     case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
3357     case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
3358     case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
3359     case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
3360     case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
3361     case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
3362     case ISD::LOAD:                 return LowerLoad(Op, DAG);
3363     case ISD::STORE:                return LowerStore(Op, DAG);
3364     case ISD::UADDO:
3365     case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
3366     case ISD::UADDO_CARRY:
3367     case ISD::USUBO_CARRY:          return LowerUAddSubOCarry(Op, DAG);
3368     case ISD::SRA:
3369     case ISD::SHL:
3370     case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
3371     case ISD::ROTL:                 return LowerROTL(Op, DAG);
3372     case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
3373     case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
3374     case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
3375     case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
3376     case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
3377     case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
3378     case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
3379     case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
3380     case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
3381     case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
3382     case ISD::VACOPY:               return LowerVACOPY(Op, DAG);
3383     case ISD::VASTART:              return LowerVASTART(Op, DAG);
3384     case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
3385     case ISD::SETCC:                return LowerSETCC(Op, DAG);
3386     case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
3387     case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3388     case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
3389     case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
3390     case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
3391     case ISD::READSTEADYCOUNTER:    return LowerREADSTEADYCOUNTER(Op, DAG);
3392       break;
3393   }
3394 
3395   return SDValue();
3396 }
3397 
3398 void
3399 HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
3400                                              SmallVectorImpl<SDValue> &Results,
3401                                              SelectionDAG &DAG) const {
3402   if (isHvxOperation(N, DAG)) {
3403     LowerHvxOperationWrapper(N, Results, DAG);
3404     if (!Results.empty())
3405       return;
3406   }
3407 
3408   SDValue Op(N, 0);
3409   unsigned Opc = N->getOpcode();
3410 
3411   switch (Opc) {
3412     case HexagonISD::SSAT:
3413     case HexagonISD::USAT:
3414       Results.push_back(opJoin(SplitVectorOp(Op, DAG), SDLoc(Op), DAG));
3415       break;
3416     case ISD::STORE:
3417       // We are only custom-lowering stores to verify the alignment of the
3418       // address if it is a compile-time constant. Since a store can be
3419       // modified during type-legalization (the value being stored may need
3420       // legalization), return empty Results here to indicate that we don't
3421       // really make any changes in the custom lowering.
3422       return;
3423     default:
3424       TargetLowering::LowerOperationWrapper(N, Results, DAG);
3425       break;
3426   }
3427 }
3428 
3429 void
3430 HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
3431                                           SmallVectorImpl<SDValue> &Results,
3432                                           SelectionDAG &DAG) const {
3433   if (isHvxOperation(N, DAG)) {
3434     ReplaceHvxNodeResults(N, Results, DAG);
3435     if (!Results.empty())
3436       return;
3437   }
3438 
3439   const SDLoc &dl(N);
3440   switch (N->getOpcode()) {
3441     case ISD::SRL:
3442     case ISD::SRA:
3443     case ISD::SHL:
3444       return;
3445     case ISD::BITCAST:
3446       // Handle a bitcast from v8i1 to i8.
3447       if (N->getValueType(0) == MVT::i8) {
3448         if (N->getOperand(0).getValueType() == MVT::v8i1) {
3449           SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
3450                                N->getOperand(0), DAG);
3451           SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
3452           Results.push_back(T);
3453         }
3454       }
3455       break;
3456   }
3457 }
3458 
3459 SDValue
3460 HexagonTargetLowering::PerformDAGCombine(SDNode *N,
3461                                          DAGCombinerInfo &DCI) const {
3462   if (isHvxOperation(N, DCI.DAG)) {
3463     if (SDValue V = PerformHvxDAGCombine(N, DCI))
3464       return V;
3465     return SDValue();
3466   }
3467 
3468   SDValue Op(N, 0);
3469   const SDLoc &dl(Op);
3470   unsigned Opc = Op.getOpcode();
3471 
3472   if (Opc == ISD::TRUNCATE) {
3473     SDValue Op0 = Op.getOperand(0);
3474     // fold (truncate (build pair x, y)) -> (truncate x) or x
3475     if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3476       EVT TruncTy = Op.getValueType();
3477       SDValue Elem0 = Op0.getOperand(0);
3478       // if we match the low element of the pair, just return it.
3479       if (Elem0.getValueType() == TruncTy)
3480         return Elem0;
3481       // otherwise, if the low part is still too large, apply the truncate.
3482       if (Elem0.getValueType().bitsGT(TruncTy))
3483         return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3484     }
3485   }
3486 
3487   if (DCI.isBeforeLegalizeOps())
3488     return SDValue();
3489 
3490   if (Opc == HexagonISD::P2D) {
3491     SDValue P = Op.getOperand(0);
3492     switch (P.getOpcode()) {
3493     case HexagonISD::PTRUE:
3494       return DCI.DAG.getConstant(-1, dl, ty(Op));
3495     case HexagonISD::PFALSE:
3496       return getZero(dl, ty(Op), DCI.DAG);
3497     default:
3498       break;
3499     }
3500   } else if (Opc == ISD::VSELECT) {
3501     // This is pretty much duplicated in HexagonISelLoweringHVX...
3502     //
3503     // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3504     SDValue Cond = Op.getOperand(0);
3505     if (Cond->getOpcode() == ISD::XOR) {
3506       SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3507       if (C1->getOpcode() == HexagonISD::PTRUE) {
3508         SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3509                                        Op.getOperand(2), Op.getOperand(1));
3510         return VSel;
3511       }
3512     }
3513   } else if (Opc == ISD::TRUNCATE) {
3514     SDValue Op0 = Op.getOperand(0);
3515     // fold (truncate (build pair x, y)) -> (truncate x) or x
3516     if (Op0.getOpcode() == ISD::BUILD_PAIR) {
3517       MVT TruncTy = ty(Op);
3518       SDValue Elem0 = Op0.getOperand(0);
3519       // if we match the low element of the pair, just return it.
3520       if (ty(Elem0) == TruncTy)
3521         return Elem0;
3522       // otherwise, if the low part is still too large, apply the truncate.
3523       if (ty(Elem0).bitsGT(TruncTy))
3524         return DCI.DAG.getNode(ISD::TRUNCATE, dl, TruncTy, Elem0);
3525     }
3526   } else if (Opc == ISD::OR) {
3527     // fold (or (shl xx, s), (zext y)) -> (COMBINE (shl xx, s-32), y)
3528     // if s >= 32
3529     auto fold0 = [&, this](SDValue Op) {
3530       if (ty(Op) != MVT::i64)
3531         return SDValue();
3532       SDValue Shl = Op.getOperand(0);
3533       SDValue Zxt = Op.getOperand(1);
3534       if (Shl.getOpcode() != ISD::SHL)
3535         std::swap(Shl, Zxt);
3536 
3537       if (Shl.getOpcode() != ISD::SHL || Zxt.getOpcode() != ISD::ZERO_EXTEND)
3538         return SDValue();
3539 
3540       SDValue Z = Zxt.getOperand(0);
3541       auto *Amt = dyn_cast<ConstantSDNode>(Shl.getOperand(1));
3542       if (Amt && Amt->getZExtValue() >= 32 && ty(Z).getSizeInBits() <= 32) {
3543         unsigned A = Amt->getZExtValue();
3544         SDValue S = Shl.getOperand(0);
3545         SDValue T0 = DCI.DAG.getNode(ISD::SHL, dl, ty(S), S,
3546                                      DCI.DAG.getConstant(A - 32, dl, MVT::i32));
3547         SDValue T1 = DCI.DAG.getZExtOrTrunc(T0, dl, MVT::i32);
3548         SDValue T2 = DCI.DAG.getZExtOrTrunc(Z, dl, MVT::i32);
3549         return DCI.DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {T1, T2});
3550       }
3551       return SDValue();
3552     };
3553 
3554     if (SDValue R = fold0(Op))
3555       return R;
3556   }
3557 
3558   return SDValue();
3559 }
3560 
3561 /// Returns relocation base for the given PIC jumptable.
3562 SDValue
3563 HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3564                                                 SelectionDAG &DAG) const {
3565   int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3566   EVT VT = Table.getValueType();
3567   SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3568   return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3569 }
3570 
3571 //===----------------------------------------------------------------------===//
3572 // Inline Assembly Support
3573 //===----------------------------------------------------------------------===//
3574 
3575 TargetLowering::ConstraintType
3576 HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3577   if (Constraint.size() == 1) {
3578     switch (Constraint[0]) {
3579       case 'q':
3580       case 'v':
3581         if (Subtarget.useHVXOps())
3582           return C_RegisterClass;
3583         break;
3584       case 'a':
3585         return C_RegisterClass;
3586       default:
3587         break;
3588     }
3589   }
3590   return TargetLowering::getConstraintType(Constraint);
3591 }
3592 
3593 std::pair<unsigned, const TargetRegisterClass*>
3594 HexagonTargetLowering::getRegForInlineAsmConstraint(
3595     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3596 
3597   if (Constraint.size() == 1) {
3598     switch (Constraint[0]) {
3599     case 'r':   // R0-R31
3600       switch (VT.SimpleTy) {
3601       default:
3602         return {0u, nullptr};
3603       case MVT::i1:
3604       case MVT::i8:
3605       case MVT::i16:
3606       case MVT::i32:
3607       case MVT::f32:
3608         return {0u, &Hexagon::IntRegsRegClass};
3609       case MVT::i64:
3610       case MVT::f64:
3611         return {0u, &Hexagon::DoubleRegsRegClass};
3612       }
3613       break;
3614     case 'a': // M0-M1
3615       if (VT != MVT::i32)
3616         return {0u, nullptr};
3617       return {0u, &Hexagon::ModRegsRegClass};
3618     case 'q': // q0-q3
3619       switch (VT.getSizeInBits()) {
3620       default:
3621         return {0u, nullptr};
3622       case 64:
3623       case 128:
3624         return {0u, &Hexagon::HvxQRRegClass};
3625       }
3626       break;
3627     case 'v': // V0-V31
3628       switch (VT.getSizeInBits()) {
3629       default:
3630         return {0u, nullptr};
3631       case 512:
3632         return {0u, &Hexagon::HvxVRRegClass};
3633       case 1024:
3634         if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3635           return {0u, &Hexagon::HvxVRRegClass};
3636         return {0u, &Hexagon::HvxWRRegClass};
3637       case 2048:
3638         return {0u, &Hexagon::HvxWRRegClass};
3639       }
3640       break;
3641     default:
3642       return {0u, nullptr};
3643     }
3644   }
3645 
3646   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3647 }
3648 
3649 /// isFPImmLegal - Returns true if the target can instruction select the
3650 /// specified FP immediate natively. If false, the legalizer will
3651 /// materialize the FP immediate as a load from a constant pool.
3652 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3653                                          bool ForCodeSize) const {
3654   return true;
3655 }
3656 
3657 /// isLegalAddressingMode - Return true if the addressing mode represented by
3658 /// AM is legal for this target, for a load/store of the specified type.
3659 bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3660                                                   const AddrMode &AM, Type *Ty,
3661                                                   unsigned AS, Instruction *I) const {
3662   if (Ty->isSized()) {
3663     // When LSR detects uses of the same base address to access different
3664     // types (e.g. unions), it will assume a conservative type for these
3665     // uses:
3666     //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
3667     // The type Ty passed here would then be "void". Skip the alignment
3668     // checks, but do not return false right away, since that confuses
3669     // LSR into crashing.
3670     Align A = DL.getABITypeAlign(Ty);
3671     // The base offset must be a multiple of the alignment.
3672     if (!isAligned(A, AM.BaseOffs))
3673       return false;
3674     // The shifted offset must fit in 11 bits.
3675     if (!isInt<11>(AM.BaseOffs >> Log2(A)))
3676       return false;
3677   }
3678 
3679   // No global is ever allowed as a base.
3680   if (AM.BaseGV)
3681     return false;
3682 
3683   int Scale = AM.Scale;
3684   if (Scale < 0)
3685     Scale = -Scale;
3686   switch (Scale) {
3687   case 0:  // No scale reg, "r+i", "r", or just "i".
3688     break;
3689   default: // No scaled addressing mode.
3690     return false;
3691   }
3692   return true;
3693 }
3694 
3695 /// Return true if folding a constant offset with the given GlobalAddress is
3696 /// legal.  It is frequently not legal in PIC relocation models.
3697 bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3698       const {
3699   return HTM.getRelocationModel() == Reloc::Static;
3700 }
3701 
3702 /// isLegalICmpImmediate - Return true if the specified immediate is legal
3703 /// icmp immediate, that is the target has icmp instructions which can compare
3704 /// a register against the immediate without having to materialize the
3705 /// immediate into a register.
3706 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3707   return Imm >= -512 && Imm <= 511;
3708 }
3709 
3710 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3711 /// for tail call optimization. Targets which want to do tail call
3712 /// optimization should implement this function.
3713 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3714                                  SDValue Callee,
3715                                  CallingConv::ID CalleeCC,
3716                                  bool IsVarArg,
3717                                  bool IsCalleeStructRet,
3718                                  bool IsCallerStructRet,
3719                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
3720                                  const SmallVectorImpl<SDValue> &OutVals,
3721                                  const SmallVectorImpl<ISD::InputArg> &Ins,
3722                                  SelectionDAG& DAG) const {
3723   const Function &CallerF = DAG.getMachineFunction().getFunction();
3724   CallingConv::ID CallerCC = CallerF.getCallingConv();
3725   bool CCMatch = CallerCC == CalleeCC;
3726 
3727   // ***************************************************************************
3728   //  Look for obvious safe cases to perform tail call optimization that do not
3729   //  require ABI changes.
3730   // ***************************************************************************
3731 
3732   // If this is a tail call via a function pointer, then don't do it!
3733   if (!isa<GlobalAddressSDNode>(Callee) &&
3734       !isa<ExternalSymbolSDNode>(Callee)) {
3735     return false;
3736   }
3737 
3738   // Do not optimize if the calling conventions do not match and the conventions
3739   // used are not C or Fast.
3740   if (!CCMatch) {
3741     bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3742     bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3743     // If R & E, then ok.
3744     if (!R || !E)
3745       return false;
3746   }
3747 
3748   // Do not tail call optimize vararg calls.
3749   if (IsVarArg)
3750     return false;
3751 
3752   // Also avoid tail call optimization if either caller or callee uses struct
3753   // return semantics.
3754   if (IsCalleeStructRet || IsCallerStructRet)
3755     return false;
3756 
3757   // In addition to the cases above, we also disable Tail Call Optimization if
3758   // the calling convention code that at least one outgoing argument needs to
3759   // go on the stack. We cannot check that here because at this point that
3760   // information is not available.
3761   return true;
3762 }
3763 
3764 /// Returns the target specific optimal type for load and store operations as
3765 /// a result of memset, memcpy, and memmove lowering.
3766 ///
3767 /// If DstAlign is zero that means it's safe to destination alignment can
3768 /// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3769 /// a need to check it against alignment requirement, probably because the
3770 /// source does not need to be loaded. If 'IsMemset' is true, that means it's
3771 /// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3772 /// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3773 /// does not need to be loaded.  It returns EVT::Other if the type should be
3774 /// determined using generic target-independent logic.
3775 EVT HexagonTargetLowering::getOptimalMemOpType(
3776     const MemOp &Op, const AttributeList &FuncAttributes) const {
3777   if (Op.size() >= 8 && Op.isAligned(Align(8)))
3778     return MVT::i64;
3779   if (Op.size() >= 4 && Op.isAligned(Align(4)))
3780     return MVT::i32;
3781   if (Op.size() >= 2 && Op.isAligned(Align(2)))
3782     return MVT::i16;
3783   return MVT::Other;
3784 }
3785 
3786 bool HexagonTargetLowering::allowsMemoryAccess(
3787     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
3788     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
3789   if (!VT.isSimple())
3790     return false;
3791   MVT SVT = VT.getSimpleVT();
3792   if (Subtarget.isHVXVectorType(SVT, true))
3793     return allowsHvxMemoryAccess(SVT, Flags, Fast);
3794   return TargetLoweringBase::allowsMemoryAccess(
3795               Context, DL, VT, AddrSpace, Alignment, Flags, Fast);
3796 }
3797 
3798 bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3799     EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
3800     unsigned *Fast) const {
3801   if (!VT.isSimple())
3802     return false;
3803   MVT SVT = VT.getSimpleVT();
3804   if (Subtarget.isHVXVectorType(SVT, true))
3805     return allowsHvxMisalignedMemoryAccesses(SVT, Flags, Fast);
3806   if (Fast)
3807     *Fast = 0;
3808   return false;
3809 }
3810 
3811 std::pair<const TargetRegisterClass*, uint8_t>
3812 HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3813       MVT VT) const {
3814   if (Subtarget.isHVXVectorType(VT, true)) {
3815     unsigned BitWidth = VT.getSizeInBits();
3816     unsigned VecWidth = Subtarget.getVectorLength() * 8;
3817 
3818     if (VT.getVectorElementType() == MVT::i1)
3819       return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3820     if (BitWidth == VecWidth)
3821       return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3822     assert(BitWidth == 2 * VecWidth);
3823     return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3824   }
3825 
3826   return TargetLowering::findRepresentativeClass(TRI, VT);
3827 }
3828 
3829 bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3830       ISD::LoadExtType ExtTy, EVT NewVT) const {
3831   // TODO: This may be worth removing. Check regression tests for diffs.
3832   if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3833     return false;
3834 
3835   auto *L = cast<LoadSDNode>(Load);
3836   std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3837   // Small-data object, do not shrink.
3838   if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3839     return false;
3840   if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3841     auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3842     const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3843     return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3844   }
3845   return true;
3846 }
3847 
3848 void HexagonTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3849       SDNode *Node) const {
3850   AdjustHvxInstrPostInstrSelection(MI, Node);
3851 }
3852 
3853 Value *HexagonTargetLowering::emitLoadLinked(IRBuilderBase &Builder,
3854                                              Type *ValueTy, Value *Addr,
3855                                              AtomicOrdering Ord) const {
3856   unsigned SZ = ValueTy->getPrimitiveSizeInBits();
3857   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3858   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3859                                    : Intrinsic::hexagon_L4_loadd_locked;
3860 
3861   Value *Call =
3862       Builder.CreateIntrinsic(IntID, {}, Addr, /*FMFSource=*/nullptr, "larx");
3863 
3864   return Builder.CreateBitCast(Call, ValueTy);
3865 }
3866 
3867 /// Perform a store-conditional operation to Addr. Return the status of the
3868 /// store. This should be 0 if the store succeeded, non-zero otherwise.
3869 Value *HexagonTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
3870                                                    Value *Val, Value *Addr,
3871                                                    AtomicOrdering Ord) const {
3872   BasicBlock *BB = Builder.GetInsertBlock();
3873   Module *M = BB->getParent()->getParent();
3874   Type *Ty = Val->getType();
3875   unsigned SZ = Ty->getPrimitiveSizeInBits();
3876 
3877   Type *CastTy = Builder.getIntNTy(SZ);
3878   assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3879   Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3880                                    : Intrinsic::hexagon_S4_stored_locked;
3881 
3882   Val = Builder.CreateBitCast(Val, CastTy);
3883 
3884   Value *Call = Builder.CreateIntrinsic(IntID, {}, {Addr, Val},
3885                                         /*FMFSource=*/nullptr, "stcx");
3886   Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3887   Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3888   return Ext;
3889 }
3890 
3891 TargetLowering::AtomicExpansionKind
3892 HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3893   // Do not expand loads and stores that don't exceed 64 bits.
3894   return LI->getType()->getPrimitiveSizeInBits() > 64
3895              ? AtomicExpansionKind::LLOnly
3896              : AtomicExpansionKind::None;
3897 }
3898 
3899 TargetLowering::AtomicExpansionKind
3900 HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3901   // Do not expand loads and stores that don't exceed 64 bits.
3902   return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64
3903              ? AtomicExpansionKind::Expand
3904              : AtomicExpansionKind::None;
3905 }
3906 
3907 TargetLowering::AtomicExpansionKind
3908 HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3909     AtomicCmpXchgInst *AI) const {
3910   return AtomicExpansionKind::LLSC;
3911 }
3912