xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/ARM/ARMLowOverheadLoops.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "MVETailPredUtils.h"
60 #include "Thumb2InstrInfo.h"
61 #include "llvm/ADT/SetOperations.h"
62 #include "llvm/ADT/SmallSet.h"
63 #include "llvm/CodeGen/LivePhysRegs.h"
64 #include "llvm/CodeGen/MachineFunctionPass.h"
65 #include "llvm/CodeGen/MachineLoopInfo.h"
66 #include "llvm/CodeGen/MachineLoopUtils.h"
67 #include "llvm/CodeGen/MachineRegisterInfo.h"
68 #include "llvm/CodeGen/Passes.h"
69 #include "llvm/CodeGen/ReachingDefAnalysis.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "arm-low-overhead-loops"
75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
76 
77 static cl::opt<bool>
78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
79     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
80     cl::init(false));
81 
isVectorPredicated(MachineInstr * MI)82 static bool isVectorPredicated(MachineInstr *MI) {
83   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
84   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
85 }
86 
isVectorPredicate(MachineInstr * MI)87 static bool isVectorPredicate(MachineInstr *MI) {
88   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
89 }
90 
hasVPRUse(MachineInstr & MI)91 static bool hasVPRUse(MachineInstr &MI) {
92   return MI.findRegisterUseOperandIdx(ARM::VPR) != -1;
93 }
94 
isDomainMVE(MachineInstr * MI)95 static bool isDomainMVE(MachineInstr *MI) {
96   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
97   return Domain == ARMII::DomainMVE;
98 }
99 
shouldInspect(MachineInstr & MI)100 static bool shouldInspect(MachineInstr &MI) {
101   return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
102 }
103 
isDo(MachineInstr * MI)104 static bool isDo(MachineInstr *MI) {
105   return MI->getOpcode() != ARM::t2WhileLoopStartLR;
106 }
107 
108 namespace {
109 
110   using InstSet = SmallPtrSetImpl<MachineInstr *>;
111 
112   class PostOrderLoopTraversal {
113     MachineLoop &ML;
114     MachineLoopInfo &MLI;
115     SmallPtrSet<MachineBasicBlock*, 4> Visited;
116     SmallVector<MachineBasicBlock*, 4> Order;
117 
118   public:
PostOrderLoopTraversal(MachineLoop & ML,MachineLoopInfo & MLI)119     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
120       : ML(ML), MLI(MLI) { }
121 
getOrder() const122     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
123       return Order;
124     }
125 
126     // Visit all the blocks within the loop, as well as exit blocks and any
127     // blocks properly dominating the header.
ProcessLoop()128     void ProcessLoop() {
129       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
130         (MachineBasicBlock *MBB) -> void {
131         if (Visited.count(MBB))
132           return;
133 
134         Visited.insert(MBB);
135         for (auto *Succ : MBB->successors()) {
136           if (!ML.contains(Succ))
137             continue;
138           Search(Succ);
139         }
140         Order.push_back(MBB);
141       };
142 
143       // Insert exit blocks.
144       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
145       ML.getExitBlocks(ExitBlocks);
146       append_range(Order, ExitBlocks);
147 
148       // Then add the loop body.
149       Search(ML.getHeader());
150 
151       // Then try the preheader and its predecessors.
152       std::function<void(MachineBasicBlock*)> GetPredecessor =
153         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
154         Order.push_back(MBB);
155         if (MBB->pred_size() == 1)
156           GetPredecessor(*MBB->pred_begin());
157       };
158 
159       if (auto *Preheader = ML.getLoopPreheader())
160         GetPredecessor(Preheader);
161       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
162         GetPredecessor(Preheader);
163     }
164   };
165 
166   struct PredicatedMI {
167     MachineInstr *MI = nullptr;
168     SetVector<MachineInstr*> Predicates;
169 
170   public:
PredicatedMI__anonf568b4ed0111::PredicatedMI171     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
172       assert(I && "Instruction must not be null!");
173       Predicates.insert(Preds.begin(), Preds.end());
174     }
175   };
176 
177   // Represent the current state of the VPR and hold all instances which
178   // represent a VPT block, which is a list of instructions that begins with a
179   // VPT/VPST and has a maximum of four proceeding instructions. All
180   // instructions within the block are predicated upon the vpr and we allow
181   // instructions to define the vpr within in the block too.
182   class VPTState {
183     friend struct LowOverheadLoop;
184 
185     SmallVector<MachineInstr *, 4> Insts;
186 
187     static SmallVector<VPTState, 4> Blocks;
188     static SetVector<MachineInstr *> CurrentPredicates;
189     static std::map<MachineInstr *,
190       std::unique_ptr<PredicatedMI>> PredicatedInsts;
191 
CreateVPTBlock(MachineInstr * MI)192     static void CreateVPTBlock(MachineInstr *MI) {
193       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
194              && "Can't begin VPT without predicate");
195       Blocks.emplace_back(MI);
196       // The execution of MI is predicated upon the current set of instructions
197       // that are AND'ed together to form the VPR predicate value. In the case
198       // that MI is a VPT, CurrentPredicates will also just be MI.
199       PredicatedInsts.emplace(
200         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
201     }
202 
reset()203     static void reset() {
204       Blocks.clear();
205       PredicatedInsts.clear();
206       CurrentPredicates.clear();
207     }
208 
addInst(MachineInstr * MI)209     static void addInst(MachineInstr *MI) {
210       Blocks.back().insert(MI);
211       PredicatedInsts.emplace(
212         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
213     }
214 
addPredicate(MachineInstr * MI)215     static void addPredicate(MachineInstr *MI) {
216       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
217       CurrentPredicates.insert(MI);
218     }
219 
resetPredicate(MachineInstr * MI)220     static void resetPredicate(MachineInstr *MI) {
221       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
222       CurrentPredicates.clear();
223       CurrentPredicates.insert(MI);
224     }
225 
226   public:
227     // Have we found an instruction within the block which defines the vpr? If
228     // so, not all the instructions in the block will have the same predicate.
hasUniformPredicate(VPTState & Block)229     static bool hasUniformPredicate(VPTState &Block) {
230       return getDivergent(Block) == nullptr;
231     }
232 
233     // If it exists, return the first internal instruction which modifies the
234     // VPR.
getDivergent(VPTState & Block)235     static MachineInstr *getDivergent(VPTState &Block) {
236       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
237       for (unsigned i = 1; i < Insts.size(); ++i) {
238         MachineInstr *Next = Insts[i];
239         if (isVectorPredicate(Next))
240           return Next; // Found an instruction altering the vpr.
241       }
242       return nullptr;
243     }
244 
245     // Return whether the given instruction is predicated upon a VCTP.
isPredicatedOnVCTP(MachineInstr * MI,bool Exclusive=false)246     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
247       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
248       if (Exclusive && Predicates.size() != 1)
249         return false;
250       for (auto *PredMI : Predicates)
251         if (isVCTP(PredMI))
252           return true;
253       return false;
254     }
255 
256     // Is the VPST, controlling the block entry, predicated upon a VCTP.
isEntryPredicatedOnVCTP(VPTState & Block,bool Exclusive=false)257     static bool isEntryPredicatedOnVCTP(VPTState &Block,
258                                         bool Exclusive = false) {
259       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
260       return isPredicatedOnVCTP(Insts.front(), Exclusive);
261     }
262 
263     // If this block begins with a VPT, we can check whether it's using
264     // at least one predicated input(s), as well as possible loop invariant
265     // which would result in it being implicitly predicated.
hasImplicitlyValidVPT(VPTState & Block,ReachingDefAnalysis & RDA)266     static bool hasImplicitlyValidVPT(VPTState &Block,
267                                       ReachingDefAnalysis &RDA) {
268       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
269       MachineInstr *VPT = Insts.front();
270       assert(isVPTOpcode(VPT->getOpcode()) &&
271              "Expected VPT block to begin with VPT/VPST");
272 
273       if (VPT->getOpcode() == ARM::MVE_VPST)
274         return false;
275 
276       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
277         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
278         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
279       };
280 
281       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
282         MachineOperand &MO = MI->getOperand(Idx);
283         if (!MO.isReg() || !MO.getReg())
284           return true;
285 
286         SmallPtrSet<MachineInstr *, 2> Defs;
287         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
288         if (Defs.empty())
289           return true;
290 
291         for (auto *Def : Defs)
292           if (Def->getParent() == VPT->getParent())
293             return false;
294         return true;
295       };
296 
297       // Check that at least one of the operands is directly predicated on a
298       // vctp and allow an invariant value too.
299       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
300              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
301              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
302     }
303 
isValid(ReachingDefAnalysis & RDA)304     static bool isValid(ReachingDefAnalysis &RDA) {
305       // All predication within the loop should be based on vctp. If the block
306       // isn't predicated on entry, check whether the vctp is within the block
307       // and that all other instructions are then predicated on it.
308       for (auto &Block : Blocks) {
309         if (isEntryPredicatedOnVCTP(Block, false) ||
310             hasImplicitlyValidVPT(Block, RDA))
311           continue;
312 
313         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
314         // We don't know how to convert a block with just a VPT;VCTP into
315         // anything valid once we remove the VCTP. For now just bail out.
316         assert(isVPTOpcode(Insts.front()->getOpcode()) &&
317                "Expected VPT block to start with a VPST or VPT!");
318         if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
319             isVCTP(Insts.back()))
320           return false;
321 
322         for (auto *MI : Insts) {
323           // Check that any internal VCTPs are 'Then' predicated.
324           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
325             return false;
326           // Skip other instructions that build up the predicate.
327           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
328             continue;
329           // Check that any other instructions are predicated upon a vctp.
330           // TODO: We could infer when VPTs are implicitly predicated on the
331           // vctp (when the operands are predicated).
332           if (!isPredicatedOnVCTP(MI)) {
333             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
334             return false;
335           }
336         }
337       }
338       return true;
339     }
340 
VPTState(MachineInstr * MI)341     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
342 
insert(MachineInstr * MI)343     void insert(MachineInstr *MI) {
344       Insts.push_back(MI);
345       // VPT/VPST + 4 predicated instructions.
346       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
347     }
348 
containsVCTP() const349     bool containsVCTP() const {
350       for (auto *MI : Insts)
351         if (isVCTP(MI))
352           return true;
353       return false;
354     }
355 
size() const356     unsigned size() const { return Insts.size(); }
getInsts()357     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
358   };
359 
360   struct LowOverheadLoop {
361 
362     MachineLoop &ML;
363     MachineBasicBlock *Preheader = nullptr;
364     MachineLoopInfo &MLI;
365     ReachingDefAnalysis &RDA;
366     const TargetRegisterInfo &TRI;
367     const ARMBaseInstrInfo &TII;
368     MachineFunction *MF = nullptr;
369     MachineBasicBlock::iterator StartInsertPt;
370     MachineBasicBlock *StartInsertBB = nullptr;
371     MachineInstr *Start = nullptr;
372     MachineInstr *Dec = nullptr;
373     MachineInstr *End = nullptr;
374     MachineOperand TPNumElements;
375     SmallVector<MachineInstr*, 4> VCTPs;
376     SmallPtrSet<MachineInstr*, 4> ToRemove;
377     SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
378     bool Revert = false;
379     bool CannotTailPredicate = false;
380 
LowOverheadLoop__anonf568b4ed0111::LowOverheadLoop381     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
382                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
383                     const ARMBaseInstrInfo &TII)
384         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
385           TPNumElements(MachineOperand::CreateImm(0)) {
386       MF = ML.getHeader()->getParent();
387       if (auto *MBB = ML.getLoopPreheader())
388         Preheader = MBB;
389       else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
390         Preheader = MBB;
391       VPTState::reset();
392     }
393 
394     // If this is an MVE instruction, check that we know how to use tail
395     // predication with it. Record VPT blocks and return whether the
396     // instruction is valid for tail predication.
397     bool ValidateMVEInst(MachineInstr *MI);
398 
AnalyseMVEInst__anonf568b4ed0111::LowOverheadLoop399     void AnalyseMVEInst(MachineInstr *MI) {
400       CannotTailPredicate = !ValidateMVEInst(MI);
401     }
402 
IsTailPredicationLegal__anonf568b4ed0111::LowOverheadLoop403     bool IsTailPredicationLegal() const {
404       // For now, let's keep things really simple and only support a single
405       // block for tail predication.
406       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
407              !CannotTailPredicate && ML.getNumBlocks() == 1;
408     }
409 
410     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
411     // found.
412     bool AddVCTP(MachineInstr *MI);
413 
414     // Check that the predication in the loop will be equivalent once we
415     // perform the conversion. Also ensure that we can provide the number
416     // of elements to the loop start instruction.
417     bool ValidateTailPredicate();
418 
419     // Check that any values available outside of the loop will be the same
420     // after tail predication conversion.
421     bool ValidateLiveOuts();
422 
423     // Is it safe to define LR with DLS/WLS?
424     // LR can be defined if it is the operand to start, because it's the same
425     // value, or if it's going to be equivalent to the operand to Start.
426     MachineInstr *isSafeToDefineLR();
427 
428     // Check the branch targets are within range and we satisfy our
429     // restrictions.
430     void Validate(ARMBasicBlockUtils *BBUtils);
431 
FoundAllComponents__anonf568b4ed0111::LowOverheadLoop432     bool FoundAllComponents() const {
433       return Start && Dec && End;
434     }
435 
getVPTBlocks__anonf568b4ed0111::LowOverheadLoop436     SmallVectorImpl<VPTState> &getVPTBlocks() {
437       return VPTState::Blocks;
438     }
439 
440     // Return the operand for the loop start instruction. This will be the loop
441     // iteration count, or the number of elements if we're tail predicating.
getLoopStartOperand__anonf568b4ed0111::LowOverheadLoop442     MachineOperand &getLoopStartOperand() {
443       if (IsTailPredicationLegal())
444         return TPNumElements;
445       return Start->getOperand(1);
446     }
447 
getStartOpcode__anonf568b4ed0111::LowOverheadLoop448     unsigned getStartOpcode() const {
449       bool IsDo = isDo(Start);
450       if (!IsTailPredicationLegal())
451         return IsDo ? ARM::t2DLS : ARM::t2WLS;
452 
453       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
454     }
455 
dump__anonf568b4ed0111::LowOverheadLoop456     void dump() const {
457       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
458       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
459       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
460       if (!VCTPs.empty()) {
461         dbgs() << "ARM Loops: Found VCTP(s):\n";
462         for (auto *MI : VCTPs)
463           dbgs() << " - " << *MI;
464       }
465       if (!FoundAllComponents())
466         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
467       else if (!(Start && Dec && End))
468         dbgs() << "ARM Loops: Failed to find all loop components.\n";
469     }
470   };
471 
472   class ARMLowOverheadLoops : public MachineFunctionPass {
473     MachineFunction           *MF = nullptr;
474     MachineLoopInfo           *MLI = nullptr;
475     ReachingDefAnalysis       *RDA = nullptr;
476     const ARMBaseInstrInfo    *TII = nullptr;
477     MachineRegisterInfo       *MRI = nullptr;
478     const TargetRegisterInfo  *TRI = nullptr;
479     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
480 
481   public:
482     static char ID;
483 
ARMLowOverheadLoops()484     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
485 
getAnalysisUsage(AnalysisUsage & AU) const486     void getAnalysisUsage(AnalysisUsage &AU) const override {
487       AU.setPreservesCFG();
488       AU.addRequired<MachineLoopInfo>();
489       AU.addRequired<ReachingDefAnalysis>();
490       MachineFunctionPass::getAnalysisUsage(AU);
491     }
492 
493     bool runOnMachineFunction(MachineFunction &MF) override;
494 
getRequiredProperties() const495     MachineFunctionProperties getRequiredProperties() const override {
496       return MachineFunctionProperties().set(
497           MachineFunctionProperties::Property::NoVRegs).set(
498           MachineFunctionProperties::Property::TracksLiveness);
499     }
500 
getPassName() const501     StringRef getPassName() const override {
502       return ARM_LOW_OVERHEAD_LOOPS_NAME;
503     }
504 
505   private:
506     bool ProcessLoop(MachineLoop *ML);
507 
508     bool RevertNonLoops();
509 
510     void RevertWhile(MachineInstr *MI) const;
511     void RevertDo(MachineInstr *MI) const;
512 
513     bool RevertLoopDec(MachineInstr *MI) const;
514 
515     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
516 
517     void RevertLoopEndDec(MachineInstr *MI) const;
518 
519     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
520 
521     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
522 
523     void Expand(LowOverheadLoop &LoLoop);
524 
525     void IterationCountDCE(LowOverheadLoop &LoLoop);
526   };
527 }
528 
529 char ARMLowOverheadLoops::ID = 0;
530 
531 SmallVector<VPTState, 4> VPTState::Blocks;
532 SetVector<MachineInstr *> VPTState::CurrentPredicates;
533 std::map<MachineInstr *,
534          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
535 
INITIALIZE_PASS(ARMLowOverheadLoops,DEBUG_TYPE,ARM_LOW_OVERHEAD_LOOPS_NAME,false,false)536 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
537                 false, false)
538 
539 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
540                       InstSet &ToRemove, InstSet &Ignore) {
541 
542   // Check that we can remove all of Killed without having to modify any IT
543   // blocks.
544   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
545     // Collect the dead code and the MBBs in which they reside.
546     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
547     for (auto *Dead : Killed)
548       BasicBlocks.insert(Dead->getParent());
549 
550     // Collect IT blocks in all affected basic blocks.
551     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
552     for (auto *MBB : BasicBlocks) {
553       for (auto &IT : *MBB) {
554         if (IT.getOpcode() != ARM::t2IT)
555           continue;
556         RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
557                                  ITBlocks[&IT]);
558       }
559     }
560 
561     // If we're removing all of the instructions within an IT block, then
562     // also remove the IT instruction.
563     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
564     SmallPtrSet<MachineInstr *, 2> RemoveITs;
565     for (auto *Dead : Killed) {
566       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
567         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
568         RemoveITs.insert(IT);
569         auto &CurrentBlock = ITBlocks[IT];
570         CurrentBlock.erase(Dead);
571         if (CurrentBlock.empty())
572           ModifiedITs.erase(IT);
573         else
574           ModifiedITs.insert(IT);
575       }
576     }
577     if (!ModifiedITs.empty())
578       return false;
579     Killed.insert(RemoveITs.begin(), RemoveITs.end());
580     return true;
581   };
582 
583   SmallPtrSet<MachineInstr *, 2> Uses;
584   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
585     return false;
586 
587   if (WontCorruptITs(Uses, RDA)) {
588     ToRemove.insert(Uses.begin(), Uses.end());
589     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
590                << " - can also remove:\n";
591                for (auto *Use : Uses)
592                  dbgs() << "   - " << *Use);
593 
594     SmallPtrSet<MachineInstr*, 4> Killed;
595     RDA.collectKilledOperands(MI, Killed);
596     if (WontCorruptITs(Killed, RDA)) {
597       ToRemove.insert(Killed.begin(), Killed.end());
598       LLVM_DEBUG(for (auto *Dead : Killed)
599                    dbgs() << "   - " << *Dead);
600     }
601     return true;
602   }
603   return false;
604 }
605 
ValidateTailPredicate()606 bool LowOverheadLoop::ValidateTailPredicate() {
607   if (!IsTailPredicationLegal()) {
608     LLVM_DEBUG(if (VCTPs.empty())
609                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
610                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
611     return false;
612   }
613 
614   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
615   assert(ML.getBlocks().size() == 1 &&
616          "Shouldn't be processing a loop with more than one block");
617 
618   if (DisableTailPredication) {
619     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
620     return false;
621   }
622 
623   if (!VPTState::isValid(RDA)) {
624     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
625     return false;
626   }
627 
628   if (!ValidateLiveOuts()) {
629     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
630     return false;
631   }
632 
633   // For tail predication, we need to provide the number of elements, instead
634   // of the iteration count, to the loop start instruction. The number of
635   // elements is provided to the vctp instruction, so we need to check that
636   // we can use this register at InsertPt.
637   MachineInstr *VCTP = VCTPs.back();
638   if (Start->getOpcode() == ARM::t2DoLoopStartTP) {
639     TPNumElements = Start->getOperand(2);
640     StartInsertPt = Start;
641     StartInsertBB = Start->getParent();
642   } else {
643     TPNumElements = VCTP->getOperand(1);
644     MCRegister NumElements = TPNumElements.getReg().asMCReg();
645 
646     // If the register is defined within loop, then we can't perform TP.
647     // TODO: Check whether this is just a mov of a register that would be
648     // available.
649     if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
650       LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
651       return false;
652     }
653 
654     // The element count register maybe defined after InsertPt, in which case we
655     // need to try to move either InsertPt or the def so that the [w|d]lstp can
656     // use the value.
657 
658     if (StartInsertPt != StartInsertBB->end() &&
659         !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
660       if (auto *ElemDef =
661               RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
662         if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
663           ElemDef->removeFromParent();
664           StartInsertBB->insert(StartInsertPt, ElemDef);
665           LLVM_DEBUG(dbgs()
666                      << "ARM Loops: Moved element count def: " << *ElemDef);
667         } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
668           StartInsertPt->removeFromParent();
669           StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
670                                      &*StartInsertPt);
671           LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
672         } else {
673           // If we fail to move an instruction and the element count is provided
674           // by a mov, use the mov operand if it will have the same value at the
675           // insertion point
676           MachineOperand Operand = ElemDef->getOperand(1);
677           if (isMovRegOpcode(ElemDef->getOpcode()) &&
678               RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
679                   RDA.getUniqueReachingMIDef(&*StartInsertPt,
680                                              Operand.getReg().asMCReg())) {
681             TPNumElements = Operand;
682             NumElements = TPNumElements.getReg();
683           } else {
684             LLVM_DEBUG(dbgs()
685                        << "ARM Loops: Unable to move element count to loop "
686                        << "start instruction.\n");
687             return false;
688           }
689         }
690       }
691     }
692 
693     // Especially in the case of while loops, InsertBB may not be the
694     // preheader, so we need to check that the register isn't redefined
695     // before entering the loop.
696     auto CannotProvideElements = [this](MachineBasicBlock *MBB,
697                                         MCRegister NumElements) {
698       if (MBB->empty())
699         return false;
700       // NumElements is redefined in this block.
701       if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
702         return true;
703 
704       // Don't continue searching up through multiple predecessors.
705       if (MBB->pred_size() > 1)
706         return true;
707 
708       return false;
709     };
710 
711     // Search backwards for a def, until we get to InsertBB.
712     MachineBasicBlock *MBB = Preheader;
713     while (MBB && MBB != StartInsertBB) {
714       if (CannotProvideElements(MBB, NumElements)) {
715         LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
716         return false;
717       }
718       MBB = *MBB->pred_begin();
719     }
720   }
721 
722   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
723   // world the [w|d]lstp instruction would be last instruction in the preheader
724   // and so it would only affect instructions within the loop body. But due to
725   // scheduling, and/or the logic in this pass (above), the insertion point can
726   // be moved earlier. So if the Loop Start isn't the last instruction in the
727   // preheader, and if the initial element count is smaller than the vector
728   // width, the Loop Start instruction will immediately generate one or more
729   // false lane mask which can, incorrectly, affect the proceeding MVE
730   // instructions in the preheader.
731   if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
732     LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
733     return false;
734   }
735 
736   // Check that the value change of the element count is what we expect and
737   // that the predication will be equivalent. For this we need:
738   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
739   // and we can also allow register copies within the chain too.
740   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
741     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
742   };
743 
744   MachineBasicBlock *MBB = VCTP->getParent();
745   // Remove modifications to the element count since they have no purpose in a
746   // tail predicated loop. Explicitly refer to the vctp operand no matter which
747   // register NumElements has been assigned to, since that is what the
748   // modifications will be using
749   if (auto *Def = RDA.getUniqueReachingMIDef(
750           &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
751     SmallPtrSet<MachineInstr*, 2> ElementChain;
752     SmallPtrSet<MachineInstr*, 2> Ignore;
753     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
754 
755     Ignore.insert(VCTPs.begin(), VCTPs.end());
756 
757     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
758       bool FoundSub = false;
759 
760       for (auto *MI : ElementChain) {
761         if (isMovRegOpcode(MI->getOpcode()))
762           continue;
763 
764         if (isSubImmOpcode(MI->getOpcode())) {
765           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
766             LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
767                        " count: " << *MI);
768             return false;
769           }
770           FoundSub = true;
771         } else {
772           LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
773                      " count: " << *MI);
774           return false;
775         }
776       }
777       ToRemove.insert(ElementChain.begin(), ElementChain.end());
778     }
779   }
780 
781   // If we converted the LoopStart to a t2DoLoopStartTP, we can also remove any
782   // extra instructions in the preheader, which often includes a now unused MOV.
783   if (Start->getOpcode() == ARM::t2DoLoopStartTP && Preheader &&
784       !Preheader->empty() &&
785       !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) {
786     if (auto *Def = RDA.getUniqueReachingMIDef(
787             &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) {
788       SmallPtrSet<MachineInstr*, 2> Ignore;
789       Ignore.insert(VCTPs.begin(), VCTPs.end());
790       TryRemove(Def, RDA, ToRemove, Ignore);
791     }
792   }
793 
794   return true;
795 }
796 
isRegInClass(const MachineOperand & MO,const TargetRegisterClass * Class)797 static bool isRegInClass(const MachineOperand &MO,
798                          const TargetRegisterClass *Class) {
799   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
800 }
801 
802 // MVE 'narrowing' operate on half a lane, reading from half and writing
803 // to half, which are referred to has the top and bottom half. The other
804 // half retains its previous value.
retainsPreviousHalfElement(const MachineInstr & MI)805 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
806   const MCInstrDesc &MCID = MI.getDesc();
807   uint64_t Flags = MCID.TSFlags;
808   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
809 }
810 
811 // Some MVE instructions read from the top/bottom halves of their operand(s)
812 // and generate a vector result with result elements that are double the
813 // width of the input.
producesDoubleWidthResult(const MachineInstr & MI)814 static bool producesDoubleWidthResult(const MachineInstr &MI) {
815   const MCInstrDesc &MCID = MI.getDesc();
816   uint64_t Flags = MCID.TSFlags;
817   return (Flags & ARMII::DoubleWidthResult) != 0;
818 }
819 
isHorizontalReduction(const MachineInstr & MI)820 static bool isHorizontalReduction(const MachineInstr &MI) {
821   const MCInstrDesc &MCID = MI.getDesc();
822   uint64_t Flags = MCID.TSFlags;
823   return (Flags & ARMII::HorizontalReduction) != 0;
824 }
825 
826 // Can this instruction generate a non-zero result when given only zeroed
827 // operands? This allows us to know that, given operands with false bytes
828 // zeroed by masked loads, that the result will also contain zeros in those
829 // bytes.
canGenerateNonZeros(const MachineInstr & MI)830 static bool canGenerateNonZeros(const MachineInstr &MI) {
831 
832   // Check for instructions which can write into a larger element size,
833   // possibly writing into a previous zero'd lane.
834   if (producesDoubleWidthResult(MI))
835     return true;
836 
837   switch (MI.getOpcode()) {
838   default:
839     break;
840   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
841   // fp16 -> fp32 vector conversions.
842   // Instructions that perform a NOT will generate 1s from 0s.
843   case ARM::MVE_VMVN:
844   case ARM::MVE_VORN:
845   // Count leading zeros will do just that!
846   case ARM::MVE_VCLZs8:
847   case ARM::MVE_VCLZs16:
848   case ARM::MVE_VCLZs32:
849     return true;
850   }
851   return false;
852 }
853 
854 // Look at its register uses to see if it only can only receive zeros
855 // into its false lanes which would then produce zeros. Also check that
856 // the output register is also defined by an FalseLanesZero instruction
857 // so that if tail-predication happens, the lanes that aren't updated will
858 // still be zeros.
producesFalseLanesZero(MachineInstr & MI,const TargetRegisterClass * QPRs,const ReachingDefAnalysis & RDA,InstSet & FalseLanesZero)859 static bool producesFalseLanesZero(MachineInstr &MI,
860                                    const TargetRegisterClass *QPRs,
861                                    const ReachingDefAnalysis &RDA,
862                                    InstSet &FalseLanesZero) {
863   if (canGenerateNonZeros(MI))
864     return false;
865 
866   bool isPredicated = isVectorPredicated(&MI);
867   // Predicated loads will write zeros to the falsely predicated bytes of the
868   // destination register.
869   if (MI.mayLoad())
870     return isPredicated;
871 
872   auto IsZeroInit = [](MachineInstr *Def) {
873     return !isVectorPredicated(Def) &&
874            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
875            Def->getOperand(1).getImm() == 0;
876   };
877 
878   bool AllowScalars = isHorizontalReduction(MI);
879   for (auto &MO : MI.operands()) {
880     if (!MO.isReg() || !MO.getReg())
881       continue;
882     if (!isRegInClass(MO, QPRs) && AllowScalars)
883       continue;
884 
885     // Check that this instruction will produce zeros in its false lanes:
886     // - If it only consumes false lanes zero or constant 0 (vmov #0)
887     // - If it's predicated, it only matters that it's def register already has
888     //   false lane zeros, so we can ignore the uses.
889     SmallPtrSet<MachineInstr *, 2> Defs;
890     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
891     for (auto *Def : Defs) {
892       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
893         continue;
894       if (MO.isUse() && isPredicated)
895         continue;
896       return false;
897     }
898   }
899   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
900   return true;
901 }
902 
ValidateLiveOuts()903 bool LowOverheadLoop::ValidateLiveOuts() {
904   // We want to find out if the tail-predicated version of this loop will
905   // produce the same values as the loop in its original form. For this to
906   // be true, the newly inserted implicit predication must not change the
907   // the (observable) results.
908   // We're doing this because many instructions in the loop will not be
909   // predicated and so the conversion from VPT predication to tail-predication
910   // can result in different values being produced; due to the tail-predication
911   // preventing many instructions from updating their falsely predicated
912   // lanes. This analysis assumes that all the instructions perform lane-wise
913   // operations and don't perform any exchanges.
914   // A masked load, whether through VPT or tail predication, will write zeros
915   // to any of the falsely predicated bytes. So, from the loads, we know that
916   // the false lanes are zeroed and here we're trying to track that those false
917   // lanes remain zero, or where they change, the differences are masked away
918   // by their user(s).
919   // All MVE stores have to be predicated, so we know that any predicate load
920   // operands, or stored results are equivalent already. Other explicitly
921   // predicated instructions will perform the same operation in the original
922   // loop and the tail-predicated form too. Because of this, we can insert
923   // loads, stores and other predicated instructions into our Predicated
924   // set and build from there.
925   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
926   SetVector<MachineInstr *> FalseLanesUnknown;
927   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
928   SmallPtrSet<MachineInstr *, 4> Predicated;
929   MachineBasicBlock *Header = ML.getHeader();
930 
931   for (auto &MI : *Header) {
932     if (!shouldInspect(MI))
933       continue;
934 
935     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
936       continue;
937 
938     bool isPredicated = isVectorPredicated(&MI);
939     bool retainsOrReduces =
940       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
941 
942     if (isPredicated)
943       Predicated.insert(&MI);
944     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
945       FalseLanesZero.insert(&MI);
946     else if (MI.getNumDefs() == 0)
947       continue;
948     else if (!isPredicated && retainsOrReduces)
949       return false;
950     else if (!isPredicated)
951       FalseLanesUnknown.insert(&MI);
952   }
953 
954   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
955                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
956     SmallPtrSet<MachineInstr *, 2> Uses;
957     RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
958     for (auto *Use : Uses) {
959       if (Use != MI && !Predicated.count(Use))
960         return false;
961     }
962     return true;
963   };
964 
965   // Visit the unknowns in reverse so that we can start at the values being
966   // stored and then we can work towards the leaves, hopefully adding more
967   // instructions to Predicated. Successfully terminating the loop means that
968   // all the unknown values have to found to be masked by predicated user(s).
969   // For any unpredicated values, we store them in NonPredicated so that we
970   // can later check whether these form a reduction.
971   SmallPtrSet<MachineInstr*, 2> NonPredicated;
972   for (auto *MI : reverse(FalseLanesUnknown)) {
973     for (auto &MO : MI->operands()) {
974       if (!isRegInClass(MO, QPRs) || !MO.isDef())
975         continue;
976       if (!HasPredicatedUsers(MI, MO, Predicated)) {
977         LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
978                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
979         NonPredicated.insert(MI);
980         break;
981       }
982     }
983     // Any unknown false lanes have been masked away by the user(s).
984     if (!NonPredicated.contains(MI))
985       Predicated.insert(MI);
986   }
987 
988   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
989   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
990   ML.getExitBlocks(ExitBlocks);
991   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
992   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
993   MachineBasicBlock *ExitBB = ExitBlocks.front();
994   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
995     // TODO: Instead of blocking predication, we could move the vctp to the exit
996     // block and calculate it's operand there in or the preheader.
997     if (RegMask.PhysReg == ARM::VPR)
998       return false;
999     // Check Q-regs that are live in the exit blocks. We don't collect scalars
1000     // because they won't be affected by lane predication.
1001     if (QPRs->contains(RegMask.PhysReg))
1002       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
1003         LiveOutMIs.insert(MI);
1004   }
1005 
1006   // We've already validated that any VPT predication within the loop will be
1007   // equivalent when we perform the predication transformation; so we know that
1008   // any VPT predicated instruction is predicated upon VCTP. Any live-out
1009   // instruction needs to be predicated, so check this here. The instructions
1010   // in NonPredicated have been found to be a reduction that we can ensure its
1011   // legality.
1012   for (auto *MI : LiveOutMIs) {
1013     if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1014       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to handle live out: " << *MI);
1015       return false;
1016     }
1017   }
1018 
1019   return true;
1020 }
1021 
Validate(ARMBasicBlockUtils * BBUtils)1022 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1023   if (Revert)
1024     return;
1025 
1026   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1027   // can only jump back.
1028   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1029                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1030     MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
1031                                    ? End->getOperand(1).getMBB()
1032                                    : End->getOperand(2).getMBB();
1033     // TODO Maybe there's cases where the target doesn't have to be the header,
1034     // but for now be safe and revert.
1035     if (TgtBB != ML.getHeader()) {
1036       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1037       return false;
1038     }
1039 
1040     // The WLS and LE instructions have 12-bits for the label offset. WLS
1041     // requires a positive offset, while LE uses negative.
1042     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1043         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1044       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1045       return false;
1046     }
1047 
1048     if (Start->getOpcode() == ARM::t2WhileLoopStartLR &&
1049         (BBUtils->getOffsetOf(Start) >
1050              BBUtils->getOffsetOf(Start->getOperand(2).getMBB()) ||
1051          !BBUtils->isBBInRange(Start, Start->getOperand(2).getMBB(), 4094))) {
1052       LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1053       return false;
1054     }
1055     return true;
1056   };
1057 
1058   StartInsertPt = MachineBasicBlock::iterator(Start);
1059   StartInsertBB = Start->getParent();
1060   LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
1061                     << *StartInsertPt);
1062 
1063   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1064   CannotTailPredicate = !ValidateTailPredicate();
1065 }
1066 
AddVCTP(MachineInstr * MI)1067 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1068   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1069   if (VCTPs.empty()) {
1070     VCTPs.push_back(MI);
1071     return true;
1072   }
1073 
1074   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1075   // If it does, store it in the VCTPs set, else refuse it.
1076   MachineInstr *Prev = VCTPs.back();
1077   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1078       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1079     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1080                          "definition from the main VCTP");
1081     return false;
1082   }
1083   VCTPs.push_back(MI);
1084   return true;
1085 }
1086 
ValidateMVEInst(MachineInstr * MI)1087 bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
1088   if (CannotTailPredicate)
1089     return false;
1090 
1091   if (!shouldInspect(*MI))
1092     return true;
1093 
1094   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1095       MI->getOpcode() == ARM::MVE_VPNOT) {
1096     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1097     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1098     //    instead a VPT block, which means we can assert while building up
1099     //    the VPT block because we don't find another VPT or VPST to being a new
1100     //    one.
1101     // 2) VPSEL still requires a VPR operand even after tail predicating,
1102     //    which means we can't remove it unless there is another
1103     //    instruction, such as vcmp, that can provide the VPR def.
1104     return false;
1105   }
1106 
1107   // Record all VCTPs and check that they're equivalent to one another.
1108   if (isVCTP(MI) && !AddVCTP(MI))
1109     return false;
1110 
1111   // Inspect uses first so that any instructions that alter the VPR don't
1112   // alter the predicate upon themselves.
1113   const MCInstrDesc &MCID = MI->getDesc();
1114   bool IsUse = false;
1115   unsigned LastOpIdx = MI->getNumOperands() - 1;
1116   for (auto &Op : enumerate(reverse(MCID.operands()))) {
1117     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1118     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1119       continue;
1120 
1121     if (ARM::isVpred(Op.value().OperandType)) {
1122       VPTState::addInst(MI);
1123       IsUse = true;
1124     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1125       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1126       return false;
1127     }
1128   }
1129 
1130   // If we find an instruction that has been marked as not valid for tail
1131   // predication, only allow the instruction if it's contained within a valid
1132   // VPT block.
1133   bool RequiresExplicitPredication =
1134     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1135   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1136     LLVM_DEBUG(if (!IsUse)
1137                dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
1138     return IsUse;
1139   }
1140 
1141   // If the instruction is already explicitly predicated, then the conversion
1142   // will be fine, but ensure that all store operations are predicated.
1143   if (MI->mayStore())
1144     return IsUse;
1145 
1146   // If this instruction defines the VPR, update the predicate for the
1147   // proceeding instructions.
1148   if (isVectorPredicate(MI)) {
1149     // Clear the existing predicate when we're not in VPT Active state,
1150     // otherwise we add to it.
1151     if (!isVectorPredicated(MI))
1152       VPTState::resetPredicate(MI);
1153     else
1154       VPTState::addPredicate(MI);
1155   }
1156 
1157   // Finally once the predicate has been modified, we can start a new VPT
1158   // block if necessary.
1159   if (isVPTOpcode(MI->getOpcode()))
1160     VPTState::CreateVPTBlock(MI);
1161 
1162   return true;
1163 }
1164 
runOnMachineFunction(MachineFunction & mf)1165 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1166   const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
1167   if (!ST.hasLOB())
1168     return false;
1169 
1170   MF = &mf;
1171   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1172 
1173   MLI = &getAnalysis<MachineLoopInfo>();
1174   RDA = &getAnalysis<ReachingDefAnalysis>();
1175   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1176   MRI = &MF->getRegInfo();
1177   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1178   TRI = ST.getRegisterInfo();
1179   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1180   BBUtils->computeAllBlockSizes();
1181   BBUtils->adjustBBOffsetsAfter(&MF->front());
1182 
1183   bool Changed = false;
1184   for (auto ML : *MLI) {
1185     if (ML->isOutermost())
1186       Changed |= ProcessLoop(ML);
1187   }
1188   Changed |= RevertNonLoops();
1189   return Changed;
1190 }
1191 
ProcessLoop(MachineLoop * ML)1192 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1193 
1194   bool Changed = false;
1195 
1196   // Process inner loops first.
1197   for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
1198     Changed |= ProcessLoop(*I);
1199 
1200   LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
1201              if (auto *Preheader = ML->getLoopPreheader())
1202                dbgs() << " - " << Preheader->getName() << "\n";
1203              else if (auto *Preheader = MLI->findLoopPreheader(ML))
1204                dbgs() << " - " << Preheader->getName() << "\n";
1205              else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
1206                dbgs() << " - " << Preheader->getName() << "\n";
1207              for (auto *MBB : ML->getBlocks())
1208                dbgs() << " - " << MBB->getName() << "\n";
1209             );
1210 
1211   // Search the given block for a loop start instruction. If one isn't found,
1212   // and there's only one predecessor block, search that one too.
1213   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1214     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1215     for (auto &MI : *MBB) {
1216       if (isLoopStart(MI))
1217         return &MI;
1218     }
1219     if (MBB->pred_size() == 1)
1220       return SearchForStart(*MBB->pred_begin());
1221     return nullptr;
1222   };
1223 
1224   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1225   // Search the preheader for the start intrinsic.
1226   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1227   // with potentially multiple set.loop.iterations, so we need to enable this.
1228   if (LoLoop.Preheader)
1229     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1230   else
1231     return false;
1232 
1233   // Find the low-overhead loop components and decide whether or not to fall
1234   // back to a normal loop. Also look for a vctp instructions and decide
1235   // whether we can convert that predicate using tail predication.
1236   for (auto *MBB : reverse(ML->getBlocks())) {
1237     for (auto &MI : *MBB) {
1238       if (MI.isDebugValue())
1239         continue;
1240       else if (MI.getOpcode() == ARM::t2LoopDec)
1241         LoLoop.Dec = &MI;
1242       else if (MI.getOpcode() == ARM::t2LoopEnd)
1243         LoLoop.End = &MI;
1244       else if (MI.getOpcode() == ARM::t2LoopEndDec)
1245         LoLoop.End = LoLoop.Dec = &MI;
1246       else if (isLoopStart(MI))
1247         LoLoop.Start = &MI;
1248       else if (MI.getDesc().isCall()) {
1249         // TODO: Though the call will require LE to execute again, does this
1250         // mean we should revert? Always executing LE hopefully should be
1251         // faster than performing a sub,cmp,br or even subs,br.
1252         LoLoop.Revert = true;
1253         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1254       } else {
1255         // Record VPR defs and build up their corresponding vpt blocks.
1256         // Check we know how to tail predicate any mve instructions.
1257         LoLoop.AnalyseMVEInst(&MI);
1258       }
1259     }
1260   }
1261 
1262   LLVM_DEBUG(LoLoop.dump());
1263   if (!LoLoop.FoundAllComponents()) {
1264     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1265     return false;
1266   }
1267 
1268   assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart &&
1269          "Expected t2WhileLoopStart to be removed before regalloc!");
1270 
1271   // Check that the only instruction using LoopDec is LoopEnd. This can only
1272   // happen when the Dec and End are separate, not a single t2LoopEndDec.
1273   // TODO: Check for copy chains that really have no effect.
1274   if (LoLoop.Dec != LoLoop.End) {
1275     SmallPtrSet<MachineInstr *, 2> Uses;
1276     RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1277     if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1278       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1279       LoLoop.Revert = true;
1280     }
1281   }
1282   LoLoop.Validate(BBUtils.get());
1283   Expand(LoLoop);
1284   return true;
1285 }
1286 
1287 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1288 // beq that branches to the exit branch.
1289 // TODO: We could also try to generate a cbz if the value in LR is also in
1290 // another low register.
RevertWhile(MachineInstr * MI) const1291 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1292   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1293   MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1294   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1295     ARM::tBcc : ARM::t2Bcc;
1296 
1297   RevertWhileLoopStartLR(MI, TII, BrOpc);
1298 }
1299 
RevertDo(MachineInstr * MI) const1300 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1301   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1302   RevertDoLoopStart(MI, TII);
1303 }
1304 
RevertLoopDec(MachineInstr * MI) const1305 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1306   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1307   MachineBasicBlock *MBB = MI->getParent();
1308   SmallPtrSet<MachineInstr*, 1> Ignore;
1309   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1310     if (I->getOpcode() == ARM::t2LoopEnd) {
1311       Ignore.insert(&*I);
1312       break;
1313     }
1314   }
1315 
1316   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1317   bool SetFlags =
1318       RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
1319 
1320   llvm::RevertLoopDec(MI, TII, SetFlags);
1321   return SetFlags;
1322 }
1323 
1324 // Generate a subs, or sub and cmp, and a branch instead of an LE.
RevertLoopEnd(MachineInstr * MI,bool SkipCmp) const1325 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1326   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1327 
1328   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1329   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1330     ARM::tBcc : ARM::t2Bcc;
1331 
1332   llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1333 }
1334 
1335 // Generate a subs, or sub and cmp, and a branch instead of an LE.
RevertLoopEndDec(MachineInstr * MI) const1336 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
1337   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
1338   assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
1339   MachineBasicBlock *MBB = MI->getParent();
1340 
1341   MachineInstrBuilder MIB =
1342       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
1343   MIB.addDef(ARM::LR);
1344   MIB.add(MI->getOperand(1));
1345   MIB.addImm(1);
1346   MIB.addImm(ARMCC::AL);
1347   MIB.addReg(ARM::NoRegister);
1348   MIB.addReg(ARM::CPSR);
1349   MIB->getOperand(5).setIsDef(true);
1350 
1351   MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1352   unsigned BrOpc =
1353       BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
1354 
1355   // Create bne
1356   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1357   MIB.add(MI->getOperand(2)); // branch target
1358   MIB.addImm(ARMCC::NE);      // condition code
1359   MIB.addReg(ARM::CPSR);
1360 
1361   MI->eraseFromParent();
1362 }
1363 
1364 // Perform dead code elimation on the loop iteration count setup expression.
1365 // If we are tail-predicating, the number of elements to be processed is the
1366 // operand of the VCTP instruction in the vector body, see getCount(), which is
1367 // register $r3 in this example:
1368 //
1369 //   $lr = big-itercount-expression
1370 //   ..
1371 //   $lr = t2DoLoopStart renamable $lr
1372 //   vector.body:
1373 //     ..
1374 //     $vpr = MVE_VCTP32 renamable $r3
1375 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1376 //     t2LoopEnd renamable $lr, %vector.body
1377 //     tB %end
1378 //
1379 // What we would like achieve here is to replace the do-loop start pseudo
1380 // instruction t2DoLoopStart with:
1381 //
1382 //    $lr = MVE_DLSTP_32 killed renamable $r3
1383 //
1384 // Thus, $r3 which defines the number of elements, is written to $lr,
1385 // and then we want to delete the whole chain that used to define $lr,
1386 // see the comment below how this chain could look like.
1387 //
IterationCountDCE(LowOverheadLoop & LoLoop)1388 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1389   if (!LoLoop.IsTailPredicationLegal())
1390     return;
1391 
1392   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1393 
1394   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1);
1395   if (!Def) {
1396     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1397     return;
1398   }
1399 
1400   // Collect and remove the users of iteration count.
1401   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1402                                             LoLoop.End };
1403   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1404     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1405 }
1406 
ExpandLoopStart(LowOverheadLoop & LoLoop)1407 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1408   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1409   // When using tail-predication, try to delete the dead code that was used to
1410   // calculate the number of loop iterations.
1411   IterationCountDCE(LoLoop);
1412 
1413   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1414   MachineInstr *Start = LoLoop.Start;
1415   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1416   unsigned Opc = LoLoop.getStartOpcode();
1417   MachineOperand &Count = LoLoop.getLoopStartOperand();
1418 
1419   // A DLS lr, lr we needn't emit
1420   MachineInstr* NewStart;
1421   if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) {
1422     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
1423     NewStart = nullptr;
1424   } else {
1425     MachineInstrBuilder MIB =
1426       BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1427 
1428     MIB.addDef(ARM::LR);
1429     MIB.add(Count);
1430     if (!isDo(Start))
1431       MIB.add(Start->getOperand(2));
1432 
1433     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1434     NewStart = &*MIB;
1435   }
1436 
1437   LoLoop.ToRemove.insert(Start);
1438   return NewStart;
1439 }
1440 
ConvertVPTBlocks(LowOverheadLoop & LoLoop)1441 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1442   auto RemovePredicate = [](MachineInstr *MI) {
1443     if (MI->isDebugInstr())
1444       return;
1445     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1446     int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
1447     assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction");
1448     assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1449            "Expected Then predicate!");
1450     MI->getOperand(PIdx).setImm(ARMVCC::None);
1451     MI->getOperand(PIdx + 1).setReg(0);
1452   };
1453 
1454   for (auto &Block : LoLoop.getVPTBlocks()) {
1455     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1456 
1457     auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1458       assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1459       // Replace the VCMP with a VPT
1460       MachineInstrBuilder MIB =
1461           BuildMI(*At->getParent(), At, At->getDebugLoc(),
1462                   TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1463       MIB.addImm(ARMVCC::Then);
1464       // Register one
1465       MIB.add(TheVCMP->getOperand(1));
1466       // Register two
1467       MIB.add(TheVCMP->getOperand(2));
1468       // The comparison code, e.g. ge, eq, lt
1469       MIB.add(TheVCMP->getOperand(3));
1470       LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1471       LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1472       LoLoop.ToRemove.insert(TheVCMP);
1473       TheVCMP = nullptr;
1474     };
1475 
1476     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1477       MachineInstr *VPST = Insts.front();
1478       if (VPTState::hasUniformPredicate(Block)) {
1479         // A vpt block starting with VPST, is only predicated upon vctp and has no
1480         // internal vpr defs:
1481         // - Remove vpst.
1482         // - Unpredicate the remaining instructions.
1483         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1484         for (unsigned i = 1; i < Insts.size(); ++i)
1485           RemovePredicate(Insts[i]);
1486       } else {
1487         // The VPT block has a non-uniform predicate but it uses a vpst and its
1488         // entry is guarded only by a vctp, which means we:
1489         // - Need to remove the original vpst.
1490         // - Then need to unpredicate any following instructions, until
1491         //   we come across the divergent vpr def.
1492         // - Insert a new vpst to predicate the instruction(s) that following
1493         //   the divergent vpr def.
1494         MachineInstr *Divergent = VPTState::getDivergent(Block);
1495         MachineBasicBlock *MBB = Divergent->getParent();
1496         auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1497         while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr())
1498           ++DivergentNext;
1499 
1500         bool DivergentNextIsPredicated =
1501             DivergentNext != MBB->end() &&
1502             getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1503 
1504         for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1505              I != E; ++I)
1506           RemovePredicate(&*I);
1507 
1508         // Check if the instruction defining vpr is a vcmp so it can be combined
1509         // with the VPST This should be the divergent instruction
1510         MachineInstr *VCMP =
1511             VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1512 
1513         if (DivergentNextIsPredicated) {
1514           // Insert a VPST at the divergent only if the next instruction
1515           // would actually use it. A VCMP following a VPST can be
1516           // merged into a VPT so do that instead if the VCMP exists.
1517           if (!VCMP) {
1518             // Create a VPST (with a null mask for now, we'll recompute it
1519             // later)
1520             MachineInstrBuilder MIB =
1521                 BuildMI(*Divergent->getParent(), Divergent,
1522                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1523             MIB.addImm(0);
1524             LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1525             LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1526           } else {
1527             // No RDA checks are necessary here since the VPST would have been
1528             // directly after the VCMP
1529             ReplaceVCMPWithVPT(VCMP, VCMP);
1530           }
1531         }
1532       }
1533       LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1534       LoLoop.ToRemove.insert(VPST);
1535     } else if (Block.containsVCTP()) {
1536       // The vctp will be removed, so either the entire block will be dead or
1537       // the block mask of the vp(s)t will need to be recomputed.
1538       MachineInstr *VPST = Insts.front();
1539       if (Block.size() == 2) {
1540         assert(VPST->getOpcode() == ARM::MVE_VPST &&
1541                "Found a VPST in an otherwise empty vpt block");
1542         LoLoop.ToRemove.insert(VPST);
1543       } else
1544         LoLoop.BlockMasksToRecompute.insert(VPST);
1545     } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1546       // If this block starts with a VPST then attempt to merge it with the
1547       // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1548       // block that no longer exists
1549       MachineInstr *VPST = Insts.front();
1550       auto Next = ++MachineBasicBlock::iterator(VPST);
1551       assert(getVPTInstrPredicate(*Next) != ARMVCC::None &&
1552              "The instruction after a VPST must be predicated");
1553       (void)Next;
1554       MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1555       if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1556           !LoLoop.ToRemove.contains(VprDef)) {
1557         MachineInstr *VCMP = VprDef;
1558         // The VCMP and VPST can only be merged if the VCMP's operands will have
1559         // the same values at the VPST.
1560         // If any of the instructions between the VCMP and VPST are predicated
1561         // then a different code path is expected to have merged the VCMP and
1562         // VPST already.
1563         if (!std::any_of(++MachineBasicBlock::iterator(VCMP),
1564                          MachineBasicBlock::iterator(VPST), hasVPRUse) &&
1565             RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1566             RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1567           ReplaceVCMPWithVPT(VCMP, VPST);
1568           LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1569           LoLoop.ToRemove.insert(VPST);
1570         }
1571       }
1572     }
1573   }
1574 
1575   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1576 }
1577 
Expand(LowOverheadLoop & LoLoop)1578 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1579 
1580   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1581   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1582     MachineInstr *End = LoLoop.End;
1583     MachineBasicBlock *MBB = End->getParent();
1584     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1585       ARM::MVE_LETP : ARM::t2LEUpdate;
1586     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1587                                       TII->get(Opc));
1588     MIB.addDef(ARM::LR);
1589     unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
1590     MIB.add(End->getOperand(Off + 0));
1591     MIB.add(End->getOperand(Off + 1));
1592     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1593     LoLoop.ToRemove.insert(LoLoop.Dec);
1594     LoLoop.ToRemove.insert(End);
1595     return &*MIB;
1596   };
1597 
1598   // TODO: We should be able to automatically remove these branches before we
1599   // get here - probably by teaching analyzeBranch about the pseudo
1600   // instructions.
1601   // If there is an unconditional branch, after I, that just branches to the
1602   // next block, remove it.
1603   auto RemoveDeadBranch = [](MachineInstr *I) {
1604     MachineBasicBlock *BB = I->getParent();
1605     MachineInstr *Terminator = &BB->instr_back();
1606     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1607       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1608       if (BB->isLayoutSuccessor(Succ)) {
1609         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1610         Terminator->eraseFromParent();
1611       }
1612     }
1613   };
1614 
1615   if (LoLoop.Revert) {
1616     if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStartLR)
1617       RevertWhile(LoLoop.Start);
1618     else
1619       RevertDo(LoLoop.Start);
1620     if (LoLoop.Dec == LoLoop.End)
1621       RevertLoopEndDec(LoLoop.End);
1622     else
1623       RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
1624   } else {
1625     LoLoop.Start = ExpandLoopStart(LoLoop);
1626     if (LoLoop.Start)
1627       RemoveDeadBranch(LoLoop.Start);
1628     LoLoop.End = ExpandLoopEnd(LoLoop);
1629     RemoveDeadBranch(LoLoop.End);
1630     if (LoLoop.IsTailPredicationLegal())
1631       ConvertVPTBlocks(LoLoop);
1632     for (auto *I : LoLoop.ToRemove) {
1633       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1634       I->eraseFromParent();
1635     }
1636     for (auto *I : LoLoop.BlockMasksToRecompute) {
1637       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1638       recomputeVPTBlockMask(*I);
1639       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1640     }
1641   }
1642 
1643   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1644   DFS.ProcessLoop();
1645   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1646   for (auto *MBB : PostOrder) {
1647     recomputeLiveIns(*MBB);
1648     // FIXME: For some reason, the live-in print order is non-deterministic for
1649     // our tests and I can't out why... So just sort them.
1650     MBB->sortUniqueLiveIns();
1651   }
1652 
1653   for (auto *MBB : reverse(PostOrder))
1654     recomputeLivenessFlags(*MBB);
1655 
1656   // We've moved, removed and inserted new instructions, so update RDA.
1657   RDA->reset();
1658 }
1659 
RevertNonLoops()1660 bool ARMLowOverheadLoops::RevertNonLoops() {
1661   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1662   bool Changed = false;
1663 
1664   for (auto &MBB : *MF) {
1665     SmallVector<MachineInstr*, 4> Starts;
1666     SmallVector<MachineInstr*, 4> Decs;
1667     SmallVector<MachineInstr*, 4> Ends;
1668     SmallVector<MachineInstr *, 4> EndDecs;
1669 
1670     for (auto &I : MBB) {
1671       if (isLoopStart(I))
1672         Starts.push_back(&I);
1673       else if (I.getOpcode() == ARM::t2LoopDec)
1674         Decs.push_back(&I);
1675       else if (I.getOpcode() == ARM::t2LoopEnd)
1676         Ends.push_back(&I);
1677       else if (I.getOpcode() == ARM::t2LoopEndDec)
1678         EndDecs.push_back(&I);
1679     }
1680 
1681     if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty())
1682       continue;
1683 
1684     Changed = true;
1685 
1686     for (auto *Start : Starts) {
1687       if (Start->getOpcode() == ARM::t2WhileLoopStartLR)
1688         RevertWhile(Start);
1689       else
1690         RevertDo(Start);
1691     }
1692     for (auto *Dec : Decs)
1693       RevertLoopDec(Dec);
1694 
1695     for (auto *End : Ends)
1696       RevertLoopEnd(End);
1697     for (auto *End : EndDecs)
1698       RevertLoopEndDec(End);
1699   }
1700   return Changed;
1701 }
1702 
createARMLowOverheadLoopsPass()1703 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1704   return new ARMLowOverheadLoops();
1705 }
1706