1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This transformation implements the well known scalar replacement of 10 /// aggregates transformation. It tries to identify promotable elements of an 11 /// aggregate alloca, and promote them to registers. It will also try to 12 /// convert uses of an element (or set of elements) of an alloca into a vector 13 /// or bitfield-style integer scalar if appropriate. 14 /// 15 /// It works to do this with minimal slicing of the alloca so that regions 16 /// which are merely transferred in and out of external memory remain unchanged 17 /// and are not decomposed to scalar code. 18 /// 19 /// Because this also performs alloca promotion, it can be thought of as also 20 /// serving the purpose of SSA formation. The algorithm iterates on the 21 /// function until all opportunities for promotion have been realized. 22 /// 23 //===----------------------------------------------------------------------===// 24 25 #include "llvm/Transforms/Scalar/SROA.h" 26 #include "llvm/ADT/APInt.h" 27 #include "llvm/ADT/ArrayRef.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/MapVector.h" 30 #include "llvm/ADT/PointerIntPair.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/SetVector.h" 33 #include "llvm/ADT/SmallBitVector.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/StringRef.h" 38 #include "llvm/ADT/Twine.h" 39 #include "llvm/ADT/iterator.h" 40 #include "llvm/ADT/iterator_range.h" 41 #include "llvm/Analysis/AssumptionCache.h" 42 #include "llvm/Analysis/DomTreeUpdater.h" 43 #include "llvm/Analysis/GlobalsModRef.h" 44 #include "llvm/Analysis/Loads.h" 45 #include "llvm/Analysis/PtrUseVisitor.h" 46 #include "llvm/Analysis/ValueTracking.h" 47 #include "llvm/Config/llvm-config.h" 48 #include "llvm/IR/BasicBlock.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/ConstantFolder.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DIBuilder.h" 53 #include "llvm/IR/DataLayout.h" 54 #include "llvm/IR/DebugInfo.h" 55 #include "llvm/IR/DebugInfoMetadata.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Dominators.h" 58 #include "llvm/IR/Function.h" 59 #include "llvm/IR/GlobalAlias.h" 60 #include "llvm/IR/IRBuilder.h" 61 #include "llvm/IR/InstVisitor.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/LLVMContext.h" 66 #include "llvm/IR/Metadata.h" 67 #include "llvm/IR/Module.h" 68 #include "llvm/IR/Operator.h" 69 #include "llvm/IR/PassManager.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/Use.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/IR/ValueHandle.h" 75 #include "llvm/InitializePasses.h" 76 #include "llvm/Pass.h" 77 #include "llvm/Support/Casting.h" 78 #include "llvm/Support/CommandLine.h" 79 #include "llvm/Support/Compiler.h" 80 #include "llvm/Support/Debug.h" 81 #include "llvm/Support/ErrorHandling.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/Transforms/Scalar.h" 84 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 85 #include "llvm/Transforms/Utils/Local.h" 86 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 87 #include "llvm/Transforms/Utils/SSAUpdater.h" 88 #include <algorithm> 89 #include <cassert> 90 #include <cstddef> 91 #include <cstdint> 92 #include <cstring> 93 #include <iterator> 94 #include <string> 95 #include <tuple> 96 #include <utility> 97 #include <variant> 98 #include <vector> 99 100 using namespace llvm; 101 102 #define DEBUG_TYPE "sroa" 103 104 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); 105 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed"); 106 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca"); 107 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten"); 108 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition"); 109 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); 110 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); 111 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); 112 STATISTIC(NumLoadsPredicated, 113 "Number of loads rewritten into predicated loads to allow promotion"); 114 STATISTIC( 115 NumStoresPredicated, 116 "Number of stores rewritten into predicated loads to allow promotion"); 117 STATISTIC(NumDeleted, "Number of instructions deleted"); 118 STATISTIC(NumVectorized, "Number of vectorized aggregates"); 119 120 /// Disable running mem2reg during SROA in order to test or debug SROA. 121 static cl::opt<bool> SROASkipMem2Reg("sroa-skip-mem2reg", cl::init(false), 122 cl::Hidden); 123 namespace { 124 125 class AllocaSliceRewriter; 126 class AllocaSlices; 127 class Partition; 128 129 class SelectHandSpeculativity { 130 unsigned char Storage = 0; // None are speculatable by default. 131 using TrueVal = Bitfield::Element<bool, 0, 1>; // Low 0'th bit. 132 using FalseVal = Bitfield::Element<bool, 1, 1>; // Low 1'th bit. 133 public: 134 SelectHandSpeculativity() = default; 135 SelectHandSpeculativity &setAsSpeculatable(bool isTrueVal); 136 bool isSpeculatable(bool isTrueVal) const; 137 bool areAllSpeculatable() const; 138 bool areAnySpeculatable() const; 139 bool areNoneSpeculatable() const; 140 // For interop as int half of PointerIntPair. 141 explicit operator intptr_t() const { return static_cast<intptr_t>(Storage); } 142 explicit SelectHandSpeculativity(intptr_t Storage_) : Storage(Storage_) {} 143 }; 144 static_assert(sizeof(SelectHandSpeculativity) == sizeof(unsigned char)); 145 146 using PossiblySpeculatableLoad = 147 PointerIntPair<LoadInst *, 2, SelectHandSpeculativity>; 148 using UnspeculatableStore = StoreInst *; 149 using RewriteableMemOp = 150 std::variant<PossiblySpeculatableLoad, UnspeculatableStore>; 151 using RewriteableMemOps = SmallVector<RewriteableMemOp, 2>; 152 153 /// An optimization pass providing Scalar Replacement of Aggregates. 154 /// 155 /// This pass takes allocations which can be completely analyzed (that is, they 156 /// don't escape) and tries to turn them into scalar SSA values. There are 157 /// a few steps to this process. 158 /// 159 /// 1) It takes allocations of aggregates and analyzes the ways in which they 160 /// are used to try to split them into smaller allocations, ideally of 161 /// a single scalar data type. It will split up memcpy and memset accesses 162 /// as necessary and try to isolate individual scalar accesses. 163 /// 2) It will transform accesses into forms which are suitable for SSA value 164 /// promotion. This can be replacing a memset with a scalar store of an 165 /// integer value, or it can involve speculating operations on a PHI or 166 /// select to be a PHI or select of the results. 167 /// 3) Finally, this will try to detect a pattern of accesses which map cleanly 168 /// onto insert and extract operations on a vector value, and convert them to 169 /// this form. By doing so, it will enable promotion of vector aggregates to 170 /// SSA vector values. 171 class SROA { 172 LLVMContext *const C; 173 DomTreeUpdater *const DTU; 174 AssumptionCache *const AC; 175 const bool PreserveCFG; 176 177 /// Worklist of alloca instructions to simplify. 178 /// 179 /// Each alloca in the function is added to this. Each new alloca formed gets 180 /// added to it as well to recursively simplify unless that alloca can be 181 /// directly promoted. Finally, each time we rewrite a use of an alloca other 182 /// the one being actively rewritten, we add it back onto the list if not 183 /// already present to ensure it is re-visited. 184 SmallSetVector<AllocaInst *, 16> Worklist; 185 186 /// A collection of instructions to delete. 187 /// We try to batch deletions to simplify code and make things a bit more 188 /// efficient. We also make sure there is no dangling pointers. 189 SmallVector<WeakVH, 8> DeadInsts; 190 191 /// Post-promotion worklist. 192 /// 193 /// Sometimes we discover an alloca which has a high probability of becoming 194 /// viable for SROA after a round of promotion takes place. In those cases, 195 /// the alloca is enqueued here for re-processing. 196 /// 197 /// Note that we have to be very careful to clear allocas out of this list in 198 /// the event they are deleted. 199 SmallSetVector<AllocaInst *, 16> PostPromotionWorklist; 200 201 /// A collection of alloca instructions we can directly promote. 202 SetVector<AllocaInst *, SmallVector<AllocaInst *>, 203 SmallPtrSet<AllocaInst *, 16>, 16> 204 PromotableAllocas; 205 206 /// A worklist of PHIs to speculate prior to promoting allocas. 207 /// 208 /// All of these PHIs have been checked for the safety of speculation and by 209 /// being speculated will allow promoting allocas currently in the promotable 210 /// queue. 211 SmallSetVector<PHINode *, 8> SpeculatablePHIs; 212 213 /// A worklist of select instructions to rewrite prior to promoting 214 /// allocas. 215 SmallMapVector<SelectInst *, RewriteableMemOps, 8> SelectsToRewrite; 216 217 /// Select instructions that use an alloca and are subsequently loaded can be 218 /// rewritten to load both input pointers and then select between the result, 219 /// allowing the load of the alloca to be promoted. 220 /// From this: 221 /// %P2 = select i1 %cond, ptr %Alloca, ptr %Other 222 /// %V = load <type>, ptr %P2 223 /// to: 224 /// %V1 = load <type>, ptr %Alloca -> will be mem2reg'd 225 /// %V2 = load <type>, ptr %Other 226 /// %V = select i1 %cond, <type> %V1, <type> %V2 227 /// 228 /// We can do this to a select if its only uses are loads 229 /// and if either the operand to the select can be loaded unconditionally, 230 /// or if we are allowed to perform CFG modifications. 231 /// If found an intervening bitcast with a single use of the load, 232 /// allow the promotion. 233 static std::optional<RewriteableMemOps> 234 isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG); 235 236 public: 237 SROA(LLVMContext *C, DomTreeUpdater *DTU, AssumptionCache *AC, 238 SROAOptions PreserveCFG_) 239 : C(C), DTU(DTU), AC(AC), 240 PreserveCFG(PreserveCFG_ == SROAOptions::PreserveCFG) {} 241 242 /// Main run method used by both the SROAPass and by the legacy pass. 243 std::pair<bool /*Changed*/, bool /*CFGChanged*/> runSROA(Function &F); 244 245 private: 246 friend class AllocaSliceRewriter; 247 248 bool presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS); 249 AllocaInst *rewritePartition(AllocaInst &AI, AllocaSlices &AS, Partition &P); 250 bool splitAlloca(AllocaInst &AI, AllocaSlices &AS); 251 bool propagateStoredValuesToLoads(AllocaInst &AI, AllocaSlices &AS); 252 std::pair<bool /*Changed*/, bool /*CFGChanged*/> runOnAlloca(AllocaInst &AI); 253 void clobberUse(Use &U); 254 bool deleteDeadInstructions(SmallPtrSetImpl<AllocaInst *> &DeletedAllocas); 255 bool promoteAllocas(Function &F); 256 }; 257 258 } // end anonymous namespace 259 260 /// Calculate the fragment of a variable to use when slicing a store 261 /// based on the slice dimensions, existing fragment, and base storage 262 /// fragment. 263 /// Results: 264 /// UseFrag - Use Target as the new fragment. 265 /// UseNoFrag - The new slice already covers the whole variable. 266 /// Skip - The new alloca slice doesn't include this variable. 267 /// FIXME: Can we use calculateFragmentIntersect instead? 268 namespace { 269 enum FragCalcResult { UseFrag, UseNoFrag, Skip }; 270 } 271 static FragCalcResult 272 calculateFragment(DILocalVariable *Variable, 273 uint64_t NewStorageSliceOffsetInBits, 274 uint64_t NewStorageSliceSizeInBits, 275 std::optional<DIExpression::FragmentInfo> StorageFragment, 276 std::optional<DIExpression::FragmentInfo> CurrentFragment, 277 DIExpression::FragmentInfo &Target) { 278 // If the base storage describes part of the variable apply the offset and 279 // the size constraint. 280 if (StorageFragment) { 281 Target.SizeInBits = 282 std::min(NewStorageSliceSizeInBits, StorageFragment->SizeInBits); 283 Target.OffsetInBits = 284 NewStorageSliceOffsetInBits + StorageFragment->OffsetInBits; 285 } else { 286 Target.SizeInBits = NewStorageSliceSizeInBits; 287 Target.OffsetInBits = NewStorageSliceOffsetInBits; 288 } 289 290 // If this slice extracts the entirety of an independent variable from a 291 // larger alloca, do not produce a fragment expression, as the variable is 292 // not fragmented. 293 if (!CurrentFragment) { 294 if (auto Size = Variable->getSizeInBits()) { 295 // Treat the current fragment as covering the whole variable. 296 CurrentFragment = DIExpression::FragmentInfo(*Size, 0); 297 if (Target == CurrentFragment) 298 return UseNoFrag; 299 } 300 } 301 302 // No additional work to do if there isn't a fragment already, or there is 303 // but it already exactly describes the new assignment. 304 if (!CurrentFragment || *CurrentFragment == Target) 305 return UseFrag; 306 307 // Reject the target fragment if it doesn't fit wholly within the current 308 // fragment. TODO: We could instead chop up the target to fit in the case of 309 // a partial overlap. 310 if (Target.startInBits() < CurrentFragment->startInBits() || 311 Target.endInBits() > CurrentFragment->endInBits()) 312 return Skip; 313 314 // Target fits within the current fragment, return it. 315 return UseFrag; 316 } 317 318 static DebugVariable getAggregateVariable(DbgVariableIntrinsic *DVI) { 319 return DebugVariable(DVI->getVariable(), std::nullopt, 320 DVI->getDebugLoc().getInlinedAt()); 321 } 322 static DebugVariable getAggregateVariable(DbgVariableRecord *DVR) { 323 return DebugVariable(DVR->getVariable(), std::nullopt, 324 DVR->getDebugLoc().getInlinedAt()); 325 } 326 327 /// Helpers for handling new and old debug info modes in migrateDebugInfo. 328 /// These overloads unwrap a DbgInstPtr {Instruction* | DbgRecord*} union based 329 /// on the \p Unused parameter type. 330 DbgVariableRecord *UnwrapDbgInstPtr(DbgInstPtr P, DbgVariableRecord *Unused) { 331 (void)Unused; 332 return static_cast<DbgVariableRecord *>(cast<DbgRecord *>(P)); 333 } 334 DbgAssignIntrinsic *UnwrapDbgInstPtr(DbgInstPtr P, DbgAssignIntrinsic *Unused) { 335 (void)Unused; 336 return static_cast<DbgAssignIntrinsic *>(cast<Instruction *>(P)); 337 } 338 339 /// Find linked dbg.assign and generate a new one with the correct 340 /// FragmentInfo. Link Inst to the new dbg.assign. If Value is nullptr the 341 /// value component is copied from the old dbg.assign to the new. 342 /// \param OldAlloca Alloca for the variable before splitting. 343 /// \param IsSplit True if the store (not necessarily alloca) 344 /// is being split. 345 /// \param OldAllocaOffsetInBits Offset of the slice taken from OldAlloca. 346 /// \param SliceSizeInBits New number of bits being written to. 347 /// \param OldInst Instruction that is being split. 348 /// \param Inst New instruction performing this part of the 349 /// split store. 350 /// \param Dest Store destination. 351 /// \param Value Stored value. 352 /// \param DL Datalayout. 353 static void migrateDebugInfo(AllocaInst *OldAlloca, bool IsSplit, 354 uint64_t OldAllocaOffsetInBits, 355 uint64_t SliceSizeInBits, Instruction *OldInst, 356 Instruction *Inst, Value *Dest, Value *Value, 357 const DataLayout &DL) { 358 auto MarkerRange = at::getAssignmentMarkers(OldInst); 359 auto DVRAssignMarkerRange = at::getDVRAssignmentMarkers(OldInst); 360 // Nothing to do if OldInst has no linked dbg.assign intrinsics. 361 if (MarkerRange.empty() && DVRAssignMarkerRange.empty()) 362 return; 363 364 LLVM_DEBUG(dbgs() << " migrateDebugInfo\n"); 365 LLVM_DEBUG(dbgs() << " OldAlloca: " << *OldAlloca << "\n"); 366 LLVM_DEBUG(dbgs() << " IsSplit: " << IsSplit << "\n"); 367 LLVM_DEBUG(dbgs() << " OldAllocaOffsetInBits: " << OldAllocaOffsetInBits 368 << "\n"); 369 LLVM_DEBUG(dbgs() << " SliceSizeInBits: " << SliceSizeInBits << "\n"); 370 LLVM_DEBUG(dbgs() << " OldInst: " << *OldInst << "\n"); 371 LLVM_DEBUG(dbgs() << " Inst: " << *Inst << "\n"); 372 LLVM_DEBUG(dbgs() << " Dest: " << *Dest << "\n"); 373 if (Value) 374 LLVM_DEBUG(dbgs() << " Value: " << *Value << "\n"); 375 376 /// Map of aggregate variables to their fragment associated with OldAlloca. 377 DenseMap<DebugVariable, std::optional<DIExpression::FragmentInfo>> 378 BaseFragments; 379 for (auto *DAI : at::getAssignmentMarkers(OldAlloca)) 380 BaseFragments[getAggregateVariable(DAI)] = 381 DAI->getExpression()->getFragmentInfo(); 382 for (auto *DVR : at::getDVRAssignmentMarkers(OldAlloca)) 383 BaseFragments[getAggregateVariable(DVR)] = 384 DVR->getExpression()->getFragmentInfo(); 385 386 // The new inst needs a DIAssignID unique metadata tag (if OldInst has 387 // one). It shouldn't already have one: assert this assumption. 388 assert(!Inst->getMetadata(LLVMContext::MD_DIAssignID)); 389 DIAssignID *NewID = nullptr; 390 auto &Ctx = Inst->getContext(); 391 DIBuilder DIB(*OldInst->getModule(), /*AllowUnresolved*/ false); 392 assert(OldAlloca->isStaticAlloca()); 393 394 auto MigrateDbgAssign = [&](auto *DbgAssign) { 395 LLVM_DEBUG(dbgs() << " existing dbg.assign is: " << *DbgAssign 396 << "\n"); 397 auto *Expr = DbgAssign->getExpression(); 398 bool SetKillLocation = false; 399 400 if (IsSplit) { 401 std::optional<DIExpression::FragmentInfo> BaseFragment; 402 { 403 auto R = BaseFragments.find(getAggregateVariable(DbgAssign)); 404 if (R == BaseFragments.end()) 405 return; 406 BaseFragment = R->second; 407 } 408 std::optional<DIExpression::FragmentInfo> CurrentFragment = 409 Expr->getFragmentInfo(); 410 DIExpression::FragmentInfo NewFragment; 411 FragCalcResult Result = calculateFragment( 412 DbgAssign->getVariable(), OldAllocaOffsetInBits, SliceSizeInBits, 413 BaseFragment, CurrentFragment, NewFragment); 414 415 if (Result == Skip) 416 return; 417 if (Result == UseFrag && !(NewFragment == CurrentFragment)) { 418 if (CurrentFragment) { 419 // Rewrite NewFragment to be relative to the existing one (this is 420 // what createFragmentExpression wants). CalculateFragment has 421 // already resolved the size for us. FIXME: Should it return the 422 // relative fragment too? 423 NewFragment.OffsetInBits -= CurrentFragment->OffsetInBits; 424 } 425 // Add the new fragment info to the existing expression if possible. 426 if (auto E = DIExpression::createFragmentExpression( 427 Expr, NewFragment.OffsetInBits, NewFragment.SizeInBits)) { 428 Expr = *E; 429 } else { 430 // Otherwise, add the new fragment info to an empty expression and 431 // discard the value component of this dbg.assign as the value cannot 432 // be computed with the new fragment. 433 Expr = *DIExpression::createFragmentExpression( 434 DIExpression::get(Expr->getContext(), {}), 435 NewFragment.OffsetInBits, NewFragment.SizeInBits); 436 SetKillLocation = true; 437 } 438 } 439 } 440 441 // If we haven't created a DIAssignID ID do that now and attach it to Inst. 442 if (!NewID) { 443 NewID = DIAssignID::getDistinct(Ctx); 444 Inst->setMetadata(LLVMContext::MD_DIAssignID, NewID); 445 } 446 447 ::Value *NewValue = Value ? Value : DbgAssign->getValue(); 448 auto *NewAssign = UnwrapDbgInstPtr( 449 DIB.insertDbgAssign(Inst, NewValue, DbgAssign->getVariable(), Expr, 450 Dest, DIExpression::get(Expr->getContext(), {}), 451 DbgAssign->getDebugLoc()), 452 DbgAssign); 453 454 // If we've updated the value but the original dbg.assign has an arglist 455 // then kill it now - we can't use the requested new value. 456 // We can't replace the DIArgList with the new value as it'd leave 457 // the DIExpression in an invalid state (DW_OP_LLVM_arg operands without 458 // an arglist). And we can't keep the DIArgList in case the linked store 459 // is being split - in which case the DIArgList + expression may no longer 460 // be computing the correct value. 461 // This should be a very rare situation as it requires the value being 462 // stored to differ from the dbg.assign (i.e., the value has been 463 // represented differently in the debug intrinsic for some reason). 464 SetKillLocation |= 465 Value && (DbgAssign->hasArgList() || 466 !DbgAssign->getExpression()->isSingleLocationExpression()); 467 if (SetKillLocation) 468 NewAssign->setKillLocation(); 469 470 // We could use more precision here at the cost of some additional (code) 471 // complexity - if the original dbg.assign was adjacent to its store, we 472 // could position this new dbg.assign adjacent to its store rather than the 473 // old dbg.assgn. That would result in interleaved dbg.assigns rather than 474 // what we get now: 475 // split store !1 476 // split store !2 477 // dbg.assign !1 478 // dbg.assign !2 479 // This (current behaviour) results results in debug assignments being 480 // noted as slightly offset (in code) from the store. In practice this 481 // should have little effect on the debugging experience due to the fact 482 // that all the split stores should get the same line number. 483 NewAssign->moveBefore(DbgAssign->getIterator()); 484 485 NewAssign->setDebugLoc(DbgAssign->getDebugLoc()); 486 LLVM_DEBUG(dbgs() << "Created new assign: " << *NewAssign << "\n"); 487 }; 488 489 for_each(MarkerRange, MigrateDbgAssign); 490 for_each(DVRAssignMarkerRange, MigrateDbgAssign); 491 } 492 493 namespace { 494 495 /// A custom IRBuilder inserter which prefixes all names, but only in 496 /// Assert builds. 497 class IRBuilderPrefixedInserter final : public IRBuilderDefaultInserter { 498 std::string Prefix; 499 500 Twine getNameWithPrefix(const Twine &Name) const { 501 return Name.isTriviallyEmpty() ? Name : Prefix + Name; 502 } 503 504 public: 505 void SetNamePrefix(const Twine &P) { Prefix = P.str(); } 506 507 void InsertHelper(Instruction *I, const Twine &Name, 508 BasicBlock::iterator InsertPt) const override { 509 IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), 510 InsertPt); 511 } 512 }; 513 514 /// Provide a type for IRBuilder that drops names in release builds. 515 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>; 516 517 /// A used slice of an alloca. 518 /// 519 /// This structure represents a slice of an alloca used by some instruction. It 520 /// stores both the begin and end offsets of this use, a pointer to the use 521 /// itself, and a flag indicating whether we can classify the use as splittable 522 /// or not when forming partitions of the alloca. 523 class Slice { 524 /// The beginning offset of the range. 525 uint64_t BeginOffset = 0; 526 527 /// The ending offset, not included in the range. 528 uint64_t EndOffset = 0; 529 530 /// Storage for both the use of this slice and whether it can be 531 /// split. 532 PointerIntPair<Use *, 1, bool> UseAndIsSplittable; 533 534 public: 535 Slice() = default; 536 537 Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable) 538 : BeginOffset(BeginOffset), EndOffset(EndOffset), 539 UseAndIsSplittable(U, IsSplittable) {} 540 541 uint64_t beginOffset() const { return BeginOffset; } 542 uint64_t endOffset() const { return EndOffset; } 543 544 bool isSplittable() const { return UseAndIsSplittable.getInt(); } 545 void makeUnsplittable() { UseAndIsSplittable.setInt(false); } 546 547 Use *getUse() const { return UseAndIsSplittable.getPointer(); } 548 549 bool isDead() const { return getUse() == nullptr; } 550 void kill() { UseAndIsSplittable.setPointer(nullptr); } 551 552 /// Support for ordering ranges. 553 /// 554 /// This provides an ordering over ranges such that start offsets are 555 /// always increasing, and within equal start offsets, the end offsets are 556 /// decreasing. Thus the spanning range comes first in a cluster with the 557 /// same start position. 558 bool operator<(const Slice &RHS) const { 559 if (beginOffset() < RHS.beginOffset()) 560 return true; 561 if (beginOffset() > RHS.beginOffset()) 562 return false; 563 if (isSplittable() != RHS.isSplittable()) 564 return !isSplittable(); 565 if (endOffset() > RHS.endOffset()) 566 return true; 567 return false; 568 } 569 570 /// Support comparison with a single offset to allow binary searches. 571 friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS, 572 uint64_t RHSOffset) { 573 return LHS.beginOffset() < RHSOffset; 574 } 575 friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, 576 const Slice &RHS) { 577 return LHSOffset < RHS.beginOffset(); 578 } 579 580 bool operator==(const Slice &RHS) const { 581 return isSplittable() == RHS.isSplittable() && 582 beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset(); 583 } 584 bool operator!=(const Slice &RHS) const { return !operator==(RHS); } 585 }; 586 587 /// Representation of the alloca slices. 588 /// 589 /// This class represents the slices of an alloca which are formed by its 590 /// various uses. If a pointer escapes, we can't fully build a representation 591 /// for the slices used and we reflect that in this structure. The uses are 592 /// stored, sorted by increasing beginning offset and with unsplittable slices 593 /// starting at a particular offset before splittable slices. 594 class AllocaSlices { 595 public: 596 /// Construct the slices of a particular alloca. 597 AllocaSlices(const DataLayout &DL, AllocaInst &AI); 598 599 /// Test whether a pointer to the allocation escapes our analysis. 600 /// 601 /// If this is true, the slices are never fully built and should be 602 /// ignored. 603 bool isEscaped() const { return PointerEscapingInstr; } 604 bool isEscapedReadOnly() const { return PointerEscapingInstrReadOnly; } 605 606 /// Support for iterating over the slices. 607 /// @{ 608 using iterator = SmallVectorImpl<Slice>::iterator; 609 using range = iterator_range<iterator>; 610 611 iterator begin() { return Slices.begin(); } 612 iterator end() { return Slices.end(); } 613 614 using const_iterator = SmallVectorImpl<Slice>::const_iterator; 615 using const_range = iterator_range<const_iterator>; 616 617 const_iterator begin() const { return Slices.begin(); } 618 const_iterator end() const { return Slices.end(); } 619 /// @} 620 621 /// Erase a range of slices. 622 void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); } 623 624 /// Insert new slices for this alloca. 625 /// 626 /// This moves the slices into the alloca's slices collection, and re-sorts 627 /// everything so that the usual ordering properties of the alloca's slices 628 /// hold. 629 void insert(ArrayRef<Slice> NewSlices) { 630 int OldSize = Slices.size(); 631 Slices.append(NewSlices.begin(), NewSlices.end()); 632 auto SliceI = Slices.begin() + OldSize; 633 std::stable_sort(SliceI, Slices.end()); 634 std::inplace_merge(Slices.begin(), SliceI, Slices.end()); 635 } 636 637 // Forward declare the iterator and range accessor for walking the 638 // partitions. 639 class partition_iterator; 640 iterator_range<partition_iterator> partitions(); 641 642 /// Access the dead users for this alloca. 643 ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; } 644 645 /// Access Uses that should be dropped if the alloca is promotable. 646 ArrayRef<Use *> getDeadUsesIfPromotable() const { 647 return DeadUseIfPromotable; 648 } 649 650 /// Access the dead operands referring to this alloca. 651 /// 652 /// These are operands which have cannot actually be used to refer to the 653 /// alloca as they are outside its range and the user doesn't correct for 654 /// that. These mostly consist of PHI node inputs and the like which we just 655 /// need to replace with undef. 656 ArrayRef<Use *> getDeadOperands() const { return DeadOperands; } 657 658 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 659 void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; 660 void printSlice(raw_ostream &OS, const_iterator I, 661 StringRef Indent = " ") const; 662 void printUse(raw_ostream &OS, const_iterator I, 663 StringRef Indent = " ") const; 664 void print(raw_ostream &OS) const; 665 void dump(const_iterator I) const; 666 void dump() const; 667 #endif 668 669 private: 670 template <typename DerivedT, typename RetT = void> class BuilderBase; 671 class SliceBuilder; 672 673 friend class AllocaSlices::SliceBuilder; 674 675 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 676 /// Handle to alloca instruction to simplify method interfaces. 677 AllocaInst &AI; 678 #endif 679 680 /// The instruction responsible for this alloca not having a known set 681 /// of slices. 682 /// 683 /// When an instruction (potentially) escapes the pointer to the alloca, we 684 /// store a pointer to that here and abort trying to form slices of the 685 /// alloca. This will be null if the alloca slices are analyzed successfully. 686 Instruction *PointerEscapingInstr; 687 Instruction *PointerEscapingInstrReadOnly; 688 689 /// The slices of the alloca. 690 /// 691 /// We store a vector of the slices formed by uses of the alloca here. This 692 /// vector is sorted by increasing begin offset, and then the unsplittable 693 /// slices before the splittable ones. See the Slice inner class for more 694 /// details. 695 SmallVector<Slice, 8> Slices; 696 697 /// Instructions which will become dead if we rewrite the alloca. 698 /// 699 /// Note that these are not separated by slice. This is because we expect an 700 /// alloca to be completely rewritten or not rewritten at all. If rewritten, 701 /// all these instructions can simply be removed and replaced with poison as 702 /// they come from outside of the allocated space. 703 SmallVector<Instruction *, 8> DeadUsers; 704 705 /// Uses which will become dead if can promote the alloca. 706 SmallVector<Use *, 8> DeadUseIfPromotable; 707 708 /// Operands which will become dead if we rewrite the alloca. 709 /// 710 /// These are operands that in their particular use can be replaced with 711 /// poison when we rewrite the alloca. These show up in out-of-bounds inputs 712 /// to PHI nodes and the like. They aren't entirely dead (there might be 713 /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we 714 /// want to swap this particular input for poison to simplify the use lists of 715 /// the alloca. 716 SmallVector<Use *, 8> DeadOperands; 717 }; 718 719 /// A partition of the slices. 720 /// 721 /// An ephemeral representation for a range of slices which can be viewed as 722 /// a partition of the alloca. This range represents a span of the alloca's 723 /// memory which cannot be split, and provides access to all of the slices 724 /// overlapping some part of the partition. 725 /// 726 /// Objects of this type are produced by traversing the alloca's slices, but 727 /// are only ephemeral and not persistent. 728 class Partition { 729 private: 730 friend class AllocaSlices; 731 friend class AllocaSlices::partition_iterator; 732 733 using iterator = AllocaSlices::iterator; 734 735 /// The beginning and ending offsets of the alloca for this 736 /// partition. 737 uint64_t BeginOffset = 0, EndOffset = 0; 738 739 /// The start and end iterators of this partition. 740 iterator SI, SJ; 741 742 /// A collection of split slice tails overlapping the partition. 743 SmallVector<Slice *, 4> SplitTails; 744 745 /// Raw constructor builds an empty partition starting and ending at 746 /// the given iterator. 747 Partition(iterator SI) : SI(SI), SJ(SI) {} 748 749 public: 750 /// The start offset of this partition. 751 /// 752 /// All of the contained slices start at or after this offset. 753 uint64_t beginOffset() const { return BeginOffset; } 754 755 /// The end offset of this partition. 756 /// 757 /// All of the contained slices end at or before this offset. 758 uint64_t endOffset() const { return EndOffset; } 759 760 /// The size of the partition. 761 /// 762 /// Note that this can never be zero. 763 uint64_t size() const { 764 assert(BeginOffset < EndOffset && "Partitions must span some bytes!"); 765 return EndOffset - BeginOffset; 766 } 767 768 /// Test whether this partition contains no slices, and merely spans 769 /// a region occupied by split slices. 770 bool empty() const { return SI == SJ; } 771 772 /// \name Iterate slices that start within the partition. 773 /// These may be splittable or unsplittable. They have a begin offset >= the 774 /// partition begin offset. 775 /// @{ 776 // FIXME: We should probably define a "concat_iterator" helper and use that 777 // to stitch together pointee_iterators over the split tails and the 778 // contiguous iterators of the partition. That would give a much nicer 779 // interface here. We could then additionally expose filtered iterators for 780 // split, unsplit, and unsplittable splices based on the usage patterns. 781 iterator begin() const { return SI; } 782 iterator end() const { return SJ; } 783 /// @} 784 785 /// Get the sequence of split slice tails. 786 /// 787 /// These tails are of slices which start before this partition but are 788 /// split and overlap into the partition. We accumulate these while forming 789 /// partitions. 790 ArrayRef<Slice *> splitSliceTails() const { return SplitTails; } 791 }; 792 793 } // end anonymous namespace 794 795 /// An iterator over partitions of the alloca's slices. 796 /// 797 /// This iterator implements the core algorithm for partitioning the alloca's 798 /// slices. It is a forward iterator as we don't support backtracking for 799 /// efficiency reasons, and re-use a single storage area to maintain the 800 /// current set of split slices. 801 /// 802 /// It is templated on the slice iterator type to use so that it can operate 803 /// with either const or non-const slice iterators. 804 class AllocaSlices::partition_iterator 805 : public iterator_facade_base<partition_iterator, std::forward_iterator_tag, 806 Partition> { 807 friend class AllocaSlices; 808 809 /// Most of the state for walking the partitions is held in a class 810 /// with a nice interface for examining them. 811 Partition P; 812 813 /// We need to keep the end of the slices to know when to stop. 814 AllocaSlices::iterator SE; 815 816 /// We also need to keep track of the maximum split end offset seen. 817 /// FIXME: Do we really? 818 uint64_t MaxSplitSliceEndOffset = 0; 819 820 /// Sets the partition to be empty at given iterator, and sets the 821 /// end iterator. 822 partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE) 823 : P(SI), SE(SE) { 824 // If not already at the end, advance our state to form the initial 825 // partition. 826 if (SI != SE) 827 advance(); 828 } 829 830 /// Advance the iterator to the next partition. 831 /// 832 /// Requires that the iterator not be at the end of the slices. 833 void advance() { 834 assert((P.SI != SE || !P.SplitTails.empty()) && 835 "Cannot advance past the end of the slices!"); 836 837 // Clear out any split uses which have ended. 838 if (!P.SplitTails.empty()) { 839 if (P.EndOffset >= MaxSplitSliceEndOffset) { 840 // If we've finished all splits, this is easy. 841 P.SplitTails.clear(); 842 MaxSplitSliceEndOffset = 0; 843 } else { 844 // Remove the uses which have ended in the prior partition. This 845 // cannot change the max split slice end because we just checked that 846 // the prior partition ended prior to that max. 847 llvm::erase_if(P.SplitTails, 848 [&](Slice *S) { return S->endOffset() <= P.EndOffset; }); 849 assert(llvm::any_of(P.SplitTails, 850 [&](Slice *S) { 851 return S->endOffset() == MaxSplitSliceEndOffset; 852 }) && 853 "Could not find the current max split slice offset!"); 854 assert(llvm::all_of(P.SplitTails, 855 [&](Slice *S) { 856 return S->endOffset() <= MaxSplitSliceEndOffset; 857 }) && 858 "Max split slice end offset is not actually the max!"); 859 } 860 } 861 862 // If P.SI is already at the end, then we've cleared the split tail and 863 // now have an end iterator. 864 if (P.SI == SE) { 865 assert(P.SplitTails.empty() && "Failed to clear the split slices!"); 866 return; 867 } 868 869 // If we had a non-empty partition previously, set up the state for 870 // subsequent partitions. 871 if (P.SI != P.SJ) { 872 // Accumulate all the splittable slices which started in the old 873 // partition into the split list. 874 for (Slice &S : P) 875 if (S.isSplittable() && S.endOffset() > P.EndOffset) { 876 P.SplitTails.push_back(&S); 877 MaxSplitSliceEndOffset = 878 std::max(S.endOffset(), MaxSplitSliceEndOffset); 879 } 880 881 // Start from the end of the previous partition. 882 P.SI = P.SJ; 883 884 // If P.SI is now at the end, we at most have a tail of split slices. 885 if (P.SI == SE) { 886 P.BeginOffset = P.EndOffset; 887 P.EndOffset = MaxSplitSliceEndOffset; 888 return; 889 } 890 891 // If the we have split slices and the next slice is after a gap and is 892 // not splittable immediately form an empty partition for the split 893 // slices up until the next slice begins. 894 if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset && 895 !P.SI->isSplittable()) { 896 P.BeginOffset = P.EndOffset; 897 P.EndOffset = P.SI->beginOffset(); 898 return; 899 } 900 } 901 902 // OK, we need to consume new slices. Set the end offset based on the 903 // current slice, and step SJ past it. The beginning offset of the 904 // partition is the beginning offset of the next slice unless we have 905 // pre-existing split slices that are continuing, in which case we begin 906 // at the prior end offset. 907 P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset; 908 P.EndOffset = P.SI->endOffset(); 909 ++P.SJ; 910 911 // There are two strategies to form a partition based on whether the 912 // partition starts with an unsplittable slice or a splittable slice. 913 if (!P.SI->isSplittable()) { 914 // When we're forming an unsplittable region, it must always start at 915 // the first slice and will extend through its end. 916 assert(P.BeginOffset == P.SI->beginOffset()); 917 918 // Form a partition including all of the overlapping slices with this 919 // unsplittable slice. 920 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 921 if (!P.SJ->isSplittable()) 922 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 923 ++P.SJ; 924 } 925 926 // We have a partition across a set of overlapping unsplittable 927 // partitions. 928 return; 929 } 930 931 // If we're starting with a splittable slice, then we need to form 932 // a synthetic partition spanning it and any other overlapping splittable 933 // splices. 934 assert(P.SI->isSplittable() && "Forming a splittable partition!"); 935 936 // Collect all of the overlapping splittable slices. 937 while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset && 938 P.SJ->isSplittable()) { 939 P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset()); 940 ++P.SJ; 941 } 942 943 // Back upiP.EndOffset if we ended the span early when encountering an 944 // unsplittable slice. This synthesizes the early end offset of 945 // a partition spanning only splittable slices. 946 if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) { 947 assert(!P.SJ->isSplittable()); 948 P.EndOffset = P.SJ->beginOffset(); 949 } 950 } 951 952 public: 953 bool operator==(const partition_iterator &RHS) const { 954 assert(SE == RHS.SE && 955 "End iterators don't match between compared partition iterators!"); 956 957 // The observed positions of partitions is marked by the P.SI iterator and 958 // the emptiness of the split slices. The latter is only relevant when 959 // P.SI == SE, as the end iterator will additionally have an empty split 960 // slices list, but the prior may have the same P.SI and a tail of split 961 // slices. 962 if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) { 963 assert(P.SJ == RHS.P.SJ && 964 "Same set of slices formed two different sized partitions!"); 965 assert(P.SplitTails.size() == RHS.P.SplitTails.size() && 966 "Same slice position with differently sized non-empty split " 967 "slice tails!"); 968 return true; 969 } 970 return false; 971 } 972 973 partition_iterator &operator++() { 974 advance(); 975 return *this; 976 } 977 978 Partition &operator*() { return P; } 979 }; 980 981 /// A forward range over the partitions of the alloca's slices. 982 /// 983 /// This accesses an iterator range over the partitions of the alloca's 984 /// slices. It computes these partitions on the fly based on the overlapping 985 /// offsets of the slices and the ability to split them. It will visit "empty" 986 /// partitions to cover regions of the alloca only accessed via split 987 /// slices. 988 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() { 989 return make_range(partition_iterator(begin(), end()), 990 partition_iterator(end(), end())); 991 } 992 993 static Value *foldSelectInst(SelectInst &SI) { 994 // If the condition being selected on is a constant or the same value is 995 // being selected between, fold the select. Yes this does (rarely) happen 996 // early on. 997 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) 998 return SI.getOperand(1 + CI->isZero()); 999 if (SI.getOperand(1) == SI.getOperand(2)) 1000 return SI.getOperand(1); 1001 1002 return nullptr; 1003 } 1004 1005 /// A helper that folds a PHI node or a select. 1006 static Value *foldPHINodeOrSelectInst(Instruction &I) { 1007 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 1008 // If PN merges together the same value, return that value. 1009 return PN->hasConstantValue(); 1010 } 1011 return foldSelectInst(cast<SelectInst>(I)); 1012 } 1013 1014 /// Builder for the alloca slices. 1015 /// 1016 /// This class builds a set of alloca slices by recursively visiting the uses 1017 /// of an alloca and making a slice for each load and store at each offset. 1018 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> { 1019 friend class PtrUseVisitor<SliceBuilder>; 1020 friend class InstVisitor<SliceBuilder>; 1021 1022 using Base = PtrUseVisitor<SliceBuilder>; 1023 1024 const uint64_t AllocSize; 1025 AllocaSlices &AS; 1026 1027 SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap; 1028 SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes; 1029 1030 /// Set to de-duplicate dead instructions found in the use walk. 1031 SmallPtrSet<Instruction *, 4> VisitedDeadInsts; 1032 1033 public: 1034 SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS) 1035 : PtrUseVisitor<SliceBuilder>(DL), 1036 AllocSize(DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue()), 1037 AS(AS) {} 1038 1039 private: 1040 void markAsDead(Instruction &I) { 1041 if (VisitedDeadInsts.insert(&I).second) 1042 AS.DeadUsers.push_back(&I); 1043 } 1044 1045 void insertUse(Instruction &I, const APInt &Offset, uint64_t Size, 1046 bool IsSplittable = false) { 1047 // Completely skip uses which have a zero size or start either before or 1048 // past the end of the allocation. 1049 if (Size == 0 || Offset.uge(AllocSize)) { 1050 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" 1051 << Offset 1052 << " which has zero size or starts outside of the " 1053 << AllocSize << " byte alloca:\n" 1054 << " alloca: " << AS.AI << "\n" 1055 << " use: " << I << "\n"); 1056 return markAsDead(I); 1057 } 1058 1059 uint64_t BeginOffset = Offset.getZExtValue(); 1060 uint64_t EndOffset = BeginOffset + Size; 1061 1062 // Clamp the end offset to the end of the allocation. Note that this is 1063 // formulated to handle even the case where "BeginOffset + Size" overflows. 1064 // This may appear superficially to be something we could ignore entirely, 1065 // but that is not so! There may be widened loads or PHI-node uses where 1066 // some instructions are dead but not others. We can't completely ignore 1067 // them, and so have to record at least the information here. 1068 assert(AllocSize >= BeginOffset); // Established above. 1069 if (Size > AllocSize - BeginOffset) { 1070 LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" 1071 << Offset << " to remain within the " << AllocSize 1072 << " byte alloca:\n" 1073 << " alloca: " << AS.AI << "\n" 1074 << " use: " << I << "\n"); 1075 EndOffset = AllocSize; 1076 } 1077 1078 AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable)); 1079 } 1080 1081 void visitBitCastInst(BitCastInst &BC) { 1082 if (BC.use_empty()) 1083 return markAsDead(BC); 1084 1085 return Base::visitBitCastInst(BC); 1086 } 1087 1088 void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 1089 if (ASC.use_empty()) 1090 return markAsDead(ASC); 1091 1092 return Base::visitAddrSpaceCastInst(ASC); 1093 } 1094 1095 void visitGetElementPtrInst(GetElementPtrInst &GEPI) { 1096 if (GEPI.use_empty()) 1097 return markAsDead(GEPI); 1098 1099 return Base::visitGetElementPtrInst(GEPI); 1100 } 1101 1102 void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset, 1103 uint64_t Size, bool IsVolatile) { 1104 // We allow splitting of non-volatile loads and stores where the type is an 1105 // integer type. These may be used to implement 'memcpy' or other "transfer 1106 // of bits" patterns. 1107 bool IsSplittable = 1108 Ty->isIntegerTy() && !IsVolatile && DL.typeSizeEqualsStoreSize(Ty); 1109 1110 insertUse(I, Offset, Size, IsSplittable); 1111 } 1112 1113 void visitLoadInst(LoadInst &LI) { 1114 assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && 1115 "All simple FCA loads should have been pre-split"); 1116 1117 if (!IsOffsetKnown) 1118 return PI.setAborted(&LI); 1119 1120 TypeSize Size = DL.getTypeStoreSize(LI.getType()); 1121 if (Size.isScalable()) 1122 return PI.setAborted(&LI); 1123 1124 return handleLoadOrStore(LI.getType(), LI, Offset, Size.getFixedValue(), 1125 LI.isVolatile()); 1126 } 1127 1128 void visitStoreInst(StoreInst &SI) { 1129 Value *ValOp = SI.getValueOperand(); 1130 if (ValOp == *U) 1131 return PI.setEscapedAndAborted(&SI); 1132 if (!IsOffsetKnown) 1133 return PI.setAborted(&SI); 1134 1135 TypeSize StoreSize = DL.getTypeStoreSize(ValOp->getType()); 1136 if (StoreSize.isScalable()) 1137 return PI.setAborted(&SI); 1138 1139 uint64_t Size = StoreSize.getFixedValue(); 1140 1141 // If this memory access can be shown to *statically* extend outside the 1142 // bounds of the allocation, it's behavior is undefined, so simply 1143 // ignore it. Note that this is more strict than the generic clamping 1144 // behavior of insertUse. We also try to handle cases which might run the 1145 // risk of overflow. 1146 // FIXME: We should instead consider the pointer to have escaped if this 1147 // function is being instrumented for addressing bugs or race conditions. 1148 if (Size > AllocSize || Offset.ugt(AllocSize - Size)) { 1149 LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @" 1150 << Offset << " which extends past the end of the " 1151 << AllocSize << " byte alloca:\n" 1152 << " alloca: " << AS.AI << "\n" 1153 << " use: " << SI << "\n"); 1154 return markAsDead(SI); 1155 } 1156 1157 assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && 1158 "All simple FCA stores should have been pre-split"); 1159 handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile()); 1160 } 1161 1162 void visitMemSetInst(MemSetInst &II) { 1163 assert(II.getRawDest() == *U && "Pointer use is not the destination?"); 1164 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 1165 if ((Length && Length->getValue() == 0) || 1166 (IsOffsetKnown && Offset.uge(AllocSize))) 1167 // Zero-length mem transfer intrinsics can be ignored entirely. 1168 return markAsDead(II); 1169 1170 if (!IsOffsetKnown) 1171 return PI.setAborted(&II); 1172 1173 insertUse(II, Offset, 1174 Length ? Length->getLimitedValue() 1175 : AllocSize - Offset.getLimitedValue(), 1176 (bool)Length); 1177 } 1178 1179 void visitMemTransferInst(MemTransferInst &II) { 1180 ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); 1181 if (Length && Length->getValue() == 0) 1182 // Zero-length mem transfer intrinsics can be ignored entirely. 1183 return markAsDead(II); 1184 1185 // Because we can visit these intrinsics twice, also check to see if the 1186 // first time marked this instruction as dead. If so, skip it. 1187 if (VisitedDeadInsts.count(&II)) 1188 return; 1189 1190 if (!IsOffsetKnown) 1191 return PI.setAborted(&II); 1192 1193 // This side of the transfer is completely out-of-bounds, and so we can 1194 // nuke the entire transfer. However, we also need to nuke the other side 1195 // if already added to our partitions. 1196 // FIXME: Yet another place we really should bypass this when 1197 // instrumenting for ASan. 1198 if (Offset.uge(AllocSize)) { 1199 SmallDenseMap<Instruction *, unsigned>::iterator MTPI = 1200 MemTransferSliceMap.find(&II); 1201 if (MTPI != MemTransferSliceMap.end()) 1202 AS.Slices[MTPI->second].kill(); 1203 return markAsDead(II); 1204 } 1205 1206 uint64_t RawOffset = Offset.getLimitedValue(); 1207 uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset; 1208 1209 // Check for the special case where the same exact value is used for both 1210 // source and dest. 1211 if (*U == II.getRawDest() && *U == II.getRawSource()) { 1212 // For non-volatile transfers this is a no-op. 1213 if (!II.isVolatile()) 1214 return markAsDead(II); 1215 1216 return insertUse(II, Offset, Size, /*IsSplittable=*/false); 1217 } 1218 1219 // If we have seen both source and destination for a mem transfer, then 1220 // they both point to the same alloca. 1221 bool Inserted; 1222 SmallDenseMap<Instruction *, unsigned>::iterator MTPI; 1223 std::tie(MTPI, Inserted) = 1224 MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size())); 1225 unsigned PrevIdx = MTPI->second; 1226 if (!Inserted) { 1227 Slice &PrevP = AS.Slices[PrevIdx]; 1228 1229 // Check if the begin offsets match and this is a non-volatile transfer. 1230 // In that case, we can completely elide the transfer. 1231 if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) { 1232 PrevP.kill(); 1233 return markAsDead(II); 1234 } 1235 1236 // Otherwise we have an offset transfer within the same alloca. We can't 1237 // split those. 1238 PrevP.makeUnsplittable(); 1239 } 1240 1241 // Insert the use now that we've fixed up the splittable nature. 1242 insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length); 1243 1244 // Check that we ended up with a valid index in the map. 1245 assert(AS.Slices[PrevIdx].getUse()->getUser() == &II && 1246 "Map index doesn't point back to a slice with this user."); 1247 } 1248 1249 // Disable SRoA for any intrinsics except for lifetime invariants and 1250 // invariant group. 1251 // FIXME: What about debug intrinsics? This matches old behavior, but 1252 // doesn't make sense. 1253 void visitIntrinsicInst(IntrinsicInst &II) { 1254 if (II.isDroppable()) { 1255 AS.DeadUseIfPromotable.push_back(U); 1256 return; 1257 } 1258 1259 if (!IsOffsetKnown) 1260 return PI.setAborted(&II); 1261 1262 if (II.isLifetimeStartOrEnd()) { 1263 ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); 1264 uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(), 1265 Length->getLimitedValue()); 1266 insertUse(II, Offset, Size, true); 1267 return; 1268 } 1269 1270 if (II.isLaunderOrStripInvariantGroup()) { 1271 insertUse(II, Offset, AllocSize, true); 1272 enqueueUsers(II); 1273 return; 1274 } 1275 1276 Base::visitIntrinsicInst(II); 1277 } 1278 1279 Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { 1280 // We consider any PHI or select that results in a direct load or store of 1281 // the same offset to be a viable use for slicing purposes. These uses 1282 // are considered unsplittable and the size is the maximum loaded or stored 1283 // size. 1284 SmallPtrSet<Instruction *, 4> Visited; 1285 SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; 1286 Visited.insert(Root); 1287 Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); 1288 const DataLayout &DL = Root->getDataLayout(); 1289 // If there are no loads or stores, the access is dead. We mark that as 1290 // a size zero access. 1291 Size = 0; 1292 do { 1293 Instruction *I, *UsedI; 1294 std::tie(UsedI, I) = Uses.pop_back_val(); 1295 1296 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 1297 TypeSize LoadSize = DL.getTypeStoreSize(LI->getType()); 1298 if (LoadSize.isScalable()) { 1299 PI.setAborted(LI); 1300 return nullptr; 1301 } 1302 Size = std::max(Size, LoadSize.getFixedValue()); 1303 continue; 1304 } 1305 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 1306 Value *Op = SI->getOperand(0); 1307 if (Op == UsedI) 1308 return SI; 1309 TypeSize StoreSize = DL.getTypeStoreSize(Op->getType()); 1310 if (StoreSize.isScalable()) { 1311 PI.setAborted(SI); 1312 return nullptr; 1313 } 1314 Size = std::max(Size, StoreSize.getFixedValue()); 1315 continue; 1316 } 1317 1318 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 1319 if (!GEP->hasAllZeroIndices()) 1320 return GEP; 1321 } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && 1322 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) { 1323 return I; 1324 } 1325 1326 for (User *U : I->users()) 1327 if (Visited.insert(cast<Instruction>(U)).second) 1328 Uses.push_back(std::make_pair(I, cast<Instruction>(U))); 1329 } while (!Uses.empty()); 1330 1331 return nullptr; 1332 } 1333 1334 void visitPHINodeOrSelectInst(Instruction &I) { 1335 assert(isa<PHINode>(I) || isa<SelectInst>(I)); 1336 if (I.use_empty()) 1337 return markAsDead(I); 1338 1339 // If this is a PHI node before a catchswitch, we cannot insert any non-PHI 1340 // instructions in this BB, which may be required during rewriting. Bail out 1341 // on these cases. 1342 if (isa<PHINode>(I) && 1343 I.getParent()->getFirstInsertionPt() == I.getParent()->end()) 1344 return PI.setAborted(&I); 1345 1346 // TODO: We could use simplifyInstruction here to fold PHINodes and 1347 // SelectInsts. However, doing so requires to change the current 1348 // dead-operand-tracking mechanism. For instance, suppose neither loading 1349 // from %U nor %other traps. Then "load (select undef, %U, %other)" does not 1350 // trap either. However, if we simply replace %U with undef using the 1351 // current dead-operand-tracking mechanism, "load (select undef, undef, 1352 // %other)" may trap because the select may return the first operand 1353 // "undef". 1354 if (Value *Result = foldPHINodeOrSelectInst(I)) { 1355 if (Result == *U) 1356 // If the result of the constant fold will be the pointer, recurse 1357 // through the PHI/select as if we had RAUW'ed it. 1358 enqueueUsers(I); 1359 else 1360 // Otherwise the operand to the PHI/select is dead, and we can replace 1361 // it with poison. 1362 AS.DeadOperands.push_back(U); 1363 1364 return; 1365 } 1366 1367 if (!IsOffsetKnown) 1368 return PI.setAborted(&I); 1369 1370 // See if we already have computed info on this node. 1371 uint64_t &Size = PHIOrSelectSizes[&I]; 1372 if (!Size) { 1373 // This is a new PHI/Select, check for an unsafe use of it. 1374 if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size)) 1375 return PI.setAborted(UnsafeI); 1376 } 1377 1378 // For PHI and select operands outside the alloca, we can't nuke the entire 1379 // phi or select -- the other side might still be relevant, so we special 1380 // case them here and use a separate structure to track the operands 1381 // themselves which should be replaced with poison. 1382 // FIXME: This should instead be escaped in the event we're instrumenting 1383 // for address sanitization. 1384 if (Offset.uge(AllocSize)) { 1385 AS.DeadOperands.push_back(U); 1386 return; 1387 } 1388 1389 insertUse(I, Offset, Size); 1390 } 1391 1392 void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); } 1393 1394 void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); } 1395 1396 /// Disable SROA entirely if there are unhandled users of the alloca. 1397 void visitInstruction(Instruction &I) { PI.setAborted(&I); } 1398 1399 void visitCallBase(CallBase &CB) { 1400 // If the call operand is NoCapture ReadOnly, then we mark it as 1401 // EscapedReadOnly. 1402 if (CB.isDataOperand(U) && 1403 CB.doesNotCapture(U->getOperandNo()) && 1404 CB.onlyReadsMemory(U->getOperandNo())) { 1405 PI.setEscapedReadOnly(&CB); 1406 return; 1407 } 1408 1409 Base::visitCallBase(CB); 1410 } 1411 }; 1412 1413 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI) 1414 : 1415 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1416 AI(AI), 1417 #endif 1418 PointerEscapingInstr(nullptr), PointerEscapingInstrReadOnly(nullptr) { 1419 SliceBuilder PB(DL, AI, *this); 1420 SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI); 1421 if (PtrI.isEscaped() || PtrI.isAborted()) { 1422 // FIXME: We should sink the escape vs. abort info into the caller nicely, 1423 // possibly by just storing the PtrInfo in the AllocaSlices. 1424 PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst() 1425 : PtrI.getAbortingInst(); 1426 assert(PointerEscapingInstr && "Did not track a bad instruction"); 1427 return; 1428 } 1429 PointerEscapingInstrReadOnly = PtrI.getEscapedReadOnlyInst(); 1430 1431 llvm::erase_if(Slices, [](const Slice &S) { return S.isDead(); }); 1432 1433 // Sort the uses. This arranges for the offsets to be in ascending order, 1434 // and the sizes to be in descending order. 1435 llvm::stable_sort(Slices); 1436 } 1437 1438 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1439 1440 void AllocaSlices::print(raw_ostream &OS, const_iterator I, 1441 StringRef Indent) const { 1442 printSlice(OS, I, Indent); 1443 OS << "\n"; 1444 printUse(OS, I, Indent); 1445 } 1446 1447 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I, 1448 StringRef Indent) const { 1449 OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")" 1450 << " slice #" << (I - begin()) 1451 << (I->isSplittable() ? " (splittable)" : ""); 1452 } 1453 1454 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I, 1455 StringRef Indent) const { 1456 OS << Indent << " used by: " << *I->getUse()->getUser() << "\n"; 1457 } 1458 1459 void AllocaSlices::print(raw_ostream &OS) const { 1460 if (PointerEscapingInstr) { 1461 OS << "Can't analyze slices for alloca: " << AI << "\n" 1462 << " A pointer to this alloca escaped by:\n" 1463 << " " << *PointerEscapingInstr << "\n"; 1464 return; 1465 } 1466 1467 if (PointerEscapingInstrReadOnly) 1468 OS << "Escapes into ReadOnly: " << *PointerEscapingInstrReadOnly << "\n"; 1469 1470 OS << "Slices of alloca: " << AI << "\n"; 1471 for (const_iterator I = begin(), E = end(); I != E; ++I) 1472 print(OS, I); 1473 } 1474 1475 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const { 1476 print(dbgs(), I); 1477 } 1478 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); } 1479 1480 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1481 1482 /// Walk the range of a partitioning looking for a common type to cover this 1483 /// sequence of slices. 1484 static std::pair<Type *, IntegerType *> 1485 findCommonType(AllocaSlices::const_iterator B, AllocaSlices::const_iterator E, 1486 uint64_t EndOffset) { 1487 Type *Ty = nullptr; 1488 bool TyIsCommon = true; 1489 IntegerType *ITy = nullptr; 1490 1491 // Note that we need to look at *every* alloca slice's Use to ensure we 1492 // always get consistent results regardless of the order of slices. 1493 for (AllocaSlices::const_iterator I = B; I != E; ++I) { 1494 Use *U = I->getUse(); 1495 if (isa<IntrinsicInst>(*U->getUser())) 1496 continue; 1497 if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset) 1498 continue; 1499 1500 Type *UserTy = nullptr; 1501 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 1502 UserTy = LI->getType(); 1503 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 1504 UserTy = SI->getValueOperand()->getType(); 1505 } 1506 1507 if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) { 1508 // If the type is larger than the partition, skip it. We only encounter 1509 // this for split integer operations where we want to use the type of the 1510 // entity causing the split. Also skip if the type is not a byte width 1511 // multiple. 1512 if (UserITy->getBitWidth() % 8 != 0 || 1513 UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset())) 1514 continue; 1515 1516 // Track the largest bitwidth integer type used in this way in case there 1517 // is no common type. 1518 if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth()) 1519 ITy = UserITy; 1520 } 1521 1522 // To avoid depending on the order of slices, Ty and TyIsCommon must not 1523 // depend on types skipped above. 1524 if (!UserTy || (Ty && Ty != UserTy)) 1525 TyIsCommon = false; // Give up on anything but an iN type. 1526 else 1527 Ty = UserTy; 1528 } 1529 1530 return {TyIsCommon ? Ty : nullptr, ITy}; 1531 } 1532 1533 /// PHI instructions that use an alloca and are subsequently loaded can be 1534 /// rewritten to load both input pointers in the pred blocks and then PHI the 1535 /// results, allowing the load of the alloca to be promoted. 1536 /// From this: 1537 /// %P2 = phi [i32* %Alloca, i32* %Other] 1538 /// %V = load i32* %P2 1539 /// to: 1540 /// %V1 = load i32* %Alloca -> will be mem2reg'd 1541 /// ... 1542 /// %V2 = load i32* %Other 1543 /// ... 1544 /// %V = phi [i32 %V1, i32 %V2] 1545 /// 1546 /// We can do this to a select if its only uses are loads and if the operands 1547 /// to the select can be loaded unconditionally. 1548 /// 1549 /// FIXME: This should be hoisted into a generic utility, likely in 1550 /// Transforms/Util/Local.h 1551 static bool isSafePHIToSpeculate(PHINode &PN) { 1552 const DataLayout &DL = PN.getDataLayout(); 1553 1554 // For now, we can only do this promotion if the load is in the same block 1555 // as the PHI, and if there are no stores between the phi and load. 1556 // TODO: Allow recursive phi users. 1557 // TODO: Allow stores. 1558 BasicBlock *BB = PN.getParent(); 1559 Align MaxAlign; 1560 uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType()); 1561 Type *LoadType = nullptr; 1562 for (User *U : PN.users()) { 1563 LoadInst *LI = dyn_cast<LoadInst>(U); 1564 if (!LI || !LI->isSimple()) 1565 return false; 1566 1567 // For now we only allow loads in the same block as the PHI. This is 1568 // a common case that happens when instcombine merges two loads through 1569 // a PHI. 1570 if (LI->getParent() != BB) 1571 return false; 1572 1573 if (LoadType) { 1574 if (LoadType != LI->getType()) 1575 return false; 1576 } else { 1577 LoadType = LI->getType(); 1578 } 1579 1580 // Ensure that there are no instructions between the PHI and the load that 1581 // could store. 1582 for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI) 1583 if (BBI->mayWriteToMemory()) 1584 return false; 1585 1586 MaxAlign = std::max(MaxAlign, LI->getAlign()); 1587 } 1588 1589 if (!LoadType) 1590 return false; 1591 1592 APInt LoadSize = 1593 APInt(APWidth, DL.getTypeStoreSize(LoadType).getFixedValue()); 1594 1595 // We can only transform this if it is safe to push the loads into the 1596 // predecessor blocks. The only thing to watch out for is that we can't put 1597 // a possibly trapping load in the predecessor if it is a critical edge. 1598 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1599 Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator(); 1600 Value *InVal = PN.getIncomingValue(Idx); 1601 1602 // If the value is produced by the terminator of the predecessor (an 1603 // invoke) or it has side-effects, there is no valid place to put a load 1604 // in the predecessor. 1605 if (TI == InVal || TI->mayHaveSideEffects()) 1606 return false; 1607 1608 // If the predecessor has a single successor, then the edge isn't 1609 // critical. 1610 if (TI->getNumSuccessors() == 1) 1611 continue; 1612 1613 // If this pointer is always safe to load, or if we can prove that there 1614 // is already a load in the block, then we can move the load to the pred 1615 // block. 1616 if (isSafeToLoadUnconditionally(InVal, MaxAlign, LoadSize, DL, TI)) 1617 continue; 1618 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 1625 static void speculatePHINodeLoads(IRBuilderTy &IRB, PHINode &PN) { 1626 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 1627 1628 LoadInst *SomeLoad = cast<LoadInst>(PN.user_back()); 1629 Type *LoadTy = SomeLoad->getType(); 1630 IRB.SetInsertPoint(&PN); 1631 PHINode *NewPN = IRB.CreatePHI(LoadTy, PN.getNumIncomingValues(), 1632 PN.getName() + ".sroa.speculated"); 1633 1634 // Get the AA tags and alignment to use from one of the loads. It does not 1635 // matter which one we get and if any differ. 1636 AAMDNodes AATags = SomeLoad->getAAMetadata(); 1637 Align Alignment = SomeLoad->getAlign(); 1638 1639 // Rewrite all loads of the PN to use the new PHI. 1640 while (!PN.use_empty()) { 1641 LoadInst *LI = cast<LoadInst>(PN.user_back()); 1642 LI->replaceAllUsesWith(NewPN); 1643 LI->eraseFromParent(); 1644 } 1645 1646 // Inject loads into all of the pred blocks. 1647 DenseMap<BasicBlock *, Value *> InjectedLoads; 1648 for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { 1649 BasicBlock *Pred = PN.getIncomingBlock(Idx); 1650 Value *InVal = PN.getIncomingValue(Idx); 1651 1652 // A PHI node is allowed to have multiple (duplicated) entries for the same 1653 // basic block, as long as the value is the same. So if we already injected 1654 // a load in the predecessor, then we should reuse the same load for all 1655 // duplicated entries. 1656 if (Value *V = InjectedLoads.lookup(Pred)) { 1657 NewPN->addIncoming(V, Pred); 1658 continue; 1659 } 1660 1661 Instruction *TI = Pred->getTerminator(); 1662 IRB.SetInsertPoint(TI); 1663 1664 LoadInst *Load = IRB.CreateAlignedLoad( 1665 LoadTy, InVal, Alignment, 1666 (PN.getName() + ".sroa.speculate.load." + Pred->getName())); 1667 ++NumLoadsSpeculated; 1668 if (AATags) 1669 Load->setAAMetadata(AATags); 1670 NewPN->addIncoming(Load, Pred); 1671 InjectedLoads[Pred] = Load; 1672 } 1673 1674 LLVM_DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); 1675 PN.eraseFromParent(); 1676 } 1677 1678 SelectHandSpeculativity & 1679 SelectHandSpeculativity::setAsSpeculatable(bool isTrueVal) { 1680 if (isTrueVal) 1681 Bitfield::set<SelectHandSpeculativity::TrueVal>(Storage, true); 1682 else 1683 Bitfield::set<SelectHandSpeculativity::FalseVal>(Storage, true); 1684 return *this; 1685 } 1686 1687 bool SelectHandSpeculativity::isSpeculatable(bool isTrueVal) const { 1688 return isTrueVal ? Bitfield::get<SelectHandSpeculativity::TrueVal>(Storage) 1689 : Bitfield::get<SelectHandSpeculativity::FalseVal>(Storage); 1690 } 1691 1692 bool SelectHandSpeculativity::areAllSpeculatable() const { 1693 return isSpeculatable(/*isTrueVal=*/true) && 1694 isSpeculatable(/*isTrueVal=*/false); 1695 } 1696 1697 bool SelectHandSpeculativity::areAnySpeculatable() const { 1698 return isSpeculatable(/*isTrueVal=*/true) || 1699 isSpeculatable(/*isTrueVal=*/false); 1700 } 1701 bool SelectHandSpeculativity::areNoneSpeculatable() const { 1702 return !areAnySpeculatable(); 1703 } 1704 1705 static SelectHandSpeculativity 1706 isSafeLoadOfSelectToSpeculate(LoadInst &LI, SelectInst &SI, bool PreserveCFG) { 1707 assert(LI.isSimple() && "Only for simple loads"); 1708 SelectHandSpeculativity Spec; 1709 1710 const DataLayout &DL = SI.getDataLayout(); 1711 for (Value *Value : {SI.getTrueValue(), SI.getFalseValue()}) 1712 if (isSafeToLoadUnconditionally(Value, LI.getType(), LI.getAlign(), DL, 1713 &LI)) 1714 Spec.setAsSpeculatable(/*isTrueVal=*/Value == SI.getTrueValue()); 1715 else if (PreserveCFG) 1716 return Spec; 1717 1718 return Spec; 1719 } 1720 1721 std::optional<RewriteableMemOps> 1722 SROA::isSafeSelectToSpeculate(SelectInst &SI, bool PreserveCFG) { 1723 RewriteableMemOps Ops; 1724 1725 for (User *U : SI.users()) { 1726 if (auto *BC = dyn_cast<BitCastInst>(U); BC && BC->hasOneUse()) 1727 U = *BC->user_begin(); 1728 1729 if (auto *Store = dyn_cast<StoreInst>(U)) { 1730 // Note that atomic stores can be transformed; atomic semantics do not 1731 // have any meaning for a local alloca. Stores are not speculatable, 1732 // however, so if we can't turn it into a predicated store, we are done. 1733 if (Store->isVolatile() || PreserveCFG) 1734 return {}; // Give up on this `select`. 1735 Ops.emplace_back(Store); 1736 continue; 1737 } 1738 1739 auto *LI = dyn_cast<LoadInst>(U); 1740 1741 // Note that atomic loads can be transformed; 1742 // atomic semantics do not have any meaning for a local alloca. 1743 if (!LI || LI->isVolatile()) 1744 return {}; // Give up on this `select`. 1745 1746 PossiblySpeculatableLoad Load(LI); 1747 if (!LI->isSimple()) { 1748 // If the `load` is not simple, we can't speculatively execute it, 1749 // but we could handle this via a CFG modification. But can we? 1750 if (PreserveCFG) 1751 return {}; // Give up on this `select`. 1752 Ops.emplace_back(Load); 1753 continue; 1754 } 1755 1756 SelectHandSpeculativity Spec = 1757 isSafeLoadOfSelectToSpeculate(*LI, SI, PreserveCFG); 1758 if (PreserveCFG && !Spec.areAllSpeculatable()) 1759 return {}; // Give up on this `select`. 1760 1761 Load.setInt(Spec); 1762 Ops.emplace_back(Load); 1763 } 1764 1765 return Ops; 1766 } 1767 1768 static void speculateSelectInstLoads(SelectInst &SI, LoadInst &LI, 1769 IRBuilderTy &IRB) { 1770 LLVM_DEBUG(dbgs() << " original load: " << SI << "\n"); 1771 1772 Value *TV = SI.getTrueValue(); 1773 Value *FV = SI.getFalseValue(); 1774 // Replace the given load of the select with a select of two loads. 1775 1776 assert(LI.isSimple() && "We only speculate simple loads"); 1777 1778 IRB.SetInsertPoint(&LI); 1779 1780 LoadInst *TL = 1781 IRB.CreateAlignedLoad(LI.getType(), TV, LI.getAlign(), 1782 LI.getName() + ".sroa.speculate.load.true"); 1783 LoadInst *FL = 1784 IRB.CreateAlignedLoad(LI.getType(), FV, LI.getAlign(), 1785 LI.getName() + ".sroa.speculate.load.false"); 1786 NumLoadsSpeculated += 2; 1787 1788 // Transfer alignment and AA info if present. 1789 TL->setAlignment(LI.getAlign()); 1790 FL->setAlignment(LI.getAlign()); 1791 1792 AAMDNodes Tags = LI.getAAMetadata(); 1793 if (Tags) { 1794 TL->setAAMetadata(Tags); 1795 FL->setAAMetadata(Tags); 1796 } 1797 1798 Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL, 1799 LI.getName() + ".sroa.speculated"); 1800 1801 LLVM_DEBUG(dbgs() << " speculated to: " << *V << "\n"); 1802 LI.replaceAllUsesWith(V); 1803 } 1804 1805 template <typename T> 1806 static void rewriteMemOpOfSelect(SelectInst &SI, T &I, 1807 SelectHandSpeculativity Spec, 1808 DomTreeUpdater &DTU) { 1809 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && "Only for load and store!"); 1810 LLVM_DEBUG(dbgs() << " original mem op: " << I << "\n"); 1811 BasicBlock *Head = I.getParent(); 1812 Instruction *ThenTerm = nullptr; 1813 Instruction *ElseTerm = nullptr; 1814 if (Spec.areNoneSpeculatable()) 1815 SplitBlockAndInsertIfThenElse(SI.getCondition(), &I, &ThenTerm, &ElseTerm, 1816 SI.getMetadata(LLVMContext::MD_prof), &DTU); 1817 else { 1818 SplitBlockAndInsertIfThen(SI.getCondition(), &I, /*Unreachable=*/false, 1819 SI.getMetadata(LLVMContext::MD_prof), &DTU, 1820 /*LI=*/nullptr, /*ThenBlock=*/nullptr); 1821 if (Spec.isSpeculatable(/*isTrueVal=*/true)) 1822 cast<BranchInst>(Head->getTerminator())->swapSuccessors(); 1823 } 1824 auto *HeadBI = cast<BranchInst>(Head->getTerminator()); 1825 Spec = {}; // Do not use `Spec` beyond this point. 1826 BasicBlock *Tail = I.getParent(); 1827 Tail->setName(Head->getName() + ".cont"); 1828 PHINode *PN; 1829 if (isa<LoadInst>(I)) 1830 PN = PHINode::Create(I.getType(), 2, "", I.getIterator()); 1831 for (BasicBlock *SuccBB : successors(Head)) { 1832 bool IsThen = SuccBB == HeadBI->getSuccessor(0); 1833 int SuccIdx = IsThen ? 0 : 1; 1834 auto *NewMemOpBB = SuccBB == Tail ? Head : SuccBB; 1835 auto &CondMemOp = cast<T>(*I.clone()); 1836 if (NewMemOpBB != Head) { 1837 NewMemOpBB->setName(Head->getName() + (IsThen ? ".then" : ".else")); 1838 if (isa<LoadInst>(I)) 1839 ++NumLoadsPredicated; 1840 else 1841 ++NumStoresPredicated; 1842 } else { 1843 CondMemOp.dropUBImplyingAttrsAndMetadata(); 1844 ++NumLoadsSpeculated; 1845 } 1846 CondMemOp.insertBefore(NewMemOpBB->getTerminator()->getIterator()); 1847 Value *Ptr = SI.getOperand(1 + SuccIdx); 1848 CondMemOp.setOperand(I.getPointerOperandIndex(), Ptr); 1849 if (isa<LoadInst>(I)) { 1850 CondMemOp.setName(I.getName() + (IsThen ? ".then" : ".else") + ".val"); 1851 PN->addIncoming(&CondMemOp, NewMemOpBB); 1852 } else 1853 LLVM_DEBUG(dbgs() << " to: " << CondMemOp << "\n"); 1854 } 1855 if (isa<LoadInst>(I)) { 1856 PN->takeName(&I); 1857 LLVM_DEBUG(dbgs() << " to: " << *PN << "\n"); 1858 I.replaceAllUsesWith(PN); 1859 } 1860 } 1861 1862 static void rewriteMemOpOfSelect(SelectInst &SelInst, Instruction &I, 1863 SelectHandSpeculativity Spec, 1864 DomTreeUpdater &DTU) { 1865 if (auto *LI = dyn_cast<LoadInst>(&I)) 1866 rewriteMemOpOfSelect(SelInst, *LI, Spec, DTU); 1867 else if (auto *SI = dyn_cast<StoreInst>(&I)) 1868 rewriteMemOpOfSelect(SelInst, *SI, Spec, DTU); 1869 else 1870 llvm_unreachable_internal("Only for load and store."); 1871 } 1872 1873 static bool rewriteSelectInstMemOps(SelectInst &SI, 1874 const RewriteableMemOps &Ops, 1875 IRBuilderTy &IRB, DomTreeUpdater *DTU) { 1876 bool CFGChanged = false; 1877 LLVM_DEBUG(dbgs() << " original select: " << SI << "\n"); 1878 1879 for (const RewriteableMemOp &Op : Ops) { 1880 SelectHandSpeculativity Spec; 1881 Instruction *I; 1882 if (auto *const *US = std::get_if<UnspeculatableStore>(&Op)) { 1883 I = *US; 1884 } else { 1885 auto PSL = std::get<PossiblySpeculatableLoad>(Op); 1886 I = PSL.getPointer(); 1887 Spec = PSL.getInt(); 1888 } 1889 if (Spec.areAllSpeculatable()) { 1890 speculateSelectInstLoads(SI, cast<LoadInst>(*I), IRB); 1891 } else { 1892 assert(DTU && "Should not get here when not allowed to modify the CFG!"); 1893 rewriteMemOpOfSelect(SI, *I, Spec, *DTU); 1894 CFGChanged = true; 1895 } 1896 I->eraseFromParent(); 1897 } 1898 1899 for (User *U : make_early_inc_range(SI.users())) 1900 cast<BitCastInst>(U)->eraseFromParent(); 1901 SI.eraseFromParent(); 1902 return CFGChanged; 1903 } 1904 1905 /// Compute an adjusted pointer from Ptr by Offset bytes where the 1906 /// resulting pointer has PointerTy. 1907 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr, 1908 APInt Offset, Type *PointerTy, 1909 const Twine &NamePrefix) { 1910 if (Offset != 0) 1911 Ptr = IRB.CreateInBoundsPtrAdd(Ptr, IRB.getInt(Offset), 1912 NamePrefix + "sroa_idx"); 1913 return IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr, PointerTy, 1914 NamePrefix + "sroa_cast"); 1915 } 1916 1917 /// Compute the adjusted alignment for a load or store from an offset. 1918 static Align getAdjustedAlignment(Instruction *I, uint64_t Offset) { 1919 return commonAlignment(getLoadStoreAlignment(I), Offset); 1920 } 1921 1922 /// Test whether we can convert a value from the old to the new type. 1923 /// 1924 /// This predicate should be used to guard calls to convertValue in order to 1925 /// ensure that we only try to convert viable values. The strategy is that we 1926 /// will peel off single element struct and array wrappings to get to an 1927 /// underlying value, and convert that value. 1928 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) { 1929 if (OldTy == NewTy) 1930 return true; 1931 1932 // For integer types, we can't handle any bit-width differences. This would 1933 // break both vector conversions with extension and introduce endianness 1934 // issues when in conjunction with loads and stores. 1935 if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) { 1936 assert(cast<IntegerType>(OldTy)->getBitWidth() != 1937 cast<IntegerType>(NewTy)->getBitWidth() && 1938 "We can't have the same bitwidth for different int types"); 1939 return false; 1940 } 1941 1942 if (DL.getTypeSizeInBits(NewTy).getFixedValue() != 1943 DL.getTypeSizeInBits(OldTy).getFixedValue()) 1944 return false; 1945 if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType()) 1946 return false; 1947 1948 // We can convert pointers to integers and vice-versa. Same for vectors 1949 // of pointers and integers. 1950 OldTy = OldTy->getScalarType(); 1951 NewTy = NewTy->getScalarType(); 1952 if (NewTy->isPointerTy() || OldTy->isPointerTy()) { 1953 if (NewTy->isPointerTy() && OldTy->isPointerTy()) { 1954 unsigned OldAS = OldTy->getPointerAddressSpace(); 1955 unsigned NewAS = NewTy->getPointerAddressSpace(); 1956 // Convert pointers if they are pointers from the same address space or 1957 // different integral (not non-integral) address spaces with the same 1958 // pointer size. 1959 return OldAS == NewAS || 1960 (!DL.isNonIntegralAddressSpace(OldAS) && 1961 !DL.isNonIntegralAddressSpace(NewAS) && 1962 DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 1963 } 1964 1965 // We can convert integers to integral pointers, but not to non-integral 1966 // pointers. 1967 if (OldTy->isIntegerTy()) 1968 return !DL.isNonIntegralPointerType(NewTy); 1969 1970 // We can convert integral pointers to integers, but non-integral pointers 1971 // need to remain pointers. 1972 if (!DL.isNonIntegralPointerType(OldTy)) 1973 return NewTy->isIntegerTy(); 1974 1975 return false; 1976 } 1977 1978 if (OldTy->isTargetExtTy() || NewTy->isTargetExtTy()) 1979 return false; 1980 1981 return true; 1982 } 1983 1984 /// Generic routine to convert an SSA value to a value of a different 1985 /// type. 1986 /// 1987 /// This will try various different casting techniques, such as bitcasts, 1988 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test 1989 /// two types for viability with this routine. 1990 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 1991 Type *NewTy) { 1992 Type *OldTy = V->getType(); 1993 assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type"); 1994 1995 if (OldTy == NewTy) 1996 return V; 1997 1998 assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) && 1999 "Integer types must be the exact same to convert."); 2000 2001 // See if we need inttoptr for this type pair. May require additional bitcast. 2002 if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 2003 // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8* 2004 // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*> 2005 // Expand <4 x i32> to <2 x i8*> --> <4 x i32> to <2 x i64> to <2 x i8*> 2006 // Directly handle i64 to i8* 2007 return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)), 2008 NewTy); 2009 } 2010 2011 // See if we need ptrtoint for this type pair. May require additional bitcast. 2012 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) { 2013 // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128 2014 // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32> 2015 // Expand <2 x i8*> to <4 x i32> --> <2 x i8*> to <2 x i64> to <4 x i32> 2016 // Expand i8* to i64 --> i8* to i64 to i64 2017 return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 2018 NewTy); 2019 } 2020 2021 if (OldTy->isPtrOrPtrVectorTy() && NewTy->isPtrOrPtrVectorTy()) { 2022 unsigned OldAS = OldTy->getPointerAddressSpace(); 2023 unsigned NewAS = NewTy->getPointerAddressSpace(); 2024 // To convert pointers with different address spaces (they are already 2025 // checked convertible, i.e. they have the same pointer size), so far we 2026 // cannot use `bitcast` (which has restrict on the same address space) or 2027 // `addrspacecast` (which is not always no-op casting). Instead, use a pair 2028 // of no-op `ptrtoint`/`inttoptr` casts through an integer with the same bit 2029 // size. 2030 if (OldAS != NewAS) { 2031 assert(DL.getPointerSize(OldAS) == DL.getPointerSize(NewAS)); 2032 return IRB.CreateIntToPtr(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)), 2033 NewTy); 2034 } 2035 } 2036 2037 return IRB.CreateBitCast(V, NewTy); 2038 } 2039 2040 /// Test whether the given slice use can be promoted to a vector. 2041 /// 2042 /// This function is called to test each entry in a partition which is slated 2043 /// for a single slice. 2044 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S, 2045 VectorType *Ty, 2046 uint64_t ElementSize, 2047 const DataLayout &DL) { 2048 // First validate the slice offsets. 2049 uint64_t BeginOffset = 2050 std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset(); 2051 uint64_t BeginIndex = BeginOffset / ElementSize; 2052 if (BeginIndex * ElementSize != BeginOffset || 2053 BeginIndex >= cast<FixedVectorType>(Ty)->getNumElements()) 2054 return false; 2055 uint64_t EndOffset = std::min(S.endOffset(), P.endOffset()) - P.beginOffset(); 2056 uint64_t EndIndex = EndOffset / ElementSize; 2057 if (EndIndex * ElementSize != EndOffset || 2058 EndIndex > cast<FixedVectorType>(Ty)->getNumElements()) 2059 return false; 2060 2061 assert(EndIndex > BeginIndex && "Empty vector!"); 2062 uint64_t NumElements = EndIndex - BeginIndex; 2063 Type *SliceTy = (NumElements == 1) 2064 ? Ty->getElementType() 2065 : FixedVectorType::get(Ty->getElementType(), NumElements); 2066 2067 Type *SplitIntTy = 2068 Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8); 2069 2070 Use *U = S.getUse(); 2071 2072 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2073 if (MI->isVolatile()) 2074 return false; 2075 if (!S.isSplittable()) 2076 return false; // Skip any unsplittable intrinsics. 2077 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2078 if (!II->isLifetimeStartOrEnd() && !II->isDroppable()) 2079 return false; 2080 } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2081 if (LI->isVolatile()) 2082 return false; 2083 Type *LTy = LI->getType(); 2084 // Disable vector promotion when there are loads or stores of an FCA. 2085 if (LTy->isStructTy()) 2086 return false; 2087 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 2088 assert(LTy->isIntegerTy()); 2089 LTy = SplitIntTy; 2090 } 2091 if (!canConvertValue(DL, SliceTy, LTy)) 2092 return false; 2093 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2094 if (SI->isVolatile()) 2095 return false; 2096 Type *STy = SI->getValueOperand()->getType(); 2097 // Disable vector promotion when there are loads or stores of an FCA. 2098 if (STy->isStructTy()) 2099 return false; 2100 if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) { 2101 assert(STy->isIntegerTy()); 2102 STy = SplitIntTy; 2103 } 2104 if (!canConvertValue(DL, STy, SliceTy)) 2105 return false; 2106 } else { 2107 return false; 2108 } 2109 2110 return true; 2111 } 2112 2113 /// Test whether a vector type is viable for promotion. 2114 /// 2115 /// This implements the necessary checking for \c checkVectorTypesForPromotion 2116 /// (and thus isVectorPromotionViable) over all slices of the alloca for the 2117 /// given VectorType. 2118 static bool checkVectorTypeForPromotion(Partition &P, VectorType *VTy, 2119 const DataLayout &DL) { 2120 uint64_t ElementSize = 2121 DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue(); 2122 2123 // While the definition of LLVM vectors is bitpacked, we don't support sizes 2124 // that aren't byte sized. 2125 if (ElementSize % 8) 2126 return false; 2127 assert((DL.getTypeSizeInBits(VTy).getFixedValue() % 8) == 0 && 2128 "vector size not a multiple of element size?"); 2129 ElementSize /= 8; 2130 2131 for (const Slice &S : P) 2132 if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL)) 2133 return false; 2134 2135 for (const Slice *S : P.splitSliceTails()) 2136 if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL)) 2137 return false; 2138 2139 return true; 2140 } 2141 2142 /// Test whether any vector type in \p CandidateTys is viable for promotion. 2143 /// 2144 /// This implements the necessary checking for \c isVectorPromotionViable over 2145 /// all slices of the alloca for the given VectorType. 2146 static VectorType * 2147 checkVectorTypesForPromotion(Partition &P, const DataLayout &DL, 2148 SmallVectorImpl<VectorType *> &CandidateTys, 2149 bool HaveCommonEltTy, Type *CommonEltTy, 2150 bool HaveVecPtrTy, bool HaveCommonVecPtrTy, 2151 VectorType *CommonVecPtrTy) { 2152 // If we didn't find a vector type, nothing to do here. 2153 if (CandidateTys.empty()) 2154 return nullptr; 2155 2156 // Pointer-ness is sticky, if we had a vector-of-pointers candidate type, 2157 // then we should choose it, not some other alternative. 2158 // But, we can't perform a no-op pointer address space change via bitcast, 2159 // so if we didn't have a common pointer element type, bail. 2160 if (HaveVecPtrTy && !HaveCommonVecPtrTy) 2161 return nullptr; 2162 2163 // Try to pick the "best" element type out of the choices. 2164 if (!HaveCommonEltTy && HaveVecPtrTy) { 2165 // If there was a pointer element type, there's really only one choice. 2166 CandidateTys.clear(); 2167 CandidateTys.push_back(CommonVecPtrTy); 2168 } else if (!HaveCommonEltTy && !HaveVecPtrTy) { 2169 // Integer-ify vector types. 2170 for (VectorType *&VTy : CandidateTys) { 2171 if (!VTy->getElementType()->isIntegerTy()) 2172 VTy = cast<VectorType>(VTy->getWithNewType(IntegerType::getIntNTy( 2173 VTy->getContext(), VTy->getScalarSizeInBits()))); 2174 } 2175 2176 // Rank the remaining candidate vector types. This is easy because we know 2177 // they're all integer vectors. We sort by ascending number of elements. 2178 auto RankVectorTypesComp = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 2179 (void)DL; 2180 assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == 2181 DL.getTypeSizeInBits(LHSTy).getFixedValue() && 2182 "Cannot have vector types of different sizes!"); 2183 assert(RHSTy->getElementType()->isIntegerTy() && 2184 "All non-integer types eliminated!"); 2185 assert(LHSTy->getElementType()->isIntegerTy() && 2186 "All non-integer types eliminated!"); 2187 return cast<FixedVectorType>(RHSTy)->getNumElements() < 2188 cast<FixedVectorType>(LHSTy)->getNumElements(); 2189 }; 2190 auto RankVectorTypesEq = [&DL](VectorType *RHSTy, VectorType *LHSTy) { 2191 (void)DL; 2192 assert(DL.getTypeSizeInBits(RHSTy).getFixedValue() == 2193 DL.getTypeSizeInBits(LHSTy).getFixedValue() && 2194 "Cannot have vector types of different sizes!"); 2195 assert(RHSTy->getElementType()->isIntegerTy() && 2196 "All non-integer types eliminated!"); 2197 assert(LHSTy->getElementType()->isIntegerTy() && 2198 "All non-integer types eliminated!"); 2199 return cast<FixedVectorType>(RHSTy)->getNumElements() == 2200 cast<FixedVectorType>(LHSTy)->getNumElements(); 2201 }; 2202 llvm::sort(CandidateTys, RankVectorTypesComp); 2203 CandidateTys.erase(llvm::unique(CandidateTys, RankVectorTypesEq), 2204 CandidateTys.end()); 2205 } else { 2206 // The only way to have the same element type in every vector type is to 2207 // have the same vector type. Check that and remove all but one. 2208 #ifndef NDEBUG 2209 for (VectorType *VTy : CandidateTys) { 2210 assert(VTy->getElementType() == CommonEltTy && 2211 "Unaccounted for element type!"); 2212 assert(VTy == CandidateTys[0] && 2213 "Different vector types with the same element type!"); 2214 } 2215 #endif 2216 CandidateTys.resize(1); 2217 } 2218 2219 // FIXME: hack. Do we have a named constant for this? 2220 // SDAG SDNode can't have more than 65535 operands. 2221 llvm::erase_if(CandidateTys, [](VectorType *VTy) { 2222 return cast<FixedVectorType>(VTy)->getNumElements() > 2223 std::numeric_limits<unsigned short>::max(); 2224 }); 2225 2226 for (VectorType *VTy : CandidateTys) 2227 if (checkVectorTypeForPromotion(P, VTy, DL)) 2228 return VTy; 2229 2230 return nullptr; 2231 } 2232 2233 static VectorType *createAndCheckVectorTypesForPromotion( 2234 SetVector<Type *> &OtherTys, ArrayRef<VectorType *> CandidateTysCopy, 2235 function_ref<void(Type *)> CheckCandidateType, Partition &P, 2236 const DataLayout &DL, SmallVectorImpl<VectorType *> &CandidateTys, 2237 bool &HaveCommonEltTy, Type *&CommonEltTy, bool &HaveVecPtrTy, 2238 bool &HaveCommonVecPtrTy, VectorType *&CommonVecPtrTy) { 2239 [[maybe_unused]] VectorType *OriginalElt = 2240 CandidateTysCopy.size() ? CandidateTysCopy[0] : nullptr; 2241 // Consider additional vector types where the element type size is a 2242 // multiple of load/store element size. 2243 for (Type *Ty : OtherTys) { 2244 if (!VectorType::isValidElementType(Ty)) 2245 continue; 2246 unsigned TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); 2247 // Make a copy of CandidateTys and iterate through it, because we 2248 // might append to CandidateTys in the loop. 2249 for (VectorType *const VTy : CandidateTysCopy) { 2250 // The elements in the copy should remain invariant throughout the loop 2251 assert(CandidateTysCopy[0] == OriginalElt && "Different Element"); 2252 unsigned VectorSize = DL.getTypeSizeInBits(VTy).getFixedValue(); 2253 unsigned ElementSize = 2254 DL.getTypeSizeInBits(VTy->getElementType()).getFixedValue(); 2255 if (TypeSize != VectorSize && TypeSize != ElementSize && 2256 VectorSize % TypeSize == 0) { 2257 VectorType *NewVTy = VectorType::get(Ty, VectorSize / TypeSize, false); 2258 CheckCandidateType(NewVTy); 2259 } 2260 } 2261 } 2262 2263 return checkVectorTypesForPromotion(P, DL, CandidateTys, HaveCommonEltTy, 2264 CommonEltTy, HaveVecPtrTy, 2265 HaveCommonVecPtrTy, CommonVecPtrTy); 2266 } 2267 2268 /// Test whether the given alloca partitioning and range of slices can be 2269 /// promoted to a vector. 2270 /// 2271 /// This is a quick test to check whether we can rewrite a particular alloca 2272 /// partition (and its newly formed alloca) into a vector alloca with only 2273 /// whole-vector loads and stores such that it could be promoted to a vector 2274 /// SSA value. We only can ensure this for a limited set of operations, and we 2275 /// don't want to do the rewrites unless we are confident that the result will 2276 /// be promotable, so we have an early test here. 2277 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) { 2278 // Collect the candidate types for vector-based promotion. Also track whether 2279 // we have different element types. 2280 SmallVector<VectorType *, 4> CandidateTys; 2281 SetVector<Type *> LoadStoreTys; 2282 SetVector<Type *> DeferredTys; 2283 Type *CommonEltTy = nullptr; 2284 VectorType *CommonVecPtrTy = nullptr; 2285 bool HaveVecPtrTy = false; 2286 bool HaveCommonEltTy = true; 2287 bool HaveCommonVecPtrTy = true; 2288 auto CheckCandidateType = [&](Type *Ty) { 2289 if (auto *VTy = dyn_cast<VectorType>(Ty)) { 2290 // Return if bitcast to vectors is different for total size in bits. 2291 if (!CandidateTys.empty()) { 2292 VectorType *V = CandidateTys[0]; 2293 if (DL.getTypeSizeInBits(VTy).getFixedValue() != 2294 DL.getTypeSizeInBits(V).getFixedValue()) { 2295 CandidateTys.clear(); 2296 return; 2297 } 2298 } 2299 CandidateTys.push_back(VTy); 2300 Type *EltTy = VTy->getElementType(); 2301 2302 if (!CommonEltTy) 2303 CommonEltTy = EltTy; 2304 else if (CommonEltTy != EltTy) 2305 HaveCommonEltTy = false; 2306 2307 if (EltTy->isPointerTy()) { 2308 HaveVecPtrTy = true; 2309 if (!CommonVecPtrTy) 2310 CommonVecPtrTy = VTy; 2311 else if (CommonVecPtrTy != VTy) 2312 HaveCommonVecPtrTy = false; 2313 } 2314 } 2315 }; 2316 2317 // Put load and store types into a set for de-duplication. 2318 for (const Slice &S : P) { 2319 Type *Ty; 2320 if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser())) 2321 Ty = LI->getType(); 2322 else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser())) 2323 Ty = SI->getValueOperand()->getType(); 2324 else 2325 continue; 2326 2327 auto CandTy = Ty->getScalarType(); 2328 if (CandTy->isPointerTy() && (S.beginOffset() != P.beginOffset() || 2329 S.endOffset() != P.endOffset())) { 2330 DeferredTys.insert(Ty); 2331 continue; 2332 } 2333 2334 LoadStoreTys.insert(Ty); 2335 // Consider any loads or stores that are the exact size of the slice. 2336 if (S.beginOffset() == P.beginOffset() && S.endOffset() == P.endOffset()) 2337 CheckCandidateType(Ty); 2338 } 2339 2340 SmallVector<VectorType *, 4> CandidateTysCopy = CandidateTys; 2341 if (auto *VTy = createAndCheckVectorTypesForPromotion( 2342 LoadStoreTys, CandidateTysCopy, CheckCandidateType, P, DL, 2343 CandidateTys, HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, 2344 HaveCommonVecPtrTy, CommonVecPtrTy)) 2345 return VTy; 2346 2347 CandidateTys.clear(); 2348 return createAndCheckVectorTypesForPromotion( 2349 DeferredTys, CandidateTysCopy, CheckCandidateType, P, DL, CandidateTys, 2350 HaveCommonEltTy, CommonEltTy, HaveVecPtrTy, HaveCommonVecPtrTy, 2351 CommonVecPtrTy); 2352 } 2353 2354 /// Test whether a slice of an alloca is valid for integer widening. 2355 /// 2356 /// This implements the necessary checking for the \c isIntegerWideningViable 2357 /// test below on a single slice of the alloca. 2358 static bool isIntegerWideningViableForSlice(const Slice &S, 2359 uint64_t AllocBeginOffset, 2360 Type *AllocaTy, 2361 const DataLayout &DL, 2362 bool &WholeAllocaOp) { 2363 uint64_t Size = DL.getTypeStoreSize(AllocaTy).getFixedValue(); 2364 2365 uint64_t RelBegin = S.beginOffset() - AllocBeginOffset; 2366 uint64_t RelEnd = S.endOffset() - AllocBeginOffset; 2367 2368 Use *U = S.getUse(); 2369 2370 // Lifetime intrinsics operate over the whole alloca whose sizes are usually 2371 // larger than other load/store slices (RelEnd > Size). But lifetime are 2372 // always promotable and should not impact other slices' promotability of the 2373 // partition. 2374 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) { 2375 if (II->isLifetimeStartOrEnd() || II->isDroppable()) 2376 return true; 2377 } 2378 2379 // We can't reasonably handle cases where the load or store extends past 2380 // the end of the alloca's type and into its padding. 2381 if (RelEnd > Size) 2382 return false; 2383 2384 if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) { 2385 if (LI->isVolatile()) 2386 return false; 2387 // We can't handle loads that extend past the allocated memory. 2388 if (DL.getTypeStoreSize(LI->getType()).getFixedValue() > Size) 2389 return false; 2390 // So far, AllocaSliceRewriter does not support widening split slice tails 2391 // in rewriteIntegerLoad. 2392 if (S.beginOffset() < AllocBeginOffset) 2393 return false; 2394 // Note that we don't count vector loads or stores as whole-alloca 2395 // operations which enable integer widening because we would prefer to use 2396 // vector widening instead. 2397 if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size) 2398 WholeAllocaOp = true; 2399 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) { 2400 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue()) 2401 return false; 2402 } else if (RelBegin != 0 || RelEnd != Size || 2403 !canConvertValue(DL, AllocaTy, LI->getType())) { 2404 // Non-integer loads need to be convertible from the alloca type so that 2405 // they are promotable. 2406 return false; 2407 } 2408 } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) { 2409 Type *ValueTy = SI->getValueOperand()->getType(); 2410 if (SI->isVolatile()) 2411 return false; 2412 // We can't handle stores that extend past the allocated memory. 2413 if (DL.getTypeStoreSize(ValueTy).getFixedValue() > Size) 2414 return false; 2415 // So far, AllocaSliceRewriter does not support widening split slice tails 2416 // in rewriteIntegerStore. 2417 if (S.beginOffset() < AllocBeginOffset) 2418 return false; 2419 // Note that we don't count vector loads or stores as whole-alloca 2420 // operations which enable integer widening because we would prefer to use 2421 // vector widening instead. 2422 if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size) 2423 WholeAllocaOp = true; 2424 if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) { 2425 if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy).getFixedValue()) 2426 return false; 2427 } else if (RelBegin != 0 || RelEnd != Size || 2428 !canConvertValue(DL, ValueTy, AllocaTy)) { 2429 // Non-integer stores need to be convertible to the alloca type so that 2430 // they are promotable. 2431 return false; 2432 } 2433 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) { 2434 if (MI->isVolatile() || !isa<Constant>(MI->getLength())) 2435 return false; 2436 if (!S.isSplittable()) 2437 return false; // Skip any unsplittable intrinsics. 2438 } else { 2439 return false; 2440 } 2441 2442 return true; 2443 } 2444 2445 /// Test whether the given alloca partition's integer operations can be 2446 /// widened to promotable ones. 2447 /// 2448 /// This is a quick test to check whether we can rewrite the integer loads and 2449 /// stores to a particular alloca into wider loads and stores and be able to 2450 /// promote the resulting alloca. 2451 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy, 2452 const DataLayout &DL) { 2453 uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy).getFixedValue(); 2454 // Don't create integer types larger than the maximum bitwidth. 2455 if (SizeInBits > IntegerType::MAX_INT_BITS) 2456 return false; 2457 2458 // Don't try to handle allocas with bit-padding. 2459 if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy).getFixedValue()) 2460 return false; 2461 2462 // We need to ensure that an integer type with the appropriate bitwidth can 2463 // be converted to the alloca type, whatever that is. We don't want to force 2464 // the alloca itself to have an integer type if there is a more suitable one. 2465 Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits); 2466 if (!canConvertValue(DL, AllocaTy, IntTy) || 2467 !canConvertValue(DL, IntTy, AllocaTy)) 2468 return false; 2469 2470 // While examining uses, we ensure that the alloca has a covering load or 2471 // store. We don't want to widen the integer operations only to fail to 2472 // promote due to some other unsplittable entry (which we may make splittable 2473 // later). However, if there are only splittable uses, go ahead and assume 2474 // that we cover the alloca. 2475 // FIXME: We shouldn't consider split slices that happen to start in the 2476 // partition here... 2477 bool WholeAllocaOp = P.empty() && DL.isLegalInteger(SizeInBits); 2478 2479 for (const Slice &S : P) 2480 if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL, 2481 WholeAllocaOp)) 2482 return false; 2483 2484 for (const Slice *S : P.splitSliceTails()) 2485 if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL, 2486 WholeAllocaOp)) 2487 return false; 2488 2489 return WholeAllocaOp; 2490 } 2491 2492 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V, 2493 IntegerType *Ty, uint64_t Offset, 2494 const Twine &Name) { 2495 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2496 IntegerType *IntTy = cast<IntegerType>(V->getType()); 2497 assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= 2498 DL.getTypeStoreSize(IntTy).getFixedValue() && 2499 "Element extends past full value"); 2500 uint64_t ShAmt = 8 * Offset; 2501 if (DL.isBigEndian()) 2502 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() - 2503 DL.getTypeStoreSize(Ty).getFixedValue() - Offset); 2504 if (ShAmt) { 2505 V = IRB.CreateLShr(V, ShAmt, Name + ".shift"); 2506 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2507 } 2508 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2509 "Cannot extract to a larger integer!"); 2510 if (Ty != IntTy) { 2511 V = IRB.CreateTrunc(V, Ty, Name + ".trunc"); 2512 LLVM_DEBUG(dbgs() << " trunced: " << *V << "\n"); 2513 } 2514 return V; 2515 } 2516 2517 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old, 2518 Value *V, uint64_t Offset, const Twine &Name) { 2519 IntegerType *IntTy = cast<IntegerType>(Old->getType()); 2520 IntegerType *Ty = cast<IntegerType>(V->getType()); 2521 assert(Ty->getBitWidth() <= IntTy->getBitWidth() && 2522 "Cannot insert a larger integer!"); 2523 LLVM_DEBUG(dbgs() << " start: " << *V << "\n"); 2524 if (Ty != IntTy) { 2525 V = IRB.CreateZExt(V, IntTy, Name + ".ext"); 2526 LLVM_DEBUG(dbgs() << " extended: " << *V << "\n"); 2527 } 2528 assert(DL.getTypeStoreSize(Ty).getFixedValue() + Offset <= 2529 DL.getTypeStoreSize(IntTy).getFixedValue() && 2530 "Element store outside of alloca store"); 2531 uint64_t ShAmt = 8 * Offset; 2532 if (DL.isBigEndian()) 2533 ShAmt = 8 * (DL.getTypeStoreSize(IntTy).getFixedValue() - 2534 DL.getTypeStoreSize(Ty).getFixedValue() - Offset); 2535 if (ShAmt) { 2536 V = IRB.CreateShl(V, ShAmt, Name + ".shift"); 2537 LLVM_DEBUG(dbgs() << " shifted: " << *V << "\n"); 2538 } 2539 2540 if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) { 2541 APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt); 2542 Old = IRB.CreateAnd(Old, Mask, Name + ".mask"); 2543 LLVM_DEBUG(dbgs() << " masked: " << *Old << "\n"); 2544 V = IRB.CreateOr(Old, V, Name + ".insert"); 2545 LLVM_DEBUG(dbgs() << " inserted: " << *V << "\n"); 2546 } 2547 return V; 2548 } 2549 2550 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex, 2551 unsigned EndIndex, const Twine &Name) { 2552 auto *VecTy = cast<FixedVectorType>(V->getType()); 2553 unsigned NumElements = EndIndex - BeginIndex; 2554 assert(NumElements <= VecTy->getNumElements() && "Too many elements!"); 2555 2556 if (NumElements == VecTy->getNumElements()) 2557 return V; 2558 2559 if (NumElements == 1) { 2560 V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex), 2561 Name + ".extract"); 2562 LLVM_DEBUG(dbgs() << " extract: " << *V << "\n"); 2563 return V; 2564 } 2565 2566 auto Mask = llvm::to_vector<8>(llvm::seq<int>(BeginIndex, EndIndex)); 2567 V = IRB.CreateShuffleVector(V, Mask, Name + ".extract"); 2568 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2569 return V; 2570 } 2571 2572 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V, 2573 unsigned BeginIndex, const Twine &Name) { 2574 VectorType *VecTy = cast<VectorType>(Old->getType()); 2575 assert(VecTy && "Can only insert a vector into a vector"); 2576 2577 VectorType *Ty = dyn_cast<VectorType>(V->getType()); 2578 if (!Ty) { 2579 // Single element to insert. 2580 V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex), 2581 Name + ".insert"); 2582 LLVM_DEBUG(dbgs() << " insert: " << *V << "\n"); 2583 return V; 2584 } 2585 2586 assert(cast<FixedVectorType>(Ty)->getNumElements() <= 2587 cast<FixedVectorType>(VecTy)->getNumElements() && 2588 "Too many elements!"); 2589 if (cast<FixedVectorType>(Ty)->getNumElements() == 2590 cast<FixedVectorType>(VecTy)->getNumElements()) { 2591 assert(V->getType() == VecTy && "Vector type mismatch"); 2592 return V; 2593 } 2594 unsigned EndIndex = BeginIndex + cast<FixedVectorType>(Ty)->getNumElements(); 2595 2596 // When inserting a smaller vector into the larger to store, we first 2597 // use a shuffle vector to widen it with undef elements, and then 2598 // a second shuffle vector to select between the loaded vector and the 2599 // incoming vector. 2600 SmallVector<int, 8> Mask; 2601 Mask.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2602 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2603 if (i >= BeginIndex && i < EndIndex) 2604 Mask.push_back(i - BeginIndex); 2605 else 2606 Mask.push_back(-1); 2607 V = IRB.CreateShuffleVector(V, Mask, Name + ".expand"); 2608 LLVM_DEBUG(dbgs() << " shuffle: " << *V << "\n"); 2609 2610 SmallVector<Constant *, 8> Mask2; 2611 Mask2.reserve(cast<FixedVectorType>(VecTy)->getNumElements()); 2612 for (unsigned i = 0; i != cast<FixedVectorType>(VecTy)->getNumElements(); ++i) 2613 Mask2.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex)); 2614 2615 V = IRB.CreateSelect(ConstantVector::get(Mask2), V, Old, Name + "blend"); 2616 2617 LLVM_DEBUG(dbgs() << " blend: " << *V << "\n"); 2618 return V; 2619 } 2620 2621 namespace { 2622 2623 /// Visitor to rewrite instructions using p particular slice of an alloca 2624 /// to use a new alloca. 2625 /// 2626 /// Also implements the rewriting to vector-based accesses when the partition 2627 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic 2628 /// lives here. 2629 class AllocaSliceRewriter : public InstVisitor<AllocaSliceRewriter, bool> { 2630 // Befriend the base class so it can delegate to private visit methods. 2631 friend class InstVisitor<AllocaSliceRewriter, bool>; 2632 2633 using Base = InstVisitor<AllocaSliceRewriter, bool>; 2634 2635 const DataLayout &DL; 2636 AllocaSlices &AS; 2637 SROA &Pass; 2638 AllocaInst &OldAI, &NewAI; 2639 const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; 2640 Type *NewAllocaTy; 2641 2642 // This is a convenience and flag variable that will be null unless the new 2643 // alloca's integer operations should be widened to this integer type due to 2644 // passing isIntegerWideningViable above. If it is non-null, the desired 2645 // integer type will be stored here for easy access during rewriting. 2646 IntegerType *IntTy; 2647 2648 // If we are rewriting an alloca partition which can be written as pure 2649 // vector operations, we stash extra information here. When VecTy is 2650 // non-null, we have some strict guarantees about the rewritten alloca: 2651 // - The new alloca is exactly the size of the vector type here. 2652 // - The accesses all either map to the entire vector or to a single 2653 // element. 2654 // - The set of accessing instructions is only one of those handled above 2655 // in isVectorPromotionViable. Generally these are the same access kinds 2656 // which are promotable via mem2reg. 2657 VectorType *VecTy; 2658 Type *ElementTy; 2659 uint64_t ElementSize; 2660 2661 // The original offset of the slice currently being rewritten relative to 2662 // the original alloca. 2663 uint64_t BeginOffset = 0; 2664 uint64_t EndOffset = 0; 2665 2666 // The new offsets of the slice currently being rewritten relative to the 2667 // original alloca. 2668 uint64_t NewBeginOffset = 0, NewEndOffset = 0; 2669 2670 uint64_t SliceSize = 0; 2671 bool IsSplittable = false; 2672 bool IsSplit = false; 2673 Use *OldUse = nullptr; 2674 Instruction *OldPtr = nullptr; 2675 2676 // Track post-rewrite users which are PHI nodes and Selects. 2677 SmallSetVector<PHINode *, 8> &PHIUsers; 2678 SmallSetVector<SelectInst *, 8> &SelectUsers; 2679 2680 // Utility IR builder, whose name prefix is setup for each visited use, and 2681 // the insertion point is set to point to the user. 2682 IRBuilderTy IRB; 2683 2684 // Return the new alloca, addrspacecasted if required to avoid changing the 2685 // addrspace of a volatile access. 2686 Value *getPtrToNewAI(unsigned AddrSpace, bool IsVolatile) { 2687 if (!IsVolatile || AddrSpace == NewAI.getType()->getPointerAddressSpace()) 2688 return &NewAI; 2689 2690 Type *AccessTy = IRB.getPtrTy(AddrSpace); 2691 return IRB.CreateAddrSpaceCast(&NewAI, AccessTy); 2692 } 2693 2694 public: 2695 AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass, 2696 AllocaInst &OldAI, AllocaInst &NewAI, 2697 uint64_t NewAllocaBeginOffset, 2698 uint64_t NewAllocaEndOffset, bool IsIntegerPromotable, 2699 VectorType *PromotableVecTy, 2700 SmallSetVector<PHINode *, 8> &PHIUsers, 2701 SmallSetVector<SelectInst *, 8> &SelectUsers) 2702 : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI), 2703 NewAllocaBeginOffset(NewAllocaBeginOffset), 2704 NewAllocaEndOffset(NewAllocaEndOffset), 2705 NewAllocaTy(NewAI.getAllocatedType()), 2706 IntTy( 2707 IsIntegerPromotable 2708 ? Type::getIntNTy(NewAI.getContext(), 2709 DL.getTypeSizeInBits(NewAI.getAllocatedType()) 2710 .getFixedValue()) 2711 : nullptr), 2712 VecTy(PromotableVecTy), 2713 ElementTy(VecTy ? VecTy->getElementType() : nullptr), 2714 ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8 2715 : 0), 2716 PHIUsers(PHIUsers), SelectUsers(SelectUsers), 2717 IRB(NewAI.getContext(), ConstantFolder()) { 2718 if (VecTy) { 2719 assert((DL.getTypeSizeInBits(ElementTy).getFixedValue() % 8) == 0 && 2720 "Only multiple-of-8 sized vector elements are viable"); 2721 ++NumVectorized; 2722 } 2723 assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy)); 2724 } 2725 2726 bool visit(AllocaSlices::const_iterator I) { 2727 bool CanSROA = true; 2728 BeginOffset = I->beginOffset(); 2729 EndOffset = I->endOffset(); 2730 IsSplittable = I->isSplittable(); 2731 IsSplit = 2732 BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset; 2733 LLVM_DEBUG(dbgs() << " rewriting " << (IsSplit ? "split " : "")); 2734 LLVM_DEBUG(AS.printSlice(dbgs(), I, "")); 2735 LLVM_DEBUG(dbgs() << "\n"); 2736 2737 // Compute the intersecting offset range. 2738 assert(BeginOffset < NewAllocaEndOffset); 2739 assert(EndOffset > NewAllocaBeginOffset); 2740 NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset); 2741 NewEndOffset = std::min(EndOffset, NewAllocaEndOffset); 2742 2743 SliceSize = NewEndOffset - NewBeginOffset; 2744 LLVM_DEBUG(dbgs() << " Begin:(" << BeginOffset << ", " << EndOffset 2745 << ") NewBegin:(" << NewBeginOffset << ", " 2746 << NewEndOffset << ") NewAllocaBegin:(" 2747 << NewAllocaBeginOffset << ", " << NewAllocaEndOffset 2748 << ")\n"); 2749 assert(IsSplit || NewBeginOffset == BeginOffset); 2750 OldUse = I->getUse(); 2751 OldPtr = cast<Instruction>(OldUse->get()); 2752 2753 Instruction *OldUserI = cast<Instruction>(OldUse->getUser()); 2754 IRB.SetInsertPoint(OldUserI); 2755 IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc()); 2756 IRB.getInserter().SetNamePrefix(Twine(NewAI.getName()) + "." + 2757 Twine(BeginOffset) + "."); 2758 2759 CanSROA &= visit(cast<Instruction>(OldUse->getUser())); 2760 if (VecTy || IntTy) 2761 assert(CanSROA); 2762 return CanSROA; 2763 } 2764 2765 private: 2766 // Make sure the other visit overloads are visible. 2767 using Base::visit; 2768 2769 // Every instruction which can end up as a user must have a rewrite rule. 2770 bool visitInstruction(Instruction &I) { 2771 LLVM_DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); 2772 llvm_unreachable("No rewrite rule for this instruction!"); 2773 } 2774 2775 Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) { 2776 // Note that the offset computation can use BeginOffset or NewBeginOffset 2777 // interchangeably for unsplit slices. 2778 assert(IsSplit || BeginOffset == NewBeginOffset); 2779 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2780 2781 #ifndef NDEBUG 2782 StringRef OldName = OldPtr->getName(); 2783 // Skip through the last '.sroa.' component of the name. 2784 size_t LastSROAPrefix = OldName.rfind(".sroa."); 2785 if (LastSROAPrefix != StringRef::npos) { 2786 OldName = OldName.substr(LastSROAPrefix + strlen(".sroa.")); 2787 // Look for an SROA slice index. 2788 size_t IndexEnd = OldName.find_first_not_of("0123456789"); 2789 if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') { 2790 // Strip the index and look for the offset. 2791 OldName = OldName.substr(IndexEnd + 1); 2792 size_t OffsetEnd = OldName.find_first_not_of("0123456789"); 2793 if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.') 2794 // Strip the offset. 2795 OldName = OldName.substr(OffsetEnd + 1); 2796 } 2797 } 2798 // Strip any SROA suffixes as well. 2799 OldName = OldName.substr(0, OldName.find(".sroa_")); 2800 #endif 2801 2802 return getAdjustedPtr(IRB, DL, &NewAI, 2803 APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset), 2804 PointerTy, 2805 #ifndef NDEBUG 2806 Twine(OldName) + "." 2807 #else 2808 Twine() 2809 #endif 2810 ); 2811 } 2812 2813 /// Compute suitable alignment to access this slice of the *new* 2814 /// alloca. 2815 /// 2816 /// You can optionally pass a type to this routine and if that type's ABI 2817 /// alignment is itself suitable, this will return zero. 2818 Align getSliceAlign() { 2819 return commonAlignment(NewAI.getAlign(), 2820 NewBeginOffset - NewAllocaBeginOffset); 2821 } 2822 2823 unsigned getIndex(uint64_t Offset) { 2824 assert(VecTy && "Can only call getIndex when rewriting a vector"); 2825 uint64_t RelOffset = Offset - NewAllocaBeginOffset; 2826 assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); 2827 uint32_t Index = RelOffset / ElementSize; 2828 assert(Index * ElementSize == RelOffset); 2829 return Index; 2830 } 2831 2832 void deleteIfTriviallyDead(Value *V) { 2833 Instruction *I = cast<Instruction>(V); 2834 if (isInstructionTriviallyDead(I)) 2835 Pass.DeadInsts.push_back(I); 2836 } 2837 2838 Value *rewriteVectorizedLoadInst(LoadInst &LI) { 2839 unsigned BeginIndex = getIndex(NewBeginOffset); 2840 unsigned EndIndex = getIndex(NewEndOffset); 2841 assert(EndIndex > BeginIndex && "Empty vector!"); 2842 2843 LoadInst *Load = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2844 NewAI.getAlign(), "load"); 2845 2846 Load->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2847 LLVMContext::MD_access_group}); 2848 return extractVector(IRB, Load, BeginIndex, EndIndex, "vec"); 2849 } 2850 2851 Value *rewriteIntegerLoad(LoadInst &LI) { 2852 assert(IntTy && "We cannot insert an integer to the alloca"); 2853 assert(!LI.isVolatile()); 2854 Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 2855 NewAI.getAlign(), "load"); 2856 V = convertValue(DL, IRB, V, IntTy); 2857 assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 2858 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 2859 if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) { 2860 IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8); 2861 V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract"); 2862 } 2863 // It is possible that the extracted type is not the load type. This 2864 // happens if there is a load past the end of the alloca, and as 2865 // a consequence the slice is narrower but still a candidate for integer 2866 // lowering. To handle this case, we just zero extend the extracted 2867 // integer. 2868 assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 && 2869 "Can only handle an extract for an overly wide load"); 2870 if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8) 2871 V = IRB.CreateZExt(V, LI.getType()); 2872 return V; 2873 } 2874 2875 bool visitLoadInst(LoadInst &LI) { 2876 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 2877 Value *OldOp = LI.getOperand(0); 2878 assert(OldOp == OldPtr); 2879 2880 AAMDNodes AATags = LI.getAAMetadata(); 2881 2882 unsigned AS = LI.getPointerAddressSpace(); 2883 2884 Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8) 2885 : LI.getType(); 2886 const bool IsLoadPastEnd = 2887 DL.getTypeStoreSize(TargetTy).getFixedValue() > SliceSize; 2888 bool IsPtrAdjusted = false; 2889 Value *V; 2890 if (VecTy) { 2891 V = rewriteVectorizedLoadInst(LI); 2892 } else if (IntTy && LI.getType()->isIntegerTy()) { 2893 V = rewriteIntegerLoad(LI); 2894 } else if (NewBeginOffset == NewAllocaBeginOffset && 2895 NewEndOffset == NewAllocaEndOffset && 2896 (canConvertValue(DL, NewAllocaTy, TargetTy) || 2897 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() && 2898 TargetTy->isIntegerTy() && !LI.isVolatile()))) { 2899 Value *NewPtr = 2900 getPtrToNewAI(LI.getPointerAddressSpace(), LI.isVolatile()); 2901 LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), NewPtr, 2902 NewAI.getAlign(), LI.isVolatile(), 2903 LI.getName()); 2904 if (LI.isVolatile()) 2905 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2906 if (NewLI->isAtomic()) 2907 NewLI->setAlignment(LI.getAlign()); 2908 2909 // Copy any metadata that is valid for the new load. This may require 2910 // conversion to a different kind of metadata, e.g. !nonnull might change 2911 // to !range or vice versa. 2912 copyMetadataForLoad(*NewLI, LI); 2913 2914 // Do this after copyMetadataForLoad() to preserve the TBAA shift. 2915 if (AATags) 2916 NewLI->setAAMetadata(AATags.adjustForAccess( 2917 NewBeginOffset - BeginOffset, NewLI->getType(), DL)); 2918 2919 // Try to preserve nonnull metadata 2920 V = NewLI; 2921 2922 // If this is an integer load past the end of the slice (which means the 2923 // bytes outside the slice are undef or this load is dead) just forcibly 2924 // fix the integer size with correct handling of endianness. 2925 if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy)) 2926 if (auto *TITy = dyn_cast<IntegerType>(TargetTy)) 2927 if (AITy->getBitWidth() < TITy->getBitWidth()) { 2928 V = IRB.CreateZExt(V, TITy, "load.ext"); 2929 if (DL.isBigEndian()) 2930 V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(), 2931 "endian_shift"); 2932 } 2933 } else { 2934 Type *LTy = IRB.getPtrTy(AS); 2935 LoadInst *NewLI = 2936 IRB.CreateAlignedLoad(TargetTy, getNewAllocaSlicePtr(IRB, LTy), 2937 getSliceAlign(), LI.isVolatile(), LI.getName()); 2938 2939 if (AATags) 2940 NewLI->setAAMetadata(AATags.adjustForAccess( 2941 NewBeginOffset - BeginOffset, NewLI->getType(), DL)); 2942 2943 if (LI.isVolatile()) 2944 NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 2945 NewLI->copyMetadata(LI, {LLVMContext::MD_mem_parallel_loop_access, 2946 LLVMContext::MD_access_group}); 2947 2948 V = NewLI; 2949 IsPtrAdjusted = true; 2950 } 2951 V = convertValue(DL, IRB, V, TargetTy); 2952 2953 if (IsSplit) { 2954 assert(!LI.isVolatile()); 2955 assert(LI.getType()->isIntegerTy() && 2956 "Only integer type loads and stores are split"); 2957 assert(SliceSize < DL.getTypeStoreSize(LI.getType()).getFixedValue() && 2958 "Split load isn't smaller than original load"); 2959 assert(DL.typeSizeEqualsStoreSize(LI.getType()) && 2960 "Non-byte-multiple bit width"); 2961 // Move the insertion point just past the load so that we can refer to it. 2962 BasicBlock::iterator LIIt = std::next(LI.getIterator()); 2963 // Ensure the insertion point comes before any debug-info immediately 2964 // after the load, so that variable values referring to the load are 2965 // dominated by it. 2966 LIIt.setHeadBit(true); 2967 IRB.SetInsertPoint(LI.getParent(), LIIt); 2968 // Create a placeholder value with the same type as LI to use as the 2969 // basis for the new value. This allows us to replace the uses of LI with 2970 // the computed value, and then replace the placeholder with LI, leaving 2971 // LI only used for this computation. 2972 Value *Placeholder = 2973 new LoadInst(LI.getType(), PoisonValue::get(IRB.getPtrTy(AS)), "", 2974 false, Align(1)); 2975 V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset, 2976 "insert"); 2977 LI.replaceAllUsesWith(V); 2978 Placeholder->replaceAllUsesWith(&LI); 2979 Placeholder->deleteValue(); 2980 } else { 2981 LI.replaceAllUsesWith(V); 2982 } 2983 2984 Pass.DeadInsts.push_back(&LI); 2985 deleteIfTriviallyDead(OldOp); 2986 LLVM_DEBUG(dbgs() << " to: " << *V << "\n"); 2987 return !LI.isVolatile() && !IsPtrAdjusted; 2988 } 2989 2990 bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp, 2991 AAMDNodes AATags) { 2992 // Capture V for the purpose of debug-info accounting once it's converted 2993 // to a vector store. 2994 Value *OrigV = V; 2995 if (V->getType() != VecTy) { 2996 unsigned BeginIndex = getIndex(NewBeginOffset); 2997 unsigned EndIndex = getIndex(NewEndOffset); 2998 assert(EndIndex > BeginIndex && "Empty vector!"); 2999 unsigned NumElements = EndIndex - BeginIndex; 3000 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 3001 "Too many elements!"); 3002 Type *SliceTy = (NumElements == 1) 3003 ? ElementTy 3004 : FixedVectorType::get(ElementTy, NumElements); 3005 if (V->getType() != SliceTy) 3006 V = convertValue(DL, IRB, V, SliceTy); 3007 3008 // Mix in the existing elements. 3009 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3010 NewAI.getAlign(), "load"); 3011 V = insertVector(IRB, Old, V, BeginIndex, "vec"); 3012 } 3013 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 3014 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 3015 LLVMContext::MD_access_group}); 3016 if (AATags) 3017 Store->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset, 3018 V->getType(), DL)); 3019 Pass.DeadInsts.push_back(&SI); 3020 3021 // NOTE: Careful to use OrigV rather than V. 3022 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI, 3023 Store, Store->getPointerOperand(), OrigV, DL); 3024 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3025 return true; 3026 } 3027 3028 bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) { 3029 assert(IntTy && "We cannot extract an integer from the alloca"); 3030 assert(!SI.isVolatile()); 3031 if (DL.getTypeSizeInBits(V->getType()).getFixedValue() != 3032 IntTy->getBitWidth()) { 3033 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3034 NewAI.getAlign(), "oldload"); 3035 Old = convertValue(DL, IRB, Old, IntTy); 3036 assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset"); 3037 uint64_t Offset = BeginOffset - NewAllocaBeginOffset; 3038 V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert"); 3039 } 3040 V = convertValue(DL, IRB, V, NewAllocaTy); 3041 StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlign()); 3042 Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 3043 LLVMContext::MD_access_group}); 3044 if (AATags) 3045 Store->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset, 3046 V->getType(), DL)); 3047 3048 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI, 3049 Store, Store->getPointerOperand(), 3050 Store->getValueOperand(), DL); 3051 3052 Pass.DeadInsts.push_back(&SI); 3053 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3054 return true; 3055 } 3056 3057 bool visitStoreInst(StoreInst &SI) { 3058 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3059 Value *OldOp = SI.getOperand(1); 3060 assert(OldOp == OldPtr); 3061 3062 AAMDNodes AATags = SI.getAAMetadata(); 3063 Value *V = SI.getValueOperand(); 3064 3065 // Strip all inbounds GEPs and pointer casts to try to dig out any root 3066 // alloca that should be re-examined after promoting this alloca. 3067 if (V->getType()->isPointerTy()) 3068 if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets())) 3069 Pass.PostPromotionWorklist.insert(AI); 3070 3071 if (SliceSize < DL.getTypeStoreSize(V->getType()).getFixedValue()) { 3072 assert(!SI.isVolatile()); 3073 assert(V->getType()->isIntegerTy() && 3074 "Only integer type loads and stores are split"); 3075 assert(DL.typeSizeEqualsStoreSize(V->getType()) && 3076 "Non-byte-multiple bit width"); 3077 IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8); 3078 V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset, 3079 "extract"); 3080 } 3081 3082 if (VecTy) 3083 return rewriteVectorizedStoreInst(V, SI, OldOp, AATags); 3084 if (IntTy && V->getType()->isIntegerTy()) 3085 return rewriteIntegerStore(V, SI, AATags); 3086 3087 StoreInst *NewSI; 3088 if (NewBeginOffset == NewAllocaBeginOffset && 3089 NewEndOffset == NewAllocaEndOffset && 3090 canConvertValue(DL, V->getType(), NewAllocaTy)) { 3091 V = convertValue(DL, IRB, V, NewAllocaTy); 3092 Value *NewPtr = 3093 getPtrToNewAI(SI.getPointerAddressSpace(), SI.isVolatile()); 3094 3095 NewSI = 3096 IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), SI.isVolatile()); 3097 } else { 3098 unsigned AS = SI.getPointerAddressSpace(); 3099 Value *NewPtr = getNewAllocaSlicePtr(IRB, IRB.getPtrTy(AS)); 3100 NewSI = 3101 IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(), SI.isVolatile()); 3102 } 3103 NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access, 3104 LLVMContext::MD_access_group}); 3105 if (AATags) 3106 NewSI->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset, 3107 V->getType(), DL)); 3108 if (SI.isVolatile()) 3109 NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 3110 if (NewSI->isAtomic()) 3111 NewSI->setAlignment(SI.getAlign()); 3112 3113 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &SI, 3114 NewSI, NewSI->getPointerOperand(), 3115 NewSI->getValueOperand(), DL); 3116 3117 Pass.DeadInsts.push_back(&SI); 3118 deleteIfTriviallyDead(OldOp); 3119 3120 LLVM_DEBUG(dbgs() << " to: " << *NewSI << "\n"); 3121 return NewSI->getPointerOperand() == &NewAI && 3122 NewSI->getValueOperand()->getType() == NewAllocaTy && 3123 !SI.isVolatile(); 3124 } 3125 3126 /// Compute an integer value from splatting an i8 across the given 3127 /// number of bytes. 3128 /// 3129 /// Note that this routine assumes an i8 is a byte. If that isn't true, don't 3130 /// call this routine. 3131 /// FIXME: Heed the advice above. 3132 /// 3133 /// \param V The i8 value to splat. 3134 /// \param Size The number of bytes in the output (assuming i8 is one byte) 3135 Value *getIntegerSplat(Value *V, unsigned Size) { 3136 assert(Size > 0 && "Expected a positive number of bytes."); 3137 IntegerType *VTy = cast<IntegerType>(V->getType()); 3138 assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte"); 3139 if (Size == 1) 3140 return V; 3141 3142 Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8); 3143 V = IRB.CreateMul( 3144 IRB.CreateZExt(V, SplatIntTy, "zext"), 3145 IRB.CreateUDiv(Constant::getAllOnesValue(SplatIntTy), 3146 IRB.CreateZExt(Constant::getAllOnesValue(V->getType()), 3147 SplatIntTy)), 3148 "isplat"); 3149 return V; 3150 } 3151 3152 /// Compute a vector splat for a given element value. 3153 Value *getVectorSplat(Value *V, unsigned NumElements) { 3154 V = IRB.CreateVectorSplat(NumElements, V, "vsplat"); 3155 LLVM_DEBUG(dbgs() << " splat: " << *V << "\n"); 3156 return V; 3157 } 3158 3159 bool visitMemSetInst(MemSetInst &II) { 3160 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3161 assert(II.getRawDest() == OldPtr); 3162 3163 AAMDNodes AATags = II.getAAMetadata(); 3164 3165 // If the memset has a variable size, it cannot be split, just adjust the 3166 // pointer to the new alloca. 3167 if (!isa<ConstantInt>(II.getLength())) { 3168 assert(!IsSplit); 3169 assert(NewBeginOffset == BeginOffset); 3170 II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType())); 3171 II.setDestAlignment(getSliceAlign()); 3172 // In theory we should call migrateDebugInfo here. However, we do not 3173 // emit dbg.assign intrinsics for mem intrinsics storing through non- 3174 // constant geps, or storing a variable number of bytes. 3175 assert(at::getAssignmentMarkers(&II).empty() && 3176 at::getDVRAssignmentMarkers(&II).empty() && 3177 "AT: Unexpected link to non-const GEP"); 3178 deleteIfTriviallyDead(OldPtr); 3179 return false; 3180 } 3181 3182 // Record this instruction for deletion. 3183 Pass.DeadInsts.push_back(&II); 3184 3185 Type *AllocaTy = NewAI.getAllocatedType(); 3186 Type *ScalarTy = AllocaTy->getScalarType(); 3187 3188 const bool CanContinue = [&]() { 3189 if (VecTy || IntTy) 3190 return true; 3191 if (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) 3192 return false; 3193 // Length must be in range for FixedVectorType. 3194 auto *C = cast<ConstantInt>(II.getLength()); 3195 const uint64_t Len = C->getLimitedValue(); 3196 if (Len > std::numeric_limits<unsigned>::max()) 3197 return false; 3198 auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext()); 3199 auto *SrcTy = FixedVectorType::get(Int8Ty, Len); 3200 return canConvertValue(DL, SrcTy, AllocaTy) && 3201 DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy).getFixedValue()); 3202 }(); 3203 3204 // If this doesn't map cleanly onto the alloca type, and that type isn't 3205 // a single value type, just emit a memset. 3206 if (!CanContinue) { 3207 Type *SizeTy = II.getLength()->getType(); 3208 unsigned Sz = NewEndOffset - NewBeginOffset; 3209 Constant *Size = ConstantInt::get(SizeTy, Sz); 3210 MemIntrinsic *New = cast<MemIntrinsic>(IRB.CreateMemSet( 3211 getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size, 3212 MaybeAlign(getSliceAlign()), II.isVolatile())); 3213 if (AATags) 3214 New->setAAMetadata( 3215 AATags.adjustForAccess(NewBeginOffset - BeginOffset, Sz)); 3216 3217 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II, 3218 New, New->getRawDest(), nullptr, DL); 3219 3220 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3221 return false; 3222 } 3223 3224 // If we can represent this as a simple value, we have to build the actual 3225 // value to store, which requires expanding the byte present in memset to 3226 // a sensible representation for the alloca type. This is essentially 3227 // splatting the byte to a sufficiently wide integer, splatting it across 3228 // any desired vector width, and bitcasting to the final type. 3229 Value *V; 3230 3231 if (VecTy) { 3232 // If this is a memset of a vectorized alloca, insert it. 3233 assert(ElementTy == ScalarTy); 3234 3235 unsigned BeginIndex = getIndex(NewBeginOffset); 3236 unsigned EndIndex = getIndex(NewEndOffset); 3237 assert(EndIndex > BeginIndex && "Empty vector!"); 3238 unsigned NumElements = EndIndex - BeginIndex; 3239 assert(NumElements <= cast<FixedVectorType>(VecTy)->getNumElements() && 3240 "Too many elements!"); 3241 3242 Value *Splat = getIntegerSplat( 3243 II.getValue(), DL.getTypeSizeInBits(ElementTy).getFixedValue() / 8); 3244 Splat = convertValue(DL, IRB, Splat, ElementTy); 3245 if (NumElements > 1) 3246 Splat = getVectorSplat(Splat, NumElements); 3247 3248 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3249 NewAI.getAlign(), "oldload"); 3250 V = insertVector(IRB, Old, Splat, BeginIndex, "vec"); 3251 } else if (IntTy) { 3252 // If this is a memset on an alloca where we can widen stores, insert the 3253 // set integer. 3254 assert(!II.isVolatile()); 3255 3256 uint64_t Size = NewEndOffset - NewBeginOffset; 3257 V = getIntegerSplat(II.getValue(), Size); 3258 3259 if (IntTy && (BeginOffset != NewAllocaBeginOffset || 3260 EndOffset != NewAllocaBeginOffset)) { 3261 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3262 NewAI.getAlign(), "oldload"); 3263 Old = convertValue(DL, IRB, Old, IntTy); 3264 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3265 V = insertInteger(DL, IRB, Old, V, Offset, "insert"); 3266 } else { 3267 assert(V->getType() == IntTy && 3268 "Wrong type for an alloca wide integer!"); 3269 } 3270 V = convertValue(DL, IRB, V, AllocaTy); 3271 } else { 3272 // Established these invariants above. 3273 assert(NewBeginOffset == NewAllocaBeginOffset); 3274 assert(NewEndOffset == NewAllocaEndOffset); 3275 3276 V = getIntegerSplat(II.getValue(), 3277 DL.getTypeSizeInBits(ScalarTy).getFixedValue() / 8); 3278 if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy)) 3279 V = getVectorSplat( 3280 V, cast<FixedVectorType>(AllocaVecTy)->getNumElements()); 3281 3282 V = convertValue(DL, IRB, V, AllocaTy); 3283 } 3284 3285 Value *NewPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile()); 3286 StoreInst *New = 3287 IRB.CreateAlignedStore(V, NewPtr, NewAI.getAlign(), II.isVolatile()); 3288 New->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3289 LLVMContext::MD_access_group}); 3290 if (AATags) 3291 New->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset, 3292 V->getType(), DL)); 3293 3294 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II, 3295 New, New->getPointerOperand(), V, DL); 3296 3297 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3298 return !II.isVolatile(); 3299 } 3300 3301 bool visitMemTransferInst(MemTransferInst &II) { 3302 // Rewriting of memory transfer instructions can be a bit tricky. We break 3303 // them into two categories: split intrinsics and unsplit intrinsics. 3304 3305 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3306 3307 AAMDNodes AATags = II.getAAMetadata(); 3308 3309 bool IsDest = &II.getRawDestUse() == OldUse; 3310 assert((IsDest && II.getRawDest() == OldPtr) || 3311 (!IsDest && II.getRawSource() == OldPtr)); 3312 3313 Align SliceAlign = getSliceAlign(); 3314 // For unsplit intrinsics, we simply modify the source and destination 3315 // pointers in place. This isn't just an optimization, it is a matter of 3316 // correctness. With unsplit intrinsics we may be dealing with transfers 3317 // within a single alloca before SROA ran, or with transfers that have 3318 // a variable length. We may also be dealing with memmove instead of 3319 // memcpy, and so simply updating the pointers is the necessary for us to 3320 // update both source and dest of a single call. 3321 if (!IsSplittable) { 3322 Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3323 if (IsDest) { 3324 // Update the address component of linked dbg.assigns. 3325 auto UpdateAssignAddress = [&](auto *DbgAssign) { 3326 if (llvm::is_contained(DbgAssign->location_ops(), II.getDest()) || 3327 DbgAssign->getAddress() == II.getDest()) 3328 DbgAssign->replaceVariableLocationOp(II.getDest(), AdjustedPtr); 3329 }; 3330 for_each(at::getAssignmentMarkers(&II), UpdateAssignAddress); 3331 for_each(at::getDVRAssignmentMarkers(&II), UpdateAssignAddress); 3332 II.setDest(AdjustedPtr); 3333 II.setDestAlignment(SliceAlign); 3334 } else { 3335 II.setSource(AdjustedPtr); 3336 II.setSourceAlignment(SliceAlign); 3337 } 3338 3339 LLVM_DEBUG(dbgs() << " to: " << II << "\n"); 3340 deleteIfTriviallyDead(OldPtr); 3341 return false; 3342 } 3343 // For split transfer intrinsics we have an incredibly useful assurance: 3344 // the source and destination do not reside within the same alloca, and at 3345 // least one of them does not escape. This means that we can replace 3346 // memmove with memcpy, and we don't need to worry about all manner of 3347 // downsides to splitting and transforming the operations. 3348 3349 // If this doesn't map cleanly onto the alloca type, and that type isn't 3350 // a single value type, just emit a memcpy. 3351 bool EmitMemCpy = 3352 !VecTy && !IntTy && 3353 (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset || 3354 SliceSize != 3355 DL.getTypeStoreSize(NewAI.getAllocatedType()).getFixedValue() || 3356 !DL.typeSizeEqualsStoreSize(NewAI.getAllocatedType()) || 3357 !NewAI.getAllocatedType()->isSingleValueType()); 3358 3359 // If we're just going to emit a memcpy, the alloca hasn't changed, and the 3360 // size hasn't been shrunk based on analysis of the viable range, this is 3361 // a no-op. 3362 if (EmitMemCpy && &OldAI == &NewAI) { 3363 // Ensure the start lines up. 3364 assert(NewBeginOffset == BeginOffset); 3365 3366 // Rewrite the size as needed. 3367 if (NewEndOffset != EndOffset) 3368 II.setLength(ConstantInt::get(II.getLength()->getType(), 3369 NewEndOffset - NewBeginOffset)); 3370 return false; 3371 } 3372 // Record this instruction for deletion. 3373 Pass.DeadInsts.push_back(&II); 3374 3375 // Strip all inbounds GEPs and pointer casts to try to dig out any root 3376 // alloca that should be re-examined after rewriting this instruction. 3377 Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); 3378 if (AllocaInst *AI = 3379 dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) { 3380 assert(AI != &OldAI && AI != &NewAI && 3381 "Splittable transfers cannot reach the same alloca on both ends."); 3382 Pass.Worklist.insert(AI); 3383 } 3384 3385 Type *OtherPtrTy = OtherPtr->getType(); 3386 unsigned OtherAS = OtherPtrTy->getPointerAddressSpace(); 3387 3388 // Compute the relative offset for the other pointer within the transfer. 3389 unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS); 3390 APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset); 3391 Align OtherAlign = 3392 (IsDest ? II.getSourceAlign() : II.getDestAlign()).valueOrOne(); 3393 OtherAlign = 3394 commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue()); 3395 3396 if (EmitMemCpy) { 3397 // Compute the other pointer, folding as much as possible to produce 3398 // a single, simple GEP in most cases. 3399 OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3400 OtherPtr->getName() + "."); 3401 3402 Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3403 Type *SizeTy = II.getLength()->getType(); 3404 Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset); 3405 3406 Value *DestPtr, *SrcPtr; 3407 MaybeAlign DestAlign, SrcAlign; 3408 // Note: IsDest is true iff we're copying into the new alloca slice 3409 if (IsDest) { 3410 DestPtr = OurPtr; 3411 DestAlign = SliceAlign; 3412 SrcPtr = OtherPtr; 3413 SrcAlign = OtherAlign; 3414 } else { 3415 DestPtr = OtherPtr; 3416 DestAlign = OtherAlign; 3417 SrcPtr = OurPtr; 3418 SrcAlign = SliceAlign; 3419 } 3420 CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign, 3421 Size, II.isVolatile()); 3422 if (AATags) 3423 New->setAAMetadata(AATags.shift(NewBeginOffset - BeginOffset)); 3424 3425 APInt Offset(DL.getIndexTypeSizeInBits(DestPtr->getType()), 0); 3426 if (IsDest) { 3427 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, 3428 &II, New, DestPtr, nullptr, DL); 3429 } else if (AllocaInst *Base = dyn_cast<AllocaInst>( 3430 DestPtr->stripAndAccumulateConstantOffsets( 3431 DL, Offset, /*AllowNonInbounds*/ true))) { 3432 migrateDebugInfo(Base, IsSplit, Offset.getZExtValue() * 8, 3433 SliceSize * 8, &II, New, DestPtr, nullptr, DL); 3434 } 3435 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3436 return false; 3437 } 3438 3439 bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset && 3440 NewEndOffset == NewAllocaEndOffset; 3441 uint64_t Size = NewEndOffset - NewBeginOffset; 3442 unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0; 3443 unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0; 3444 unsigned NumElements = EndIndex - BeginIndex; 3445 IntegerType *SubIntTy = 3446 IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr; 3447 3448 // Reset the other pointer type to match the register type we're going to 3449 // use, but using the address space of the original other pointer. 3450 Type *OtherTy; 3451 if (VecTy && !IsWholeAlloca) { 3452 if (NumElements == 1) 3453 OtherTy = VecTy->getElementType(); 3454 else 3455 OtherTy = FixedVectorType::get(VecTy->getElementType(), NumElements); 3456 } else if (IntTy && !IsWholeAlloca) { 3457 OtherTy = SubIntTy; 3458 } else { 3459 OtherTy = NewAllocaTy; 3460 } 3461 3462 Value *AdjPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy, 3463 OtherPtr->getName() + "."); 3464 MaybeAlign SrcAlign = OtherAlign; 3465 MaybeAlign DstAlign = SliceAlign; 3466 if (!IsDest) 3467 std::swap(SrcAlign, DstAlign); 3468 3469 Value *SrcPtr; 3470 Value *DstPtr; 3471 3472 if (IsDest) { 3473 DstPtr = getPtrToNewAI(II.getDestAddressSpace(), II.isVolatile()); 3474 SrcPtr = AdjPtr; 3475 } else { 3476 DstPtr = AdjPtr; 3477 SrcPtr = getPtrToNewAI(II.getSourceAddressSpace(), II.isVolatile()); 3478 } 3479 3480 Value *Src; 3481 if (VecTy && !IsWholeAlloca && !IsDest) { 3482 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3483 NewAI.getAlign(), "load"); 3484 Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec"); 3485 } else if (IntTy && !IsWholeAlloca && !IsDest) { 3486 Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3487 NewAI.getAlign(), "load"); 3488 Src = convertValue(DL, IRB, Src, IntTy); 3489 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3490 Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract"); 3491 } else { 3492 LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign, 3493 II.isVolatile(), "copyload"); 3494 Load->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3495 LLVMContext::MD_access_group}); 3496 if (AATags) 3497 Load->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset, 3498 Load->getType(), DL)); 3499 Src = Load; 3500 } 3501 3502 if (VecTy && !IsWholeAlloca && IsDest) { 3503 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3504 NewAI.getAlign(), "oldload"); 3505 Src = insertVector(IRB, Old, Src, BeginIndex, "vec"); 3506 } else if (IntTy && !IsWholeAlloca && IsDest) { 3507 Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI, 3508 NewAI.getAlign(), "oldload"); 3509 Old = convertValue(DL, IRB, Old, IntTy); 3510 uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset; 3511 Src = insertInteger(DL, IRB, Old, Src, Offset, "insert"); 3512 Src = convertValue(DL, IRB, Src, NewAllocaTy); 3513 } 3514 3515 StoreInst *Store = cast<StoreInst>( 3516 IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile())); 3517 Store->copyMetadata(II, {LLVMContext::MD_mem_parallel_loop_access, 3518 LLVMContext::MD_access_group}); 3519 if (AATags) 3520 Store->setAAMetadata(AATags.adjustForAccess(NewBeginOffset - BeginOffset, 3521 Src->getType(), DL)); 3522 3523 APInt Offset(DL.getIndexTypeSizeInBits(DstPtr->getType()), 0); 3524 if (IsDest) { 3525 3526 migrateDebugInfo(&OldAI, IsSplit, NewBeginOffset * 8, SliceSize * 8, &II, 3527 Store, DstPtr, Src, DL); 3528 } else if (AllocaInst *Base = dyn_cast<AllocaInst>( 3529 DstPtr->stripAndAccumulateConstantOffsets( 3530 DL, Offset, /*AllowNonInbounds*/ true))) { 3531 migrateDebugInfo(Base, IsSplit, Offset.getZExtValue() * 8, SliceSize * 8, 3532 &II, Store, DstPtr, Src, DL); 3533 } 3534 3535 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3536 return !II.isVolatile(); 3537 } 3538 3539 bool visitIntrinsicInst(IntrinsicInst &II) { 3540 assert((II.isLifetimeStartOrEnd() || II.isLaunderOrStripInvariantGroup() || 3541 II.isDroppable()) && 3542 "Unexpected intrinsic!"); 3543 LLVM_DEBUG(dbgs() << " original: " << II << "\n"); 3544 3545 // Record this instruction for deletion. 3546 Pass.DeadInsts.push_back(&II); 3547 3548 if (II.isDroppable()) { 3549 assert(II.getIntrinsicID() == Intrinsic::assume && "Expected assume"); 3550 // TODO For now we forget assumed information, this can be improved. 3551 OldPtr->dropDroppableUsesIn(II); 3552 return true; 3553 } 3554 3555 if (II.isLaunderOrStripInvariantGroup()) 3556 return true; 3557 3558 assert(II.getArgOperand(1) == OldPtr); 3559 // Lifetime intrinsics are only promotable if they cover the whole alloca. 3560 // Therefore, we drop lifetime intrinsics which don't cover the whole 3561 // alloca. 3562 // (In theory, intrinsics which partially cover an alloca could be 3563 // promoted, but PromoteMemToReg doesn't handle that case.) 3564 // FIXME: Check whether the alloca is promotable before dropping the 3565 // lifetime intrinsics? 3566 if (NewBeginOffset != NewAllocaBeginOffset || 3567 NewEndOffset != NewAllocaEndOffset) 3568 return true; 3569 3570 ConstantInt *Size = 3571 ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), 3572 NewEndOffset - NewBeginOffset); 3573 // Lifetime intrinsics always expect an i8* so directly get such a pointer 3574 // for the new alloca slice. 3575 Type *PointerTy = IRB.getPtrTy(OldPtr->getType()->getPointerAddressSpace()); 3576 Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy); 3577 Value *New; 3578 if (II.getIntrinsicID() == Intrinsic::lifetime_start) 3579 New = IRB.CreateLifetimeStart(Ptr, Size); 3580 else 3581 New = IRB.CreateLifetimeEnd(Ptr, Size); 3582 3583 (void)New; 3584 LLVM_DEBUG(dbgs() << " to: " << *New << "\n"); 3585 3586 return true; 3587 } 3588 3589 void fixLoadStoreAlign(Instruction &Root) { 3590 // This algorithm implements the same visitor loop as 3591 // hasUnsafePHIOrSelectUse, and fixes the alignment of each load 3592 // or store found. 3593 SmallPtrSet<Instruction *, 4> Visited; 3594 SmallVector<Instruction *, 4> Uses; 3595 Visited.insert(&Root); 3596 Uses.push_back(&Root); 3597 do { 3598 Instruction *I = Uses.pop_back_val(); 3599 3600 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 3601 LI->setAlignment(std::min(LI->getAlign(), getSliceAlign())); 3602 continue; 3603 } 3604 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 3605 SI->setAlignment(std::min(SI->getAlign(), getSliceAlign())); 3606 continue; 3607 } 3608 3609 assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) || 3610 isa<PHINode>(I) || isa<SelectInst>(I) || 3611 isa<GetElementPtrInst>(I)); 3612 for (User *U : I->users()) 3613 if (Visited.insert(cast<Instruction>(U)).second) 3614 Uses.push_back(cast<Instruction>(U)); 3615 } while (!Uses.empty()); 3616 } 3617 3618 bool visitPHINode(PHINode &PN) { 3619 LLVM_DEBUG(dbgs() << " original: " << PN << "\n"); 3620 assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable"); 3621 assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable"); 3622 3623 // We would like to compute a new pointer in only one place, but have it be 3624 // as local as possible to the PHI. To do that, we re-use the location of 3625 // the old pointer, which necessarily must be in the right position to 3626 // dominate the PHI. 3627 IRBuilderBase::InsertPointGuard Guard(IRB); 3628 if (isa<PHINode>(OldPtr)) 3629 IRB.SetInsertPoint(OldPtr->getParent(), 3630 OldPtr->getParent()->getFirstInsertionPt()); 3631 else 3632 IRB.SetInsertPoint(OldPtr); 3633 IRB.SetCurrentDebugLocation(OldPtr->getDebugLoc()); 3634 3635 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3636 // Replace the operands which were using the old pointer. 3637 std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr); 3638 3639 LLVM_DEBUG(dbgs() << " to: " << PN << "\n"); 3640 deleteIfTriviallyDead(OldPtr); 3641 3642 // Fix the alignment of any loads or stores using this PHI node. 3643 fixLoadStoreAlign(PN); 3644 3645 // PHIs can't be promoted on their own, but often can be speculated. We 3646 // check the speculation outside of the rewriter so that we see the 3647 // fully-rewritten alloca. 3648 PHIUsers.insert(&PN); 3649 return true; 3650 } 3651 3652 bool visitSelectInst(SelectInst &SI) { 3653 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3654 assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) && 3655 "Pointer isn't an operand!"); 3656 assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable"); 3657 assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable"); 3658 3659 Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType()); 3660 // Replace the operands which were using the old pointer. 3661 if (SI.getOperand(1) == OldPtr) 3662 SI.setOperand(1, NewPtr); 3663 if (SI.getOperand(2) == OldPtr) 3664 SI.setOperand(2, NewPtr); 3665 3666 LLVM_DEBUG(dbgs() << " to: " << SI << "\n"); 3667 deleteIfTriviallyDead(OldPtr); 3668 3669 // Fix the alignment of any loads or stores using this select. 3670 fixLoadStoreAlign(SI); 3671 3672 // Selects can't be promoted on their own, but often can be speculated. We 3673 // check the speculation outside of the rewriter so that we see the 3674 // fully-rewritten alloca. 3675 SelectUsers.insert(&SI); 3676 return true; 3677 } 3678 }; 3679 3680 /// Visitor to rewrite aggregate loads and stores as scalar. 3681 /// 3682 /// This pass aggressively rewrites all aggregate loads and stores on 3683 /// a particular pointer (or any pointer derived from it which we can identify) 3684 /// with scalar loads and stores. 3685 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { 3686 // Befriend the base class so it can delegate to private visit methods. 3687 friend class InstVisitor<AggLoadStoreRewriter, bool>; 3688 3689 /// Queue of pointer uses to analyze and potentially rewrite. 3690 SmallVector<Use *, 8> Queue; 3691 3692 /// Set to prevent us from cycling with phi nodes and loops. 3693 SmallPtrSet<User *, 8> Visited; 3694 3695 /// The current pointer use being rewritten. This is used to dig up the used 3696 /// value (as opposed to the user). 3697 Use *U = nullptr; 3698 3699 /// Used to calculate offsets, and hence alignment, of subobjects. 3700 const DataLayout &DL; 3701 3702 IRBuilderTy &IRB; 3703 3704 public: 3705 AggLoadStoreRewriter(const DataLayout &DL, IRBuilderTy &IRB) 3706 : DL(DL), IRB(IRB) {} 3707 3708 /// Rewrite loads and stores through a pointer and all pointers derived from 3709 /// it. 3710 bool rewrite(Instruction &I) { 3711 LLVM_DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); 3712 enqueueUsers(I); 3713 bool Changed = false; 3714 while (!Queue.empty()) { 3715 U = Queue.pop_back_val(); 3716 Changed |= visit(cast<Instruction>(U->getUser())); 3717 } 3718 return Changed; 3719 } 3720 3721 private: 3722 /// Enqueue all the users of the given instruction for further processing. 3723 /// This uses a set to de-duplicate users. 3724 void enqueueUsers(Instruction &I) { 3725 for (Use &U : I.uses()) 3726 if (Visited.insert(U.getUser()).second) 3727 Queue.push_back(&U); 3728 } 3729 3730 // Conservative default is to not rewrite anything. 3731 bool visitInstruction(Instruction &I) { return false; } 3732 3733 /// Generic recursive split emission class. 3734 template <typename Derived> class OpSplitter { 3735 protected: 3736 /// The builder used to form new instructions. 3737 IRBuilderTy &IRB; 3738 3739 /// The indices which to be used with insert- or extractvalue to select the 3740 /// appropriate value within the aggregate. 3741 SmallVector<unsigned, 4> Indices; 3742 3743 /// The indices to a GEP instruction which will move Ptr to the correct slot 3744 /// within the aggregate. 3745 SmallVector<Value *, 4> GEPIndices; 3746 3747 /// The base pointer of the original op, used as a base for GEPing the 3748 /// split operations. 3749 Value *Ptr; 3750 3751 /// The base pointee type being GEPed into. 3752 Type *BaseTy; 3753 3754 /// Known alignment of the base pointer. 3755 Align BaseAlign; 3756 3757 /// To calculate offset of each component so we can correctly deduce 3758 /// alignments. 3759 const DataLayout &DL; 3760 3761 /// Initialize the splitter with an insertion point, Ptr and start with a 3762 /// single zero GEP index. 3763 OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3764 Align BaseAlign, const DataLayout &DL, IRBuilderTy &IRB) 3765 : IRB(IRB), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr), BaseTy(BaseTy), 3766 BaseAlign(BaseAlign), DL(DL) { 3767 IRB.SetInsertPoint(InsertionPoint); 3768 } 3769 3770 public: 3771 /// Generic recursive split emission routine. 3772 /// 3773 /// This method recursively splits an aggregate op (load or store) into 3774 /// scalar or vector ops. It splits recursively until it hits a single value 3775 /// and emits that single value operation via the template argument. 3776 /// 3777 /// The logic of this routine relies on GEPs and insertvalue and 3778 /// extractvalue all operating with the same fundamental index list, merely 3779 /// formatted differently (GEPs need actual values). 3780 /// 3781 /// \param Ty The type being split recursively into smaller ops. 3782 /// \param Agg The aggregate value being built up or stored, depending on 3783 /// whether this is splitting a load or a store respectively. 3784 void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { 3785 if (Ty->isSingleValueType()) { 3786 unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices); 3787 return static_cast<Derived *>(this)->emitFunc( 3788 Ty, Agg, commonAlignment(BaseAlign, Offset), Name); 3789 } 3790 3791 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { 3792 unsigned OldSize = Indices.size(); 3793 (void)OldSize; 3794 for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; 3795 ++Idx) { 3796 assert(Indices.size() == OldSize && "Did not return to the old size"); 3797 Indices.push_back(Idx); 3798 GEPIndices.push_back(IRB.getInt32(Idx)); 3799 emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); 3800 GEPIndices.pop_back(); 3801 Indices.pop_back(); 3802 } 3803 return; 3804 } 3805 3806 if (StructType *STy = dyn_cast<StructType>(Ty)) { 3807 unsigned OldSize = Indices.size(); 3808 (void)OldSize; 3809 for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; 3810 ++Idx) { 3811 assert(Indices.size() == OldSize && "Did not return to the old size"); 3812 Indices.push_back(Idx); 3813 GEPIndices.push_back(IRB.getInt32(Idx)); 3814 emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); 3815 GEPIndices.pop_back(); 3816 Indices.pop_back(); 3817 } 3818 return; 3819 } 3820 3821 llvm_unreachable("Only arrays and structs are aggregate loadable types"); 3822 } 3823 }; 3824 3825 struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { 3826 AAMDNodes AATags; 3827 // A vector to hold the split components that we want to emit 3828 // separate fake uses for. 3829 SmallVector<Value *, 4> Components; 3830 // A vector to hold all the fake uses of the struct that we are splitting. 3831 // Usually there should only be one, but we are handling the general case. 3832 SmallVector<Instruction *, 1> FakeUses; 3833 3834 LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3835 AAMDNodes AATags, Align BaseAlign, const DataLayout &DL, 3836 IRBuilderTy &IRB) 3837 : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, DL, 3838 IRB), 3839 AATags(AATags) {} 3840 3841 /// Emit a leaf load of a single value. This is called at the leaves of the 3842 /// recursive emission to actually load values. 3843 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3844 assert(Ty->isSingleValueType()); 3845 // Load the single value and insert it using the indices. 3846 Value *GEP = 3847 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3848 LoadInst *Load = 3849 IRB.CreateAlignedLoad(Ty, GEP, Alignment, Name + ".load"); 3850 3851 APInt Offset( 3852 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3853 if (AATags && 3854 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset)) 3855 Load->setAAMetadata( 3856 AATags.adjustForAccess(Offset.getZExtValue(), Load->getType(), DL)); 3857 // Record the load so we can generate a fake use for this aggregate 3858 // component. 3859 Components.push_back(Load); 3860 3861 Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); 3862 LLVM_DEBUG(dbgs() << " to: " << *Load << "\n"); 3863 } 3864 3865 // Stash the fake uses that use the value generated by this instruction. 3866 void recordFakeUses(LoadInst &LI) { 3867 for (Use &U : LI.uses()) 3868 if (auto *II = dyn_cast<IntrinsicInst>(U.getUser())) 3869 if (II->getIntrinsicID() == Intrinsic::fake_use) 3870 FakeUses.push_back(II); 3871 } 3872 3873 // Replace all fake uses of the aggregate with a series of fake uses, one 3874 // for each split component. 3875 void emitFakeUses() { 3876 for (Instruction *I : FakeUses) { 3877 IRB.SetInsertPoint(I); 3878 for (auto *V : Components) 3879 IRB.CreateIntrinsic(Intrinsic::fake_use, {}, {V}); 3880 I->eraseFromParent(); 3881 } 3882 } 3883 }; 3884 3885 bool visitLoadInst(LoadInst &LI) { 3886 assert(LI.getPointerOperand() == *U); 3887 if (!LI.isSimple() || LI.getType()->isSingleValueType()) 3888 return false; 3889 3890 // We have an aggregate being loaded, split it apart. 3891 LLVM_DEBUG(dbgs() << " original: " << LI << "\n"); 3892 LoadOpSplitter Splitter(&LI, *U, LI.getType(), LI.getAAMetadata(), 3893 getAdjustedAlignment(&LI, 0), DL, IRB); 3894 Splitter.recordFakeUses(LI); 3895 Value *V = PoisonValue::get(LI.getType()); 3896 Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); 3897 Splitter.emitFakeUses(); 3898 Visited.erase(&LI); 3899 LI.replaceAllUsesWith(V); 3900 LI.eraseFromParent(); 3901 return true; 3902 } 3903 3904 struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { 3905 StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy, 3906 AAMDNodes AATags, StoreInst *AggStore, Align BaseAlign, 3907 const DataLayout &DL, IRBuilderTy &IRB) 3908 : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign, 3909 DL, IRB), 3910 AATags(AATags), AggStore(AggStore) {} 3911 AAMDNodes AATags; 3912 StoreInst *AggStore; 3913 /// Emit a leaf store of a single value. This is called at the leaves of the 3914 /// recursive emission to actually produce stores. 3915 void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) { 3916 assert(Ty->isSingleValueType()); 3917 // Extract the single value and store it using the indices. 3918 // 3919 // The gep and extractvalue values are factored out of the CreateStore 3920 // call to make the output independent of the argument evaluation order. 3921 Value *ExtractValue = 3922 IRB.CreateExtractValue(Agg, Indices, Name + ".extract"); 3923 Value *InBoundsGEP = 3924 IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep"); 3925 StoreInst *Store = 3926 IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment); 3927 3928 APInt Offset( 3929 DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()), 0); 3930 GEPOperator::accumulateConstantOffset(BaseTy, GEPIndices, DL, Offset); 3931 if (AATags) { 3932 Store->setAAMetadata(AATags.adjustForAccess( 3933 Offset.getZExtValue(), ExtractValue->getType(), DL)); 3934 } 3935 3936 // migrateDebugInfo requires the base Alloca. Walk to it from this gep. 3937 // If we cannot (because there's an intervening non-const or unbounded 3938 // gep) then we wouldn't expect to see dbg.assign intrinsics linked to 3939 // this instruction. 3940 Value *Base = AggStore->getPointerOperand()->stripInBoundsOffsets(); 3941 if (auto *OldAI = dyn_cast<AllocaInst>(Base)) { 3942 uint64_t SizeInBits = 3943 DL.getTypeSizeInBits(Store->getValueOperand()->getType()); 3944 migrateDebugInfo(OldAI, /*IsSplit*/ true, Offset.getZExtValue() * 8, 3945 SizeInBits, AggStore, Store, 3946 Store->getPointerOperand(), Store->getValueOperand(), 3947 DL); 3948 } else { 3949 assert(at::getAssignmentMarkers(Store).empty() && 3950 at::getDVRAssignmentMarkers(Store).empty() && 3951 "AT: unexpected debug.assign linked to store through " 3952 "unbounded GEP"); 3953 } 3954 LLVM_DEBUG(dbgs() << " to: " << *Store << "\n"); 3955 } 3956 }; 3957 3958 bool visitStoreInst(StoreInst &SI) { 3959 if (!SI.isSimple() || SI.getPointerOperand() != *U) 3960 return false; 3961 Value *V = SI.getValueOperand(); 3962 if (V->getType()->isSingleValueType()) 3963 return false; 3964 3965 // We have an aggregate being stored, split it apart. 3966 LLVM_DEBUG(dbgs() << " original: " << SI << "\n"); 3967 StoreOpSplitter Splitter(&SI, *U, V->getType(), SI.getAAMetadata(), &SI, 3968 getAdjustedAlignment(&SI, 0), DL, IRB); 3969 Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); 3970 Visited.erase(&SI); 3971 // The stores replacing SI each have markers describing fragments of the 3972 // assignment so delete the assignment markers linked to SI. 3973 at::deleteAssignmentMarkers(&SI); 3974 SI.eraseFromParent(); 3975 return true; 3976 } 3977 3978 bool visitBitCastInst(BitCastInst &BC) { 3979 enqueueUsers(BC); 3980 return false; 3981 } 3982 3983 bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) { 3984 enqueueUsers(ASC); 3985 return false; 3986 } 3987 3988 // Unfold gep (select cond, ptr1, ptr2), idx 3989 // => select cond, gep(ptr1, idx), gep(ptr2, idx) 3990 // and gep ptr, (select cond, idx1, idx2) 3991 // => select cond, gep(ptr, idx1), gep(ptr, idx2) 3992 bool unfoldGEPSelect(GetElementPtrInst &GEPI) { 3993 // Check whether the GEP has exactly one select operand and all indices 3994 // will become constant after the transform. 3995 SelectInst *Sel = dyn_cast<SelectInst>(GEPI.getPointerOperand()); 3996 for (Value *Op : GEPI.indices()) { 3997 if (auto *SI = dyn_cast<SelectInst>(Op)) { 3998 if (Sel) 3999 return false; 4000 4001 Sel = SI; 4002 if (!isa<ConstantInt>(Sel->getTrueValue()) || 4003 !isa<ConstantInt>(Sel->getFalseValue())) 4004 return false; 4005 continue; 4006 } 4007 4008 if (!isa<ConstantInt>(Op)) 4009 return false; 4010 } 4011 4012 if (!Sel) 4013 return false; 4014 4015 LLVM_DEBUG(dbgs() << " Rewriting gep(select) -> select(gep):\n"; 4016 dbgs() << " original: " << *Sel << "\n"; 4017 dbgs() << " " << GEPI << "\n";); 4018 4019 auto GetNewOps = [&](Value *SelOp) { 4020 SmallVector<Value *> NewOps; 4021 for (Value *Op : GEPI.operands()) 4022 if (Op == Sel) 4023 NewOps.push_back(SelOp); 4024 else 4025 NewOps.push_back(Op); 4026 return NewOps; 4027 }; 4028 4029 Value *True = Sel->getTrueValue(); 4030 Value *False = Sel->getFalseValue(); 4031 SmallVector<Value *> TrueOps = GetNewOps(True); 4032 SmallVector<Value *> FalseOps = GetNewOps(False); 4033 4034 IRB.SetInsertPoint(&GEPI); 4035 GEPNoWrapFlags NW = GEPI.getNoWrapFlags(); 4036 4037 Type *Ty = GEPI.getSourceElementType(); 4038 Value *NTrue = IRB.CreateGEP(Ty, TrueOps[0], ArrayRef(TrueOps).drop_front(), 4039 True->getName() + ".sroa.gep", NW); 4040 4041 Value *NFalse = 4042 IRB.CreateGEP(Ty, FalseOps[0], ArrayRef(FalseOps).drop_front(), 4043 False->getName() + ".sroa.gep", NW); 4044 4045 Value *NSel = IRB.CreateSelect(Sel->getCondition(), NTrue, NFalse, 4046 Sel->getName() + ".sroa.sel"); 4047 Visited.erase(&GEPI); 4048 GEPI.replaceAllUsesWith(NSel); 4049 GEPI.eraseFromParent(); 4050 Instruction *NSelI = cast<Instruction>(NSel); 4051 Visited.insert(NSelI); 4052 enqueueUsers(*NSelI); 4053 4054 LLVM_DEBUG(dbgs() << " to: " << *NTrue << "\n"; 4055 dbgs() << " " << *NFalse << "\n"; 4056 dbgs() << " " << *NSel << "\n";); 4057 4058 return true; 4059 } 4060 4061 // Unfold gep (phi ptr1, ptr2), idx 4062 // => phi ((gep ptr1, idx), (gep ptr2, idx)) 4063 // and gep ptr, (phi idx1, idx2) 4064 // => phi ((gep ptr, idx1), (gep ptr, idx2)) 4065 bool unfoldGEPPhi(GetElementPtrInst &GEPI) { 4066 // To prevent infinitely expanding recursive phis, bail if the GEP pointer 4067 // operand (looking through the phi if it is the phi we want to unfold) is 4068 // an instruction besides a static alloca. 4069 PHINode *Phi = dyn_cast<PHINode>(GEPI.getPointerOperand()); 4070 auto IsInvalidPointerOperand = [](Value *V) { 4071 if (!isa<Instruction>(V)) 4072 return false; 4073 if (auto *AI = dyn_cast<AllocaInst>(V)) 4074 return !AI->isStaticAlloca(); 4075 return true; 4076 }; 4077 if (Phi) { 4078 if (any_of(Phi->operands(), IsInvalidPointerOperand)) 4079 return false; 4080 } else { 4081 if (IsInvalidPointerOperand(GEPI.getPointerOperand())) 4082 return false; 4083 } 4084 // Check whether the GEP has exactly one phi operand (including the pointer 4085 // operand) and all indices will become constant after the transform. 4086 for (Value *Op : GEPI.indices()) { 4087 if (auto *SI = dyn_cast<PHINode>(Op)) { 4088 if (Phi) 4089 return false; 4090 4091 Phi = SI; 4092 if (!all_of(Phi->incoming_values(), 4093 [](Value *V) { return isa<ConstantInt>(V); })) 4094 return false; 4095 continue; 4096 } 4097 4098 if (!isa<ConstantInt>(Op)) 4099 return false; 4100 } 4101 4102 if (!Phi) 4103 return false; 4104 4105 LLVM_DEBUG(dbgs() << " Rewriting gep(phi) -> phi(gep):\n"; 4106 dbgs() << " original: " << *Phi << "\n"; 4107 dbgs() << " " << GEPI << "\n";); 4108 4109 auto GetNewOps = [&](Value *PhiOp) { 4110 SmallVector<Value *> NewOps; 4111 for (Value *Op : GEPI.operands()) 4112 if (Op == Phi) 4113 NewOps.push_back(PhiOp); 4114 else 4115 NewOps.push_back(Op); 4116 return NewOps; 4117 }; 4118 4119 IRB.SetInsertPoint(Phi); 4120 PHINode *NewPhi = IRB.CreatePHI(GEPI.getType(), Phi->getNumIncomingValues(), 4121 Phi->getName() + ".sroa.phi"); 4122 4123 Type *SourceTy = GEPI.getSourceElementType(); 4124 // We only handle arguments, constants, and static allocas here, so we can 4125 // insert GEPs at the end of the entry block. 4126 IRB.SetInsertPoint(GEPI.getFunction()->getEntryBlock().getTerminator()); 4127 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 4128 Value *Op = Phi->getIncomingValue(I); 4129 BasicBlock *BB = Phi->getIncomingBlock(I); 4130 Value *NewGEP; 4131 if (int NI = NewPhi->getBasicBlockIndex(BB); NI >= 0) { 4132 NewGEP = NewPhi->getIncomingValue(NI); 4133 } else { 4134 SmallVector<Value *> NewOps = GetNewOps(Op); 4135 NewGEP = 4136 IRB.CreateGEP(SourceTy, NewOps[0], ArrayRef(NewOps).drop_front(), 4137 Phi->getName() + ".sroa.gep", GEPI.getNoWrapFlags()); 4138 } 4139 NewPhi->addIncoming(NewGEP, BB); 4140 } 4141 4142 Visited.erase(&GEPI); 4143 GEPI.replaceAllUsesWith(NewPhi); 4144 GEPI.eraseFromParent(); 4145 Visited.insert(NewPhi); 4146 enqueueUsers(*NewPhi); 4147 4148 LLVM_DEBUG(dbgs() << " to: "; 4149 for (Value *In 4150 : NewPhi->incoming_values()) dbgs() 4151 << "\n " << *In; 4152 dbgs() << "\n " << *NewPhi << '\n'); 4153 4154 return true; 4155 } 4156 4157 bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { 4158 if (unfoldGEPSelect(GEPI)) 4159 return true; 4160 4161 if (unfoldGEPPhi(GEPI)) 4162 return true; 4163 4164 enqueueUsers(GEPI); 4165 return false; 4166 } 4167 4168 bool visitPHINode(PHINode &PN) { 4169 enqueueUsers(PN); 4170 return false; 4171 } 4172 4173 bool visitSelectInst(SelectInst &SI) { 4174 enqueueUsers(SI); 4175 return false; 4176 } 4177 }; 4178 4179 } // end anonymous namespace 4180 4181 /// Strip aggregate type wrapping. 4182 /// 4183 /// This removes no-op aggregate types wrapping an underlying type. It will 4184 /// strip as many layers of types as it can without changing either the type 4185 /// size or the allocated size. 4186 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) { 4187 if (Ty->isSingleValueType()) 4188 return Ty; 4189 4190 uint64_t AllocSize = DL.getTypeAllocSize(Ty).getFixedValue(); 4191 uint64_t TypeSize = DL.getTypeSizeInBits(Ty).getFixedValue(); 4192 4193 Type *InnerTy; 4194 if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { 4195 InnerTy = ArrTy->getElementType(); 4196 } else if (StructType *STy = dyn_cast<StructType>(Ty)) { 4197 const StructLayout *SL = DL.getStructLayout(STy); 4198 unsigned Index = SL->getElementContainingOffset(0); 4199 InnerTy = STy->getElementType(Index); 4200 } else { 4201 return Ty; 4202 } 4203 4204 if (AllocSize > DL.getTypeAllocSize(InnerTy).getFixedValue() || 4205 TypeSize > DL.getTypeSizeInBits(InnerTy).getFixedValue()) 4206 return Ty; 4207 4208 return stripAggregateTypeWrapping(DL, InnerTy); 4209 } 4210 4211 /// Try to find a partition of the aggregate type passed in for a given 4212 /// offset and size. 4213 /// 4214 /// This recurses through the aggregate type and tries to compute a subtype 4215 /// based on the offset and size. When the offset and size span a sub-section 4216 /// of an array, it will even compute a new array type for that sub-section, 4217 /// and the same for structs. 4218 /// 4219 /// Note that this routine is very strict and tries to find a partition of the 4220 /// type which produces the *exact* right offset and size. It is not forgiving 4221 /// when the size or offset cause either end of type-based partition to be off. 4222 /// Also, this is a best-effort routine. It is reasonable to give up and not 4223 /// return a type if necessary. 4224 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset, 4225 uint64_t Size) { 4226 if (Offset == 0 && DL.getTypeAllocSize(Ty).getFixedValue() == Size) 4227 return stripAggregateTypeWrapping(DL, Ty); 4228 if (Offset > DL.getTypeAllocSize(Ty).getFixedValue() || 4229 (DL.getTypeAllocSize(Ty).getFixedValue() - Offset) < Size) 4230 return nullptr; 4231 4232 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { 4233 Type *ElementTy; 4234 uint64_t TyNumElements; 4235 if (auto *AT = dyn_cast<ArrayType>(Ty)) { 4236 ElementTy = AT->getElementType(); 4237 TyNumElements = AT->getNumElements(); 4238 } else { 4239 // FIXME: This isn't right for vectors with non-byte-sized or 4240 // non-power-of-two sized elements. 4241 auto *VT = cast<FixedVectorType>(Ty); 4242 ElementTy = VT->getElementType(); 4243 TyNumElements = VT->getNumElements(); 4244 } 4245 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue(); 4246 uint64_t NumSkippedElements = Offset / ElementSize; 4247 if (NumSkippedElements >= TyNumElements) 4248 return nullptr; 4249 Offset -= NumSkippedElements * ElementSize; 4250 4251 // First check if we need to recurse. 4252 if (Offset > 0 || Size < ElementSize) { 4253 // Bail if the partition ends in a different array element. 4254 if ((Offset + Size) > ElementSize) 4255 return nullptr; 4256 // Recurse through the element type trying to peel off offset bytes. 4257 return getTypePartition(DL, ElementTy, Offset, Size); 4258 } 4259 assert(Offset == 0); 4260 4261 if (Size == ElementSize) 4262 return stripAggregateTypeWrapping(DL, ElementTy); 4263 assert(Size > ElementSize); 4264 uint64_t NumElements = Size / ElementSize; 4265 if (NumElements * ElementSize != Size) 4266 return nullptr; 4267 return ArrayType::get(ElementTy, NumElements); 4268 } 4269 4270 StructType *STy = dyn_cast<StructType>(Ty); 4271 if (!STy) 4272 return nullptr; 4273 4274 const StructLayout *SL = DL.getStructLayout(STy); 4275 4276 if (SL->getSizeInBits().isScalable()) 4277 return nullptr; 4278 4279 if (Offset >= SL->getSizeInBytes()) 4280 return nullptr; 4281 uint64_t EndOffset = Offset + Size; 4282 if (EndOffset > SL->getSizeInBytes()) 4283 return nullptr; 4284 4285 unsigned Index = SL->getElementContainingOffset(Offset); 4286 Offset -= SL->getElementOffset(Index); 4287 4288 Type *ElementTy = STy->getElementType(Index); 4289 uint64_t ElementSize = DL.getTypeAllocSize(ElementTy).getFixedValue(); 4290 if (Offset >= ElementSize) 4291 return nullptr; // The offset points into alignment padding. 4292 4293 // See if any partition must be contained by the element. 4294 if (Offset > 0 || Size < ElementSize) { 4295 if ((Offset + Size) > ElementSize) 4296 return nullptr; 4297 return getTypePartition(DL, ElementTy, Offset, Size); 4298 } 4299 assert(Offset == 0); 4300 4301 if (Size == ElementSize) 4302 return stripAggregateTypeWrapping(DL, ElementTy); 4303 4304 StructType::element_iterator EI = STy->element_begin() + Index, 4305 EE = STy->element_end(); 4306 if (EndOffset < SL->getSizeInBytes()) { 4307 unsigned EndIndex = SL->getElementContainingOffset(EndOffset); 4308 if (Index == EndIndex) 4309 return nullptr; // Within a single element and its padding. 4310 4311 // Don't try to form "natural" types if the elements don't line up with the 4312 // expected size. 4313 // FIXME: We could potentially recurse down through the last element in the 4314 // sub-struct to find a natural end point. 4315 if (SL->getElementOffset(EndIndex) != EndOffset) 4316 return nullptr; 4317 4318 assert(Index < EndIndex); 4319 EE = STy->element_begin() + EndIndex; 4320 } 4321 4322 // Try to build up a sub-structure. 4323 StructType *SubTy = 4324 StructType::get(STy->getContext(), ArrayRef(EI, EE), STy->isPacked()); 4325 const StructLayout *SubSL = DL.getStructLayout(SubTy); 4326 if (Size != SubSL->getSizeInBytes()) 4327 return nullptr; // The sub-struct doesn't have quite the size needed. 4328 4329 return SubTy; 4330 } 4331 4332 /// Pre-split loads and stores to simplify rewriting. 4333 /// 4334 /// We want to break up the splittable load+store pairs as much as 4335 /// possible. This is important to do as a preprocessing step, as once we 4336 /// start rewriting the accesses to partitions of the alloca we lose the 4337 /// necessary information to correctly split apart paired loads and stores 4338 /// which both point into this alloca. The case to consider is something like 4339 /// the following: 4340 /// 4341 /// %a = alloca [12 x i8] 4342 /// %gep1 = getelementptr i8, ptr %a, i32 0 4343 /// %gep2 = getelementptr i8, ptr %a, i32 4 4344 /// %gep3 = getelementptr i8, ptr %a, i32 8 4345 /// store float 0.0, ptr %gep1 4346 /// store float 1.0, ptr %gep2 4347 /// %v = load i64, ptr %gep1 4348 /// store i64 %v, ptr %gep2 4349 /// %f1 = load float, ptr %gep2 4350 /// %f2 = load float, ptr %gep3 4351 /// 4352 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and 4353 /// promote everything so we recover the 2 SSA values that should have been 4354 /// there all along. 4355 /// 4356 /// \returns true if any changes are made. 4357 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) { 4358 LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n"); 4359 4360 // Track the loads and stores which are candidates for pre-splitting here, in 4361 // the order they first appear during the partition scan. These give stable 4362 // iteration order and a basis for tracking which loads and stores we 4363 // actually split. 4364 SmallVector<LoadInst *, 4> Loads; 4365 SmallVector<StoreInst *, 4> Stores; 4366 4367 // We need to accumulate the splits required of each load or store where we 4368 // can find them via a direct lookup. This is important to cross-check loads 4369 // and stores against each other. We also track the slice so that we can kill 4370 // all the slices that end up split. 4371 struct SplitOffsets { 4372 Slice *S; 4373 std::vector<uint64_t> Splits; 4374 }; 4375 SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap; 4376 4377 // Track loads out of this alloca which cannot, for any reason, be pre-split. 4378 // This is important as we also cannot pre-split stores of those loads! 4379 // FIXME: This is all pretty gross. It means that we can be more aggressive 4380 // in pre-splitting when the load feeding the store happens to come from 4381 // a separate alloca. Put another way, the effectiveness of SROA would be 4382 // decreased by a frontend which just concatenated all of its local allocas 4383 // into one big flat alloca. But defeating such patterns is exactly the job 4384 // SROA is tasked with! Sadly, to not have this discrepancy we would have 4385 // change store pre-splitting to actually force pre-splitting of the load 4386 // that feeds it *and all stores*. That makes pre-splitting much harder, but 4387 // maybe it would make it more principled? 4388 SmallPtrSet<LoadInst *, 8> UnsplittableLoads; 4389 4390 LLVM_DEBUG(dbgs() << " Searching for candidate loads and stores\n"); 4391 for (auto &P : AS.partitions()) { 4392 for (Slice &S : P) { 4393 Instruction *I = cast<Instruction>(S.getUse()->getUser()); 4394 if (!S.isSplittable() || S.endOffset() <= P.endOffset()) { 4395 // If this is a load we have to track that it can't participate in any 4396 // pre-splitting. If this is a store of a load we have to track that 4397 // that load also can't participate in any pre-splitting. 4398 if (auto *LI = dyn_cast<LoadInst>(I)) 4399 UnsplittableLoads.insert(LI); 4400 else if (auto *SI = dyn_cast<StoreInst>(I)) 4401 if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand())) 4402 UnsplittableLoads.insert(LI); 4403 continue; 4404 } 4405 assert(P.endOffset() > S.beginOffset() && 4406 "Empty or backwards partition!"); 4407 4408 // Determine if this is a pre-splittable slice. 4409 if (auto *LI = dyn_cast<LoadInst>(I)) { 4410 assert(!LI->isVolatile() && "Cannot split volatile loads!"); 4411 4412 // The load must be used exclusively to store into other pointers for 4413 // us to be able to arbitrarily pre-split it. The stores must also be 4414 // simple to avoid changing semantics. 4415 auto IsLoadSimplyStored = [](LoadInst *LI) { 4416 for (User *LU : LI->users()) { 4417 auto *SI = dyn_cast<StoreInst>(LU); 4418 if (!SI || !SI->isSimple()) 4419 return false; 4420 } 4421 return true; 4422 }; 4423 if (!IsLoadSimplyStored(LI)) { 4424 UnsplittableLoads.insert(LI); 4425 continue; 4426 } 4427 4428 Loads.push_back(LI); 4429 } else if (auto *SI = dyn_cast<StoreInst>(I)) { 4430 if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex())) 4431 // Skip stores *of* pointers. FIXME: This shouldn't even be possible! 4432 continue; 4433 auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand()); 4434 if (!StoredLoad || !StoredLoad->isSimple()) 4435 continue; 4436 assert(!SI->isVolatile() && "Cannot split volatile stores!"); 4437 4438 Stores.push_back(SI); 4439 } else { 4440 // Other uses cannot be pre-split. 4441 continue; 4442 } 4443 4444 // Record the initial split. 4445 LLVM_DEBUG(dbgs() << " Candidate: " << *I << "\n"); 4446 auto &Offsets = SplitOffsetsMap[I]; 4447 assert(Offsets.Splits.empty() && 4448 "Should not have splits the first time we see an instruction!"); 4449 Offsets.S = &S; 4450 Offsets.Splits.push_back(P.endOffset() - S.beginOffset()); 4451 } 4452 4453 // Now scan the already split slices, and add a split for any of them which 4454 // we're going to pre-split. 4455 for (Slice *S : P.splitSliceTails()) { 4456 auto SplitOffsetsMapI = 4457 SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser())); 4458 if (SplitOffsetsMapI == SplitOffsetsMap.end()) 4459 continue; 4460 auto &Offsets = SplitOffsetsMapI->second; 4461 4462 assert(Offsets.S == S && "Found a mismatched slice!"); 4463 assert(!Offsets.Splits.empty() && 4464 "Cannot have an empty set of splits on the second partition!"); 4465 assert(Offsets.Splits.back() == 4466 P.beginOffset() - Offsets.S->beginOffset() && 4467 "Previous split does not end where this one begins!"); 4468 4469 // Record each split. The last partition's end isn't needed as the size 4470 // of the slice dictates that. 4471 if (S->endOffset() > P.endOffset()) 4472 Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset()); 4473 } 4474 } 4475 4476 // We may have split loads where some of their stores are split stores. For 4477 // such loads and stores, we can only pre-split them if their splits exactly 4478 // match relative to their starting offset. We have to verify this prior to 4479 // any rewriting. 4480 llvm::erase_if(Stores, [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) { 4481 // Lookup the load we are storing in our map of split 4482 // offsets. 4483 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4484 // If it was completely unsplittable, then we're done, 4485 // and this store can't be pre-split. 4486 if (UnsplittableLoads.count(LI)) 4487 return true; 4488 4489 auto LoadOffsetsI = SplitOffsetsMap.find(LI); 4490 if (LoadOffsetsI == SplitOffsetsMap.end()) 4491 return false; // Unrelated loads are definitely safe. 4492 auto &LoadOffsets = LoadOffsetsI->second; 4493 4494 // Now lookup the store's offsets. 4495 auto &StoreOffsets = SplitOffsetsMap[SI]; 4496 4497 // If the relative offsets of each split in the load and 4498 // store match exactly, then we can split them and we 4499 // don't need to remove them here. 4500 if (LoadOffsets.Splits == StoreOffsets.Splits) 4501 return false; 4502 4503 LLVM_DEBUG(dbgs() << " Mismatched splits for load and store:\n" 4504 << " " << *LI << "\n" 4505 << " " << *SI << "\n"); 4506 4507 // We've found a store and load that we need to split 4508 // with mismatched relative splits. Just give up on them 4509 // and remove both instructions from our list of 4510 // candidates. 4511 UnsplittableLoads.insert(LI); 4512 return true; 4513 }); 4514 // Now we have to go *back* through all the stores, because a later store may 4515 // have caused an earlier store's load to become unsplittable and if it is 4516 // unsplittable for the later store, then we can't rely on it being split in 4517 // the earlier store either. 4518 llvm::erase_if(Stores, [&UnsplittableLoads](StoreInst *SI) { 4519 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4520 return UnsplittableLoads.count(LI); 4521 }); 4522 // Once we've established all the loads that can't be split for some reason, 4523 // filter any that made it into our list out. 4524 llvm::erase_if(Loads, [&UnsplittableLoads](LoadInst *LI) { 4525 return UnsplittableLoads.count(LI); 4526 }); 4527 4528 // If no loads or stores are left, there is no pre-splitting to be done for 4529 // this alloca. 4530 if (Loads.empty() && Stores.empty()) 4531 return false; 4532 4533 // From here on, we can't fail and will be building new accesses, so rig up 4534 // an IR builder. 4535 IRBuilderTy IRB(&AI); 4536 4537 // Collect the new slices which we will merge into the alloca slices. 4538 SmallVector<Slice, 4> NewSlices; 4539 4540 // Track any allocas we end up splitting loads and stores for so we iterate 4541 // on them. 4542 SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas; 4543 4544 // At this point, we have collected all of the loads and stores we can 4545 // pre-split, and the specific splits needed for them. We actually do the 4546 // splitting in a specific order in order to handle when one of the loads in 4547 // the value operand to one of the stores. 4548 // 4549 // First, we rewrite all of the split loads, and just accumulate each split 4550 // load in a parallel structure. We also build the slices for them and append 4551 // them to the alloca slices. 4552 SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap; 4553 std::vector<LoadInst *> SplitLoads; 4554 const DataLayout &DL = AI.getDataLayout(); 4555 for (LoadInst *LI : Loads) { 4556 SplitLoads.clear(); 4557 4558 auto &Offsets = SplitOffsetsMap[LI]; 4559 unsigned SliceSize = Offsets.S->endOffset() - Offsets.S->beginOffset(); 4560 assert(LI->getType()->getIntegerBitWidth() % 8 == 0 && 4561 "Load must have type size equal to store size"); 4562 assert(LI->getType()->getIntegerBitWidth() / 8 >= SliceSize && 4563 "Load must be >= slice size"); 4564 4565 uint64_t BaseOffset = Offsets.S->beginOffset(); 4566 assert(BaseOffset + SliceSize > BaseOffset && 4567 "Cannot represent alloca access size using 64-bit integers!"); 4568 4569 Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand()); 4570 IRB.SetInsertPoint(LI); 4571 4572 LLVM_DEBUG(dbgs() << " Splitting load: " << *LI << "\n"); 4573 4574 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4575 int Idx = 0, Size = Offsets.Splits.size(); 4576 for (;;) { 4577 auto *PartTy = Type::getIntNTy(LI->getContext(), PartSize * 8); 4578 auto AS = LI->getPointerAddressSpace(); 4579 auto *PartPtrTy = LI->getPointerOperandType(); 4580 LoadInst *PLoad = IRB.CreateAlignedLoad( 4581 PartTy, 4582 getAdjustedPtr(IRB, DL, BasePtr, 4583 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4584 PartPtrTy, BasePtr->getName() + "."), 4585 getAdjustedAlignment(LI, PartOffset), 4586 /*IsVolatile*/ false, LI->getName()); 4587 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4588 LLVMContext::MD_access_group}); 4589 4590 // Append this load onto the list of split loads so we can find it later 4591 // to rewrite the stores. 4592 SplitLoads.push_back(PLoad); 4593 4594 // Now build a new slice for the alloca. 4595 NewSlices.push_back( 4596 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4597 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()), 4598 /*IsSplittable*/ false)); 4599 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4600 << ", " << NewSlices.back().endOffset() 4601 << "): " << *PLoad << "\n"); 4602 4603 // See if we've handled all the splits. 4604 if (Idx >= Size) 4605 break; 4606 4607 // Setup the next partition. 4608 PartOffset = Offsets.Splits[Idx]; 4609 ++Idx; 4610 PartSize = (Idx < Size ? Offsets.Splits[Idx] : SliceSize) - PartOffset; 4611 } 4612 4613 // Now that we have the split loads, do the slow walk over all uses of the 4614 // load and rewrite them as split stores, or save the split loads to use 4615 // below if the store is going to be split there anyways. 4616 bool DeferredStores = false; 4617 for (User *LU : LI->users()) { 4618 StoreInst *SI = cast<StoreInst>(LU); 4619 if (!Stores.empty() && SplitOffsetsMap.count(SI)) { 4620 DeferredStores = true; 4621 LLVM_DEBUG(dbgs() << " Deferred splitting of store: " << *SI 4622 << "\n"); 4623 continue; 4624 } 4625 4626 Value *StoreBasePtr = SI->getPointerOperand(); 4627 IRB.SetInsertPoint(SI); 4628 AAMDNodes AATags = SI->getAAMetadata(); 4629 4630 LLVM_DEBUG(dbgs() << " Splitting store of load: " << *SI << "\n"); 4631 4632 for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) { 4633 LoadInst *PLoad = SplitLoads[Idx]; 4634 uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1]; 4635 auto *PartPtrTy = SI->getPointerOperandType(); 4636 4637 auto AS = SI->getPointerAddressSpace(); 4638 StoreInst *PStore = IRB.CreateAlignedStore( 4639 PLoad, 4640 getAdjustedPtr(IRB, DL, StoreBasePtr, 4641 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4642 PartPtrTy, StoreBasePtr->getName() + "."), 4643 getAdjustedAlignment(SI, PartOffset), 4644 /*IsVolatile*/ false); 4645 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4646 LLVMContext::MD_access_group, 4647 LLVMContext::MD_DIAssignID}); 4648 4649 if (AATags) 4650 PStore->setAAMetadata( 4651 AATags.adjustForAccess(PartOffset, PLoad->getType(), DL)); 4652 LLVM_DEBUG(dbgs() << " +" << PartOffset << ":" << *PStore << "\n"); 4653 } 4654 4655 // We want to immediately iterate on any allocas impacted by splitting 4656 // this store, and we have to track any promotable alloca (indicated by 4657 // a direct store) as needing to be resplit because it is no longer 4658 // promotable. 4659 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) { 4660 ResplitPromotableAllocas.insert(OtherAI); 4661 Worklist.insert(OtherAI); 4662 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4663 StoreBasePtr->stripInBoundsOffsets())) { 4664 Worklist.insert(OtherAI); 4665 } 4666 4667 // Mark the original store as dead. 4668 DeadInsts.push_back(SI); 4669 } 4670 4671 // Save the split loads if there are deferred stores among the users. 4672 if (DeferredStores) 4673 SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads))); 4674 4675 // Mark the original load as dead and kill the original slice. 4676 DeadInsts.push_back(LI); 4677 Offsets.S->kill(); 4678 } 4679 4680 // Second, we rewrite all of the split stores. At this point, we know that 4681 // all loads from this alloca have been split already. For stores of such 4682 // loads, we can simply look up the pre-existing split loads. For stores of 4683 // other loads, we split those loads first and then write split stores of 4684 // them. 4685 for (StoreInst *SI : Stores) { 4686 auto *LI = cast<LoadInst>(SI->getValueOperand()); 4687 IntegerType *Ty = cast<IntegerType>(LI->getType()); 4688 assert(Ty->getBitWidth() % 8 == 0); 4689 uint64_t StoreSize = Ty->getBitWidth() / 8; 4690 assert(StoreSize > 0 && "Cannot have a zero-sized integer store!"); 4691 4692 auto &Offsets = SplitOffsetsMap[SI]; 4693 assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() && 4694 "Slice size should always match load size exactly!"); 4695 uint64_t BaseOffset = Offsets.S->beginOffset(); 4696 assert(BaseOffset + StoreSize > BaseOffset && 4697 "Cannot represent alloca access size using 64-bit integers!"); 4698 4699 Value *LoadBasePtr = LI->getPointerOperand(); 4700 Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand()); 4701 4702 LLVM_DEBUG(dbgs() << " Splitting store: " << *SI << "\n"); 4703 4704 // Check whether we have an already split load. 4705 auto SplitLoadsMapI = SplitLoadsMap.find(LI); 4706 std::vector<LoadInst *> *SplitLoads = nullptr; 4707 if (SplitLoadsMapI != SplitLoadsMap.end()) { 4708 SplitLoads = &SplitLoadsMapI->second; 4709 assert(SplitLoads->size() == Offsets.Splits.size() + 1 && 4710 "Too few split loads for the number of splits in the store!"); 4711 } else { 4712 LLVM_DEBUG(dbgs() << " of load: " << *LI << "\n"); 4713 } 4714 4715 uint64_t PartOffset = 0, PartSize = Offsets.Splits.front(); 4716 int Idx = 0, Size = Offsets.Splits.size(); 4717 for (;;) { 4718 auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8); 4719 auto *LoadPartPtrTy = LI->getPointerOperandType(); 4720 auto *StorePartPtrTy = SI->getPointerOperandType(); 4721 4722 // Either lookup a split load or create one. 4723 LoadInst *PLoad; 4724 if (SplitLoads) { 4725 PLoad = (*SplitLoads)[Idx]; 4726 } else { 4727 IRB.SetInsertPoint(LI); 4728 auto AS = LI->getPointerAddressSpace(); 4729 PLoad = IRB.CreateAlignedLoad( 4730 PartTy, 4731 getAdjustedPtr(IRB, DL, LoadBasePtr, 4732 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4733 LoadPartPtrTy, LoadBasePtr->getName() + "."), 4734 getAdjustedAlignment(LI, PartOffset), 4735 /*IsVolatile*/ false, LI->getName()); 4736 PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access, 4737 LLVMContext::MD_access_group}); 4738 } 4739 4740 // And store this partition. 4741 IRB.SetInsertPoint(SI); 4742 auto AS = SI->getPointerAddressSpace(); 4743 StoreInst *PStore = IRB.CreateAlignedStore( 4744 PLoad, 4745 getAdjustedPtr(IRB, DL, StoreBasePtr, 4746 APInt(DL.getIndexSizeInBits(AS), PartOffset), 4747 StorePartPtrTy, StoreBasePtr->getName() + "."), 4748 getAdjustedAlignment(SI, PartOffset), 4749 /*IsVolatile*/ false); 4750 PStore->copyMetadata(*SI, {LLVMContext::MD_mem_parallel_loop_access, 4751 LLVMContext::MD_access_group}); 4752 4753 // Now build a new slice for the alloca. 4754 NewSlices.push_back( 4755 Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize, 4756 &PStore->getOperandUse(PStore->getPointerOperandIndex()), 4757 /*IsSplittable*/ false)); 4758 LLVM_DEBUG(dbgs() << " new slice [" << NewSlices.back().beginOffset() 4759 << ", " << NewSlices.back().endOffset() 4760 << "): " << *PStore << "\n"); 4761 if (!SplitLoads) { 4762 LLVM_DEBUG(dbgs() << " of split load: " << *PLoad << "\n"); 4763 } 4764 4765 // See if we've finished all the splits. 4766 if (Idx >= Size) 4767 break; 4768 4769 // Setup the next partition. 4770 PartOffset = Offsets.Splits[Idx]; 4771 ++Idx; 4772 PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset; 4773 } 4774 4775 // We want to immediately iterate on any allocas impacted by splitting 4776 // this load, which is only relevant if it isn't a load of this alloca and 4777 // thus we didn't already split the loads above. We also have to keep track 4778 // of any promotable allocas we split loads on as they can no longer be 4779 // promoted. 4780 if (!SplitLoads) { 4781 if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) { 4782 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4783 ResplitPromotableAllocas.insert(OtherAI); 4784 Worklist.insert(OtherAI); 4785 } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>( 4786 LoadBasePtr->stripInBoundsOffsets())) { 4787 assert(OtherAI != &AI && "We can't re-split our own alloca!"); 4788 Worklist.insert(OtherAI); 4789 } 4790 } 4791 4792 // Mark the original store as dead now that we've split it up and kill its 4793 // slice. Note that we leave the original load in place unless this store 4794 // was its only use. It may in turn be split up if it is an alloca load 4795 // for some other alloca, but it may be a normal load. This may introduce 4796 // redundant loads, but where those can be merged the rest of the optimizer 4797 // should handle the merging, and this uncovers SSA splits which is more 4798 // important. In practice, the original loads will almost always be fully 4799 // split and removed eventually, and the splits will be merged by any 4800 // trivial CSE, including instcombine. 4801 if (LI->hasOneUse()) { 4802 assert(*LI->user_begin() == SI && "Single use isn't this store!"); 4803 DeadInsts.push_back(LI); 4804 } 4805 DeadInsts.push_back(SI); 4806 Offsets.S->kill(); 4807 } 4808 4809 // Remove the killed slices that have ben pre-split. 4810 llvm::erase_if(AS, [](const Slice &S) { return S.isDead(); }); 4811 4812 // Insert our new slices. This will sort and merge them into the sorted 4813 // sequence. 4814 AS.insert(NewSlices); 4815 4816 LLVM_DEBUG(dbgs() << " Pre-split slices:\n"); 4817 #ifndef NDEBUG 4818 for (auto I = AS.begin(), E = AS.end(); I != E; ++I) 4819 LLVM_DEBUG(AS.print(dbgs(), I, " ")); 4820 #endif 4821 4822 // Finally, don't try to promote any allocas that new require re-splitting. 4823 // They have already been added to the worklist above. 4824 PromotableAllocas.set_subtract(ResplitPromotableAllocas); 4825 4826 return true; 4827 } 4828 4829 /// Rewrite an alloca partition's users. 4830 /// 4831 /// This routine drives both of the rewriting goals of the SROA pass. It tries 4832 /// to rewrite uses of an alloca partition to be conducive for SSA value 4833 /// promotion. If the partition needs a new, more refined alloca, this will 4834 /// build that new alloca, preserving as much type information as possible, and 4835 /// rewrite the uses of the old alloca to point at the new one and have the 4836 /// appropriate new offsets. It also evaluates how successful the rewrite was 4837 /// at enabling promotion and if it was successful queues the alloca to be 4838 /// promoted. 4839 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS, 4840 Partition &P) { 4841 // Try to compute a friendly type for this partition of the alloca. This 4842 // won't always succeed, in which case we fall back to a legal integer type 4843 // or an i8 array of an appropriate size. 4844 Type *SliceTy = nullptr; 4845 VectorType *SliceVecTy = nullptr; 4846 const DataLayout &DL = AI.getDataLayout(); 4847 std::pair<Type *, IntegerType *> CommonUseTy = 4848 findCommonType(P.begin(), P.end(), P.endOffset()); 4849 // Do all uses operate on the same type? 4850 if (CommonUseTy.first) 4851 if (DL.getTypeAllocSize(CommonUseTy.first).getFixedValue() >= P.size()) { 4852 SliceTy = CommonUseTy.first; 4853 SliceVecTy = dyn_cast<VectorType>(SliceTy); 4854 } 4855 // If not, can we find an appropriate subtype in the original allocated type? 4856 if (!SliceTy) 4857 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4858 P.beginOffset(), P.size())) 4859 SliceTy = TypePartitionTy; 4860 4861 // If still not, can we use the largest bitwidth integer type used? 4862 if (!SliceTy && CommonUseTy.second) 4863 if (DL.getTypeAllocSize(CommonUseTy.second).getFixedValue() >= P.size()) { 4864 SliceTy = CommonUseTy.second; 4865 SliceVecTy = dyn_cast<VectorType>(SliceTy); 4866 } 4867 if ((!SliceTy || (SliceTy->isArrayTy() && 4868 SliceTy->getArrayElementType()->isIntegerTy())) && 4869 DL.isLegalInteger(P.size() * 8)) { 4870 SliceTy = Type::getIntNTy(*C, P.size() * 8); 4871 } 4872 4873 // If the common use types are not viable for promotion then attempt to find 4874 // another type that is viable. 4875 if (SliceVecTy && !checkVectorTypeForPromotion(P, SliceVecTy, DL)) 4876 if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(), 4877 P.beginOffset(), P.size())) { 4878 VectorType *TypePartitionVecTy = dyn_cast<VectorType>(TypePartitionTy); 4879 if (TypePartitionVecTy && 4880 checkVectorTypeForPromotion(P, TypePartitionVecTy, DL)) 4881 SliceTy = TypePartitionTy; 4882 } 4883 4884 if (!SliceTy) 4885 SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size()); 4886 assert(DL.getTypeAllocSize(SliceTy).getFixedValue() >= P.size()); 4887 4888 bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL); 4889 4890 VectorType *VecTy = 4891 IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL); 4892 if (VecTy) 4893 SliceTy = VecTy; 4894 4895 // Check for the case where we're going to rewrite to a new alloca of the 4896 // exact same type as the original, and with the same access offsets. In that 4897 // case, re-use the existing alloca, but still run through the rewriter to 4898 // perform phi and select speculation. 4899 // P.beginOffset() can be non-zero even with the same type in a case with 4900 // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll). 4901 AllocaInst *NewAI; 4902 if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) { 4903 NewAI = &AI; 4904 // FIXME: We should be able to bail at this point with "nothing changed". 4905 // FIXME: We might want to defer PHI speculation until after here. 4906 // FIXME: return nullptr; 4907 } else { 4908 // Make sure the alignment is compatible with P.beginOffset(). 4909 const Align Alignment = commonAlignment(AI.getAlign(), P.beginOffset()); 4910 // If we will get at least this much alignment from the type alone, leave 4911 // the alloca's alignment unconstrained. 4912 const bool IsUnconstrained = Alignment <= DL.getABITypeAlign(SliceTy); 4913 NewAI = new AllocaInst( 4914 SliceTy, AI.getAddressSpace(), nullptr, 4915 IsUnconstrained ? DL.getPrefTypeAlign(SliceTy) : Alignment, 4916 AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), 4917 AI.getIterator()); 4918 // Copy the old AI debug location over to the new one. 4919 NewAI->setDebugLoc(AI.getDebugLoc()); 4920 ++NumNewAllocas; 4921 } 4922 4923 LLVM_DEBUG(dbgs() << "Rewriting alloca partition " << "[" << P.beginOffset() 4924 << "," << P.endOffset() << ") to: " << *NewAI << "\n"); 4925 4926 // Track the high watermark on the worklist as it is only relevant for 4927 // promoted allocas. We will reset it to this point if the alloca is not in 4928 // fact scheduled for promotion. 4929 unsigned PPWOldSize = PostPromotionWorklist.size(); 4930 unsigned NumUses = 0; 4931 SmallSetVector<PHINode *, 8> PHIUsers; 4932 SmallSetVector<SelectInst *, 8> SelectUsers; 4933 4934 AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(), 4935 P.endOffset(), IsIntegerPromotable, VecTy, 4936 PHIUsers, SelectUsers); 4937 bool Promotable = true; 4938 for (Slice *S : P.splitSliceTails()) { 4939 Promotable &= Rewriter.visit(S); 4940 ++NumUses; 4941 } 4942 for (Slice &S : P) { 4943 Promotable &= Rewriter.visit(&S); 4944 ++NumUses; 4945 } 4946 4947 NumAllocaPartitionUses += NumUses; 4948 MaxUsesPerAllocaPartition.updateMax(NumUses); 4949 4950 // Now that we've processed all the slices in the new partition, check if any 4951 // PHIs or Selects would block promotion. 4952 for (PHINode *PHI : PHIUsers) 4953 if (!isSafePHIToSpeculate(*PHI)) { 4954 Promotable = false; 4955 PHIUsers.clear(); 4956 SelectUsers.clear(); 4957 break; 4958 } 4959 4960 SmallVector<std::pair<SelectInst *, RewriteableMemOps>, 2> 4961 NewSelectsToRewrite; 4962 NewSelectsToRewrite.reserve(SelectUsers.size()); 4963 for (SelectInst *Sel : SelectUsers) { 4964 std::optional<RewriteableMemOps> Ops = 4965 isSafeSelectToSpeculate(*Sel, PreserveCFG); 4966 if (!Ops) { 4967 Promotable = false; 4968 PHIUsers.clear(); 4969 SelectUsers.clear(); 4970 NewSelectsToRewrite.clear(); 4971 break; 4972 } 4973 NewSelectsToRewrite.emplace_back(std::make_pair(Sel, *Ops)); 4974 } 4975 4976 if (Promotable) { 4977 for (Use *U : AS.getDeadUsesIfPromotable()) { 4978 auto *OldInst = dyn_cast<Instruction>(U->get()); 4979 Value::dropDroppableUse(*U); 4980 if (OldInst) 4981 if (isInstructionTriviallyDead(OldInst)) 4982 DeadInsts.push_back(OldInst); 4983 } 4984 if (PHIUsers.empty() && SelectUsers.empty()) { 4985 // Promote the alloca. 4986 PromotableAllocas.insert(NewAI); 4987 } else { 4988 // If we have either PHIs or Selects to speculate, add them to those 4989 // worklists and re-queue the new alloca so that we promote in on the 4990 // next iteration. 4991 for (PHINode *PHIUser : PHIUsers) 4992 SpeculatablePHIs.insert(PHIUser); 4993 SelectsToRewrite.reserve(SelectsToRewrite.size() + 4994 NewSelectsToRewrite.size()); 4995 for (auto &&KV : llvm::make_range( 4996 std::make_move_iterator(NewSelectsToRewrite.begin()), 4997 std::make_move_iterator(NewSelectsToRewrite.end()))) 4998 SelectsToRewrite.insert(std::move(KV)); 4999 Worklist.insert(NewAI); 5000 } 5001 } else { 5002 // Drop any post-promotion work items if promotion didn't happen. 5003 while (PostPromotionWorklist.size() > PPWOldSize) 5004 PostPromotionWorklist.pop_back(); 5005 5006 // We couldn't promote and we didn't create a new partition, nothing 5007 // happened. 5008 if (NewAI == &AI) 5009 return nullptr; 5010 5011 // If we can't promote the alloca, iterate on it to check for new 5012 // refinements exposed by splitting the current alloca. Don't iterate on an 5013 // alloca which didn't actually change and didn't get promoted. 5014 Worklist.insert(NewAI); 5015 } 5016 5017 return NewAI; 5018 } 5019 5020 // There isn't a shared interface to get the "address" parts out of a 5021 // dbg.declare and dbg.assign, so provide some wrappers now for 5022 // both debug intrinsics and records. 5023 const Value *getAddress(const DbgVariableIntrinsic *DVI) { 5024 if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) 5025 return DAI->getAddress(); 5026 return cast<DbgDeclareInst>(DVI)->getAddress(); 5027 } 5028 5029 const Value *getAddress(const DbgVariableRecord *DVR) { 5030 return DVR->getAddress(); 5031 } 5032 5033 bool isKillAddress(const DbgVariableIntrinsic *DVI) { 5034 if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) 5035 return DAI->isKillAddress(); 5036 return cast<DbgDeclareInst>(DVI)->isKillLocation(); 5037 } 5038 5039 bool isKillAddress(const DbgVariableRecord *DVR) { 5040 if (DVR->getType() == DbgVariableRecord::LocationType::Assign) 5041 return DVR->isKillAddress(); 5042 return DVR->isKillLocation(); 5043 } 5044 5045 const DIExpression *getAddressExpression(const DbgVariableIntrinsic *DVI) { 5046 if (const auto *DAI = dyn_cast<DbgAssignIntrinsic>(DVI)) 5047 return DAI->getAddressExpression(); 5048 return cast<DbgDeclareInst>(DVI)->getExpression(); 5049 } 5050 5051 const DIExpression *getAddressExpression(const DbgVariableRecord *DVR) { 5052 if (DVR->getType() == DbgVariableRecord::LocationType::Assign) 5053 return DVR->getAddressExpression(); 5054 return DVR->getExpression(); 5055 } 5056 5057 /// Create or replace an existing fragment in a DIExpression with \p Frag. 5058 /// If the expression already contains a DW_OP_LLVM_extract_bits_[sz]ext 5059 /// operation, add \p BitExtractOffset to the offset part. 5060 /// 5061 /// Returns the new expression, or nullptr if this fails (see details below). 5062 /// 5063 /// This function is similar to DIExpression::createFragmentExpression except 5064 /// for 3 important distinctions: 5065 /// 1. The new fragment isn't relative to an existing fragment. 5066 /// 2. It assumes the computed location is a memory location. This means we 5067 /// don't need to perform checks that creating the fragment preserves the 5068 /// expression semantics. 5069 /// 3. Existing extract_bits are modified independently of fragment changes 5070 /// using \p BitExtractOffset. A change to the fragment offset or size 5071 /// may affect a bit extract. But a bit extract offset can change 5072 /// independently of the fragment dimensions. 5073 /// 5074 /// Returns the new expression, or nullptr if one couldn't be created. 5075 /// Ideally this is only used to signal that a bit-extract has become 5076 /// zero-sized (and thus the new debug record has no size and can be 5077 /// dropped), however, it fails for other reasons too - see the FIXME below. 5078 /// 5079 /// FIXME: To keep the change that introduces this function NFC it bails 5080 /// in some situations unecessarily, e.g. when fragment and bit extract 5081 /// sizes differ. 5082 static DIExpression *createOrReplaceFragment(const DIExpression *Expr, 5083 DIExpression::FragmentInfo Frag, 5084 int64_t BitExtractOffset) { 5085 SmallVector<uint64_t, 8> Ops; 5086 bool HasFragment = false; 5087 bool HasBitExtract = false; 5088 5089 for (auto &Op : Expr->expr_ops()) { 5090 if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) { 5091 HasFragment = true; 5092 continue; 5093 } 5094 if (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_zext || 5095 Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext) { 5096 HasBitExtract = true; 5097 int64_t ExtractOffsetInBits = Op.getArg(0); 5098 int64_t ExtractSizeInBits = Op.getArg(1); 5099 5100 // DIExpression::createFragmentExpression doesn't know how to handle 5101 // a fragment that is smaller than the extract. Copy the behaviour 5102 // (bail) to avoid non-NFC changes. 5103 // FIXME: Don't do this. 5104 if (Frag.SizeInBits < uint64_t(ExtractSizeInBits)) 5105 return nullptr; 5106 5107 assert(BitExtractOffset <= 0); 5108 int64_t AdjustedOffset = ExtractOffsetInBits + BitExtractOffset; 5109 5110 // DIExpression::createFragmentExpression doesn't know what to do 5111 // if the new extract starts "outside" the existing one. Copy the 5112 // behaviour (bail) to avoid non-NFC changes. 5113 // FIXME: Don't do this. 5114 if (AdjustedOffset < 0) 5115 return nullptr; 5116 5117 Ops.push_back(Op.getOp()); 5118 Ops.push_back(std::max<int64_t>(0, AdjustedOffset)); 5119 Ops.push_back(ExtractSizeInBits); 5120 continue; 5121 } 5122 Op.appendToVector(Ops); 5123 } 5124 5125 // Unsupported by createFragmentExpression, so don't support it here yet to 5126 // preserve NFC-ness. 5127 if (HasFragment && HasBitExtract) 5128 return nullptr; 5129 5130 if (!HasBitExtract) { 5131 Ops.push_back(dwarf::DW_OP_LLVM_fragment); 5132 Ops.push_back(Frag.OffsetInBits); 5133 Ops.push_back(Frag.SizeInBits); 5134 } 5135 return DIExpression::get(Expr->getContext(), Ops); 5136 } 5137 5138 /// Insert a new dbg.declare. 5139 /// \p Orig Original to copy debug loc and variable from. 5140 /// \p NewAddr Location's new base address. 5141 /// \p NewAddrExpr New expression to apply to address. 5142 /// \p BeforeInst Insert position. 5143 /// \p NewFragment New fragment (absolute, non-relative). 5144 /// \p BitExtractAdjustment Offset to apply to any extract_bits op. 5145 static void 5146 insertNewDbgInst(DIBuilder &DIB, DbgDeclareInst *Orig, AllocaInst *NewAddr, 5147 DIExpression *NewAddrExpr, Instruction *BeforeInst, 5148 std::optional<DIExpression::FragmentInfo> NewFragment, 5149 int64_t BitExtractAdjustment) { 5150 if (NewFragment) 5151 NewAddrExpr = createOrReplaceFragment(NewAddrExpr, *NewFragment, 5152 BitExtractAdjustment); 5153 if (!NewAddrExpr) 5154 return; 5155 5156 DIB.insertDeclare(NewAddr, Orig->getVariable(), NewAddrExpr, 5157 Orig->getDebugLoc(), BeforeInst); 5158 } 5159 5160 /// Insert a new dbg.assign. 5161 /// \p Orig Original to copy debug loc, variable, value and value expression 5162 /// from. 5163 /// \p NewAddr Location's new base address. 5164 /// \p NewAddrExpr New expression to apply to address. 5165 /// \p BeforeInst Insert position. 5166 /// \p NewFragment New fragment (absolute, non-relative). 5167 /// \p BitExtractAdjustment Offset to apply to any extract_bits op. 5168 static void 5169 insertNewDbgInst(DIBuilder &DIB, DbgAssignIntrinsic *Orig, AllocaInst *NewAddr, 5170 DIExpression *NewAddrExpr, Instruction *BeforeInst, 5171 std::optional<DIExpression::FragmentInfo> NewFragment, 5172 int64_t BitExtractAdjustment) { 5173 // DIBuilder::insertDbgAssign will insert the #dbg_assign after NewAddr. 5174 (void)BeforeInst; 5175 5176 // A dbg.assign puts fragment info in the value expression only. The address 5177 // expression has already been built: NewAddrExpr. 5178 DIExpression *NewFragmentExpr = Orig->getExpression(); 5179 if (NewFragment) 5180 NewFragmentExpr = createOrReplaceFragment(NewFragmentExpr, *NewFragment, 5181 BitExtractAdjustment); 5182 if (!NewFragmentExpr) 5183 return; 5184 5185 // Apply a DIAssignID to the store if it doesn't already have it. 5186 if (!NewAddr->hasMetadata(LLVMContext::MD_DIAssignID)) { 5187 NewAddr->setMetadata(LLVMContext::MD_DIAssignID, 5188 DIAssignID::getDistinct(NewAddr->getContext())); 5189 } 5190 5191 Instruction *NewAssign = cast<Instruction *>(DIB.insertDbgAssign( 5192 NewAddr, Orig->getValue(), Orig->getVariable(), NewFragmentExpr, NewAddr, 5193 NewAddrExpr, Orig->getDebugLoc())); 5194 LLVM_DEBUG(dbgs() << "Created new assign intrinsic: " << *NewAssign << "\n"); 5195 (void)NewAssign; 5196 } 5197 5198 /// Insert a new DbgRecord. 5199 /// \p Orig Original to copy record type, debug loc and variable from, and 5200 /// additionally value and value expression for dbg_assign records. 5201 /// \p NewAddr Location's new base address. 5202 /// \p NewAddrExpr New expression to apply to address. 5203 /// \p BeforeInst Insert position. 5204 /// \p NewFragment New fragment (absolute, non-relative). 5205 /// \p BitExtractAdjustment Offset to apply to any extract_bits op. 5206 static void 5207 insertNewDbgInst(DIBuilder &DIB, DbgVariableRecord *Orig, AllocaInst *NewAddr, 5208 DIExpression *NewAddrExpr, Instruction *BeforeInst, 5209 std::optional<DIExpression::FragmentInfo> NewFragment, 5210 int64_t BitExtractAdjustment) { 5211 (void)DIB; 5212 5213 // A dbg_assign puts fragment info in the value expression only. The address 5214 // expression has already been built: NewAddrExpr. A dbg_declare puts the 5215 // new fragment info into NewAddrExpr (as it only has one expression). 5216 DIExpression *NewFragmentExpr = 5217 Orig->isDbgAssign() ? Orig->getExpression() : NewAddrExpr; 5218 if (NewFragment) 5219 NewFragmentExpr = createOrReplaceFragment(NewFragmentExpr, *NewFragment, 5220 BitExtractAdjustment); 5221 if (!NewFragmentExpr) 5222 return; 5223 5224 if (Orig->isDbgDeclare()) { 5225 DbgVariableRecord *DVR = DbgVariableRecord::createDVRDeclare( 5226 NewAddr, Orig->getVariable(), NewFragmentExpr, Orig->getDebugLoc()); 5227 BeforeInst->getParent()->insertDbgRecordBefore(DVR, 5228 BeforeInst->getIterator()); 5229 return; 5230 } 5231 5232 if (Orig->isDbgValue()) { 5233 DbgVariableRecord *DVR = DbgVariableRecord::createDbgVariableRecord( 5234 NewAddr, Orig->getVariable(), NewFragmentExpr, Orig->getDebugLoc()); 5235 // Drop debug information if the expression doesn't start with a 5236 // DW_OP_deref. This is because without a DW_OP_deref, the #dbg_value 5237 // describes the address of alloca rather than the value inside the alloca. 5238 if (!NewFragmentExpr->startsWithDeref()) 5239 DVR->setKillAddress(); 5240 BeforeInst->getParent()->insertDbgRecordBefore(DVR, 5241 BeforeInst->getIterator()); 5242 return; 5243 } 5244 5245 // Apply a DIAssignID to the store if it doesn't already have it. 5246 if (!NewAddr->hasMetadata(LLVMContext::MD_DIAssignID)) { 5247 NewAddr->setMetadata(LLVMContext::MD_DIAssignID, 5248 DIAssignID::getDistinct(NewAddr->getContext())); 5249 } 5250 5251 DbgVariableRecord *NewAssign = DbgVariableRecord::createLinkedDVRAssign( 5252 NewAddr, Orig->getValue(), Orig->getVariable(), NewFragmentExpr, NewAddr, 5253 NewAddrExpr, Orig->getDebugLoc()); 5254 LLVM_DEBUG(dbgs() << "Created new DVRAssign: " << *NewAssign << "\n"); 5255 (void)NewAssign; 5256 } 5257 5258 /// Walks the slices of an alloca and form partitions based on them, 5259 /// rewriting each of their uses. 5260 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) { 5261 if (AS.begin() == AS.end()) 5262 return false; 5263 5264 unsigned NumPartitions = 0; 5265 bool Changed = false; 5266 const DataLayout &DL = AI.getModule()->getDataLayout(); 5267 5268 // First try to pre-split loads and stores. 5269 Changed |= presplitLoadsAndStores(AI, AS); 5270 5271 // Now that we have identified any pre-splitting opportunities, 5272 // mark loads and stores unsplittable except for the following case. 5273 // We leave a slice splittable if all other slices are disjoint or fully 5274 // included in the slice, such as whole-alloca loads and stores. 5275 // If we fail to split these during pre-splitting, we want to force them 5276 // to be rewritten into a partition. 5277 bool IsSorted = true; 5278 5279 uint64_t AllocaSize = 5280 DL.getTypeAllocSize(AI.getAllocatedType()).getFixedValue(); 5281 const uint64_t MaxBitVectorSize = 1024; 5282 if (AllocaSize <= MaxBitVectorSize) { 5283 // If a byte boundary is included in any load or store, a slice starting or 5284 // ending at the boundary is not splittable. 5285 SmallBitVector SplittableOffset(AllocaSize + 1, true); 5286 for (Slice &S : AS) 5287 for (unsigned O = S.beginOffset() + 1; 5288 O < S.endOffset() && O < AllocaSize; O++) 5289 SplittableOffset.reset(O); 5290 5291 for (Slice &S : AS) { 5292 if (!S.isSplittable()) 5293 continue; 5294 5295 if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) && 5296 (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()])) 5297 continue; 5298 5299 if (isa<LoadInst>(S.getUse()->getUser()) || 5300 isa<StoreInst>(S.getUse()->getUser())) { 5301 S.makeUnsplittable(); 5302 IsSorted = false; 5303 } 5304 } 5305 } else { 5306 // We only allow whole-alloca splittable loads and stores 5307 // for a large alloca to avoid creating too large BitVector. 5308 for (Slice &S : AS) { 5309 if (!S.isSplittable()) 5310 continue; 5311 5312 if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize) 5313 continue; 5314 5315 if (isa<LoadInst>(S.getUse()->getUser()) || 5316 isa<StoreInst>(S.getUse()->getUser())) { 5317 S.makeUnsplittable(); 5318 IsSorted = false; 5319 } 5320 } 5321 } 5322 5323 if (!IsSorted) 5324 llvm::stable_sort(AS); 5325 5326 /// Describes the allocas introduced by rewritePartition in order to migrate 5327 /// the debug info. 5328 struct Fragment { 5329 AllocaInst *Alloca; 5330 uint64_t Offset; 5331 uint64_t Size; 5332 Fragment(AllocaInst *AI, uint64_t O, uint64_t S) 5333 : Alloca(AI), Offset(O), Size(S) {} 5334 }; 5335 SmallVector<Fragment, 4> Fragments; 5336 5337 // Rewrite each partition. 5338 for (auto &P : AS.partitions()) { 5339 if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) { 5340 Changed = true; 5341 if (NewAI != &AI) { 5342 uint64_t SizeOfByte = 8; 5343 uint64_t AllocaSize = 5344 DL.getTypeSizeInBits(NewAI->getAllocatedType()).getFixedValue(); 5345 // Don't include any padding. 5346 uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte); 5347 Fragments.push_back( 5348 Fragment(NewAI, P.beginOffset() * SizeOfByte, Size)); 5349 } 5350 } 5351 ++NumPartitions; 5352 } 5353 5354 NumAllocaPartitions += NumPartitions; 5355 MaxPartitionsPerAlloca.updateMax(NumPartitions); 5356 5357 // Migrate debug information from the old alloca to the new alloca(s) 5358 // and the individual partitions. 5359 auto MigrateOne = [&](auto *DbgVariable) { 5360 // Can't overlap with undef memory. 5361 if (isKillAddress(DbgVariable)) 5362 return; 5363 5364 const Value *DbgPtr = getAddress(DbgVariable); 5365 DIExpression::FragmentInfo VarFrag = 5366 DbgVariable->getFragmentOrEntireVariable(); 5367 // Get the address expression constant offset if one exists and the ops 5368 // that come after it. 5369 int64_t CurrentExprOffsetInBytes = 0; 5370 SmallVector<uint64_t> PostOffsetOps; 5371 if (!getAddressExpression(DbgVariable) 5372 ->extractLeadingOffset(CurrentExprOffsetInBytes, PostOffsetOps)) 5373 return; // Couldn't interpret this DIExpression - drop the var. 5374 5375 // Offset defined by a DW_OP_LLVM_extract_bits_[sz]ext. 5376 int64_t ExtractOffsetInBits = 0; 5377 for (auto Op : getAddressExpression(DbgVariable)->expr_ops()) { 5378 if (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_zext || 5379 Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext) { 5380 ExtractOffsetInBits = Op.getArg(0); 5381 break; 5382 } 5383 } 5384 5385 DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false); 5386 for (auto Fragment : Fragments) { 5387 int64_t OffsetFromLocationInBits; 5388 std::optional<DIExpression::FragmentInfo> NewDbgFragment; 5389 // Find the variable fragment that the new alloca slice covers. 5390 // Drop debug info for this variable fragment if we can't compute an 5391 // intersect between it and the alloca slice. 5392 if (!DIExpression::calculateFragmentIntersect( 5393 DL, &AI, Fragment.Offset, Fragment.Size, DbgPtr, 5394 CurrentExprOffsetInBytes * 8, ExtractOffsetInBits, VarFrag, 5395 NewDbgFragment, OffsetFromLocationInBits)) 5396 continue; // Do not migrate this fragment to this slice. 5397 5398 // Zero sized fragment indicates there's no intersect between the variable 5399 // fragment and the alloca slice. Skip this slice for this variable 5400 // fragment. 5401 if (NewDbgFragment && !NewDbgFragment->SizeInBits) 5402 continue; // Do not migrate this fragment to this slice. 5403 5404 // No fragment indicates DbgVariable's variable or fragment exactly 5405 // overlaps the slice; copy its fragment (or nullopt if there isn't one). 5406 if (!NewDbgFragment) 5407 NewDbgFragment = DbgVariable->getFragment(); 5408 5409 // Reduce the new expression offset by the bit-extract offset since 5410 // we'll be keeping that. 5411 int64_t OffestFromNewAllocaInBits = 5412 OffsetFromLocationInBits - ExtractOffsetInBits; 5413 // We need to adjust an existing bit extract if the offset expression 5414 // can't eat the slack (i.e., if the new offset would be negative). 5415 int64_t BitExtractOffset = 5416 std::min<int64_t>(0, OffestFromNewAllocaInBits); 5417 // The magnitude of a negative value indicates the number of bits into 5418 // the existing variable fragment that the memory region begins. The new 5419 // variable fragment already excludes those bits - the new DbgPtr offset 5420 // only needs to be applied if it's positive. 5421 OffestFromNewAllocaInBits = 5422 std::max(int64_t(0), OffestFromNewAllocaInBits); 5423 5424 // Rebuild the expression: 5425 // {Offset(OffestFromNewAllocaInBits), PostOffsetOps, NewDbgFragment} 5426 // Add NewDbgFragment later, because dbg.assigns don't want it in the 5427 // address expression but the value expression instead. 5428 DIExpression *NewExpr = DIExpression::get(AI.getContext(), PostOffsetOps); 5429 if (OffestFromNewAllocaInBits > 0) { 5430 int64_t OffsetInBytes = (OffestFromNewAllocaInBits + 7) / 8; 5431 NewExpr = DIExpression::prepend(NewExpr, /*flags=*/0, OffsetInBytes); 5432 } 5433 5434 // Remove any existing intrinsics on the new alloca describing 5435 // the variable fragment. 5436 auto RemoveOne = [DbgVariable](auto *OldDII) { 5437 auto SameVariableFragment = [](const auto *LHS, const auto *RHS) { 5438 return LHS->getVariable() == RHS->getVariable() && 5439 LHS->getDebugLoc()->getInlinedAt() == 5440 RHS->getDebugLoc()->getInlinedAt(); 5441 }; 5442 if (SameVariableFragment(OldDII, DbgVariable)) 5443 OldDII->eraseFromParent(); 5444 }; 5445 for_each(findDbgDeclares(Fragment.Alloca), RemoveOne); 5446 for_each(findDVRDeclares(Fragment.Alloca), RemoveOne); 5447 for_each(findDVRValues(Fragment.Alloca), RemoveOne); 5448 insertNewDbgInst(DIB, DbgVariable, Fragment.Alloca, NewExpr, &AI, 5449 NewDbgFragment, BitExtractOffset); 5450 } 5451 }; 5452 5453 // Migrate debug information from the old alloca to the new alloca(s) 5454 // and the individual partitions. 5455 for_each(findDbgDeclares(&AI), MigrateOne); 5456 for_each(findDVRDeclares(&AI), MigrateOne); 5457 for_each(findDVRValues(&AI), MigrateOne); 5458 for_each(at::getAssignmentMarkers(&AI), MigrateOne); 5459 for_each(at::getDVRAssignmentMarkers(&AI), MigrateOne); 5460 5461 return Changed; 5462 } 5463 5464 /// Clobber a use with poison, deleting the used value if it becomes dead. 5465 void SROA::clobberUse(Use &U) { 5466 Value *OldV = U; 5467 // Replace the use with an poison value. 5468 U = PoisonValue::get(OldV->getType()); 5469 5470 // Check for this making an instruction dead. We have to garbage collect 5471 // all the dead instructions to ensure the uses of any alloca end up being 5472 // minimal. 5473 if (Instruction *OldI = dyn_cast<Instruction>(OldV)) 5474 if (isInstructionTriviallyDead(OldI)) { 5475 DeadInsts.push_back(OldI); 5476 } 5477 } 5478 5479 /// A basic LoadAndStorePromoter that does not remove store nodes. 5480 class BasicLoadAndStorePromoter : public LoadAndStorePromoter { 5481 public: 5482 BasicLoadAndStorePromoter(ArrayRef<const Instruction *> Insts, SSAUpdater &S, 5483 Type *ZeroType) 5484 : LoadAndStorePromoter(Insts, S), ZeroType(ZeroType) {} 5485 bool shouldDelete(Instruction *I) const override { 5486 return !isa<StoreInst>(I) && !isa<AllocaInst>(I); 5487 } 5488 5489 Value *getValueToUseForAlloca(Instruction *I) const override { 5490 return UndefValue::get(ZeroType); 5491 } 5492 5493 private: 5494 Type *ZeroType; 5495 }; 5496 5497 bool SROA::propagateStoredValuesToLoads(AllocaInst &AI, AllocaSlices &AS) { 5498 // Look through each "partition", looking for slices with the same start/end 5499 // that do not overlap with any before them. The slices are sorted by 5500 // increasing beginOffset. We don't use AS.partitions(), as it will use a more 5501 // sophisticated algorithm that takes splittable slices into account. 5502 auto PartitionBegin = AS.begin(); 5503 auto PartitionEnd = PartitionBegin; 5504 uint64_t BeginOffset = PartitionBegin->beginOffset(); 5505 uint64_t EndOffset = PartitionBegin->endOffset(); 5506 while (PartitionBegin != AS.end()) { 5507 bool AllSameAndValid = true; 5508 SmallVector<Instruction *> Insts; 5509 Type *PartitionType = nullptr; 5510 while (PartitionEnd != AS.end() && 5511 (PartitionEnd->beginOffset() < EndOffset || 5512 PartitionEnd->endOffset() <= EndOffset)) { 5513 if (AllSameAndValid) { 5514 AllSameAndValid &= PartitionEnd->beginOffset() == BeginOffset && 5515 PartitionEnd->endOffset() == EndOffset; 5516 Instruction *User = 5517 cast<Instruction>(PartitionEnd->getUse()->getUser()); 5518 if (auto *LI = dyn_cast<LoadInst>(User)) { 5519 Type *UserTy = LI->getType(); 5520 // LoadAndStorePromoter requires all the types to be the same. 5521 if (!LI->isSimple() || (PartitionType && UserTy != PartitionType)) 5522 AllSameAndValid = false; 5523 PartitionType = UserTy; 5524 Insts.push_back(User); 5525 } else if (auto *SI = dyn_cast<StoreInst>(User)) { 5526 Type *UserTy = SI->getValueOperand()->getType(); 5527 if (!SI->isSimple() || (PartitionType && UserTy != PartitionType)) 5528 AllSameAndValid = false; 5529 PartitionType = UserTy; 5530 Insts.push_back(User); 5531 } else if (!isAssumeLikeIntrinsic(User)) { 5532 AllSameAndValid = false; 5533 } 5534 } 5535 EndOffset = std::max(EndOffset, PartitionEnd->endOffset()); 5536 ++PartitionEnd; 5537 } 5538 5539 // So long as all the slices start and end offsets matched, update loads to 5540 // the values stored in the partition. 5541 if (AllSameAndValid && !Insts.empty()) { 5542 LLVM_DEBUG(dbgs() << "Propagate values on slice [" << BeginOffset << ", " 5543 << EndOffset << ")\n"); 5544 SmallVector<PHINode *, 4> NewPHIs; 5545 SSAUpdater SSA(&NewPHIs); 5546 Insts.push_back(&AI); 5547 BasicLoadAndStorePromoter Promoter(Insts, SSA, PartitionType); 5548 Promoter.run(Insts); 5549 } 5550 5551 // Step on to the next partition. 5552 PartitionBegin = PartitionEnd; 5553 if (PartitionBegin == AS.end()) 5554 break; 5555 BeginOffset = PartitionBegin->beginOffset(); 5556 EndOffset = PartitionBegin->endOffset(); 5557 } 5558 return true; 5559 } 5560 5561 /// Analyze an alloca for SROA. 5562 /// 5563 /// This analyzes the alloca to ensure we can reason about it, builds 5564 /// the slices of the alloca, and then hands it off to be split and 5565 /// rewritten as needed. 5566 std::pair<bool /*Changed*/, bool /*CFGChanged*/> 5567 SROA::runOnAlloca(AllocaInst &AI) { 5568 bool Changed = false; 5569 bool CFGChanged = false; 5570 5571 LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); 5572 ++NumAllocasAnalyzed; 5573 5574 // Special case dead allocas, as they're trivial. 5575 if (AI.use_empty()) { 5576 AI.eraseFromParent(); 5577 Changed = true; 5578 return {Changed, CFGChanged}; 5579 } 5580 const DataLayout &DL = AI.getDataLayout(); 5581 5582 // Skip alloca forms that this analysis can't handle. 5583 auto *AT = AI.getAllocatedType(); 5584 TypeSize Size = DL.getTypeAllocSize(AT); 5585 if (AI.isArrayAllocation() || !AT->isSized() || Size.isScalable() || 5586 Size.getFixedValue() == 0) 5587 return {Changed, CFGChanged}; 5588 5589 // First, split any FCA loads and stores touching this alloca to promote 5590 // better splitting and promotion opportunities. 5591 IRBuilderTy IRB(&AI); 5592 AggLoadStoreRewriter AggRewriter(DL, IRB); 5593 Changed |= AggRewriter.rewrite(AI); 5594 5595 // Build the slices using a recursive instruction-visiting builder. 5596 AllocaSlices AS(DL, AI); 5597 LLVM_DEBUG(AS.print(dbgs())); 5598 if (AS.isEscaped()) 5599 return {Changed, CFGChanged}; 5600 5601 if (AS.isEscapedReadOnly()) { 5602 Changed |= propagateStoredValuesToLoads(AI, AS); 5603 return {Changed, CFGChanged}; 5604 } 5605 5606 // Delete all the dead users of this alloca before splitting and rewriting it. 5607 for (Instruction *DeadUser : AS.getDeadUsers()) { 5608 // Free up everything used by this instruction. 5609 for (Use &DeadOp : DeadUser->operands()) 5610 clobberUse(DeadOp); 5611 5612 // Now replace the uses of this instruction. 5613 DeadUser->replaceAllUsesWith(PoisonValue::get(DeadUser->getType())); 5614 5615 // And mark it for deletion. 5616 DeadInsts.push_back(DeadUser); 5617 Changed = true; 5618 } 5619 for (Use *DeadOp : AS.getDeadOperands()) { 5620 clobberUse(*DeadOp); 5621 Changed = true; 5622 } 5623 5624 // No slices to split. Leave the dead alloca for a later pass to clean up. 5625 if (AS.begin() == AS.end()) 5626 return {Changed, CFGChanged}; 5627 5628 Changed |= splitAlloca(AI, AS); 5629 5630 LLVM_DEBUG(dbgs() << " Speculating PHIs\n"); 5631 while (!SpeculatablePHIs.empty()) 5632 speculatePHINodeLoads(IRB, *SpeculatablePHIs.pop_back_val()); 5633 5634 LLVM_DEBUG(dbgs() << " Rewriting Selects\n"); 5635 auto RemainingSelectsToRewrite = SelectsToRewrite.takeVector(); 5636 while (!RemainingSelectsToRewrite.empty()) { 5637 const auto [K, V] = RemainingSelectsToRewrite.pop_back_val(); 5638 CFGChanged |= 5639 rewriteSelectInstMemOps(*K, V, IRB, PreserveCFG ? nullptr : DTU); 5640 } 5641 5642 return {Changed, CFGChanged}; 5643 } 5644 5645 /// Delete the dead instructions accumulated in this run. 5646 /// 5647 /// Recursively deletes the dead instructions we've accumulated. This is done 5648 /// at the very end to maximize locality of the recursive delete and to 5649 /// minimize the problems of invalidated instruction pointers as such pointers 5650 /// are used heavily in the intermediate stages of the algorithm. 5651 /// 5652 /// We also record the alloca instructions deleted here so that they aren't 5653 /// subsequently handed to mem2reg to promote. 5654 bool SROA::deleteDeadInstructions( 5655 SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) { 5656 bool Changed = false; 5657 while (!DeadInsts.empty()) { 5658 Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()); 5659 if (!I) 5660 continue; 5661 LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); 5662 5663 // If the instruction is an alloca, find the possible dbg.declare connected 5664 // to it, and remove it too. We must do this before calling RAUW or we will 5665 // not be able to find it. 5666 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 5667 DeletedAllocas.insert(AI); 5668 for (DbgDeclareInst *OldDII : findDbgDeclares(AI)) 5669 OldDII->eraseFromParent(); 5670 for (DbgVariableRecord *OldDII : findDVRDeclares(AI)) 5671 OldDII->eraseFromParent(); 5672 } 5673 5674 at::deleteAssignmentMarkers(I); 5675 I->replaceAllUsesWith(UndefValue::get(I->getType())); 5676 5677 for (Use &Operand : I->operands()) 5678 if (Instruction *U = dyn_cast<Instruction>(Operand)) { 5679 // Zero out the operand and see if it becomes trivially dead. 5680 Operand = nullptr; 5681 if (isInstructionTriviallyDead(U)) 5682 DeadInsts.push_back(U); 5683 } 5684 5685 ++NumDeleted; 5686 I->eraseFromParent(); 5687 Changed = true; 5688 } 5689 return Changed; 5690 } 5691 /// Promote the allocas, using the best available technique. 5692 /// 5693 /// This attempts to promote whatever allocas have been identified as viable in 5694 /// the PromotableAllocas list. If that list is empty, there is nothing to do. 5695 /// This function returns whether any promotion occurred. 5696 bool SROA::promoteAllocas(Function &F) { 5697 if (PromotableAllocas.empty()) 5698 return false; 5699 5700 if (SROASkipMem2Reg) { 5701 LLVM_DEBUG(dbgs() << "Not promoting allocas with mem2reg!\n"); 5702 } else { 5703 LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); 5704 NumPromoted += PromotableAllocas.size(); 5705 PromoteMemToReg(PromotableAllocas.getArrayRef(), DTU->getDomTree(), AC); 5706 } 5707 5708 PromotableAllocas.clear(); 5709 return true; 5710 } 5711 5712 std::pair<bool /*Changed*/, bool /*CFGChanged*/> SROA::runSROA(Function &F) { 5713 LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); 5714 5715 const DataLayout &DL = F.getDataLayout(); 5716 BasicBlock &EntryBB = F.getEntryBlock(); 5717 for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end()); 5718 I != E; ++I) { 5719 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 5720 if (DL.getTypeAllocSize(AI->getAllocatedType()).isScalable() && 5721 isAllocaPromotable(AI)) 5722 PromotableAllocas.insert(AI); 5723 else 5724 Worklist.insert(AI); 5725 } 5726 } 5727 5728 bool Changed = false; 5729 bool CFGChanged = false; 5730 // A set of deleted alloca instruction pointers which should be removed from 5731 // the list of promotable allocas. 5732 SmallPtrSet<AllocaInst *, 4> DeletedAllocas; 5733 5734 do { 5735 while (!Worklist.empty()) { 5736 auto [IterationChanged, IterationCFGChanged] = 5737 runOnAlloca(*Worklist.pop_back_val()); 5738 Changed |= IterationChanged; 5739 CFGChanged |= IterationCFGChanged; 5740 5741 Changed |= deleteDeadInstructions(DeletedAllocas); 5742 5743 // Remove the deleted allocas from various lists so that we don't try to 5744 // continue processing them. 5745 if (!DeletedAllocas.empty()) { 5746 Worklist.set_subtract(DeletedAllocas); 5747 PostPromotionWorklist.set_subtract(DeletedAllocas); 5748 PromotableAllocas.set_subtract(DeletedAllocas); 5749 DeletedAllocas.clear(); 5750 } 5751 } 5752 5753 Changed |= promoteAllocas(F); 5754 5755 Worklist = PostPromotionWorklist; 5756 PostPromotionWorklist.clear(); 5757 } while (!Worklist.empty()); 5758 5759 assert((!CFGChanged || Changed) && "Can not only modify the CFG."); 5760 assert((!CFGChanged || !PreserveCFG) && 5761 "Should not have modified the CFG when told to preserve it."); 5762 5763 if (Changed && isAssignmentTrackingEnabled(*F.getParent())) { 5764 for (auto &BB : F) { 5765 RemoveRedundantDbgInstrs(&BB); 5766 } 5767 } 5768 5769 return {Changed, CFGChanged}; 5770 } 5771 5772 PreservedAnalyses SROAPass::run(Function &F, FunctionAnalysisManager &AM) { 5773 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 5774 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 5775 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 5776 auto [Changed, CFGChanged] = 5777 SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F); 5778 if (!Changed) 5779 return PreservedAnalyses::all(); 5780 PreservedAnalyses PA; 5781 if (!CFGChanged) 5782 PA.preserveSet<CFGAnalyses>(); 5783 PA.preserve<DominatorTreeAnalysis>(); 5784 return PA; 5785 } 5786 5787 void SROAPass::printPipeline( 5788 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 5789 static_cast<PassInfoMixin<SROAPass> *>(this)->printPipeline( 5790 OS, MapClassName2PassName); 5791 OS << (PreserveCFG == SROAOptions::PreserveCFG ? "<preserve-cfg>" 5792 : "<modify-cfg>"); 5793 } 5794 5795 SROAPass::SROAPass(SROAOptions PreserveCFG) : PreserveCFG(PreserveCFG) {} 5796 5797 namespace { 5798 5799 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass. 5800 class SROALegacyPass : public FunctionPass { 5801 SROAOptions PreserveCFG; 5802 5803 public: 5804 static char ID; 5805 5806 SROALegacyPass(SROAOptions PreserveCFG = SROAOptions::PreserveCFG) 5807 : FunctionPass(ID), PreserveCFG(PreserveCFG) { 5808 initializeSROALegacyPassPass(*PassRegistry::getPassRegistry()); 5809 } 5810 5811 bool runOnFunction(Function &F) override { 5812 if (skipFunction(F)) 5813 return false; 5814 5815 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 5816 AssumptionCache &AC = 5817 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 5818 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 5819 auto [Changed, _] = 5820 SROA(&F.getContext(), &DTU, &AC, PreserveCFG).runSROA(F); 5821 return Changed; 5822 } 5823 5824 void getAnalysisUsage(AnalysisUsage &AU) const override { 5825 AU.addRequired<AssumptionCacheTracker>(); 5826 AU.addRequired<DominatorTreeWrapperPass>(); 5827 AU.addPreserved<GlobalsAAWrapperPass>(); 5828 AU.addPreserved<DominatorTreeWrapperPass>(); 5829 } 5830 5831 StringRef getPassName() const override { return "SROA"; } 5832 }; 5833 5834 } // end anonymous namespace 5835 5836 char SROALegacyPass::ID = 0; 5837 5838 FunctionPass *llvm::createSROAPass(bool PreserveCFG) { 5839 return new SROALegacyPass(PreserveCFG ? SROAOptions::PreserveCFG 5840 : SROAOptions::ModifyCFG); 5841 } 5842 5843 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa", 5844 "Scalar Replacement Of Aggregates", false, false) 5845 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 5846 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 5847 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates", 5848 false, false) 5849