1 //===- HexagonOptAddrMode.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // This implements a Hexagon-specific pass to optimize addressing mode for 9 // load/store instructions. 10 //===----------------------------------------------------------------------===// 11 12 #include "HexagonInstrInfo.h" 13 #include "HexagonSubtarget.h" 14 #include "MCTargetDesc/HexagonBaseInfo.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/StringRef.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineDominanceFrontier.h" 20 #include "llvm/CodeGen/MachineDominators.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineFunctionPass.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/MachineInstrBuilder.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/RDFGraph.h" 28 #include "llvm/CodeGen/RDFLiveness.h" 29 #include "llvm/CodeGen/RDFRegisters.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/Pass.h" 34 #include "llvm/Support/CommandLine.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include <algorithm> 39 #include <cassert> 40 #include <cstdint> 41 42 #define DEBUG_TYPE "opt-addr-mode" 43 44 using namespace llvm; 45 using namespace rdf; 46 47 static cl::opt<int> CodeGrowthLimit("hexagon-amode-growth-limit", 48 cl::Hidden, cl::init(0), cl::desc("Code growth limit for address mode " 49 "optimization")); 50 51 extern cl::opt<unsigned> RDFFuncBlockLimit; 52 53 namespace llvm { 54 55 FunctionPass *createHexagonOptAddrMode(); 56 void initializeHexagonOptAddrModePass(PassRegistry&); 57 58 } // end namespace llvm 59 60 namespace { 61 62 class HexagonOptAddrMode : public MachineFunctionPass { 63 public: 64 static char ID; 65 66 HexagonOptAddrMode() : MachineFunctionPass(ID) {} 67 68 StringRef getPassName() const override { 69 return "Optimize addressing mode of load/store"; 70 } 71 72 void getAnalysisUsage(AnalysisUsage &AU) const override { 73 MachineFunctionPass::getAnalysisUsage(AU); 74 AU.addRequired<MachineDominatorTreeWrapperPass>(); 75 AU.addRequired<MachineDominanceFrontier>(); 76 AU.setPreservesAll(); 77 } 78 79 bool runOnMachineFunction(MachineFunction &MF) override; 80 81 private: 82 using MISetType = DenseSet<MachineInstr *>; 83 using InstrEvalMap = DenseMap<MachineInstr *, bool>; 84 DenseSet<MachineInstr *> ProcessedAddiInsts; 85 86 MachineRegisterInfo *MRI = nullptr; 87 const TargetRegisterInfo *TRI = nullptr; 88 const HexagonInstrInfo *HII = nullptr; 89 const HexagonRegisterInfo *HRI = nullptr; 90 MachineDominatorTree *MDT = nullptr; 91 DataFlowGraph *DFG = nullptr; 92 DataFlowGraph::DefStackMap DefM; 93 Liveness *LV = nullptr; 94 MISetType Deleted; 95 96 bool processBlock(NodeAddr<BlockNode *> BA); 97 bool xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI, 98 NodeAddr<UseNode *> UseN, unsigned UseMOnum); 99 bool processAddBases(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI); 100 bool usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN, int64_t NewOffset); 101 bool findFirstReachedInst( 102 MachineInstr *AddMI, 103 std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> 104 &AddiList, 105 NodeAddr<StmtNode *> &UseSN); 106 bool updateAddBases(MachineInstr *CurrentMI, MachineInstr *FirstReachedMI, 107 int64_t NewOffset); 108 bool processAddUses(NodeAddr<StmtNode *> AddSN, MachineInstr *AddMI, 109 const NodeList &UNodeList); 110 bool updateAddUses(MachineInstr *AddMI, MachineInstr *UseMI); 111 bool analyzeUses(unsigned DefR, const NodeList &UNodeList, 112 InstrEvalMap &InstrEvalResult, short &SizeInc); 113 bool hasRepForm(MachineInstr &MI, unsigned TfrDefR); 114 bool canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, MachineInstr &MI, 115 const NodeList &UNodeList); 116 bool isSafeToExtLR(NodeAddr<StmtNode *> SN, MachineInstr *MI, 117 unsigned LRExtReg, const NodeList &UNodeList); 118 void getAllRealUses(NodeAddr<StmtNode *> SN, NodeList &UNodeList); 119 bool allValidCandidates(NodeAddr<StmtNode *> SA, NodeList &UNodeList); 120 short getBaseWithLongOffset(const MachineInstr &MI) const; 121 bool changeStore(MachineInstr *OldMI, MachineOperand ImmOp, 122 unsigned ImmOpNum); 123 bool changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, unsigned ImmOpNum); 124 bool changeAddAsl(NodeAddr<UseNode *> AddAslUN, MachineInstr *AddAslMI, 125 const MachineOperand &ImmOp, unsigned ImmOpNum); 126 bool isValidOffset(MachineInstr *MI, int Offset); 127 unsigned getBaseOpPosition(MachineInstr *MI); 128 unsigned getOffsetOpPosition(MachineInstr *MI); 129 }; 130 131 } // end anonymous namespace 132 133 char HexagonOptAddrMode::ID = 0; 134 135 INITIALIZE_PASS_BEGIN(HexagonOptAddrMode, "amode-opt", 136 "Optimize addressing mode", false, false) 137 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 138 INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier) 139 INITIALIZE_PASS_END(HexagonOptAddrMode, "amode-opt", "Optimize addressing mode", 140 false, false) 141 142 bool HexagonOptAddrMode::hasRepForm(MachineInstr &MI, unsigned TfrDefR) { 143 const MCInstrDesc &MID = MI.getDesc(); 144 145 if ((!MID.mayStore() && !MID.mayLoad()) || HII->isPredicated(MI)) 146 return false; 147 148 if (MID.mayStore()) { 149 MachineOperand StOp = MI.getOperand(MI.getNumOperands() - 1); 150 if (StOp.isReg() && StOp.getReg() == TfrDefR) 151 return false; 152 } 153 154 if (HII->getAddrMode(MI) == HexagonII::BaseRegOffset) 155 // Tranform to Absolute plus register offset. 156 return (HII->changeAddrMode_rr_ur(MI) >= 0); 157 else if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) 158 // Tranform to absolute addressing mode. 159 return (HII->changeAddrMode_io_abs(MI) >= 0); 160 161 return false; 162 } 163 164 // Check if addasl instruction can be removed. This is possible only 165 // if it's feeding to only load/store instructions with base + register 166 // offset as these instruction can be tranformed to use 'absolute plus 167 // shifted register offset'. 168 // ex: 169 // Rs = ##foo 170 // Rx = addasl(Rs, Rt, #2) 171 // Rd = memw(Rx + #28) 172 // Above three instructions can be replaced with Rd = memw(Rt<<#2 + ##foo+28) 173 174 bool HexagonOptAddrMode::canRemoveAddasl(NodeAddr<StmtNode *> AddAslSN, 175 MachineInstr &MI, 176 const NodeList &UNodeList) { 177 // check offset size in addasl. if 'offset > 3' return false 178 const MachineOperand &OffsetOp = MI.getOperand(3); 179 if (!OffsetOp.isImm() || OffsetOp.getImm() > 3) 180 return false; 181 182 Register OffsetReg = MI.getOperand(2).getReg(); 183 RegisterRef OffsetRR; 184 NodeId OffsetRegRD = 0; 185 for (NodeAddr<UseNode *> UA : AddAslSN.Addr->members_if(DFG->IsUse, *DFG)) { 186 RegisterRef RR = UA.Addr->getRegRef(*DFG); 187 if (OffsetReg == RR.Reg) { 188 OffsetRR = RR; 189 OffsetRegRD = UA.Addr->getReachingDef(); 190 } 191 } 192 193 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { 194 NodeAddr<UseNode *> UA = *I; 195 NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG); 196 if (UA.Addr->getFlags() & NodeAttrs::PhiRef) 197 return false; 198 NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(OffsetRR, IA); 199 if ((DFG->IsDef(AA) && AA.Id != OffsetRegRD) || 200 AA.Addr->getReachingDef() != OffsetRegRD) 201 return false; 202 203 MachineInstr &UseMI = *NodeAddr<StmtNode *>(IA).Addr->getCode(); 204 NodeAddr<DefNode *> OffsetRegDN = DFG->addr<DefNode *>(OffsetRegRD); 205 // Reaching Def to an offset register can't be a phi. 206 if ((OffsetRegDN.Addr->getFlags() & NodeAttrs::PhiRef) && 207 MI.getParent() != UseMI.getParent()) 208 return false; 209 210 const MCInstrDesc &UseMID = UseMI.getDesc(); 211 if ((!UseMID.mayLoad() && !UseMID.mayStore()) || 212 HII->getAddrMode(UseMI) != HexagonII::BaseImmOffset || 213 getBaseWithLongOffset(UseMI) < 0) 214 return false; 215 216 // Addasl output can't be a store value. 217 if (UseMID.mayStore() && UseMI.getOperand(2).isReg() && 218 UseMI.getOperand(2).getReg() == MI.getOperand(0).getReg()) 219 return false; 220 221 for (auto &Mo : UseMI.operands()) 222 // Is it a frame index? 223 if (Mo.isFI()) 224 return false; 225 // Is the OffsetReg definition actually reaches UseMI? 226 if (!UseMI.getParent()->isLiveIn(OffsetReg) && 227 MI.getParent() != UseMI.getParent()) { 228 LLVM_DEBUG(dbgs() << " The offset reg " << printReg(OffsetReg, TRI) 229 << " is NOT live in to MBB " 230 << UseMI.getParent()->getName() << "\n"); 231 return false; 232 } 233 } 234 return true; 235 } 236 237 bool HexagonOptAddrMode::allValidCandidates(NodeAddr<StmtNode *> SA, 238 NodeList &UNodeList) { 239 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { 240 NodeAddr<UseNode *> UN = *I; 241 RegisterRef UR = UN.Addr->getRegRef(*DFG); 242 NodeSet Visited, Defs; 243 const auto &P = LV->getAllReachingDefsRec(UR, UN, Visited, Defs); 244 if (!P.second) { 245 LLVM_DEBUG({ 246 dbgs() << "*** Unable to collect all reaching defs for use ***\n" 247 << PrintNode<UseNode*>(UN, *DFG) << '\n' 248 << "The program's complexity may exceed the limits.\n"; 249 }); 250 return false; 251 } 252 const auto &ReachingDefs = P.first; 253 if (ReachingDefs.size() > 1) { 254 LLVM_DEBUG({ 255 dbgs() << "*** Multiple Reaching Defs found!!! ***\n"; 256 for (auto DI : ReachingDefs) { 257 NodeAddr<UseNode *> DA = DFG->addr<UseNode *>(DI); 258 NodeAddr<StmtNode *> TempIA = DA.Addr->getOwner(*DFG); 259 dbgs() << "\t\t[Reaching Def]: " 260 << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n"; 261 } 262 }); 263 return false; 264 } 265 } 266 return true; 267 } 268 269 void HexagonOptAddrMode::getAllRealUses(NodeAddr<StmtNode *> SA, 270 NodeList &UNodeList) { 271 for (NodeAddr<DefNode *> DA : SA.Addr->members_if(DFG->IsDef, *DFG)) { 272 LLVM_DEBUG(dbgs() << "\t\t[DefNode]: " 273 << Print<NodeAddr<DefNode *>>(DA, *DFG) << "\n"); 274 RegisterRef DR = DA.Addr->getRegRef(*DFG); 275 276 auto UseSet = LV->getAllReachedUses(DR, DA); 277 278 for (auto UI : UseSet) { 279 NodeAddr<UseNode *> UA = DFG->addr<UseNode *>(UI); 280 LLVM_DEBUG({ 281 NodeAddr<StmtNode *> TempIA = UA.Addr->getOwner(*DFG); 282 dbgs() << "\t\t\t[Reached Use]: " 283 << Print<NodeAddr<InstrNode *>>(TempIA, *DFG) << "\n"; 284 }); 285 286 if (UA.Addr->getFlags() & NodeAttrs::PhiRef) { 287 NodeAddr<PhiNode *> PA = UA.Addr->getOwner(*DFG); 288 NodeId id = PA.Id; 289 const Liveness::RefMap &phiUse = LV->getRealUses(id); 290 LLVM_DEBUG(dbgs() << "\t\t\t\tphi real Uses" 291 << Print<Liveness::RefMap>(phiUse, *DFG) << "\n"); 292 if (!phiUse.empty()) { 293 for (auto I : phiUse) { 294 if (!DFG->getPRI().alias(RegisterRef(I.first), DR)) 295 continue; 296 auto phiUseSet = I.second; 297 for (auto phiUI : phiUseSet) { 298 NodeAddr<UseNode *> phiUA = DFG->addr<UseNode *>(phiUI.first); 299 UNodeList.push_back(phiUA); 300 } 301 } 302 } 303 } else 304 UNodeList.push_back(UA); 305 } 306 } 307 } 308 309 bool HexagonOptAddrMode::isSafeToExtLR(NodeAddr<StmtNode *> SN, 310 MachineInstr *MI, unsigned LRExtReg, 311 const NodeList &UNodeList) { 312 RegisterRef LRExtRR; 313 NodeId LRExtRegRD = 0; 314 // Iterate through all the UseNodes in SN and find the reaching def 315 // for the LRExtReg. 316 for (NodeAddr<UseNode *> UA : SN.Addr->members_if(DFG->IsUse, *DFG)) { 317 RegisterRef RR = UA.Addr->getRegRef(*DFG); 318 if (LRExtReg == RR.Reg) { 319 LRExtRR = RR; 320 LRExtRegRD = UA.Addr->getReachingDef(); 321 } 322 } 323 324 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { 325 NodeAddr<UseNode *> UA = *I; 326 NodeAddr<InstrNode *> IA = UA.Addr->getOwner(*DFG); 327 // The reaching def of LRExtRR at load/store node should be same as the 328 // one reaching at the SN. 329 if (UA.Addr->getFlags() & NodeAttrs::PhiRef) 330 return false; 331 NodeAddr<RefNode*> AA = LV->getNearestAliasedRef(LRExtRR, IA); 332 if ((DFG->IsDef(AA) && AA.Id != LRExtRegRD) || 333 AA.Addr->getReachingDef() != LRExtRegRD) { 334 LLVM_DEBUG( 335 dbgs() << "isSafeToExtLR: Returning false; another reaching def\n"); 336 return false; 337 } 338 339 // If the register is undefined (for example if it's a reserved register), 340 // it may still be possible to extend the range, but it's safer to be 341 // conservative and just punt. 342 if (LRExtRegRD == 0) 343 return false; 344 345 MachineInstr *UseMI = NodeAddr<StmtNode *>(IA).Addr->getCode(); 346 NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD); 347 // Reaching Def to LRExtReg can't be a phi. 348 if ((LRExtRegDN.Addr->getFlags() & NodeAttrs::PhiRef) && 349 MI->getParent() != UseMI->getParent()) 350 return false; 351 // Is the OffsetReg definition actually reaches UseMI? 352 if (!UseMI->getParent()->isLiveIn(LRExtReg) && 353 MI->getParent() != UseMI->getParent()) { 354 LLVM_DEBUG(dbgs() << " The LRExtReg reg " << printReg(LRExtReg, TRI) 355 << " is NOT live in to MBB " 356 << UseMI->getParent()->getName() << "\n"); 357 return false; 358 } 359 } 360 return true; 361 } 362 363 bool HexagonOptAddrMode::isValidOffset(MachineInstr *MI, int Offset) { 364 if (HII->isHVXVec(*MI)) { 365 // only HVX vgather instructions handled 366 // TODO: extend the pass to other vector load/store operations 367 switch (MI->getOpcode()) { 368 case Hexagon::V6_vgathermh_pseudo: 369 case Hexagon::V6_vgathermw_pseudo: 370 case Hexagon::V6_vgathermhw_pseudo: 371 case Hexagon::V6_vgathermhq_pseudo: 372 case Hexagon::V6_vgathermwq_pseudo: 373 case Hexagon::V6_vgathermhwq_pseudo: 374 return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false); 375 default: 376 if (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) { 377 // The immediates are mentioned in multiples of vector counts 378 unsigned AlignMask = HII->getMemAccessSize(*MI) - 1; 379 if ((AlignMask & Offset) == 0) 380 return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false); 381 } 382 return false; 383 } 384 } 385 386 if (HII->getAddrMode(*MI) != HexagonII::BaseImmOffset) 387 return false; 388 389 unsigned AlignMask = 0; 390 switch (HII->getMemAccessSize(*MI)) { 391 case HexagonII::MemAccessSize::DoubleWordAccess: 392 AlignMask = 0x7; 393 break; 394 case HexagonII::MemAccessSize::WordAccess: 395 AlignMask = 0x3; 396 break; 397 case HexagonII::MemAccessSize::HalfWordAccess: 398 AlignMask = 0x1; 399 break; 400 case HexagonII::MemAccessSize::ByteAccess: 401 AlignMask = 0x0; 402 break; 403 default: 404 return false; 405 } 406 407 if ((AlignMask & Offset) != 0) 408 return false; 409 return HII->isValidOffset(MI->getOpcode(), Offset, HRI, false); 410 } 411 412 unsigned HexagonOptAddrMode::getBaseOpPosition(MachineInstr *MI) { 413 const MCInstrDesc &MID = MI->getDesc(); 414 switch (MI->getOpcode()) { 415 // vgather pseudos are mayLoad and mayStore 416 // hence need to explicitly specify Base and 417 // Offset operand positions 418 case Hexagon::V6_vgathermh_pseudo: 419 case Hexagon::V6_vgathermw_pseudo: 420 case Hexagon::V6_vgathermhw_pseudo: 421 case Hexagon::V6_vgathermhq_pseudo: 422 case Hexagon::V6_vgathermwq_pseudo: 423 case Hexagon::V6_vgathermhwq_pseudo: 424 return 0; 425 default: 426 return MID.mayLoad() ? 1 : 0; 427 } 428 } 429 430 unsigned HexagonOptAddrMode::getOffsetOpPosition(MachineInstr *MI) { 431 assert( 432 (HII->getAddrMode(*MI) == HexagonII::BaseImmOffset) && 433 "Looking for an offset in non-BaseImmOffset addressing mode instruction"); 434 435 const MCInstrDesc &MID = MI->getDesc(); 436 switch (MI->getOpcode()) { 437 // vgather pseudos are mayLoad and mayStore 438 // hence need to explicitly specify Base and 439 // Offset operand positions 440 case Hexagon::V6_vgathermh_pseudo: 441 case Hexagon::V6_vgathermw_pseudo: 442 case Hexagon::V6_vgathermhw_pseudo: 443 case Hexagon::V6_vgathermhq_pseudo: 444 case Hexagon::V6_vgathermwq_pseudo: 445 case Hexagon::V6_vgathermhwq_pseudo: 446 return 1; 447 default: 448 return MID.mayLoad() ? 2 : 1; 449 } 450 } 451 452 bool HexagonOptAddrMode::usedInLoadStore(NodeAddr<StmtNode *> CurrentInstSN, 453 int64_t NewOffset) { 454 NodeList LoadStoreUseList; 455 456 getAllRealUses(CurrentInstSN, LoadStoreUseList); 457 bool FoundLoadStoreUse = false; 458 for (auto I = LoadStoreUseList.begin(), E = LoadStoreUseList.end(); I != E; 459 ++I) { 460 NodeAddr<UseNode *> UN = *I; 461 NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG); 462 MachineInstr *LoadStoreMI = SN.Addr->getCode(); 463 const MCInstrDesc &MID = LoadStoreMI->getDesc(); 464 if ((MID.mayLoad() || MID.mayStore()) && 465 isValidOffset(LoadStoreMI, NewOffset)) { 466 FoundLoadStoreUse = true; 467 break; 468 } 469 } 470 return FoundLoadStoreUse; 471 } 472 473 bool HexagonOptAddrMode::findFirstReachedInst( 474 MachineInstr *AddMI, 475 std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> &AddiList, 476 NodeAddr<StmtNode *> &UseSN) { 477 // Find the very first Addi instruction in the current basic block among the 478 // AddiList This is the Addi that should be preserved so that we do not need 479 // to handle the complexity of moving instructions 480 // 481 // TODO: find Addi instructions across basic blocks 482 // 483 // TODO: Try to remove this and add a solution that optimizes the number of 484 // Addi instructions that can be modified. 485 // This change requires choosing the Addi with the median offset value, but 486 // would also require moving that instruction above the others. Since this 487 // pass runs after register allocation, there might be multiple cases that 488 // need to be handled if we move instructions around 489 MachineBasicBlock *CurrentMBB = AddMI->getParent(); 490 for (auto &InstIter : *CurrentMBB) { 491 // If the instruction is an Addi and is in the AddiList 492 if (InstIter.getOpcode() == Hexagon::A2_addi) { 493 auto Iter = std::find_if( 494 AddiList.begin(), AddiList.end(), [&InstIter](const auto &SUPair) { 495 return SUPair.first.Addr->getCode() == &InstIter; 496 }); 497 if (Iter != AddiList.end()) { 498 UseSN = Iter->first; 499 return true; 500 } 501 } 502 } 503 return false; 504 } 505 506 // This function tries to modify the immediate value in Hexagon::Addi 507 // instructions, so that the immediates could then be moved into a load/store 508 // instruction with offset and the add removed completely when we call 509 // processAddUses 510 // 511 // For Example, If we have the below sequence of instructions: 512 // 513 // r1 = add(r2,#1024) 514 // ... 515 // r3 = add(r2,#1152) 516 // ... 517 // r4 = add(r2,#1280) 518 // 519 // Where the register r2 has the same reaching definition, They get modified to 520 // the below sequence: 521 // 522 // r1 = add(r2,#1024) 523 // ... 524 // r3 = add(r1,#128) 525 // ... 526 // r4 = add(r1,#256) 527 // 528 // The below change helps the processAddUses method to later move the 529 // immediates #128 and #256 into a load/store instruction that can take an 530 // offset, like the Vd = mem(Rt+#s4) 531 bool HexagonOptAddrMode::processAddBases(NodeAddr<StmtNode *> AddSN, 532 MachineInstr *AddMI) { 533 534 bool Changed = false; 535 536 LLVM_DEBUG(dbgs() << "\n\t\t[Processing Addi]: " << *AddMI << "\n"); 537 538 auto Processed = 539 [](const MachineInstr *MI, 540 const DenseSet<MachineInstr *> &ProcessedAddiInsts) -> bool { 541 // If we've already processed this Addi, just return 542 if (ProcessedAddiInsts.find(MI) != ProcessedAddiInsts.end()) { 543 LLVM_DEBUG(dbgs() << "\t\t\tAddi already found in ProcessedAddiInsts: " 544 << *MI << "\n\t\t\tSkipping..."); 545 return true; 546 } 547 return false; 548 }; 549 550 if (Processed(AddMI, ProcessedAddiInsts)) 551 return Changed; 552 ProcessedAddiInsts.insert(AddMI); 553 554 // Get the base register that would be shared by other Addi Intructions 555 Register BaseReg = AddMI->getOperand(1).getReg(); 556 557 // Store a list of all Addi instructions that share the above common base 558 // register 559 std::vector<std::pair<NodeAddr<StmtNode *>, NodeAddr<UseNode *>>> AddiList; 560 561 NodeId UAReachingDefID; 562 // Find the UseNode that contains the base register and it's reachingDef 563 for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(DFG->IsUse, *DFG)) { 564 RegisterRef URR = UA.Addr->getRegRef(*DFG); 565 if (BaseReg != URR.Reg) 566 continue; 567 568 UAReachingDefID = UA.Addr->getReachingDef(); 569 NodeAddr<DefNode *> UADef = DFG->addr<DefNode *>(UAReachingDefID); 570 if (!UAReachingDefID || UADef.Addr->getFlags() & NodeAttrs::PhiRef) { 571 LLVM_DEBUG(dbgs() << "\t\t\t Could not find reachingDef. Skipping...\n"); 572 return false; 573 } 574 } 575 576 NodeAddr<DefNode *> UAReachingDef = DFG->addr<DefNode *>(UAReachingDefID); 577 NodeAddr<StmtNode *> ReachingDefStmt = UAReachingDef.Addr->getOwner(*DFG); 578 579 // If the reaching definition is a predicated instruction, this might not be 580 // the only definition of our base register, so return immediately. 581 MachineInstr *ReachingDefInstr = ReachingDefStmt.Addr->getCode(); 582 if (HII->isPredicated(*ReachingDefInstr)) 583 return false; 584 585 NodeList AddiUseList; 586 587 // Find all Addi instructions that share the same base register and add them 588 // to the AddiList 589 getAllRealUses(ReachingDefStmt, AddiUseList); 590 for (auto I = AddiUseList.begin(), E = AddiUseList.end(); I != E; ++I) { 591 NodeAddr<UseNode *> UN = *I; 592 NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG); 593 MachineInstr *MI = SN.Addr->getCode(); 594 595 // Only add instructions if it's an Addi and it's not already processed. 596 if (MI->getOpcode() == Hexagon::A2_addi && 597 !(MI != AddMI && Processed(MI, ProcessedAddiInsts))) { 598 AddiList.push_back({SN, UN}); 599 600 // This ensures that we process each instruction only once 601 ProcessedAddiInsts.insert(MI); 602 } 603 } 604 605 // If there's only one Addi instruction, nothing to do here 606 if (AddiList.size() <= 1) 607 return Changed; 608 609 NodeAddr<StmtNode *> FirstReachedUseSN; 610 // Find the first reached use of Addi instruction from the list 611 if (!findFirstReachedInst(AddMI, AddiList, FirstReachedUseSN)) 612 return Changed; 613 614 // If we reach this point we know that the StmtNode FirstReachedUseSN is for 615 // an Addi instruction. So, we're guaranteed to have just one DefNode, and 616 // hence we can access the front() directly without checks 617 NodeAddr<DefNode *> FirstReachedUseDN = 618 FirstReachedUseSN.Addr->members_if(DFG->IsDef, *DFG).front(); 619 620 MachineInstr *FirstReachedMI = FirstReachedUseSN.Addr->getCode(); 621 const MachineOperand FirstReachedMIImmOp = FirstReachedMI->getOperand(2); 622 if (!FirstReachedMIImmOp.isImm()) 623 return false; 624 625 for (auto &I : AddiList) { 626 NodeAddr<StmtNode *> CurrentInstSN = I.first; 627 NodeAddr<UseNode *> CurrentInstUN = I.second; 628 629 MachineInstr *CurrentMI = CurrentInstSN.Addr->getCode(); 630 MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(2); 631 632 int64_t NewOffset; 633 634 // Even though we know it's an Addi instruction, the second operand could be 635 // a global value and not an immediate 636 if (!CurrentMIImmOp.isImm()) 637 continue; 638 639 NewOffset = CurrentMIImmOp.getImm() - FirstReachedMIImmOp.getImm(); 640 641 // This is the first occuring Addi, so skip modifying this 642 if (CurrentMI == FirstReachedMI) { 643 continue; 644 } 645 646 if (CurrentMI->getParent() != FirstReachedMI->getParent()) 647 continue; 648 649 // Modify the Addi instruction only if it could be used to modify a 650 // future load/store instruction and get removed 651 // 652 // This check is needed because, if we modify the current Addi instruction 653 // we create RAW dependence between the FirstReached Addi and the current 654 // one, which could result in extra packets. So we only do this change if 655 // we know the current Addi would get removed later 656 if (!usedInLoadStore(CurrentInstSN, NewOffset)) { 657 return false; 658 } 659 660 // Verify whether the First Addi's definition register is still live when 661 // we reach the current Addi 662 RegisterRef FirstReachedDefRR = FirstReachedUseDN.Addr->getRegRef(*DFG); 663 NodeAddr<InstrNode *> CurrentAddiIN = CurrentInstUN.Addr->getOwner(*DFG); 664 NodeAddr<RefNode *> NearestAA = 665 LV->getNearestAliasedRef(FirstReachedDefRR, CurrentAddiIN); 666 if ((DFG->IsDef(NearestAA) && NearestAA.Id != FirstReachedUseDN.Id) || 667 (!DFG->IsDef(NearestAA) && 668 NearestAA.Addr->getReachingDef() != FirstReachedUseDN.Id)) { 669 // Found another definition of FirstReachedDef 670 LLVM_DEBUG(dbgs() << "\t\t\tCould not modify below Addi since the first " 671 "defined Addi register was redefined\n"); 672 continue; 673 } 674 675 MachineOperand CurrentMIBaseOp = CurrentMI->getOperand(1); 676 if (CurrentMIBaseOp.getReg() != FirstReachedMI->getOperand(1).getReg()) { 677 continue; 678 } 679 680 // If we reached this point, then we can modify MI to use the result of 681 // FirstReachedMI 682 Changed |= updateAddBases(CurrentMI, FirstReachedMI, NewOffset); 683 684 // Update the reachingDef of the Current AddI use after change 685 CurrentInstUN.Addr->linkToDef(CurrentInstUN.Id, FirstReachedUseDN); 686 } 687 688 return Changed; 689 } 690 691 bool HexagonOptAddrMode::updateAddBases(MachineInstr *CurrentMI, 692 MachineInstr *FirstReachedMI, 693 int64_t NewOffset) { 694 LLVM_DEBUG(dbgs() << "[About to modify the Addi]: " << *CurrentMI << "\n"); 695 const MachineOperand FirstReachedDef = FirstReachedMI->getOperand(0); 696 Register FirstDefRegister = FirstReachedDef.getReg(); 697 698 MachineOperand &CurrentMIBaseOp = CurrentMI->getOperand(1); 699 MachineOperand &CurrentMIImmOp = CurrentMI->getOperand(2); 700 701 CurrentMIBaseOp.setReg(FirstDefRegister); 702 CurrentMIBaseOp.setIsUndef(FirstReachedDef.isUndef()); 703 CurrentMIBaseOp.setImplicit(FirstReachedDef.isImplicit()); 704 CurrentMIImmOp.setImm(NewOffset); 705 ProcessedAddiInsts.insert(CurrentMI); 706 MRI->clearKillFlags(FirstDefRegister); 707 return true; 708 } 709 710 bool HexagonOptAddrMode::processAddUses(NodeAddr<StmtNode *> AddSN, 711 MachineInstr *AddMI, 712 const NodeList &UNodeList) { 713 714 Register AddDefR = AddMI->getOperand(0).getReg(); 715 Register BaseReg = AddMI->getOperand(1).getReg(); 716 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { 717 NodeAddr<UseNode *> UN = *I; 718 NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG); 719 MachineInstr *MI = SN.Addr->getCode(); 720 const MCInstrDesc &MID = MI->getDesc(); 721 if ((!MID.mayLoad() && !MID.mayStore()) || 722 HII->getAddrMode(*MI) != HexagonII::BaseImmOffset) 723 return false; 724 725 MachineOperand BaseOp = MI->getOperand(getBaseOpPosition(MI)); 726 727 if (!BaseOp.isReg() || BaseOp.getReg() != AddDefR) 728 return false; 729 730 MachineOperand OffsetOp = MI->getOperand(getOffsetOpPosition(MI)); 731 if (!OffsetOp.isImm()) 732 return false; 733 734 int64_t newOffset = OffsetOp.getImm() + AddMI->getOperand(2).getImm(); 735 if (!isValidOffset(MI, newOffset)) 736 return false; 737 738 // Since we'll be extending the live range of Rt in the following example, 739 // make sure that is safe. another definition of Rt doesn't exist between 'add' 740 // and load/store instruction. 741 // 742 // Ex: Rx= add(Rt,#10) 743 // memw(Rx+#0) = Rs 744 // will be replaced with => memw(Rt+#10) = Rs 745 if (!isSafeToExtLR(AddSN, AddMI, BaseReg, UNodeList)) 746 return false; 747 } 748 749 NodeId LRExtRegRD = 0; 750 // Iterate through all the UseNodes in SN and find the reaching def 751 // for the LRExtReg. 752 for (NodeAddr<UseNode *> UA : AddSN.Addr->members_if(DFG->IsUse, *DFG)) { 753 RegisterRef RR = UA.Addr->getRegRef(*DFG); 754 if (BaseReg == RR.Reg) 755 LRExtRegRD = UA.Addr->getReachingDef(); 756 } 757 758 // Update all the uses of 'add' with the appropriate base and offset 759 // values. 760 bool Changed = false; 761 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { 762 NodeAddr<UseNode *> UseN = *I; 763 assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) && 764 "Found a PhiRef node as a real reached use!!"); 765 766 NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG); 767 MachineInstr *UseMI = OwnerN.Addr->getCode(); 768 LLVM_DEBUG(dbgs() << "\t\t[MI <BB#" << UseMI->getParent()->getNumber() 769 << ">]: " << *UseMI << "\n"); 770 Changed |= updateAddUses(AddMI, UseMI); 771 772 // Set the reachingDef for UseNode under consideration 773 // after updating the Add use. This local change is 774 // to avoid rebuilding of the RDF graph after update. 775 NodeAddr<DefNode *> LRExtRegDN = DFG->addr<DefNode *>(LRExtRegRD); 776 UseN.Addr->linkToDef(UseN.Id, LRExtRegDN); 777 } 778 779 if (Changed) 780 Deleted.insert(AddMI); 781 782 return Changed; 783 } 784 785 bool HexagonOptAddrMode::updateAddUses(MachineInstr *AddMI, 786 MachineInstr *UseMI) { 787 const MachineOperand ImmOp = AddMI->getOperand(2); 788 const MachineOperand AddRegOp = AddMI->getOperand(1); 789 Register NewReg = AddRegOp.getReg(); 790 791 MachineOperand &BaseOp = UseMI->getOperand(getBaseOpPosition(UseMI)); 792 MachineOperand &OffsetOp = UseMI->getOperand(getOffsetOpPosition(UseMI)); 793 BaseOp.setReg(NewReg); 794 BaseOp.setIsUndef(AddRegOp.isUndef()); 795 BaseOp.setImplicit(AddRegOp.isImplicit()); 796 OffsetOp.setImm(ImmOp.getImm() + OffsetOp.getImm()); 797 MRI->clearKillFlags(NewReg); 798 799 return true; 800 } 801 802 bool HexagonOptAddrMode::analyzeUses(unsigned tfrDefR, 803 const NodeList &UNodeList, 804 InstrEvalMap &InstrEvalResult, 805 short &SizeInc) { 806 bool KeepTfr = false; 807 bool HasRepInstr = false; 808 InstrEvalResult.clear(); 809 810 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { 811 bool CanBeReplaced = false; 812 NodeAddr<UseNode *> UN = *I; 813 NodeAddr<StmtNode *> SN = UN.Addr->getOwner(*DFG); 814 MachineInstr &MI = *SN.Addr->getCode(); 815 const MCInstrDesc &MID = MI.getDesc(); 816 if ((MID.mayLoad() || MID.mayStore())) { 817 if (!hasRepForm(MI, tfrDefR)) { 818 KeepTfr = true; 819 continue; 820 } 821 SizeInc++; 822 CanBeReplaced = true; 823 } else if (MI.getOpcode() == Hexagon::S2_addasl_rrri) { 824 NodeList AddaslUseList; 825 826 LLVM_DEBUG(dbgs() << "\nGetting ReachedUses for === " << MI << "\n"); 827 getAllRealUses(SN, AddaslUseList); 828 // Process phi nodes. 829 if (allValidCandidates(SN, AddaslUseList) && 830 canRemoveAddasl(SN, MI, AddaslUseList)) { 831 SizeInc += AddaslUseList.size(); 832 SizeInc -= 1; // Reduce size by 1 as addasl itself can be removed. 833 CanBeReplaced = true; 834 } else 835 SizeInc++; 836 } else 837 // Currently, only load/store and addasl are handled. 838 // Some other instructions to consider - 839 // A2_add -> A2_addi 840 // M4_mpyrr_addr -> M4_mpyrr_addi 841 KeepTfr = true; 842 843 InstrEvalResult[&MI] = CanBeReplaced; 844 HasRepInstr |= CanBeReplaced; 845 } 846 847 // Reduce total size by 2 if original tfr can be deleted. 848 if (!KeepTfr) 849 SizeInc -= 2; 850 851 return HasRepInstr; 852 } 853 854 bool HexagonOptAddrMode::changeLoad(MachineInstr *OldMI, MachineOperand ImmOp, 855 unsigned ImmOpNum) { 856 bool Changed = false; 857 MachineBasicBlock *BB = OldMI->getParent(); 858 auto UsePos = MachineBasicBlock::iterator(OldMI); 859 MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator(); 860 ++InsertPt; 861 unsigned OpStart; 862 unsigned OpEnd = OldMI->getNumOperands(); 863 MachineInstrBuilder MIB; 864 865 if (ImmOpNum == 1) { 866 if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) { 867 short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI); 868 assert(NewOpCode >= 0 && "Invalid New opcode\n"); 869 MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode)); 870 MIB.add(OldMI->getOperand(0)); 871 MIB.add(OldMI->getOperand(2)); 872 MIB.add(OldMI->getOperand(3)); 873 MIB.add(ImmOp); 874 OpStart = 4; 875 Changed = true; 876 } else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset && 877 OldMI->getOperand(2).isImm()) { 878 short NewOpCode = HII->changeAddrMode_io_abs(*OldMI); 879 assert(NewOpCode >= 0 && "Invalid New opcode\n"); 880 MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode)) 881 .add(OldMI->getOperand(0)); 882 const GlobalValue *GV = ImmOp.getGlobal(); 883 int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(2).getImm(); 884 885 MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags()); 886 OpStart = 3; 887 Changed = true; 888 } else 889 Changed = false; 890 891 LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n"); 892 LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n"); 893 } else if (ImmOpNum == 2) { 894 if (OldMI->getOperand(3).isImm() && OldMI->getOperand(3).getImm() == 0) { 895 short NewOpCode = HII->changeAddrMode_rr_io(*OldMI); 896 assert(NewOpCode >= 0 && "Invalid New opcode\n"); 897 MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode)); 898 MIB.add(OldMI->getOperand(0)); 899 MIB.add(OldMI->getOperand(1)); 900 MIB.add(ImmOp); 901 OpStart = 4; 902 Changed = true; 903 LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n"); 904 LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n"); 905 } 906 } 907 908 if (Changed) 909 for (unsigned i = OpStart; i < OpEnd; ++i) 910 MIB.add(OldMI->getOperand(i)); 911 912 return Changed; 913 } 914 915 bool HexagonOptAddrMode::changeStore(MachineInstr *OldMI, MachineOperand ImmOp, 916 unsigned ImmOpNum) { 917 bool Changed = false; 918 unsigned OpStart = 0; 919 unsigned OpEnd = OldMI->getNumOperands(); 920 MachineBasicBlock *BB = OldMI->getParent(); 921 auto UsePos = MachineBasicBlock::iterator(OldMI); 922 MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator(); 923 ++InsertPt; 924 MachineInstrBuilder MIB; 925 if (ImmOpNum == 0) { 926 if (HII->getAddrMode(*OldMI) == HexagonII::BaseRegOffset) { 927 short NewOpCode = HII->changeAddrMode_rr_ur(*OldMI); 928 assert(NewOpCode >= 0 && "Invalid New opcode\n"); 929 MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode)); 930 MIB.add(OldMI->getOperand(1)); 931 MIB.add(OldMI->getOperand(2)); 932 MIB.add(ImmOp); 933 MIB.add(OldMI->getOperand(3)); 934 OpStart = 4; 935 Changed = true; 936 } else if (HII->getAddrMode(*OldMI) == HexagonII::BaseImmOffset) { 937 short NewOpCode = HII->changeAddrMode_io_abs(*OldMI); 938 assert(NewOpCode >= 0 && "Invalid New opcode\n"); 939 MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode)); 940 const GlobalValue *GV = ImmOp.getGlobal(); 941 int64_t Offset = ImmOp.getOffset() + OldMI->getOperand(1).getImm(); 942 MIB.addGlobalAddress(GV, Offset, ImmOp.getTargetFlags()); 943 MIB.add(OldMI->getOperand(2)); 944 OpStart = 3; 945 Changed = true; 946 } 947 } else if (ImmOpNum == 1 && OldMI->getOperand(2).getImm() == 0) { 948 short NewOpCode = HII->changeAddrMode_rr_io(*OldMI); 949 assert(NewOpCode >= 0 && "Invalid New opcode\n"); 950 MIB = BuildMI(*BB, InsertPt, OldMI->getDebugLoc(), HII->get(NewOpCode)); 951 MIB.add(OldMI->getOperand(0)); 952 MIB.add(ImmOp); 953 OpStart = 3; 954 Changed = true; 955 } 956 if (Changed) { 957 LLVM_DEBUG(dbgs() << "[Changing]: " << *OldMI << "\n"); 958 LLVM_DEBUG(dbgs() << "[TO]: " << *MIB << "\n"); 959 960 for (unsigned i = OpStart; i < OpEnd; ++i) 961 MIB.add(OldMI->getOperand(i)); 962 } 963 964 return Changed; 965 } 966 967 short HexagonOptAddrMode::getBaseWithLongOffset(const MachineInstr &MI) const { 968 if (HII->getAddrMode(MI) == HexagonII::BaseImmOffset) { 969 short TempOpCode = HII->changeAddrMode_io_rr(MI); 970 return HII->changeAddrMode_rr_ur(TempOpCode); 971 } 972 return HII->changeAddrMode_rr_ur(MI); 973 } 974 975 bool HexagonOptAddrMode::changeAddAsl(NodeAddr<UseNode *> AddAslUN, 976 MachineInstr *AddAslMI, 977 const MachineOperand &ImmOp, 978 unsigned ImmOpNum) { 979 NodeAddr<StmtNode *> SA = AddAslUN.Addr->getOwner(*DFG); 980 981 LLVM_DEBUG(dbgs() << "Processing addasl :" << *AddAslMI << "\n"); 982 983 NodeList UNodeList; 984 getAllRealUses(SA, UNodeList); 985 986 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { 987 NodeAddr<UseNode *> UseUN = *I; 988 assert(!(UseUN.Addr->getFlags() & NodeAttrs::PhiRef) && 989 "Can't transform this 'AddAsl' instruction!"); 990 991 NodeAddr<StmtNode *> UseIA = UseUN.Addr->getOwner(*DFG); 992 LLVM_DEBUG(dbgs() << "[InstrNode]: " 993 << Print<NodeAddr<InstrNode *>>(UseIA, *DFG) << "\n"); 994 MachineInstr *UseMI = UseIA.Addr->getCode(); 995 LLVM_DEBUG(dbgs() << "[MI <" << printMBBReference(*UseMI->getParent()) 996 << ">]: " << *UseMI << "\n"); 997 const MCInstrDesc &UseMID = UseMI->getDesc(); 998 assert(HII->getAddrMode(*UseMI) == HexagonII::BaseImmOffset); 999 1000 auto UsePos = MachineBasicBlock::iterator(UseMI); 1001 MachineBasicBlock::instr_iterator InsertPt = UsePos.getInstrIterator(); 1002 short NewOpCode = getBaseWithLongOffset(*UseMI); 1003 assert(NewOpCode >= 0 && "Invalid New opcode\n"); 1004 1005 unsigned OpStart; 1006 unsigned OpEnd = UseMI->getNumOperands(); 1007 1008 MachineBasicBlock *BB = UseMI->getParent(); 1009 MachineInstrBuilder MIB = 1010 BuildMI(*BB, InsertPt, UseMI->getDebugLoc(), HII->get(NewOpCode)); 1011 // change mem(Rs + # ) -> mem(Rt << # + ##) 1012 if (UseMID.mayLoad()) { 1013 MIB.add(UseMI->getOperand(0)); 1014 MIB.add(AddAslMI->getOperand(2)); 1015 MIB.add(AddAslMI->getOperand(3)); 1016 const GlobalValue *GV = ImmOp.getGlobal(); 1017 MIB.addGlobalAddress(GV, UseMI->getOperand(2).getImm()+ImmOp.getOffset(), 1018 ImmOp.getTargetFlags()); 1019 OpStart = 3; 1020 } else if (UseMID.mayStore()) { 1021 MIB.add(AddAslMI->getOperand(2)); 1022 MIB.add(AddAslMI->getOperand(3)); 1023 const GlobalValue *GV = ImmOp.getGlobal(); 1024 MIB.addGlobalAddress(GV, UseMI->getOperand(1).getImm()+ImmOp.getOffset(), 1025 ImmOp.getTargetFlags()); 1026 MIB.add(UseMI->getOperand(2)); 1027 OpStart = 3; 1028 } else 1029 llvm_unreachable("Unhandled instruction"); 1030 1031 for (unsigned i = OpStart; i < OpEnd; ++i) 1032 MIB.add(UseMI->getOperand(i)); 1033 Deleted.insert(UseMI); 1034 } 1035 1036 return true; 1037 } 1038 1039 bool HexagonOptAddrMode::xformUseMI(MachineInstr *TfrMI, MachineInstr *UseMI, 1040 NodeAddr<UseNode *> UseN, 1041 unsigned UseMOnum) { 1042 const MachineOperand ImmOp = TfrMI->getOperand(1); 1043 const MCInstrDesc &MID = UseMI->getDesc(); 1044 unsigned Changed = false; 1045 if (MID.mayLoad()) 1046 Changed = changeLoad(UseMI, ImmOp, UseMOnum); 1047 else if (MID.mayStore()) 1048 Changed = changeStore(UseMI, ImmOp, UseMOnum); 1049 else if (UseMI->getOpcode() == Hexagon::S2_addasl_rrri) 1050 Changed = changeAddAsl(UseN, UseMI, ImmOp, UseMOnum); 1051 1052 if (Changed) 1053 Deleted.insert(UseMI); 1054 1055 return Changed; 1056 } 1057 1058 bool HexagonOptAddrMode::processBlock(NodeAddr<BlockNode *> BA) { 1059 bool Changed = false; 1060 1061 for (auto IA : BA.Addr->members(*DFG)) { 1062 if (!DFG->IsCode<NodeAttrs::Stmt>(IA)) 1063 continue; 1064 1065 NodeAddr<StmtNode *> SA = IA; 1066 MachineInstr *MI = SA.Addr->getCode(); 1067 if ((MI->getOpcode() != Hexagon::A2_tfrsi || 1068 !MI->getOperand(1).isGlobal()) && 1069 (MI->getOpcode() != Hexagon::A2_addi || 1070 !MI->getOperand(2).isImm() || HII->isConstExtended(*MI))) 1071 continue; 1072 1073 LLVM_DEBUG(dbgs() << "[Analyzing " << HII->getName(MI->getOpcode()) 1074 << "]: " << *MI << "\n\t[InstrNode]: " 1075 << Print<NodeAddr<InstrNode *>>(IA, *DFG) << '\n'); 1076 1077 if (MI->getOpcode() == Hexagon::A2_addi) 1078 Changed |= processAddBases(SA, MI); 1079 NodeList UNodeList; 1080 getAllRealUses(SA, UNodeList); 1081 1082 if (!allValidCandidates(SA, UNodeList)) 1083 continue; 1084 1085 // Analyze all uses of 'add'. If the output of 'add' is used as an address 1086 // in the base+immediate addressing mode load/store instructions, see if 1087 // they can be updated to use the immediate value as an offet. Thus, 1088 // providing us the opportunity to eliminate 'add'. 1089 // Ex: Rx= add(Rt,#12) 1090 // memw(Rx+#0) = Rs 1091 // This can be replaced with memw(Rt+#12) = Rs 1092 // 1093 // This transformation is only performed if all uses can be updated and 1094 // the offset isn't required to be constant extended. 1095 if (MI->getOpcode() == Hexagon::A2_addi) { 1096 Changed |= processAddUses(SA, MI, UNodeList); 1097 continue; 1098 } 1099 1100 short SizeInc = 0; 1101 Register DefR = MI->getOperand(0).getReg(); 1102 InstrEvalMap InstrEvalResult; 1103 1104 // Analyze all uses and calculate increase in size. Perform the optimization 1105 // only if there is no increase in size. 1106 if (!analyzeUses(DefR, UNodeList, InstrEvalResult, SizeInc)) 1107 continue; 1108 if (SizeInc > CodeGrowthLimit) 1109 continue; 1110 1111 bool KeepTfr = false; 1112 1113 LLVM_DEBUG(dbgs() << "\t[Total reached uses] : " << UNodeList.size() 1114 << "\n"); 1115 LLVM_DEBUG(dbgs() << "\t[Processing Reached Uses] ===\n"); 1116 for (auto I = UNodeList.rbegin(), E = UNodeList.rend(); I != E; ++I) { 1117 NodeAddr<UseNode *> UseN = *I; 1118 assert(!(UseN.Addr->getFlags() & NodeAttrs::PhiRef) && 1119 "Found a PhiRef node as a real reached use!!"); 1120 1121 NodeAddr<StmtNode *> OwnerN = UseN.Addr->getOwner(*DFG); 1122 MachineInstr *UseMI = OwnerN.Addr->getCode(); 1123 LLVM_DEBUG(dbgs() << "\t\t[MI <" << printMBBReference(*UseMI->getParent()) 1124 << ">]: " << *UseMI << "\n"); 1125 1126 int UseMOnum = -1; 1127 unsigned NumOperands = UseMI->getNumOperands(); 1128 for (unsigned j = 0; j < NumOperands - 1; ++j) { 1129 const MachineOperand &op = UseMI->getOperand(j); 1130 if (op.isReg() && op.isUse() && DefR == op.getReg()) 1131 UseMOnum = j; 1132 } 1133 // It is possible that the register will not be found in any operand. 1134 // This could happen, for example, when DefR = R4, but the used 1135 // register is D2. 1136 1137 // Change UseMI if replacement is possible. If any replacement failed, 1138 // or wasn't attempted, make sure to keep the TFR. 1139 bool Xformed = false; 1140 if (UseMOnum >= 0 && InstrEvalResult[UseMI]) 1141 Xformed = xformUseMI(MI, UseMI, UseN, UseMOnum); 1142 Changed |= Xformed; 1143 KeepTfr |= !Xformed; 1144 } 1145 if (!KeepTfr) 1146 Deleted.insert(MI); 1147 } 1148 return Changed; 1149 } 1150 1151 bool HexagonOptAddrMode::runOnMachineFunction(MachineFunction &MF) { 1152 if (skipFunction(MF.getFunction())) 1153 return false; 1154 1155 // Perform RDF optimizations only if number of basic blocks in the 1156 // function is less than the limit 1157 if (MF.size() > RDFFuncBlockLimit) { 1158 LLVM_DEBUG(dbgs() << "Skipping " << getPassName() 1159 << ": too many basic blocks\n"); 1160 return false; 1161 } 1162 1163 bool Changed = false; 1164 auto &HST = MF.getSubtarget<HexagonSubtarget>(); 1165 MRI = &MF.getRegInfo(); 1166 TRI = MF.getSubtarget().getRegisterInfo(); 1167 HII = HST.getInstrInfo(); 1168 HRI = HST.getRegisterInfo(); 1169 const auto &MDF = getAnalysis<MachineDominanceFrontier>(); 1170 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 1171 1172 DataFlowGraph G(MF, *HII, *HRI, *MDT, MDF); 1173 // Need to keep dead phis because we can propagate uses of registers into 1174 // nodes dominated by those would-be phis. 1175 G.build(BuildOptions::KeepDeadPhis); 1176 DFG = &G; 1177 1178 Liveness L(*MRI, *DFG); 1179 L.computePhiInfo(); 1180 LV = &L; 1181 1182 Deleted.clear(); 1183 ProcessedAddiInsts.clear(); 1184 NodeAddr<FuncNode *> FA = DFG->getFunc(); 1185 LLVM_DEBUG(dbgs() << "==== [RefMap#]=====:\n " 1186 << Print<NodeAddr<FuncNode *>>(FA, *DFG) << "\n"); 1187 1188 for (NodeAddr<BlockNode *> BA : FA.Addr->members(*DFG)) 1189 Changed |= processBlock(BA); 1190 1191 for (auto *MI : Deleted) 1192 MI->eraseFromParent(); 1193 1194 if (Changed) { 1195 G.build(); 1196 L.computeLiveIns(); 1197 L.resetLiveIns(); 1198 L.resetKills(); 1199 } 1200 1201 return Changed; 1202 } 1203 1204 //===----------------------------------------------------------------------===// 1205 // Public Constructor Functions 1206 //===----------------------------------------------------------------------===// 1207 1208 FunctionPass *llvm::createHexagonOptAddrMode() { 1209 return new HexagonOptAddrMode(); 1210 } 1211