xref: /llvm-project/llvm/lib/IR/AsmWriter.cpp (revision 1a5e18a492481ff48ca764c8f7d08d231d922382)
1 //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This library implements `print` family of functions in classes like
10 // Module, Function, Value, etc. In-memory representation of those classes is
11 // converted to IR strings.
12 //
13 // Note that these routines must be extremely tolerant of various errors in the
14 // LLVM code, because it can be used for debugging transformations.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/APFloat.h"
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/AssemblyAnnotationWriter.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Comdat.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/DebugProgramInstruction.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalIFunc.h"
47 #include "llvm/IR/GlobalObject.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/IRPrintingPasses.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/ModuleSlotTracker.h"
60 #include "llvm/IR/ModuleSummaryIndex.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/TypeFinder.h"
64 #include "llvm/IR/TypedPointerType.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/Support/AtomicOrdering.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Compiler.h"
71 #include "llvm/Support/Debug.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormattedStream.h"
75 #include "llvm/Support/SaveAndRestore.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <cassert>
78 #include <cctype>
79 #include <cstddef>
80 #include <cstdint>
81 #include <iterator>
82 #include <memory>
83 #include <optional>
84 #include <string>
85 #include <tuple>
86 #include <utility>
87 #include <vector>
88 
89 using namespace llvm;
90 
91 // Make virtual table appear in this compilation unit.
92 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
93 
94 //===----------------------------------------------------------------------===//
95 // Helper Functions
96 //===----------------------------------------------------------------------===//
97 
98 using OrderMap = MapVector<const Value *, unsigned>;
99 
100 using UseListOrderMap =
101     DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
102 
103 /// Look for a value that might be wrapped as metadata, e.g. a value in a
104 /// metadata operand. Returns the input value as-is if it is not wrapped.
105 static const Value *skipMetadataWrapper(const Value *V) {
106   if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
107     if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
108       return VAM->getValue();
109   return V;
110 }
111 
112 static void orderValue(const Value *V, OrderMap &OM) {
113   if (OM.lookup(V))
114     return;
115 
116   if (const Constant *C = dyn_cast<Constant>(V))
117     if (C->getNumOperands() && !isa<GlobalValue>(C))
118       for (const Value *Op : C->operands())
119         if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
120           orderValue(Op, OM);
121 
122   // Note: we cannot cache this lookup above, since inserting into the map
123   // changes the map's size, and thus affects the other IDs.
124   unsigned ID = OM.size() + 1;
125   OM[V] = ID;
126 }
127 
128 static OrderMap orderModule(const Module *M) {
129   OrderMap OM;
130 
131   for (const GlobalVariable &G : M->globals()) {
132     if (G.hasInitializer())
133       if (!isa<GlobalValue>(G.getInitializer()))
134         orderValue(G.getInitializer(), OM);
135     orderValue(&G, OM);
136   }
137   for (const GlobalAlias &A : M->aliases()) {
138     if (!isa<GlobalValue>(A.getAliasee()))
139       orderValue(A.getAliasee(), OM);
140     orderValue(&A, OM);
141   }
142   for (const GlobalIFunc &I : M->ifuncs()) {
143     if (!isa<GlobalValue>(I.getResolver()))
144       orderValue(I.getResolver(), OM);
145     orderValue(&I, OM);
146   }
147   for (const Function &F : *M) {
148     for (const Use &U : F.operands())
149       if (!isa<GlobalValue>(U.get()))
150         orderValue(U.get(), OM);
151 
152     orderValue(&F, OM);
153 
154     if (F.isDeclaration())
155       continue;
156 
157     for (const Argument &A : F.args())
158       orderValue(&A, OM);
159     for (const BasicBlock &BB : F) {
160       orderValue(&BB, OM);
161       for (const Instruction &I : BB) {
162         for (const Value *Op : I.operands()) {
163           Op = skipMetadataWrapper(Op);
164           if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
165               isa<InlineAsm>(*Op))
166             orderValue(Op, OM);
167         }
168         orderValue(&I, OM);
169       }
170     }
171   }
172   return OM;
173 }
174 
175 static std::vector<unsigned>
176 predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
177   // Predict use-list order for this one.
178   using Entry = std::pair<const Use *, unsigned>;
179   SmallVector<Entry, 64> List;
180   for (const Use &U : V->uses())
181     // Check if this user will be serialized.
182     if (OM.lookup(U.getUser()))
183       List.push_back(std::make_pair(&U, List.size()));
184 
185   if (List.size() < 2)
186     // We may have lost some users.
187     return {};
188 
189   // When referencing a value before its declaration, a temporary value is
190   // created, which will later be RAUWed with the actual value. This reverses
191   // the use list. This happens for all values apart from basic blocks.
192   bool GetsReversed = !isa<BasicBlock>(V);
193   if (auto *BA = dyn_cast<BlockAddress>(V))
194     ID = OM.lookup(BA->getBasicBlock());
195   llvm::sort(List, [&](const Entry &L, const Entry &R) {
196     const Use *LU = L.first;
197     const Use *RU = R.first;
198     if (LU == RU)
199       return false;
200 
201     auto LID = OM.lookup(LU->getUser());
202     auto RID = OM.lookup(RU->getUser());
203 
204     // If ID is 4, then expect: 7 6 5 1 2 3.
205     if (LID < RID) {
206       if (GetsReversed)
207         if (RID <= ID)
208           return true;
209       return false;
210     }
211     if (RID < LID) {
212       if (GetsReversed)
213         if (LID <= ID)
214           return false;
215       return true;
216     }
217 
218     // LID and RID are equal, so we have different operands of the same user.
219     // Assume operands are added in order for all instructions.
220     if (GetsReversed)
221       if (LID <= ID)
222         return LU->getOperandNo() < RU->getOperandNo();
223     return LU->getOperandNo() > RU->getOperandNo();
224   });
225 
226   if (llvm::is_sorted(List, llvm::less_second()))
227     // Order is already correct.
228     return {};
229 
230   // Store the shuffle.
231   std::vector<unsigned> Shuffle(List.size());
232   for (size_t I = 0, E = List.size(); I != E; ++I)
233     Shuffle[I] = List[I].second;
234   return Shuffle;
235 }
236 
237 static UseListOrderMap predictUseListOrder(const Module *M) {
238   OrderMap OM = orderModule(M);
239   UseListOrderMap ULOM;
240   for (const auto &Pair : OM) {
241     const Value *V = Pair.first;
242     if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
243       continue;
244 
245     std::vector<unsigned> Shuffle =
246         predictValueUseListOrder(V, Pair.second, OM);
247     if (Shuffle.empty())
248       continue;
249 
250     const Function *F = nullptr;
251     if (auto *I = dyn_cast<Instruction>(V))
252       F = I->getFunction();
253     if (auto *A = dyn_cast<Argument>(V))
254       F = A->getParent();
255     if (auto *BB = dyn_cast<BasicBlock>(V))
256       F = BB->getParent();
257     ULOM[F][V] = std::move(Shuffle);
258   }
259   return ULOM;
260 }
261 
262 static const Module *getModuleFromVal(const Value *V) {
263   if (const Argument *MA = dyn_cast<Argument>(V))
264     return MA->getParent() ? MA->getParent()->getParent() : nullptr;
265 
266   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
267     return BB->getParent() ? BB->getParent()->getParent() : nullptr;
268 
269   if (const Instruction *I = dyn_cast<Instruction>(V)) {
270     const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
271     return M ? M->getParent() : nullptr;
272   }
273 
274   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
275     return GV->getParent();
276 
277   if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
278     for (const User *U : MAV->users())
279       if (isa<Instruction>(U))
280         if (const Module *M = getModuleFromVal(U))
281           return M;
282     return nullptr;
283   }
284 
285   return nullptr;
286 }
287 
288 static const Module *getModuleFromDPI(const DbgMarker *Marker) {
289   const Function *M =
290       Marker->getParent() ? Marker->getParent()->getParent() : nullptr;
291   return M ? M->getParent() : nullptr;
292 }
293 
294 static const Module *getModuleFromDPI(const DbgRecord *DR) {
295   return DR->getMarker() ? getModuleFromDPI(DR->getMarker()) : nullptr;
296 }
297 
298 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
299   switch (cc) {
300   default:                         Out << "cc" << cc; break;
301   case CallingConv::Fast:          Out << "fastcc"; break;
302   case CallingConv::Cold:          Out << "coldcc"; break;
303   case CallingConv::AnyReg:        Out << "anyregcc"; break;
304   case CallingConv::PreserveMost:  Out << "preserve_mostcc"; break;
305   case CallingConv::PreserveAll:   Out << "preserve_allcc"; break;
306   case CallingConv::PreserveNone:  Out << "preserve_nonecc"; break;
307   case CallingConv::CXX_FAST_TLS:  Out << "cxx_fast_tlscc"; break;
308   case CallingConv::GHC:           Out << "ghccc"; break;
309   case CallingConv::Tail:          Out << "tailcc"; break;
310   case CallingConv::GRAAL:         Out << "graalcc"; break;
311   case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
312   case CallingConv::X86_StdCall:   Out << "x86_stdcallcc"; break;
313   case CallingConv::X86_FastCall:  Out << "x86_fastcallcc"; break;
314   case CallingConv::X86_ThisCall:  Out << "x86_thiscallcc"; break;
315   case CallingConv::X86_RegCall:   Out << "x86_regcallcc"; break;
316   case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
317   case CallingConv::Intel_OCL_BI:  Out << "intel_ocl_bicc"; break;
318   case CallingConv::ARM_APCS:      Out << "arm_apcscc"; break;
319   case CallingConv::ARM_AAPCS:     Out << "arm_aapcscc"; break;
320   case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
321   case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
322   case CallingConv::AArch64_SVE_VectorCall:
323     Out << "aarch64_sve_vector_pcs";
324     break;
325   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0:
326     Out << "aarch64_sme_preservemost_from_x0";
327     break;
328   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1:
329     Out << "aarch64_sme_preservemost_from_x1";
330     break;
331   case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2:
332     Out << "aarch64_sme_preservemost_from_x2";
333     break;
334   case CallingConv::MSP430_INTR:   Out << "msp430_intrcc"; break;
335   case CallingConv::AVR_INTR:      Out << "avr_intrcc "; break;
336   case CallingConv::AVR_SIGNAL:    Out << "avr_signalcc "; break;
337   case CallingConv::PTX_Kernel:    Out << "ptx_kernel"; break;
338   case CallingConv::PTX_Device:    Out << "ptx_device"; break;
339   case CallingConv::X86_64_SysV:   Out << "x86_64_sysvcc"; break;
340   case CallingConv::Win64:         Out << "win64cc"; break;
341   case CallingConv::SPIR_FUNC:     Out << "spir_func"; break;
342   case CallingConv::SPIR_KERNEL:   Out << "spir_kernel"; break;
343   case CallingConv::Swift:         Out << "swiftcc"; break;
344   case CallingConv::SwiftTail:     Out << "swifttailcc"; break;
345   case CallingConv::X86_INTR:      Out << "x86_intrcc"; break;
346   case CallingConv::DUMMY_HHVM:
347     Out << "hhvmcc";
348     break;
349   case CallingConv::DUMMY_HHVM_C:
350     Out << "hhvm_ccc";
351     break;
352   case CallingConv::AMDGPU_VS:     Out << "amdgpu_vs"; break;
353   case CallingConv::AMDGPU_LS:     Out << "amdgpu_ls"; break;
354   case CallingConv::AMDGPU_HS:     Out << "amdgpu_hs"; break;
355   case CallingConv::AMDGPU_ES:     Out << "amdgpu_es"; break;
356   case CallingConv::AMDGPU_GS:     Out << "amdgpu_gs"; break;
357   case CallingConv::AMDGPU_PS:     Out << "amdgpu_ps"; break;
358   case CallingConv::AMDGPU_CS:     Out << "amdgpu_cs"; break;
359   case CallingConv::AMDGPU_CS_Chain:
360     Out << "amdgpu_cs_chain";
361     break;
362   case CallingConv::AMDGPU_CS_ChainPreserve:
363     Out << "amdgpu_cs_chain_preserve";
364     break;
365   case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
366   case CallingConv::AMDGPU_Gfx:    Out << "amdgpu_gfx"; break;
367   case CallingConv::M68k_RTD:      Out << "m68k_rtdcc"; break;
368   case CallingConv::RISCV_VectorCall:
369     Out << "riscv_vector_cc";
370     break;
371   }
372 }
373 
374 enum PrefixType {
375   GlobalPrefix,
376   ComdatPrefix,
377   LabelPrefix,
378   LocalPrefix,
379   NoPrefix
380 };
381 
382 void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
383   assert(!Name.empty() && "Cannot get empty name!");
384 
385   // Scan the name to see if it needs quotes first.
386   bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
387   if (!NeedsQuotes) {
388     for (unsigned char C : Name) {
389       // By making this unsigned, the value passed in to isalnum will always be
390       // in the range 0-255.  This is important when building with MSVC because
391       // its implementation will assert.  This situation can arise when dealing
392       // with UTF-8 multibyte characters.
393       if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
394           C != '_') {
395         NeedsQuotes = true;
396         break;
397       }
398     }
399   }
400 
401   // If we didn't need any quotes, just write out the name in one blast.
402   if (!NeedsQuotes) {
403     OS << Name;
404     return;
405   }
406 
407   // Okay, we need quotes.  Output the quotes and escape any scary characters as
408   // needed.
409   OS << '"';
410   printEscapedString(Name, OS);
411   OS << '"';
412 }
413 
414 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
415 /// (if the string only contains simple characters) or is surrounded with ""'s
416 /// (if it has special chars in it). Print it out.
417 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
418   switch (Prefix) {
419   case NoPrefix:
420     break;
421   case GlobalPrefix:
422     OS << '@';
423     break;
424   case ComdatPrefix:
425     OS << '$';
426     break;
427   case LabelPrefix:
428     break;
429   case LocalPrefix:
430     OS << '%';
431     break;
432   }
433   printLLVMNameWithoutPrefix(OS, Name);
434 }
435 
436 /// Turn the specified name into an 'LLVM name', which is either prefixed with %
437 /// (if the string only contains simple characters) or is surrounded with ""'s
438 /// (if it has special chars in it). Print it out.
439 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
440   PrintLLVMName(OS, V->getName(),
441                 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
442 }
443 
444 static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
445   Out << ", <";
446   if (isa<ScalableVectorType>(Ty))
447     Out << "vscale x ";
448   Out << Mask.size() << " x i32> ";
449   bool FirstElt = true;
450   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
451     Out << "zeroinitializer";
452   } else if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
453     Out << "poison";
454   } else {
455     Out << "<";
456     for (int Elt : Mask) {
457       if (FirstElt)
458         FirstElt = false;
459       else
460         Out << ", ";
461       Out << "i32 ";
462       if (Elt == PoisonMaskElem)
463         Out << "poison";
464       else
465         Out << Elt;
466     }
467     Out << ">";
468   }
469 }
470 
471 namespace {
472 
473 class TypePrinting {
474 public:
475   TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
476 
477   TypePrinting(const TypePrinting &) = delete;
478   TypePrinting &operator=(const TypePrinting &) = delete;
479 
480   /// The named types that are used by the current module.
481   TypeFinder &getNamedTypes();
482 
483   /// The numbered types, number to type mapping.
484   std::vector<StructType *> &getNumberedTypes();
485 
486   bool empty();
487 
488   void print(Type *Ty, raw_ostream &OS);
489 
490   void printStructBody(StructType *Ty, raw_ostream &OS);
491 
492 private:
493   void incorporateTypes();
494 
495   /// A module to process lazily when needed. Set to nullptr as soon as used.
496   const Module *DeferredM;
497 
498   TypeFinder NamedTypes;
499 
500   // The numbered types, along with their value.
501   DenseMap<StructType *, unsigned> Type2Number;
502 
503   std::vector<StructType *> NumberedTypes;
504 };
505 
506 } // end anonymous namespace
507 
508 TypeFinder &TypePrinting::getNamedTypes() {
509   incorporateTypes();
510   return NamedTypes;
511 }
512 
513 std::vector<StructType *> &TypePrinting::getNumberedTypes() {
514   incorporateTypes();
515 
516   // We know all the numbers that each type is used and we know that it is a
517   // dense assignment. Convert the map to an index table, if it's not done
518   // already (judging from the sizes):
519   if (NumberedTypes.size() == Type2Number.size())
520     return NumberedTypes;
521 
522   NumberedTypes.resize(Type2Number.size());
523   for (const auto &P : Type2Number) {
524     assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
525     assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
526     NumberedTypes[P.second] = P.first;
527   }
528   return NumberedTypes;
529 }
530 
531 bool TypePrinting::empty() {
532   incorporateTypes();
533   return NamedTypes.empty() && Type2Number.empty();
534 }
535 
536 void TypePrinting::incorporateTypes() {
537   if (!DeferredM)
538     return;
539 
540   NamedTypes.run(*DeferredM, false);
541   DeferredM = nullptr;
542 
543   // The list of struct types we got back includes all the struct types, split
544   // the unnamed ones out to a numbering and remove the anonymous structs.
545   unsigned NextNumber = 0;
546 
547   std::vector<StructType *>::iterator NextToUse = NamedTypes.begin();
548   for (StructType *STy : NamedTypes) {
549     // Ignore anonymous types.
550     if (STy->isLiteral())
551       continue;
552 
553     if (STy->getName().empty())
554       Type2Number[STy] = NextNumber++;
555     else
556       *NextToUse++ = STy;
557   }
558 
559   NamedTypes.erase(NextToUse, NamedTypes.end());
560 }
561 
562 /// Write the specified type to the specified raw_ostream, making use of type
563 /// names or up references to shorten the type name where possible.
564 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
565   switch (Ty->getTypeID()) {
566   case Type::VoidTyID:      OS << "void"; return;
567   case Type::HalfTyID:      OS << "half"; return;
568   case Type::BFloatTyID:    OS << "bfloat"; return;
569   case Type::FloatTyID:     OS << "float"; return;
570   case Type::DoubleTyID:    OS << "double"; return;
571   case Type::X86_FP80TyID:  OS << "x86_fp80"; return;
572   case Type::FP128TyID:     OS << "fp128"; return;
573   case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
574   case Type::LabelTyID:     OS << "label"; return;
575   case Type::MetadataTyID:
576     OS << "metadata";
577     return;
578   case Type::X86_AMXTyID:   OS << "x86_amx"; return;
579   case Type::TokenTyID:     OS << "token"; return;
580   case Type::IntegerTyID:
581     OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
582     return;
583 
584   case Type::FunctionTyID: {
585     FunctionType *FTy = cast<FunctionType>(Ty);
586     print(FTy->getReturnType(), OS);
587     OS << " (";
588     ListSeparator LS;
589     for (Type *Ty : FTy->params()) {
590       OS << LS;
591       print(Ty, OS);
592     }
593     if (FTy->isVarArg())
594       OS << LS << "...";
595     OS << ')';
596     return;
597   }
598   case Type::StructTyID: {
599     StructType *STy = cast<StructType>(Ty);
600 
601     if (STy->isLiteral())
602       return printStructBody(STy, OS);
603 
604     if (!STy->getName().empty())
605       return PrintLLVMName(OS, STy->getName(), LocalPrefix);
606 
607     incorporateTypes();
608     const auto I = Type2Number.find(STy);
609     if (I != Type2Number.end())
610       OS << '%' << I->second;
611     else  // Not enumerated, print the hex address.
612       OS << "%\"type " << STy << '\"';
613     return;
614   }
615   case Type::PointerTyID: {
616     PointerType *PTy = cast<PointerType>(Ty);
617     OS << "ptr";
618     if (unsigned AddressSpace = PTy->getAddressSpace())
619       OS << " addrspace(" << AddressSpace << ')';
620     return;
621   }
622   case Type::ArrayTyID: {
623     ArrayType *ATy = cast<ArrayType>(Ty);
624     OS << '[' << ATy->getNumElements() << " x ";
625     print(ATy->getElementType(), OS);
626     OS << ']';
627     return;
628   }
629   case Type::FixedVectorTyID:
630   case Type::ScalableVectorTyID: {
631     VectorType *PTy = cast<VectorType>(Ty);
632     ElementCount EC = PTy->getElementCount();
633     OS << "<";
634     if (EC.isScalable())
635       OS << "vscale x ";
636     OS << EC.getKnownMinValue() << " x ";
637     print(PTy->getElementType(), OS);
638     OS << '>';
639     return;
640   }
641   case Type::TypedPointerTyID: {
642     TypedPointerType *TPTy = cast<TypedPointerType>(Ty);
643     OS << "typedptr(" << *TPTy->getElementType() << ", "
644        << TPTy->getAddressSpace() << ")";
645     return;
646   }
647   case Type::TargetExtTyID:
648     TargetExtType *TETy = cast<TargetExtType>(Ty);
649     OS << "target(\"";
650     printEscapedString(Ty->getTargetExtName(), OS);
651     OS << "\"";
652     for (Type *Inner : TETy->type_params()) {
653       OS << ", ";
654       Inner->print(OS, /*IsForDebug=*/false, /*NoDetails=*/true);
655     }
656     for (unsigned IntParam : TETy->int_params())
657       OS << ", " << IntParam;
658     OS << ")";
659     return;
660   }
661   llvm_unreachable("Invalid TypeID");
662 }
663 
664 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
665   if (STy->isOpaque()) {
666     OS << "opaque";
667     return;
668   }
669 
670   if (STy->isPacked())
671     OS << '<';
672 
673   if (STy->getNumElements() == 0) {
674     OS << "{}";
675   } else {
676     OS << "{ ";
677     ListSeparator LS;
678     for (Type *Ty : STy->elements()) {
679       OS << LS;
680       print(Ty, OS);
681     }
682 
683     OS << " }";
684   }
685   if (STy->isPacked())
686     OS << '>';
687 }
688 
689 AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() = default;
690 
691 namespace llvm {
692 
693 //===----------------------------------------------------------------------===//
694 // SlotTracker Class: Enumerate slot numbers for unnamed values
695 //===----------------------------------------------------------------------===//
696 /// This class provides computation of slot numbers for LLVM Assembly writing.
697 ///
698 class SlotTracker : public AbstractSlotTrackerStorage {
699 public:
700   /// ValueMap - A mapping of Values to slot numbers.
701   using ValueMap = DenseMap<const Value *, unsigned>;
702 
703 private:
704   /// TheModule - The module for which we are holding slot numbers.
705   const Module* TheModule;
706 
707   /// TheFunction - The function for which we are holding slot numbers.
708   const Function* TheFunction = nullptr;
709   bool FunctionProcessed = false;
710   bool ShouldInitializeAllMetadata;
711 
712   std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
713       ProcessModuleHookFn;
714   std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
715       ProcessFunctionHookFn;
716 
717   /// The summary index for which we are holding slot numbers.
718   const ModuleSummaryIndex *TheIndex = nullptr;
719 
720   /// mMap - The slot map for the module level data.
721   ValueMap mMap;
722   unsigned mNext = 0;
723 
724   /// fMap - The slot map for the function level data.
725   ValueMap fMap;
726   unsigned fNext = 0;
727 
728   /// mdnMap - Map for MDNodes.
729   DenseMap<const MDNode*, unsigned> mdnMap;
730   unsigned mdnNext = 0;
731 
732   /// asMap - The slot map for attribute sets.
733   DenseMap<AttributeSet, unsigned> asMap;
734   unsigned asNext = 0;
735 
736   /// ModulePathMap - The slot map for Module paths used in the summary index.
737   StringMap<unsigned> ModulePathMap;
738   unsigned ModulePathNext = 0;
739 
740   /// GUIDMap - The slot map for GUIDs used in the summary index.
741   DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
742   unsigned GUIDNext = 0;
743 
744   /// TypeIdMap - The slot map for type ids used in the summary index.
745   StringMap<unsigned> TypeIdMap;
746   unsigned TypeIdNext = 0;
747 
748   /// TypeIdCompatibleVtableMap - The slot map for type compatible vtable ids
749   /// used in the summary index.
750   StringMap<unsigned> TypeIdCompatibleVtableMap;
751   unsigned TypeIdCompatibleVtableNext = 0;
752 
753 public:
754   /// Construct from a module.
755   ///
756   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
757   /// functions, giving correct numbering for metadata referenced only from
758   /// within a function (even if no functions have been initialized).
759   explicit SlotTracker(const Module *M,
760                        bool ShouldInitializeAllMetadata = false);
761 
762   /// Construct from a function, starting out in incorp state.
763   ///
764   /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
765   /// functions, giving correct numbering for metadata referenced only from
766   /// within a function (even if no functions have been initialized).
767   explicit SlotTracker(const Function *F,
768                        bool ShouldInitializeAllMetadata = false);
769 
770   /// Construct from a module summary index.
771   explicit SlotTracker(const ModuleSummaryIndex *Index);
772 
773   SlotTracker(const SlotTracker &) = delete;
774   SlotTracker &operator=(const SlotTracker &) = delete;
775 
776   ~SlotTracker() = default;
777 
778   void setProcessHook(
779       std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
780   void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
781                                          const Function *, bool)>);
782 
783   unsigned getNextMetadataSlot() override { return mdnNext; }
784 
785   void createMetadataSlot(const MDNode *N) override;
786 
787   /// Return the slot number of the specified value in it's type
788   /// plane.  If something is not in the SlotTracker, return -1.
789   int getLocalSlot(const Value *V);
790   int getGlobalSlot(const GlobalValue *V);
791   int getMetadataSlot(const MDNode *N) override;
792   int getAttributeGroupSlot(AttributeSet AS);
793   int getModulePathSlot(StringRef Path);
794   int getGUIDSlot(GlobalValue::GUID GUID);
795   int getTypeIdSlot(StringRef Id);
796   int getTypeIdCompatibleVtableSlot(StringRef Id);
797 
798   /// If you'd like to deal with a function instead of just a module, use
799   /// this method to get its data into the SlotTracker.
800   void incorporateFunction(const Function *F) {
801     TheFunction = F;
802     FunctionProcessed = false;
803   }
804 
805   const Function *getFunction() const { return TheFunction; }
806 
807   /// After calling incorporateFunction, use this method to remove the
808   /// most recently incorporated function from the SlotTracker. This
809   /// will reset the state of the machine back to just the module contents.
810   void purgeFunction();
811 
812   /// MDNode map iterators.
813   using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
814 
815   mdn_iterator mdn_begin() { return mdnMap.begin(); }
816   mdn_iterator mdn_end() { return mdnMap.end(); }
817   unsigned mdn_size() const { return mdnMap.size(); }
818   bool mdn_empty() const { return mdnMap.empty(); }
819 
820   /// AttributeSet map iterators.
821   using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
822 
823   as_iterator as_begin()   { return asMap.begin(); }
824   as_iterator as_end()     { return asMap.end(); }
825   unsigned as_size() const { return asMap.size(); }
826   bool as_empty() const    { return asMap.empty(); }
827 
828   /// GUID map iterators.
829   using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
830 
831   /// These functions do the actual initialization.
832   inline void initializeIfNeeded();
833   int initializeIndexIfNeeded();
834 
835   // Implementation Details
836 private:
837   /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
838   void CreateModuleSlot(const GlobalValue *V);
839 
840   /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
841   void CreateMetadataSlot(const MDNode *N);
842 
843   /// CreateFunctionSlot - Insert the specified Value* into the slot table.
844   void CreateFunctionSlot(const Value *V);
845 
846   /// Insert the specified AttributeSet into the slot table.
847   void CreateAttributeSetSlot(AttributeSet AS);
848 
849   inline void CreateModulePathSlot(StringRef Path);
850   void CreateGUIDSlot(GlobalValue::GUID GUID);
851   void CreateTypeIdSlot(StringRef Id);
852   void CreateTypeIdCompatibleVtableSlot(StringRef Id);
853 
854   /// Add all of the module level global variables (and their initializers)
855   /// and function declarations, but not the contents of those functions.
856   void processModule();
857   // Returns number of allocated slots
858   int processIndex();
859 
860   /// Add all of the functions arguments, basic blocks, and instructions.
861   void processFunction();
862 
863   /// Add the metadata directly attached to a GlobalObject.
864   void processGlobalObjectMetadata(const GlobalObject &GO);
865 
866   /// Add all of the metadata from a function.
867   void processFunctionMetadata(const Function &F);
868 
869   /// Add all of the metadata from an instruction.
870   void processInstructionMetadata(const Instruction &I);
871 
872   /// Add all of the metadata from a DbgRecord.
873   void processDbgRecordMetadata(const DbgRecord &DVR);
874 };
875 
876 } // end namespace llvm
877 
878 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
879                                      const Function *F)
880     : M(M), F(F), Machine(&Machine) {}
881 
882 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
883                                      bool ShouldInitializeAllMetadata)
884     : ShouldCreateStorage(M),
885       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
886 
887 ModuleSlotTracker::~ModuleSlotTracker() = default;
888 
889 SlotTracker *ModuleSlotTracker::getMachine() {
890   if (!ShouldCreateStorage)
891     return Machine;
892 
893   ShouldCreateStorage = false;
894   MachineStorage =
895       std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
896   Machine = MachineStorage.get();
897   if (ProcessModuleHookFn)
898     Machine->setProcessHook(ProcessModuleHookFn);
899   if (ProcessFunctionHookFn)
900     Machine->setProcessHook(ProcessFunctionHookFn);
901   return Machine;
902 }
903 
904 void ModuleSlotTracker::incorporateFunction(const Function &F) {
905   // Using getMachine() may lazily create the slot tracker.
906   if (!getMachine())
907     return;
908 
909   // Nothing to do if this is the right function already.
910   if (this->F == &F)
911     return;
912   if (this->F)
913     Machine->purgeFunction();
914   Machine->incorporateFunction(&F);
915   this->F = &F;
916 }
917 
918 int ModuleSlotTracker::getLocalSlot(const Value *V) {
919   assert(F && "No function incorporated");
920   return Machine->getLocalSlot(V);
921 }
922 
923 void ModuleSlotTracker::setProcessHook(
924     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
925         Fn) {
926   ProcessModuleHookFn = Fn;
927 }
928 
929 void ModuleSlotTracker::setProcessHook(
930     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
931         Fn) {
932   ProcessFunctionHookFn = Fn;
933 }
934 
935 static SlotTracker *createSlotTracker(const Value *V) {
936   if (const Argument *FA = dyn_cast<Argument>(V))
937     return new SlotTracker(FA->getParent());
938 
939   if (const Instruction *I = dyn_cast<Instruction>(V))
940     if (I->getParent())
941       return new SlotTracker(I->getParent()->getParent());
942 
943   if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
944     return new SlotTracker(BB->getParent());
945 
946   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
947     return new SlotTracker(GV->getParent());
948 
949   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
950     return new SlotTracker(GA->getParent());
951 
952   if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
953     return new SlotTracker(GIF->getParent());
954 
955   if (const Function *Func = dyn_cast<Function>(V))
956     return new SlotTracker(Func);
957 
958   return nullptr;
959 }
960 
961 #if 0
962 #define ST_DEBUG(X) dbgs() << X
963 #else
964 #define ST_DEBUG(X)
965 #endif
966 
967 // Module level constructor. Causes the contents of the Module (sans functions)
968 // to be added to the slot table.
969 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
970     : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
971 
972 // Function level constructor. Causes the contents of the Module and the one
973 // function provided to be added to the slot table.
974 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
975     : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
976       ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
977 
978 SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
979     : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
980 
981 inline void SlotTracker::initializeIfNeeded() {
982   if (TheModule) {
983     processModule();
984     TheModule = nullptr; ///< Prevent re-processing next time we're called.
985   }
986 
987   if (TheFunction && !FunctionProcessed)
988     processFunction();
989 }
990 
991 int SlotTracker::initializeIndexIfNeeded() {
992   if (!TheIndex)
993     return 0;
994   int NumSlots = processIndex();
995   TheIndex = nullptr; ///< Prevent re-processing next time we're called.
996   return NumSlots;
997 }
998 
999 // Iterate through all the global variables, functions, and global
1000 // variable initializers and create slots for them.
1001 void SlotTracker::processModule() {
1002   ST_DEBUG("begin processModule!\n");
1003 
1004   // Add all of the unnamed global variables to the value table.
1005   for (const GlobalVariable &Var : TheModule->globals()) {
1006     if (!Var.hasName())
1007       CreateModuleSlot(&Var);
1008     processGlobalObjectMetadata(Var);
1009     auto Attrs = Var.getAttributes();
1010     if (Attrs.hasAttributes())
1011       CreateAttributeSetSlot(Attrs);
1012   }
1013 
1014   for (const GlobalAlias &A : TheModule->aliases()) {
1015     if (!A.hasName())
1016       CreateModuleSlot(&A);
1017   }
1018 
1019   for (const GlobalIFunc &I : TheModule->ifuncs()) {
1020     if (!I.hasName())
1021       CreateModuleSlot(&I);
1022   }
1023 
1024   // Add metadata used by named metadata.
1025   for (const NamedMDNode &NMD : TheModule->named_metadata()) {
1026     for (const MDNode *N : NMD.operands())
1027       CreateMetadataSlot(N);
1028   }
1029 
1030   for (const Function &F : *TheModule) {
1031     if (!F.hasName())
1032       // Add all the unnamed functions to the table.
1033       CreateModuleSlot(&F);
1034 
1035     if (ShouldInitializeAllMetadata)
1036       processFunctionMetadata(F);
1037 
1038     // Add all the function attributes to the table.
1039     // FIXME: Add attributes of other objects?
1040     AttributeSet FnAttrs = F.getAttributes().getFnAttrs();
1041     if (FnAttrs.hasAttributes())
1042       CreateAttributeSetSlot(FnAttrs);
1043   }
1044 
1045   if (ProcessModuleHookFn)
1046     ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
1047 
1048   ST_DEBUG("end processModule!\n");
1049 }
1050 
1051 // Process the arguments, basic blocks, and instructions  of a function.
1052 void SlotTracker::processFunction() {
1053   ST_DEBUG("begin processFunction!\n");
1054   fNext = 0;
1055 
1056   // Process function metadata if it wasn't hit at the module-level.
1057   if (!ShouldInitializeAllMetadata)
1058     processFunctionMetadata(*TheFunction);
1059 
1060   // Add all the function arguments with no names.
1061   for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
1062       AE = TheFunction->arg_end(); AI != AE; ++AI)
1063     if (!AI->hasName())
1064       CreateFunctionSlot(&*AI);
1065 
1066   ST_DEBUG("Inserting Instructions:\n");
1067 
1068   // Add all of the basic blocks and instructions with no names.
1069   for (auto &BB : *TheFunction) {
1070     if (!BB.hasName())
1071       CreateFunctionSlot(&BB);
1072 
1073     for (auto &I : BB) {
1074       if (!I.getType()->isVoidTy() && !I.hasName())
1075         CreateFunctionSlot(&I);
1076 
1077       // We allow direct calls to any llvm.foo function here, because the
1078       // target may not be linked into the optimizer.
1079       if (const auto *Call = dyn_cast<CallBase>(&I)) {
1080         // Add all the call attributes to the table.
1081         AttributeSet Attrs = Call->getAttributes().getFnAttrs();
1082         if (Attrs.hasAttributes())
1083           CreateAttributeSetSlot(Attrs);
1084       }
1085     }
1086   }
1087 
1088   if (ProcessFunctionHookFn)
1089     ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
1090 
1091   FunctionProcessed = true;
1092 
1093   ST_DEBUG("end processFunction!\n");
1094 }
1095 
1096 // Iterate through all the GUID in the index and create slots for them.
1097 int SlotTracker::processIndex() {
1098   ST_DEBUG("begin processIndex!\n");
1099   assert(TheIndex);
1100 
1101   // The first block of slots are just the module ids, which start at 0 and are
1102   // assigned consecutively. Since the StringMap iteration order isn't
1103   // guaranteed, order by path string before assigning slots.
1104   std::vector<StringRef> ModulePaths;
1105   for (auto &[ModPath, _] : TheIndex->modulePaths())
1106     ModulePaths.push_back(ModPath);
1107   llvm::sort(ModulePaths.begin(), ModulePaths.end());
1108   for (auto &ModPath : ModulePaths)
1109     CreateModulePathSlot(ModPath);
1110 
1111   // Start numbering the GUIDs after the module ids.
1112   GUIDNext = ModulePathNext;
1113 
1114   for (auto &GlobalList : *TheIndex)
1115     CreateGUIDSlot(GlobalList.first);
1116 
1117   // Start numbering the TypeIdCompatibleVtables after the GUIDs.
1118   TypeIdCompatibleVtableNext = GUIDNext;
1119   for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
1120     CreateTypeIdCompatibleVtableSlot(TId.first);
1121 
1122   // Start numbering the TypeIds after the TypeIdCompatibleVtables.
1123   TypeIdNext = TypeIdCompatibleVtableNext;
1124   for (const auto &TID : TheIndex->typeIds())
1125     CreateTypeIdSlot(TID.second.first);
1126 
1127   ST_DEBUG("end processIndex!\n");
1128   return TypeIdNext;
1129 }
1130 
1131 void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1132   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1133   GO.getAllMetadata(MDs);
1134   for (auto &MD : MDs)
1135     CreateMetadataSlot(MD.second);
1136 }
1137 
1138 void SlotTracker::processFunctionMetadata(const Function &F) {
1139   processGlobalObjectMetadata(F);
1140   for (auto &BB : F) {
1141     for (auto &I : BB) {
1142       for (const DbgRecord &DR : I.getDbgRecordRange())
1143         processDbgRecordMetadata(DR);
1144       processInstructionMetadata(I);
1145     }
1146   }
1147 }
1148 
1149 void SlotTracker::processDbgRecordMetadata(const DbgRecord &DR) {
1150   if (const DbgVariableRecord *DVR = dyn_cast<const DbgVariableRecord>(&DR)) {
1151     // Process metadata used by DbgRecords; we only specifically care about the
1152     // DILocalVariable, DILocation, and DIAssignID fields, as the Value and
1153     // Expression fields should only be printed inline and so do not use a slot.
1154     // Note: The above doesn't apply for empty-metadata operands.
1155     if (auto *Empty = dyn_cast<MDNode>(DVR->getRawLocation()))
1156       CreateMetadataSlot(Empty);
1157     CreateMetadataSlot(DVR->getRawVariable());
1158     if (DVR->isDbgAssign()) {
1159       CreateMetadataSlot(cast<MDNode>(DVR->getRawAssignID()));
1160       if (auto *Empty = dyn_cast<MDNode>(DVR->getRawAddress()))
1161         CreateMetadataSlot(Empty);
1162     }
1163   } else if (const DbgLabelRecord *DLR = dyn_cast<const DbgLabelRecord>(&DR)) {
1164     CreateMetadataSlot(DLR->getRawLabel());
1165   } else {
1166     llvm_unreachable("unsupported DbgRecord kind");
1167   }
1168   CreateMetadataSlot(DR.getDebugLoc().getAsMDNode());
1169 }
1170 
1171 void SlotTracker::processInstructionMetadata(const Instruction &I) {
1172   // Process metadata used directly by intrinsics.
1173   if (const CallInst *CI = dyn_cast<CallInst>(&I))
1174     if (Function *F = CI->getCalledFunction())
1175       if (F->isIntrinsic())
1176         for (auto &Op : I.operands())
1177           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1178             if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1179               CreateMetadataSlot(N);
1180 
1181   // Process metadata attached to this instruction.
1182   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1183   I.getAllMetadata(MDs);
1184   for (auto &MD : MDs)
1185     CreateMetadataSlot(MD.second);
1186 }
1187 
1188 /// Clean up after incorporating a function. This is the only way to get out of
1189 /// the function incorporation state that affects get*Slot/Create*Slot. Function
1190 /// incorporation state is indicated by TheFunction != 0.
1191 void SlotTracker::purgeFunction() {
1192   ST_DEBUG("begin purgeFunction!\n");
1193   fMap.clear(); // Simply discard the function level map
1194   TheFunction = nullptr;
1195   FunctionProcessed = false;
1196   ST_DEBUG("end purgeFunction!\n");
1197 }
1198 
1199 /// getGlobalSlot - Get the slot number of a global value.
1200 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1201   // Check for uninitialized state and do lazy initialization.
1202   initializeIfNeeded();
1203 
1204   // Find the value in the module map
1205   ValueMap::iterator MI = mMap.find(V);
1206   return MI == mMap.end() ? -1 : (int)MI->second;
1207 }
1208 
1209 void SlotTracker::setProcessHook(
1210     std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
1211         Fn) {
1212   ProcessModuleHookFn = Fn;
1213 }
1214 
1215 void SlotTracker::setProcessHook(
1216     std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
1217         Fn) {
1218   ProcessFunctionHookFn = Fn;
1219 }
1220 
1221 /// getMetadataSlot - Get the slot number of a MDNode.
1222 void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
1223 
1224 /// getMetadataSlot - Get the slot number of a MDNode.
1225 int SlotTracker::getMetadataSlot(const MDNode *N) {
1226   // Check for uninitialized state and do lazy initialization.
1227   initializeIfNeeded();
1228 
1229   // Find the MDNode in the module map
1230   mdn_iterator MI = mdnMap.find(N);
1231   return MI == mdnMap.end() ? -1 : (int)MI->second;
1232 }
1233 
1234 /// getLocalSlot - Get the slot number for a value that is local to a function.
1235 int SlotTracker::getLocalSlot(const Value *V) {
1236   assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1237 
1238   // Check for uninitialized state and do lazy initialization.
1239   initializeIfNeeded();
1240 
1241   ValueMap::iterator FI = fMap.find(V);
1242   return FI == fMap.end() ? -1 : (int)FI->second;
1243 }
1244 
1245 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1246   // Check for uninitialized state and do lazy initialization.
1247   initializeIfNeeded();
1248 
1249   // Find the AttributeSet in the module map.
1250   as_iterator AI = asMap.find(AS);
1251   return AI == asMap.end() ? -1 : (int)AI->second;
1252 }
1253 
1254 int SlotTracker::getModulePathSlot(StringRef Path) {
1255   // Check for uninitialized state and do lazy initialization.
1256   initializeIndexIfNeeded();
1257 
1258   // Find the Module path in the map
1259   auto I = ModulePathMap.find(Path);
1260   return I == ModulePathMap.end() ? -1 : (int)I->second;
1261 }
1262 
1263 int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1264   // Check for uninitialized state and do lazy initialization.
1265   initializeIndexIfNeeded();
1266 
1267   // Find the GUID in the map
1268   guid_iterator I = GUIDMap.find(GUID);
1269   return I == GUIDMap.end() ? -1 : (int)I->second;
1270 }
1271 
1272 int SlotTracker::getTypeIdSlot(StringRef Id) {
1273   // Check for uninitialized state and do lazy initialization.
1274   initializeIndexIfNeeded();
1275 
1276   // Find the TypeId string in the map
1277   auto I = TypeIdMap.find(Id);
1278   return I == TypeIdMap.end() ? -1 : (int)I->second;
1279 }
1280 
1281 int SlotTracker::getTypeIdCompatibleVtableSlot(StringRef Id) {
1282   // Check for uninitialized state and do lazy initialization.
1283   initializeIndexIfNeeded();
1284 
1285   // Find the TypeIdCompatibleVtable string in the map
1286   auto I = TypeIdCompatibleVtableMap.find(Id);
1287   return I == TypeIdCompatibleVtableMap.end() ? -1 : (int)I->second;
1288 }
1289 
1290 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1291 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1292   assert(V && "Can't insert a null Value into SlotTracker!");
1293   assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1294   assert(!V->hasName() && "Doesn't need a slot!");
1295 
1296   unsigned DestSlot = mNext++;
1297   mMap[V] = DestSlot;
1298 
1299   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1300            DestSlot << " [");
1301   // G = Global, F = Function, A = Alias, I = IFunc, o = other
1302   ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1303             (isa<Function>(V) ? 'F' :
1304              (isa<GlobalAlias>(V) ? 'A' :
1305               (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1306 }
1307 
1308 /// CreateSlot - Create a new slot for the specified value if it has no name.
1309 void SlotTracker::CreateFunctionSlot(const Value *V) {
1310   assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1311 
1312   unsigned DestSlot = fNext++;
1313   fMap[V] = DestSlot;
1314 
1315   // G = Global, F = Function, o = other
1316   ST_DEBUG("  Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1317            DestSlot << " [o]\n");
1318 }
1319 
1320 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1321 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1322   assert(N && "Can't insert a null Value into SlotTracker!");
1323 
1324   // Don't make slots for DIExpressions. We just print them inline everywhere.
1325   if (isa<DIExpression>(N))
1326     return;
1327 
1328   unsigned DestSlot = mdnNext;
1329   if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1330     return;
1331   ++mdnNext;
1332 
1333   // Recursively add any MDNodes referenced by operands.
1334   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1335     if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1336       CreateMetadataSlot(Op);
1337 }
1338 
1339 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1340   assert(AS.hasAttributes() && "Doesn't need a slot!");
1341 
1342   if (asMap.try_emplace(AS, asNext).second)
1343     ++asNext;
1344 }
1345 
1346 /// Create a new slot for the specified Module
1347 void SlotTracker::CreateModulePathSlot(StringRef Path) {
1348   ModulePathMap[Path] = ModulePathNext++;
1349 }
1350 
1351 /// Create a new slot for the specified GUID
1352 void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1353   GUIDMap[GUID] = GUIDNext++;
1354 }
1355 
1356 /// Create a new slot for the specified Id
1357 void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1358   TypeIdMap[Id] = TypeIdNext++;
1359 }
1360 
1361 /// Create a new slot for the specified Id
1362 void SlotTracker::CreateTypeIdCompatibleVtableSlot(StringRef Id) {
1363   TypeIdCompatibleVtableMap[Id] = TypeIdCompatibleVtableNext++;
1364 }
1365 
1366 namespace {
1367 /// Common instances used by most of the printer functions.
1368 struct AsmWriterContext {
1369   TypePrinting *TypePrinter = nullptr;
1370   SlotTracker *Machine = nullptr;
1371   const Module *Context = nullptr;
1372 
1373   AsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M = nullptr)
1374       : TypePrinter(TP), Machine(ST), Context(M) {}
1375 
1376   static AsmWriterContext &getEmpty() {
1377     static AsmWriterContext EmptyCtx(nullptr, nullptr);
1378     return EmptyCtx;
1379   }
1380 
1381   /// A callback that will be triggered when the underlying printer
1382   /// prints a Metadata as operand.
1383   virtual void onWriteMetadataAsOperand(const Metadata *) {}
1384 
1385   virtual ~AsmWriterContext() = default;
1386 };
1387 } // end anonymous namespace
1388 
1389 //===----------------------------------------------------------------------===//
1390 // AsmWriter Implementation
1391 //===----------------------------------------------------------------------===//
1392 
1393 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1394                                    AsmWriterContext &WriterCtx);
1395 
1396 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1397                                    AsmWriterContext &WriterCtx,
1398                                    bool FromValue = false);
1399 
1400 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1401   if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U))
1402     Out << FPO->getFastMathFlags();
1403 
1404   if (const OverflowingBinaryOperator *OBO =
1405         dyn_cast<OverflowingBinaryOperator>(U)) {
1406     if (OBO->hasNoUnsignedWrap())
1407       Out << " nuw";
1408     if (OBO->hasNoSignedWrap())
1409       Out << " nsw";
1410   } else if (const PossiblyExactOperator *Div =
1411                dyn_cast<PossiblyExactOperator>(U)) {
1412     if (Div->isExact())
1413       Out << " exact";
1414   } else if (const PossiblyDisjointInst *PDI =
1415                  dyn_cast<PossiblyDisjointInst>(U)) {
1416     if (PDI->isDisjoint())
1417       Out << " disjoint";
1418   } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1419     if (GEP->isInBounds())
1420       Out << " inbounds";
1421     else if (GEP->hasNoUnsignedSignedWrap())
1422       Out << " nusw";
1423     if (GEP->hasNoUnsignedWrap())
1424       Out << " nuw";
1425     if (auto InRange = GEP->getInRange()) {
1426       Out << " inrange(" << InRange->getLower() << ", " << InRange->getUpper()
1427           << ")";
1428     }
1429   } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(U)) {
1430     if (NNI->hasNonNeg())
1431       Out << " nneg";
1432   } else if (const auto *TI = dyn_cast<TruncInst>(U)) {
1433     if (TI->hasNoUnsignedWrap())
1434       Out << " nuw";
1435     if (TI->hasNoSignedWrap())
1436       Out << " nsw";
1437   } else if (const auto *ICmp = dyn_cast<ICmpInst>(U)) {
1438     if (ICmp->hasSameSign())
1439       Out << " samesign";
1440   }
1441 }
1442 
1443 static void WriteAPFloatInternal(raw_ostream &Out, const APFloat &APF) {
1444   if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1445       &APF.getSemantics() == &APFloat::IEEEdouble()) {
1446     // We would like to output the FP constant value in exponential notation,
1447     // but we cannot do this if doing so will lose precision.  Check here to
1448     // make sure that we only output it in exponential format if we can parse
1449     // the value back and get the same value.
1450     //
1451     bool ignored;
1452     bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1453     bool isInf = APF.isInfinity();
1454     bool isNaN = APF.isNaN();
1455 
1456     if (!isInf && !isNaN) {
1457       double Val = APF.convertToDouble();
1458       SmallString<128> StrVal;
1459       APF.toString(StrVal, 6, 0, false);
1460       // Check to make sure that the stringized number is not some string like
1461       // "Inf" or NaN, that atof will accept, but the lexer will not.  Check
1462       // that the string matches the "[-+]?[0-9]" regex.
1463       //
1464       assert((isDigit(StrVal[0]) ||
1465               ((StrVal[0] == '-' || StrVal[0] == '+') && isDigit(StrVal[1]))) &&
1466              "[-+]?[0-9] regex does not match!");
1467       // Reparse stringized version!
1468       if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1469         Out << StrVal;
1470         return;
1471       }
1472     }
1473 
1474     // Otherwise we could not reparse it to exactly the same value, so we must
1475     // output the string in hexadecimal format!  Note that loading and storing
1476     // floating point types changes the bits of NaNs on some hosts, notably
1477     // x86, so we must not use these types.
1478     static_assert(sizeof(double) == sizeof(uint64_t),
1479                   "assuming that double is 64 bits!");
1480     APFloat apf = APF;
1481 
1482     // Floats are represented in ASCII IR as double, convert.
1483     // FIXME: We should allow 32-bit hex float and remove this.
1484     if (!isDouble) {
1485       // A signaling NaN is quieted on conversion, so we need to recreate the
1486       // expected value after convert (quiet bit of the payload is clear).
1487       bool IsSNAN = apf.isSignaling();
1488       apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1489                   &ignored);
1490       if (IsSNAN) {
1491         APInt Payload = apf.bitcastToAPInt();
1492         apf =
1493             APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(), &Payload);
1494       }
1495     }
1496 
1497     Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1498     return;
1499   }
1500 
1501   // Either half, bfloat or some form of long double.
1502   // These appear as a magic letter identifying the type, then a
1503   // fixed number of hex digits.
1504   Out << "0x";
1505   APInt API = APF.bitcastToAPInt();
1506   if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1507     Out << 'K';
1508     Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1509                                 /*Upper=*/true);
1510     Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1511                                 /*Upper=*/true);
1512   } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1513     Out << 'L';
1514     Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1515                                 /*Upper=*/true);
1516     Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1517                                 /*Upper=*/true);
1518   } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1519     Out << 'M';
1520     Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1521                                 /*Upper=*/true);
1522     Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1523                                 /*Upper=*/true);
1524   } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1525     Out << 'H';
1526     Out << format_hex_no_prefix(API.getZExtValue(), 4,
1527                                 /*Upper=*/true);
1528   } else if (&APF.getSemantics() == &APFloat::BFloat()) {
1529     Out << 'R';
1530     Out << format_hex_no_prefix(API.getZExtValue(), 4,
1531                                 /*Upper=*/true);
1532   } else
1533     llvm_unreachable("Unsupported floating point type");
1534 }
1535 
1536 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1537                                   AsmWriterContext &WriterCtx) {
1538   if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1539     Type *Ty = CI->getType();
1540 
1541     if (Ty->isVectorTy()) {
1542       Out << "splat (";
1543       WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1544       Out << " ";
1545     }
1546 
1547     if (Ty->getScalarType()->isIntegerTy(1))
1548       Out << (CI->getZExtValue() ? "true" : "false");
1549     else
1550       Out << CI->getValue();
1551 
1552     if (Ty->isVectorTy())
1553       Out << ")";
1554 
1555     return;
1556   }
1557 
1558   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1559     Type *Ty = CFP->getType();
1560 
1561     if (Ty->isVectorTy()) {
1562       Out << "splat (";
1563       WriterCtx.TypePrinter->print(Ty->getScalarType(), Out);
1564       Out << " ";
1565     }
1566 
1567     WriteAPFloatInternal(Out, CFP->getValueAPF());
1568 
1569     if (Ty->isVectorTy())
1570       Out << ")";
1571 
1572     return;
1573   }
1574 
1575   if (isa<ConstantAggregateZero>(CV) || isa<ConstantTargetNone>(CV)) {
1576     Out << "zeroinitializer";
1577     return;
1578   }
1579 
1580   if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1581     Out << "blockaddress(";
1582     WriteAsOperandInternal(Out, BA->getFunction(), WriterCtx);
1583     Out << ", ";
1584     WriteAsOperandInternal(Out, BA->getBasicBlock(), WriterCtx);
1585     Out << ")";
1586     return;
1587   }
1588 
1589   if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
1590     Out << "dso_local_equivalent ";
1591     WriteAsOperandInternal(Out, Equiv->getGlobalValue(), WriterCtx);
1592     return;
1593   }
1594 
1595   if (const auto *NC = dyn_cast<NoCFIValue>(CV)) {
1596     Out << "no_cfi ";
1597     WriteAsOperandInternal(Out, NC->getGlobalValue(), WriterCtx);
1598     return;
1599   }
1600 
1601   if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(CV)) {
1602     Out << "ptrauth (";
1603 
1604     // ptrauth (ptr CST, i32 KEY[, i64 DISC[, ptr ADDRDISC]?]?)
1605     unsigned NumOpsToWrite = 2;
1606     if (!CPA->getOperand(2)->isNullValue())
1607       NumOpsToWrite = 3;
1608     if (!CPA->getOperand(3)->isNullValue())
1609       NumOpsToWrite = 4;
1610 
1611     ListSeparator LS;
1612     for (unsigned i = 0, e = NumOpsToWrite; i != e; ++i) {
1613       Out << LS;
1614       WriterCtx.TypePrinter->print(CPA->getOperand(i)->getType(), Out);
1615       Out << ' ';
1616       WriteAsOperandInternal(Out, CPA->getOperand(i), WriterCtx);
1617     }
1618     Out << ')';
1619     return;
1620   }
1621 
1622   if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1623     Type *ETy = CA->getType()->getElementType();
1624     Out << '[';
1625     WriterCtx.TypePrinter->print(ETy, Out);
1626     Out << ' ';
1627     WriteAsOperandInternal(Out, CA->getOperand(0), WriterCtx);
1628     for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1629       Out << ", ";
1630       WriterCtx.TypePrinter->print(ETy, Out);
1631       Out << ' ';
1632       WriteAsOperandInternal(Out, CA->getOperand(i), WriterCtx);
1633     }
1634     Out << ']';
1635     return;
1636   }
1637 
1638   if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1639     // As a special case, print the array as a string if it is an array of
1640     // i8 with ConstantInt values.
1641     if (CA->isString()) {
1642       Out << "c\"";
1643       printEscapedString(CA->getAsString(), Out);
1644       Out << '"';
1645       return;
1646     }
1647 
1648     Type *ETy = CA->getType()->getElementType();
1649     Out << '[';
1650     WriterCtx.TypePrinter->print(ETy, Out);
1651     Out << ' ';
1652     WriteAsOperandInternal(Out, CA->getElementAsConstant(0), WriterCtx);
1653     for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1654       Out << ", ";
1655       WriterCtx.TypePrinter->print(ETy, Out);
1656       Out << ' ';
1657       WriteAsOperandInternal(Out, CA->getElementAsConstant(i), WriterCtx);
1658     }
1659     Out << ']';
1660     return;
1661   }
1662 
1663   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1664     if (CS->getType()->isPacked())
1665       Out << '<';
1666     Out << '{';
1667     unsigned N = CS->getNumOperands();
1668     if (N) {
1669       Out << ' ';
1670       WriterCtx.TypePrinter->print(CS->getOperand(0)->getType(), Out);
1671       Out << ' ';
1672 
1673       WriteAsOperandInternal(Out, CS->getOperand(0), WriterCtx);
1674 
1675       for (unsigned i = 1; i < N; i++) {
1676         Out << ", ";
1677         WriterCtx.TypePrinter->print(CS->getOperand(i)->getType(), Out);
1678         Out << ' ';
1679 
1680         WriteAsOperandInternal(Out, CS->getOperand(i), WriterCtx);
1681       }
1682       Out << ' ';
1683     }
1684 
1685     Out << '}';
1686     if (CS->getType()->isPacked())
1687       Out << '>';
1688     return;
1689   }
1690 
1691   if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1692     auto *CVVTy = cast<FixedVectorType>(CV->getType());
1693     Type *ETy = CVVTy->getElementType();
1694 
1695     // Use the same shorthand for splat vector (i.e. "splat(Ty val)") as is
1696     // permitted on IR input to reduce the output changes when enabling
1697     // UseConstant{Int,FP}ForFixedLengthSplat.
1698     // TODO: Remove this block when the UseConstant{Int,FP}ForFixedLengthSplat
1699     // options are removed.
1700     if (auto *SplatVal = CV->getSplatValue()) {
1701       if (isa<ConstantInt>(SplatVal) || isa<ConstantFP>(SplatVal)) {
1702         Out << "splat (";
1703         WriterCtx.TypePrinter->print(ETy, Out);
1704         Out << ' ';
1705         WriteAsOperandInternal(Out, SplatVal, WriterCtx);
1706         Out << ')';
1707         return;
1708       }
1709     }
1710 
1711     Out << '<';
1712     WriterCtx.TypePrinter->print(ETy, Out);
1713     Out << ' ';
1714     WriteAsOperandInternal(Out, CV->getAggregateElement(0U), WriterCtx);
1715     for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
1716       Out << ", ";
1717       WriterCtx.TypePrinter->print(ETy, Out);
1718       Out << ' ';
1719       WriteAsOperandInternal(Out, CV->getAggregateElement(i), WriterCtx);
1720     }
1721     Out << '>';
1722     return;
1723   }
1724 
1725   if (isa<ConstantPointerNull>(CV)) {
1726     Out << "null";
1727     return;
1728   }
1729 
1730   if (isa<ConstantTokenNone>(CV)) {
1731     Out << "none";
1732     return;
1733   }
1734 
1735   if (isa<PoisonValue>(CV)) {
1736     Out << "poison";
1737     return;
1738   }
1739 
1740   if (isa<UndefValue>(CV)) {
1741     Out << "undef";
1742     return;
1743   }
1744 
1745   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1746     // Use the same shorthand for splat vector (i.e. "splat(Ty val)") as is
1747     // permitted on IR input to reduce the output changes when enabling
1748     // UseConstant{Int,FP}ForScalableSplat.
1749     // TODO: Remove this block when the UseConstant{Int,FP}ForScalableSplat
1750     // options are removed.
1751     if (CE->getOpcode() == Instruction::ShuffleVector) {
1752       if (auto *SplatVal = CE->getSplatValue()) {
1753         if (isa<ConstantInt>(SplatVal) || isa<ConstantFP>(SplatVal)) {
1754           Out << "splat (";
1755           WriterCtx.TypePrinter->print(SplatVal->getType(), Out);
1756           Out << ' ';
1757           WriteAsOperandInternal(Out, SplatVal, WriterCtx);
1758           Out << ')';
1759           return;
1760         }
1761       }
1762     }
1763 
1764     Out << CE->getOpcodeName();
1765     WriteOptimizationInfo(Out, CE);
1766     Out << " (";
1767 
1768     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1769       WriterCtx.TypePrinter->print(GEP->getSourceElementType(), Out);
1770       Out << ", ";
1771     }
1772 
1773     for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end();
1774          ++OI) {
1775       WriterCtx.TypePrinter->print((*OI)->getType(), Out);
1776       Out << ' ';
1777       WriteAsOperandInternal(Out, *OI, WriterCtx);
1778       if (OI+1 != CE->op_end())
1779         Out << ", ";
1780     }
1781 
1782     if (CE->isCast()) {
1783       Out << " to ";
1784       WriterCtx.TypePrinter->print(CE->getType(), Out);
1785     }
1786 
1787     if (CE->getOpcode() == Instruction::ShuffleVector)
1788       PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
1789 
1790     Out << ')';
1791     return;
1792   }
1793 
1794   Out << "<placeholder or erroneous Constant>";
1795 }
1796 
1797 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1798                          AsmWriterContext &WriterCtx) {
1799   Out << "!{";
1800   for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1801     const Metadata *MD = Node->getOperand(mi);
1802     if (!MD)
1803       Out << "null";
1804     else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1805       Value *V = MDV->getValue();
1806       WriterCtx.TypePrinter->print(V->getType(), Out);
1807       Out << ' ';
1808       WriteAsOperandInternal(Out, V, WriterCtx);
1809     } else {
1810       WriteAsOperandInternal(Out, MD, WriterCtx);
1811       WriterCtx.onWriteMetadataAsOperand(MD);
1812     }
1813     if (mi + 1 != me)
1814       Out << ", ";
1815   }
1816 
1817   Out << "}";
1818 }
1819 
1820 namespace {
1821 
1822 struct FieldSeparator {
1823   bool Skip = true;
1824   const char *Sep;
1825 
1826   FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1827 };
1828 
1829 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1830   if (FS.Skip) {
1831     FS.Skip = false;
1832     return OS;
1833   }
1834   return OS << FS.Sep;
1835 }
1836 
1837 struct MDFieldPrinter {
1838   raw_ostream &Out;
1839   FieldSeparator FS;
1840   AsmWriterContext &WriterCtx;
1841 
1842   explicit MDFieldPrinter(raw_ostream &Out)
1843       : Out(Out), WriterCtx(AsmWriterContext::getEmpty()) {}
1844   MDFieldPrinter(raw_ostream &Out, AsmWriterContext &Ctx)
1845       : Out(Out), WriterCtx(Ctx) {}
1846 
1847   void printTag(const DINode *N);
1848   void printMacinfoType(const DIMacroNode *N);
1849   void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1850   void printString(StringRef Name, StringRef Value,
1851                    bool ShouldSkipEmpty = true);
1852   void printMetadata(StringRef Name, const Metadata *MD,
1853                      bool ShouldSkipNull = true);
1854   template <class IntTy>
1855   void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1856   void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
1857                   bool ShouldSkipZero);
1858   void printBool(StringRef Name, bool Value,
1859                  std::optional<bool> Default = std::nullopt);
1860   void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1861   void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
1862   template <class IntTy, class Stringifier>
1863   void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1864                       bool ShouldSkipZero = true);
1865   void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1866   void printNameTableKind(StringRef Name,
1867                           DICompileUnit::DebugNameTableKind NTK);
1868 };
1869 
1870 } // end anonymous namespace
1871 
1872 void MDFieldPrinter::printTag(const DINode *N) {
1873   Out << FS << "tag: ";
1874   auto Tag = dwarf::TagString(N->getTag());
1875   if (!Tag.empty())
1876     Out << Tag;
1877   else
1878     Out << N->getTag();
1879 }
1880 
1881 void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1882   Out << FS << "type: ";
1883   auto Type = dwarf::MacinfoString(N->getMacinfoType());
1884   if (!Type.empty())
1885     Out << Type;
1886   else
1887     Out << N->getMacinfoType();
1888 }
1889 
1890 void MDFieldPrinter::printChecksum(
1891     const DIFile::ChecksumInfo<StringRef> &Checksum) {
1892   Out << FS << "checksumkind: " << Checksum.getKindAsString();
1893   printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1894 }
1895 
1896 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1897                                  bool ShouldSkipEmpty) {
1898   if (ShouldSkipEmpty && Value.empty())
1899     return;
1900 
1901   Out << FS << Name << ": \"";
1902   printEscapedString(Value, Out);
1903   Out << "\"";
1904 }
1905 
1906 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1907                                    AsmWriterContext &WriterCtx) {
1908   if (!MD) {
1909     Out << "null";
1910     return;
1911   }
1912   WriteAsOperandInternal(Out, MD, WriterCtx);
1913   WriterCtx.onWriteMetadataAsOperand(MD);
1914 }
1915 
1916 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1917                                    bool ShouldSkipNull) {
1918   if (ShouldSkipNull && !MD)
1919     return;
1920 
1921   Out << FS << Name << ": ";
1922   writeMetadataAsOperand(Out, MD, WriterCtx);
1923 }
1924 
1925 template <class IntTy>
1926 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1927   if (ShouldSkipZero && !Int)
1928     return;
1929 
1930   Out << FS << Name << ": " << Int;
1931 }
1932 
1933 void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
1934                                 bool IsUnsigned, bool ShouldSkipZero) {
1935   if (ShouldSkipZero && Int.isZero())
1936     return;
1937 
1938   Out << FS << Name << ": ";
1939   Int.print(Out, !IsUnsigned);
1940 }
1941 
1942 void MDFieldPrinter::printBool(StringRef Name, bool Value,
1943                                std::optional<bool> Default) {
1944   if (Default && Value == *Default)
1945     return;
1946   Out << FS << Name << ": " << (Value ? "true" : "false");
1947 }
1948 
1949 void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1950   if (!Flags)
1951     return;
1952 
1953   Out << FS << Name << ": ";
1954 
1955   SmallVector<DINode::DIFlags, 8> SplitFlags;
1956   auto Extra = DINode::splitFlags(Flags, SplitFlags);
1957 
1958   FieldSeparator FlagsFS(" | ");
1959   for (auto F : SplitFlags) {
1960     auto StringF = DINode::getFlagString(F);
1961     assert(!StringF.empty() && "Expected valid flag");
1962     Out << FlagsFS << StringF;
1963   }
1964   if (Extra || SplitFlags.empty())
1965     Out << FlagsFS << Extra;
1966 }
1967 
1968 void MDFieldPrinter::printDISPFlags(StringRef Name,
1969                                     DISubprogram::DISPFlags Flags) {
1970   // Always print this field, because no flags in the IR at all will be
1971   // interpreted as old-style isDefinition: true.
1972   Out << FS << Name << ": ";
1973 
1974   if (!Flags) {
1975     Out << 0;
1976     return;
1977   }
1978 
1979   SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
1980   auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
1981 
1982   FieldSeparator FlagsFS(" | ");
1983   for (auto F : SplitFlags) {
1984     auto StringF = DISubprogram::getFlagString(F);
1985     assert(!StringF.empty() && "Expected valid flag");
1986     Out << FlagsFS << StringF;
1987   }
1988   if (Extra || SplitFlags.empty())
1989     Out << FlagsFS << Extra;
1990 }
1991 
1992 void MDFieldPrinter::printEmissionKind(StringRef Name,
1993                                        DICompileUnit::DebugEmissionKind EK) {
1994   Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1995 }
1996 
1997 void MDFieldPrinter::printNameTableKind(StringRef Name,
1998                                         DICompileUnit::DebugNameTableKind NTK) {
1999   if (NTK == DICompileUnit::DebugNameTableKind::Default)
2000     return;
2001   Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
2002 }
2003 
2004 template <class IntTy, class Stringifier>
2005 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
2006                                     Stringifier toString, bool ShouldSkipZero) {
2007   if (!Value)
2008     return;
2009 
2010   Out << FS << Name << ": ";
2011   auto S = toString(Value);
2012   if (!S.empty())
2013     Out << S;
2014   else
2015     Out << Value;
2016 }
2017 
2018 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
2019                                AsmWriterContext &WriterCtx) {
2020   Out << "!GenericDINode(";
2021   MDFieldPrinter Printer(Out, WriterCtx);
2022   Printer.printTag(N);
2023   Printer.printString("header", N->getHeader());
2024   if (N->getNumDwarfOperands()) {
2025     Out << Printer.FS << "operands: {";
2026     FieldSeparator IFS;
2027     for (auto &I : N->dwarf_operands()) {
2028       Out << IFS;
2029       writeMetadataAsOperand(Out, I, WriterCtx);
2030     }
2031     Out << "}";
2032   }
2033   Out << ")";
2034 }
2035 
2036 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
2037                             AsmWriterContext &WriterCtx) {
2038   Out << "!DILocation(";
2039   MDFieldPrinter Printer(Out, WriterCtx);
2040   // Always output the line, since 0 is a relevant and important value for it.
2041   Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
2042   Printer.printInt("column", DL->getColumn());
2043   Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
2044   Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
2045   Printer.printBool("isImplicitCode", DL->isImplicitCode(),
2046                     /* Default */ false);
2047   Out << ")";
2048 }
2049 
2050 static void writeDIAssignID(raw_ostream &Out, const DIAssignID *DL,
2051                             AsmWriterContext &WriterCtx) {
2052   Out << "!DIAssignID()";
2053   MDFieldPrinter Printer(Out, WriterCtx);
2054 }
2055 
2056 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
2057                             AsmWriterContext &WriterCtx) {
2058   Out << "!DISubrange(";
2059   MDFieldPrinter Printer(Out, WriterCtx);
2060 
2061   auto *Count = N->getRawCountNode();
2062   if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
2063     auto *CV = cast<ConstantInt>(CE->getValue());
2064     Printer.printInt("count", CV->getSExtValue(),
2065                      /* ShouldSkipZero */ false);
2066   } else
2067     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2068 
2069   // A lowerBound of constant 0 should not be skipped, since it is different
2070   // from an unspecified lower bound (= nullptr).
2071   auto *LBound = N->getRawLowerBound();
2072   if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
2073     auto *LV = cast<ConstantInt>(LE->getValue());
2074     Printer.printInt("lowerBound", LV->getSExtValue(),
2075                      /* ShouldSkipZero */ false);
2076   } else
2077     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2078 
2079   auto *UBound = N->getRawUpperBound();
2080   if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
2081     auto *UV = cast<ConstantInt>(UE->getValue());
2082     Printer.printInt("upperBound", UV->getSExtValue(),
2083                      /* ShouldSkipZero */ false);
2084   } else
2085     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2086 
2087   auto *Stride = N->getRawStride();
2088   if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
2089     auto *SV = cast<ConstantInt>(SE->getValue());
2090     Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
2091   } else
2092     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2093 
2094   Out << ")";
2095 }
2096 
2097 static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
2098                                    AsmWriterContext &WriterCtx) {
2099   Out << "!DIGenericSubrange(";
2100   MDFieldPrinter Printer(Out, WriterCtx);
2101 
2102   auto IsConstant = [&](Metadata *Bound) -> bool {
2103     if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
2104       return BE->isConstant() &&
2105              DIExpression::SignedOrUnsignedConstant::SignedConstant ==
2106                  *BE->isConstant();
2107     }
2108     return false;
2109   };
2110 
2111   auto GetConstant = [&](Metadata *Bound) -> int64_t {
2112     assert(IsConstant(Bound) && "Expected constant");
2113     auto *BE = dyn_cast_or_null<DIExpression>(Bound);
2114     return static_cast<int64_t>(BE->getElement(1));
2115   };
2116 
2117   auto *Count = N->getRawCountNode();
2118   if (IsConstant(Count))
2119     Printer.printInt("count", GetConstant(Count),
2120                      /* ShouldSkipZero */ false);
2121   else
2122     Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
2123 
2124   auto *LBound = N->getRawLowerBound();
2125   if (IsConstant(LBound))
2126     Printer.printInt("lowerBound", GetConstant(LBound),
2127                      /* ShouldSkipZero */ false);
2128   else
2129     Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
2130 
2131   auto *UBound = N->getRawUpperBound();
2132   if (IsConstant(UBound))
2133     Printer.printInt("upperBound", GetConstant(UBound),
2134                      /* ShouldSkipZero */ false);
2135   else
2136     Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
2137 
2138   auto *Stride = N->getRawStride();
2139   if (IsConstant(Stride))
2140     Printer.printInt("stride", GetConstant(Stride),
2141                      /* ShouldSkipZero */ false);
2142   else
2143     Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
2144 
2145   Out << ")";
2146 }
2147 
2148 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
2149                               AsmWriterContext &) {
2150   Out << "!DIEnumerator(";
2151   MDFieldPrinter Printer(Out);
2152   Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
2153   Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
2154                      /*ShouldSkipZero=*/false);
2155   if (N->isUnsigned())
2156     Printer.printBool("isUnsigned", true);
2157   Out << ")";
2158 }
2159 
2160 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
2161                              AsmWriterContext &) {
2162   Out << "!DIBasicType(";
2163   MDFieldPrinter Printer(Out);
2164   if (N->getTag() != dwarf::DW_TAG_base_type)
2165     Printer.printTag(N);
2166   Printer.printString("name", N->getName());
2167   Printer.printInt("size", N->getSizeInBits());
2168   Printer.printInt("align", N->getAlignInBits());
2169   Printer.printDwarfEnum("encoding", N->getEncoding(),
2170                          dwarf::AttributeEncodingString);
2171   Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2172   Printer.printDIFlags("flags", N->getFlags());
2173   Out << ")";
2174 }
2175 
2176 static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
2177                               AsmWriterContext &WriterCtx) {
2178   Out << "!DIStringType(";
2179   MDFieldPrinter Printer(Out, WriterCtx);
2180   if (N->getTag() != dwarf::DW_TAG_string_type)
2181     Printer.printTag(N);
2182   Printer.printString("name", N->getName());
2183   Printer.printMetadata("stringLength", N->getRawStringLength());
2184   Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
2185   Printer.printMetadata("stringLocationExpression",
2186                         N->getRawStringLocationExp());
2187   Printer.printInt("size", N->getSizeInBits());
2188   Printer.printInt("align", N->getAlignInBits());
2189   Printer.printDwarfEnum("encoding", N->getEncoding(),
2190                          dwarf::AttributeEncodingString);
2191   Out << ")";
2192 }
2193 
2194 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
2195                                AsmWriterContext &WriterCtx) {
2196   Out << "!DIDerivedType(";
2197   MDFieldPrinter Printer(Out, WriterCtx);
2198   Printer.printTag(N);
2199   Printer.printString("name", N->getName());
2200   Printer.printMetadata("scope", N->getRawScope());
2201   Printer.printMetadata("file", N->getRawFile());
2202   Printer.printInt("line", N->getLine());
2203   Printer.printMetadata("baseType", N->getRawBaseType(),
2204                         /* ShouldSkipNull */ false);
2205   Printer.printInt("size", N->getSizeInBits());
2206   Printer.printInt("align", N->getAlignInBits());
2207   Printer.printInt("offset", N->getOffsetInBits());
2208   Printer.printDIFlags("flags", N->getFlags());
2209   Printer.printMetadata("extraData", N->getRawExtraData());
2210   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
2211     Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
2212                      /* ShouldSkipZero */ false);
2213   Printer.printMetadata("annotations", N->getRawAnnotations());
2214   if (auto PtrAuthData = N->getPtrAuthData()) {
2215     Printer.printInt("ptrAuthKey", PtrAuthData->key());
2216     Printer.printBool("ptrAuthIsAddressDiscriminated",
2217                       PtrAuthData->isAddressDiscriminated());
2218     Printer.printInt("ptrAuthExtraDiscriminator",
2219                      PtrAuthData->extraDiscriminator());
2220     Printer.printBool("ptrAuthIsaPointer", PtrAuthData->isaPointer());
2221     Printer.printBool("ptrAuthAuthenticatesNullValues",
2222                       PtrAuthData->authenticatesNullValues());
2223   }
2224   Out << ")";
2225 }
2226 
2227 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
2228                                  AsmWriterContext &WriterCtx) {
2229   Out << "!DICompositeType(";
2230   MDFieldPrinter Printer(Out, WriterCtx);
2231   Printer.printTag(N);
2232   Printer.printString("name", N->getName());
2233   Printer.printMetadata("scope", N->getRawScope());
2234   Printer.printMetadata("file", N->getRawFile());
2235   Printer.printInt("line", N->getLine());
2236   Printer.printMetadata("baseType", N->getRawBaseType());
2237   Printer.printInt("size", N->getSizeInBits());
2238   Printer.printInt("align", N->getAlignInBits());
2239   Printer.printInt("offset", N->getOffsetInBits());
2240   Printer.printInt("num_extra_inhabitants", N->getNumExtraInhabitants());
2241   Printer.printDIFlags("flags", N->getFlags());
2242   Printer.printMetadata("elements", N->getRawElements());
2243   Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
2244                          dwarf::LanguageString);
2245   Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
2246   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2247   Printer.printString("identifier", N->getIdentifier());
2248   Printer.printMetadata("discriminator", N->getRawDiscriminator());
2249   Printer.printMetadata("dataLocation", N->getRawDataLocation());
2250   Printer.printMetadata("associated", N->getRawAssociated());
2251   Printer.printMetadata("allocated", N->getRawAllocated());
2252   if (auto *RankConst = N->getRankConst())
2253     Printer.printInt("rank", RankConst->getSExtValue(),
2254                      /* ShouldSkipZero */ false);
2255   else
2256     Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
2257   Printer.printMetadata("annotations", N->getRawAnnotations());
2258   if (auto *Specification = N->getRawSpecification())
2259     Printer.printMetadata("specification", Specification);
2260   Out << ")";
2261 }
2262 
2263 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
2264                                   AsmWriterContext &WriterCtx) {
2265   Out << "!DISubroutineType(";
2266   MDFieldPrinter Printer(Out, WriterCtx);
2267   Printer.printDIFlags("flags", N->getFlags());
2268   Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
2269   Printer.printMetadata("types", N->getRawTypeArray(),
2270                         /* ShouldSkipNull */ false);
2271   Out << ")";
2272 }
2273 
2274 static void writeDIFile(raw_ostream &Out, const DIFile *N, AsmWriterContext &) {
2275   Out << "!DIFile(";
2276   MDFieldPrinter Printer(Out);
2277   Printer.printString("filename", N->getFilename(),
2278                       /* ShouldSkipEmpty */ false);
2279   Printer.printString("directory", N->getDirectory(),
2280                       /* ShouldSkipEmpty */ false);
2281   // Print all values for checksum together, or not at all.
2282   if (N->getChecksum())
2283     Printer.printChecksum(*N->getChecksum());
2284   Printer.printString("source", N->getSource().value_or(StringRef()),
2285                       /* ShouldSkipEmpty */ true);
2286   Out << ")";
2287 }
2288 
2289 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
2290                                AsmWriterContext &WriterCtx) {
2291   Out << "!DICompileUnit(";
2292   MDFieldPrinter Printer(Out, WriterCtx);
2293   Printer.printDwarfEnum("language", N->getSourceLanguage(),
2294                          dwarf::LanguageString, /* ShouldSkipZero */ false);
2295   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2296   Printer.printString("producer", N->getProducer());
2297   Printer.printBool("isOptimized", N->isOptimized());
2298   Printer.printString("flags", N->getFlags());
2299   Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
2300                    /* ShouldSkipZero */ false);
2301   Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
2302   Printer.printEmissionKind("emissionKind", N->getEmissionKind());
2303   Printer.printMetadata("enums", N->getRawEnumTypes());
2304   Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
2305   Printer.printMetadata("globals", N->getRawGlobalVariables());
2306   Printer.printMetadata("imports", N->getRawImportedEntities());
2307   Printer.printMetadata("macros", N->getRawMacros());
2308   Printer.printInt("dwoId", N->getDWOId());
2309   Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
2310   Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
2311                     false);
2312   Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
2313   Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
2314   Printer.printString("sysroot", N->getSysRoot());
2315   Printer.printString("sdk", N->getSDK());
2316   Out << ")";
2317 }
2318 
2319 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
2320                               AsmWriterContext &WriterCtx) {
2321   Out << "!DISubprogram(";
2322   MDFieldPrinter Printer(Out, WriterCtx);
2323   Printer.printString("name", N->getName());
2324   Printer.printString("linkageName", N->getLinkageName());
2325   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2326   Printer.printMetadata("file", N->getRawFile());
2327   Printer.printInt("line", N->getLine());
2328   Printer.printMetadata("type", N->getRawType());
2329   Printer.printInt("scopeLine", N->getScopeLine());
2330   Printer.printMetadata("containingType", N->getRawContainingType());
2331   if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
2332       N->getVirtualIndex() != 0)
2333     Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
2334   Printer.printInt("thisAdjustment", N->getThisAdjustment());
2335   Printer.printDIFlags("flags", N->getFlags());
2336   Printer.printDISPFlags("spFlags", N->getSPFlags());
2337   Printer.printMetadata("unit", N->getRawUnit());
2338   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2339   Printer.printMetadata("declaration", N->getRawDeclaration());
2340   Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
2341   Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
2342   Printer.printMetadata("annotations", N->getRawAnnotations());
2343   Printer.printString("targetFuncName", N->getTargetFuncName());
2344   Out << ")";
2345 }
2346 
2347 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
2348                                 AsmWriterContext &WriterCtx) {
2349   Out << "!DILexicalBlock(";
2350   MDFieldPrinter Printer(Out, WriterCtx);
2351   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2352   Printer.printMetadata("file", N->getRawFile());
2353   Printer.printInt("line", N->getLine());
2354   Printer.printInt("column", N->getColumn());
2355   Out << ")";
2356 }
2357 
2358 static void writeDILexicalBlockFile(raw_ostream &Out,
2359                                     const DILexicalBlockFile *N,
2360                                     AsmWriterContext &WriterCtx) {
2361   Out << "!DILexicalBlockFile(";
2362   MDFieldPrinter Printer(Out, WriterCtx);
2363   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2364   Printer.printMetadata("file", N->getRawFile());
2365   Printer.printInt("discriminator", N->getDiscriminator(),
2366                    /* ShouldSkipZero */ false);
2367   Out << ")";
2368 }
2369 
2370 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
2371                              AsmWriterContext &WriterCtx) {
2372   Out << "!DINamespace(";
2373   MDFieldPrinter Printer(Out, WriterCtx);
2374   Printer.printString("name", N->getName());
2375   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2376   Printer.printBool("exportSymbols", N->getExportSymbols(), false);
2377   Out << ")";
2378 }
2379 
2380 static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
2381                                AsmWriterContext &WriterCtx) {
2382   Out << "!DICommonBlock(";
2383   MDFieldPrinter Printer(Out, WriterCtx);
2384   Printer.printMetadata("scope", N->getRawScope(), false);
2385   Printer.printMetadata("declaration", N->getRawDecl(), false);
2386   Printer.printString("name", N->getName());
2387   Printer.printMetadata("file", N->getRawFile());
2388   Printer.printInt("line", N->getLineNo());
2389   Out << ")";
2390 }
2391 
2392 static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
2393                          AsmWriterContext &WriterCtx) {
2394   Out << "!DIMacro(";
2395   MDFieldPrinter Printer(Out, WriterCtx);
2396   Printer.printMacinfoType(N);
2397   Printer.printInt("line", N->getLine());
2398   Printer.printString("name", N->getName());
2399   Printer.printString("value", N->getValue());
2400   Out << ")";
2401 }
2402 
2403 static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
2404                              AsmWriterContext &WriterCtx) {
2405   Out << "!DIMacroFile(";
2406   MDFieldPrinter Printer(Out, WriterCtx);
2407   Printer.printInt("line", N->getLine());
2408   Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2409   Printer.printMetadata("nodes", N->getRawElements());
2410   Out << ")";
2411 }
2412 
2413 static void writeDIModule(raw_ostream &Out, const DIModule *N,
2414                           AsmWriterContext &WriterCtx) {
2415   Out << "!DIModule(";
2416   MDFieldPrinter Printer(Out, WriterCtx);
2417   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2418   Printer.printString("name", N->getName());
2419   Printer.printString("configMacros", N->getConfigurationMacros());
2420   Printer.printString("includePath", N->getIncludePath());
2421   Printer.printString("apinotes", N->getAPINotesFile());
2422   Printer.printMetadata("file", N->getRawFile());
2423   Printer.printInt("line", N->getLineNo());
2424   Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
2425   Out << ")";
2426 }
2427 
2428 static void writeDITemplateTypeParameter(raw_ostream &Out,
2429                                          const DITemplateTypeParameter *N,
2430                                          AsmWriterContext &WriterCtx) {
2431   Out << "!DITemplateTypeParameter(";
2432   MDFieldPrinter Printer(Out, WriterCtx);
2433   Printer.printString("name", N->getName());
2434   Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2435   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2436   Out << ")";
2437 }
2438 
2439 static void writeDITemplateValueParameter(raw_ostream &Out,
2440                                           const DITemplateValueParameter *N,
2441                                           AsmWriterContext &WriterCtx) {
2442   Out << "!DITemplateValueParameter(";
2443   MDFieldPrinter Printer(Out, WriterCtx);
2444   if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2445     Printer.printTag(N);
2446   Printer.printString("name", N->getName());
2447   Printer.printMetadata("type", N->getRawType());
2448   Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
2449   Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2450   Out << ")";
2451 }
2452 
2453 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2454                                   AsmWriterContext &WriterCtx) {
2455   Out << "!DIGlobalVariable(";
2456   MDFieldPrinter Printer(Out, WriterCtx);
2457   Printer.printString("name", N->getName());
2458   Printer.printString("linkageName", N->getLinkageName());
2459   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2460   Printer.printMetadata("file", N->getRawFile());
2461   Printer.printInt("line", N->getLine());
2462   Printer.printMetadata("type", N->getRawType());
2463   Printer.printBool("isLocal", N->isLocalToUnit());
2464   Printer.printBool("isDefinition", N->isDefinition());
2465   Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2466   Printer.printMetadata("templateParams", N->getRawTemplateParams());
2467   Printer.printInt("align", N->getAlignInBits());
2468   Printer.printMetadata("annotations", N->getRawAnnotations());
2469   Out << ")";
2470 }
2471 
2472 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2473                                  AsmWriterContext &WriterCtx) {
2474   Out << "!DILocalVariable(";
2475   MDFieldPrinter Printer(Out, WriterCtx);
2476   Printer.printString("name", N->getName());
2477   Printer.printInt("arg", N->getArg());
2478   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2479   Printer.printMetadata("file", N->getRawFile());
2480   Printer.printInt("line", N->getLine());
2481   Printer.printMetadata("type", N->getRawType());
2482   Printer.printDIFlags("flags", N->getFlags());
2483   Printer.printInt("align", N->getAlignInBits());
2484   Printer.printMetadata("annotations", N->getRawAnnotations());
2485   Out << ")";
2486 }
2487 
2488 static void writeDILabel(raw_ostream &Out, const DILabel *N,
2489                          AsmWriterContext &WriterCtx) {
2490   Out << "!DILabel(";
2491   MDFieldPrinter Printer(Out, WriterCtx);
2492   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2493   Printer.printString("name", N->getName());
2494   Printer.printMetadata("file", N->getRawFile());
2495   Printer.printInt("line", N->getLine());
2496   Out << ")";
2497 }
2498 
2499 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2500                               AsmWriterContext &WriterCtx) {
2501   Out << "!DIExpression(";
2502   FieldSeparator FS;
2503   if (N->isValid()) {
2504     for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
2505       auto OpStr = dwarf::OperationEncodingString(Op.getOp());
2506       assert(!OpStr.empty() && "Expected valid opcode");
2507 
2508       Out << FS << OpStr;
2509       if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
2510         Out << FS << Op.getArg(0);
2511         Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
2512       } else {
2513         for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
2514           Out << FS << Op.getArg(A);
2515       }
2516     }
2517   } else {
2518     for (const auto &I : N->getElements())
2519       Out << FS << I;
2520   }
2521   Out << ")";
2522 }
2523 
2524 static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
2525                            AsmWriterContext &WriterCtx,
2526                            bool FromValue = false) {
2527   assert(FromValue &&
2528          "Unexpected DIArgList metadata outside of value argument");
2529   Out << "!DIArgList(";
2530   FieldSeparator FS;
2531   MDFieldPrinter Printer(Out, WriterCtx);
2532   for (Metadata *Arg : N->getArgs()) {
2533     Out << FS;
2534     WriteAsOperandInternal(Out, Arg, WriterCtx, true);
2535   }
2536   Out << ")";
2537 }
2538 
2539 static void writeDIGlobalVariableExpression(raw_ostream &Out,
2540                                             const DIGlobalVariableExpression *N,
2541                                             AsmWriterContext &WriterCtx) {
2542   Out << "!DIGlobalVariableExpression(";
2543   MDFieldPrinter Printer(Out, WriterCtx);
2544   Printer.printMetadata("var", N->getVariable());
2545   Printer.printMetadata("expr", N->getExpression());
2546   Out << ")";
2547 }
2548 
2549 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2550                                 AsmWriterContext &WriterCtx) {
2551   Out << "!DIObjCProperty(";
2552   MDFieldPrinter Printer(Out, WriterCtx);
2553   Printer.printString("name", N->getName());
2554   Printer.printMetadata("file", N->getRawFile());
2555   Printer.printInt("line", N->getLine());
2556   Printer.printString("setter", N->getSetterName());
2557   Printer.printString("getter", N->getGetterName());
2558   Printer.printInt("attributes", N->getAttributes());
2559   Printer.printMetadata("type", N->getRawType());
2560   Out << ")";
2561 }
2562 
2563 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2564                                   AsmWriterContext &WriterCtx) {
2565   Out << "!DIImportedEntity(";
2566   MDFieldPrinter Printer(Out, WriterCtx);
2567   Printer.printTag(N);
2568   Printer.printString("name", N->getName());
2569   Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2570   Printer.printMetadata("entity", N->getRawEntity());
2571   Printer.printMetadata("file", N->getRawFile());
2572   Printer.printInt("line", N->getLine());
2573   Printer.printMetadata("elements", N->getRawElements());
2574   Out << ")";
2575 }
2576 
2577 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2578                                     AsmWriterContext &Ctx) {
2579   if (Node->isDistinct())
2580     Out << "distinct ";
2581   else if (Node->isTemporary())
2582     Out << "<temporary!> "; // Handle broken code.
2583 
2584   switch (Node->getMetadataID()) {
2585   default:
2586     llvm_unreachable("Expected uniquable MDNode");
2587 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2588   case Metadata::CLASS##Kind:                                                  \
2589     write##CLASS(Out, cast<CLASS>(Node), Ctx);                                 \
2590     break;
2591 #include "llvm/IR/Metadata.def"
2592   }
2593 }
2594 
2595 // Full implementation of printing a Value as an operand with support for
2596 // TypePrinting, etc.
2597 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2598                                    AsmWriterContext &WriterCtx) {
2599   if (V->hasName()) {
2600     PrintLLVMName(Out, V);
2601     return;
2602   }
2603 
2604   const Constant *CV = dyn_cast<Constant>(V);
2605   if (CV && !isa<GlobalValue>(CV)) {
2606     assert(WriterCtx.TypePrinter && "Constants require TypePrinting!");
2607     WriteConstantInternal(Out, CV, WriterCtx);
2608     return;
2609   }
2610 
2611   if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2612     Out << "asm ";
2613     if (IA->hasSideEffects())
2614       Out << "sideeffect ";
2615     if (IA->isAlignStack())
2616       Out << "alignstack ";
2617     // We don't emit the AD_ATT dialect as it's the assumed default.
2618     if (IA->getDialect() == InlineAsm::AD_Intel)
2619       Out << "inteldialect ";
2620     if (IA->canThrow())
2621       Out << "unwind ";
2622     Out << '"';
2623     printEscapedString(IA->getAsmString(), Out);
2624     Out << "\", \"";
2625     printEscapedString(IA->getConstraintString(), Out);
2626     Out << '"';
2627     return;
2628   }
2629 
2630   if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2631     WriteAsOperandInternal(Out, MD->getMetadata(), WriterCtx,
2632                            /* FromValue */ true);
2633     return;
2634   }
2635 
2636   char Prefix = '%';
2637   int Slot;
2638   auto *Machine = WriterCtx.Machine;
2639   // If we have a SlotTracker, use it.
2640   if (Machine) {
2641     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2642       Slot = Machine->getGlobalSlot(GV);
2643       Prefix = '@';
2644     } else {
2645       Slot = Machine->getLocalSlot(V);
2646 
2647       // If the local value didn't succeed, then we may be referring to a value
2648       // from a different function.  Translate it, as this can happen when using
2649       // address of blocks.
2650       if (Slot == -1)
2651         if ((Machine = createSlotTracker(V))) {
2652           Slot = Machine->getLocalSlot(V);
2653           delete Machine;
2654         }
2655     }
2656   } else if ((Machine = createSlotTracker(V))) {
2657     // Otherwise, create one to get the # and then destroy it.
2658     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2659       Slot = Machine->getGlobalSlot(GV);
2660       Prefix = '@';
2661     } else {
2662       Slot = Machine->getLocalSlot(V);
2663     }
2664     delete Machine;
2665     Machine = nullptr;
2666   } else {
2667     Slot = -1;
2668   }
2669 
2670   if (Slot != -1)
2671     Out << Prefix << Slot;
2672   else
2673     Out << "<badref>";
2674 }
2675 
2676 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2677                                    AsmWriterContext &WriterCtx,
2678                                    bool FromValue) {
2679   // Write DIExpressions and DIArgLists inline when used as a value. Improves
2680   // readability of debug info intrinsics.
2681   if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2682     writeDIExpression(Out, Expr, WriterCtx);
2683     return;
2684   }
2685   if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
2686     writeDIArgList(Out, ArgList, WriterCtx, FromValue);
2687     return;
2688   }
2689 
2690   if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2691     std::unique_ptr<SlotTracker> MachineStorage;
2692     SaveAndRestore SARMachine(WriterCtx.Machine);
2693     if (!WriterCtx.Machine) {
2694       MachineStorage = std::make_unique<SlotTracker>(WriterCtx.Context);
2695       WriterCtx.Machine = MachineStorage.get();
2696     }
2697     int Slot = WriterCtx.Machine->getMetadataSlot(N);
2698     if (Slot == -1) {
2699       if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
2700         writeDILocation(Out, Loc, WriterCtx);
2701         return;
2702       }
2703       // Give the pointer value instead of "badref", since this comes up all
2704       // the time when debugging.
2705       Out << "<" << N << ">";
2706     } else
2707       Out << '!' << Slot;
2708     return;
2709   }
2710 
2711   if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2712     Out << "!\"";
2713     printEscapedString(MDS->getString(), Out);
2714     Out << '"';
2715     return;
2716   }
2717 
2718   auto *V = cast<ValueAsMetadata>(MD);
2719   assert(WriterCtx.TypePrinter && "TypePrinter required for metadata values");
2720   assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2721          "Unexpected function-local metadata outside of value argument");
2722 
2723   WriterCtx.TypePrinter->print(V->getValue()->getType(), Out);
2724   Out << ' ';
2725   WriteAsOperandInternal(Out, V->getValue(), WriterCtx);
2726 }
2727 
2728 namespace {
2729 
2730 class AssemblyWriter {
2731   formatted_raw_ostream &Out;
2732   const Module *TheModule = nullptr;
2733   const ModuleSummaryIndex *TheIndex = nullptr;
2734   std::unique_ptr<SlotTracker> SlotTrackerStorage;
2735   SlotTracker &Machine;
2736   TypePrinting TypePrinter;
2737   AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2738   SetVector<const Comdat *> Comdats;
2739   bool IsForDebug;
2740   bool ShouldPreserveUseListOrder;
2741   UseListOrderMap UseListOrders;
2742   SmallVector<StringRef, 8> MDNames;
2743   /// Synchronization scope names registered with LLVMContext.
2744   SmallVector<StringRef, 8> SSNs;
2745   DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2746 
2747 public:
2748   /// Construct an AssemblyWriter with an external SlotTracker
2749   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2750                  AssemblyAnnotationWriter *AAW, bool IsForDebug,
2751                  bool ShouldPreserveUseListOrder = false);
2752 
2753   AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2754                  const ModuleSummaryIndex *Index, bool IsForDebug);
2755 
2756   AsmWriterContext getContext() {
2757     return AsmWriterContext(&TypePrinter, &Machine, TheModule);
2758   }
2759 
2760   void printMDNodeBody(const MDNode *MD);
2761   void printNamedMDNode(const NamedMDNode *NMD);
2762 
2763   void printModule(const Module *M);
2764 
2765   void writeOperand(const Value *Op, bool PrintType);
2766   void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2767   void writeOperandBundles(const CallBase *Call);
2768   void writeSyncScope(const LLVMContext &Context,
2769                       SyncScope::ID SSID);
2770   void writeAtomic(const LLVMContext &Context,
2771                    AtomicOrdering Ordering,
2772                    SyncScope::ID SSID);
2773   void writeAtomicCmpXchg(const LLVMContext &Context,
2774                           AtomicOrdering SuccessOrdering,
2775                           AtomicOrdering FailureOrdering,
2776                           SyncScope::ID SSID);
2777 
2778   void writeAllMDNodes();
2779   void writeMDNode(unsigned Slot, const MDNode *Node);
2780   void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
2781   void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
2782   void writeAllAttributeGroups();
2783 
2784   void printTypeIdentities();
2785   void printGlobal(const GlobalVariable *GV);
2786   void printAlias(const GlobalAlias *GA);
2787   void printIFunc(const GlobalIFunc *GI);
2788   void printComdat(const Comdat *C);
2789   void printFunction(const Function *F);
2790   void printArgument(const Argument *FA, AttributeSet Attrs);
2791   void printBasicBlock(const BasicBlock *BB);
2792   void printInstructionLine(const Instruction &I);
2793   void printInstruction(const Instruction &I);
2794   void printDbgMarker(const DbgMarker &DPI);
2795   void printDbgVariableRecord(const DbgVariableRecord &DVR);
2796   void printDbgLabelRecord(const DbgLabelRecord &DLR);
2797   void printDbgRecord(const DbgRecord &DR);
2798   void printDbgRecordLine(const DbgRecord &DR);
2799 
2800   void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
2801   void printUseLists(const Function *F);
2802 
2803   void printModuleSummaryIndex();
2804   void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2805   void printSummary(const GlobalValueSummary &Summary);
2806   void printAliasSummary(const AliasSummary *AS);
2807   void printGlobalVarSummary(const GlobalVarSummary *GS);
2808   void printFunctionSummary(const FunctionSummary *FS);
2809   void printTypeIdSummary(const TypeIdSummary &TIS);
2810   void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
2811   void printTypeTestResolution(const TypeTestResolution &TTRes);
2812   void printArgs(const std::vector<uint64_t> &Args);
2813   void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2814   void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2815   void printVFuncId(const FunctionSummary::VFuncId VFId);
2816   void
2817   printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
2818                       const char *Tag);
2819   void
2820   printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
2821                    const char *Tag);
2822 
2823 private:
2824   /// Print out metadata attachments.
2825   void printMetadataAttachments(
2826       const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2827       StringRef Separator);
2828 
2829   // printInfoComment - Print a little comment after the instruction indicating
2830   // which slot it occupies.
2831   void printInfoComment(const Value &V);
2832 
2833   // printGCRelocateComment - print comment after call to the gc.relocate
2834   // intrinsic indicating base and derived pointer names.
2835   void printGCRelocateComment(const GCRelocateInst &Relocate);
2836 };
2837 
2838 } // end anonymous namespace
2839 
2840 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2841                                const Module *M, AssemblyAnnotationWriter *AAW,
2842                                bool IsForDebug, bool ShouldPreserveUseListOrder)
2843     : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2844       IsForDebug(IsForDebug),
2845       ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2846   if (!TheModule)
2847     return;
2848   for (const GlobalObject &GO : TheModule->global_objects())
2849     if (const Comdat *C = GO.getComdat())
2850       Comdats.insert(C);
2851 }
2852 
2853 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2854                                const ModuleSummaryIndex *Index, bool IsForDebug)
2855     : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2856       IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2857 
2858 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2859   if (!Operand) {
2860     Out << "<null operand!>";
2861     return;
2862   }
2863   if (PrintType) {
2864     TypePrinter.print(Operand->getType(), Out);
2865     Out << ' ';
2866   }
2867   auto WriterCtx = getContext();
2868   WriteAsOperandInternal(Out, Operand, WriterCtx);
2869 }
2870 
2871 void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2872                                     SyncScope::ID SSID) {
2873   switch (SSID) {
2874   case SyncScope::System: {
2875     break;
2876   }
2877   default: {
2878     if (SSNs.empty())
2879       Context.getSyncScopeNames(SSNs);
2880 
2881     Out << " syncscope(\"";
2882     printEscapedString(SSNs[SSID], Out);
2883     Out << "\")";
2884     break;
2885   }
2886   }
2887 }
2888 
2889 void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2890                                  AtomicOrdering Ordering,
2891                                  SyncScope::ID SSID) {
2892   if (Ordering == AtomicOrdering::NotAtomic)
2893     return;
2894 
2895   writeSyncScope(Context, SSID);
2896   Out << " " << toIRString(Ordering);
2897 }
2898 
2899 void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2900                                         AtomicOrdering SuccessOrdering,
2901                                         AtomicOrdering FailureOrdering,
2902                                         SyncScope::ID SSID) {
2903   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2904          FailureOrdering != AtomicOrdering::NotAtomic);
2905 
2906   writeSyncScope(Context, SSID);
2907   Out << " " << toIRString(SuccessOrdering);
2908   Out << " " << toIRString(FailureOrdering);
2909 }
2910 
2911 void AssemblyWriter::writeParamOperand(const Value *Operand,
2912                                        AttributeSet Attrs) {
2913   if (!Operand) {
2914     Out << "<null operand!>";
2915     return;
2916   }
2917 
2918   // Print the type
2919   TypePrinter.print(Operand->getType(), Out);
2920   // Print parameter attributes list
2921   if (Attrs.hasAttributes()) {
2922     Out << ' ';
2923     writeAttributeSet(Attrs);
2924   }
2925   Out << ' ';
2926   // Print the operand
2927   auto WriterCtx = getContext();
2928   WriteAsOperandInternal(Out, Operand, WriterCtx);
2929 }
2930 
2931 void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
2932   if (!Call->hasOperandBundles())
2933     return;
2934 
2935   Out << " [ ";
2936 
2937   bool FirstBundle = true;
2938   for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
2939     OperandBundleUse BU = Call->getOperandBundleAt(i);
2940 
2941     if (!FirstBundle)
2942       Out << ", ";
2943     FirstBundle = false;
2944 
2945     Out << '"';
2946     printEscapedString(BU.getTagName(), Out);
2947     Out << '"';
2948 
2949     Out << '(';
2950 
2951     bool FirstInput = true;
2952     auto WriterCtx = getContext();
2953     for (const auto &Input : BU.Inputs) {
2954       if (!FirstInput)
2955         Out << ", ";
2956       FirstInput = false;
2957 
2958       if (Input == nullptr)
2959         Out << "<null operand bundle!>";
2960       else {
2961         TypePrinter.print(Input->getType(), Out);
2962         Out << " ";
2963         WriteAsOperandInternal(Out, Input, WriterCtx);
2964       }
2965     }
2966 
2967     Out << ')';
2968   }
2969 
2970   Out << " ]";
2971 }
2972 
2973 void AssemblyWriter::printModule(const Module *M) {
2974   Machine.initializeIfNeeded();
2975 
2976   if (ShouldPreserveUseListOrder)
2977     UseListOrders = predictUseListOrder(M);
2978 
2979   if (!M->getModuleIdentifier().empty() &&
2980       // Don't print the ID if it will start a new line (which would
2981       // require a comment char before it).
2982       M->getModuleIdentifier().find('\n') == std::string::npos)
2983     Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2984 
2985   if (!M->getSourceFileName().empty()) {
2986     Out << "source_filename = \"";
2987     printEscapedString(M->getSourceFileName(), Out);
2988     Out << "\"\n";
2989   }
2990 
2991   const std::string &DL = M->getDataLayoutStr();
2992   if (!DL.empty())
2993     Out << "target datalayout = \"" << DL << "\"\n";
2994   if (!M->getTargetTriple().empty())
2995     Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2996 
2997   if (!M->getModuleInlineAsm().empty()) {
2998     Out << '\n';
2999 
3000     // Split the string into lines, to make it easier to read the .ll file.
3001     StringRef Asm = M->getModuleInlineAsm();
3002     do {
3003       StringRef Front;
3004       std::tie(Front, Asm) = Asm.split('\n');
3005 
3006       // We found a newline, print the portion of the asm string from the
3007       // last newline up to this newline.
3008       Out << "module asm \"";
3009       printEscapedString(Front, Out);
3010       Out << "\"\n";
3011     } while (!Asm.empty());
3012   }
3013 
3014   printTypeIdentities();
3015 
3016   // Output all comdats.
3017   if (!Comdats.empty())
3018     Out << '\n';
3019   for (const Comdat *C : Comdats) {
3020     printComdat(C);
3021     if (C != Comdats.back())
3022       Out << '\n';
3023   }
3024 
3025   // Output all globals.
3026   if (!M->global_empty()) Out << '\n';
3027   for (const GlobalVariable &GV : M->globals()) {
3028     printGlobal(&GV); Out << '\n';
3029   }
3030 
3031   // Output all aliases.
3032   if (!M->alias_empty()) Out << "\n";
3033   for (const GlobalAlias &GA : M->aliases())
3034     printAlias(&GA);
3035 
3036   // Output all ifuncs.
3037   if (!M->ifunc_empty()) Out << "\n";
3038   for (const GlobalIFunc &GI : M->ifuncs())
3039     printIFunc(&GI);
3040 
3041   // Output all of the functions.
3042   for (const Function &F : *M) {
3043     Out << '\n';
3044     printFunction(&F);
3045   }
3046 
3047   // Output global use-lists.
3048   printUseLists(nullptr);
3049 
3050   // Output all attribute groups.
3051   if (!Machine.as_empty()) {
3052     Out << '\n';
3053     writeAllAttributeGroups();
3054   }
3055 
3056   // Output named metadata.
3057   if (!M->named_metadata_empty()) Out << '\n';
3058 
3059   for (const NamedMDNode &Node : M->named_metadata())
3060     printNamedMDNode(&Node);
3061 
3062   // Output metadata.
3063   if (!Machine.mdn_empty()) {
3064     Out << '\n';
3065     writeAllMDNodes();
3066   }
3067 }
3068 
3069 void AssemblyWriter::printModuleSummaryIndex() {
3070   assert(TheIndex);
3071   int NumSlots = Machine.initializeIndexIfNeeded();
3072 
3073   Out << "\n";
3074 
3075   // Print module path entries. To print in order, add paths to a vector
3076   // indexed by module slot.
3077   std::vector<std::pair<std::string, ModuleHash>> moduleVec;
3078   std::string RegularLTOModuleName =
3079       ModuleSummaryIndex::getRegularLTOModuleName();
3080   moduleVec.resize(TheIndex->modulePaths().size());
3081   for (auto &[ModPath, ModHash] : TheIndex->modulePaths())
3082     moduleVec[Machine.getModulePathSlot(ModPath)] = std::make_pair(
3083         // An empty module path is a special entry for a regular LTO module
3084         // created during the thin link.
3085         ModPath.empty() ? RegularLTOModuleName : std::string(ModPath), ModHash);
3086 
3087   unsigned i = 0;
3088   for (auto &ModPair : moduleVec) {
3089     Out << "^" << i++ << " = module: (";
3090     Out << "path: \"";
3091     printEscapedString(ModPair.first, Out);
3092     Out << "\", hash: (";
3093     FieldSeparator FS;
3094     for (auto Hash : ModPair.second)
3095       Out << FS << Hash;
3096     Out << "))\n";
3097   }
3098 
3099   // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
3100   // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
3101   for (auto &GlobalList : *TheIndex) {
3102     auto GUID = GlobalList.first;
3103     for (auto &Summary : GlobalList.second.SummaryList)
3104       SummaryToGUIDMap[Summary.get()] = GUID;
3105   }
3106 
3107   // Print the global value summary entries.
3108   for (auto &GlobalList : *TheIndex) {
3109     auto GUID = GlobalList.first;
3110     auto VI = TheIndex->getValueInfo(GlobalList);
3111     printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
3112   }
3113 
3114   // Print the TypeIdMap entries.
3115   for (const auto &TID : TheIndex->typeIds()) {
3116     Out << "^" << Machine.getTypeIdSlot(TID.second.first)
3117         << " = typeid: (name: \"" << TID.second.first << "\"";
3118     printTypeIdSummary(TID.second.second);
3119     Out << ") ; guid = " << TID.first << "\n";
3120   }
3121 
3122   // Print the TypeIdCompatibleVtableMap entries.
3123   for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
3124     auto GUID = GlobalValue::getGUID(TId.first);
3125     Out << "^" << Machine.getTypeIdCompatibleVtableSlot(TId.first)
3126         << " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
3127     printTypeIdCompatibleVtableSummary(TId.second);
3128     Out << ") ; guid = " << GUID << "\n";
3129   }
3130 
3131   // Don't emit flags when it's not really needed (value is zero by default).
3132   if (TheIndex->getFlags()) {
3133     Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
3134     ++NumSlots;
3135   }
3136 
3137   Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
3138       << "\n";
3139 }
3140 
3141 static const char *
3142 getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
3143   switch (K) {
3144   case WholeProgramDevirtResolution::Indir:
3145     return "indir";
3146   case WholeProgramDevirtResolution::SingleImpl:
3147     return "singleImpl";
3148   case WholeProgramDevirtResolution::BranchFunnel:
3149     return "branchFunnel";
3150   }
3151   llvm_unreachable("invalid WholeProgramDevirtResolution kind");
3152 }
3153 
3154 static const char *getWholeProgDevirtResByArgKindName(
3155     WholeProgramDevirtResolution::ByArg::Kind K) {
3156   switch (K) {
3157   case WholeProgramDevirtResolution::ByArg::Indir:
3158     return "indir";
3159   case WholeProgramDevirtResolution::ByArg::UniformRetVal:
3160     return "uniformRetVal";
3161   case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
3162     return "uniqueRetVal";
3163   case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
3164     return "virtualConstProp";
3165   }
3166   llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
3167 }
3168 
3169 static const char *getTTResKindName(TypeTestResolution::Kind K) {
3170   switch (K) {
3171   case TypeTestResolution::Unknown:
3172     return "unknown";
3173   case TypeTestResolution::Unsat:
3174     return "unsat";
3175   case TypeTestResolution::ByteArray:
3176     return "byteArray";
3177   case TypeTestResolution::Inline:
3178     return "inline";
3179   case TypeTestResolution::Single:
3180     return "single";
3181   case TypeTestResolution::AllOnes:
3182     return "allOnes";
3183   }
3184   llvm_unreachable("invalid TypeTestResolution kind");
3185 }
3186 
3187 void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
3188   Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
3189       << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
3190 
3191   // The following fields are only used if the target does not support the use
3192   // of absolute symbols to store constants. Print only if non-zero.
3193   if (TTRes.AlignLog2)
3194     Out << ", alignLog2: " << TTRes.AlignLog2;
3195   if (TTRes.SizeM1)
3196     Out << ", sizeM1: " << TTRes.SizeM1;
3197   if (TTRes.BitMask)
3198     // BitMask is uint8_t which causes it to print the corresponding char.
3199     Out << ", bitMask: " << (unsigned)TTRes.BitMask;
3200   if (TTRes.InlineBits)
3201     Out << ", inlineBits: " << TTRes.InlineBits;
3202 
3203   Out << ")";
3204 }
3205 
3206 void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
3207   Out << ", summary: (";
3208   printTypeTestResolution(TIS.TTRes);
3209   if (!TIS.WPDRes.empty()) {
3210     Out << ", wpdResolutions: (";
3211     FieldSeparator FS;
3212     for (auto &WPDRes : TIS.WPDRes) {
3213       Out << FS;
3214       Out << "(offset: " << WPDRes.first << ", ";
3215       printWPDRes(WPDRes.second);
3216       Out << ")";
3217     }
3218     Out << ")";
3219   }
3220   Out << ")";
3221 }
3222 
3223 void AssemblyWriter::printTypeIdCompatibleVtableSummary(
3224     const TypeIdCompatibleVtableInfo &TI) {
3225   Out << ", summary: (";
3226   FieldSeparator FS;
3227   for (auto &P : TI) {
3228     Out << FS;
3229     Out << "(offset: " << P.AddressPointOffset << ", ";
3230     Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
3231     Out << ")";
3232   }
3233   Out << ")";
3234 }
3235 
3236 void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
3237   Out << "args: (";
3238   FieldSeparator FS;
3239   for (auto arg : Args) {
3240     Out << FS;
3241     Out << arg;
3242   }
3243   Out << ")";
3244 }
3245 
3246 void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
3247   Out << "wpdRes: (kind: ";
3248   Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
3249 
3250   if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
3251     Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
3252 
3253   if (!WPDRes.ResByArg.empty()) {
3254     Out << ", resByArg: (";
3255     FieldSeparator FS;
3256     for (auto &ResByArg : WPDRes.ResByArg) {
3257       Out << FS;
3258       printArgs(ResByArg.first);
3259       Out << ", byArg: (kind: ";
3260       Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
3261       if (ResByArg.second.TheKind ==
3262               WholeProgramDevirtResolution::ByArg::UniformRetVal ||
3263           ResByArg.second.TheKind ==
3264               WholeProgramDevirtResolution::ByArg::UniqueRetVal)
3265         Out << ", info: " << ResByArg.second.Info;
3266 
3267       // The following fields are only used if the target does not support the
3268       // use of absolute symbols to store constants. Print only if non-zero.
3269       if (ResByArg.second.Byte || ResByArg.second.Bit)
3270         Out << ", byte: " << ResByArg.second.Byte
3271             << ", bit: " << ResByArg.second.Bit;
3272 
3273       Out << ")";
3274     }
3275     Out << ")";
3276   }
3277   Out << ")";
3278 }
3279 
3280 static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
3281   switch (SK) {
3282   case GlobalValueSummary::AliasKind:
3283     return "alias";
3284   case GlobalValueSummary::FunctionKind:
3285     return "function";
3286   case GlobalValueSummary::GlobalVarKind:
3287     return "variable";
3288   }
3289   llvm_unreachable("invalid summary kind");
3290 }
3291 
3292 void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
3293   Out << ", aliasee: ";
3294   // The indexes emitted for distributed backends may not include the
3295   // aliasee summary (only if it is being imported directly). Handle
3296   // that case by just emitting "null" as the aliasee.
3297   if (AS->hasAliasee())
3298     Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
3299   else
3300     Out << "null";
3301 }
3302 
3303 void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
3304   auto VTableFuncs = GS->vTableFuncs();
3305   Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
3306       << "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
3307       << "constant: " << GS->VarFlags.Constant;
3308   if (!VTableFuncs.empty())
3309     Out << ", "
3310         << "vcall_visibility: " << GS->VarFlags.VCallVisibility;
3311   Out << ")";
3312 
3313   if (!VTableFuncs.empty()) {
3314     Out << ", vTableFuncs: (";
3315     FieldSeparator FS;
3316     for (auto &P : VTableFuncs) {
3317       Out << FS;
3318       Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
3319           << ", offset: " << P.VTableOffset;
3320       Out << ")";
3321     }
3322     Out << ")";
3323   }
3324 }
3325 
3326 static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
3327   switch (LT) {
3328   case GlobalValue::ExternalLinkage:
3329     return "external";
3330   case GlobalValue::PrivateLinkage:
3331     return "private";
3332   case GlobalValue::InternalLinkage:
3333     return "internal";
3334   case GlobalValue::LinkOnceAnyLinkage:
3335     return "linkonce";
3336   case GlobalValue::LinkOnceODRLinkage:
3337     return "linkonce_odr";
3338   case GlobalValue::WeakAnyLinkage:
3339     return "weak";
3340   case GlobalValue::WeakODRLinkage:
3341     return "weak_odr";
3342   case GlobalValue::CommonLinkage:
3343     return "common";
3344   case GlobalValue::AppendingLinkage:
3345     return "appending";
3346   case GlobalValue::ExternalWeakLinkage:
3347     return "extern_weak";
3348   case GlobalValue::AvailableExternallyLinkage:
3349     return "available_externally";
3350   }
3351   llvm_unreachable("invalid linkage");
3352 }
3353 
3354 // When printing the linkage types in IR where the ExternalLinkage is
3355 // not printed, and other linkage types are expected to be printed with
3356 // a space after the name.
3357 static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
3358   if (LT == GlobalValue::ExternalLinkage)
3359     return "";
3360   return getLinkageName(LT) + " ";
3361 }
3362 
3363 static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
3364   switch (Vis) {
3365   case GlobalValue::DefaultVisibility:
3366     return "default";
3367   case GlobalValue::HiddenVisibility:
3368     return "hidden";
3369   case GlobalValue::ProtectedVisibility:
3370     return "protected";
3371   }
3372   llvm_unreachable("invalid visibility");
3373 }
3374 
3375 static const char *getImportTypeName(GlobalValueSummary::ImportKind IK) {
3376   switch (IK) {
3377   case GlobalValueSummary::Definition:
3378     return "definition";
3379   case GlobalValueSummary::Declaration:
3380     return "declaration";
3381   }
3382   llvm_unreachable("invalid import kind");
3383 }
3384 
3385 void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
3386   Out << ", insts: " << FS->instCount();
3387   if (FS->fflags().anyFlagSet())
3388     Out << ", " << FS->fflags();
3389 
3390   if (!FS->calls().empty()) {
3391     Out << ", calls: (";
3392     FieldSeparator IFS;
3393     for (auto &Call : FS->calls()) {
3394       Out << IFS;
3395       Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
3396       if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
3397         Out << ", hotness: " << getHotnessName(Call.second.getHotness());
3398       else if (Call.second.RelBlockFreq)
3399         Out << ", relbf: " << Call.second.RelBlockFreq;
3400       // Follow the convention of emitting flags as a boolean value, but only
3401       // emit if true to avoid unnecessary verbosity and test churn.
3402       if (Call.second.HasTailCall)
3403         Out << ", tail: 1";
3404       Out << ")";
3405     }
3406     Out << ")";
3407   }
3408 
3409   if (const auto *TIdInfo = FS->getTypeIdInfo())
3410     printTypeIdInfo(*TIdInfo);
3411 
3412   // The AllocationType identifiers capture the profiled context behavior
3413   // reaching a specific static allocation site (possibly cloned).
3414   auto AllocTypeName = [](uint8_t Type) -> const char * {
3415     switch (Type) {
3416     case (uint8_t)AllocationType::None:
3417       return "none";
3418     case (uint8_t)AllocationType::NotCold:
3419       return "notcold";
3420     case (uint8_t)AllocationType::Cold:
3421       return "cold";
3422     case (uint8_t)AllocationType::Hot:
3423       return "hot";
3424     }
3425     llvm_unreachable("Unexpected alloc type");
3426   };
3427 
3428   if (!FS->allocs().empty()) {
3429     Out << ", allocs: (";
3430     FieldSeparator AFS;
3431     for (auto &AI : FS->allocs()) {
3432       Out << AFS;
3433       Out << "(versions: (";
3434       FieldSeparator VFS;
3435       for (auto V : AI.Versions) {
3436         Out << VFS;
3437         Out << AllocTypeName(V);
3438       }
3439       Out << "), memProf: (";
3440       FieldSeparator MIBFS;
3441       for (auto &MIB : AI.MIBs) {
3442         Out << MIBFS;
3443         Out << "(type: " << AllocTypeName((uint8_t)MIB.AllocType);
3444         Out << ", stackIds: (";
3445         FieldSeparator SIDFS;
3446         for (auto Id : MIB.StackIdIndices) {
3447           Out << SIDFS;
3448           Out << TheIndex->getStackIdAtIndex(Id);
3449         }
3450         Out << "))";
3451       }
3452       Out << "))";
3453     }
3454     Out << ")";
3455   }
3456 
3457   if (!FS->callsites().empty()) {
3458     Out << ", callsites: (";
3459     FieldSeparator SNFS;
3460     for (auto &CI : FS->callsites()) {
3461       Out << SNFS;
3462       if (CI.Callee)
3463         Out << "(callee: ^" << Machine.getGUIDSlot(CI.Callee.getGUID());
3464       else
3465         Out << "(callee: null";
3466       Out << ", clones: (";
3467       FieldSeparator VFS;
3468       for (auto V : CI.Clones) {
3469         Out << VFS;
3470         Out << V;
3471       }
3472       Out << "), stackIds: (";
3473       FieldSeparator SIDFS;
3474       for (auto Id : CI.StackIdIndices) {
3475         Out << SIDFS;
3476         Out << TheIndex->getStackIdAtIndex(Id);
3477       }
3478       Out << "))";
3479     }
3480     Out << ")";
3481   }
3482 
3483   auto PrintRange = [&](const ConstantRange &Range) {
3484     Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
3485   };
3486 
3487   if (!FS->paramAccesses().empty()) {
3488     Out << ", params: (";
3489     FieldSeparator IFS;
3490     for (auto &PS : FS->paramAccesses()) {
3491       Out << IFS;
3492       Out << "(param: " << PS.ParamNo;
3493       Out << ", offset: ";
3494       PrintRange(PS.Use);
3495       if (!PS.Calls.empty()) {
3496         Out << ", calls: (";
3497         FieldSeparator IFS;
3498         for (auto &Call : PS.Calls) {
3499           Out << IFS;
3500           Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
3501           Out << ", param: " << Call.ParamNo;
3502           Out << ", offset: ";
3503           PrintRange(Call.Offsets);
3504           Out << ")";
3505         }
3506         Out << ")";
3507       }
3508       Out << ")";
3509     }
3510     Out << ")";
3511   }
3512 }
3513 
3514 void AssemblyWriter::printTypeIdInfo(
3515     const FunctionSummary::TypeIdInfo &TIDInfo) {
3516   Out << ", typeIdInfo: (";
3517   FieldSeparator TIDFS;
3518   if (!TIDInfo.TypeTests.empty()) {
3519     Out << TIDFS;
3520     Out << "typeTests: (";
3521     FieldSeparator FS;
3522     for (auto &GUID : TIDInfo.TypeTests) {
3523       auto TidIter = TheIndex->typeIds().equal_range(GUID);
3524       if (TidIter.first == TidIter.second) {
3525         Out << FS;
3526         Out << GUID;
3527         continue;
3528       }
3529       // Print all type id that correspond to this GUID.
3530       for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3531         Out << FS;
3532         auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3533         assert(Slot != -1);
3534         Out << "^" << Slot;
3535       }
3536     }
3537     Out << ")";
3538   }
3539   if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
3540     Out << TIDFS;
3541     printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
3542   }
3543   if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
3544     Out << TIDFS;
3545     printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
3546   }
3547   if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
3548     Out << TIDFS;
3549     printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
3550                      "typeTestAssumeConstVCalls");
3551   }
3552   if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
3553     Out << TIDFS;
3554     printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
3555                      "typeCheckedLoadConstVCalls");
3556   }
3557   Out << ")";
3558 }
3559 
3560 void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
3561   auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
3562   if (TidIter.first == TidIter.second) {
3563     Out << "vFuncId: (";
3564     Out << "guid: " << VFId.GUID;
3565     Out << ", offset: " << VFId.Offset;
3566     Out << ")";
3567     return;
3568   }
3569   // Print all type id that correspond to this GUID.
3570   FieldSeparator FS;
3571   for (const auto &[GUID, TypeIdPair] : make_range(TidIter)) {
3572     Out << FS;
3573     Out << "vFuncId: (";
3574     auto Slot = Machine.getTypeIdSlot(TypeIdPair.first);
3575     assert(Slot != -1);
3576     Out << "^" << Slot;
3577     Out << ", offset: " << VFId.Offset;
3578     Out << ")";
3579   }
3580 }
3581 
3582 void AssemblyWriter::printNonConstVCalls(
3583     const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
3584   Out << Tag << ": (";
3585   FieldSeparator FS;
3586   for (auto &VFuncId : VCallList) {
3587     Out << FS;
3588     printVFuncId(VFuncId);
3589   }
3590   Out << ")";
3591 }
3592 
3593 void AssemblyWriter::printConstVCalls(
3594     const std::vector<FunctionSummary::ConstVCall> &VCallList,
3595     const char *Tag) {
3596   Out << Tag << ": (";
3597   FieldSeparator FS;
3598   for (auto &ConstVCall : VCallList) {
3599     Out << FS;
3600     Out << "(";
3601     printVFuncId(ConstVCall.VFunc);
3602     if (!ConstVCall.Args.empty()) {
3603       Out << ", ";
3604       printArgs(ConstVCall.Args);
3605     }
3606     Out << ")";
3607   }
3608   Out << ")";
3609 }
3610 
3611 void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
3612   GlobalValueSummary::GVFlags GVFlags = Summary.flags();
3613   GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
3614   Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
3615   Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
3616       << ", flags: (";
3617   Out << "linkage: " << getLinkageName(LT);
3618   Out << ", visibility: "
3619       << getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
3620   Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
3621   Out << ", live: " << GVFlags.Live;
3622   Out << ", dsoLocal: " << GVFlags.DSOLocal;
3623   Out << ", canAutoHide: " << GVFlags.CanAutoHide;
3624   Out << ", importType: "
3625       << getImportTypeName(GlobalValueSummary::ImportKind(GVFlags.ImportType));
3626   Out << ")";
3627 
3628   if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3629     printAliasSummary(cast<AliasSummary>(&Summary));
3630   else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3631     printFunctionSummary(cast<FunctionSummary>(&Summary));
3632   else
3633     printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3634 
3635   auto RefList = Summary.refs();
3636   if (!RefList.empty()) {
3637     Out << ", refs: (";
3638     FieldSeparator FS;
3639     for (auto &Ref : RefList) {
3640       Out << FS;
3641       if (Ref.isReadOnly())
3642         Out << "readonly ";
3643       else if (Ref.isWriteOnly())
3644         Out << "writeonly ";
3645       Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3646     }
3647     Out << ")";
3648   }
3649 
3650   Out << ")";
3651 }
3652 
3653 void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3654   Out << "^" << Slot << " = gv: (";
3655   if (VI.hasName() && !VI.name().empty())
3656     Out << "name: \"" << VI.name() << "\"";
3657   else
3658     Out << "guid: " << VI.getGUID();
3659   if (!VI.getSummaryList().empty()) {
3660     Out << ", summaries: (";
3661     FieldSeparator FS;
3662     for (auto &Summary : VI.getSummaryList()) {
3663       Out << FS;
3664       printSummary(*Summary);
3665     }
3666     Out << ")";
3667   }
3668   Out << ")";
3669   if (VI.hasName() && !VI.name().empty())
3670     Out << " ; guid = " << VI.getGUID();
3671   Out << "\n";
3672 }
3673 
3674 static void printMetadataIdentifier(StringRef Name,
3675                                     formatted_raw_ostream &Out) {
3676   if (Name.empty()) {
3677     Out << "<empty name> ";
3678   } else {
3679     unsigned char FirstC = static_cast<unsigned char>(Name[0]);
3680     if (isalpha(FirstC) || FirstC == '-' || FirstC == '$' || FirstC == '.' ||
3681         FirstC == '_')
3682       Out << FirstC;
3683     else
3684       Out << '\\' << hexdigit(FirstC >> 4) << hexdigit(FirstC & 0x0F);
3685     for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3686       unsigned char C = Name[i];
3687       if (isalnum(C) || C == '-' || C == '$' || C == '.' || C == '_')
3688         Out << C;
3689       else
3690         Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3691     }
3692   }
3693 }
3694 
3695 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3696   Out << '!';
3697   printMetadataIdentifier(NMD->getName(), Out);
3698   Out << " = !{";
3699   for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3700     if (i)
3701       Out << ", ";
3702 
3703     // Write DIExpressions inline.
3704     // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3705     MDNode *Op = NMD->getOperand(i);
3706     if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3707       writeDIExpression(Out, Expr, AsmWriterContext::getEmpty());
3708       continue;
3709     }
3710 
3711     int Slot = Machine.getMetadataSlot(Op);
3712     if (Slot == -1)
3713       Out << "<badref>";
3714     else
3715       Out << '!' << Slot;
3716   }
3717   Out << "}\n";
3718 }
3719 
3720 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3721                             formatted_raw_ostream &Out) {
3722   switch (Vis) {
3723   case GlobalValue::DefaultVisibility: break;
3724   case GlobalValue::HiddenVisibility:    Out << "hidden "; break;
3725   case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3726   }
3727 }
3728 
3729 static void PrintDSOLocation(const GlobalValue &GV,
3730                              formatted_raw_ostream &Out) {
3731   if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
3732     Out << "dso_local ";
3733 }
3734 
3735 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3736                                  formatted_raw_ostream &Out) {
3737   switch (SCT) {
3738   case GlobalValue::DefaultStorageClass: break;
3739   case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3740   case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3741   }
3742 }
3743 
3744 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3745                                   formatted_raw_ostream &Out) {
3746   switch (TLM) {
3747     case GlobalVariable::NotThreadLocal:
3748       break;
3749     case GlobalVariable::GeneralDynamicTLSModel:
3750       Out << "thread_local ";
3751       break;
3752     case GlobalVariable::LocalDynamicTLSModel:
3753       Out << "thread_local(localdynamic) ";
3754       break;
3755     case GlobalVariable::InitialExecTLSModel:
3756       Out << "thread_local(initialexec) ";
3757       break;
3758     case GlobalVariable::LocalExecTLSModel:
3759       Out << "thread_local(localexec) ";
3760       break;
3761   }
3762 }
3763 
3764 static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3765   switch (UA) {
3766   case GlobalVariable::UnnamedAddr::None:
3767     return "";
3768   case GlobalVariable::UnnamedAddr::Local:
3769     return "local_unnamed_addr";
3770   case GlobalVariable::UnnamedAddr::Global:
3771     return "unnamed_addr";
3772   }
3773   llvm_unreachable("Unknown UnnamedAddr");
3774 }
3775 
3776 static void maybePrintComdat(formatted_raw_ostream &Out,
3777                              const GlobalObject &GO) {
3778   const Comdat *C = GO.getComdat();
3779   if (!C)
3780     return;
3781 
3782   if (isa<GlobalVariable>(GO))
3783     Out << ',';
3784   Out << " comdat";
3785 
3786   if (GO.getName() == C->getName())
3787     return;
3788 
3789   Out << '(';
3790   PrintLLVMName(Out, C->getName(), ComdatPrefix);
3791   Out << ')';
3792 }
3793 
3794 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3795   if (GV->isMaterializable())
3796     Out << "; Materializable\n";
3797 
3798   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GV->getParent());
3799   WriteAsOperandInternal(Out, GV, WriterCtx);
3800   Out << " = ";
3801 
3802   if (!GV->hasInitializer() && GV->hasExternalLinkage())
3803     Out << "external ";
3804 
3805   Out << getLinkageNameWithSpace(GV->getLinkage());
3806   PrintDSOLocation(*GV, Out);
3807   PrintVisibility(GV->getVisibility(), Out);
3808   PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3809   PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3810   StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3811   if (!UA.empty())
3812       Out << UA << ' ';
3813 
3814   if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3815     Out << "addrspace(" << AddressSpace << ") ";
3816   if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3817   Out << (GV->isConstant() ? "constant " : "global ");
3818   TypePrinter.print(GV->getValueType(), Out);
3819 
3820   if (GV->hasInitializer()) {
3821     Out << ' ';
3822     writeOperand(GV->getInitializer(), false);
3823   }
3824 
3825   if (GV->hasSection()) {
3826     Out << ", section \"";
3827     printEscapedString(GV->getSection(), Out);
3828     Out << '"';
3829   }
3830   if (GV->hasPartition()) {
3831     Out << ", partition \"";
3832     printEscapedString(GV->getPartition(), Out);
3833     Out << '"';
3834   }
3835   if (auto CM = GV->getCodeModel()) {
3836     Out << ", code_model \"";
3837     switch (*CM) {
3838     case CodeModel::Tiny:
3839       Out << "tiny";
3840       break;
3841     case CodeModel::Small:
3842       Out << "small";
3843       break;
3844     case CodeModel::Kernel:
3845       Out << "kernel";
3846       break;
3847     case CodeModel::Medium:
3848       Out << "medium";
3849       break;
3850     case CodeModel::Large:
3851       Out << "large";
3852       break;
3853     }
3854     Out << '"';
3855   }
3856 
3857   using SanitizerMetadata = llvm::GlobalValue::SanitizerMetadata;
3858   if (GV->hasSanitizerMetadata()) {
3859     SanitizerMetadata MD = GV->getSanitizerMetadata();
3860     if (MD.NoAddress)
3861       Out << ", no_sanitize_address";
3862     if (MD.NoHWAddress)
3863       Out << ", no_sanitize_hwaddress";
3864     if (MD.Memtag)
3865       Out << ", sanitize_memtag";
3866     if (MD.IsDynInit)
3867       Out << ", sanitize_address_dyninit";
3868   }
3869 
3870   maybePrintComdat(Out, *GV);
3871   if (MaybeAlign A = GV->getAlign())
3872     Out << ", align " << A->value();
3873 
3874   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3875   GV->getAllMetadata(MDs);
3876   printMetadataAttachments(MDs, ", ");
3877 
3878   auto Attrs = GV->getAttributes();
3879   if (Attrs.hasAttributes())
3880     Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3881 
3882   printInfoComment(*GV);
3883 }
3884 
3885 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
3886   if (GA->isMaterializable())
3887     Out << "; Materializable\n";
3888 
3889   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GA->getParent());
3890   WriteAsOperandInternal(Out, GA, WriterCtx);
3891   Out << " = ";
3892 
3893   Out << getLinkageNameWithSpace(GA->getLinkage());
3894   PrintDSOLocation(*GA, Out);
3895   PrintVisibility(GA->getVisibility(), Out);
3896   PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
3897   PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
3898   StringRef UA = getUnnamedAddrEncoding(GA->getUnnamedAddr());
3899   if (!UA.empty())
3900       Out << UA << ' ';
3901 
3902   Out << "alias ";
3903 
3904   TypePrinter.print(GA->getValueType(), Out);
3905   Out << ", ";
3906 
3907   if (const Constant *Aliasee = GA->getAliasee()) {
3908     writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
3909   } else {
3910     TypePrinter.print(GA->getType(), Out);
3911     Out << " <<NULL ALIASEE>>";
3912   }
3913 
3914   if (GA->hasPartition()) {
3915     Out << ", partition \"";
3916     printEscapedString(GA->getPartition(), Out);
3917     Out << '"';
3918   }
3919 
3920   printInfoComment(*GA);
3921   Out << '\n';
3922 }
3923 
3924 void AssemblyWriter::printIFunc(const GlobalIFunc *GI) {
3925   if (GI->isMaterializable())
3926     Out << "; Materializable\n";
3927 
3928   AsmWriterContext WriterCtx(&TypePrinter, &Machine, GI->getParent());
3929   WriteAsOperandInternal(Out, GI, WriterCtx);
3930   Out << " = ";
3931 
3932   Out << getLinkageNameWithSpace(GI->getLinkage());
3933   PrintDSOLocation(*GI, Out);
3934   PrintVisibility(GI->getVisibility(), Out);
3935 
3936   Out << "ifunc ";
3937 
3938   TypePrinter.print(GI->getValueType(), Out);
3939   Out << ", ";
3940 
3941   if (const Constant *Resolver = GI->getResolver()) {
3942     writeOperand(Resolver, !isa<ConstantExpr>(Resolver));
3943   } else {
3944     TypePrinter.print(GI->getType(), Out);
3945     Out << " <<NULL RESOLVER>>";
3946   }
3947 
3948   if (GI->hasPartition()) {
3949     Out << ", partition \"";
3950     printEscapedString(GI->getPartition(), Out);
3951     Out << '"';
3952   }
3953 
3954   printInfoComment(*GI);
3955   Out << '\n';
3956 }
3957 
3958 void AssemblyWriter::printComdat(const Comdat *C) {
3959   C->print(Out);
3960 }
3961 
3962 void AssemblyWriter::printTypeIdentities() {
3963   if (TypePrinter.empty())
3964     return;
3965 
3966   Out << '\n';
3967 
3968   // Emit all numbered types.
3969   auto &NumberedTypes = TypePrinter.getNumberedTypes();
3970   for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3971     Out << '%' << I << " = type ";
3972 
3973     // Make sure we print out at least one level of the type structure, so
3974     // that we do not get %2 = type %2
3975     TypePrinter.printStructBody(NumberedTypes[I], Out);
3976     Out << '\n';
3977   }
3978 
3979   auto &NamedTypes = TypePrinter.getNamedTypes();
3980   for (StructType *NamedType : NamedTypes) {
3981     PrintLLVMName(Out, NamedType->getName(), LocalPrefix);
3982     Out << " = type ";
3983 
3984     // Make sure we print out at least one level of the type structure, so
3985     // that we do not get %FILE = type %FILE
3986     TypePrinter.printStructBody(NamedType, Out);
3987     Out << '\n';
3988   }
3989 }
3990 
3991 /// printFunction - Print all aspects of a function.
3992 void AssemblyWriter::printFunction(const Function *F) {
3993   if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3994 
3995   if (F->isMaterializable())
3996     Out << "; Materializable\n";
3997 
3998   const AttributeList &Attrs = F->getAttributes();
3999   if (Attrs.hasFnAttrs()) {
4000     AttributeSet AS = Attrs.getFnAttrs();
4001     std::string AttrStr;
4002 
4003     for (const Attribute &Attr : AS) {
4004       if (!Attr.isStringAttribute()) {
4005         if (!AttrStr.empty()) AttrStr += ' ';
4006         AttrStr += Attr.getAsString();
4007       }
4008     }
4009 
4010     if (!AttrStr.empty())
4011       Out << "; Function Attrs: " << AttrStr << '\n';
4012   }
4013 
4014   Machine.incorporateFunction(F);
4015 
4016   if (F->isDeclaration()) {
4017     Out << "declare";
4018     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4019     F->getAllMetadata(MDs);
4020     printMetadataAttachments(MDs, " ");
4021     Out << ' ';
4022   } else
4023     Out << "define ";
4024 
4025   Out << getLinkageNameWithSpace(F->getLinkage());
4026   PrintDSOLocation(*F, Out);
4027   PrintVisibility(F->getVisibility(), Out);
4028   PrintDLLStorageClass(F->getDLLStorageClass(), Out);
4029 
4030   // Print the calling convention.
4031   if (F->getCallingConv() != CallingConv::C) {
4032     PrintCallingConv(F->getCallingConv(), Out);
4033     Out << " ";
4034   }
4035 
4036   FunctionType *FT = F->getFunctionType();
4037   if (Attrs.hasRetAttrs())
4038     Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
4039   TypePrinter.print(F->getReturnType(), Out);
4040   AsmWriterContext WriterCtx(&TypePrinter, &Machine, F->getParent());
4041   Out << ' ';
4042   WriteAsOperandInternal(Out, F, WriterCtx);
4043   Out << '(';
4044 
4045   // Loop over the arguments, printing them...
4046   if (F->isDeclaration() && !IsForDebug) {
4047     // We're only interested in the type here - don't print argument names.
4048     for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
4049       // Insert commas as we go... the first arg doesn't get a comma
4050       if (I)
4051         Out << ", ";
4052       // Output type...
4053       TypePrinter.print(FT->getParamType(I), Out);
4054 
4055       AttributeSet ArgAttrs = Attrs.getParamAttrs(I);
4056       if (ArgAttrs.hasAttributes()) {
4057         Out << ' ';
4058         writeAttributeSet(ArgAttrs);
4059       }
4060     }
4061   } else {
4062     // The arguments are meaningful here, print them in detail.
4063     for (const Argument &Arg : F->args()) {
4064       // Insert commas as we go... the first arg doesn't get a comma
4065       if (Arg.getArgNo() != 0)
4066         Out << ", ";
4067       printArgument(&Arg, Attrs.getParamAttrs(Arg.getArgNo()));
4068     }
4069   }
4070 
4071   // Finish printing arguments...
4072   if (FT->isVarArg()) {
4073     if (FT->getNumParams()) Out << ", ";
4074     Out << "...";  // Output varargs portion of signature!
4075   }
4076   Out << ')';
4077   StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
4078   if (!UA.empty())
4079     Out << ' ' << UA;
4080   // We print the function address space if it is non-zero or if we are writing
4081   // a module with a non-zero program address space or if there is no valid
4082   // Module* so that the file can be parsed without the datalayout string.
4083   const Module *Mod = F->getParent();
4084   if (F->getAddressSpace() != 0 || !Mod ||
4085       Mod->getDataLayout().getProgramAddressSpace() != 0)
4086     Out << " addrspace(" << F->getAddressSpace() << ")";
4087   if (Attrs.hasFnAttrs())
4088     Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttrs());
4089   if (F->hasSection()) {
4090     Out << " section \"";
4091     printEscapedString(F->getSection(), Out);
4092     Out << '"';
4093   }
4094   if (F->hasPartition()) {
4095     Out << " partition \"";
4096     printEscapedString(F->getPartition(), Out);
4097     Out << '"';
4098   }
4099   maybePrintComdat(Out, *F);
4100   if (MaybeAlign A = F->getAlign())
4101     Out << " align " << A->value();
4102   if (F->hasGC())
4103     Out << " gc \"" << F->getGC() << '"';
4104   if (F->hasPrefixData()) {
4105     Out << " prefix ";
4106     writeOperand(F->getPrefixData(), true);
4107   }
4108   if (F->hasPrologueData()) {
4109     Out << " prologue ";
4110     writeOperand(F->getPrologueData(), true);
4111   }
4112   if (F->hasPersonalityFn()) {
4113     Out << " personality ";
4114     writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
4115   }
4116 
4117   if (F->isDeclaration()) {
4118     Out << '\n';
4119   } else {
4120     SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
4121     F->getAllMetadata(MDs);
4122     printMetadataAttachments(MDs, " ");
4123 
4124     Out << " {";
4125     // Output all of the function's basic blocks.
4126     for (const BasicBlock &BB : *F)
4127       printBasicBlock(&BB);
4128 
4129     // Output the function's use-lists.
4130     printUseLists(F);
4131 
4132     Out << "}\n";
4133   }
4134 
4135   Machine.purgeFunction();
4136 }
4137 
4138 /// printArgument - This member is called for every argument that is passed into
4139 /// the function.  Simply print it out
4140 void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
4141   // Output type...
4142   TypePrinter.print(Arg->getType(), Out);
4143 
4144   // Output parameter attributes list
4145   if (Attrs.hasAttributes()) {
4146     Out << ' ';
4147     writeAttributeSet(Attrs);
4148   }
4149 
4150   // Output name, if available...
4151   if (Arg->hasName()) {
4152     Out << ' ';
4153     PrintLLVMName(Out, Arg);
4154   } else {
4155     int Slot = Machine.getLocalSlot(Arg);
4156     assert(Slot != -1 && "expect argument in function here");
4157     Out << " %" << Slot;
4158   }
4159 }
4160 
4161 /// printBasicBlock - This member is called for each basic block in a method.
4162 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
4163   bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
4164   if (BB->hasName()) {              // Print out the label if it exists...
4165     Out << "\n";
4166     PrintLLVMName(Out, BB->getName(), LabelPrefix);
4167     Out << ':';
4168   } else if (!IsEntryBlock) {
4169     Out << "\n";
4170     int Slot = Machine.getLocalSlot(BB);
4171     if (Slot != -1)
4172       Out << Slot << ":";
4173     else
4174       Out << "<badref>:";
4175   }
4176 
4177   if (!IsEntryBlock) {
4178     // Output predecessors for the block.
4179     Out.PadToColumn(50);
4180     Out << ";";
4181     const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
4182 
4183     if (PI == PE) {
4184       Out << " No predecessors!";
4185     } else {
4186       Out << " preds = ";
4187       writeOperand(*PI, false);
4188       for (++PI; PI != PE; ++PI) {
4189         Out << ", ";
4190         writeOperand(*PI, false);
4191       }
4192     }
4193   }
4194 
4195   Out << "\n";
4196 
4197   if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
4198 
4199   // Output all of the instructions in the basic block...
4200   for (const Instruction &I : *BB) {
4201     for (const DbgRecord &DR : I.getDbgRecordRange())
4202       printDbgRecordLine(DR);
4203     printInstructionLine(I);
4204   }
4205 
4206   if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
4207 }
4208 
4209 /// printInstructionLine - Print an instruction and a newline character.
4210 void AssemblyWriter::printInstructionLine(const Instruction &I) {
4211   printInstruction(I);
4212   Out << '\n';
4213 }
4214 
4215 /// printGCRelocateComment - print comment after call to the gc.relocate
4216 /// intrinsic indicating base and derived pointer names.
4217 void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
4218   Out << " ; (";
4219   writeOperand(Relocate.getBasePtr(), false);
4220   Out << ", ";
4221   writeOperand(Relocate.getDerivedPtr(), false);
4222   Out << ")";
4223 }
4224 
4225 /// printInfoComment - Print a little comment after the instruction indicating
4226 /// which slot it occupies.
4227 void AssemblyWriter::printInfoComment(const Value &V) {
4228   if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
4229     printGCRelocateComment(*Relocate);
4230 
4231   if (AnnotationWriter) {
4232     AnnotationWriter->printInfoComment(V, Out);
4233   }
4234 }
4235 
4236 static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
4237                                     raw_ostream &Out) {
4238   // We print the address space of the call if it is non-zero.
4239   if (Operand == nullptr) {
4240     Out << " <cannot get addrspace!>";
4241     return;
4242   }
4243   unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
4244   bool PrintAddrSpace = CallAddrSpace != 0;
4245   if (!PrintAddrSpace) {
4246     const Module *Mod = getModuleFromVal(I);
4247     // We also print it if it is zero but not equal to the program address space
4248     // or if we can't find a valid Module* to make it possible to parse
4249     // the resulting file even without a datalayout string.
4250     if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
4251       PrintAddrSpace = true;
4252   }
4253   if (PrintAddrSpace)
4254     Out << " addrspace(" << CallAddrSpace << ")";
4255 }
4256 
4257 // This member is called for each Instruction in a function..
4258 void AssemblyWriter::printInstruction(const Instruction &I) {
4259   if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
4260 
4261   // Print out indentation for an instruction.
4262   Out << "  ";
4263 
4264   // Print out name if it exists...
4265   if (I.hasName()) {
4266     PrintLLVMName(Out, &I);
4267     Out << " = ";
4268   } else if (!I.getType()->isVoidTy()) {
4269     // Print out the def slot taken.
4270     int SlotNum = Machine.getLocalSlot(&I);
4271     if (SlotNum == -1)
4272       Out << "<badref> = ";
4273     else
4274       Out << '%' << SlotNum << " = ";
4275   }
4276 
4277   if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4278     if (CI->isMustTailCall())
4279       Out << "musttail ";
4280     else if (CI->isTailCall())
4281       Out << "tail ";
4282     else if (CI->isNoTailCall())
4283       Out << "notail ";
4284   }
4285 
4286   // Print out the opcode...
4287   Out << I.getOpcodeName();
4288 
4289   // If this is an atomic load or store, print out the atomic marker.
4290   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isAtomic()) ||
4291       (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
4292     Out << " atomic";
4293 
4294   if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
4295     Out << " weak";
4296 
4297   // If this is a volatile operation, print out the volatile marker.
4298   if ((isa<LoadInst>(I)  && cast<LoadInst>(I).isVolatile()) ||
4299       (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
4300       (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
4301       (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
4302     Out << " volatile";
4303 
4304   // Print out optimization information.
4305   WriteOptimizationInfo(Out, &I);
4306 
4307   // Print out the compare instruction predicates
4308   if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
4309     Out << ' ' << CI->getPredicate();
4310 
4311   // Print out the atomicrmw operation
4312   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
4313     Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
4314 
4315   // Print out the type of the operands...
4316   const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
4317 
4318   // Special case conditional branches to swizzle the condition out to the front
4319   if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
4320     const BranchInst &BI(cast<BranchInst>(I));
4321     Out << ' ';
4322     writeOperand(BI.getCondition(), true);
4323     Out << ", ";
4324     writeOperand(BI.getSuccessor(0), true);
4325     Out << ", ";
4326     writeOperand(BI.getSuccessor(1), true);
4327 
4328   } else if (isa<SwitchInst>(I)) {
4329     const SwitchInst& SI(cast<SwitchInst>(I));
4330     // Special case switch instruction to get formatting nice and correct.
4331     Out << ' ';
4332     writeOperand(SI.getCondition(), true);
4333     Out << ", ";
4334     writeOperand(SI.getDefaultDest(), true);
4335     Out << " [";
4336     for (auto Case : SI.cases()) {
4337       Out << "\n    ";
4338       writeOperand(Case.getCaseValue(), true);
4339       Out << ", ";
4340       writeOperand(Case.getCaseSuccessor(), true);
4341     }
4342     Out << "\n  ]";
4343   } else if (isa<IndirectBrInst>(I)) {
4344     // Special case indirectbr instruction to get formatting nice and correct.
4345     Out << ' ';
4346     writeOperand(Operand, true);
4347     Out << ", [";
4348 
4349     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
4350       if (i != 1)
4351         Out << ", ";
4352       writeOperand(I.getOperand(i), true);
4353     }
4354     Out << ']';
4355   } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
4356     Out << ' ';
4357     TypePrinter.print(I.getType(), Out);
4358     Out << ' ';
4359 
4360     for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
4361       if (op) Out << ", ";
4362       Out << "[ ";
4363       writeOperand(PN->getIncomingValue(op), false); Out << ", ";
4364       writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
4365     }
4366   } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
4367     Out << ' ';
4368     writeOperand(I.getOperand(0), true);
4369     for (unsigned i : EVI->indices())
4370       Out << ", " << i;
4371   } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
4372     Out << ' ';
4373     writeOperand(I.getOperand(0), true); Out << ", ";
4374     writeOperand(I.getOperand(1), true);
4375     for (unsigned i : IVI->indices())
4376       Out << ", " << i;
4377   } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
4378     Out << ' ';
4379     TypePrinter.print(I.getType(), Out);
4380     if (LPI->isCleanup() || LPI->getNumClauses() != 0)
4381       Out << '\n';
4382 
4383     if (LPI->isCleanup())
4384       Out << "          cleanup";
4385 
4386     for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
4387       if (i != 0 || LPI->isCleanup()) Out << "\n";
4388       if (LPI->isCatch(i))
4389         Out << "          catch ";
4390       else
4391         Out << "          filter ";
4392 
4393       writeOperand(LPI->getClause(i), true);
4394     }
4395   } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
4396     Out << " within ";
4397     writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
4398     Out << " [";
4399     unsigned Op = 0;
4400     for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
4401       if (Op > 0)
4402         Out << ", ";
4403       writeOperand(PadBB, /*PrintType=*/true);
4404       ++Op;
4405     }
4406     Out << "] unwind ";
4407     if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
4408       writeOperand(UnwindDest, /*PrintType=*/true);
4409     else
4410       Out << "to caller";
4411   } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
4412     Out << " within ";
4413     writeOperand(FPI->getParentPad(), /*PrintType=*/false);
4414     Out << " [";
4415     for (unsigned Op = 0, NumOps = FPI->arg_size(); Op < NumOps; ++Op) {
4416       if (Op > 0)
4417         Out << ", ";
4418       writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
4419     }
4420     Out << ']';
4421   } else if (isa<ReturnInst>(I) && !Operand) {
4422     Out << " void";
4423   } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
4424     Out << " from ";
4425     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4426 
4427     Out << " to ";
4428     writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4429   } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
4430     Out << " from ";
4431     writeOperand(CRI->getOperand(0), /*PrintType=*/false);
4432 
4433     Out << " unwind ";
4434     if (CRI->hasUnwindDest())
4435       writeOperand(CRI->getOperand(1), /*PrintType=*/true);
4436     else
4437       Out << "to caller";
4438   } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
4439     // Print the calling convention being used.
4440     if (CI->getCallingConv() != CallingConv::C) {
4441       Out << " ";
4442       PrintCallingConv(CI->getCallingConv(), Out);
4443     }
4444 
4445     Operand = CI->getCalledOperand();
4446     FunctionType *FTy = CI->getFunctionType();
4447     Type *RetTy = FTy->getReturnType();
4448     const AttributeList &PAL = CI->getAttributes();
4449 
4450     if (PAL.hasRetAttrs())
4451       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4452 
4453     // Only print addrspace(N) if necessary:
4454     maybePrintCallAddrSpace(Operand, &I, Out);
4455 
4456     // If possible, print out the short form of the call instruction.  We can
4457     // only do this if the first argument is a pointer to a nonvararg function,
4458     // and if the return type is not a pointer to a function.
4459     Out << ' ';
4460     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4461     Out << ' ';
4462     writeOperand(Operand, false);
4463     Out << '(';
4464     for (unsigned op = 0, Eop = CI->arg_size(); op < Eop; ++op) {
4465       if (op > 0)
4466         Out << ", ";
4467       writeParamOperand(CI->getArgOperand(op), PAL.getParamAttrs(op));
4468     }
4469 
4470     // Emit an ellipsis if this is a musttail call in a vararg function.  This
4471     // is only to aid readability, musttail calls forward varargs by default.
4472     if (CI->isMustTailCall() && CI->getParent() &&
4473         CI->getParent()->getParent() &&
4474         CI->getParent()->getParent()->isVarArg()) {
4475       if (CI->arg_size() > 0)
4476         Out << ", ";
4477       Out << "...";
4478     }
4479 
4480     Out << ')';
4481     if (PAL.hasFnAttrs())
4482       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4483 
4484     writeOperandBundles(CI);
4485   } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
4486     Operand = II->getCalledOperand();
4487     FunctionType *FTy = II->getFunctionType();
4488     Type *RetTy = FTy->getReturnType();
4489     const AttributeList &PAL = II->getAttributes();
4490 
4491     // Print the calling convention being used.
4492     if (II->getCallingConv() != CallingConv::C) {
4493       Out << " ";
4494       PrintCallingConv(II->getCallingConv(), Out);
4495     }
4496 
4497     if (PAL.hasRetAttrs())
4498       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4499 
4500     // Only print addrspace(N) if necessary:
4501     maybePrintCallAddrSpace(Operand, &I, Out);
4502 
4503     // If possible, print out the short form of the invoke instruction. We can
4504     // only do this if the first argument is a pointer to a nonvararg function,
4505     // and if the return type is not a pointer to a function.
4506     //
4507     Out << ' ';
4508     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4509     Out << ' ';
4510     writeOperand(Operand, false);
4511     Out << '(';
4512     for (unsigned op = 0, Eop = II->arg_size(); op < Eop; ++op) {
4513       if (op)
4514         Out << ", ";
4515       writeParamOperand(II->getArgOperand(op), PAL.getParamAttrs(op));
4516     }
4517 
4518     Out << ')';
4519     if (PAL.hasFnAttrs())
4520       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4521 
4522     writeOperandBundles(II);
4523 
4524     Out << "\n          to ";
4525     writeOperand(II->getNormalDest(), true);
4526     Out << " unwind ";
4527     writeOperand(II->getUnwindDest(), true);
4528   } else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
4529     Operand = CBI->getCalledOperand();
4530     FunctionType *FTy = CBI->getFunctionType();
4531     Type *RetTy = FTy->getReturnType();
4532     const AttributeList &PAL = CBI->getAttributes();
4533 
4534     // Print the calling convention being used.
4535     if (CBI->getCallingConv() != CallingConv::C) {
4536       Out << " ";
4537       PrintCallingConv(CBI->getCallingConv(), Out);
4538     }
4539 
4540     if (PAL.hasRetAttrs())
4541       Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
4542 
4543     // If possible, print out the short form of the callbr instruction. We can
4544     // only do this if the first argument is a pointer to a nonvararg function,
4545     // and if the return type is not a pointer to a function.
4546     //
4547     Out << ' ';
4548     TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
4549     Out << ' ';
4550     writeOperand(Operand, false);
4551     Out << '(';
4552     for (unsigned op = 0, Eop = CBI->arg_size(); op < Eop; ++op) {
4553       if (op)
4554         Out << ", ";
4555       writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttrs(op));
4556     }
4557 
4558     Out << ')';
4559     if (PAL.hasFnAttrs())
4560       Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttrs());
4561 
4562     writeOperandBundles(CBI);
4563 
4564     Out << "\n          to ";
4565     writeOperand(CBI->getDefaultDest(), true);
4566     Out << " [";
4567     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
4568       if (i != 0)
4569         Out << ", ";
4570       writeOperand(CBI->getIndirectDest(i), true);
4571     }
4572     Out << ']';
4573   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
4574     Out << ' ';
4575     if (AI->isUsedWithInAlloca())
4576       Out << "inalloca ";
4577     if (AI->isSwiftError())
4578       Out << "swifterror ";
4579     TypePrinter.print(AI->getAllocatedType(), Out);
4580 
4581     // Explicitly write the array size if the code is broken, if it's an array
4582     // allocation, or if the type is not canonical for scalar allocations.  The
4583     // latter case prevents the type from mutating when round-tripping through
4584     // assembly.
4585     if (!AI->getArraySize() || AI->isArrayAllocation() ||
4586         !AI->getArraySize()->getType()->isIntegerTy(32)) {
4587       Out << ", ";
4588       writeOperand(AI->getArraySize(), true);
4589     }
4590     if (MaybeAlign A = AI->getAlign()) {
4591       Out << ", align " << A->value();
4592     }
4593 
4594     unsigned AddrSpace = AI->getAddressSpace();
4595     if (AddrSpace != 0) {
4596       Out << ", addrspace(" << AddrSpace << ')';
4597     }
4598   } else if (isa<CastInst>(I)) {
4599     if (Operand) {
4600       Out << ' ';
4601       writeOperand(Operand, true);   // Work with broken code
4602     }
4603     Out << " to ";
4604     TypePrinter.print(I.getType(), Out);
4605   } else if (isa<VAArgInst>(I)) {
4606     if (Operand) {
4607       Out << ' ';
4608       writeOperand(Operand, true);   // Work with broken code
4609     }
4610     Out << ", ";
4611     TypePrinter.print(I.getType(), Out);
4612   } else if (Operand) {   // Print the normal way.
4613     if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4614       Out << ' ';
4615       TypePrinter.print(GEP->getSourceElementType(), Out);
4616       Out << ',';
4617     } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
4618       Out << ' ';
4619       TypePrinter.print(LI->getType(), Out);
4620       Out << ',';
4621     }
4622 
4623     // PrintAllTypes - Instructions who have operands of all the same type
4624     // omit the type from all but the first operand.  If the instruction has
4625     // different type operands (for example br), then they are all printed.
4626     bool PrintAllTypes = false;
4627     Type *TheType = Operand->getType();
4628 
4629     // Select, Store, ShuffleVector, CmpXchg and AtomicRMW always print all
4630     // types.
4631     if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I) ||
4632         isa<ReturnInst>(I) || isa<AtomicCmpXchgInst>(I) ||
4633         isa<AtomicRMWInst>(I)) {
4634       PrintAllTypes = true;
4635     } else {
4636       for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
4637         Operand = I.getOperand(i);
4638         // note that Operand shouldn't be null, but the test helps make dump()
4639         // more tolerant of malformed IR
4640         if (Operand && Operand->getType() != TheType) {
4641           PrintAllTypes = true;    // We have differing types!  Print them all!
4642           break;
4643         }
4644       }
4645     }
4646 
4647     if (!PrintAllTypes) {
4648       Out << ' ';
4649       TypePrinter.print(TheType, Out);
4650     }
4651 
4652     Out << ' ';
4653     for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
4654       if (i) Out << ", ";
4655       writeOperand(I.getOperand(i), PrintAllTypes);
4656     }
4657   }
4658 
4659   // Print atomic ordering/alignment for memory operations
4660   if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
4661     if (LI->isAtomic())
4662       writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
4663     if (MaybeAlign A = LI->getAlign())
4664       Out << ", align " << A->value();
4665   } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
4666     if (SI->isAtomic())
4667       writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
4668     if (MaybeAlign A = SI->getAlign())
4669       Out << ", align " << A->value();
4670   } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
4671     writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
4672                        CXI->getFailureOrdering(), CXI->getSyncScopeID());
4673     Out << ", align " << CXI->getAlign().value();
4674   } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
4675     writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
4676                 RMWI->getSyncScopeID());
4677     Out << ", align " << RMWI->getAlign().value();
4678   } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
4679     writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
4680   } else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
4681     PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
4682   }
4683 
4684   // Print Metadata info.
4685   SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
4686   I.getAllMetadata(InstMD);
4687   printMetadataAttachments(InstMD, ", ");
4688 
4689   // Print a nice comment.
4690   printInfoComment(I);
4691 }
4692 
4693 void AssemblyWriter::printDbgMarker(const DbgMarker &Marker) {
4694   // There's no formal representation of a DbgMarker -- print purely as a
4695   // debugging aid.
4696   for (const DbgRecord &DPR : Marker.StoredDbgRecords) {
4697     printDbgRecord(DPR);
4698     Out << "\n";
4699   }
4700 
4701   Out << "  DbgMarker -> { ";
4702   printInstruction(*Marker.MarkedInstr);
4703   Out << " }";
4704 }
4705 
4706 void AssemblyWriter::printDbgRecord(const DbgRecord &DR) {
4707   if (auto *DVR = dyn_cast<DbgVariableRecord>(&DR))
4708     printDbgVariableRecord(*DVR);
4709   else if (auto *DLR = dyn_cast<DbgLabelRecord>(&DR))
4710     printDbgLabelRecord(*DLR);
4711   else
4712     llvm_unreachable("Unexpected DbgRecord kind");
4713 }
4714 
4715 void AssemblyWriter::printDbgVariableRecord(const DbgVariableRecord &DVR) {
4716   auto WriterCtx = getContext();
4717   Out << "#dbg_";
4718   switch (DVR.getType()) {
4719   case DbgVariableRecord::LocationType::Value:
4720     Out << "value";
4721     break;
4722   case DbgVariableRecord::LocationType::Declare:
4723     Out << "declare";
4724     break;
4725   case DbgVariableRecord::LocationType::Assign:
4726     Out << "assign";
4727     break;
4728   default:
4729     llvm_unreachable(
4730         "Tried to print a DbgVariableRecord with an invalid LocationType!");
4731   }
4732   Out << "(";
4733   WriteAsOperandInternal(Out, DVR.getRawLocation(), WriterCtx, true);
4734   Out << ", ";
4735   WriteAsOperandInternal(Out, DVR.getRawVariable(), WriterCtx, true);
4736   Out << ", ";
4737   WriteAsOperandInternal(Out, DVR.getRawExpression(), WriterCtx, true);
4738   Out << ", ";
4739   if (DVR.isDbgAssign()) {
4740     WriteAsOperandInternal(Out, DVR.getRawAssignID(), WriterCtx, true);
4741     Out << ", ";
4742     WriteAsOperandInternal(Out, DVR.getRawAddress(), WriterCtx, true);
4743     Out << ", ";
4744     WriteAsOperandInternal(Out, DVR.getRawAddressExpression(), WriterCtx, true);
4745     Out << ", ";
4746   }
4747   WriteAsOperandInternal(Out, DVR.getDebugLoc().getAsMDNode(), WriterCtx, true);
4748   Out << ")";
4749 }
4750 
4751 /// printDbgRecordLine - Print a DbgRecord with indentation and a newline
4752 /// character.
4753 void AssemblyWriter::printDbgRecordLine(const DbgRecord &DR) {
4754   // Print lengthier indentation to bring out-of-line with instructions.
4755   Out << "    ";
4756   printDbgRecord(DR);
4757   Out << '\n';
4758 }
4759 
4760 void AssemblyWriter::printDbgLabelRecord(const DbgLabelRecord &Label) {
4761   auto WriterCtx = getContext();
4762   Out << "#dbg_label(";
4763   WriteAsOperandInternal(Out, Label.getRawLabel(), WriterCtx, true);
4764   Out << ", ";
4765   WriteAsOperandInternal(Out, Label.getDebugLoc(), WriterCtx, true);
4766   Out << ")";
4767 }
4768 
4769 void AssemblyWriter::printMetadataAttachments(
4770     const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
4771     StringRef Separator) {
4772   if (MDs.empty())
4773     return;
4774 
4775   if (MDNames.empty())
4776     MDs[0].second->getContext().getMDKindNames(MDNames);
4777 
4778   auto WriterCtx = getContext();
4779   for (const auto &I : MDs) {
4780     unsigned Kind = I.first;
4781     Out << Separator;
4782     if (Kind < MDNames.size()) {
4783       Out << "!";
4784       printMetadataIdentifier(MDNames[Kind], Out);
4785     } else
4786       Out << "!<unknown kind #" << Kind << ">";
4787     Out << ' ';
4788     WriteAsOperandInternal(Out, I.second, WriterCtx);
4789   }
4790 }
4791 
4792 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
4793   Out << '!' << Slot << " = ";
4794   printMDNodeBody(Node);
4795   Out << "\n";
4796 }
4797 
4798 void AssemblyWriter::writeAllMDNodes() {
4799   SmallVector<const MDNode *, 16> Nodes;
4800   Nodes.resize(Machine.mdn_size());
4801   for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
4802     Nodes[I.second] = cast<MDNode>(I.first);
4803 
4804   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4805     writeMDNode(i, Nodes[i]);
4806   }
4807 }
4808 
4809 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
4810   auto WriterCtx = getContext();
4811   WriteMDNodeBodyInternal(Out, Node, WriterCtx);
4812 }
4813 
4814 void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
4815   if (!Attr.isTypeAttribute()) {
4816     Out << Attr.getAsString(InAttrGroup);
4817     return;
4818   }
4819 
4820   Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
4821   if (Type *Ty = Attr.getValueAsType()) {
4822     Out << '(';
4823     TypePrinter.print(Ty, Out);
4824     Out << ')';
4825   }
4826 }
4827 
4828 void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
4829                                        bool InAttrGroup) {
4830   bool FirstAttr = true;
4831   for (const auto &Attr : AttrSet) {
4832     if (!FirstAttr)
4833       Out << ' ';
4834     writeAttribute(Attr, InAttrGroup);
4835     FirstAttr = false;
4836   }
4837 }
4838 
4839 void AssemblyWriter::writeAllAttributeGroups() {
4840   std::vector<std::pair<AttributeSet, unsigned>> asVec;
4841   asVec.resize(Machine.as_size());
4842 
4843   for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
4844     asVec[I.second] = I;
4845 
4846   for (const auto &I : asVec)
4847     Out << "attributes #" << I.second << " = { "
4848         << I.first.getAsString(true) << " }\n";
4849 }
4850 
4851 void AssemblyWriter::printUseListOrder(const Value *V,
4852                                        const std::vector<unsigned> &Shuffle) {
4853   bool IsInFunction = Machine.getFunction();
4854   if (IsInFunction)
4855     Out << "  ";
4856 
4857   Out << "uselistorder";
4858   if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
4859     Out << "_bb ";
4860     writeOperand(BB->getParent(), false);
4861     Out << ", ";
4862     writeOperand(BB, false);
4863   } else {
4864     Out << " ";
4865     writeOperand(V, true);
4866   }
4867   Out << ", { ";
4868 
4869   assert(Shuffle.size() >= 2 && "Shuffle too small");
4870   Out << Shuffle[0];
4871   for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
4872     Out << ", " << Shuffle[I];
4873   Out << " }\n";
4874 }
4875 
4876 void AssemblyWriter::printUseLists(const Function *F) {
4877   auto It = UseListOrders.find(F);
4878   if (It == UseListOrders.end())
4879     return;
4880 
4881   Out << "\n; uselistorder directives\n";
4882   for (const auto &Pair : It->second)
4883     printUseListOrder(Pair.first, Pair.second);
4884 }
4885 
4886 //===----------------------------------------------------------------------===//
4887 //                       External Interface declarations
4888 //===----------------------------------------------------------------------===//
4889 
4890 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4891                      bool ShouldPreserveUseListOrder,
4892                      bool IsForDebug) const {
4893   SlotTracker SlotTable(this->getParent());
4894   formatted_raw_ostream OS(ROS);
4895   AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4896                    IsForDebug,
4897                    ShouldPreserveUseListOrder);
4898   W.printFunction(this);
4899 }
4900 
4901 void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4902                      bool ShouldPreserveUseListOrder,
4903                      bool IsForDebug) const {
4904   SlotTracker SlotTable(this->getParent());
4905   formatted_raw_ostream OS(ROS);
4906   AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
4907                    IsForDebug,
4908                    ShouldPreserveUseListOrder);
4909   W.printBasicBlock(this);
4910 }
4911 
4912 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4913                    bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4914   SlotTracker SlotTable(this);
4915   formatted_raw_ostream OS(ROS);
4916   AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4917                    ShouldPreserveUseListOrder);
4918   W.printModule(this);
4919 }
4920 
4921 void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4922   SlotTracker SlotTable(getParent());
4923   formatted_raw_ostream OS(ROS);
4924   AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4925   W.printNamedMDNode(this);
4926 }
4927 
4928 void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4929                         bool IsForDebug) const {
4930   std::optional<SlotTracker> LocalST;
4931   SlotTracker *SlotTable;
4932   if (auto *ST = MST.getMachine())
4933     SlotTable = ST;
4934   else {
4935     LocalST.emplace(getParent());
4936     SlotTable = &*LocalST;
4937   }
4938 
4939   formatted_raw_ostream OS(ROS);
4940   AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4941   W.printNamedMDNode(this);
4942 }
4943 
4944 void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4945   PrintLLVMName(ROS, getName(), ComdatPrefix);
4946   ROS << " = comdat ";
4947 
4948   switch (getSelectionKind()) {
4949   case Comdat::Any:
4950     ROS << "any";
4951     break;
4952   case Comdat::ExactMatch:
4953     ROS << "exactmatch";
4954     break;
4955   case Comdat::Largest:
4956     ROS << "largest";
4957     break;
4958   case Comdat::NoDeduplicate:
4959     ROS << "nodeduplicate";
4960     break;
4961   case Comdat::SameSize:
4962     ROS << "samesize";
4963     break;
4964   }
4965 
4966   ROS << '\n';
4967 }
4968 
4969 void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4970   TypePrinting TP;
4971   TP.print(const_cast<Type*>(this), OS);
4972 
4973   if (NoDetails)
4974     return;
4975 
4976   // If the type is a named struct type, print the body as well.
4977   if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4978     if (!STy->isLiteral()) {
4979       OS << " = type ";
4980       TP.printStructBody(STy, OS);
4981     }
4982 }
4983 
4984 static bool isReferencingMDNode(const Instruction &I) {
4985   if (const auto *CI = dyn_cast<CallInst>(&I))
4986     if (Function *F = CI->getCalledFunction())
4987       if (F->isIntrinsic())
4988         for (auto &Op : I.operands())
4989           if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4990             if (isa<MDNode>(V->getMetadata()))
4991               return true;
4992   return false;
4993 }
4994 
4995 void DbgMarker::print(raw_ostream &ROS, bool IsForDebug) const {
4996 
4997   ModuleSlotTracker MST(getModuleFromDPI(this), true);
4998   print(ROS, MST, IsForDebug);
4999 }
5000 
5001 void DbgVariableRecord::print(raw_ostream &ROS, bool IsForDebug) const {
5002 
5003   ModuleSlotTracker MST(getModuleFromDPI(this), true);
5004   print(ROS, MST, IsForDebug);
5005 }
5006 
5007 void DbgMarker::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5008                       bool IsForDebug) const {
5009   formatted_raw_ostream OS(ROS);
5010   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5011   SlotTracker &SlotTable =
5012       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5013   auto incorporateFunction = [&](const Function *F) {
5014     if (F)
5015       MST.incorporateFunction(*F);
5016   };
5017   incorporateFunction(getParent() ? getParent()->getParent() : nullptr);
5018   AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5019   W.printDbgMarker(*this);
5020 }
5021 
5022 void DbgLabelRecord::print(raw_ostream &ROS, bool IsForDebug) const {
5023 
5024   ModuleSlotTracker MST(getModuleFromDPI(this), true);
5025   print(ROS, MST, IsForDebug);
5026 }
5027 
5028 void DbgVariableRecord::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5029                               bool IsForDebug) const {
5030   formatted_raw_ostream OS(ROS);
5031   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5032   SlotTracker &SlotTable =
5033       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5034   auto incorporateFunction = [&](const Function *F) {
5035     if (F)
5036       MST.incorporateFunction(*F);
5037   };
5038   incorporateFunction(Marker && Marker->getParent()
5039                           ? Marker->getParent()->getParent()
5040                           : nullptr);
5041   AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5042   W.printDbgVariableRecord(*this);
5043 }
5044 
5045 void DbgLabelRecord::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5046                            bool IsForDebug) const {
5047   formatted_raw_ostream OS(ROS);
5048   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5049   SlotTracker &SlotTable =
5050       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5051   auto incorporateFunction = [&](const Function *F) {
5052     if (F)
5053       MST.incorporateFunction(*F);
5054   };
5055   incorporateFunction(Marker->getParent() ? Marker->getParent()->getParent()
5056                                           : nullptr);
5057   AssemblyWriter W(OS, SlotTable, getModuleFromDPI(this), nullptr, IsForDebug);
5058   W.printDbgLabelRecord(*this);
5059 }
5060 
5061 void Value::print(raw_ostream &ROS, bool IsForDebug) const {
5062   bool ShouldInitializeAllMetadata = false;
5063   if (auto *I = dyn_cast<Instruction>(this))
5064     ShouldInitializeAllMetadata = isReferencingMDNode(*I);
5065   else if (isa<Function>(this) || isa<MetadataAsValue>(this))
5066     ShouldInitializeAllMetadata = true;
5067 
5068   ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
5069   print(ROS, MST, IsForDebug);
5070 }
5071 
5072 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
5073                   bool IsForDebug) const {
5074   formatted_raw_ostream OS(ROS);
5075   SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
5076   SlotTracker &SlotTable =
5077       MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
5078   auto incorporateFunction = [&](const Function *F) {
5079     if (F)
5080       MST.incorporateFunction(*F);
5081   };
5082 
5083   if (const Instruction *I = dyn_cast<Instruction>(this)) {
5084     incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
5085     AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
5086     W.printInstruction(*I);
5087   } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
5088     incorporateFunction(BB->getParent());
5089     AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
5090     W.printBasicBlock(BB);
5091   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
5092     AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
5093     if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
5094       W.printGlobal(V);
5095     else if (const Function *F = dyn_cast<Function>(GV))
5096       W.printFunction(F);
5097     else if (const GlobalAlias *A = dyn_cast<GlobalAlias>(GV))
5098       W.printAlias(A);
5099     else if (const GlobalIFunc *I = dyn_cast<GlobalIFunc>(GV))
5100       W.printIFunc(I);
5101     else
5102       llvm_unreachable("Unknown GlobalValue to print out!");
5103   } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
5104     V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
5105   } else if (const Constant *C = dyn_cast<Constant>(this)) {
5106     TypePrinting TypePrinter;
5107     TypePrinter.print(C->getType(), OS);
5108     OS << ' ';
5109     AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine());
5110     WriteConstantInternal(OS, C, WriterCtx);
5111   } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
5112     this->printAsOperand(OS, /* PrintType */ true, MST);
5113   } else {
5114     llvm_unreachable("Unknown value to print out!");
5115   }
5116 }
5117 
5118 /// Print without a type, skipping the TypePrinting object.
5119 ///
5120 /// \return \c true iff printing was successful.
5121 static bool printWithoutType(const Value &V, raw_ostream &O,
5122                              SlotTracker *Machine, const Module *M) {
5123   if (V.hasName() || isa<GlobalValue>(V) ||
5124       (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
5125     AsmWriterContext WriterCtx(nullptr, Machine, M);
5126     WriteAsOperandInternal(O, &V, WriterCtx);
5127     return true;
5128   }
5129   return false;
5130 }
5131 
5132 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
5133                                ModuleSlotTracker &MST) {
5134   TypePrinting TypePrinter(MST.getModule());
5135   if (PrintType) {
5136     TypePrinter.print(V.getType(), O);
5137     O << ' ';
5138   }
5139 
5140   AsmWriterContext WriterCtx(&TypePrinter, MST.getMachine(), MST.getModule());
5141   WriteAsOperandInternal(O, &V, WriterCtx);
5142 }
5143 
5144 void Value::printAsOperand(raw_ostream &O, bool PrintType,
5145                            const Module *M) const {
5146   if (!M)
5147     M = getModuleFromVal(this);
5148 
5149   if (!PrintType)
5150     if (printWithoutType(*this, O, nullptr, M))
5151       return;
5152 
5153   SlotTracker Machine(
5154       M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
5155   ModuleSlotTracker MST(Machine, M);
5156   printAsOperandImpl(*this, O, PrintType, MST);
5157 }
5158 
5159 void Value::printAsOperand(raw_ostream &O, bool PrintType,
5160                            ModuleSlotTracker &MST) const {
5161   if (!PrintType)
5162     if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
5163       return;
5164 
5165   printAsOperandImpl(*this, O, PrintType, MST);
5166 }
5167 
5168 /// Recursive version of printMetadataImpl.
5169 static void printMetadataImplRec(raw_ostream &ROS, const Metadata &MD,
5170                                  AsmWriterContext &WriterCtx) {
5171   formatted_raw_ostream OS(ROS);
5172   WriteAsOperandInternal(OS, &MD, WriterCtx, /* FromValue */ true);
5173 
5174   auto *N = dyn_cast<MDNode>(&MD);
5175   if (!N || isa<DIExpression>(MD))
5176     return;
5177 
5178   OS << " = ";
5179   WriteMDNodeBodyInternal(OS, N, WriterCtx);
5180 }
5181 
5182 namespace {
5183 struct MDTreeAsmWriterContext : public AsmWriterContext {
5184   unsigned Level;
5185   // {Level, Printed string}
5186   using EntryTy = std::pair<unsigned, std::string>;
5187   SmallVector<EntryTy, 4> Buffer;
5188 
5189   // Used to break the cycle in case there is any.
5190   SmallPtrSet<const Metadata *, 4> Visited;
5191 
5192   raw_ostream &MainOS;
5193 
5194   MDTreeAsmWriterContext(TypePrinting *TP, SlotTracker *ST, const Module *M,
5195                          raw_ostream &OS, const Metadata *InitMD)
5196       : AsmWriterContext(TP, ST, M), Level(0U), Visited({InitMD}), MainOS(OS) {}
5197 
5198   void onWriteMetadataAsOperand(const Metadata *MD) override {
5199     if (!Visited.insert(MD).second)
5200       return;
5201 
5202     std::string Str;
5203     raw_string_ostream SS(Str);
5204     ++Level;
5205     // A placeholder entry to memorize the correct
5206     // position in buffer.
5207     Buffer.emplace_back(std::make_pair(Level, ""));
5208     unsigned InsertIdx = Buffer.size() - 1;
5209 
5210     printMetadataImplRec(SS, *MD, *this);
5211     Buffer[InsertIdx].second = std::move(SS.str());
5212     --Level;
5213   }
5214 
5215   ~MDTreeAsmWriterContext() {
5216     for (const auto &Entry : Buffer) {
5217       MainOS << "\n";
5218       unsigned NumIndent = Entry.first * 2U;
5219       MainOS.indent(NumIndent) << Entry.second;
5220     }
5221   }
5222 };
5223 } // end anonymous namespace
5224 
5225 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
5226                               ModuleSlotTracker &MST, const Module *M,
5227                               bool OnlyAsOperand, bool PrintAsTree = false) {
5228   formatted_raw_ostream OS(ROS);
5229 
5230   TypePrinting TypePrinter(M);
5231 
5232   std::unique_ptr<AsmWriterContext> WriterCtx;
5233   if (PrintAsTree && !OnlyAsOperand)
5234     WriterCtx = std::make_unique<MDTreeAsmWriterContext>(
5235         &TypePrinter, MST.getMachine(), M, OS, &MD);
5236   else
5237     WriterCtx =
5238         std::make_unique<AsmWriterContext>(&TypePrinter, MST.getMachine(), M);
5239 
5240   WriteAsOperandInternal(OS, &MD, *WriterCtx, /* FromValue */ true);
5241 
5242   auto *N = dyn_cast<MDNode>(&MD);
5243   if (OnlyAsOperand || !N || isa<DIExpression>(MD))
5244     return;
5245 
5246   OS << " = ";
5247   WriteMDNodeBodyInternal(OS, N, *WriterCtx);
5248 }
5249 
5250 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
5251   ModuleSlotTracker MST(M, isa<MDNode>(this));
5252   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5253 }
5254 
5255 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
5256                               const Module *M) const {
5257   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
5258 }
5259 
5260 void Metadata::print(raw_ostream &OS, const Module *M,
5261                      bool /*IsForDebug*/) const {
5262   ModuleSlotTracker MST(M, isa<MDNode>(this));
5263   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5264 }
5265 
5266 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
5267                      const Module *M, bool /*IsForDebug*/) const {
5268   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
5269 }
5270 
5271 void MDNode::printTree(raw_ostream &OS, const Module *M) const {
5272   ModuleSlotTracker MST(M, true);
5273   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5274                     /*PrintAsTree=*/true);
5275 }
5276 
5277 void MDNode::printTree(raw_ostream &OS, ModuleSlotTracker &MST,
5278                        const Module *M) const {
5279   printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false,
5280                     /*PrintAsTree=*/true);
5281 }
5282 
5283 void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
5284   SlotTracker SlotTable(this);
5285   formatted_raw_ostream OS(ROS);
5286   AssemblyWriter W(OS, SlotTable, this, IsForDebug);
5287   W.printModuleSummaryIndex();
5288 }
5289 
5290 void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
5291                                        unsigned UB) const {
5292   SlotTracker *ST = MachineStorage.get();
5293   if (!ST)
5294     return;
5295 
5296   for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
5297     if (I.second >= LB && I.second < UB)
5298       L.push_back(std::make_pair(I.second, I.first));
5299 }
5300 
5301 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5302 // Value::dump - allow easy printing of Values from the debugger.
5303 LLVM_DUMP_METHOD
5304 void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5305 
5306 // Value::dump - allow easy printing of Values from the debugger.
5307 LLVM_DUMP_METHOD
5308 void DbgMarker::dump() const {
5309   print(dbgs(), /*IsForDebug=*/true);
5310   dbgs() << '\n';
5311 }
5312 
5313 // Value::dump - allow easy printing of Values from the debugger.
5314 LLVM_DUMP_METHOD
5315 void DbgRecord::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5316 
5317 // Type::dump - allow easy printing of Types from the debugger.
5318 LLVM_DUMP_METHOD
5319 void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
5320 
5321 // Module::dump() - Allow printing of Modules from the debugger.
5322 LLVM_DUMP_METHOD
5323 void Module::dump() const {
5324   print(dbgs(), nullptr,
5325         /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
5326 }
5327 
5328 // Allow printing of Comdats from the debugger.
5329 LLVM_DUMP_METHOD
5330 void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5331 
5332 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
5333 LLVM_DUMP_METHOD
5334 void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5335 
5336 LLVM_DUMP_METHOD
5337 void Metadata::dump() const { dump(nullptr); }
5338 
5339 LLVM_DUMP_METHOD
5340 void Metadata::dump(const Module *M) const {
5341   print(dbgs(), M, /*IsForDebug=*/true);
5342   dbgs() << '\n';
5343 }
5344 
5345 LLVM_DUMP_METHOD
5346 void MDNode::dumpTree() const { dumpTree(nullptr); }
5347 
5348 LLVM_DUMP_METHOD
5349 void MDNode::dumpTree(const Module *M) const {
5350   printTree(dbgs(), M);
5351   dbgs() << '\n';
5352 }
5353 
5354 // Allow printing of ModuleSummaryIndex from the debugger.
5355 LLVM_DUMP_METHOD
5356 void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
5357 #endif
5358