1 //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// 10 /// Provide a pass which mitigates speculative execution attacks which operate 11 /// by speculating incorrectly past some predicate (a type check, bounds check, 12 /// or other condition) to reach a load with invalid inputs and leak the data 13 /// accessed by that load using a side channel out of the speculative domain. 14 /// 15 /// For details on the attacks, see the first variant in both the Project Zero 16 /// writeup and the Spectre paper: 17 /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html 18 /// https://spectreattack.com/spectre.pdf 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #include "X86.h" 23 #include "X86InstrInfo.h" 24 #include "X86Subtarget.h" 25 #include "llvm/ADT/ArrayRef.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/STLExtras.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/SparseBitVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/CodeGen/MachineBasicBlock.h" 34 #include "llvm/CodeGen/MachineConstantPool.h" 35 #include "llvm/CodeGen/MachineFunction.h" 36 #include "llvm/CodeGen/MachineFunctionPass.h" 37 #include "llvm/CodeGen/MachineInstr.h" 38 #include "llvm/CodeGen/MachineInstrBuilder.h" 39 #include "llvm/CodeGen/MachineModuleInfo.h" 40 #include "llvm/CodeGen/MachineOperand.h" 41 #include "llvm/CodeGen/MachineRegisterInfo.h" 42 #include "llvm/CodeGen/MachineSSAUpdater.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSchedule.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/DebugLoc.h" 48 #include "llvm/MC/MCSchedule.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <cassert> 55 #include <iterator> 56 #include <optional> 57 #include <utility> 58 59 using namespace llvm; 60 61 #define PASS_KEY "x86-slh" 62 #define DEBUG_TYPE PASS_KEY 63 64 STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); 65 STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); 66 STATISTIC(NumAddrRegsHardened, 67 "Number of address mode used registers hardaned"); 68 STATISTIC(NumPostLoadRegsHardened, 69 "Number of post-load register values hardened"); 70 STATISTIC(NumCallsOrJumpsHardened, 71 "Number of calls or jumps requiring extra hardening"); 72 STATISTIC(NumInstsInserted, "Number of instructions inserted"); 73 STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); 74 75 static cl::opt<bool> EnableSpeculativeLoadHardening( 76 "x86-speculative-load-hardening", 77 cl::desc("Force enable speculative load hardening"), cl::init(false), 78 cl::Hidden); 79 80 static cl::opt<bool> HardenEdgesWithLFENCE( 81 PASS_KEY "-lfence", 82 cl::desc( 83 "Use LFENCE along each conditional edge to harden against speculative " 84 "loads rather than conditional movs and poisoned pointers."), 85 cl::init(false), cl::Hidden); 86 87 static cl::opt<bool> EnablePostLoadHardening( 88 PASS_KEY "-post-load", 89 cl::desc("Harden the value loaded *after* it is loaded by " 90 "flushing the loaded bits to 1. This is hard to do " 91 "in general but can be done easily for GPRs."), 92 cl::init(true), cl::Hidden); 93 94 static cl::opt<bool> FenceCallAndRet( 95 PASS_KEY "-fence-call-and-ret", 96 cl::desc("Use a full speculation fence to harden both call and ret edges " 97 "rather than a lighter weight mitigation."), 98 cl::init(false), cl::Hidden); 99 100 static cl::opt<bool> HardenInterprocedurally( 101 PASS_KEY "-ip", 102 cl::desc("Harden interprocedurally by passing our state in and out of " 103 "functions in the high bits of the stack pointer."), 104 cl::init(true), cl::Hidden); 105 106 static cl::opt<bool> 107 HardenLoads(PASS_KEY "-loads", 108 cl::desc("Sanitize loads from memory. When disable, no " 109 "significant security is provided."), 110 cl::init(true), cl::Hidden); 111 112 static cl::opt<bool> HardenIndirectCallsAndJumps( 113 PASS_KEY "-indirect", 114 cl::desc("Harden indirect calls and jumps against using speculatively " 115 "stored attacker controlled addresses. This is designed to " 116 "mitigate Spectre v1.2 style attacks."), 117 cl::init(true), cl::Hidden); 118 119 namespace { 120 121 class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { 122 public: 123 X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { } 124 125 StringRef getPassName() const override { 126 return "X86 speculative load hardening"; 127 } 128 bool runOnMachineFunction(MachineFunction &MF) override; 129 void getAnalysisUsage(AnalysisUsage &AU) const override; 130 131 /// Pass identification, replacement for typeid. 132 static char ID; 133 134 private: 135 /// The information about a block's conditional terminators needed to trace 136 /// our predicate state through the exiting edges. 137 struct BlockCondInfo { 138 MachineBasicBlock *MBB; 139 140 // We mostly have one conditional branch, and in extremely rare cases have 141 // two. Three and more are so rare as to be unimportant for compile time. 142 SmallVector<MachineInstr *, 2> CondBrs; 143 144 MachineInstr *UncondBr; 145 }; 146 147 /// Manages the predicate state traced through the program. 148 struct PredState { 149 unsigned InitialReg = 0; 150 unsigned PoisonReg = 0; 151 152 const TargetRegisterClass *RC; 153 MachineSSAUpdater SSA; 154 155 PredState(MachineFunction &MF, const TargetRegisterClass *RC) 156 : RC(RC), SSA(MF) {} 157 }; 158 159 const X86Subtarget *Subtarget = nullptr; 160 MachineRegisterInfo *MRI = nullptr; 161 const X86InstrInfo *TII = nullptr; 162 const TargetRegisterInfo *TRI = nullptr; 163 164 std::optional<PredState> PS; 165 166 void hardenEdgesWithLFENCE(MachineFunction &MF); 167 168 SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); 169 170 SmallVector<MachineInstr *, 16> 171 tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); 172 173 void unfoldCallAndJumpLoads(MachineFunction &MF); 174 175 SmallVector<MachineInstr *, 16> 176 tracePredStateThroughIndirectBranches(MachineFunction &MF); 177 178 void tracePredStateThroughBlocksAndHarden(MachineFunction &MF); 179 180 unsigned saveEFLAGS(MachineBasicBlock &MBB, 181 MachineBasicBlock::iterator InsertPt, 182 const DebugLoc &Loc); 183 void restoreEFLAGS(MachineBasicBlock &MBB, 184 MachineBasicBlock::iterator InsertPt, const DebugLoc &Loc, 185 Register Reg); 186 187 void mergePredStateIntoSP(MachineBasicBlock &MBB, 188 MachineBasicBlock::iterator InsertPt, 189 const DebugLoc &Loc, unsigned PredStateReg); 190 unsigned extractPredStateFromSP(MachineBasicBlock &MBB, 191 MachineBasicBlock::iterator InsertPt, 192 const DebugLoc &Loc); 193 194 void 195 hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, 196 MachineOperand &IndexMO, 197 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); 198 MachineInstr * 199 sinkPostLoadHardenedInst(MachineInstr &MI, 200 SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); 201 bool canHardenRegister(Register Reg); 202 unsigned hardenValueInRegister(Register Reg, MachineBasicBlock &MBB, 203 MachineBasicBlock::iterator InsertPt, 204 const DebugLoc &Loc); 205 unsigned hardenPostLoad(MachineInstr &MI); 206 void hardenReturnInstr(MachineInstr &MI); 207 void tracePredStateThroughCall(MachineInstr &MI); 208 void hardenIndirectCallOrJumpInstr( 209 MachineInstr &MI, 210 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); 211 }; 212 213 } // end anonymous namespace 214 215 char X86SpeculativeLoadHardeningPass::ID = 0; 216 217 void X86SpeculativeLoadHardeningPass::getAnalysisUsage( 218 AnalysisUsage &AU) const { 219 MachineFunctionPass::getAnalysisUsage(AU); 220 } 221 222 static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, 223 MachineBasicBlock &Succ, int SuccCount, 224 MachineInstr *Br, MachineInstr *&UncondBr, 225 const X86InstrInfo &TII) { 226 assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); 227 228 MachineFunction &MF = *MBB.getParent(); 229 230 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); 231 232 // We have to insert the new block immediately after the current one as we 233 // don't know what layout-successor relationships the successor has and we 234 // may not be able to (and generally don't want to) try to fix those up. 235 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); 236 237 // Update the branch instruction if necessary. 238 if (Br) { 239 assert(Br->getOperand(0).getMBB() == &Succ && 240 "Didn't start with the right target!"); 241 Br->getOperand(0).setMBB(&NewMBB); 242 243 // If this successor was reached through a branch rather than fallthrough, 244 // we might have *broken* fallthrough and so need to inject a new 245 // unconditional branch. 246 if (!UncondBr) { 247 MachineBasicBlock &OldLayoutSucc = 248 *std::next(MachineFunction::iterator(&NewMBB)); 249 assert(MBB.isSuccessor(&OldLayoutSucc) && 250 "Without an unconditional branch, the old layout successor should " 251 "be an actual successor!"); 252 auto BrBuilder = 253 BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); 254 // Update the unconditional branch now that we've added one. 255 UncondBr = &*BrBuilder; 256 } 257 258 // Insert unconditional "jump Succ" instruction in the new block if 259 // necessary. 260 if (!NewMBB.isLayoutSuccessor(&Succ)) { 261 SmallVector<MachineOperand, 4> Cond; 262 TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); 263 } 264 } else { 265 assert(!UncondBr && 266 "Cannot have a branchless successor and an unconditional branch!"); 267 assert(NewMBB.isLayoutSuccessor(&Succ) && 268 "A non-branch successor must have been a layout successor before " 269 "and now is a layout successor of the new block."); 270 } 271 272 // If this is the only edge to the successor, we can just replace it in the 273 // CFG. Otherwise we need to add a new entry in the CFG for the new 274 // successor. 275 if (SuccCount == 1) { 276 MBB.replaceSuccessor(&Succ, &NewMBB); 277 } else { 278 MBB.splitSuccessor(&Succ, &NewMBB); 279 } 280 281 // Hook up the edge from the new basic block to the old successor in the CFG. 282 NewMBB.addSuccessor(&Succ); 283 284 // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. 285 for (MachineInstr &MI : Succ) { 286 if (!MI.isPHI()) 287 break; 288 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; 289 OpIdx += 2) { 290 MachineOperand &OpV = MI.getOperand(OpIdx); 291 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); 292 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); 293 if (OpMBB.getMBB() != &MBB) 294 continue; 295 296 // If this is the last edge to the succesor, just replace MBB in the PHI 297 if (SuccCount == 1) { 298 OpMBB.setMBB(&NewMBB); 299 break; 300 } 301 302 // Otherwise, append a new pair of operands for the new incoming edge. 303 MI.addOperand(MF, OpV); 304 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); 305 break; 306 } 307 } 308 309 // Inherit live-ins from the successor 310 for (auto &LI : Succ.liveins()) 311 NewMBB.addLiveIn(LI); 312 313 LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '" 314 << Succ.getName() << "'.\n"); 315 return NewMBB; 316 } 317 318 /// Removing duplicate PHI operands to leave the PHI in a canonical and 319 /// predictable form. 320 /// 321 /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR 322 /// isn't what you might expect. We may have multiple entries in PHI nodes for 323 /// a single predecessor. This makes CFG-updating extremely complex, so here we 324 /// simplify all PHI nodes to a model even simpler than the IR's model: exactly 325 /// one entry per predecessor, regardless of how many edges there are. 326 static void canonicalizePHIOperands(MachineFunction &MF) { 327 SmallPtrSet<MachineBasicBlock *, 4> Preds; 328 SmallVector<int, 4> DupIndices; 329 for (auto &MBB : MF) 330 for (auto &MI : MBB) { 331 if (!MI.isPHI()) 332 break; 333 334 // First we scan the operands of the PHI looking for duplicate entries 335 // a particular predecessor. We retain the operand index of each duplicate 336 // entry found. 337 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; 338 OpIdx += 2) 339 if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) 340 DupIndices.push_back(OpIdx); 341 342 // Now walk the duplicate indices, removing both the block and value. Note 343 // that these are stored as a vector making this element-wise removal 344 // :w 345 // potentially quadratic. 346 // 347 // FIXME: It is really frustrating that we have to use a quadratic 348 // removal algorithm here. There should be a better way, but the use-def 349 // updates required make that impossible using the public API. 350 // 351 // Note that we have to process these backwards so that we don't 352 // invalidate other indices with each removal. 353 while (!DupIndices.empty()) { 354 int OpIdx = DupIndices.pop_back_val(); 355 // Remove both the block and value operand, again in reverse order to 356 // preserve indices. 357 MI.removeOperand(OpIdx + 1); 358 MI.removeOperand(OpIdx); 359 } 360 361 Preds.clear(); 362 } 363 } 364 365 /// Helper to scan a function for loads vulnerable to misspeculation that we 366 /// want to harden. 367 /// 368 /// We use this to avoid making changes to functions where there is nothing we 369 /// need to do to harden against misspeculation. 370 static bool hasVulnerableLoad(MachineFunction &MF) { 371 for (MachineBasicBlock &MBB : MF) { 372 for (MachineInstr &MI : MBB) { 373 // Loads within this basic block after an LFENCE are not at risk of 374 // speculatively executing with invalid predicates from prior control 375 // flow. So break out of this block but continue scanning the function. 376 if (MI.getOpcode() == X86::LFENCE) 377 break; 378 379 // Looking for loads only. 380 if (!MI.mayLoad()) 381 continue; 382 383 // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. 384 if (MI.getOpcode() == X86::MFENCE) 385 continue; 386 387 // We found a load. 388 return true; 389 } 390 } 391 392 // No loads found. 393 return false; 394 } 395 396 bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( 397 MachineFunction &MF) { 398 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() 399 << " **********\n"); 400 401 // Only run if this pass is forced enabled or we detect the relevant function 402 // attribute requesting SLH. 403 if (!EnableSpeculativeLoadHardening && 404 !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) 405 return false; 406 407 Subtarget = &MF.getSubtarget<X86Subtarget>(); 408 MRI = &MF.getRegInfo(); 409 TII = Subtarget->getInstrInfo(); 410 TRI = Subtarget->getRegisterInfo(); 411 412 // FIXME: Support for 32-bit. 413 PS.emplace(MF, &X86::GR64_NOSPRegClass); 414 415 if (MF.begin() == MF.end()) 416 // Nothing to do for a degenerate empty function... 417 return false; 418 419 // We support an alternative hardening technique based on a debug flag. 420 if (HardenEdgesWithLFENCE) { 421 hardenEdgesWithLFENCE(MF); 422 return true; 423 } 424 425 // Create a dummy debug loc to use for all the generated code here. 426 DebugLoc Loc; 427 428 MachineBasicBlock &Entry = *MF.begin(); 429 auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); 430 431 // Do a quick scan to see if we have any checkable loads. 432 bool HasVulnerableLoad = hasVulnerableLoad(MF); 433 434 // See if we have any conditional branching blocks that we will need to trace 435 // predicate state through. 436 SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); 437 438 // If we have no interesting conditions or loads, nothing to do here. 439 if (!HasVulnerableLoad && Infos.empty()) 440 return true; 441 442 // The poison value is required to be an all-ones value for many aspects of 443 // this mitigation. 444 const int PoisonVal = -1; 445 PS->PoisonReg = MRI->createVirtualRegister(PS->RC); 446 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) 447 .addImm(PoisonVal); 448 ++NumInstsInserted; 449 450 // If we have loads being hardened and we've asked for call and ret edges to 451 // get a full fence-based mitigation, inject that fence. 452 if (HasVulnerableLoad && FenceCallAndRet) { 453 // We need to insert an LFENCE at the start of the function to suspend any 454 // incoming misspeculation from the caller. This helps two-fold: the caller 455 // may not have been protected as this code has been, and this code gets to 456 // not take any specific action to protect across calls. 457 // FIXME: We could skip this for functions which unconditionally return 458 // a constant. 459 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); 460 ++NumInstsInserted; 461 ++NumLFENCEsInserted; 462 } 463 464 // If we guarded the entry with an LFENCE and have no conditionals to protect 465 // in blocks, then we're done. 466 if (FenceCallAndRet && Infos.empty()) 467 // We may have changed the function's code at this point to insert fences. 468 return true; 469 470 // For every basic block in the function which can b 471 if (HardenInterprocedurally && !FenceCallAndRet) { 472 // Set up the predicate state by extracting it from the incoming stack 473 // pointer so we pick up any misspeculation in our caller. 474 PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); 475 } else { 476 // Otherwise, just build the predicate state itself by zeroing a register 477 // as we don't need any initial state. 478 PS->InitialReg = MRI->createVirtualRegister(PS->RC); 479 Register PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); 480 auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), 481 PredStateSubReg); 482 ++NumInstsInserted; 483 MachineOperand *ZeroEFLAGSDefOp = 484 ZeroI->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); 485 assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && 486 "Must have an implicit def of EFLAGS!"); 487 ZeroEFLAGSDefOp->setIsDead(true); 488 BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), 489 PS->InitialReg) 490 .addImm(0) 491 .addReg(PredStateSubReg) 492 .addImm(X86::sub_32bit); 493 } 494 495 // We're going to need to trace predicate state throughout the function's 496 // CFG. Prepare for this by setting up our initial state of PHIs with unique 497 // predecessor entries and all the initial predicate state. 498 canonicalizePHIOperands(MF); 499 500 // Track the updated values in an SSA updater to rewrite into SSA form at the 501 // end. 502 PS->SSA.Initialize(PS->InitialReg); 503 PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); 504 505 // Trace through the CFG. 506 auto CMovs = tracePredStateThroughCFG(MF, Infos); 507 508 // We may also enter basic blocks in this function via exception handling 509 // control flow. Here, if we are hardening interprocedurally, we need to 510 // re-capture the predicate state from the throwing code. In the Itanium ABI, 511 // the throw will always look like a call to __cxa_throw and will have the 512 // predicate state in the stack pointer, so extract fresh predicate state from 513 // the stack pointer and make it available in SSA. 514 // FIXME: Handle non-itanium ABI EH models. 515 if (HardenInterprocedurally) { 516 for (MachineBasicBlock &MBB : MF) { 517 assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); 518 assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); 519 assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); 520 if (!MBB.isEHPad()) 521 continue; 522 PS->SSA.AddAvailableValue( 523 &MBB, 524 extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); 525 } 526 } 527 528 if (HardenIndirectCallsAndJumps) { 529 // If we are going to harden calls and jumps we need to unfold their memory 530 // operands. 531 unfoldCallAndJumpLoads(MF); 532 533 // Then we trace predicate state through the indirect branches. 534 auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF); 535 CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end()); 536 } 537 538 // Now that we have the predicate state available at the start of each block 539 // in the CFG, trace it through each block, hardening vulnerable instructions 540 // as we go. 541 tracePredStateThroughBlocksAndHarden(MF); 542 543 // Now rewrite all the uses of the pred state using the SSA updater to insert 544 // PHIs connecting the state between blocks along the CFG edges. 545 for (MachineInstr *CMovI : CMovs) 546 for (MachineOperand &Op : CMovI->operands()) { 547 if (!Op.isReg() || Op.getReg() != PS->InitialReg) 548 continue; 549 550 PS->SSA.RewriteUse(Op); 551 } 552 553 LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); 554 dbgs() << "\n"; MF.verify(this)); 555 return true; 556 } 557 558 /// Implements the naive hardening approach of putting an LFENCE after every 559 /// potentially mis-predicted control flow construct. 560 /// 561 /// We include this as an alternative mostly for the purpose of comparison. The 562 /// performance impact of this is expected to be extremely severe and not 563 /// practical for any real-world users. 564 void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( 565 MachineFunction &MF) { 566 // First, we scan the function looking for blocks that are reached along edges 567 // that we might want to harden. 568 SmallSetVector<MachineBasicBlock *, 8> Blocks; 569 for (MachineBasicBlock &MBB : MF) { 570 // If there are no or only one successor, nothing to do here. 571 if (MBB.succ_size() <= 1) 572 continue; 573 574 // Skip blocks unless their terminators start with a branch. Other 575 // terminators don't seem interesting for guarding against misspeculation. 576 auto TermIt = MBB.getFirstTerminator(); 577 if (TermIt == MBB.end() || !TermIt->isBranch()) 578 continue; 579 580 // Add all the non-EH-pad succossors to the blocks we want to harden. We 581 // skip EH pads because there isn't really a condition of interest on 582 // entering. 583 for (MachineBasicBlock *SuccMBB : MBB.successors()) 584 if (!SuccMBB->isEHPad()) 585 Blocks.insert(SuccMBB); 586 } 587 588 for (MachineBasicBlock *MBB : Blocks) { 589 auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); 590 BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); 591 ++NumInstsInserted; 592 ++NumLFENCEsInserted; 593 } 594 } 595 596 SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> 597 X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { 598 SmallVector<BlockCondInfo, 16> Infos; 599 600 // Walk the function and build up a summary for each block's conditions that 601 // we need to trace through. 602 for (MachineBasicBlock &MBB : MF) { 603 // If there are no or only one successor, nothing to do here. 604 if (MBB.succ_size() <= 1) 605 continue; 606 607 // We want to reliably handle any conditional branch terminators in the 608 // MBB, so we manually analyze the branch. We can handle all of the 609 // permutations here, including ones that analyze branch cannot. 610 // 611 // The approach is to walk backwards across the terminators, resetting at 612 // any unconditional non-indirect branch, and track all conditional edges 613 // to basic blocks as well as the fallthrough or unconditional successor 614 // edge. For each conditional edge, we track the target and the opposite 615 // condition code in order to inject a "no-op" cmov into that successor 616 // that will harden the predicate. For the fallthrough/unconditional 617 // edge, we inject a separate cmov for each conditional branch with 618 // matching condition codes. This effectively implements an "and" of the 619 // condition flags, even if there isn't a single condition flag that would 620 // directly implement that. We don't bother trying to optimize either of 621 // these cases because if such an optimization is possible, LLVM should 622 // have optimized the conditional *branches* in that way already to reduce 623 // instruction count. This late, we simply assume the minimal number of 624 // branch instructions is being emitted and use that to guide our cmov 625 // insertion. 626 627 BlockCondInfo Info = {&MBB, {}, nullptr}; 628 629 // Now walk backwards through the terminators and build up successors they 630 // reach and the conditions. 631 for (MachineInstr &MI : llvm::reverse(MBB)) { 632 // Once we've handled all the terminators, we're done. 633 if (!MI.isTerminator()) 634 break; 635 636 // If we see a non-branch terminator, we can't handle anything so bail. 637 if (!MI.isBranch()) { 638 Info.CondBrs.clear(); 639 break; 640 } 641 642 // If we see an unconditional branch, reset our state, clear any 643 // fallthrough, and set this is the "else" successor. 644 if (MI.getOpcode() == X86::JMP_1) { 645 Info.CondBrs.clear(); 646 Info.UncondBr = &MI; 647 continue; 648 } 649 650 // If we get an invalid condition, we have an indirect branch or some 651 // other unanalyzable "fallthrough" case. We model this as a nullptr for 652 // the destination so we can still guard any conditional successors. 653 // Consider code sequences like: 654 // ``` 655 // jCC L1 656 // jmpq *%rax 657 // ``` 658 // We still want to harden the edge to `L1`. 659 if (X86::getCondFromBranch(MI) == X86::COND_INVALID) { 660 Info.CondBrs.clear(); 661 Info.UncondBr = &MI; 662 continue; 663 } 664 665 // We have a vanilla conditional branch, add it to our list. 666 Info.CondBrs.push_back(&MI); 667 } 668 if (Info.CondBrs.empty()) { 669 ++NumBranchesUntraced; 670 LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; 671 MBB.dump()); 672 continue; 673 } 674 675 Infos.push_back(Info); 676 } 677 678 return Infos; 679 } 680 681 /// Trace the predicate state through the CFG, instrumenting each conditional 682 /// branch such that misspeculation through an edge will poison the predicate 683 /// state. 684 /// 685 /// Returns the list of inserted CMov instructions so that they can have their 686 /// uses of the predicate state rewritten into proper SSA form once it is 687 /// complete. 688 SmallVector<MachineInstr *, 16> 689 X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( 690 MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { 691 // Collect the inserted cmov instructions so we can rewrite their uses of the 692 // predicate state into SSA form. 693 SmallVector<MachineInstr *, 16> CMovs; 694 695 // Now walk all of the basic blocks looking for ones that end in conditional 696 // jumps where we need to update this register along each edge. 697 for (const BlockCondInfo &Info : Infos) { 698 MachineBasicBlock &MBB = *Info.MBB; 699 const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; 700 MachineInstr *UncondBr = Info.UncondBr; 701 702 LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() 703 << "\n"); 704 ++NumCondBranchesTraced; 705 706 // Compute the non-conditional successor as either the target of any 707 // unconditional branch or the layout successor. 708 MachineBasicBlock *UncondSucc = 709 UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 710 ? UncondBr->getOperand(0).getMBB() 711 : nullptr) 712 : &*std::next(MachineFunction::iterator(&MBB)); 713 714 // Count how many edges there are to any given successor. 715 SmallDenseMap<MachineBasicBlock *, int> SuccCounts; 716 if (UncondSucc) 717 ++SuccCounts[UncondSucc]; 718 for (auto *CondBr : CondBrs) 719 ++SuccCounts[CondBr->getOperand(0).getMBB()]; 720 721 // A lambda to insert cmov instructions into a block checking all of the 722 // condition codes in a sequence. 723 auto BuildCheckingBlockForSuccAndConds = 724 [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, 725 MachineInstr *Br, MachineInstr *&UncondBr, 726 ArrayRef<X86::CondCode> Conds) { 727 // First, we split the edge to insert the checking block into a safe 728 // location. 729 auto &CheckingMBB = 730 (SuccCount == 1 && Succ.pred_size() == 1) 731 ? Succ 732 : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); 733 734 bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); 735 if (!LiveEFLAGS) 736 CheckingMBB.addLiveIn(X86::EFLAGS); 737 738 // Now insert the cmovs to implement the checks. 739 auto InsertPt = CheckingMBB.begin(); 740 assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && 741 "Should never have a PHI in the initial checking block as it " 742 "always has a single predecessor!"); 743 744 // We will wire each cmov to each other, but need to start with the 745 // incoming pred state. 746 unsigned CurStateReg = PS->InitialReg; 747 748 for (X86::CondCode Cond : Conds) { 749 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 750 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 751 752 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 753 // Note that we intentionally use an empty debug location so that 754 // this picks up the preceding location. 755 auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), 756 TII->get(CMovOp), UpdatedStateReg) 757 .addReg(CurStateReg) 758 .addReg(PS->PoisonReg) 759 .addImm(Cond); 760 // If this is the last cmov and the EFLAGS weren't originally 761 // live-in, mark them as killed. 762 if (!LiveEFLAGS && Cond == Conds.back()) 763 CMovI->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr) 764 ->setIsKill(true); 765 766 ++NumInstsInserted; 767 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); 768 dbgs() << "\n"); 769 770 // The first one of the cmovs will be using the top level 771 // `PredStateReg` and need to get rewritten into SSA form. 772 if (CurStateReg == PS->InitialReg) 773 CMovs.push_back(&*CMovI); 774 775 // The next cmov should start from this one's def. 776 CurStateReg = UpdatedStateReg; 777 } 778 779 // And put the last one into the available values for SSA form of our 780 // predicate state. 781 PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); 782 }; 783 784 std::vector<X86::CondCode> UncondCodeSeq; 785 for (auto *CondBr : CondBrs) { 786 MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); 787 int &SuccCount = SuccCounts[&Succ]; 788 789 X86::CondCode Cond = X86::getCondFromBranch(*CondBr); 790 X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); 791 UncondCodeSeq.push_back(Cond); 792 793 BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, 794 {InvCond}); 795 796 // Decrement the successor count now that we've split one of the edges. 797 // We need to keep the count of edges to the successor accurate in order 798 // to know above when to *replace* the successor in the CFG vs. just 799 // adding the new successor. 800 --SuccCount; 801 } 802 803 // Since we may have split edges and changed the number of successors, 804 // normalize the probabilities. This avoids doing it each time we split an 805 // edge. 806 MBB.normalizeSuccProbs(); 807 808 // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we 809 // need to intersect the other condition codes. We can do this by just 810 // doing a cmov for each one. 811 if (!UncondSucc) 812 // If we have no fallthrough to protect (perhaps it is an indirect jump?) 813 // just skip this and continue. 814 continue; 815 816 assert(SuccCounts[UncondSucc] == 1 && 817 "We should never have more than one edge to the unconditional " 818 "successor at this point because every other edge must have been " 819 "split above!"); 820 821 // Sort and unique the codes to minimize them. 822 llvm::sort(UncondCodeSeq); 823 UncondCodeSeq.erase(llvm::unique(UncondCodeSeq), UncondCodeSeq.end()); 824 825 // Build a checking version of the successor. 826 BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, 827 UncondBr, UncondBr, UncondCodeSeq); 828 } 829 830 return CMovs; 831 } 832 833 /// Compute the register class for the unfolded load. 834 /// 835 /// FIXME: This should probably live in X86InstrInfo, potentially by adding 836 /// a way to unfold into a newly created vreg rather than requiring a register 837 /// input. 838 static const TargetRegisterClass * 839 getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII, 840 unsigned Opcode) { 841 unsigned Index; 842 unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold( 843 Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index); 844 const MCInstrDesc &MCID = TII.get(UnfoldedOpc); 845 return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF); 846 } 847 848 void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads( 849 MachineFunction &MF) { 850 for (MachineBasicBlock &MBB : MF) 851 // We use make_early_inc_range here so we can remove instructions if needed 852 // without disturbing the iteration. 853 for (MachineInstr &MI : llvm::make_early_inc_range(MBB.instrs())) { 854 // Must either be a call or a branch. 855 if (!MI.isCall() && !MI.isBranch()) 856 continue; 857 // We only care about loading variants of these instructions. 858 if (!MI.mayLoad()) 859 continue; 860 861 switch (MI.getOpcode()) { 862 default: { 863 LLVM_DEBUG( 864 dbgs() << "ERROR: Found an unexpected loading branch or call " 865 "instruction:\n"; 866 MI.dump(); dbgs() << "\n"); 867 report_fatal_error("Unexpected loading branch or call!"); 868 } 869 870 case X86::FARCALL16m: 871 case X86::FARCALL32m: 872 case X86::FARCALL64m: 873 case X86::FARJMP16m: 874 case X86::FARJMP32m: 875 case X86::FARJMP64m: 876 // We cannot mitigate far jumps or calls, but we also don't expect them 877 // to be vulnerable to Spectre v1.2 style attacks. 878 continue; 879 880 case X86::CALL16m: 881 case X86::CALL16m_NT: 882 case X86::CALL32m: 883 case X86::CALL32m_NT: 884 case X86::CALL64m: 885 case X86::CALL64m_NT: 886 case X86::JMP16m: 887 case X86::JMP16m_NT: 888 case X86::JMP32m: 889 case X86::JMP32m_NT: 890 case X86::JMP64m: 891 case X86::JMP64m_NT: 892 case X86::TAILJMPm64: 893 case X86::TAILJMPm64_REX: 894 case X86::TAILJMPm: 895 case X86::TCRETURNmi64: 896 case X86::TCRETURNmi: { 897 // Use the generic unfold logic now that we know we're dealing with 898 // expected instructions. 899 // FIXME: We don't have test coverage for all of these! 900 auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode()); 901 if (!UnfoldedRC) { 902 LLVM_DEBUG(dbgs() 903 << "ERROR: Unable to unfold load from instruction:\n"; 904 MI.dump(); dbgs() << "\n"); 905 report_fatal_error("Unable to unfold load!"); 906 } 907 Register Reg = MRI->createVirtualRegister(UnfoldedRC); 908 SmallVector<MachineInstr *, 2> NewMIs; 909 // If we were able to compute an unfolded reg class, any failure here 910 // is just a programming error so just assert. 911 bool Unfolded = 912 TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true, 913 /*UnfoldStore*/ false, NewMIs); 914 (void)Unfolded; 915 assert(Unfolded && 916 "Computed unfolded register class but failed to unfold"); 917 // Now stitch the new instructions into place and erase the old one. 918 for (auto *NewMI : NewMIs) 919 MBB.insert(MI.getIterator(), NewMI); 920 921 // Update the call info. 922 if (MI.isCandidateForAdditionalCallInfo()) 923 MF.eraseAdditionalCallInfo(&MI); 924 925 MI.eraseFromParent(); 926 LLVM_DEBUG({ 927 dbgs() << "Unfolded load successfully into:\n"; 928 for (auto *NewMI : NewMIs) { 929 NewMI->dump(); 930 dbgs() << "\n"; 931 } 932 }); 933 continue; 934 } 935 } 936 llvm_unreachable("Escaped switch with default!"); 937 } 938 } 939 940 /// Trace the predicate state through indirect branches, instrumenting them to 941 /// poison the state if a target is reached that does not match the expected 942 /// target. 943 /// 944 /// This is designed to mitigate Spectre variant 1 attacks where an indirect 945 /// branch is trained to predict a particular target and then mispredicts that 946 /// target in a way that can leak data. Despite using an indirect branch, this 947 /// is really a variant 1 style attack: it does not steer execution to an 948 /// arbitrary or attacker controlled address, and it does not require any 949 /// special code executing next to the victim. This attack can also be mitigated 950 /// through retpolines, but those require either replacing indirect branches 951 /// with conditional direct branches or lowering them through a device that 952 /// blocks speculation. This mitigation can replace these retpoline-style 953 /// mitigations for jump tables and other indirect branches within a function 954 /// when variant 2 isn't a risk while allowing limited speculation. Indirect 955 /// calls, however, cannot be mitigated through this technique without changing 956 /// the ABI in a fundamental way. 957 SmallVector<MachineInstr *, 16> 958 X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches( 959 MachineFunction &MF) { 960 // We use the SSAUpdater to insert PHI nodes for the target addresses of 961 // indirect branches. We don't actually need the full power of the SSA updater 962 // in this particular case as we always have immediately available values, but 963 // this avoids us having to re-implement the PHI construction logic. 964 MachineSSAUpdater TargetAddrSSA(MF); 965 TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass)); 966 967 // Track which blocks were terminated with an indirect branch. 968 SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs; 969 970 // We need to know what blocks end up reached via indirect branches. We 971 // expect this to be a subset of those whose address is taken and so track it 972 // directly via the CFG. 973 SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs; 974 975 // Walk all the blocks which end in an indirect branch and make the 976 // target address available. 977 for (MachineBasicBlock &MBB : MF) { 978 // Find the last terminator. 979 auto MII = MBB.instr_rbegin(); 980 while (MII != MBB.instr_rend() && MII->isDebugInstr()) 981 ++MII; 982 if (MII == MBB.instr_rend()) 983 continue; 984 MachineInstr &TI = *MII; 985 if (!TI.isTerminator() || !TI.isBranch()) 986 // No terminator or non-branch terminator. 987 continue; 988 989 unsigned TargetReg; 990 991 switch (TI.getOpcode()) { 992 default: 993 // Direct branch or conditional branch (leading to fallthrough). 994 continue; 995 996 case X86::FARJMP16m: 997 case X86::FARJMP32m: 998 case X86::FARJMP64m: 999 // We cannot mitigate far jumps or calls, but we also don't expect them 1000 // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks. 1001 continue; 1002 1003 case X86::JMP16m: 1004 case X86::JMP16m_NT: 1005 case X86::JMP32m: 1006 case X86::JMP32m_NT: 1007 case X86::JMP64m: 1008 case X86::JMP64m_NT: 1009 // Mostly as documentation. 1010 report_fatal_error("Memory operand jumps should have been unfolded!"); 1011 1012 case X86::JMP16r: 1013 report_fatal_error( 1014 "Support for 16-bit indirect branches is not implemented."); 1015 case X86::JMP32r: 1016 report_fatal_error( 1017 "Support for 32-bit indirect branches is not implemented."); 1018 1019 case X86::JMP64r: 1020 TargetReg = TI.getOperand(0).getReg(); 1021 } 1022 1023 // We have definitely found an indirect branch. Verify that there are no 1024 // preceding conditional branches as we don't yet support that. 1025 if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) { 1026 return !OtherTI.isDebugInstr() && &OtherTI != &TI; 1027 })) { 1028 LLVM_DEBUG({ 1029 dbgs() << "ERROR: Found other terminators in a block with an indirect " 1030 "branch! This is not yet supported! Terminator sequence:\n"; 1031 for (MachineInstr &MI : MBB.terminators()) { 1032 MI.dump(); 1033 dbgs() << '\n'; 1034 } 1035 }); 1036 report_fatal_error("Unimplemented terminator sequence!"); 1037 } 1038 1039 // Make the target register an available value for this block. 1040 TargetAddrSSA.AddAvailableValue(&MBB, TargetReg); 1041 IndirectTerminatedMBBs.insert(&MBB); 1042 1043 // Add all the successors to our target candidates. 1044 for (MachineBasicBlock *Succ : MBB.successors()) 1045 IndirectTargetMBBs.insert(Succ); 1046 } 1047 1048 // Keep track of the cmov instructions we insert so we can return them. 1049 SmallVector<MachineInstr *, 16> CMovs; 1050 1051 // If we didn't find any indirect branches with targets, nothing to do here. 1052 if (IndirectTargetMBBs.empty()) 1053 return CMovs; 1054 1055 // We found indirect branches and targets that need to be instrumented to 1056 // harden loads within them. Walk the blocks of the function (to get a stable 1057 // ordering) and instrument each target of an indirect branch. 1058 for (MachineBasicBlock &MBB : MF) { 1059 // Skip the blocks that aren't candidate targets. 1060 if (!IndirectTargetMBBs.count(&MBB)) 1061 continue; 1062 1063 // We don't expect EH pads to ever be reached via an indirect branch. If 1064 // this is desired for some reason, we could simply skip them here rather 1065 // than asserting. 1066 assert(!MBB.isEHPad() && 1067 "Unexpected EH pad as target of an indirect branch!"); 1068 1069 // We should never end up threading EFLAGS into a block to harden 1070 // conditional jumps as there would be an additional successor via the 1071 // indirect branch. As a consequence, all such edges would be split before 1072 // reaching here, and the inserted block will handle the EFLAGS-based 1073 // hardening. 1074 assert(!MBB.isLiveIn(X86::EFLAGS) && 1075 "Cannot check within a block that already has live-in EFLAGS!"); 1076 1077 // We can't handle having non-indirect edges into this block unless this is 1078 // the only successor and we can synthesize the necessary target address. 1079 for (MachineBasicBlock *Pred : MBB.predecessors()) { 1080 // If we've already handled this by extracting the target directly, 1081 // nothing to do. 1082 if (IndirectTerminatedMBBs.count(Pred)) 1083 continue; 1084 1085 // Otherwise, we have to be the only successor. We generally expect this 1086 // to be true as conditional branches should have had a critical edge 1087 // split already. We don't however need to worry about EH pad successors 1088 // as they'll happily ignore the target and their hardening strategy is 1089 // resilient to all ways in which they could be reached speculatively. 1090 if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) { 1091 return Succ->isEHPad() || Succ == &MBB; 1092 })) { 1093 LLVM_DEBUG({ 1094 dbgs() << "ERROR: Found conditional entry to target of indirect " 1095 "branch!\n"; 1096 Pred->dump(); 1097 MBB.dump(); 1098 }); 1099 report_fatal_error("Cannot harden a conditional entry to a target of " 1100 "an indirect branch!"); 1101 } 1102 1103 // Now we need to compute the address of this block and install it as a 1104 // synthetic target in the predecessor. We do this at the bottom of the 1105 // predecessor. 1106 auto InsertPt = Pred->getFirstTerminator(); 1107 Register TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass); 1108 if (MF.getTarget().getCodeModel() == CodeModel::Small && 1109 !Subtarget->isPositionIndependent()) { 1110 // Directly materialize it into an immediate. 1111 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), 1112 TII->get(X86::MOV64ri32), TargetReg) 1113 .addMBB(&MBB); 1114 ++NumInstsInserted; 1115 (void)AddrI; 1116 LLVM_DEBUG(dbgs() << " Inserting mov: "; AddrI->dump(); 1117 dbgs() << "\n"); 1118 } else { 1119 auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r), 1120 TargetReg) 1121 .addReg(/*Base*/ X86::RIP) 1122 .addImm(/*Scale*/ 1) 1123 .addReg(/*Index*/ 0) 1124 .addMBB(&MBB) 1125 .addReg(/*Segment*/ 0); 1126 ++NumInstsInserted; 1127 (void)AddrI; 1128 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); 1129 dbgs() << "\n"); 1130 } 1131 // And make this available. 1132 TargetAddrSSA.AddAvailableValue(Pred, TargetReg); 1133 } 1134 1135 // Materialize the needed SSA value of the target. Note that we need the 1136 // middle of the block as this block might at the bottom have an indirect 1137 // branch back to itself. We can do this here because at this point, every 1138 // predecessor of this block has an available value. This is basically just 1139 // automating the construction of a PHI node for this target. 1140 Register TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB); 1141 1142 // Insert a comparison of the incoming target register with this block's 1143 // address. This also requires us to mark the block as having its address 1144 // taken explicitly. 1145 MBB.setMachineBlockAddressTaken(); 1146 auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin()); 1147 if (MF.getTarget().getCodeModel() == CodeModel::Small && 1148 !Subtarget->isPositionIndependent()) { 1149 // Check directly against a relocated immediate when we can. 1150 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32)) 1151 .addReg(TargetReg, RegState::Kill) 1152 .addMBB(&MBB); 1153 ++NumInstsInserted; 1154 (void)CheckI; 1155 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); 1156 } else { 1157 // Otherwise compute the address into a register first. 1158 Register AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass); 1159 auto AddrI = 1160 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg) 1161 .addReg(/*Base*/ X86::RIP) 1162 .addImm(/*Scale*/ 1) 1163 .addReg(/*Index*/ 0) 1164 .addMBB(&MBB) 1165 .addReg(/*Segment*/ 0); 1166 ++NumInstsInserted; 1167 (void)AddrI; 1168 LLVM_DEBUG(dbgs() << " Inserting lea: "; AddrI->dump(); dbgs() << "\n"); 1169 auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr)) 1170 .addReg(TargetReg, RegState::Kill) 1171 .addReg(AddrReg, RegState::Kill); 1172 ++NumInstsInserted; 1173 (void)CheckI; 1174 LLVM_DEBUG(dbgs() << " Inserting cmp: "; CheckI->dump(); dbgs() << "\n"); 1175 } 1176 1177 // Now cmov over the predicate if the comparison wasn't equal. 1178 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 1179 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 1180 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 1181 auto CMovI = 1182 BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg) 1183 .addReg(PS->InitialReg) 1184 .addReg(PS->PoisonReg) 1185 .addImm(X86::COND_NE); 1186 CMovI->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr) 1187 ->setIsKill(true); 1188 ++NumInstsInserted; 1189 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); 1190 CMovs.push_back(&*CMovI); 1191 1192 // And put the new value into the available values for SSA form of our 1193 // predicate state. 1194 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); 1195 } 1196 1197 // Return all the newly inserted cmov instructions of the predicate state. 1198 return CMovs; 1199 } 1200 1201 // Returns true if the MI has EFLAGS as a register def operand and it's live, 1202 // otherwise it returns false 1203 static bool isEFLAGSDefLive(const MachineInstr &MI) { 1204 if (const MachineOperand *DefOp = 1205 MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr)) { 1206 return !DefOp->isDead(); 1207 } 1208 return false; 1209 } 1210 1211 static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1212 const TargetRegisterInfo &TRI) { 1213 // Check if EFLAGS are alive by seeing if there is a def of them or they 1214 // live-in, and then seeing if that def is in turn used. 1215 for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { 1216 if (MachineOperand *DefOp = 1217 MI.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr)) { 1218 // If the def is dead, then EFLAGS is not live. 1219 if (DefOp->isDead()) 1220 return false; 1221 1222 // Otherwise we've def'ed it, and it is live. 1223 return true; 1224 } 1225 // While at this instruction, also check if we use and kill EFLAGS 1226 // which means it isn't live. 1227 if (MI.killsRegister(X86::EFLAGS, &TRI)) 1228 return false; 1229 } 1230 1231 // If we didn't find anything conclusive (neither definitely alive or 1232 // definitely dead) return whether it lives into the block. 1233 return MBB.isLiveIn(X86::EFLAGS); 1234 } 1235 1236 /// Trace the predicate state through each of the blocks in the function, 1237 /// hardening everything necessary along the way. 1238 /// 1239 /// We call this routine once the initial predicate state has been established 1240 /// for each basic block in the function in the SSA updater. This routine traces 1241 /// it through the instructions within each basic block, and for non-returning 1242 /// blocks informs the SSA updater about the final state that lives out of the 1243 /// block. Along the way, it hardens any vulnerable instruction using the 1244 /// currently valid predicate state. We have to do these two things together 1245 /// because the SSA updater only works across blocks. Within a block, we track 1246 /// the current predicate state directly and update it as it changes. 1247 /// 1248 /// This operates in two passes over each block. First, we analyze the loads in 1249 /// the block to determine which strategy will be used to harden them: hardening 1250 /// the address or hardening the loaded value when loaded into a register 1251 /// amenable to hardening. We have to process these first because the two 1252 /// strategies may interact -- later hardening may change what strategy we wish 1253 /// to use. We also will analyze data dependencies between loads and avoid 1254 /// hardening those loads that are data dependent on a load with a hardened 1255 /// address. We also skip hardening loads already behind an LFENCE as that is 1256 /// sufficient to harden them against misspeculation. 1257 /// 1258 /// Second, we actively trace the predicate state through the block, applying 1259 /// the hardening steps we determined necessary in the first pass as we go. 1260 /// 1261 /// These two passes are applied to each basic block. We operate one block at a 1262 /// time to simplify reasoning about reachability and sequencing. 1263 void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden( 1264 MachineFunction &MF) { 1265 SmallPtrSet<MachineInstr *, 16> HardenPostLoad; 1266 SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; 1267 1268 SmallSet<unsigned, 16> HardenedAddrRegs; 1269 1270 SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; 1271 1272 // Track the set of load-dependent registers through the basic block. Because 1273 // the values of these registers have an existing data dependency on a loaded 1274 // value which we would have checked, we can omit any checks on them. 1275 SparseBitVector<> LoadDepRegs; 1276 1277 for (MachineBasicBlock &MBB : MF) { 1278 // The first pass over the block: collect all the loads which can have their 1279 // loaded value hardened and all the loads that instead need their address 1280 // hardened. During this walk we propagate load dependence for address 1281 // hardened loads and also look for LFENCE to stop hardening wherever 1282 // possible. When deciding whether or not to harden the loaded value or not, 1283 // we check to see if any registers used in the address will have been 1284 // hardened at this point and if so, harden any remaining address registers 1285 // as that often successfully re-uses hardened addresses and minimizes 1286 // instructions. 1287 // 1288 // FIXME: We should consider an aggressive mode where we continue to keep as 1289 // many loads value hardened even when some address register hardening would 1290 // be free (due to reuse). 1291 // 1292 // Note that we only need this pass if we are actually hardening loads. 1293 if (HardenLoads) 1294 for (MachineInstr &MI : MBB) { 1295 // We naively assume that all def'ed registers of an instruction have 1296 // a data dependency on all of their operands. 1297 // FIXME: Do a more careful analysis of x86 to build a conservative 1298 // model here. 1299 if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { 1300 return Op.isReg() && LoadDepRegs.test(Op.getReg()); 1301 })) 1302 for (MachineOperand &Def : MI.defs()) 1303 if (Def.isReg()) 1304 LoadDepRegs.set(Def.getReg()); 1305 1306 // Both Intel and AMD are guiding that they will change the semantics of 1307 // LFENCE to be a speculation barrier, so if we see an LFENCE, there is 1308 // no more need to guard things in this block. 1309 if (MI.getOpcode() == X86::LFENCE) 1310 break; 1311 1312 // If this instruction cannot load, nothing to do. 1313 if (!MI.mayLoad()) 1314 continue; 1315 1316 // Some instructions which "load" are trivially safe or unimportant. 1317 if (MI.getOpcode() == X86::MFENCE) 1318 continue; 1319 1320 // Extract the memory operand information about this instruction. 1321 const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI); 1322 if (MemRefBeginIdx < 0) { 1323 LLVM_DEBUG(dbgs() 1324 << "WARNING: unable to harden loading instruction: "; 1325 MI.dump()); 1326 continue; 1327 } 1328 1329 MachineOperand &BaseMO = 1330 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 1331 MachineOperand &IndexMO = 1332 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 1333 1334 // If we have at least one (non-frame-index, non-RIP) register operand, 1335 // and neither operand is load-dependent, we need to check the load. 1336 unsigned BaseReg = 0, IndexReg = 0; 1337 if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && 1338 BaseMO.getReg() != X86::NoRegister) 1339 BaseReg = BaseMO.getReg(); 1340 if (IndexMO.getReg() != X86::NoRegister) 1341 IndexReg = IndexMO.getReg(); 1342 1343 if (!BaseReg && !IndexReg) 1344 // No register operands! 1345 continue; 1346 1347 // If any register operand is dependent, this load is dependent and we 1348 // needn't check it. 1349 // FIXME: Is this true in the case where we are hardening loads after 1350 // they complete? Unclear, need to investigate. 1351 if ((BaseReg && LoadDepRegs.test(BaseReg)) || 1352 (IndexReg && LoadDepRegs.test(IndexReg))) 1353 continue; 1354 1355 // If post-load hardening is enabled, this load is compatible with 1356 // post-load hardening, and we aren't already going to harden one of the 1357 // address registers, queue it up to be hardened post-load. Notably, 1358 // even once hardened this won't introduce a useful dependency that 1359 // could prune out subsequent loads. 1360 if (EnablePostLoadHardening && X86InstrInfo::isDataInvariantLoad(MI) && 1361 !isEFLAGSDefLive(MI) && MI.getDesc().getNumDefs() == 1 && 1362 MI.getOperand(0).isReg() && 1363 canHardenRegister(MI.getOperand(0).getReg()) && 1364 !HardenedAddrRegs.count(BaseReg) && 1365 !HardenedAddrRegs.count(IndexReg)) { 1366 HardenPostLoad.insert(&MI); 1367 HardenedAddrRegs.insert(MI.getOperand(0).getReg()); 1368 continue; 1369 } 1370 1371 // Record this instruction for address hardening and record its register 1372 // operands as being address-hardened. 1373 HardenLoadAddr.insert(&MI); 1374 if (BaseReg) 1375 HardenedAddrRegs.insert(BaseReg); 1376 if (IndexReg) 1377 HardenedAddrRegs.insert(IndexReg); 1378 1379 for (MachineOperand &Def : MI.defs()) 1380 if (Def.isReg()) 1381 LoadDepRegs.set(Def.getReg()); 1382 } 1383 1384 // Now re-walk the instructions in the basic block, and apply whichever 1385 // hardening strategy we have elected. Note that we do this in a second 1386 // pass specifically so that we have the complete set of instructions for 1387 // which we will do post-load hardening and can defer it in certain 1388 // circumstances. 1389 for (MachineInstr &MI : MBB) { 1390 if (HardenLoads) { 1391 // We cannot both require hardening the def of a load and its address. 1392 assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && 1393 "Requested to harden both the address and def of a load!"); 1394 1395 // Check if this is a load whose address needs to be hardened. 1396 if (HardenLoadAddr.erase(&MI)) { 1397 const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI); 1398 assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); 1399 1400 MachineOperand &BaseMO = 1401 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 1402 MachineOperand &IndexMO = 1403 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 1404 hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); 1405 continue; 1406 } 1407 1408 // Test if this instruction is one of our post load instructions (and 1409 // remove it from the set if so). 1410 if (HardenPostLoad.erase(&MI)) { 1411 assert(!MI.isCall() && "Must not try to post-load harden a call!"); 1412 1413 // If this is a data-invariant load and there is no EFLAGS 1414 // interference, we want to try and sink any hardening as far as 1415 // possible. 1416 if (X86InstrInfo::isDataInvariantLoad(MI) && !isEFLAGSDefLive(MI)) { 1417 // Sink the instruction we'll need to harden as far as we can down 1418 // the graph. 1419 MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); 1420 1421 // If we managed to sink this instruction, update everything so we 1422 // harden that instruction when we reach it in the instruction 1423 // sequence. 1424 if (SunkMI != &MI) { 1425 // If in sinking there was no instruction needing to be hardened, 1426 // we're done. 1427 if (!SunkMI) 1428 continue; 1429 1430 // Otherwise, add this to the set of defs we harden. 1431 HardenPostLoad.insert(SunkMI); 1432 continue; 1433 } 1434 } 1435 1436 unsigned HardenedReg = hardenPostLoad(MI); 1437 1438 // Mark the resulting hardened register as such so we don't re-harden. 1439 AddrRegToHardenedReg[HardenedReg] = HardenedReg; 1440 1441 continue; 1442 } 1443 1444 // Check for an indirect call or branch that may need its input hardened 1445 // even if we couldn't find the specific load used, or were able to 1446 // avoid hardening it for some reason. Note that here we cannot break 1447 // out afterward as we may still need to handle any call aspect of this 1448 // instruction. 1449 if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps) 1450 hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg); 1451 } 1452 1453 // After we finish hardening loads we handle interprocedural hardening if 1454 // enabled and relevant for this instruction. 1455 if (!HardenInterprocedurally) 1456 continue; 1457 if (!MI.isCall() && !MI.isReturn()) 1458 continue; 1459 1460 // If this is a direct return (IE, not a tail call) just directly harden 1461 // it. 1462 if (MI.isReturn() && !MI.isCall()) { 1463 hardenReturnInstr(MI); 1464 continue; 1465 } 1466 1467 // Otherwise we have a call. We need to handle transferring the predicate 1468 // state into a call and recovering it after the call returns (unless this 1469 // is a tail call). 1470 assert(MI.isCall() && "Should only reach here for calls!"); 1471 tracePredStateThroughCall(MI); 1472 } 1473 1474 HardenPostLoad.clear(); 1475 HardenLoadAddr.clear(); 1476 HardenedAddrRegs.clear(); 1477 AddrRegToHardenedReg.clear(); 1478 1479 // Currently, we only track data-dependent loads within a basic block. 1480 // FIXME: We should see if this is necessary or if we could be more 1481 // aggressive here without opening up attack avenues. 1482 LoadDepRegs.clear(); 1483 } 1484 } 1485 1486 /// Save EFLAGS into the returned GPR. This can in turn be restored with 1487 /// `restoreEFLAGS`. 1488 /// 1489 /// Note that LLVM can only lower very simple patterns of saved and restored 1490 /// EFLAGS registers. The restore should always be within the same basic block 1491 /// as the save so that no PHI nodes are inserted. 1492 unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( 1493 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1494 const DebugLoc &Loc) { 1495 // FIXME: Hard coding this to a 32-bit register class seems weird, but matches 1496 // what instruction selection does. 1497 Register Reg = MRI->createVirtualRegister(&X86::GR32RegClass); 1498 // We directly copy the FLAGS register and rely on later lowering to clean 1499 // this up into the appropriate setCC instructions. 1500 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); 1501 ++NumInstsInserted; 1502 return Reg; 1503 } 1504 1505 /// Restore EFLAGS from the provided GPR. This should be produced by 1506 /// `saveEFLAGS`. 1507 /// 1508 /// This must be done within the same basic block as the save in order to 1509 /// reliably lower. 1510 void X86SpeculativeLoadHardeningPass::restoreEFLAGS( 1511 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1512 const DebugLoc &Loc, Register Reg) { 1513 BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); 1514 ++NumInstsInserted; 1515 } 1516 1517 /// Takes the current predicate state (in a register) and merges it into the 1518 /// stack pointer. The state is essentially a single bit, but we merge this in 1519 /// a way that won't form non-canonical pointers and also will be preserved 1520 /// across normal stack adjustments. 1521 void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( 1522 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1523 const DebugLoc &Loc, unsigned PredStateReg) { 1524 Register TmpReg = MRI->createVirtualRegister(PS->RC); 1525 // FIXME: This hard codes a shift distance based on the number of bits needed 1526 // to stay canonical on 64-bit. We should compute this somehow and support 1527 // 32-bit as part of that. 1528 auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) 1529 .addReg(PredStateReg, RegState::Kill) 1530 .addImm(47); 1531 ShiftI->addRegisterDead(X86::EFLAGS, TRI); 1532 ++NumInstsInserted; 1533 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) 1534 .addReg(X86::RSP) 1535 .addReg(TmpReg, RegState::Kill); 1536 OrI->addRegisterDead(X86::EFLAGS, TRI); 1537 ++NumInstsInserted; 1538 } 1539 1540 /// Extracts the predicate state stored in the high bits of the stack pointer. 1541 unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( 1542 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1543 const DebugLoc &Loc) { 1544 Register PredStateReg = MRI->createVirtualRegister(PS->RC); 1545 Register TmpReg = MRI->createVirtualRegister(PS->RC); 1546 1547 // We know that the stack pointer will have any preserved predicate state in 1548 // its high bit. We just want to smear this across the other bits. Turns out, 1549 // this is exactly what an arithmetic right shift does. 1550 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) 1551 .addReg(X86::RSP); 1552 auto ShiftI = 1553 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) 1554 .addReg(TmpReg, RegState::Kill) 1555 .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); 1556 ShiftI->addRegisterDead(X86::EFLAGS, TRI); 1557 ++NumInstsInserted; 1558 1559 return PredStateReg; 1560 } 1561 1562 void X86SpeculativeLoadHardeningPass::hardenLoadAddr( 1563 MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, 1564 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { 1565 MachineBasicBlock &MBB = *MI.getParent(); 1566 const DebugLoc &Loc = MI.getDebugLoc(); 1567 1568 // Check if EFLAGS are alive by seeing if there is a def of them or they 1569 // live-in, and then seeing if that def is in turn used. 1570 bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); 1571 1572 SmallVector<MachineOperand *, 2> HardenOpRegs; 1573 1574 if (BaseMO.isFI()) { 1575 // A frame index is never a dynamically controllable load, so only 1576 // harden it if we're covering fixed address loads as well. 1577 LLVM_DEBUG( 1578 dbgs() << " Skipping hardening base of explicit stack frame load: "; 1579 MI.dump(); dbgs() << "\n"); 1580 } else if (BaseMO.getReg() == X86::RSP) { 1581 // Some idempotent atomic operations are lowered directly to a locked 1582 // OR with 0 to the top of stack(or slightly offset from top) which uses an 1583 // explicit RSP register as the base. 1584 assert(IndexMO.getReg() == X86::NoRegister && 1585 "Explicit RSP access with dynamic index!"); 1586 LLVM_DEBUG( 1587 dbgs() << " Cannot harden base of explicit RSP offset in a load!"); 1588 } else if (BaseMO.getReg() == X86::RIP || 1589 BaseMO.getReg() == X86::NoRegister) { 1590 // For both RIP-relative addressed loads or absolute loads, we cannot 1591 // meaningfully harden them because the address being loaded has no 1592 // dynamic component. 1593 // 1594 // FIXME: When using a segment base (like TLS does) we end up with the 1595 // dynamic address being the base plus -1 because we can't mutate the 1596 // segment register here. This allows the signed 32-bit offset to point at 1597 // valid segment-relative addresses and load them successfully. 1598 LLVM_DEBUG( 1599 dbgs() << " Cannot harden base of " 1600 << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") 1601 << " address in a load!"); 1602 } else { 1603 assert(BaseMO.isReg() && 1604 "Only allowed to have a frame index or register base."); 1605 HardenOpRegs.push_back(&BaseMO); 1606 } 1607 1608 if (IndexMO.getReg() != X86::NoRegister && 1609 (HardenOpRegs.empty() || 1610 HardenOpRegs.front()->getReg() != IndexMO.getReg())) 1611 HardenOpRegs.push_back(&IndexMO); 1612 1613 assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && 1614 "Should have exactly one or two registers to harden!"); 1615 assert((HardenOpRegs.size() == 1 || 1616 HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && 1617 "Should not have two of the same registers!"); 1618 1619 // Remove any registers that have alreaded been checked. 1620 llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { 1621 // See if this operand's register has already been checked. 1622 auto It = AddrRegToHardenedReg.find(Op->getReg()); 1623 if (It == AddrRegToHardenedReg.end()) 1624 // Not checked, so retain this one. 1625 return false; 1626 1627 // Otherwise, we can directly update this operand and remove it. 1628 Op->setReg(It->second); 1629 return true; 1630 }); 1631 // If there are none left, we're done. 1632 if (HardenOpRegs.empty()) 1633 return; 1634 1635 // Compute the current predicate state. 1636 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 1637 1638 auto InsertPt = MI.getIterator(); 1639 1640 // If EFLAGS are live and we don't have access to instructions that avoid 1641 // clobbering EFLAGS we need to save and restore them. This in turn makes 1642 // the EFLAGS no longer live. 1643 unsigned FlagsReg = 0; 1644 if (EFLAGSLive && !Subtarget->hasBMI2()) { 1645 EFLAGSLive = false; 1646 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); 1647 } 1648 1649 for (MachineOperand *Op : HardenOpRegs) { 1650 Register OpReg = Op->getReg(); 1651 auto *OpRC = MRI->getRegClass(OpReg); 1652 Register TmpReg = MRI->createVirtualRegister(OpRC); 1653 1654 // If this is a vector register, we'll need somewhat custom logic to handle 1655 // hardening it. 1656 if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || 1657 OpRC->hasSuperClassEq(&X86::VR256RegClass))) { 1658 assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); 1659 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); 1660 1661 // Move our state into a vector register. 1662 // FIXME: We could skip this at the cost of longer encodings with AVX-512 1663 // but that doesn't seem likely worth it. 1664 Register VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); 1665 auto MovI = 1666 BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) 1667 .addReg(StateReg); 1668 (void)MovI; 1669 ++NumInstsInserted; 1670 LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n"); 1671 1672 // Broadcast it across the vector register. 1673 Register VBStateReg = MRI->createVirtualRegister(OpRC); 1674 auto BroadcastI = BuildMI(MBB, InsertPt, Loc, 1675 TII->get(Is128Bit ? X86::VPBROADCASTQrr 1676 : X86::VPBROADCASTQYrr), 1677 VBStateReg) 1678 .addReg(VStateReg); 1679 (void)BroadcastI; 1680 ++NumInstsInserted; 1681 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); 1682 dbgs() << "\n"); 1683 1684 // Merge our potential poison state into the value with a vector or. 1685 auto OrI = 1686 BuildMI(MBB, InsertPt, Loc, 1687 TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) 1688 .addReg(VBStateReg) 1689 .addReg(OpReg); 1690 (void)OrI; 1691 ++NumInstsInserted; 1692 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 1693 } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || 1694 OpRC->hasSuperClassEq(&X86::VR256XRegClass) || 1695 OpRC->hasSuperClassEq(&X86::VR512RegClass)) { 1696 assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); 1697 bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); 1698 bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); 1699 if (Is128Bit || Is256Bit) 1700 assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); 1701 1702 // Broadcast our state into a vector register. 1703 Register VStateReg = MRI->createVirtualRegister(OpRC); 1704 unsigned BroadcastOp = Is128Bit ? X86::VPBROADCASTQrZ128rr 1705 : Is256Bit ? X86::VPBROADCASTQrZ256rr 1706 : X86::VPBROADCASTQrZrr; 1707 auto BroadcastI = 1708 BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) 1709 .addReg(StateReg); 1710 (void)BroadcastI; 1711 ++NumInstsInserted; 1712 LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); 1713 dbgs() << "\n"); 1714 1715 // Merge our potential poison state into the value with a vector or. 1716 unsigned OrOp = Is128Bit ? X86::VPORQZ128rr 1717 : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; 1718 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) 1719 .addReg(VStateReg) 1720 .addReg(OpReg); 1721 (void)OrI; 1722 ++NumInstsInserted; 1723 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 1724 } else { 1725 // FIXME: Need to support GR32 here for 32-bit code. 1726 assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && 1727 "Not a supported register class for address hardening!"); 1728 1729 if (!EFLAGSLive) { 1730 // Merge our potential poison state into the value with an or. 1731 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) 1732 .addReg(StateReg) 1733 .addReg(OpReg); 1734 OrI->addRegisterDead(X86::EFLAGS, TRI); 1735 ++NumInstsInserted; 1736 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 1737 } else { 1738 // We need to avoid touching EFLAGS so shift out all but the least 1739 // significant bit using the instruction that doesn't update flags. 1740 auto ShiftI = 1741 BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) 1742 .addReg(OpReg) 1743 .addReg(StateReg); 1744 (void)ShiftI; 1745 ++NumInstsInserted; 1746 LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump(); 1747 dbgs() << "\n"); 1748 } 1749 } 1750 1751 // Record this register as checked and update the operand. 1752 assert(!AddrRegToHardenedReg.count(Op->getReg()) && 1753 "Should not have checked this register yet!"); 1754 AddrRegToHardenedReg[Op->getReg()] = TmpReg; 1755 Op->setReg(TmpReg); 1756 ++NumAddrRegsHardened; 1757 } 1758 1759 // And restore the flags if needed. 1760 if (FlagsReg) 1761 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); 1762 } 1763 1764 MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( 1765 MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { 1766 assert(X86InstrInfo::isDataInvariantLoad(InitialMI) && 1767 "Cannot get here with a non-invariant load!"); 1768 assert(!isEFLAGSDefLive(InitialMI) && 1769 "Cannot get here with a data invariant load " 1770 "that interferes with EFLAGS!"); 1771 1772 // See if we can sink hardening the loaded value. 1773 auto SinkCheckToSingleUse = 1774 [&](MachineInstr &MI) -> std::optional<MachineInstr *> { 1775 Register DefReg = MI.getOperand(0).getReg(); 1776 1777 // We need to find a single use which we can sink the check. We can 1778 // primarily do this because many uses may already end up checked on their 1779 // own. 1780 MachineInstr *SingleUseMI = nullptr; 1781 for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { 1782 // If we're already going to harden this use, it is data invariant, it 1783 // does not interfere with EFLAGS, and within our block. 1784 if (HardenedInstrs.count(&UseMI)) { 1785 if (!X86InstrInfo::isDataInvariantLoad(UseMI) || isEFLAGSDefLive(UseMI)) { 1786 // If we've already decided to harden a non-load, we must have sunk 1787 // some other post-load hardened instruction to it and it must itself 1788 // be data-invariant. 1789 assert(X86InstrInfo::isDataInvariant(UseMI) && 1790 "Data variant instruction being hardened!"); 1791 continue; 1792 } 1793 1794 // Otherwise, this is a load and the load component can't be data 1795 // invariant so check how this register is being used. 1796 const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(UseMI); 1797 assert(MemRefBeginIdx >= 0 && 1798 "Should always have mem references here!"); 1799 1800 MachineOperand &BaseMO = 1801 UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); 1802 MachineOperand &IndexMO = 1803 UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); 1804 if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || 1805 (IndexMO.isReg() && IndexMO.getReg() == DefReg)) 1806 // The load uses the register as part of its address making it not 1807 // invariant. 1808 return {}; 1809 1810 continue; 1811 } 1812 1813 if (SingleUseMI) 1814 // We already have a single use, this would make two. Bail. 1815 return {}; 1816 1817 // If this single use isn't data invariant, isn't in this block, or has 1818 // interfering EFLAGS, we can't sink the hardening to it. 1819 if (!X86InstrInfo::isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent() || 1820 isEFLAGSDefLive(UseMI)) 1821 return {}; 1822 1823 // If this instruction defines multiple registers bail as we won't harden 1824 // all of them. 1825 if (UseMI.getDesc().getNumDefs() > 1) 1826 return {}; 1827 1828 // If this register isn't a virtual register we can't walk uses of sanely, 1829 // just bail. Also check that its register class is one of the ones we 1830 // can harden. 1831 Register UseDefReg = UseMI.getOperand(0).getReg(); 1832 if (!canHardenRegister(UseDefReg)) 1833 return {}; 1834 1835 SingleUseMI = &UseMI; 1836 } 1837 1838 // If SingleUseMI is still null, there is no use that needs its own 1839 // checking. Otherwise, it is the single use that needs checking. 1840 return {SingleUseMI}; 1841 }; 1842 1843 MachineInstr *MI = &InitialMI; 1844 while (std::optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { 1845 // Update which MI we're checking now. 1846 MI = *SingleUse; 1847 if (!MI) 1848 break; 1849 } 1850 1851 return MI; 1852 } 1853 1854 bool X86SpeculativeLoadHardeningPass::canHardenRegister(Register Reg) { 1855 // We only support hardening virtual registers. 1856 if (!Reg.isVirtual()) 1857 return false; 1858 1859 auto *RC = MRI->getRegClass(Reg); 1860 int RegBytes = TRI->getRegSizeInBits(*RC) / 8; 1861 if (RegBytes > 8) 1862 // We don't support post-load hardening of vectors. 1863 return false; 1864 1865 unsigned RegIdx = Log2_32(RegBytes); 1866 assert(RegIdx < 4 && "Unsupported register size"); 1867 1868 // If this register class is explicitly constrained to a class that doesn't 1869 // require REX prefix, we may not be able to satisfy that constraint when 1870 // emitting the hardening instructions, so bail out here. 1871 // FIXME: This seems like a pretty lame hack. The way this comes up is when we 1872 // end up both with a NOREX and REX-only register as operands to the hardening 1873 // instructions. It would be better to fix that code to handle this situation 1874 // rather than hack around it in this way. 1875 const TargetRegisterClass *NOREXRegClasses[] = { 1876 &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, 1877 &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; 1878 if (RC == NOREXRegClasses[RegIdx]) 1879 return false; 1880 1881 const TargetRegisterClass *GPRRegClasses[] = { 1882 &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, 1883 &X86::GR64RegClass}; 1884 return RC->hasSuperClassEq(GPRRegClasses[RegIdx]); 1885 } 1886 1887 /// Harden a value in a register. 1888 /// 1889 /// This is the low-level logic to fully harden a value sitting in a register 1890 /// against leaking during speculative execution. 1891 /// 1892 /// Unlike hardening an address that is used by a load, this routine is required 1893 /// to hide *all* incoming bits in the register. 1894 /// 1895 /// `Reg` must be a virtual register. Currently, it is required to be a GPR no 1896 /// larger than the predicate state register. FIXME: We should support vector 1897 /// registers here by broadcasting the predicate state. 1898 /// 1899 /// The new, hardened virtual register is returned. It will have the same 1900 /// register class as `Reg`. 1901 unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister( 1902 Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, 1903 const DebugLoc &Loc) { 1904 assert(canHardenRegister(Reg) && "Cannot harden this register!"); 1905 1906 auto *RC = MRI->getRegClass(Reg); 1907 int Bytes = TRI->getRegSizeInBits(*RC) / 8; 1908 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 1909 assert((Bytes == 1 || Bytes == 2 || Bytes == 4 || Bytes == 8) && 1910 "Unknown register size"); 1911 1912 // FIXME: Need to teach this about 32-bit mode. 1913 if (Bytes != 8) { 1914 unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; 1915 unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; 1916 Register NarrowStateReg = MRI->createVirtualRegister(RC); 1917 BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg) 1918 .addReg(StateReg, 0, SubRegImm); 1919 StateReg = NarrowStateReg; 1920 } 1921 1922 unsigned FlagsReg = 0; 1923 if (isEFLAGSLive(MBB, InsertPt, *TRI)) 1924 FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); 1925 1926 Register NewReg = MRI->createVirtualRegister(RC); 1927 unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; 1928 unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)]; 1929 auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg) 1930 .addReg(StateReg) 1931 .addReg(Reg); 1932 OrI->addRegisterDead(X86::EFLAGS, TRI); 1933 ++NumInstsInserted; 1934 LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); 1935 1936 if (FlagsReg) 1937 restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); 1938 1939 return NewReg; 1940 } 1941 1942 /// Harden a load by hardening the loaded value in the defined register. 1943 /// 1944 /// We can harden a non-leaking load into a register without touching the 1945 /// address by just hiding all of the loaded bits during misspeculation. We use 1946 /// an `or` instruction to do this because we set up our poison value as all 1947 /// ones. And the goal is just for the loaded bits to not be exposed to 1948 /// execution and coercing them to one is sufficient. 1949 /// 1950 /// Returns the newly hardened register. 1951 unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { 1952 MachineBasicBlock &MBB = *MI.getParent(); 1953 const DebugLoc &Loc = MI.getDebugLoc(); 1954 1955 auto &DefOp = MI.getOperand(0); 1956 Register OldDefReg = DefOp.getReg(); 1957 auto *DefRC = MRI->getRegClass(OldDefReg); 1958 1959 // Because we want to completely replace the uses of this def'ed value with 1960 // the hardened value, create a dedicated new register that will only be used 1961 // to communicate the unhardened value to the hardening. 1962 Register UnhardenedReg = MRI->createVirtualRegister(DefRC); 1963 DefOp.setReg(UnhardenedReg); 1964 1965 // Now harden this register's value, getting a hardened reg that is safe to 1966 // use. Note that we insert the instructions to compute this *after* the 1967 // defining instruction, not before it. 1968 unsigned HardenedReg = hardenValueInRegister( 1969 UnhardenedReg, MBB, std::next(MI.getIterator()), Loc); 1970 1971 // Finally, replace the old register (which now only has the uses of the 1972 // original def) with the hardened register. 1973 MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg); 1974 1975 ++NumPostLoadRegsHardened; 1976 return HardenedReg; 1977 } 1978 1979 /// Harden a return instruction. 1980 /// 1981 /// Returns implicitly perform a load which we need to harden. Without hardening 1982 /// this load, an attacker my speculatively write over the return address to 1983 /// steer speculation of the return to an attacker controlled address. This is 1984 /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in 1985 /// this paper: 1986 /// https://people.csail.mit.edu/vlk/spectre11.pdf 1987 /// 1988 /// We can harden this by introducing an LFENCE that will delay any load of the 1989 /// return address until prior instructions have retired (and thus are not being 1990 /// speculated), or we can harden the address used by the implicit load: the 1991 /// stack pointer. 1992 /// 1993 /// If we are not using an LFENCE, hardening the stack pointer has an additional 1994 /// benefit: it allows us to pass the predicate state accumulated in this 1995 /// function back to the caller. In the absence of a BCBS attack on the return, 1996 /// the caller will typically be resumed and speculatively executed due to the 1997 /// Return Stack Buffer (RSB) prediction which is very accurate and has a high 1998 /// priority. It is possible that some code from the caller will be executed 1999 /// speculatively even during a BCBS-attacked return until the steering takes 2000 /// effect. Whenever this happens, the caller can recover the (poisoned) 2001 /// predicate state from the stack pointer and continue to harden loads. 2002 void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { 2003 MachineBasicBlock &MBB = *MI.getParent(); 2004 const DebugLoc &Loc = MI.getDebugLoc(); 2005 auto InsertPt = MI.getIterator(); 2006 2007 if (FenceCallAndRet) 2008 // No need to fence here as we'll fence at the return site itself. That 2009 // handles more cases than we can handle here. 2010 return; 2011 2012 // Take our predicate state, shift it to the high 17 bits (so that we keep 2013 // pointers canonical) and merge it into RSP. This will allow the caller to 2014 // extract it when we return (speculatively). 2015 mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); 2016 } 2017 2018 /// Trace the predicate state through a call. 2019 /// 2020 /// There are several layers of this needed to handle the full complexity of 2021 /// calls. 2022 /// 2023 /// First, we need to send the predicate state into the called function. We do 2024 /// this by merging it into the high bits of the stack pointer. 2025 /// 2026 /// For tail calls, this is all we need to do. 2027 /// 2028 /// For calls where we might return and resume the control flow, we need to 2029 /// extract the predicate state from the high bits of the stack pointer after 2030 /// control returns from the called function. 2031 /// 2032 /// We also need to verify that we intended to return to this location in the 2033 /// code. An attacker might arrange for the processor to mispredict the return 2034 /// to this valid but incorrect return address in the program rather than the 2035 /// correct one. See the paper on this attack, called "ret2spec" by the 2036 /// researchers, here: 2037 /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf 2038 /// 2039 /// The way we verify that we returned to the correct location is by preserving 2040 /// the expected return address across the call. One technique involves taking 2041 /// advantage of the red-zone to load the return address from `8(%rsp)` where it 2042 /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can 2043 /// directly save the address into a register that will be preserved across the 2044 /// call. We compare this intended return address against the address 2045 /// immediately following the call (the observed return address). If these 2046 /// mismatch, we have detected misspeculation and can poison our predicate 2047 /// state. 2048 void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall( 2049 MachineInstr &MI) { 2050 MachineBasicBlock &MBB = *MI.getParent(); 2051 MachineFunction &MF = *MBB.getParent(); 2052 auto InsertPt = MI.getIterator(); 2053 const DebugLoc &Loc = MI.getDebugLoc(); 2054 2055 if (FenceCallAndRet) { 2056 if (MI.isReturn()) 2057 // Tail call, we don't return to this function. 2058 // FIXME: We should also handle noreturn calls. 2059 return; 2060 2061 // We don't need to fence before the call because the function should fence 2062 // in its entry. However, we do need to fence after the call returns. 2063 // Fencing before the return doesn't correctly handle cases where the return 2064 // itself is mispredicted. 2065 BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE)); 2066 ++NumInstsInserted; 2067 ++NumLFENCEsInserted; 2068 return; 2069 } 2070 2071 // First, we transfer the predicate state into the called function by merging 2072 // it into the stack pointer. This will kill the current def of the state. 2073 Register StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); 2074 mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); 2075 2076 // If this call is also a return, it is a tail call and we don't need anything 2077 // else to handle it so just return. Also, if there are no further 2078 // instructions and no successors, this call does not return so we can also 2079 // bail. 2080 if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty())) 2081 return; 2082 2083 // Create a symbol to track the return address and attach it to the call 2084 // machine instruction. We will lower extra symbols attached to call 2085 // instructions as label immediately following the call. 2086 MCSymbol *RetSymbol = 2087 MF.getContext().createTempSymbol("slh_ret_addr", 2088 /*AlwaysAddSuffix*/ true); 2089 MI.setPostInstrSymbol(MF, RetSymbol); 2090 2091 const TargetRegisterClass *AddrRC = &X86::GR64RegClass; 2092 unsigned ExpectedRetAddrReg = 0; 2093 2094 // If we have no red zones or if the function returns twice (possibly without 2095 // using the `ret` instruction) like setjmp, we need to save the expected 2096 // return address prior to the call. 2097 if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) || 2098 MF.exposesReturnsTwice()) { 2099 // If we don't have red zones, we need to compute the expected return 2100 // address prior to the call and store it in a register that lives across 2101 // the call. 2102 // 2103 // In some ways, this is doubly satisfying as a mitigation because it will 2104 // also successfully detect stack smashing bugs in some cases (typically, 2105 // when a callee-saved register is used and the callee doesn't push it onto 2106 // the stack). But that isn't our primary goal, so we only use it as 2107 // a fallback. 2108 // 2109 // FIXME: It isn't clear that this is reliable in the face of 2110 // rematerialization in the register allocator. We somehow need to force 2111 // that to not occur for this particular instruction, and instead to spill 2112 // or otherwise preserve the value computed *prior* to the call. 2113 // 2114 // FIXME: It is even less clear why MachineCSE can't just fold this when we 2115 // end up having to use identical instructions both before and after the 2116 // call to feed the comparison. 2117 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); 2118 if (MF.getTarget().getCodeModel() == CodeModel::Small && 2119 !Subtarget->isPositionIndependent()) { 2120 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg) 2121 .addSym(RetSymbol); 2122 } else { 2123 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg) 2124 .addReg(/*Base*/ X86::RIP) 2125 .addImm(/*Scale*/ 1) 2126 .addReg(/*Index*/ 0) 2127 .addSym(RetSymbol) 2128 .addReg(/*Segment*/ 0); 2129 } 2130 } 2131 2132 // Step past the call to handle when it returns. 2133 ++InsertPt; 2134 2135 // If we didn't pre-compute the expected return address into a register, then 2136 // red zones are enabled and the return address is still available on the 2137 // stack immediately after the call. As the very first instruction, we load it 2138 // into a register. 2139 if (!ExpectedRetAddrReg) { 2140 ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC); 2141 BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg) 2142 .addReg(/*Base*/ X86::RSP) 2143 .addImm(/*Scale*/ 1) 2144 .addReg(/*Index*/ 0) 2145 .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so 2146 // the return address is 8-bytes past it. 2147 .addReg(/*Segment*/ 0); 2148 } 2149 2150 // Now we extract the callee's predicate state from the stack pointer. 2151 unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); 2152 2153 // Test the expected return address against our actual address. If we can 2154 // form this basic block's address as an immediate, this is easy. Otherwise 2155 // we compute it. 2156 if (MF.getTarget().getCodeModel() == CodeModel::Small && 2157 !Subtarget->isPositionIndependent()) { 2158 // FIXME: Could we fold this with the load? It would require careful EFLAGS 2159 // management. 2160 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32)) 2161 .addReg(ExpectedRetAddrReg, RegState::Kill) 2162 .addSym(RetSymbol); 2163 } else { 2164 Register ActualRetAddrReg = MRI->createVirtualRegister(AddrRC); 2165 BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg) 2166 .addReg(/*Base*/ X86::RIP) 2167 .addImm(/*Scale*/ 1) 2168 .addReg(/*Index*/ 0) 2169 .addSym(RetSymbol) 2170 .addReg(/*Segment*/ 0); 2171 BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr)) 2172 .addReg(ExpectedRetAddrReg, RegState::Kill) 2173 .addReg(ActualRetAddrReg, RegState::Kill); 2174 } 2175 2176 // Now conditionally update the predicate state we just extracted if we ended 2177 // up at a different return address than expected. 2178 int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; 2179 auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes); 2180 2181 Register UpdatedStateReg = MRI->createVirtualRegister(PS->RC); 2182 auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg) 2183 .addReg(NewStateReg, RegState::Kill) 2184 .addReg(PS->PoisonReg) 2185 .addImm(X86::COND_NE); 2186 CMovI->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->setIsKill(true); 2187 ++NumInstsInserted; 2188 LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); dbgs() << "\n"); 2189 2190 PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg); 2191 } 2192 2193 /// An attacker may speculatively store over a value that is then speculatively 2194 /// loaded and used as the target of an indirect call or jump instruction. This 2195 /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described 2196 /// in this paper: 2197 /// https://people.csail.mit.edu/vlk/spectre11.pdf 2198 /// 2199 /// When this happens, the speculative execution of the call or jump will end up 2200 /// being steered to this attacker controlled address. While most such loads 2201 /// will be adequately hardened already, we want to ensure that they are 2202 /// definitively treated as needing post-load hardening. While address hardening 2203 /// is sufficient to prevent secret data from leaking to the attacker, it may 2204 /// not be sufficient to prevent an attacker from steering speculative 2205 /// execution. We forcibly unfolded all relevant loads above and so will always 2206 /// have an opportunity to post-load harden here, we just need to scan for cases 2207 /// not already flagged and add them. 2208 void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr( 2209 MachineInstr &MI, 2210 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { 2211 switch (MI.getOpcode()) { 2212 case X86::FARCALL16m: 2213 case X86::FARCALL32m: 2214 case X86::FARCALL64m: 2215 case X86::FARJMP16m: 2216 case X86::FARJMP32m: 2217 case X86::FARJMP64m: 2218 // We don't need to harden either far calls or far jumps as they are 2219 // safe from Spectre. 2220 return; 2221 2222 default: 2223 break; 2224 } 2225 2226 // We should never see a loading instruction at this point, as those should 2227 // have been unfolded. 2228 assert(!MI.mayLoad() && "Found a lingering loading instruction!"); 2229 2230 // If the first operand isn't a register, this is a branch or call 2231 // instruction with an immediate operand which doesn't need to be hardened. 2232 if (!MI.getOperand(0).isReg()) 2233 return; 2234 2235 // For all of these, the target register is the first operand of the 2236 // instruction. 2237 auto &TargetOp = MI.getOperand(0); 2238 Register OldTargetReg = TargetOp.getReg(); 2239 2240 // Try to lookup a hardened version of this register. We retain a reference 2241 // here as we want to update the map to track any newly computed hardened 2242 // register. 2243 unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg]; 2244 2245 // If we don't have a hardened register yet, compute one. Otherwise, just use 2246 // the already hardened register. 2247 // 2248 // FIXME: It is a little suspect that we use partially hardened registers that 2249 // only feed addresses. The complexity of partial hardening with SHRX 2250 // continues to pile up. Should definitively measure its value and consider 2251 // eliminating it. 2252 if (!HardenedTargetReg) 2253 HardenedTargetReg = hardenValueInRegister( 2254 OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc()); 2255 2256 // Set the target operand to the hardened register. 2257 TargetOp.setReg(HardenedTargetReg); 2258 2259 ++NumCallsOrJumpsHardened; 2260 } 2261 2262 INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY, 2263 "X86 speculative load hardener", false, false) 2264 INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY, 2265 "X86 speculative load hardener", false, false) 2266 2267 FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { 2268 return new X86SpeculativeLoadHardeningPass(); 2269 } 2270