xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Analysis/TFUtils.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements utilities for interfacing with tensorflow C APIs.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "llvm/Config/config.h"
14 #if defined(LLVM_HAVE_TF_API)
15 
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/Analysis/Utils/TFUtils.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/JSON.h"
20 #include "llvm/Support/ManagedStatic.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/Path.h"
23 #include "llvm/Support/raw_ostream.h"
24 
25 #include "tensorflow/c/c_api.h"
26 #include "tensorflow/c/c_api_experimental.h"
27 
28 #include <cassert>
29 #include <numeric>
30 
31 using namespace llvm;
32 
33 namespace {
34 
35 using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
36 using TFSessionOptionsPtr =
37     std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>;
38 using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>;
39 
40 struct TFInitializer {
TFInitializer__anon900ec6390111::TFInitializer41   TFInitializer() {
42     assert(!IsInitialized && "TFInitialized should be called only once");
43     int Argc = 1;
44     const char *Name = "";
45     const char **NamePtr = &Name;
46     TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr));
47     IsInitialized = true;
48   }
49   bool IsInitialized = false;
50 };
51 
52 llvm::ManagedStatic<TFInitializer> TFLibInitializer;
53 
ensureInitTF()54 bool ensureInitTF() { return TFLibInitializer->IsInitialized; }
55 
createTFGraph()56 TFGraphPtr createTFGraph() {
57   return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph);
58 }
59 
createTFStatus()60 TFStatusPtr createTFStatus() {
61   return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus);
62 }
63 
createTFSessionOptions()64 TFSessionOptionsPtr createTFSessionOptions() {
65   return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions);
66 }
67 
68 /// Write the values of one tensor as a list.
69 template <typename T>
writeTensorValues(raw_ostream & OutFile,const char * TensorData,size_t ElemCount)70 void writeTensorValues(raw_ostream &OutFile, const char *TensorData,
71                        size_t ElemCount) {
72   OutFile << "[";
73   const T *TypedData = reinterpret_cast<const T *>(TensorData);
74   ListSeparator LS;
75   for (size_t I = 0; I < ElemCount; ++I)
76     OutFile << LS << TypedData[I];
77   OutFile << "]";
78 }
79 
80 /// Write a list of tensors as a sequence of TensorFlow FeatureList protobufs.
81 /// The tensors are assumed to be stored contiguously, in row-major format,
82 /// in the TensorData buffer. Each tensor has the shape given by Spec. The
83 /// feature name in the output is either the provided LoggingName, if
84 /// specified, otherwise it's the name of the tensor (as given by Spec).
writeRawTensorsAsFeatureLists(raw_ostream & OutFile,const LoggedFeatureSpec & LoggedSpec,const char * TensorData,size_t TensorCount,bool FinalReward=false)85 void writeRawTensorsAsFeatureLists(raw_ostream &OutFile,
86                                    const LoggedFeatureSpec &LoggedSpec,
87                                    const char *TensorData, size_t TensorCount,
88                                    bool FinalReward = false) {
89   const char *FieldName = "<invalid>";
90   std::function<void(const char *)> ValueWriter;
91   const auto &Spec = LoggedSpec.Spec;
92   // The 'Feature' protobuf only has 3 possible fields: float_list,
93   // int64_list, or bytes_list, so we capture int32 values as int64. We don't
94   // support any other types.
95   if (Spec.isElementType<int64_t>()) {
96     FieldName = "int64_list";
97     ValueWriter = [&](const char *Data) {
98       writeTensorValues<int64_t>(OutFile, Data, Spec.getElementCount());
99     };
100   } else if (Spec.isElementType<int32_t>()) {
101     FieldName = "int64_list";
102     ValueWriter = [&](const char *Data) {
103       writeTensorValues<int32_t>(OutFile, Data, Spec.getElementCount());
104     };
105 
106   } else if (Spec.isElementType<float>()) {
107     FieldName = "float_list";
108     ValueWriter = [&](const char *Data) {
109       writeTensorValues<float>(OutFile, Data, Spec.getElementCount());
110     };
111 
112   } else {
113     llvm_unreachable("Unsupported tensor type.");
114   }
115 
116   OutFile << "  feature_list: {\n";
117   OutFile << "    key: "
118           << "\""
119           << (LoggedSpec.LoggingName ? *LoggedSpec.LoggingName : Spec.name())
120           << "\" ";
121   OutFile << "value: {\n";
122   size_t TensorByteSize = Spec.getElementCount() * Spec.getElementByteSize();
123 
124   auto WriteFeatureProto = [&](const char *P) {
125     OutFile << "      feature: { " << FieldName << ": { value: ";
126     ValueWriter(P);
127     OutFile << " } }\n";
128   };
129 
130   const char *CurrentTensor = TensorData;
131   static int64_t Zero = 0;
132   // Write all but the last value. If this is the final reward, don't increment
133   // the CurrentTensor, and just write 0.
134   for (size_t I = 0; I < TensorCount - 1; ++I) {
135     if (FinalReward)
136       WriteFeatureProto(reinterpret_cast<const char *>(&Zero));
137     else {
138       WriteFeatureProto(CurrentTensor);
139       CurrentTensor += TensorByteSize;
140     }
141   }
142 
143   WriteFeatureProto(CurrentTensor);
144 
145   OutFile << "    }\n";
146   OutFile << "  }\n";
147 }
148 } // namespace
149 
150 namespace llvm {
151 class EvaluationResultImpl {
152 public:
EvaluationResultImpl(size_t OutputSize)153   EvaluationResultImpl(size_t OutputSize)
154       : OutputSize(OutputSize), Output(OutputSize){};
155 
~EvaluationResultImpl()156   ~EvaluationResultImpl() {
157     for (auto *P : Output)
158       if (P)
159         TF_DeleteTensor(P);
160   }
161 
162   EvaluationResultImpl(const EvaluationResultImpl &) = delete;
163   EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
getOutput()164   std::vector<TF_Tensor *> &getOutput() { return Output; }
165 
166 private:
167   const size_t OutputSize;
168   std::vector<TF_Tensor *> Output;
169 };
170 
getElementByteSize() const171 size_t TensorSpec::getElementByteSize() const {
172   return TF_DataTypeSize(static_cast<TF_DataType>(TypeIndex));
173 }
174 
TensorSpec(const std::string & Name,int Port,int TypeIndex,const std::vector<int64_t> & Shape)175 TensorSpec::TensorSpec(const std::string &Name, int Port, int TypeIndex,
176                        const std::vector<int64_t> &Shape)
177     : Name(Name), Port(Port), TypeIndex(TypeIndex), Shape(Shape),
178       ElementCount(std::accumulate(Shape.begin(), Shape.end(), 1,
179                                    std::multiplies<int64_t>())) {}
180 
getTensorSpecFromJSON(LLVMContext & Ctx,const json::Value & Value)181 Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx,
182                                            const json::Value &Value) {
183   auto EmitError = [&](const llvm::Twine &Message) -> Optional<TensorSpec> {
184     std::string S;
185     llvm::raw_string_ostream OS(S);
186     OS << Value;
187     Ctx.emitError("Unable to parse JSON Value as spec (" + Message + "): " + S);
188     return None;
189   };
190   // FIXME: accept a Path as a parameter, and use it for error reporting.
191   json::Path::Root Root("tensor_spec");
192   json::ObjectMapper Mapper(Value, Root);
193   if (!Mapper)
194     return EmitError("Value is not a dict");
195 
196   std::string TensorName;
197   int TensorPort = -1;
198   std::string TensorType;
199   std::vector<int64_t> TensorShape;
200 
201   if (!Mapper.map<std::string>("name", TensorName))
202     return EmitError("'name' property not present or not a string");
203   if (!Mapper.map<std::string>("type", TensorType))
204     return EmitError("'type' property not present or not a string");
205   if (!Mapper.map<int>("port", TensorPort))
206     return EmitError("'port' property not present or not an int");
207   if (!Mapper.map<std::vector<int64_t>>("shape", TensorShape))
208     return EmitError("'shape' property not present or not an int array");
209 
210 #define PARSE_TYPE(T, E)                                                       \
211   if (TensorType == #T)                                                        \
212     return TensorSpec::createSpec<T>(TensorName, TensorShape, TensorPort);
213   TFUTILS_SUPPORTED_TYPES(PARSE_TYPE)
214 #undef PARSE_TYPE
215   return None;
216 }
217 
218 Optional<std::vector<LoggedFeatureSpec>>
loadOutputSpecs(LLVMContext & Ctx,StringRef ExpectedDecisionName,StringRef ModelPath,StringRef SpecFileOverride)219 loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
220                 StringRef ModelPath, StringRef SpecFileOverride) {
221   SmallVector<char, 128> OutputSpecsPath;
222   StringRef FileName = SpecFileOverride;
223   if (FileName.empty()) {
224     llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
225     FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()};
226   }
227 
228   auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
229   if (!BufferOrError) {
230     Ctx.emitError("Error opening output specs file: " + FileName + " : " +
231                   BufferOrError.getError().message());
232     return None;
233   }
234   auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
235   if (!ParsedJSONValues) {
236     Ctx.emitError("Could not parse specs file: " + FileName);
237     return None;
238   }
239   auto ValuesArray = ParsedJSONValues->getAsArray();
240   if (!ValuesArray) {
241     Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
242                   "logging_name:<name>} dictionaries");
243     return None;
244   }
245   std::vector<LoggedFeatureSpec> Ret;
246   for (const auto &Value : *ValuesArray)
247     if (const auto *Obj = Value.getAsObject())
248       if (const auto *SpecPart = Obj->get("tensor_spec"))
249         if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
250           if (auto LoggingName = Obj->getString("logging_name")) {
251             if (!TensorSpec->isElementType<int64_t>() &&
252                 !TensorSpec->isElementType<int32_t>() &&
253                 !TensorSpec->isElementType<float>()) {
254               Ctx.emitError(
255                   "Only int64, int32, and float tensors are supported. "
256                   "Found unsupported type for tensor named " +
257                   TensorSpec->name());
258               return None;
259             }
260             Ret.push_back({*TensorSpec, LoggingName->str()});
261           }
262 
263   if (ValuesArray->size() != Ret.size()) {
264     Ctx.emitError(
265         "Unable to parse output spec. It should be a json file containing an "
266         "array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
267         "with a json object describing a TensorSpec; and a 'logging_name' key, "
268         "which is a string to use as name when logging this tensor in the "
269         "training log.");
270     return None;
271   }
272   if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) {
273     Ctx.emitError("The first output spec must describe the decision tensor, "
274                   "and must have the logging_name " +
275                   StringRef(ExpectedDecisionName));
276     return None;
277   }
278   return Ret;
279 }
280 
281 class TFModelEvaluatorImpl {
282 public:
283   TFModelEvaluatorImpl(StringRef SavedModelPath,
284                        const std::vector<TensorSpec> &InputSpecs,
285                        function_ref<TensorSpec(size_t)> GetOutputSpecs,
286                        size_t OutputSpecsSize, const char *Tags);
287 
isValid() const288   bool isValid() const { return IsValid; }
OutputSize() const289   size_t OutputSize() const { return OutputFeed.size(); }
290 
evaluate(TF_Tensor ** Output,TF_Status * Status)291   void evaluate(TF_Tensor **Output, TF_Status *Status) {
292     TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(),
293                   Input.size(), OutputFeed.data(), Output, OutputFeed.size(),
294                   nullptr, 0, nullptr, Status);
295   }
296 
297   void initInput(size_t Index, TF_DataType Type,
298                  const std::vector<int64_t> &Dimensions);
getInput() const299   const std::vector<TF_Tensor *> &getInput() const { return Input; }
300 
301   ~TFModelEvaluatorImpl();
302 
303 private:
304   /// The objects necessary for carrying out an evaluation of the SavedModel.
305   /// They are expensive to set up, and we maintain them accross all the
306   /// evaluations of the model.
307   TF_Session *Session = nullptr;
308   TFGraphPtr Graph;
309   TFSessionOptionsPtr Options;
310 
311   /// The specification of the input nodes.
312   std::vector<TF_Output> InputFeed;
313 
314   /// The input tensors. They must match by index of the corresponding InputFeed
315   /// value. We set up the tensors once and just mutate theirs scalars before
316   /// each evaluation. The input tensors keep their value after an evaluation.
317   std::vector<TF_Tensor *> Input;
318 
319   /// The specification of the output nodes. When evaluating, the tensors in the
320   /// output tensor vector must match by index the corresponding element in the
321   /// OutputFeed.
322   std::vector<TF_Output> OutputFeed;
323 
invalidate()324   void invalidate() { IsValid = false; }
325 
326   bool IsValid = true;
327 
328   /// Reusable utility for ensuring we can bind the requested Name to a node in
329   /// the SavedModel Graph.
330   bool checkReportAndInvalidate(const TF_Output &Output,
331                                 const TensorSpec &OutputSpec);
332 };
333 } // namespace llvm
334 
TFModelEvaluatorImpl(StringRef SavedModelPath,const std::vector<TensorSpec> & InputSpecs,function_ref<TensorSpec (size_t)> GetOutputSpecs,size_t OutputSpecsSize,const char * Tags="serve")335 TFModelEvaluatorImpl::TFModelEvaluatorImpl(
336     StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
337     function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
338     const char *Tags = "serve")
339     : Graph(createTFGraph()), Options(createTFSessionOptions()),
340       InputFeed(InputSpecs.size()), Input(InputSpecs.size()),
341       OutputFeed(OutputSpecsSize) {
342   if (!ensureInitTF()) {
343     errs() << "Tensorflow should have been initialized";
344     return;
345   }
346   auto Status = createTFStatus();
347 
348   Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr,
349                                          SavedModelPath.str().c_str(), &Tags, 1,
350                                          Graph.get(), nullptr, Status.get());
351   if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
352     errs() << TF_Message(Status.get());
353     invalidate();
354   }
355   for (size_t I = 0; I < InputSpecs.size(); ++I) {
356     auto &InputSpec = InputSpecs[I];
357     InputFeed[I] = {
358         TF_GraphOperationByName(Graph.get(), (InputSpec.name()).c_str()),
359         InputSpec.port()};
360     if (!checkReportAndInvalidate(InputFeed[I], InputSpec))
361       return;
362     initInput(I, static_cast<TF_DataType>(InputSpec.typeIndex()),
363               InputSpec.shape());
364   }
365   for (size_t I = 0; I < OutputSpecsSize; ++I) {
366     auto OutputSpec = GetOutputSpecs(I);
367     OutputFeed[I] = {
368         TF_GraphOperationByName(Graph.get(), (OutputSpec.name()).c_str()),
369         OutputSpec.port()};
370     if (!checkReportAndInvalidate(OutputFeed[I], OutputSpec))
371       return;
372   }
373 }
374 
TFModelEvaluator(StringRef SavedModelPath,const std::vector<TensorSpec> & InputSpecs,function_ref<TensorSpec (size_t)> GetOutputSpecs,size_t OutputSpecsSize,const char * Tags)375 TFModelEvaluator::TFModelEvaluator(
376     StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
377     function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
378     const char *Tags)
379     : Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs,
380                                     OutputSpecsSize, Tags)) {
381   if (!Impl->isValid())
382     Impl.reset();
383 }
384 
TFModelEvaluator(StringRef SavedModelPath,const std::vector<TensorSpec> & InputSpecs,const std::vector<TensorSpec> & OutputSpecs,const char * Tags)385 TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
386                                    const std::vector<TensorSpec> &InputSpecs,
387                                    const std::vector<TensorSpec> &OutputSpecs,
388                                    const char *Tags)
389     : TFModelEvaluator(
390           SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; },
391           OutputSpecs.size(), Tags) {}
392 
~TFModelEvaluatorImpl()393 TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {
394   for (auto *T : Input) {
395     TF_DeleteTensor(T);
396   }
397   if (Session == nullptr)
398     return;
399   auto Status = createTFStatus();
400   TF_DeleteSession(Session, Status.get());
401   Session = nullptr;
402   if (TF_GetCode(Status.get()) != TF_Code::TF_OK)
403     errs() << "Could not delete TF session";
404 }
405 
checkReportAndInvalidate(const TF_Output & Output,const TensorSpec & OutputSpec)406 bool TFModelEvaluatorImpl::checkReportAndInvalidate(
407     const TF_Output &Output, const TensorSpec &OutputSpec) {
408   if (Output.oper)
409     return true;
410   errs() << "Could not find TF_Output named: " + OutputSpec.name();
411   IsValid = false;
412   return IsValid;
413 }
414 
evaluate()415 Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
416   if (!isValid())
417     return None;
418   std::unique_ptr<EvaluationResultImpl> Ret =
419       std::make_unique<EvaluationResultImpl>(Impl->OutputSize());
420   auto Status = createTFStatus();
421   Impl->evaluate(Ret->getOutput().data(), Status.get());
422   if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
423     errs() << TF_Message(Status.get());
424     Impl.reset();
425     return None;
426   }
427   return EvaluationResult(std::move(Ret));
428 }
429 
initInput(size_t Index,TF_DataType Type,const std::vector<int64_t> & Dimensions)430 void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type,
431                                      const std::vector<int64_t> &Dimensions) {
432   int64_t TotalSize = TF_DataTypeSize(Type);
433   for (auto &D : Dimensions)
434     TotalSize *= D;
435 
436   Input[Index] =
437       TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize);
438   std::memset(TF_TensorData(Input[Index]), 0, TotalSize);
439 }
440 
getUntypedInput(size_t Index)441 void *TFModelEvaluator::getUntypedInput(size_t Index) {
442   return TF_TensorData(Impl->getInput()[Index]);
443 }
444 
EvaluationResult(std::unique_ptr<EvaluationResultImpl> Impl)445 TFModelEvaluator::EvaluationResult::EvaluationResult(
446     std::unique_ptr<EvaluationResultImpl> Impl)
447     : Impl(std::move(Impl)) {}
448 
EvaluationResult(EvaluationResult && Other)449 TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
450     : Impl(std::move(Other.Impl)) {}
451 
452 TFModelEvaluator::EvaluationResult &
operator =(EvaluationResult && Other)453 TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
454   Impl = std::move(Other.Impl);
455   return *this;
456 }
457 
getUntypedTensorValue(size_t Index)458 void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
459   return TF_TensorData(Impl->getOutput()[Index]);
460 }
461 
462 const void *
getUntypedTensorValue(size_t Index) const463 TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
464   return TF_TensorData(Impl->getOutput()[Index]);
465 }
466 
467 #define TFUTILS_GETDATATYPE_IMPL(T, E)                                         \
468   template <> int TensorSpec::getDataType<T>() { return E; }
469 
TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL)470 TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL)
471 
472 #undef TFUTILS_GETDATATYPE_IMPL
473 
474 TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
~TFModelEvaluator()475 TFModelEvaluator::~TFModelEvaluator() {}
476 
print(raw_ostream & OS)477 void Logger::print(raw_ostream &OS) {
478   if (RawLogData.empty())
479     return;
480   if (RawLogData[0].empty())
481     return;
482   size_t Tensor0Size = FeatureSpecs[0].Spec.getElementCount() *
483                        FeatureSpecs[0].Spec.getElementByteSize();
484   size_t NumberOfRecords = RawLogData[0].size() / Tensor0Size;
485   if (NumberOfRecords == 0)
486     return;
487   size_t RewardSize =
488       RewardSpec.getElementCount() * RewardSpec.getElementByteSize();
489   size_t NumberOfRewards = RawLogData.back().size() / RewardSize;
490 
491   OS << "feature_lists: {\n";
492   for (size_t I = 0; I < FeatureSpecs.size(); ++I)
493     writeRawTensorsAsFeatureLists(OS, FeatureSpecs[I], RawLogData[I].data(),
494                                   NumberOfRecords);
495 
496   if (IncludeReward)
497     writeRawTensorsAsFeatureLists(OS, {RewardSpec, None},
498                                   RawLogData.back().data(), NumberOfRecords,
499                                   NumberOfRewards == 1);
500 
501   OS << "}\n";
502 }
503 #endif // defined(LLVM_HAVE_TF_API)
504