1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
12 //
13 // This pass combines things like:
14 // %Y = add i32 %X, 1
15 // %Z = add i32 %Y, 1
16 // into:
17 // %Z = add i32 %X, 2
18 //
19 // This is a simple worklist driven algorithm.
20 //
21 // This pass guarantees that the following canonicalizations are performed on
22 // the program:
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
30 // shifts.
31 // ... etc.
32 //
33 //===----------------------------------------------------------------------===//
34
35 #include "InstCombineInternal.h"
36 #include "llvm-c/Initialization.h"
37 #include "llvm-c/Transforms/InstCombine.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/ArrayRef.h"
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/ADT/Statistic.h"
45 #include "llvm/ADT/TinyPtrVector.h"
46 #include "llvm/Analysis/AliasAnalysis.h"
47 #include "llvm/Analysis/AssumptionCache.h"
48 #include "llvm/Analysis/BasicAliasAnalysis.h"
49 #include "llvm/Analysis/BlockFrequencyInfo.h"
50 #include "llvm/Analysis/CFG.h"
51 #include "llvm/Analysis/ConstantFolding.h"
52 #include "llvm/Analysis/EHPersonalities.h"
53 #include "llvm/Analysis/GlobalsModRef.h"
54 #include "llvm/Analysis/InstructionSimplify.h"
55 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/MemoryBuiltins.h"
58 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
59 #include "llvm/Analysis/ProfileSummaryInfo.h"
60 #include "llvm/Analysis/TargetFolder.h"
61 #include "llvm/Analysis/TargetLibraryInfo.h"
62 #include "llvm/Analysis/TargetTransformInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/Analysis/VectorUtils.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/Constant.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DIBuilder.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Dominators.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GetElementPtrTypeIterator.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InstrTypes.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/LegacyPassManager.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PassManager.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/Use.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/IR/ValueHandle.h"
91 #include "llvm/InitializePasses.h"
92 #include "llvm/Pass.h"
93 #include "llvm/Support/CBindingWrapping.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/DebugCounter.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/raw_ostream.h"
102 #include "llvm/Transforms/InstCombine/InstCombine.h"
103 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
104 #include "llvm/Transforms/Utils/Local.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <memory>
109 #include <string>
110 #include <utility>
111
112 using namespace llvm;
113 using namespace llvm::PatternMatch;
114
115 #define DEBUG_TYPE "instcombine"
116
117 STATISTIC(NumWorklistIterations,
118 "Number of instruction combining iterations performed");
119
120 STATISTIC(NumCombined , "Number of insts combined");
121 STATISTIC(NumConstProp, "Number of constant folds");
122 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
123 STATISTIC(NumSunkInst , "Number of instructions sunk");
124 STATISTIC(NumExpand, "Number of expansions");
125 STATISTIC(NumFactor , "Number of factorizations");
126 STATISTIC(NumReassoc , "Number of reassociations");
127 DEBUG_COUNTER(VisitCounter, "instcombine-visit",
128 "Controls which instructions are visited");
129
130 // FIXME: these limits eventually should be as low as 2.
131 static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132 #ifndef NDEBUG
133 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134 #else
135 static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136 #endif
137
138 static cl::opt<bool>
139 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140 cl::init(true));
141
142 static cl::opt<unsigned> LimitMaxIterations(
143 "instcombine-max-iterations",
144 cl::desc("Limit the maximum number of instruction combining iterations"),
145 cl::init(InstCombineDefaultMaxIterations));
146
147 static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148 "instcombine-infinite-loop-threshold",
149 cl::desc("Number of instruction combining iterations considered an "
150 "infinite loop"),
151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152
153 static cl::opt<unsigned>
154 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155 cl::desc("Maximum array size considered when doing a combine"));
156
157 // FIXME: Remove this flag when it is no longer necessary to convert
158 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159 // increases variable availability at the cost of accuracy. Variables that
160 // cannot be promoted by mem2reg or SROA will be described as living in memory
161 // for their entire lifetime. However, passes like DSE and instcombine can
162 // delete stores to the alloca, leading to misleading and inaccurate debug
163 // information. This flag can be removed when those passes are fixed.
164 static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165 cl::Hidden, cl::init(true));
166
167 Optional<Instruction *>
targetInstCombineIntrinsic(IntrinsicInst & II)168 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169 // Handle target specific intrinsics
170 if (II.getCalledFunction()->isTargetIntrinsic()) {
171 return TTI.instCombineIntrinsic(*this, II);
172 }
173 return None;
174 }
175
targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst & II,APInt DemandedMask,KnownBits & Known,bool & KnownBitsComputed)176 Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178 bool &KnownBitsComputed) {
179 // Handle target specific intrinsics
180 if (II.getCalledFunction()->isTargetIntrinsic()) {
181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182 KnownBitsComputed);
183 }
184 return None;
185 }
186
targetSimplifyDemandedVectorEltsIntrinsic(IntrinsicInst & II,APInt DemandedElts,APInt & UndefElts,APInt & UndefElts2,APInt & UndefElts3,std::function<void (Instruction *,unsigned,APInt,APInt &)> SimplifyAndSetOp)187 Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189 APInt &UndefElts3,
190 std::function<void(Instruction *, unsigned, APInt, APInt &)>
191 SimplifyAndSetOp) {
192 // Handle target specific intrinsics
193 if (II.getCalledFunction()->isTargetIntrinsic()) {
194 return TTI.simplifyDemandedVectorEltsIntrinsic(
195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196 SimplifyAndSetOp);
197 }
198 return None;
199 }
200
EmitGEPOffset(User * GEP)201 Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202 return llvm::EmitGEPOffset(&Builder, DL, GEP);
203 }
204
205 /// Return true if it is desirable to convert an integer computation from a
206 /// given bit width to a new bit width.
207 /// We don't want to convert from a legal to an illegal type or from a smaller
208 /// to a larger illegal type. A width of '1' is always treated as a legal type
209 /// because i1 is a fundamental type in IR, and there are many specialized
210 /// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
211 /// legal to convert to, in order to open up more combining opportunities.
212 /// NOTE: this treats i8, i16 and i32 specially, due to them being so common
213 /// from frontend languages.
shouldChangeType(unsigned FromWidth,unsigned ToWidth) const214 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
215 unsigned ToWidth) const {
216 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
217 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
218
219 // Convert to widths of 8, 16 or 32 even if they are not legal types. Only
220 // shrink types, to prevent infinite loops.
221 if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
222 return true;
223
224 // If this is a legal integer from type, and the result would be an illegal
225 // type, don't do the transformation.
226 if (FromLegal && !ToLegal)
227 return false;
228
229 // Otherwise, if both are illegal, do not increase the size of the result. We
230 // do allow things like i160 -> i64, but not i64 -> i160.
231 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
232 return false;
233
234 return true;
235 }
236
237 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
238 /// We don't want to convert from a legal to an illegal type or from a smaller
239 /// to a larger illegal type. i1 is always treated as a legal type because it is
240 /// a fundamental type in IR, and there are many specialized optimizations for
241 /// i1 types.
shouldChangeType(Type * From,Type * To) const242 bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
243 // TODO: This could be extended to allow vectors. Datalayout changes might be
244 // needed to properly support that.
245 if (!From->isIntegerTy() || !To->isIntegerTy())
246 return false;
247
248 unsigned FromWidth = From->getPrimitiveSizeInBits();
249 unsigned ToWidth = To->getPrimitiveSizeInBits();
250 return shouldChangeType(FromWidth, ToWidth);
251 }
252
253 // Return true, if No Signed Wrap should be maintained for I.
254 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
255 // where both B and C should be ConstantInts, results in a constant that does
256 // not overflow. This function only handles the Add and Sub opcodes. For
257 // all other opcodes, the function conservatively returns false.
maintainNoSignedWrap(BinaryOperator & I,Value * B,Value * C)258 static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
259 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
260 if (!OBO || !OBO->hasNoSignedWrap())
261 return false;
262
263 // We reason about Add and Sub Only.
264 Instruction::BinaryOps Opcode = I.getOpcode();
265 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
266 return false;
267
268 const APInt *BVal, *CVal;
269 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
270 return false;
271
272 bool Overflow = false;
273 if (Opcode == Instruction::Add)
274 (void)BVal->sadd_ov(*CVal, Overflow);
275 else
276 (void)BVal->ssub_ov(*CVal, Overflow);
277
278 return !Overflow;
279 }
280
hasNoUnsignedWrap(BinaryOperator & I)281 static bool hasNoUnsignedWrap(BinaryOperator &I) {
282 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
283 return OBO && OBO->hasNoUnsignedWrap();
284 }
285
hasNoSignedWrap(BinaryOperator & I)286 static bool hasNoSignedWrap(BinaryOperator &I) {
287 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
288 return OBO && OBO->hasNoSignedWrap();
289 }
290
291 /// Conservatively clears subclassOptionalData after a reassociation or
292 /// commutation. We preserve fast-math flags when applicable as they can be
293 /// preserved.
ClearSubclassDataAfterReassociation(BinaryOperator & I)294 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
295 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
296 if (!FPMO) {
297 I.clearSubclassOptionalData();
298 return;
299 }
300
301 FastMathFlags FMF = I.getFastMathFlags();
302 I.clearSubclassOptionalData();
303 I.setFastMathFlags(FMF);
304 }
305
306 /// Combine constant operands of associative operations either before or after a
307 /// cast to eliminate one of the associative operations:
308 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
309 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
simplifyAssocCastAssoc(BinaryOperator * BinOp1,InstCombinerImpl & IC)310 static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
311 InstCombinerImpl &IC) {
312 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
313 if (!Cast || !Cast->hasOneUse())
314 return false;
315
316 // TODO: Enhance logic for other casts and remove this check.
317 auto CastOpcode = Cast->getOpcode();
318 if (CastOpcode != Instruction::ZExt)
319 return false;
320
321 // TODO: Enhance logic for other BinOps and remove this check.
322 if (!BinOp1->isBitwiseLogicOp())
323 return false;
324
325 auto AssocOpcode = BinOp1->getOpcode();
326 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
327 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
328 return false;
329
330 Constant *C1, *C2;
331 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
332 !match(BinOp2->getOperand(1), m_Constant(C2)))
333 return false;
334
335 // TODO: This assumes a zext cast.
336 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
337 // to the destination type might lose bits.
338
339 // Fold the constants together in the destination type:
340 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
341 Type *DestTy = C1->getType();
342 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
343 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
344 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
345 IC.replaceOperand(*BinOp1, 1, FoldedC);
346 return true;
347 }
348
349 /// This performs a few simplifications for operators that are associative or
350 /// commutative:
351 ///
352 /// Commutative operators:
353 ///
354 /// 1. Order operands such that they are listed from right (least complex) to
355 /// left (most complex). This puts constants before unary operators before
356 /// binary operators.
357 ///
358 /// Associative operators:
359 ///
360 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
361 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
362 ///
363 /// Associative and commutative operators:
364 ///
365 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
366 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
367 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
368 /// if C1 and C2 are constants.
SimplifyAssociativeOrCommutative(BinaryOperator & I)369 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
370 Instruction::BinaryOps Opcode = I.getOpcode();
371 bool Changed = false;
372
373 do {
374 // Order operands such that they are listed from right (least complex) to
375 // left (most complex). This puts constants before unary operators before
376 // binary operators.
377 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
378 getComplexity(I.getOperand(1)))
379 Changed = !I.swapOperands();
380
381 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
382 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
383
384 if (I.isAssociative()) {
385 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
386 if (Op0 && Op0->getOpcode() == Opcode) {
387 Value *A = Op0->getOperand(0);
388 Value *B = Op0->getOperand(1);
389 Value *C = I.getOperand(1);
390
391 // Does "B op C" simplify?
392 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
393 // It simplifies to V. Form "A op V".
394 replaceOperand(I, 0, A);
395 replaceOperand(I, 1, V);
396 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
397 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
398
399 // Conservatively clear all optional flags since they may not be
400 // preserved by the reassociation. Reset nsw/nuw based on the above
401 // analysis.
402 ClearSubclassDataAfterReassociation(I);
403
404 // Note: this is only valid because SimplifyBinOp doesn't look at
405 // the operands to Op0.
406 if (IsNUW)
407 I.setHasNoUnsignedWrap(true);
408
409 if (IsNSW)
410 I.setHasNoSignedWrap(true);
411
412 Changed = true;
413 ++NumReassoc;
414 continue;
415 }
416 }
417
418 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
419 if (Op1 && Op1->getOpcode() == Opcode) {
420 Value *A = I.getOperand(0);
421 Value *B = Op1->getOperand(0);
422 Value *C = Op1->getOperand(1);
423
424 // Does "A op B" simplify?
425 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
426 // It simplifies to V. Form "V op C".
427 replaceOperand(I, 0, V);
428 replaceOperand(I, 1, C);
429 // Conservatively clear the optional flags, since they may not be
430 // preserved by the reassociation.
431 ClearSubclassDataAfterReassociation(I);
432 Changed = true;
433 ++NumReassoc;
434 continue;
435 }
436 }
437 }
438
439 if (I.isAssociative() && I.isCommutative()) {
440 if (simplifyAssocCastAssoc(&I, *this)) {
441 Changed = true;
442 ++NumReassoc;
443 continue;
444 }
445
446 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
447 if (Op0 && Op0->getOpcode() == Opcode) {
448 Value *A = Op0->getOperand(0);
449 Value *B = Op0->getOperand(1);
450 Value *C = I.getOperand(1);
451
452 // Does "C op A" simplify?
453 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
454 // It simplifies to V. Form "V op B".
455 replaceOperand(I, 0, V);
456 replaceOperand(I, 1, B);
457 // Conservatively clear the optional flags, since they may not be
458 // preserved by the reassociation.
459 ClearSubclassDataAfterReassociation(I);
460 Changed = true;
461 ++NumReassoc;
462 continue;
463 }
464 }
465
466 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
467 if (Op1 && Op1->getOpcode() == Opcode) {
468 Value *A = I.getOperand(0);
469 Value *B = Op1->getOperand(0);
470 Value *C = Op1->getOperand(1);
471
472 // Does "C op A" simplify?
473 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
474 // It simplifies to V. Form "B op V".
475 replaceOperand(I, 0, B);
476 replaceOperand(I, 1, V);
477 // Conservatively clear the optional flags, since they may not be
478 // preserved by the reassociation.
479 ClearSubclassDataAfterReassociation(I);
480 Changed = true;
481 ++NumReassoc;
482 continue;
483 }
484 }
485
486 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
487 // if C1 and C2 are constants.
488 Value *A, *B;
489 Constant *C1, *C2;
490 if (Op0 && Op1 &&
491 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
492 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
493 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
494 bool IsNUW = hasNoUnsignedWrap(I) &&
495 hasNoUnsignedWrap(*Op0) &&
496 hasNoUnsignedWrap(*Op1);
497 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
498 BinaryOperator::CreateNUW(Opcode, A, B) :
499 BinaryOperator::Create(Opcode, A, B);
500
501 if (isa<FPMathOperator>(NewBO)) {
502 FastMathFlags Flags = I.getFastMathFlags();
503 Flags &= Op0->getFastMathFlags();
504 Flags &= Op1->getFastMathFlags();
505 NewBO->setFastMathFlags(Flags);
506 }
507 InsertNewInstWith(NewBO, I);
508 NewBO->takeName(Op1);
509 replaceOperand(I, 0, NewBO);
510 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
511 // Conservatively clear the optional flags, since they may not be
512 // preserved by the reassociation.
513 ClearSubclassDataAfterReassociation(I);
514 if (IsNUW)
515 I.setHasNoUnsignedWrap(true);
516
517 Changed = true;
518 continue;
519 }
520 }
521
522 // No further simplifications.
523 return Changed;
524 } while (true);
525 }
526
527 /// Return whether "X LOp (Y ROp Z)" is always equal to
528 /// "(X LOp Y) ROp (X LOp Z)".
leftDistributesOverRight(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)529 static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
530 Instruction::BinaryOps ROp) {
531 // X & (Y | Z) <--> (X & Y) | (X & Z)
532 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
533 if (LOp == Instruction::And)
534 return ROp == Instruction::Or || ROp == Instruction::Xor;
535
536 // X | (Y & Z) <--> (X | Y) & (X | Z)
537 if (LOp == Instruction::Or)
538 return ROp == Instruction::And;
539
540 // X * (Y + Z) <--> (X * Y) + (X * Z)
541 // X * (Y - Z) <--> (X * Y) - (X * Z)
542 if (LOp == Instruction::Mul)
543 return ROp == Instruction::Add || ROp == Instruction::Sub;
544
545 return false;
546 }
547
548 /// Return whether "(X LOp Y) ROp Z" is always equal to
549 /// "(X ROp Z) LOp (Y ROp Z)".
rightDistributesOverLeft(Instruction::BinaryOps LOp,Instruction::BinaryOps ROp)550 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
551 Instruction::BinaryOps ROp) {
552 if (Instruction::isCommutative(ROp))
553 return leftDistributesOverRight(ROp, LOp);
554
555 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
556 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
557
558 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
559 // but this requires knowing that the addition does not overflow and other
560 // such subtleties.
561 }
562
563 /// This function returns identity value for given opcode, which can be used to
564 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
getIdentityValue(Instruction::BinaryOps Opcode,Value * V)565 static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
566 if (isa<Constant>(V))
567 return nullptr;
568
569 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
570 }
571
572 /// This function predicates factorization using distributive laws. By default,
573 /// it just returns the 'Op' inputs. But for special-cases like
574 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
575 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
576 /// allow more factorization opportunities.
577 static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode,BinaryOperator * Op,Value * & LHS,Value * & RHS)578 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
579 Value *&LHS, Value *&RHS) {
580 assert(Op && "Expected a binary operator");
581 LHS = Op->getOperand(0);
582 RHS = Op->getOperand(1);
583 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
584 Constant *C;
585 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
586 // X << C --> X * (1 << C)
587 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
588 return Instruction::Mul;
589 }
590 // TODO: We can add other conversions e.g. shr => div etc.
591 }
592 return Op->getOpcode();
593 }
594
595 /// This tries to simplify binary operations by factorizing out common terms
596 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
tryFactorization(BinaryOperator & I,Instruction::BinaryOps InnerOpcode,Value * A,Value * B,Value * C,Value * D)597 Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
598 Instruction::BinaryOps InnerOpcode,
599 Value *A, Value *B, Value *C,
600 Value *D) {
601 assert(A && B && C && D && "All values must be provided");
602
603 Value *V = nullptr;
604 Value *SimplifiedInst = nullptr;
605 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
606 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
607
608 // Does "X op' Y" always equal "Y op' X"?
609 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
610
611 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
612 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
613 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
614 // commutative case, "(A op' B) op (C op' A)"?
615 if (A == C || (InnerCommutative && A == D)) {
616 if (A != C)
617 std::swap(C, D);
618 // Consider forming "A op' (B op D)".
619 // If "B op D" simplifies then it can be formed with no cost.
620 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
621 // If "B op D" doesn't simplify then only go on if both of the existing
622 // operations "A op' B" and "C op' D" will be zapped as no longer used.
623 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
624 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
625 if (V) {
626 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
627 }
628 }
629
630 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
631 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
632 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
633 // commutative case, "(A op' B) op (B op' D)"?
634 if (B == D || (InnerCommutative && B == C)) {
635 if (B != D)
636 std::swap(C, D);
637 // Consider forming "(A op C) op' B".
638 // If "A op C" simplifies then it can be formed with no cost.
639 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
640
641 // If "A op C" doesn't simplify then only go on if both of the existing
642 // operations "A op' B" and "C op' D" will be zapped as no longer used.
643 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
644 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
645 if (V) {
646 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
647 }
648 }
649
650 if (SimplifiedInst) {
651 ++NumFactor;
652 SimplifiedInst->takeName(&I);
653
654 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
655 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
656 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
657 bool HasNSW = false;
658 bool HasNUW = false;
659 if (isa<OverflowingBinaryOperator>(&I)) {
660 HasNSW = I.hasNoSignedWrap();
661 HasNUW = I.hasNoUnsignedWrap();
662 }
663
664 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
665 HasNSW &= LOBO->hasNoSignedWrap();
666 HasNUW &= LOBO->hasNoUnsignedWrap();
667 }
668
669 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
670 HasNSW &= ROBO->hasNoSignedWrap();
671 HasNUW &= ROBO->hasNoUnsignedWrap();
672 }
673
674 if (TopLevelOpcode == Instruction::Add &&
675 InnerOpcode == Instruction::Mul) {
676 // We can propagate 'nsw' if we know that
677 // %Y = mul nsw i16 %X, C
678 // %Z = add nsw i16 %Y, %X
679 // =>
680 // %Z = mul nsw i16 %X, C+1
681 //
682 // iff C+1 isn't INT_MIN
683 const APInt *CInt;
684 if (match(V, m_APInt(CInt))) {
685 if (!CInt->isMinSignedValue())
686 BO->setHasNoSignedWrap(HasNSW);
687 }
688
689 // nuw can be propagated with any constant or nuw value.
690 BO->setHasNoUnsignedWrap(HasNUW);
691 }
692 }
693 }
694 }
695 return SimplifiedInst;
696 }
697
698 /// This tries to simplify binary operations which some other binary operation
699 /// distributes over either by factorizing out common terms
700 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
701 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
702 /// Returns the simplified value, or null if it didn't simplify.
SimplifyUsingDistributiveLaws(BinaryOperator & I)703 Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
704 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
705 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
706 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
707 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
708
709 {
710 // Factorization.
711 Value *A, *B, *C, *D;
712 Instruction::BinaryOps LHSOpcode, RHSOpcode;
713 if (Op0)
714 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
715 if (Op1)
716 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
717
718 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
719 // a common term.
720 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
721 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
722 return V;
723
724 // The instruction has the form "(A op' B) op (C)". Try to factorize common
725 // term.
726 if (Op0)
727 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
728 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
729 return V;
730
731 // The instruction has the form "(B) op (C op' D)". Try to factorize common
732 // term.
733 if (Op1)
734 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
735 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
736 return V;
737 }
738
739 // Expansion.
740 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
741 // The instruction has the form "(A op' B) op C". See if expanding it out
742 // to "(A op C) op' (B op C)" results in simplifications.
743 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
744 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
745
746 // Disable the use of undef because it's not safe to distribute undef.
747 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
748 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
749 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
750
751 // Do "A op C" and "B op C" both simplify?
752 if (L && R) {
753 // They do! Return "L op' R".
754 ++NumExpand;
755 C = Builder.CreateBinOp(InnerOpcode, L, R);
756 C->takeName(&I);
757 return C;
758 }
759
760 // Does "A op C" simplify to the identity value for the inner opcode?
761 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
762 // They do! Return "B op C".
763 ++NumExpand;
764 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
765 C->takeName(&I);
766 return C;
767 }
768
769 // Does "B op C" simplify to the identity value for the inner opcode?
770 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
771 // They do! Return "A op C".
772 ++NumExpand;
773 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
774 C->takeName(&I);
775 return C;
776 }
777 }
778
779 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
780 // The instruction has the form "A op (B op' C)". See if expanding it out
781 // to "(A op B) op' (A op C)" results in simplifications.
782 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
783 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
784
785 // Disable the use of undef because it's not safe to distribute undef.
786 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
787 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
788 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
789
790 // Do "A op B" and "A op C" both simplify?
791 if (L && R) {
792 // They do! Return "L op' R".
793 ++NumExpand;
794 A = Builder.CreateBinOp(InnerOpcode, L, R);
795 A->takeName(&I);
796 return A;
797 }
798
799 // Does "A op B" simplify to the identity value for the inner opcode?
800 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
801 // They do! Return "A op C".
802 ++NumExpand;
803 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
804 A->takeName(&I);
805 return A;
806 }
807
808 // Does "A op C" simplify to the identity value for the inner opcode?
809 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
810 // They do! Return "A op B".
811 ++NumExpand;
812 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
813 A->takeName(&I);
814 return A;
815 }
816 }
817
818 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
819 }
820
SimplifySelectsFeedingBinaryOp(BinaryOperator & I,Value * LHS,Value * RHS)821 Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
822 Value *LHS,
823 Value *RHS) {
824 Value *A, *B, *C, *D, *E, *F;
825 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
826 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
827 if (!LHSIsSelect && !RHSIsSelect)
828 return nullptr;
829
830 FastMathFlags FMF;
831 BuilderTy::FastMathFlagGuard Guard(Builder);
832 if (isa<FPMathOperator>(&I)) {
833 FMF = I.getFastMathFlags();
834 Builder.setFastMathFlags(FMF);
835 }
836
837 Instruction::BinaryOps Opcode = I.getOpcode();
838 SimplifyQuery Q = SQ.getWithInstruction(&I);
839
840 Value *Cond, *True = nullptr, *False = nullptr;
841 if (LHSIsSelect && RHSIsSelect && A == D) {
842 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
843 Cond = A;
844 True = SimplifyBinOp(Opcode, B, E, FMF, Q);
845 False = SimplifyBinOp(Opcode, C, F, FMF, Q);
846
847 if (LHS->hasOneUse() && RHS->hasOneUse()) {
848 if (False && !True)
849 True = Builder.CreateBinOp(Opcode, B, E);
850 else if (True && !False)
851 False = Builder.CreateBinOp(Opcode, C, F);
852 }
853 } else if (LHSIsSelect && LHS->hasOneUse()) {
854 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
855 Cond = A;
856 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
857 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
858 } else if (RHSIsSelect && RHS->hasOneUse()) {
859 // X op (D ? E : F) -> D ? (X op E) : (X op F)
860 Cond = D;
861 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
862 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
863 }
864
865 if (!True || !False)
866 return nullptr;
867
868 Value *SI = Builder.CreateSelect(Cond, True, False);
869 SI->takeName(&I);
870 return SI;
871 }
872
873 /// Freely adapt every user of V as-if V was changed to !V.
874 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
freelyInvertAllUsersOf(Value * I)875 void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
876 for (User *U : I->users()) {
877 switch (cast<Instruction>(U)->getOpcode()) {
878 case Instruction::Select: {
879 auto *SI = cast<SelectInst>(U);
880 SI->swapValues();
881 SI->swapProfMetadata();
882 break;
883 }
884 case Instruction::Br:
885 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
886 break;
887 case Instruction::Xor:
888 replaceInstUsesWith(cast<Instruction>(*U), I);
889 break;
890 default:
891 llvm_unreachable("Got unexpected user - out of sync with "
892 "canFreelyInvertAllUsersOf() ?");
893 }
894 }
895 }
896
897 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
898 /// constant zero (which is the 'negate' form).
dyn_castNegVal(Value * V) const899 Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
900 Value *NegV;
901 if (match(V, m_Neg(m_Value(NegV))))
902 return NegV;
903
904 // Constants can be considered to be negated values if they can be folded.
905 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
906 return ConstantExpr::getNeg(C);
907
908 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
909 if (C->getType()->getElementType()->isIntegerTy())
910 return ConstantExpr::getNeg(C);
911
912 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
913 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
914 Constant *Elt = CV->getAggregateElement(i);
915 if (!Elt)
916 return nullptr;
917
918 if (isa<UndefValue>(Elt))
919 continue;
920
921 if (!isa<ConstantInt>(Elt))
922 return nullptr;
923 }
924 return ConstantExpr::getNeg(CV);
925 }
926
927 return nullptr;
928 }
929
foldOperationIntoSelectOperand(Instruction & I,Value * SO,InstCombiner::BuilderTy & Builder)930 static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
931 InstCombiner::BuilderTy &Builder) {
932 if (auto *Cast = dyn_cast<CastInst>(&I))
933 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
934
935 assert(I.isBinaryOp() && "Unexpected opcode for select folding");
936
937 // Figure out if the constant is the left or the right argument.
938 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
939 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
940
941 if (auto *SOC = dyn_cast<Constant>(SO)) {
942 if (ConstIsRHS)
943 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
944 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
945 }
946
947 Value *Op0 = SO, *Op1 = ConstOperand;
948 if (!ConstIsRHS)
949 std::swap(Op0, Op1);
950
951 auto *BO = cast<BinaryOperator>(&I);
952 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
953 SO->getName() + ".op");
954 auto *FPInst = dyn_cast<Instruction>(RI);
955 if (FPInst && isa<FPMathOperator>(FPInst))
956 FPInst->copyFastMathFlags(BO);
957 return RI;
958 }
959
FoldOpIntoSelect(Instruction & Op,SelectInst * SI)960 Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
961 SelectInst *SI) {
962 // Don't modify shared select instructions.
963 if (!SI->hasOneUse())
964 return nullptr;
965
966 Value *TV = SI->getTrueValue();
967 Value *FV = SI->getFalseValue();
968 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
969 return nullptr;
970
971 // Bool selects with constant operands can be folded to logical ops.
972 if (SI->getType()->isIntOrIntVectorTy(1))
973 return nullptr;
974
975 // If it's a bitcast involving vectors, make sure it has the same number of
976 // elements on both sides.
977 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
978 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
979 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
980
981 // Verify that either both or neither are vectors.
982 if ((SrcTy == nullptr) != (DestTy == nullptr))
983 return nullptr;
984
985 // If vectors, verify that they have the same number of elements.
986 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
987 return nullptr;
988 }
989
990 // Test if a CmpInst instruction is used exclusively by a select as
991 // part of a minimum or maximum operation. If so, refrain from doing
992 // any other folding. This helps out other analyses which understand
993 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
994 // and CodeGen. And in this case, at least one of the comparison
995 // operands has at least one user besides the compare (the select),
996 // which would often largely negate the benefit of folding anyway.
997 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
998 if (CI->hasOneUse()) {
999 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1000
1001 // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1002 // We have to ensure that vector constants that only differ with
1003 // undef elements are treated as equivalent.
1004 auto areLooselyEqual = [](Value *A, Value *B) {
1005 if (A == B)
1006 return true;
1007
1008 // Test for vector constants.
1009 Constant *ConstA, *ConstB;
1010 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1011 return false;
1012
1013 // TODO: Deal with FP constants?
1014 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1015 return false;
1016
1017 // Compare for equality including undefs as equal.
1018 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1019 const APInt *C;
1020 return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
1021 };
1022
1023 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1024 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1025 return nullptr;
1026 }
1027 }
1028
1029 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1030 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1031 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1032 }
1033
foldOperationIntoPhiValue(BinaryOperator * I,Value * InV,InstCombiner::BuilderTy & Builder)1034 static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1035 InstCombiner::BuilderTy &Builder) {
1036 bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1037 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1038
1039 if (auto *InC = dyn_cast<Constant>(InV)) {
1040 if (ConstIsRHS)
1041 return ConstantExpr::get(I->getOpcode(), InC, C);
1042 return ConstantExpr::get(I->getOpcode(), C, InC);
1043 }
1044
1045 Value *Op0 = InV, *Op1 = C;
1046 if (!ConstIsRHS)
1047 std::swap(Op0, Op1);
1048
1049 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1050 auto *FPInst = dyn_cast<Instruction>(RI);
1051 if (FPInst && isa<FPMathOperator>(FPInst))
1052 FPInst->copyFastMathFlags(I);
1053 return RI;
1054 }
1055
foldOpIntoPhi(Instruction & I,PHINode * PN)1056 Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1057 unsigned NumPHIValues = PN->getNumIncomingValues();
1058 if (NumPHIValues == 0)
1059 return nullptr;
1060
1061 // We normally only transform phis with a single use. However, if a PHI has
1062 // multiple uses and they are all the same operation, we can fold *all* of the
1063 // uses into the PHI.
1064 if (!PN->hasOneUse()) {
1065 // Walk the use list for the instruction, comparing them to I.
1066 for (User *U : PN->users()) {
1067 Instruction *UI = cast<Instruction>(U);
1068 if (UI != &I && !I.isIdenticalTo(UI))
1069 return nullptr;
1070 }
1071 // Otherwise, we can replace *all* users with the new PHI we form.
1072 }
1073
1074 // Check to see if all of the operands of the PHI are simple constants
1075 // (constantint/constantfp/undef). If there is one non-constant value,
1076 // remember the BB it is in. If there is more than one or if *it* is a PHI,
1077 // bail out. We don't do arbitrary constant expressions here because moving
1078 // their computation can be expensive without a cost model.
1079 BasicBlock *NonConstBB = nullptr;
1080 for (unsigned i = 0; i != NumPHIValues; ++i) {
1081 Value *InVal = PN->getIncomingValue(i);
1082 // If I is a freeze instruction, count undef as a non-constant.
1083 if (match(InVal, m_ImmConstant()) &&
1084 (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1085 continue;
1086
1087 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
1088 if (NonConstBB) return nullptr; // More than one non-const value.
1089
1090 NonConstBB = PN->getIncomingBlock(i);
1091
1092 // If the InVal is an invoke at the end of the pred block, then we can't
1093 // insert a computation after it without breaking the edge.
1094 if (isa<InvokeInst>(InVal))
1095 if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1096 return nullptr;
1097
1098 // If the incoming non-constant value is in I's block, we will remove one
1099 // instruction, but insert another equivalent one, leading to infinite
1100 // instcombine.
1101 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1102 return nullptr;
1103 }
1104
1105 // If there is exactly one non-constant value, we can insert a copy of the
1106 // operation in that block. However, if this is a critical edge, we would be
1107 // inserting the computation on some other paths (e.g. inside a loop). Only
1108 // do this if the pred block is unconditionally branching into the phi block.
1109 // Also, make sure that the pred block is not dead code.
1110 if (NonConstBB != nullptr) {
1111 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1112 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1113 return nullptr;
1114 }
1115
1116 // Okay, we can do the transformation: create the new PHI node.
1117 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1118 InsertNewInstBefore(NewPN, *PN);
1119 NewPN->takeName(PN);
1120
1121 // If we are going to have to insert a new computation, do so right before the
1122 // predecessor's terminator.
1123 if (NonConstBB)
1124 Builder.SetInsertPoint(NonConstBB->getTerminator());
1125
1126 // Next, add all of the operands to the PHI.
1127 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1128 // We only currently try to fold the condition of a select when it is a phi,
1129 // not the true/false values.
1130 Value *TrueV = SI->getTrueValue();
1131 Value *FalseV = SI->getFalseValue();
1132 BasicBlock *PhiTransBB = PN->getParent();
1133 for (unsigned i = 0; i != NumPHIValues; ++i) {
1134 BasicBlock *ThisBB = PN->getIncomingBlock(i);
1135 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1136 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1137 Value *InV = nullptr;
1138 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
1139 // even if currently isNullValue gives false.
1140 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1141 // For vector constants, we cannot use isNullValue to fold into
1142 // FalseVInPred versus TrueVInPred. When we have individual nonzero
1143 // elements in the vector, we will incorrectly fold InC to
1144 // `TrueVInPred`.
1145 if (InC && isa<ConstantInt>(InC))
1146 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1147 else {
1148 // Generate the select in the same block as PN's current incoming block.
1149 // Note: ThisBB need not be the NonConstBB because vector constants
1150 // which are constants by definition are handled here.
1151 // FIXME: This can lead to an increase in IR generation because we might
1152 // generate selects for vector constant phi operand, that could not be
1153 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1154 // non-vector phis, this transformation was always profitable because
1155 // the select would be generated exactly once in the NonConstBB.
1156 Builder.SetInsertPoint(ThisBB->getTerminator());
1157 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1158 FalseVInPred, "phi.sel");
1159 }
1160 NewPN->addIncoming(InV, ThisBB);
1161 }
1162 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1163 Constant *C = cast<Constant>(I.getOperand(1));
1164 for (unsigned i = 0; i != NumPHIValues; ++i) {
1165 Value *InV = nullptr;
1166 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1167 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1168 else
1169 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1170 C, "phi.cmp");
1171 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1172 }
1173 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1174 for (unsigned i = 0; i != NumPHIValues; ++i) {
1175 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1176 Builder);
1177 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1178 }
1179 } else if (isa<FreezeInst>(&I)) {
1180 for (unsigned i = 0; i != NumPHIValues; ++i) {
1181 Value *InV;
1182 if (NonConstBB == PN->getIncomingBlock(i))
1183 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1184 else
1185 InV = PN->getIncomingValue(i);
1186 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1187 }
1188 } else {
1189 CastInst *CI = cast<CastInst>(&I);
1190 Type *RetTy = CI->getType();
1191 for (unsigned i = 0; i != NumPHIValues; ++i) {
1192 Value *InV;
1193 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1194 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1195 else
1196 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1197 I.getType(), "phi.cast");
1198 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1199 }
1200 }
1201
1202 for (User *U : make_early_inc_range(PN->users())) {
1203 Instruction *User = cast<Instruction>(U);
1204 if (User == &I) continue;
1205 replaceInstUsesWith(*User, NewPN);
1206 eraseInstFromFunction(*User);
1207 }
1208 return replaceInstUsesWith(I, NewPN);
1209 }
1210
foldBinOpIntoSelectOrPhi(BinaryOperator & I)1211 Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1212 if (!isa<Constant>(I.getOperand(1)))
1213 return nullptr;
1214
1215 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1216 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1217 return NewSel;
1218 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1219 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1220 return NewPhi;
1221 }
1222 return nullptr;
1223 }
1224
1225 /// Given a pointer type and a constant offset, determine whether or not there
1226 /// is a sequence of GEP indices into the pointed type that will land us at the
1227 /// specified offset. If so, fill them into NewIndices and return the resultant
1228 /// element type, otherwise return null.
1229 Type *
FindElementAtOffset(PointerType * PtrTy,int64_t Offset,SmallVectorImpl<Value * > & NewIndices)1230 InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
1231 SmallVectorImpl<Value *> &NewIndices) {
1232 Type *Ty = PtrTy->getElementType();
1233 if (!Ty->isSized())
1234 return nullptr;
1235
1236 // Start with the index over the outer type. Note that the type size
1237 // might be zero (even if the offset isn't zero) if the indexed type
1238 // is something like [0 x {int, int}]
1239 Type *IndexTy = DL.getIndexType(PtrTy);
1240 int64_t FirstIdx = 0;
1241 if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
1242 FirstIdx = Offset/TySize;
1243 Offset -= FirstIdx*TySize;
1244
1245 // Handle hosts where % returns negative instead of values [0..TySize).
1246 if (Offset < 0) {
1247 --FirstIdx;
1248 Offset += TySize;
1249 assert(Offset >= 0);
1250 }
1251 assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
1252 }
1253
1254 NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
1255
1256 // Index into the types. If we fail, set OrigBase to null.
1257 while (Offset) {
1258 // Indexing into tail padding between struct/array elements.
1259 if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
1260 return nullptr;
1261
1262 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1263 const StructLayout *SL = DL.getStructLayout(STy);
1264 assert(Offset < (int64_t)SL->getSizeInBytes() &&
1265 "Offset must stay within the indexed type");
1266
1267 unsigned Elt = SL->getElementContainingOffset(Offset);
1268 NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
1269 Elt));
1270
1271 Offset -= SL->getElementOffset(Elt);
1272 Ty = STy->getElementType(Elt);
1273 } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
1274 uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
1275 assert(EltSize && "Cannot index into a zero-sized array");
1276 NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
1277 Offset %= EltSize;
1278 Ty = AT->getElementType();
1279 } else {
1280 // Otherwise, we can't index into the middle of this atomic type, bail.
1281 return nullptr;
1282 }
1283 }
1284
1285 return Ty;
1286 }
1287
shouldMergeGEPs(GEPOperator & GEP,GEPOperator & Src)1288 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1289 // If this GEP has only 0 indices, it is the same pointer as
1290 // Src. If Src is not a trivial GEP too, don't combine
1291 // the indices.
1292 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1293 !Src.hasOneUse())
1294 return false;
1295 return true;
1296 }
1297
1298 /// Return a value X such that Val = X * Scale, or null if none.
1299 /// If the multiplication is known not to overflow, then NoSignedWrap is set.
Descale(Value * Val,APInt Scale,bool & NoSignedWrap)1300 Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1301 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
1302 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
1303 Scale.getBitWidth() && "Scale not compatible with value!");
1304
1305 // If Val is zero or Scale is one then Val = Val * Scale.
1306 if (match(Val, m_Zero()) || Scale == 1) {
1307 NoSignedWrap = true;
1308 return Val;
1309 }
1310
1311 // If Scale is zero then it does not divide Val.
1312 if (Scale.isMinValue())
1313 return nullptr;
1314
1315 // Look through chains of multiplications, searching for a constant that is
1316 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1317 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1318 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1319 // down from Val:
1320 //
1321 // Val = M1 * X || Analysis starts here and works down
1322 // M1 = M2 * Y || Doesn't descend into terms with more
1323 // M2 = Z * 4 \/ than one use
1324 //
1325 // Then to modify a term at the bottom:
1326 //
1327 // Val = M1 * X
1328 // M1 = Z * Y || Replaced M2 with Z
1329 //
1330 // Then to work back up correcting nsw flags.
1331
1332 // Op - the term we are currently analyzing. Starts at Val then drills down.
1333 // Replaced with its descaled value before exiting from the drill down loop.
1334 Value *Op = Val;
1335
1336 // Parent - initially null, but after drilling down notes where Op came from.
1337 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1338 // 0'th operand of Val.
1339 std::pair<Instruction *, unsigned> Parent;
1340
1341 // Set if the transform requires a descaling at deeper levels that doesn't
1342 // overflow.
1343 bool RequireNoSignedWrap = false;
1344
1345 // Log base 2 of the scale. Negative if not a power of 2.
1346 int32_t logScale = Scale.exactLogBase2();
1347
1348 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1349 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1350 // If Op is a constant divisible by Scale then descale to the quotient.
1351 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1352 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1353 if (!Remainder.isMinValue())
1354 // Not divisible by Scale.
1355 return nullptr;
1356 // Replace with the quotient in the parent.
1357 Op = ConstantInt::get(CI->getType(), Quotient);
1358 NoSignedWrap = true;
1359 break;
1360 }
1361
1362 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1363 if (BO->getOpcode() == Instruction::Mul) {
1364 // Multiplication.
1365 NoSignedWrap = BO->hasNoSignedWrap();
1366 if (RequireNoSignedWrap && !NoSignedWrap)
1367 return nullptr;
1368
1369 // There are three cases for multiplication: multiplication by exactly
1370 // the scale, multiplication by a constant different to the scale, and
1371 // multiplication by something else.
1372 Value *LHS = BO->getOperand(0);
1373 Value *RHS = BO->getOperand(1);
1374
1375 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1376 // Multiplication by a constant.
1377 if (CI->getValue() == Scale) {
1378 // Multiplication by exactly the scale, replace the multiplication
1379 // by its left-hand side in the parent.
1380 Op = LHS;
1381 break;
1382 }
1383
1384 // Otherwise drill down into the constant.
1385 if (!Op->hasOneUse())
1386 return nullptr;
1387
1388 Parent = std::make_pair(BO, 1);
1389 continue;
1390 }
1391
1392 // Multiplication by something else. Drill down into the left-hand side
1393 // since that's where the reassociate pass puts the good stuff.
1394 if (!Op->hasOneUse())
1395 return nullptr;
1396
1397 Parent = std::make_pair(BO, 0);
1398 continue;
1399 }
1400
1401 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1402 isa<ConstantInt>(BO->getOperand(1))) {
1403 // Multiplication by a power of 2.
1404 NoSignedWrap = BO->hasNoSignedWrap();
1405 if (RequireNoSignedWrap && !NoSignedWrap)
1406 return nullptr;
1407
1408 Value *LHS = BO->getOperand(0);
1409 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1410 getLimitedValue(Scale.getBitWidth());
1411 // Op = LHS << Amt.
1412
1413 if (Amt == logScale) {
1414 // Multiplication by exactly the scale, replace the multiplication
1415 // by its left-hand side in the parent.
1416 Op = LHS;
1417 break;
1418 }
1419 if (Amt < logScale || !Op->hasOneUse())
1420 return nullptr;
1421
1422 // Multiplication by more than the scale. Reduce the multiplying amount
1423 // by the scale in the parent.
1424 Parent = std::make_pair(BO, 1);
1425 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1426 break;
1427 }
1428 }
1429
1430 if (!Op->hasOneUse())
1431 return nullptr;
1432
1433 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1434 if (Cast->getOpcode() == Instruction::SExt) {
1435 // Op is sign-extended from a smaller type, descale in the smaller type.
1436 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1437 APInt SmallScale = Scale.trunc(SmallSize);
1438 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1439 // descale Op as (sext Y) * Scale. In order to have
1440 // sext (Y * SmallScale) = (sext Y) * Scale
1441 // some conditions need to hold however: SmallScale must sign-extend to
1442 // Scale and the multiplication Y * SmallScale should not overflow.
1443 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1444 // SmallScale does not sign-extend to Scale.
1445 return nullptr;
1446 assert(SmallScale.exactLogBase2() == logScale);
1447 // Require that Y * SmallScale must not overflow.
1448 RequireNoSignedWrap = true;
1449
1450 // Drill down through the cast.
1451 Parent = std::make_pair(Cast, 0);
1452 Scale = SmallScale;
1453 continue;
1454 }
1455
1456 if (Cast->getOpcode() == Instruction::Trunc) {
1457 // Op is truncated from a larger type, descale in the larger type.
1458 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1459 // trunc (Y * sext Scale) = (trunc Y) * Scale
1460 // always holds. However (trunc Y) * Scale may overflow even if
1461 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1462 // from this point up in the expression (see later).
1463 if (RequireNoSignedWrap)
1464 return nullptr;
1465
1466 // Drill down through the cast.
1467 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1468 Parent = std::make_pair(Cast, 0);
1469 Scale = Scale.sext(LargeSize);
1470 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1471 logScale = -1;
1472 assert(Scale.exactLogBase2() == logScale);
1473 continue;
1474 }
1475 }
1476
1477 // Unsupported expression, bail out.
1478 return nullptr;
1479 }
1480
1481 // If Op is zero then Val = Op * Scale.
1482 if (match(Op, m_Zero())) {
1483 NoSignedWrap = true;
1484 return Op;
1485 }
1486
1487 // We know that we can successfully descale, so from here on we can safely
1488 // modify the IR. Op holds the descaled version of the deepest term in the
1489 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1490 // not to overflow.
1491
1492 if (!Parent.first)
1493 // The expression only had one term.
1494 return Op;
1495
1496 // Rewrite the parent using the descaled version of its operand.
1497 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
1498 assert(Op != Parent.first->getOperand(Parent.second) &&
1499 "Descaling was a no-op?");
1500 replaceOperand(*Parent.first, Parent.second, Op);
1501 Worklist.push(Parent.first);
1502
1503 // Now work back up the expression correcting nsw flags. The logic is based
1504 // on the following observation: if X * Y is known not to overflow as a signed
1505 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1506 // then X * Z will not overflow as a signed multiplication either. As we work
1507 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1508 // current level has strictly smaller absolute value than the original.
1509 Instruction *Ancestor = Parent.first;
1510 do {
1511 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1512 // If the multiplication wasn't nsw then we can't say anything about the
1513 // value of the descaled multiplication, and we have to clear nsw flags
1514 // from this point on up.
1515 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1516 NoSignedWrap &= OpNoSignedWrap;
1517 if (NoSignedWrap != OpNoSignedWrap) {
1518 BO->setHasNoSignedWrap(NoSignedWrap);
1519 Worklist.push(Ancestor);
1520 }
1521 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1522 // The fact that the descaled input to the trunc has smaller absolute
1523 // value than the original input doesn't tell us anything useful about
1524 // the absolute values of the truncations.
1525 NoSignedWrap = false;
1526 }
1527 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
1528 "Failed to keep proper track of nsw flags while drilling down?");
1529
1530 if (Ancestor == Val)
1531 // Got to the top, all done!
1532 return Val;
1533
1534 // Move up one level in the expression.
1535 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
1536 Ancestor = Ancestor->user_back();
1537 } while (true);
1538 }
1539
foldVectorBinop(BinaryOperator & Inst)1540 Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1541 if (!isa<VectorType>(Inst.getType()))
1542 return nullptr;
1543
1544 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1545 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1546 assert(cast<VectorType>(LHS->getType())->getElementCount() ==
1547 cast<VectorType>(Inst.getType())->getElementCount());
1548 assert(cast<VectorType>(RHS->getType())->getElementCount() ==
1549 cast<VectorType>(Inst.getType())->getElementCount());
1550
1551 // If both operands of the binop are vector concatenations, then perform the
1552 // narrow binop on each pair of the source operands followed by concatenation
1553 // of the results.
1554 Value *L0, *L1, *R0, *R1;
1555 ArrayRef<int> Mask;
1556 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1557 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1558 LHS->hasOneUse() && RHS->hasOneUse() &&
1559 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1560 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1561 // This transform does not have the speculative execution constraint as
1562 // below because the shuffle is a concatenation. The new binops are
1563 // operating on exactly the same elements as the existing binop.
1564 // TODO: We could ease the mask requirement to allow different undef lanes,
1565 // but that requires an analysis of the binop-with-undef output value.
1566 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1567 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1568 BO->copyIRFlags(&Inst);
1569 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1570 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1571 BO->copyIRFlags(&Inst);
1572 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1573 }
1574
1575 // It may not be safe to reorder shuffles and things like div, urem, etc.
1576 // because we may trap when executing those ops on unknown vector elements.
1577 // See PR20059.
1578 if (!isSafeToSpeculativelyExecute(&Inst))
1579 return nullptr;
1580
1581 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1582 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1583 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1584 BO->copyIRFlags(&Inst);
1585 return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
1586 };
1587
1588 // If both arguments of the binary operation are shuffles that use the same
1589 // mask and shuffle within a single vector, move the shuffle after the binop.
1590 Value *V1, *V2;
1591 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1592 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1593 V1->getType() == V2->getType() &&
1594 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1595 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1596 return createBinOpShuffle(V1, V2, Mask);
1597 }
1598
1599 // If both arguments of a commutative binop are select-shuffles that use the
1600 // same mask with commuted operands, the shuffles are unnecessary.
1601 if (Inst.isCommutative() &&
1602 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1603 match(RHS,
1604 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1605 auto *LShuf = cast<ShuffleVectorInst>(LHS);
1606 auto *RShuf = cast<ShuffleVectorInst>(RHS);
1607 // TODO: Allow shuffles that contain undefs in the mask?
1608 // That is legal, but it reduces undef knowledge.
1609 // TODO: Allow arbitrary shuffles by shuffling after binop?
1610 // That might be legal, but we have to deal with poison.
1611 if (LShuf->isSelect() &&
1612 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1613 RShuf->isSelect() &&
1614 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1615 // Example:
1616 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1617 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1618 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1619 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1620 NewBO->copyIRFlags(&Inst);
1621 return NewBO;
1622 }
1623 }
1624
1625 // If one argument is a shuffle within one vector and the other is a constant,
1626 // try moving the shuffle after the binary operation. This canonicalization
1627 // intends to move shuffles closer to other shuffles and binops closer to
1628 // other binops, so they can be folded. It may also enable demanded elements
1629 // transforms.
1630 Constant *C;
1631 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1632 if (InstVTy &&
1633 match(&Inst,
1634 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1635 m_ImmConstant(C))) &&
1636 cast<FixedVectorType>(V1->getType())->getNumElements() <=
1637 InstVTy->getNumElements()) {
1638 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
1639 "Shuffle should not change scalar type");
1640
1641 // Find constant NewC that has property:
1642 // shuffle(NewC, ShMask) = C
1643 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1644 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1645 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1646 bool ConstOp1 = isa<Constant>(RHS);
1647 ArrayRef<int> ShMask = Mask;
1648 unsigned SrcVecNumElts =
1649 cast<FixedVectorType>(V1->getType())->getNumElements();
1650 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1651 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1652 bool MayChange = true;
1653 unsigned NumElts = InstVTy->getNumElements();
1654 for (unsigned I = 0; I < NumElts; ++I) {
1655 Constant *CElt = C->getAggregateElement(I);
1656 if (ShMask[I] >= 0) {
1657 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
1658 Constant *NewCElt = NewVecC[ShMask[I]];
1659 // Bail out if:
1660 // 1. The constant vector contains a constant expression.
1661 // 2. The shuffle needs an element of the constant vector that can't
1662 // be mapped to a new constant vector.
1663 // 3. This is a widening shuffle that copies elements of V1 into the
1664 // extended elements (extending with undef is allowed).
1665 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1666 I >= SrcVecNumElts) {
1667 MayChange = false;
1668 break;
1669 }
1670 NewVecC[ShMask[I]] = CElt;
1671 }
1672 // If this is a widening shuffle, we must be able to extend with undef
1673 // elements. If the original binop does not produce an undef in the high
1674 // lanes, then this transform is not safe.
1675 // Similarly for undef lanes due to the shuffle mask, we can only
1676 // transform binops that preserve undef.
1677 // TODO: We could shuffle those non-undef constant values into the
1678 // result by using a constant vector (rather than an undef vector)
1679 // as operand 1 of the new binop, but that might be too aggressive
1680 // for target-independent shuffle creation.
1681 if (I >= SrcVecNumElts || ShMask[I] < 0) {
1682 Constant *MaybeUndef =
1683 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1684 : ConstantExpr::get(Opcode, CElt, UndefScalar);
1685 if (!match(MaybeUndef, m_Undef())) {
1686 MayChange = false;
1687 break;
1688 }
1689 }
1690 }
1691 if (MayChange) {
1692 Constant *NewC = ConstantVector::get(NewVecC);
1693 // It may not be safe to execute a binop on a vector with undef elements
1694 // because the entire instruction can be folded to undef or create poison
1695 // that did not exist in the original code.
1696 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1697 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1698
1699 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1700 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1701 Value *NewLHS = ConstOp1 ? V1 : NewC;
1702 Value *NewRHS = ConstOp1 ? NewC : V1;
1703 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1704 }
1705 }
1706
1707 // Try to reassociate to sink a splat shuffle after a binary operation.
1708 if (Inst.isAssociative() && Inst.isCommutative()) {
1709 // Canonicalize shuffle operand as LHS.
1710 if (isa<ShuffleVectorInst>(RHS))
1711 std::swap(LHS, RHS);
1712
1713 Value *X;
1714 ArrayRef<int> MaskC;
1715 int SplatIndex;
1716 BinaryOperator *BO;
1717 if (!match(LHS,
1718 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1719 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1720 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1721 BO->getOpcode() != Opcode)
1722 return nullptr;
1723
1724 // FIXME: This may not be safe if the analysis allows undef elements. By
1725 // moving 'Y' before the splat shuffle, we are implicitly assuming
1726 // that it is not undef/poison at the splat index.
1727 Value *Y, *OtherOp;
1728 if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1729 Y = BO->getOperand(0);
1730 OtherOp = BO->getOperand(1);
1731 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1732 Y = BO->getOperand(1);
1733 OtherOp = BO->getOperand(0);
1734 } else {
1735 return nullptr;
1736 }
1737
1738 // X and Y are splatted values, so perform the binary operation on those
1739 // values followed by a splat followed by the 2nd binary operation:
1740 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1741 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1742 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1743 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1744 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1745
1746 // Intersect FMF on both new binops. Other (poison-generating) flags are
1747 // dropped to be safe.
1748 if (isa<FPMathOperator>(R)) {
1749 R->copyFastMathFlags(&Inst);
1750 R->andIRFlags(BO);
1751 }
1752 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1753 NewInstBO->copyIRFlags(R);
1754 return R;
1755 }
1756
1757 return nullptr;
1758 }
1759
1760 /// Try to narrow the width of a binop if at least 1 operand is an extend of
1761 /// of a value. This requires a potentially expensive known bits check to make
1762 /// sure the narrow op does not overflow.
narrowMathIfNoOverflow(BinaryOperator & BO)1763 Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1764 // We need at least one extended operand.
1765 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1766
1767 // If this is a sub, we swap the operands since we always want an extension
1768 // on the RHS. The LHS can be an extension or a constant.
1769 if (BO.getOpcode() == Instruction::Sub)
1770 std::swap(Op0, Op1);
1771
1772 Value *X;
1773 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1774 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1775 return nullptr;
1776
1777 // If both operands are the same extension from the same source type and we
1778 // can eliminate at least one (hasOneUse), this might work.
1779 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1780 Value *Y;
1781 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1782 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1783 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1784 // If that did not match, see if we have a suitable constant operand.
1785 // Truncating and extending must produce the same constant.
1786 Constant *WideC;
1787 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1788 return nullptr;
1789 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1790 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1791 return nullptr;
1792 Y = NarrowC;
1793 }
1794
1795 // Swap back now that we found our operands.
1796 if (BO.getOpcode() == Instruction::Sub)
1797 std::swap(X, Y);
1798
1799 // Both operands have narrow versions. Last step: the math must not overflow
1800 // in the narrow width.
1801 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1802 return nullptr;
1803
1804 // bo (ext X), (ext Y) --> ext (bo X, Y)
1805 // bo (ext X), C --> ext (bo X, C')
1806 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1807 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1808 if (IsSext)
1809 NewBinOp->setHasNoSignedWrap();
1810 else
1811 NewBinOp->setHasNoUnsignedWrap();
1812 }
1813 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1814 }
1815
isMergedGEPInBounds(GEPOperator & GEP1,GEPOperator & GEP2)1816 static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1817 // At least one GEP must be inbounds.
1818 if (!GEP1.isInBounds() && !GEP2.isInBounds())
1819 return false;
1820
1821 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1822 (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1823 }
1824
1825 /// Thread a GEP operation with constant indices through the constant true/false
1826 /// arms of a select.
foldSelectGEP(GetElementPtrInst & GEP,InstCombiner::BuilderTy & Builder)1827 static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1828 InstCombiner::BuilderTy &Builder) {
1829 if (!GEP.hasAllConstantIndices())
1830 return nullptr;
1831
1832 Instruction *Sel;
1833 Value *Cond;
1834 Constant *TrueC, *FalseC;
1835 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1836 !match(Sel,
1837 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1838 return nullptr;
1839
1840 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1841 // Propagate 'inbounds' and metadata from existing instructions.
1842 // Note: using IRBuilder to create the constants for efficiency.
1843 SmallVector<Value *, 4> IndexC(GEP.indices());
1844 bool IsInBounds = GEP.isInBounds();
1845 Type *Ty = GEP.getSourceElementType();
1846 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1847 : Builder.CreateGEP(Ty, TrueC, IndexC);
1848 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1849 : Builder.CreateGEP(Ty, FalseC, IndexC);
1850 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1851 }
1852
visitGetElementPtrInst(GetElementPtrInst & GEP)1853 Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1854 SmallVector<Value *, 8> Ops(GEP.operands());
1855 Type *GEPType = GEP.getType();
1856 Type *GEPEltType = GEP.getSourceElementType();
1857 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1858 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
1859 return replaceInstUsesWith(GEP, V);
1860
1861 // For vector geps, use the generic demanded vector support.
1862 // Skip if GEP return type is scalable. The number of elements is unknown at
1863 // compile-time.
1864 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1865 auto VWidth = GEPFVTy->getNumElements();
1866 APInt UndefElts(VWidth, 0);
1867 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1868 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1869 UndefElts)) {
1870 if (V != &GEP)
1871 return replaceInstUsesWith(GEP, V);
1872 return &GEP;
1873 }
1874
1875 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1876 // possible (decide on canonical form for pointer broadcast), 3) exploit
1877 // undef elements to decrease demanded bits
1878 }
1879
1880 Value *PtrOp = GEP.getOperand(0);
1881
1882 // Eliminate unneeded casts for indices, and replace indices which displace
1883 // by multiples of a zero size type with zero.
1884 bool MadeChange = false;
1885
1886 // Index width may not be the same width as pointer width.
1887 // Data layout chooses the right type based on supported integer types.
1888 Type *NewScalarIndexTy =
1889 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1890
1891 gep_type_iterator GTI = gep_type_begin(GEP);
1892 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1893 ++I, ++GTI) {
1894 // Skip indices into struct types.
1895 if (GTI.isStruct())
1896 continue;
1897
1898 Type *IndexTy = (*I)->getType();
1899 Type *NewIndexType =
1900 IndexTy->isVectorTy()
1901 ? VectorType::get(NewScalarIndexTy,
1902 cast<VectorType>(IndexTy)->getElementCount())
1903 : NewScalarIndexTy;
1904
1905 // If the element type has zero size then any index over it is equivalent
1906 // to an index of zero, so replace it with zero if it is not zero already.
1907 Type *EltTy = GTI.getIndexedType();
1908 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1909 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1910 *I = Constant::getNullValue(NewIndexType);
1911 MadeChange = true;
1912 }
1913
1914 if (IndexTy != NewIndexType) {
1915 // If we are using a wider index than needed for this platform, shrink
1916 // it to what we need. If narrower, sign-extend it to what we need.
1917 // This explicit cast can make subsequent optimizations more obvious.
1918 *I = Builder.CreateIntCast(*I, NewIndexType, true);
1919 MadeChange = true;
1920 }
1921 }
1922 if (MadeChange)
1923 return &GEP;
1924
1925 // Check to see if the inputs to the PHI node are getelementptr instructions.
1926 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1927 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1928 if (!Op1)
1929 return nullptr;
1930
1931 // Don't fold a GEP into itself through a PHI node. This can only happen
1932 // through the back-edge of a loop. Folding a GEP into itself means that
1933 // the value of the previous iteration needs to be stored in the meantime,
1934 // thus requiring an additional register variable to be live, but not
1935 // actually achieving anything (the GEP still needs to be executed once per
1936 // loop iteration).
1937 if (Op1 == &GEP)
1938 return nullptr;
1939
1940 int DI = -1;
1941
1942 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1943 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1944 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1945 return nullptr;
1946
1947 // As for Op1 above, don't try to fold a GEP into itself.
1948 if (Op2 == &GEP)
1949 return nullptr;
1950
1951 // Keep track of the type as we walk the GEP.
1952 Type *CurTy = nullptr;
1953
1954 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1955 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1956 return nullptr;
1957
1958 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1959 if (DI == -1) {
1960 // We have not seen any differences yet in the GEPs feeding the
1961 // PHI yet, so we record this one if it is allowed to be a
1962 // variable.
1963
1964 // The first two arguments can vary for any GEP, the rest have to be
1965 // static for struct slots
1966 if (J > 1) {
1967 assert(CurTy && "No current type?");
1968 if (CurTy->isStructTy())
1969 return nullptr;
1970 }
1971
1972 DI = J;
1973 } else {
1974 // The GEP is different by more than one input. While this could be
1975 // extended to support GEPs that vary by more than one variable it
1976 // doesn't make sense since it greatly increases the complexity and
1977 // would result in an R+R+R addressing mode which no backend
1978 // directly supports and would need to be broken into several
1979 // simpler instructions anyway.
1980 return nullptr;
1981 }
1982 }
1983
1984 // Sink down a layer of the type for the next iteration.
1985 if (J > 0) {
1986 if (J == 1) {
1987 CurTy = Op1->getSourceElementType();
1988 } else {
1989 CurTy =
1990 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
1991 }
1992 }
1993 }
1994 }
1995
1996 // If not all GEPs are identical we'll have to create a new PHI node.
1997 // Check that the old PHI node has only one use so that it will get
1998 // removed.
1999 if (DI != -1 && !PN->hasOneUse())
2000 return nullptr;
2001
2002 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2003 if (DI == -1) {
2004 // All the GEPs feeding the PHI are identical. Clone one down into our
2005 // BB so that it can be merged with the current GEP.
2006 } else {
2007 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2008 // into the current block so it can be merged, and create a new PHI to
2009 // set that index.
2010 PHINode *NewPN;
2011 {
2012 IRBuilderBase::InsertPointGuard Guard(Builder);
2013 Builder.SetInsertPoint(PN);
2014 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2015 PN->getNumOperands());
2016 }
2017
2018 for (auto &I : PN->operands())
2019 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2020 PN->getIncomingBlock(I));
2021
2022 NewGEP->setOperand(DI, NewPN);
2023 }
2024
2025 GEP.getParent()->getInstList().insert(
2026 GEP.getParent()->getFirstInsertionPt(), NewGEP);
2027 replaceOperand(GEP, 0, NewGEP);
2028 PtrOp = NewGEP;
2029 }
2030
2031 // Combine Indices - If the source pointer to this getelementptr instruction
2032 // is a getelementptr instruction, combine the indices of the two
2033 // getelementptr instructions into a single instruction.
2034 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2035 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2036 return nullptr;
2037
2038 // Try to reassociate loop invariant GEP chains to enable LICM.
2039 if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2040 Src->hasOneUse()) {
2041 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2042 Value *GO1 = GEP.getOperand(1);
2043 Value *SO1 = Src->getOperand(1);
2044 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2045 // invariant: this breaks the dependence between GEPs and allows LICM
2046 // to hoist the invariant part out of the loop.
2047 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2048 // We have to be careful here.
2049 // We have something like:
2050 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2051 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2052 // If we just swap idx & idx2 then we could inadvertantly
2053 // change %src from a vector to a scalar, or vice versa.
2054 // Cases:
2055 // 1) %base a scalar & idx a scalar & idx2 a vector
2056 // => Swapping idx & idx2 turns %src into a vector type.
2057 // 2) %base a scalar & idx a vector & idx2 a scalar
2058 // => Swapping idx & idx2 turns %src in a scalar type
2059 // 3) %base, %idx, and %idx2 are scalars
2060 // => %src & %gep are scalars
2061 // => swapping idx & idx2 is safe
2062 // 4) %base a vector
2063 // => %src is a vector
2064 // => swapping idx & idx2 is safe.
2065 auto *SO0 = Src->getOperand(0);
2066 auto *SO0Ty = SO0->getType();
2067 if (!isa<VectorType>(GEPType) || // case 3
2068 isa<VectorType>(SO0Ty)) { // case 4
2069 Src->setOperand(1, GO1);
2070 GEP.setOperand(1, SO1);
2071 return &GEP;
2072 } else {
2073 // Case 1 or 2
2074 // -- have to recreate %src & %gep
2075 // put NewSrc at same location as %src
2076 Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2077 auto *NewSrc = cast<GetElementPtrInst>(
2078 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
2079 NewSrc->setIsInBounds(Src->isInBounds());
2080 auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2081 NewGEP->setIsInBounds(GEP.isInBounds());
2082 return NewGEP;
2083 }
2084 }
2085 }
2086 }
2087
2088 // Note that if our source is a gep chain itself then we wait for that
2089 // chain to be resolved before we perform this transformation. This
2090 // avoids us creating a TON of code in some cases.
2091 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2092 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2093 return nullptr; // Wait until our source is folded to completion.
2094
2095 SmallVector<Value*, 8> Indices;
2096
2097 // Find out whether the last index in the source GEP is a sequential idx.
2098 bool EndsWithSequential = false;
2099 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2100 I != E; ++I)
2101 EndsWithSequential = I.isSequential();
2102
2103 // Can we combine the two pointer arithmetics offsets?
2104 if (EndsWithSequential) {
2105 // Replace: gep (gep %P, long B), long A, ...
2106 // With: T = long A+B; gep %P, T, ...
2107 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2108 Value *GO1 = GEP.getOperand(1);
2109
2110 // If they aren't the same type, then the input hasn't been processed
2111 // by the loop above yet (which canonicalizes sequential index types to
2112 // intptr_t). Just avoid transforming this until the input has been
2113 // normalized.
2114 if (SO1->getType() != GO1->getType())
2115 return nullptr;
2116
2117 Value *Sum =
2118 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2119 // Only do the combine when we are sure the cost after the
2120 // merge is never more than that before the merge.
2121 if (Sum == nullptr)
2122 return nullptr;
2123
2124 // Update the GEP in place if possible.
2125 if (Src->getNumOperands() == 2) {
2126 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2127 replaceOperand(GEP, 0, Src->getOperand(0));
2128 replaceOperand(GEP, 1, Sum);
2129 return &GEP;
2130 }
2131 Indices.append(Src->op_begin()+1, Src->op_end()-1);
2132 Indices.push_back(Sum);
2133 Indices.append(GEP.op_begin()+2, GEP.op_end());
2134 } else if (isa<Constant>(*GEP.idx_begin()) &&
2135 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2136 Src->getNumOperands() != 1) {
2137 // Otherwise we can do the fold if the first index of the GEP is a zero
2138 Indices.append(Src->op_begin()+1, Src->op_end());
2139 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2140 }
2141
2142 if (!Indices.empty())
2143 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2144 ? GetElementPtrInst::CreateInBounds(
2145 Src->getSourceElementType(), Src->getOperand(0), Indices,
2146 GEP.getName())
2147 : GetElementPtrInst::Create(Src->getSourceElementType(),
2148 Src->getOperand(0), Indices,
2149 GEP.getName());
2150 }
2151
2152 // Skip if GEP source element type is scalable. The type alloc size is unknown
2153 // at compile-time.
2154 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2155 unsigned AS = GEP.getPointerAddressSpace();
2156 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2157 DL.getIndexSizeInBits(AS)) {
2158 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2159
2160 bool Matched = false;
2161 uint64_t C;
2162 Value *V = nullptr;
2163 if (TyAllocSize == 1) {
2164 V = GEP.getOperand(1);
2165 Matched = true;
2166 } else if (match(GEP.getOperand(1),
2167 m_AShr(m_Value(V), m_ConstantInt(C)))) {
2168 if (TyAllocSize == 1ULL << C)
2169 Matched = true;
2170 } else if (match(GEP.getOperand(1),
2171 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2172 if (TyAllocSize == C)
2173 Matched = true;
2174 }
2175
2176 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2177 // only if both point to the same underlying object (otherwise provenance
2178 // is not necessarily retained).
2179 Value *Y;
2180 Value *X = GEP.getOperand(0);
2181 if (Matched &&
2182 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2183 getUnderlyingObject(X) == getUnderlyingObject(Y))
2184 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2185 }
2186 }
2187
2188 // We do not handle pointer-vector geps here.
2189 if (GEPType->isVectorTy())
2190 return nullptr;
2191
2192 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2193 Value *StrippedPtr = PtrOp->stripPointerCasts();
2194 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2195
2196 if (StrippedPtr != PtrOp) {
2197 bool HasZeroPointerIndex = false;
2198 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2199
2200 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2201 HasZeroPointerIndex = C->isZero();
2202
2203 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2204 // into : GEP [10 x i8]* X, i32 0, ...
2205 //
2206 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2207 // into : GEP i8* X, ...
2208 //
2209 // This occurs when the program declares an array extern like "int X[];"
2210 if (HasZeroPointerIndex) {
2211 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2212 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2213 if (CATy->getElementType() == StrippedPtrEltTy) {
2214 // -> GEP i8* X, ...
2215 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2216 GetElementPtrInst *Res = GetElementPtrInst::Create(
2217 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2218 Res->setIsInBounds(GEP.isInBounds());
2219 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2220 return Res;
2221 // Insert Res, and create an addrspacecast.
2222 // e.g.,
2223 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2224 // ->
2225 // %0 = GEP i8 addrspace(1)* X, ...
2226 // addrspacecast i8 addrspace(1)* %0 to i8*
2227 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2228 }
2229
2230 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2231 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2232 if (CATy->getElementType() == XATy->getElementType()) {
2233 // -> GEP [10 x i8]* X, i32 0, ...
2234 // At this point, we know that the cast source type is a pointer
2235 // to an array of the same type as the destination pointer
2236 // array. Because the array type is never stepped over (there
2237 // is a leading zero) we can fold the cast into this GEP.
2238 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2239 GEP.setSourceElementType(XATy);
2240 return replaceOperand(GEP, 0, StrippedPtr);
2241 }
2242 // Cannot replace the base pointer directly because StrippedPtr's
2243 // address space is different. Instead, create a new GEP followed by
2244 // an addrspacecast.
2245 // e.g.,
2246 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2247 // i32 0, ...
2248 // ->
2249 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2250 // addrspacecast i8 addrspace(1)* %0 to i8*
2251 SmallVector<Value *, 8> Idx(GEP.indices());
2252 Value *NewGEP =
2253 GEP.isInBounds()
2254 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2255 Idx, GEP.getName())
2256 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2257 GEP.getName());
2258 return new AddrSpaceCastInst(NewGEP, GEPType);
2259 }
2260 }
2261 }
2262 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2263 // Skip if GEP source element type is scalable. The type alloc size is
2264 // unknown at compile-time.
2265 // Transform things like: %t = getelementptr i32*
2266 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2
2267 // x i32]* %str, i32 0, i32 %V; bitcast
2268 if (StrippedPtrEltTy->isArrayTy() &&
2269 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2270 DL.getTypeAllocSize(GEPEltType)) {
2271 Type *IdxType = DL.getIndexType(GEPType);
2272 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2273 Value *NewGEP =
2274 GEP.isInBounds()
2275 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2276 GEP.getName())
2277 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2278 GEP.getName());
2279
2280 // V and GEP are both pointer types --> BitCast
2281 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2282 }
2283
2284 // Transform things like:
2285 // %V = mul i64 %N, 4
2286 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2287 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2288 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2289 // Check that changing the type amounts to dividing the index by a scale
2290 // factor.
2291 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2292 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2293 if (ResSize && SrcSize % ResSize == 0) {
2294 Value *Idx = GEP.getOperand(1);
2295 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2296 uint64_t Scale = SrcSize / ResSize;
2297
2298 // Earlier transforms ensure that the index has the right type
2299 // according to Data Layout, which considerably simplifies the
2300 // logic by eliminating implicit casts.
2301 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2302 "Index type does not match the Data Layout preferences");
2303
2304 bool NSW;
2305 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2306 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2307 // If the multiplication NewIdx * Scale may overflow then the new
2308 // GEP may not be "inbounds".
2309 Value *NewGEP =
2310 GEP.isInBounds() && NSW
2311 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2312 NewIdx, GEP.getName())
2313 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2314 GEP.getName());
2315
2316 // The NewGEP must be pointer typed, so must the old one -> BitCast
2317 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2318 GEPType);
2319 }
2320 }
2321 }
2322
2323 // Similarly, transform things like:
2324 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2325 // (where tmp = 8*tmp2) into:
2326 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2327 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2328 StrippedPtrEltTy->isArrayTy()) {
2329 // Check that changing to the array element type amounts to dividing the
2330 // index by a scale factor.
2331 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2332 uint64_t ArrayEltSize =
2333 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2334 .getFixedSize();
2335 if (ResSize && ArrayEltSize % ResSize == 0) {
2336 Value *Idx = GEP.getOperand(1);
2337 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2338 uint64_t Scale = ArrayEltSize / ResSize;
2339
2340 // Earlier transforms ensure that the index has the right type
2341 // according to the Data Layout, which considerably simplifies
2342 // the logic by eliminating implicit casts.
2343 assert(Idx->getType() == DL.getIndexType(GEPType) &&
2344 "Index type does not match the Data Layout preferences");
2345
2346 bool NSW;
2347 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2348 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2349 // If the multiplication NewIdx * Scale may overflow then the new
2350 // GEP may not be "inbounds".
2351 Type *IndTy = DL.getIndexType(GEPType);
2352 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2353
2354 Value *NewGEP =
2355 GEP.isInBounds() && NSW
2356 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2357 Off, GEP.getName())
2358 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2359 GEP.getName());
2360 // The NewGEP must be pointer typed, so must the old one -> BitCast
2361 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2362 GEPType);
2363 }
2364 }
2365 }
2366 }
2367 }
2368
2369 // addrspacecast between types is canonicalized as a bitcast, then an
2370 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2371 // through the addrspacecast.
2372 Value *ASCStrippedPtrOp = PtrOp;
2373 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2374 // X = bitcast A addrspace(1)* to B addrspace(1)*
2375 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2376 // Z = gep Y, <...constant indices...>
2377 // Into an addrspacecasted GEP of the struct.
2378 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2379 ASCStrippedPtrOp = BC;
2380 }
2381
2382 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2383 Value *SrcOp = BCI->getOperand(0);
2384 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2385 Type *SrcEltType = SrcType->getElementType();
2386
2387 // GEP directly using the source operand if this GEP is accessing an element
2388 // of a bitcasted pointer to vector or array of the same dimensions:
2389 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2390 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2391 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2392 const DataLayout &DL) {
2393 auto *VecVTy = cast<FixedVectorType>(VecTy);
2394 return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2395 ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2396 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2397 };
2398 if (GEP.getNumOperands() == 3 &&
2399 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2400 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2401 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2402 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2403
2404 // Create a new GEP here, as using `setOperand()` followed by
2405 // `setSourceElementType()` won't actually update the type of the
2406 // existing GEP Value. Causing issues if this Value is accessed when
2407 // constructing an AddrSpaceCastInst
2408 Value *NGEP =
2409 GEP.isInBounds()
2410 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2411 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2412 NGEP->takeName(&GEP);
2413
2414 // Preserve GEP address space to satisfy users
2415 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2416 return new AddrSpaceCastInst(NGEP, GEPType);
2417
2418 return replaceInstUsesWith(GEP, NGEP);
2419 }
2420
2421 // See if we can simplify:
2422 // X = bitcast A* to B*
2423 // Y = gep X, <...constant indices...>
2424 // into a gep of the original struct. This is important for SROA and alias
2425 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2426 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2427 APInt Offset(OffsetBits, 0);
2428
2429 // If the bitcast argument is an allocation, The bitcast is for convertion
2430 // to actual type of allocation. Removing such bitcasts, results in having
2431 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2432 // struct or array hierarchy.
2433 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2434 // a better chance to succeed.
2435 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2436 !isAllocationFn(SrcOp, &TLI)) {
2437 // If this GEP instruction doesn't move the pointer, just replace the GEP
2438 // with a bitcast of the real input to the dest type.
2439 if (!Offset) {
2440 // If the bitcast is of an allocation, and the allocation will be
2441 // converted to match the type of the cast, don't touch this.
2442 if (isa<AllocaInst>(SrcOp)) {
2443 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2444 if (Instruction *I = visitBitCast(*BCI)) {
2445 if (I != BCI) {
2446 I->takeName(BCI);
2447 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2448 replaceInstUsesWith(*BCI, I);
2449 }
2450 return &GEP;
2451 }
2452 }
2453
2454 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2455 return new AddrSpaceCastInst(SrcOp, GEPType);
2456 return new BitCastInst(SrcOp, GEPType);
2457 }
2458
2459 // Otherwise, if the offset is non-zero, we need to find out if there is a
2460 // field at Offset in 'A's type. If so, we can pull the cast through the
2461 // GEP.
2462 SmallVector<Value*, 8> NewIndices;
2463 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2464 Value *NGEP =
2465 GEP.isInBounds()
2466 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2467 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2468
2469 if (NGEP->getType() == GEPType)
2470 return replaceInstUsesWith(GEP, NGEP);
2471 NGEP->takeName(&GEP);
2472
2473 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2474 return new AddrSpaceCastInst(NGEP, GEPType);
2475 return new BitCastInst(NGEP, GEPType);
2476 }
2477 }
2478 }
2479
2480 if (!GEP.isInBounds()) {
2481 unsigned IdxWidth =
2482 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2483 APInt BasePtrOffset(IdxWidth, 0);
2484 Value *UnderlyingPtrOp =
2485 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2486 BasePtrOffset);
2487 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2488 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2489 BasePtrOffset.isNonNegative()) {
2490 APInt AllocSize(
2491 IdxWidth,
2492 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2493 if (BasePtrOffset.ule(AllocSize)) {
2494 return GetElementPtrInst::CreateInBounds(
2495 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2496 GEP.getName());
2497 }
2498 }
2499 }
2500 }
2501
2502 if (Instruction *R = foldSelectGEP(GEP, Builder))
2503 return R;
2504
2505 return nullptr;
2506 }
2507
isNeverEqualToUnescapedAlloc(Value * V,const TargetLibraryInfo * TLI,Instruction * AI)2508 static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2509 Instruction *AI) {
2510 if (isa<ConstantPointerNull>(V))
2511 return true;
2512 if (auto *LI = dyn_cast<LoadInst>(V))
2513 return isa<GlobalVariable>(LI->getPointerOperand());
2514 // Two distinct allocations will never be equal.
2515 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2516 // through bitcasts of V can cause
2517 // the result statement below to be true, even when AI and V (ex:
2518 // i8* ->i32* ->i8* of AI) are the same allocations.
2519 return isAllocLikeFn(V, TLI) && V != AI;
2520 }
2521
isAllocSiteRemovable(Instruction * AI,SmallVectorImpl<WeakTrackingVH> & Users,const TargetLibraryInfo * TLI)2522 static bool isAllocSiteRemovable(Instruction *AI,
2523 SmallVectorImpl<WeakTrackingVH> &Users,
2524 const TargetLibraryInfo *TLI) {
2525 SmallVector<Instruction*, 4> Worklist;
2526 Worklist.push_back(AI);
2527
2528 do {
2529 Instruction *PI = Worklist.pop_back_val();
2530 for (User *U : PI->users()) {
2531 Instruction *I = cast<Instruction>(U);
2532 switch (I->getOpcode()) {
2533 default:
2534 // Give up the moment we see something we can't handle.
2535 return false;
2536
2537 case Instruction::AddrSpaceCast:
2538 case Instruction::BitCast:
2539 case Instruction::GetElementPtr:
2540 Users.emplace_back(I);
2541 Worklist.push_back(I);
2542 continue;
2543
2544 case Instruction::ICmp: {
2545 ICmpInst *ICI = cast<ICmpInst>(I);
2546 // We can fold eq/ne comparisons with null to false/true, respectively.
2547 // We also fold comparisons in some conditions provided the alloc has
2548 // not escaped (see isNeverEqualToUnescapedAlloc).
2549 if (!ICI->isEquality())
2550 return false;
2551 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2552 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2553 return false;
2554 Users.emplace_back(I);
2555 continue;
2556 }
2557
2558 case Instruction::Call:
2559 // Ignore no-op and store intrinsics.
2560 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2561 switch (II->getIntrinsicID()) {
2562 default:
2563 return false;
2564
2565 case Intrinsic::memmove:
2566 case Intrinsic::memcpy:
2567 case Intrinsic::memset: {
2568 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2569 if (MI->isVolatile() || MI->getRawDest() != PI)
2570 return false;
2571 LLVM_FALLTHROUGH;
2572 }
2573 case Intrinsic::assume:
2574 case Intrinsic::invariant_start:
2575 case Intrinsic::invariant_end:
2576 case Intrinsic::lifetime_start:
2577 case Intrinsic::lifetime_end:
2578 case Intrinsic::objectsize:
2579 Users.emplace_back(I);
2580 continue;
2581 }
2582 }
2583
2584 if (isFreeCall(I, TLI)) {
2585 Users.emplace_back(I);
2586 continue;
2587 }
2588 return false;
2589
2590 case Instruction::Store: {
2591 StoreInst *SI = cast<StoreInst>(I);
2592 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2593 return false;
2594 Users.emplace_back(I);
2595 continue;
2596 }
2597 }
2598 llvm_unreachable("missing a return?");
2599 }
2600 } while (!Worklist.empty());
2601 return true;
2602 }
2603
visitAllocSite(Instruction & MI)2604 Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2605 // If we have a malloc call which is only used in any amount of comparisons to
2606 // null and free calls, delete the calls and replace the comparisons with true
2607 // or false as appropriate.
2608
2609 // This is based on the principle that we can substitute our own allocation
2610 // function (which will never return null) rather than knowledge of the
2611 // specific function being called. In some sense this can change the permitted
2612 // outputs of a program (when we convert a malloc to an alloca, the fact that
2613 // the allocation is now on the stack is potentially visible, for example),
2614 // but we believe in a permissible manner.
2615 SmallVector<WeakTrackingVH, 64> Users;
2616
2617 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2618 // before each store.
2619 SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2620 std::unique_ptr<DIBuilder> DIB;
2621 if (isa<AllocaInst>(MI)) {
2622 findDbgUsers(DVIs, &MI);
2623 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2624 }
2625
2626 if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2627 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2628 // Lowering all @llvm.objectsize calls first because they may
2629 // use a bitcast/GEP of the alloca we are removing.
2630 if (!Users[i])
2631 continue;
2632
2633 Instruction *I = cast<Instruction>(&*Users[i]);
2634
2635 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2636 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2637 Value *Result =
2638 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2639 replaceInstUsesWith(*I, Result);
2640 eraseInstFromFunction(*I);
2641 Users[i] = nullptr; // Skip examining in the next loop.
2642 }
2643 }
2644 }
2645 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2646 if (!Users[i])
2647 continue;
2648
2649 Instruction *I = cast<Instruction>(&*Users[i]);
2650
2651 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2652 replaceInstUsesWith(*C,
2653 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2654 C->isFalseWhenEqual()));
2655 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2656 for (auto *DVI : DVIs)
2657 if (DVI->isAddressOfVariable())
2658 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2659 } else {
2660 // Casts, GEP, or anything else: we're about to delete this instruction,
2661 // so it can not have any valid uses.
2662 replaceInstUsesWith(*I, UndefValue::get(I->getType()));
2663 }
2664 eraseInstFromFunction(*I);
2665 }
2666
2667 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2668 // Replace invoke with a NOP intrinsic to maintain the original CFG
2669 Module *M = II->getModule();
2670 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2671 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2672 None, "", II->getParent());
2673 }
2674
2675 // Remove debug intrinsics which describe the value contained within the
2676 // alloca. In addition to removing dbg.{declare,addr} which simply point to
2677 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2678 //
2679 // ```
2680 // define void @foo(i32 %0) {
2681 // %a = alloca i32 ; Deleted.
2682 // store i32 %0, i32* %a
2683 // dbg.value(i32 %0, "arg0") ; Not deleted.
2684 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
2685 // call void @trivially_inlinable_no_op(i32* %a)
2686 // ret void
2687 // }
2688 // ```
2689 //
2690 // This may not be required if we stop describing the contents of allocas
2691 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2692 // the LowerDbgDeclare utility.
2693 //
2694 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2695 // "arg0" dbg.value may be stale after the call. However, failing to remove
2696 // the DW_OP_deref dbg.value causes large gaps in location coverage.
2697 for (auto *DVI : DVIs)
2698 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2699 DVI->eraseFromParent();
2700
2701 return eraseInstFromFunction(MI);
2702 }
2703 return nullptr;
2704 }
2705
2706 /// Move the call to free before a NULL test.
2707 ///
2708 /// Check if this free is accessed after its argument has been test
2709 /// against NULL (property 0).
2710 /// If yes, it is legal to move this call in its predecessor block.
2711 ///
2712 /// The move is performed only if the block containing the call to free
2713 /// will be removed, i.e.:
2714 /// 1. it has only one predecessor P, and P has two successors
2715 /// 2. it contains the call, noops, and an unconditional branch
2716 /// 3. its successor is the same as its predecessor's successor
2717 ///
2718 /// The profitability is out-of concern here and this function should
2719 /// be called only if the caller knows this transformation would be
2720 /// profitable (e.g., for code size).
tryToMoveFreeBeforeNullTest(CallInst & FI,const DataLayout & DL)2721 static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2722 const DataLayout &DL) {
2723 Value *Op = FI.getArgOperand(0);
2724 BasicBlock *FreeInstrBB = FI.getParent();
2725 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2726
2727 // Validate part of constraint #1: Only one predecessor
2728 // FIXME: We can extend the number of predecessor, but in that case, we
2729 // would duplicate the call to free in each predecessor and it may
2730 // not be profitable even for code size.
2731 if (!PredBB)
2732 return nullptr;
2733
2734 // Validate constraint #2: Does this block contains only the call to
2735 // free, noops, and an unconditional branch?
2736 BasicBlock *SuccBB;
2737 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2738 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2739 return nullptr;
2740
2741 // If there are only 2 instructions in the block, at this point,
2742 // this is the call to free and unconditional.
2743 // If there are more than 2 instructions, check that they are noops
2744 // i.e., they won't hurt the performance of the generated code.
2745 if (FreeInstrBB->size() != 2) {
2746 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2747 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2748 continue;
2749 auto *Cast = dyn_cast<CastInst>(&Inst);
2750 if (!Cast || !Cast->isNoopCast(DL))
2751 return nullptr;
2752 }
2753 }
2754 // Validate the rest of constraint #1 by matching on the pred branch.
2755 Instruction *TI = PredBB->getTerminator();
2756 BasicBlock *TrueBB, *FalseBB;
2757 ICmpInst::Predicate Pred;
2758 if (!match(TI, m_Br(m_ICmp(Pred,
2759 m_CombineOr(m_Specific(Op),
2760 m_Specific(Op->stripPointerCasts())),
2761 m_Zero()),
2762 TrueBB, FalseBB)))
2763 return nullptr;
2764 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2765 return nullptr;
2766
2767 // Validate constraint #3: Ensure the null case just falls through.
2768 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2769 return nullptr;
2770 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
2771 "Broken CFG: missing edge from predecessor to successor");
2772
2773 // At this point, we know that everything in FreeInstrBB can be moved
2774 // before TI.
2775 for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
2776 It != End;) {
2777 Instruction &Instr = *It++;
2778 if (&Instr == FreeInstrBBTerminator)
2779 break;
2780 Instr.moveBefore(TI);
2781 }
2782 assert(FreeInstrBB->size() == 1 &&
2783 "Only the branch instruction should remain");
2784 return &FI;
2785 }
2786
visitFree(CallInst & FI)2787 Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2788 Value *Op = FI.getArgOperand(0);
2789
2790 // free undef -> unreachable.
2791 if (isa<UndefValue>(Op)) {
2792 // Leave a marker since we can't modify the CFG here.
2793 CreateNonTerminatorUnreachable(&FI);
2794 return eraseInstFromFunction(FI);
2795 }
2796
2797 // If we have 'free null' delete the instruction. This can happen in stl code
2798 // when lots of inlining happens.
2799 if (isa<ConstantPointerNull>(Op))
2800 return eraseInstFromFunction(FI);
2801
2802 // If we optimize for code size, try to move the call to free before the null
2803 // test so that simplify cfg can remove the empty block and dead code
2804 // elimination the branch. I.e., helps to turn something like:
2805 // if (foo) free(foo);
2806 // into
2807 // free(foo);
2808 //
2809 // Note that we can only do this for 'free' and not for any flavor of
2810 // 'operator delete'; there is no 'operator delete' symbol for which we are
2811 // permitted to invent a call, even if we're passing in a null pointer.
2812 if (MinimizeSize) {
2813 LibFunc Func;
2814 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2815 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2816 return I;
2817 }
2818
2819 return nullptr;
2820 }
2821
isMustTailCall(Value * V)2822 static bool isMustTailCall(Value *V) {
2823 if (auto *CI = dyn_cast<CallInst>(V))
2824 return CI->isMustTailCall();
2825 return false;
2826 }
2827
visitReturnInst(ReturnInst & RI)2828 Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2829 if (RI.getNumOperands() == 0) // ret void
2830 return nullptr;
2831
2832 Value *ResultOp = RI.getOperand(0);
2833 Type *VTy = ResultOp->getType();
2834 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2835 return nullptr;
2836
2837 // Don't replace result of musttail calls.
2838 if (isMustTailCall(ResultOp))
2839 return nullptr;
2840
2841 // There might be assume intrinsics dominating this return that completely
2842 // determine the value. If so, constant fold it.
2843 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2844 if (Known.isConstant())
2845 return replaceOperand(RI, 0,
2846 Constant::getIntegerValue(VTy, Known.getConstant()));
2847
2848 return nullptr;
2849 }
2850
visitUnreachableInst(UnreachableInst & I)2851 Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2852 // Try to remove the previous instruction if it must lead to unreachable.
2853 // This includes instructions like stores and "llvm.assume" that may not get
2854 // removed by simple dead code elimination.
2855 Instruction *Prev = I.getPrevNonDebugInstruction();
2856 if (Prev && !Prev->isEHPad() &&
2857 isGuaranteedToTransferExecutionToSuccessor(Prev)) {
2858 // Temporarily disable removal of volatile stores preceding unreachable,
2859 // pending a potential LangRef change permitting volatile stores to trap.
2860 // TODO: Either remove this code, or properly integrate the check into
2861 // isGuaranteedToTransferExecutionToSuccessor().
2862 if (auto *SI = dyn_cast<StoreInst>(Prev))
2863 if (SI->isVolatile())
2864 return nullptr;
2865
2866 // A value may still have uses before we process it here (for example, in
2867 // another unreachable block), so convert those to undef.
2868 replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType()));
2869 eraseInstFromFunction(*Prev);
2870 return &I;
2871 }
2872 return nullptr;
2873 }
2874
visitUnconditionalBranchInst(BranchInst & BI)2875 Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2876 assert(BI.isUnconditional() && "Only for unconditional branches.");
2877
2878 // If this store is the second-to-last instruction in the basic block
2879 // (excluding debug info and bitcasts of pointers) and if the block ends with
2880 // an unconditional branch, try to move the store to the successor block.
2881
2882 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2883 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2884 return isa<DbgInfoIntrinsic>(BBI) ||
2885 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2886 };
2887
2888 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2889 do {
2890 if (BBI != FirstInstr)
2891 --BBI;
2892 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2893
2894 return dyn_cast<StoreInst>(BBI);
2895 };
2896
2897 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2898 if (mergeStoreIntoSuccessor(*SI))
2899 return &BI;
2900
2901 return nullptr;
2902 }
2903
visitBranchInst(BranchInst & BI)2904 Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2905 if (BI.isUnconditional())
2906 return visitUnconditionalBranchInst(BI);
2907
2908 // Change br (not X), label True, label False to: br X, label False, True
2909 Value *X = nullptr;
2910 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2911 !isa<Constant>(X)) {
2912 // Swap Destinations and condition...
2913 BI.swapSuccessors();
2914 return replaceOperand(BI, 0, X);
2915 }
2916
2917 // If the condition is irrelevant, remove the use so that other
2918 // transforms on the condition become more effective.
2919 if (!isa<ConstantInt>(BI.getCondition()) &&
2920 BI.getSuccessor(0) == BI.getSuccessor(1))
2921 return replaceOperand(
2922 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2923
2924 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2925 CmpInst::Predicate Pred;
2926 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2927 m_BasicBlock(), m_BasicBlock())) &&
2928 !isCanonicalPredicate(Pred)) {
2929 // Swap destinations and condition.
2930 CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2931 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2932 BI.swapSuccessors();
2933 Worklist.push(Cond);
2934 return &BI;
2935 }
2936
2937 return nullptr;
2938 }
2939
visitSwitchInst(SwitchInst & SI)2940 Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
2941 Value *Cond = SI.getCondition();
2942 Value *Op0;
2943 ConstantInt *AddRHS;
2944 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2945 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2946 for (auto Case : SI.cases()) {
2947 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2948 assert(isa<ConstantInt>(NewCase) &&
2949 "Result of expression should be constant");
2950 Case.setValue(cast<ConstantInt>(NewCase));
2951 }
2952 return replaceOperand(SI, 0, Op0);
2953 }
2954
2955 KnownBits Known = computeKnownBits(Cond, 0, &SI);
2956 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
2957 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
2958
2959 // Compute the number of leading bits we can ignore.
2960 // TODO: A better way to determine this would use ComputeNumSignBits().
2961 for (auto &C : SI.cases()) {
2962 LeadingKnownZeros = std::min(
2963 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
2964 LeadingKnownOnes = std::min(
2965 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
2966 }
2967
2968 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
2969
2970 // Shrink the condition operand if the new type is smaller than the old type.
2971 // But do not shrink to a non-standard type, because backend can't generate
2972 // good code for that yet.
2973 // TODO: We can make it aggressive again after fixing PR39569.
2974 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
2975 shouldChangeType(Known.getBitWidth(), NewWidth)) {
2976 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
2977 Builder.SetInsertPoint(&SI);
2978 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
2979
2980 for (auto Case : SI.cases()) {
2981 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
2982 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
2983 }
2984 return replaceOperand(SI, 0, NewCond);
2985 }
2986
2987 return nullptr;
2988 }
2989
visitExtractValueInst(ExtractValueInst & EV)2990 Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
2991 Value *Agg = EV.getAggregateOperand();
2992
2993 if (!EV.hasIndices())
2994 return replaceInstUsesWith(EV, Agg);
2995
2996 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
2997 SQ.getWithInstruction(&EV)))
2998 return replaceInstUsesWith(EV, V);
2999
3000 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3001 // We're extracting from an insertvalue instruction, compare the indices
3002 const unsigned *exti, *exte, *insi, *inse;
3003 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3004 exte = EV.idx_end(), inse = IV->idx_end();
3005 exti != exte && insi != inse;
3006 ++exti, ++insi) {
3007 if (*insi != *exti)
3008 // The insert and extract both reference distinctly different elements.
3009 // This means the extract is not influenced by the insert, and we can
3010 // replace the aggregate operand of the extract with the aggregate
3011 // operand of the insert. i.e., replace
3012 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3013 // %E = extractvalue { i32, { i32 } } %I, 0
3014 // with
3015 // %E = extractvalue { i32, { i32 } } %A, 0
3016 return ExtractValueInst::Create(IV->getAggregateOperand(),
3017 EV.getIndices());
3018 }
3019 if (exti == exte && insi == inse)
3020 // Both iterators are at the end: Index lists are identical. Replace
3021 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3022 // %C = extractvalue { i32, { i32 } } %B, 1, 0
3023 // with "i32 42"
3024 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3025 if (exti == exte) {
3026 // The extract list is a prefix of the insert list. i.e. replace
3027 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3028 // %E = extractvalue { i32, { i32 } } %I, 1
3029 // with
3030 // %X = extractvalue { i32, { i32 } } %A, 1
3031 // %E = insertvalue { i32 } %X, i32 42, 0
3032 // by switching the order of the insert and extract (though the
3033 // insertvalue should be left in, since it may have other uses).
3034 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3035 EV.getIndices());
3036 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3037 makeArrayRef(insi, inse));
3038 }
3039 if (insi == inse)
3040 // The insert list is a prefix of the extract list
3041 // We can simply remove the common indices from the extract and make it
3042 // operate on the inserted value instead of the insertvalue result.
3043 // i.e., replace
3044 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3045 // %E = extractvalue { i32, { i32 } } %I, 1, 0
3046 // with
3047 // %E extractvalue { i32 } { i32 42 }, 0
3048 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3049 makeArrayRef(exti, exte));
3050 }
3051 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3052 // We're extracting from an overflow intrinsic, see if we're the only user,
3053 // which allows us to simplify multiple result intrinsics to simpler
3054 // things that just get one value.
3055 if (WO->hasOneUse()) {
3056 // Check if we're grabbing only the result of a 'with overflow' intrinsic
3057 // and replace it with a traditional binary instruction.
3058 if (*EV.idx_begin() == 0) {
3059 Instruction::BinaryOps BinOp = WO->getBinaryOp();
3060 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3061 replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
3062 eraseInstFromFunction(*WO);
3063 return BinaryOperator::Create(BinOp, LHS, RHS);
3064 }
3065
3066 // If the normal result of the add is dead, and the RHS is a constant,
3067 // we can transform this into a range comparison.
3068 // overflow = uadd a, -4 --> overflow = icmp ugt a, 3
3069 if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
3070 if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
3071 return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
3072 ConstantExpr::getNot(CI));
3073 }
3074 }
3075 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3076 // If the (non-volatile) load only has one use, we can rewrite this to a
3077 // load from a GEP. This reduces the size of the load. If a load is used
3078 // only by extractvalue instructions then this either must have been
3079 // optimized before, or it is a struct with padding, in which case we
3080 // don't want to do the transformation as it loses padding knowledge.
3081 if (L->isSimple() && L->hasOneUse()) {
3082 // extractvalue has integer indices, getelementptr has Value*s. Convert.
3083 SmallVector<Value*, 4> Indices;
3084 // Prefix an i32 0 since we need the first element.
3085 Indices.push_back(Builder.getInt32(0));
3086 for (unsigned Idx : EV.indices())
3087 Indices.push_back(Builder.getInt32(Idx));
3088
3089 // We need to insert these at the location of the old load, not at that of
3090 // the extractvalue.
3091 Builder.SetInsertPoint(L);
3092 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3093 L->getPointerOperand(), Indices);
3094 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3095 // Whatever aliasing information we had for the orignal load must also
3096 // hold for the smaller load, so propagate the annotations.
3097 AAMDNodes Nodes;
3098 L->getAAMetadata(Nodes);
3099 NL->setAAMetadata(Nodes);
3100 // Returning the load directly will cause the main loop to insert it in
3101 // the wrong spot, so use replaceInstUsesWith().
3102 return replaceInstUsesWith(EV, NL);
3103 }
3104 // We could simplify extracts from other values. Note that nested extracts may
3105 // already be simplified implicitly by the above: extract (extract (insert) )
3106 // will be translated into extract ( insert ( extract ) ) first and then just
3107 // the value inserted, if appropriate. Similarly for extracts from single-use
3108 // loads: extract (extract (load)) will be translated to extract (load (gep))
3109 // and if again single-use then via load (gep (gep)) to load (gep).
3110 // However, double extracts from e.g. function arguments or return values
3111 // aren't handled yet.
3112 return nullptr;
3113 }
3114
3115 /// Return 'true' if the given typeinfo will match anything.
isCatchAll(EHPersonality Personality,Constant * TypeInfo)3116 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3117 switch (Personality) {
3118 case EHPersonality::GNU_C:
3119 case EHPersonality::GNU_C_SjLj:
3120 case EHPersonality::Rust:
3121 // The GCC C EH and Rust personality only exists to support cleanups, so
3122 // it's not clear what the semantics of catch clauses are.
3123 return false;
3124 case EHPersonality::Unknown:
3125 return false;
3126 case EHPersonality::GNU_Ada:
3127 // While __gnat_all_others_value will match any Ada exception, it doesn't
3128 // match foreign exceptions (or didn't, before gcc-4.7).
3129 return false;
3130 case EHPersonality::GNU_CXX:
3131 case EHPersonality::GNU_CXX_SjLj:
3132 case EHPersonality::GNU_ObjC:
3133 case EHPersonality::MSVC_X86SEH:
3134 case EHPersonality::MSVC_TableSEH:
3135 case EHPersonality::MSVC_CXX:
3136 case EHPersonality::CoreCLR:
3137 case EHPersonality::Wasm_CXX:
3138 case EHPersonality::XL_CXX:
3139 return TypeInfo->isNullValue();
3140 }
3141 llvm_unreachable("invalid enum");
3142 }
3143
shorter_filter(const Value * LHS,const Value * RHS)3144 static bool shorter_filter(const Value *LHS, const Value *RHS) {
3145 return
3146 cast<ArrayType>(LHS->getType())->getNumElements()
3147 <
3148 cast<ArrayType>(RHS->getType())->getNumElements();
3149 }
3150
visitLandingPadInst(LandingPadInst & LI)3151 Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3152 // The logic here should be correct for any real-world personality function.
3153 // However if that turns out not to be true, the offending logic can always
3154 // be conditioned on the personality function, like the catch-all logic is.
3155 EHPersonality Personality =
3156 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3157
3158 // Simplify the list of clauses, eg by removing repeated catch clauses
3159 // (these are often created by inlining).
3160 bool MakeNewInstruction = false; // If true, recreate using the following:
3161 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3162 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
3163
3164 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3165 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3166 bool isLastClause = i + 1 == e;
3167 if (LI.isCatch(i)) {
3168 // A catch clause.
3169 Constant *CatchClause = LI.getClause(i);
3170 Constant *TypeInfo = CatchClause->stripPointerCasts();
3171
3172 // If we already saw this clause, there is no point in having a second
3173 // copy of it.
3174 if (AlreadyCaught.insert(TypeInfo).second) {
3175 // This catch clause was not already seen.
3176 NewClauses.push_back(CatchClause);
3177 } else {
3178 // Repeated catch clause - drop the redundant copy.
3179 MakeNewInstruction = true;
3180 }
3181
3182 // If this is a catch-all then there is no point in keeping any following
3183 // clauses or marking the landingpad as having a cleanup.
3184 if (isCatchAll(Personality, TypeInfo)) {
3185 if (!isLastClause)
3186 MakeNewInstruction = true;
3187 CleanupFlag = false;
3188 break;
3189 }
3190 } else {
3191 // A filter clause. If any of the filter elements were already caught
3192 // then they can be dropped from the filter. It is tempting to try to
3193 // exploit the filter further by saying that any typeinfo that does not
3194 // occur in the filter can't be caught later (and thus can be dropped).
3195 // However this would be wrong, since typeinfos can match without being
3196 // equal (for example if one represents a C++ class, and the other some
3197 // class derived from it).
3198 assert(LI.isFilter(i) && "Unsupported landingpad clause!");
3199 Constant *FilterClause = LI.getClause(i);
3200 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3201 unsigned NumTypeInfos = FilterType->getNumElements();
3202
3203 // An empty filter catches everything, so there is no point in keeping any
3204 // following clauses or marking the landingpad as having a cleanup. By
3205 // dealing with this case here the following code is made a bit simpler.
3206 if (!NumTypeInfos) {
3207 NewClauses.push_back(FilterClause);
3208 if (!isLastClause)
3209 MakeNewInstruction = true;
3210 CleanupFlag = false;
3211 break;
3212 }
3213
3214 bool MakeNewFilter = false; // If true, make a new filter.
3215 SmallVector<Constant *, 16> NewFilterElts; // New elements.
3216 if (isa<ConstantAggregateZero>(FilterClause)) {
3217 // Not an empty filter - it contains at least one null typeinfo.
3218 assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
3219 Constant *TypeInfo =
3220 Constant::getNullValue(FilterType->getElementType());
3221 // If this typeinfo is a catch-all then the filter can never match.
3222 if (isCatchAll(Personality, TypeInfo)) {
3223 // Throw the filter away.
3224 MakeNewInstruction = true;
3225 continue;
3226 }
3227
3228 // There is no point in having multiple copies of this typeinfo, so
3229 // discard all but the first copy if there is more than one.
3230 NewFilterElts.push_back(TypeInfo);
3231 if (NumTypeInfos > 1)
3232 MakeNewFilter = true;
3233 } else {
3234 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3235 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3236 NewFilterElts.reserve(NumTypeInfos);
3237
3238 // Remove any filter elements that were already caught or that already
3239 // occurred in the filter. While there, see if any of the elements are
3240 // catch-alls. If so, the filter can be discarded.
3241 bool SawCatchAll = false;
3242 for (unsigned j = 0; j != NumTypeInfos; ++j) {
3243 Constant *Elt = Filter->getOperand(j);
3244 Constant *TypeInfo = Elt->stripPointerCasts();
3245 if (isCatchAll(Personality, TypeInfo)) {
3246 // This element is a catch-all. Bail out, noting this fact.
3247 SawCatchAll = true;
3248 break;
3249 }
3250
3251 // Even if we've seen a type in a catch clause, we don't want to
3252 // remove it from the filter. An unexpected type handler may be
3253 // set up for a call site which throws an exception of the same
3254 // type caught. In order for the exception thrown by the unexpected
3255 // handler to propagate correctly, the filter must be correctly
3256 // described for the call site.
3257 //
3258 // Example:
3259 //
3260 // void unexpected() { throw 1;}
3261 // void foo() throw (int) {
3262 // std::set_unexpected(unexpected);
3263 // try {
3264 // throw 2.0;
3265 // } catch (int i) {}
3266 // }
3267
3268 // There is no point in having multiple copies of the same typeinfo in
3269 // a filter, so only add it if we didn't already.
3270 if (SeenInFilter.insert(TypeInfo).second)
3271 NewFilterElts.push_back(cast<Constant>(Elt));
3272 }
3273 // A filter containing a catch-all cannot match anything by definition.
3274 if (SawCatchAll) {
3275 // Throw the filter away.
3276 MakeNewInstruction = true;
3277 continue;
3278 }
3279
3280 // If we dropped something from the filter, make a new one.
3281 if (NewFilterElts.size() < NumTypeInfos)
3282 MakeNewFilter = true;
3283 }
3284 if (MakeNewFilter) {
3285 FilterType = ArrayType::get(FilterType->getElementType(),
3286 NewFilterElts.size());
3287 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3288 MakeNewInstruction = true;
3289 }
3290
3291 NewClauses.push_back(FilterClause);
3292
3293 // If the new filter is empty then it will catch everything so there is
3294 // no point in keeping any following clauses or marking the landingpad
3295 // as having a cleanup. The case of the original filter being empty was
3296 // already handled above.
3297 if (MakeNewFilter && !NewFilterElts.size()) {
3298 assert(MakeNewInstruction && "New filter but not a new instruction!");
3299 CleanupFlag = false;
3300 break;
3301 }
3302 }
3303 }
3304
3305 // If several filters occur in a row then reorder them so that the shortest
3306 // filters come first (those with the smallest number of elements). This is
3307 // advantageous because shorter filters are more likely to match, speeding up
3308 // unwinding, but mostly because it increases the effectiveness of the other
3309 // filter optimizations below.
3310 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3311 unsigned j;
3312 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3313 for (j = i; j != e; ++j)
3314 if (!isa<ArrayType>(NewClauses[j]->getType()))
3315 break;
3316
3317 // Check whether the filters are already sorted by length. We need to know
3318 // if sorting them is actually going to do anything so that we only make a
3319 // new landingpad instruction if it does.
3320 for (unsigned k = i; k + 1 < j; ++k)
3321 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3322 // Not sorted, so sort the filters now. Doing an unstable sort would be
3323 // correct too but reordering filters pointlessly might confuse users.
3324 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3325 shorter_filter);
3326 MakeNewInstruction = true;
3327 break;
3328 }
3329
3330 // Look for the next batch of filters.
3331 i = j + 1;
3332 }
3333
3334 // If typeinfos matched if and only if equal, then the elements of a filter L
3335 // that occurs later than a filter F could be replaced by the intersection of
3336 // the elements of F and L. In reality two typeinfos can match without being
3337 // equal (for example if one represents a C++ class, and the other some class
3338 // derived from it) so it would be wrong to perform this transform in general.
3339 // However the transform is correct and useful if F is a subset of L. In that
3340 // case L can be replaced by F, and thus removed altogether since repeating a
3341 // filter is pointless. So here we look at all pairs of filters F and L where
3342 // L follows F in the list of clauses, and remove L if every element of F is
3343 // an element of L. This can occur when inlining C++ functions with exception
3344 // specifications.
3345 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3346 // Examine each filter in turn.
3347 Value *Filter = NewClauses[i];
3348 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3349 if (!FTy)
3350 // Not a filter - skip it.
3351 continue;
3352 unsigned FElts = FTy->getNumElements();
3353 // Examine each filter following this one. Doing this backwards means that
3354 // we don't have to worry about filters disappearing under us when removed.
3355 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3356 Value *LFilter = NewClauses[j];
3357 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3358 if (!LTy)
3359 // Not a filter - skip it.
3360 continue;
3361 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3362 // an element of LFilter, then discard LFilter.
3363 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3364 // If Filter is empty then it is a subset of LFilter.
3365 if (!FElts) {
3366 // Discard LFilter.
3367 NewClauses.erase(J);
3368 MakeNewInstruction = true;
3369 // Move on to the next filter.
3370 continue;
3371 }
3372 unsigned LElts = LTy->getNumElements();
3373 // If Filter is longer than LFilter then it cannot be a subset of it.
3374 if (FElts > LElts)
3375 // Move on to the next filter.
3376 continue;
3377 // At this point we know that LFilter has at least one element.
3378 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3379 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3380 // already know that Filter is not longer than LFilter).
3381 if (isa<ConstantAggregateZero>(Filter)) {
3382 assert(FElts <= LElts && "Should have handled this case earlier!");
3383 // Discard LFilter.
3384 NewClauses.erase(J);
3385 MakeNewInstruction = true;
3386 }
3387 // Move on to the next filter.
3388 continue;
3389 }
3390 ConstantArray *LArray = cast<ConstantArray>(LFilter);
3391 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3392 // Since Filter is non-empty and contains only zeros, it is a subset of
3393 // LFilter iff LFilter contains a zero.
3394 assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
3395 for (unsigned l = 0; l != LElts; ++l)
3396 if (LArray->getOperand(l)->isNullValue()) {
3397 // LFilter contains a zero - discard it.
3398 NewClauses.erase(J);
3399 MakeNewInstruction = true;
3400 break;
3401 }
3402 // Move on to the next filter.
3403 continue;
3404 }
3405 // At this point we know that both filters are ConstantArrays. Loop over
3406 // operands to see whether every element of Filter is also an element of
3407 // LFilter. Since filters tend to be short this is probably faster than
3408 // using a method that scales nicely.
3409 ConstantArray *FArray = cast<ConstantArray>(Filter);
3410 bool AllFound = true;
3411 for (unsigned f = 0; f != FElts; ++f) {
3412 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3413 AllFound = false;
3414 for (unsigned l = 0; l != LElts; ++l) {
3415 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3416 if (LTypeInfo == FTypeInfo) {
3417 AllFound = true;
3418 break;
3419 }
3420 }
3421 if (!AllFound)
3422 break;
3423 }
3424 if (AllFound) {
3425 // Discard LFilter.
3426 NewClauses.erase(J);
3427 MakeNewInstruction = true;
3428 }
3429 // Move on to the next filter.
3430 }
3431 }
3432
3433 // If we changed any of the clauses, replace the old landingpad instruction
3434 // with a new one.
3435 if (MakeNewInstruction) {
3436 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3437 NewClauses.size());
3438 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3439 NLI->addClause(NewClauses[i]);
3440 // A landing pad with no clauses must have the cleanup flag set. It is
3441 // theoretically possible, though highly unlikely, that we eliminated all
3442 // clauses. If so, force the cleanup flag to true.
3443 if (NewClauses.empty())
3444 CleanupFlag = true;
3445 NLI->setCleanup(CleanupFlag);
3446 return NLI;
3447 }
3448
3449 // Even if none of the clauses changed, we may nonetheless have understood
3450 // that the cleanup flag is pointless. Clear it if so.
3451 if (LI.isCleanup() != CleanupFlag) {
3452 assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
3453 LI.setCleanup(CleanupFlag);
3454 return &LI;
3455 }
3456
3457 return nullptr;
3458 }
3459
visitFreeze(FreezeInst & I)3460 Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3461 Value *Op0 = I.getOperand(0);
3462
3463 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
3464 return replaceInstUsesWith(I, V);
3465
3466 // freeze (phi const, x) --> phi const, (freeze x)
3467 if (auto *PN = dyn_cast<PHINode>(Op0)) {
3468 if (Instruction *NV = foldOpIntoPhi(I, PN))
3469 return NV;
3470 }
3471
3472 if (match(Op0, m_Undef())) {
3473 // If I is freeze(undef), see its uses and fold it to the best constant.
3474 // - or: pick -1
3475 // - select's condition: pick the value that leads to choosing a constant
3476 // - other ops: pick 0
3477 Constant *BestValue = nullptr;
3478 Constant *NullValue = Constant::getNullValue(I.getType());
3479 for (const auto *U : I.users()) {
3480 Constant *C = NullValue;
3481
3482 if (match(U, m_Or(m_Value(), m_Value())))
3483 C = Constant::getAllOnesValue(I.getType());
3484 else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3485 if (SI->getCondition() == &I) {
3486 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3487 C = Constant::getIntegerValue(I.getType(), CondVal);
3488 }
3489 }
3490
3491 if (!BestValue)
3492 BestValue = C;
3493 else if (BestValue != C)
3494 BestValue = NullValue;
3495 }
3496
3497 return replaceInstUsesWith(I, BestValue);
3498 }
3499
3500 return nullptr;
3501 }
3502
3503 /// Try to move the specified instruction from its current block into the
3504 /// beginning of DestBlock, which can only happen if it's safe to move the
3505 /// instruction past all of the instructions between it and the end of its
3506 /// block.
TryToSinkInstruction(Instruction * I,BasicBlock * DestBlock)3507 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3508 assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
3509 BasicBlock *SrcBlock = I->getParent();
3510
3511 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3512 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3513 I->isTerminator())
3514 return false;
3515
3516 // Do not sink static or dynamic alloca instructions. Static allocas must
3517 // remain in the entry block, and dynamic allocas must not be sunk in between
3518 // a stacksave / stackrestore pair, which would incorrectly shorten its
3519 // lifetime.
3520 if (isa<AllocaInst>(I))
3521 return false;
3522
3523 // Do not sink into catchswitch blocks.
3524 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3525 return false;
3526
3527 // Do not sink convergent call instructions.
3528 if (auto *CI = dyn_cast<CallInst>(I)) {
3529 if (CI->isConvergent())
3530 return false;
3531 }
3532 // We can only sink load instructions if there is nothing between the load and
3533 // the end of block that could change the value.
3534 if (I->mayReadFromMemory()) {
3535 // We don't want to do any sophisticated alias analysis, so we only check
3536 // the instructions after I in I's parent block if we try to sink to its
3537 // successor block.
3538 if (DestBlock->getUniquePredecessor() != I->getParent())
3539 return false;
3540 for (BasicBlock::iterator Scan = I->getIterator(),
3541 E = I->getParent()->end();
3542 Scan != E; ++Scan)
3543 if (Scan->mayWriteToMemory())
3544 return false;
3545 }
3546
3547 I->dropDroppableUses([DestBlock](const Use *U) {
3548 if (auto *I = dyn_cast<Instruction>(U->getUser()))
3549 return I->getParent() != DestBlock;
3550 return true;
3551 });
3552 /// FIXME: We could remove droppable uses that are not dominated by
3553 /// the new position.
3554
3555 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3556 I->moveBefore(&*InsertPos);
3557 ++NumSunkInst;
3558
3559 // Also sink all related debug uses from the source basic block. Otherwise we
3560 // get debug use before the def. Attempt to salvage debug uses first, to
3561 // maximise the range variables have location for. If we cannot salvage, then
3562 // mark the location undef: we know it was supposed to receive a new location
3563 // here, but that computation has been sunk.
3564 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3565 findDbgUsers(DbgUsers, I);
3566 // Process the sinking DbgUsers in reverse order, as we only want to clone the
3567 // last appearing debug intrinsic for each given variable.
3568 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3569 for (DbgVariableIntrinsic *DVI : DbgUsers)
3570 if (DVI->getParent() == SrcBlock)
3571 DbgUsersToSink.push_back(DVI);
3572 llvm::sort(DbgUsersToSink,
3573 [](auto *A, auto *B) { return B->comesBefore(A); });
3574
3575 SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3576 SmallSet<DebugVariable, 4> SunkVariables;
3577 for (auto User : DbgUsersToSink) {
3578 // A dbg.declare instruction should not be cloned, since there can only be
3579 // one per variable fragment. It should be left in the original place
3580 // because the sunk instruction is not an alloca (otherwise we could not be
3581 // here).
3582 if (isa<DbgDeclareInst>(User))
3583 continue;
3584
3585 DebugVariable DbgUserVariable =
3586 DebugVariable(User->getVariable(), User->getExpression(),
3587 User->getDebugLoc()->getInlinedAt());
3588
3589 if (!SunkVariables.insert(DbgUserVariable).second)
3590 continue;
3591
3592 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3593 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3594 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3595 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
3596 }
3597
3598 // Perform salvaging without the clones, then sink the clones.
3599 if (!DIIClones.empty()) {
3600 salvageDebugInfoForDbgValues(*I, DbgUsers);
3601 // The clones are in reverse order of original appearance, reverse again to
3602 // maintain the original order.
3603 for (auto &DIIClone : llvm::reverse(DIIClones)) {
3604 DIIClone->insertBefore(&*InsertPos);
3605 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
3606 }
3607 }
3608
3609 return true;
3610 }
3611
run()3612 bool InstCombinerImpl::run() {
3613 while (!Worklist.isEmpty()) {
3614 // Walk deferred instructions in reverse order, and push them to the
3615 // worklist, which means they'll end up popped from the worklist in-order.
3616 while (Instruction *I = Worklist.popDeferred()) {
3617 // Check to see if we can DCE the instruction. We do this already here to
3618 // reduce the number of uses and thus allow other folds to trigger.
3619 // Note that eraseInstFromFunction() may push additional instructions on
3620 // the deferred worklist, so this will DCE whole instruction chains.
3621 if (isInstructionTriviallyDead(I, &TLI)) {
3622 eraseInstFromFunction(*I);
3623 ++NumDeadInst;
3624 continue;
3625 }
3626
3627 Worklist.push(I);
3628 }
3629
3630 Instruction *I = Worklist.removeOne();
3631 if (I == nullptr) continue; // skip null values.
3632
3633 // Check to see if we can DCE the instruction.
3634 if (isInstructionTriviallyDead(I, &TLI)) {
3635 eraseInstFromFunction(*I);
3636 ++NumDeadInst;
3637 continue;
3638 }
3639
3640 if (!DebugCounter::shouldExecute(VisitCounter))
3641 continue;
3642
3643 // Instruction isn't dead, see if we can constant propagate it.
3644 if (!I->use_empty() &&
3645 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3646 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3647 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
3648 << '\n');
3649
3650 // Add operands to the worklist.
3651 replaceInstUsesWith(*I, C);
3652 ++NumConstProp;
3653 if (isInstructionTriviallyDead(I, &TLI))
3654 eraseInstFromFunction(*I);
3655 MadeIRChange = true;
3656 continue;
3657 }
3658 }
3659
3660 // See if we can trivially sink this instruction to its user if we can
3661 // prove that the successor is not executed more frequently than our block.
3662 if (EnableCodeSinking)
3663 if (Use *SingleUse = I->getSingleUndroppableUse()) {
3664 BasicBlock *BB = I->getParent();
3665 Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
3666 BasicBlock *UserParent;
3667
3668 // Get the block the use occurs in.
3669 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
3670 UserParent = PN->getIncomingBlock(*SingleUse);
3671 else
3672 UserParent = UserInst->getParent();
3673
3674 // Try sinking to another block. If that block is unreachable, then do
3675 // not bother. SimplifyCFG should handle it.
3676 if (UserParent != BB && DT.isReachableFromEntry(UserParent)) {
3677 // See if the user is one of our successors that has only one
3678 // predecessor, so that we don't have to split the critical edge.
3679 bool ShouldSink = UserParent->getUniquePredecessor() == BB;
3680 // Another option where we can sink is a block that ends with a
3681 // terminator that does not pass control to other block (such as
3682 // return or unreachable). In this case:
3683 // - I dominates the User (by SSA form);
3684 // - the User will be executed at most once.
3685 // So sinking I down to User is always profitable or neutral.
3686 if (!ShouldSink) {
3687 auto *Term = UserParent->getTerminator();
3688 ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
3689 }
3690 if (ShouldSink) {
3691 assert(DT.dominates(BB, UserParent) &&
3692 "Dominance relation broken?");
3693 // Okay, the CFG is simple enough, try to sink this instruction.
3694 if (TryToSinkInstruction(I, UserParent)) {
3695 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
3696 MadeIRChange = true;
3697 // We'll add uses of the sunk instruction below, but since sinking
3698 // can expose opportunities for it's *operands* add them to the
3699 // worklist
3700 for (Use &U : I->operands())
3701 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3702 Worklist.push(OpI);
3703 }
3704 }
3705 }
3706 }
3707
3708 // Now that we have an instruction, try combining it to simplify it.
3709 Builder.SetInsertPoint(I);
3710 Builder.CollectMetadataToCopy(
3711 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3712
3713 #ifndef NDEBUG
3714 std::string OrigI;
3715 #endif
3716 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
3717 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
3718
3719 if (Instruction *Result = visit(*I)) {
3720 ++NumCombined;
3721 // Should we replace the old instruction with a new one?
3722 if (Result != I) {
3723 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
3724 << " New = " << *Result << '\n');
3725
3726 Result->copyMetadata(*I,
3727 {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3728 // Everything uses the new instruction now.
3729 I->replaceAllUsesWith(Result);
3730
3731 // Move the name to the new instruction first.
3732 Result->takeName(I);
3733
3734 // Insert the new instruction into the basic block...
3735 BasicBlock *InstParent = I->getParent();
3736 BasicBlock::iterator InsertPos = I->getIterator();
3737
3738 // Are we replace a PHI with something that isn't a PHI, or vice versa?
3739 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3740 // We need to fix up the insertion point.
3741 if (isa<PHINode>(I)) // PHI -> Non-PHI
3742 InsertPos = InstParent->getFirstInsertionPt();
3743 else // Non-PHI -> PHI
3744 InsertPos = InstParent->getFirstNonPHI()->getIterator();
3745 }
3746
3747 InstParent->getInstList().insert(InsertPos, Result);
3748
3749 // Push the new instruction and any users onto the worklist.
3750 Worklist.pushUsersToWorkList(*Result);
3751 Worklist.push(Result);
3752
3753 eraseInstFromFunction(*I);
3754 } else {
3755 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
3756 << " New = " << *I << '\n');
3757
3758 // If the instruction was modified, it's possible that it is now dead.
3759 // if so, remove it.
3760 if (isInstructionTriviallyDead(I, &TLI)) {
3761 eraseInstFromFunction(*I);
3762 } else {
3763 Worklist.pushUsersToWorkList(*I);
3764 Worklist.push(I);
3765 }
3766 }
3767 MadeIRChange = true;
3768 }
3769 }
3770
3771 Worklist.zap();
3772 return MadeIRChange;
3773 }
3774
3775 // Track the scopes used by !alias.scope and !noalias. In a function, a
3776 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
3777 // by both sets. If not, the declaration of the scope can be safely omitted.
3778 // The MDNode of the scope can be omitted as well for the instructions that are
3779 // part of this function. We do not do that at this point, as this might become
3780 // too time consuming to do.
3781 class AliasScopeTracker {
3782 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
3783 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
3784
3785 public:
analyse(Instruction * I)3786 void analyse(Instruction *I) {
3787 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
3788 if (!I->hasMetadataOtherThanDebugLoc())
3789 return;
3790
3791 auto Track = [](Metadata *ScopeList, auto &Container) {
3792 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
3793 if (!MDScopeList || !Container.insert(MDScopeList).second)
3794 return;
3795 for (auto &MDOperand : MDScopeList->operands())
3796 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
3797 Container.insert(MDScope);
3798 };
3799
3800 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
3801 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
3802 }
3803
isNoAliasScopeDeclDead(Instruction * Inst)3804 bool isNoAliasScopeDeclDead(Instruction *Inst) {
3805 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
3806 if (!Decl)
3807 return false;
3808
3809 assert(Decl->use_empty() &&
3810 "llvm.experimental.noalias.scope.decl in use ?");
3811 const MDNode *MDSL = Decl->getScopeList();
3812 assert(MDSL->getNumOperands() == 1 &&
3813 "llvm.experimental.noalias.scope should refer to a single scope");
3814 auto &MDOperand = MDSL->getOperand(0);
3815 if (auto *MD = dyn_cast<MDNode>(MDOperand))
3816 return !UsedAliasScopesAndLists.contains(MD) ||
3817 !UsedNoAliasScopesAndLists.contains(MD);
3818
3819 // Not an MDNode ? throw away.
3820 return true;
3821 }
3822 };
3823
3824 /// Populate the IC worklist from a function, by walking it in depth-first
3825 /// order and adding all reachable code to the worklist.
3826 ///
3827 /// This has a couple of tricks to make the code faster and more powerful. In
3828 /// particular, we constant fold and DCE instructions as we go, to avoid adding
3829 /// them to the worklist (this significantly speeds up instcombine on code where
3830 /// many instructions are dead or constant). Additionally, if we find a branch
3831 /// whose condition is a known constant, we only visit the reachable successors.
prepareICWorklistFromFunction(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI,InstCombineWorklist & ICWorklist)3832 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3833 const TargetLibraryInfo *TLI,
3834 InstCombineWorklist &ICWorklist) {
3835 bool MadeIRChange = false;
3836 SmallPtrSet<BasicBlock *, 32> Visited;
3837 SmallVector<BasicBlock*, 256> Worklist;
3838 Worklist.push_back(&F.front());
3839
3840 SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
3841 DenseMap<Constant *, Constant *> FoldedConstants;
3842 AliasScopeTracker SeenAliasScopes;
3843
3844 do {
3845 BasicBlock *BB = Worklist.pop_back_val();
3846
3847 // We have now visited this block! If we've already been here, ignore it.
3848 if (!Visited.insert(BB).second)
3849 continue;
3850
3851 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
3852 Instruction *Inst = &*BBI++;
3853
3854 // ConstantProp instruction if trivially constant.
3855 if (!Inst->use_empty() &&
3856 (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
3857 if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
3858 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
3859 << '\n');
3860 Inst->replaceAllUsesWith(C);
3861 ++NumConstProp;
3862 if (isInstructionTriviallyDead(Inst, TLI))
3863 Inst->eraseFromParent();
3864 MadeIRChange = true;
3865 continue;
3866 }
3867
3868 // See if we can constant fold its operands.
3869 for (Use &U : Inst->operands()) {
3870 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
3871 continue;
3872
3873 auto *C = cast<Constant>(U);
3874 Constant *&FoldRes = FoldedConstants[C];
3875 if (!FoldRes)
3876 FoldRes = ConstantFoldConstant(C, DL, TLI);
3877
3878 if (FoldRes != C) {
3879 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
3880 << "\n Old = " << *C
3881 << "\n New = " << *FoldRes << '\n');
3882 U = FoldRes;
3883 MadeIRChange = true;
3884 }
3885 }
3886
3887 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
3888 // these call instructions consumes non-trivial amount of time and
3889 // provides no value for the optimization.
3890 if (!Inst->isDebugOrPseudoInst()) {
3891 InstrsForInstCombineWorklist.push_back(Inst);
3892 SeenAliasScopes.analyse(Inst);
3893 }
3894 }
3895
3896 // Recursively visit successors. If this is a branch or switch on a
3897 // constant, only visit the reachable successor.
3898 Instruction *TI = BB->getTerminator();
3899 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
3900 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
3901 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
3902 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
3903 Worklist.push_back(ReachableBB);
3904 continue;
3905 }
3906 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
3907 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
3908 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
3909 continue;
3910 }
3911 }
3912
3913 append_range(Worklist, successors(TI));
3914 } while (!Worklist.empty());
3915
3916 // Remove instructions inside unreachable blocks. This prevents the
3917 // instcombine code from having to deal with some bad special cases, and
3918 // reduces use counts of instructions.
3919 for (BasicBlock &BB : F) {
3920 if (Visited.count(&BB))
3921 continue;
3922
3923 unsigned NumDeadInstInBB;
3924 unsigned NumDeadDbgInstInBB;
3925 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
3926 removeAllNonTerminatorAndEHPadInstructions(&BB);
3927
3928 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
3929 NumDeadInst += NumDeadInstInBB;
3930 }
3931
3932 // Once we've found all of the instructions to add to instcombine's worklist,
3933 // add them in reverse order. This way instcombine will visit from the top
3934 // of the function down. This jives well with the way that it adds all uses
3935 // of instructions to the worklist after doing a transformation, thus avoiding
3936 // some N^2 behavior in pathological cases.
3937 ICWorklist.reserve(InstrsForInstCombineWorklist.size());
3938 for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
3939 // DCE instruction if trivially dead. As we iterate in reverse program
3940 // order here, we will clean up whole chains of dead instructions.
3941 if (isInstructionTriviallyDead(Inst, TLI) ||
3942 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
3943 ++NumDeadInst;
3944 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
3945 salvageDebugInfo(*Inst);
3946 Inst->eraseFromParent();
3947 MadeIRChange = true;
3948 continue;
3949 }
3950
3951 ICWorklist.push(Inst);
3952 }
3953
3954 return MadeIRChange;
3955 }
3956
combineInstructionsOverFunction(Function & F,InstCombineWorklist & Worklist,AliasAnalysis * AA,AssumptionCache & AC,TargetLibraryInfo & TLI,TargetTransformInfo & TTI,DominatorTree & DT,OptimizationRemarkEmitter & ORE,BlockFrequencyInfo * BFI,ProfileSummaryInfo * PSI,unsigned MaxIterations,LoopInfo * LI)3957 static bool combineInstructionsOverFunction(
3958 Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
3959 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
3960 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
3961 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
3962 auto &DL = F.getParent()->getDataLayout();
3963 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
3964
3965 /// Builder - This is an IRBuilder that automatically inserts new
3966 /// instructions into the worklist when they are created.
3967 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
3968 F.getContext(), TargetFolder(DL),
3969 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
3970 Worklist.add(I);
3971 if (auto *Assume = dyn_cast<AssumeInst>(I))
3972 AC.registerAssumption(Assume);
3973 }));
3974
3975 // Lower dbg.declare intrinsics otherwise their value may be clobbered
3976 // by instcombiner.
3977 bool MadeIRChange = false;
3978 if (ShouldLowerDbgDeclare)
3979 MadeIRChange = LowerDbgDeclare(F);
3980
3981 // Iterate while there is work to do.
3982 unsigned Iteration = 0;
3983 while (true) {
3984 ++NumWorklistIterations;
3985 ++Iteration;
3986
3987 if (Iteration > InfiniteLoopDetectionThreshold) {
3988 report_fatal_error(
3989 "Instruction Combining seems stuck in an infinite loop after " +
3990 Twine(InfiniteLoopDetectionThreshold) + " iterations.");
3991 }
3992
3993 if (Iteration > MaxIterations) {
3994 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
3995 << " on " << F.getName()
3996 << " reached; stopping before reaching a fixpoint\n");
3997 break;
3998 }
3999
4000 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
4001 << F.getName() << "\n");
4002
4003 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4004
4005 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4006 ORE, BFI, PSI, DL, LI);
4007 IC.MaxArraySizeForCombine = MaxArraySize;
4008
4009 if (!IC.run())
4010 break;
4011
4012 MadeIRChange = true;
4013 }
4014
4015 return MadeIRChange;
4016 }
4017
InstCombinePass()4018 InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4019
InstCombinePass(unsigned MaxIterations)4020 InstCombinePass::InstCombinePass(unsigned MaxIterations)
4021 : MaxIterations(MaxIterations) {}
4022
run(Function & F,FunctionAnalysisManager & AM)4023 PreservedAnalyses InstCombinePass::run(Function &F,
4024 FunctionAnalysisManager &AM) {
4025 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4026 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4027 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4028 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4029 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4030
4031 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4032
4033 auto *AA = &AM.getResult<AAManager>(F);
4034 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4035 ProfileSummaryInfo *PSI =
4036 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4037 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4038 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4039
4040 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4041 BFI, PSI, MaxIterations, LI))
4042 // No changes, all analyses are preserved.
4043 return PreservedAnalyses::all();
4044
4045 // Mark all the analyses that instcombine updates as preserved.
4046 PreservedAnalyses PA;
4047 PA.preserveSet<CFGAnalyses>();
4048 return PA;
4049 }
4050
getAnalysisUsage(AnalysisUsage & AU) const4051 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4052 AU.setPreservesCFG();
4053 AU.addRequired<AAResultsWrapperPass>();
4054 AU.addRequired<AssumptionCacheTracker>();
4055 AU.addRequired<TargetLibraryInfoWrapperPass>();
4056 AU.addRequired<TargetTransformInfoWrapperPass>();
4057 AU.addRequired<DominatorTreeWrapperPass>();
4058 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4059 AU.addPreserved<DominatorTreeWrapperPass>();
4060 AU.addPreserved<AAResultsWrapperPass>();
4061 AU.addPreserved<BasicAAWrapperPass>();
4062 AU.addPreserved<GlobalsAAWrapperPass>();
4063 AU.addRequired<ProfileSummaryInfoWrapperPass>();
4064 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4065 }
4066
runOnFunction(Function & F)4067 bool InstructionCombiningPass::runOnFunction(Function &F) {
4068 if (skipFunction(F))
4069 return false;
4070
4071 // Required analyses.
4072 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4073 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4074 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4075 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4076 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4077 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4078
4079 // Optional analyses.
4080 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4081 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4082 ProfileSummaryInfo *PSI =
4083 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4084 BlockFrequencyInfo *BFI =
4085 (PSI && PSI->hasProfileSummary()) ?
4086 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4087 nullptr;
4088
4089 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4090 BFI, PSI, MaxIterations, LI);
4091 }
4092
4093 char InstructionCombiningPass::ID = 0;
4094
InstructionCombiningPass()4095 InstructionCombiningPass::InstructionCombiningPass()
4096 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4097 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4098 }
4099
InstructionCombiningPass(unsigned MaxIterations)4100 InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4101 : FunctionPass(ID), MaxIterations(MaxIterations) {
4102 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4103 }
4104
4105 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
4106 "Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4107 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4109 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
4110 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4111 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4112 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4113 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
4114 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
4115 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
4116 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
4117 "Combine redundant instructions", false, false)
4118
4119 // Initialization Routines
4120 void llvm::initializeInstCombine(PassRegistry &Registry) {
4121 initializeInstructionCombiningPassPass(Registry);
4122 }
4123
LLVMInitializeInstCombine(LLVMPassRegistryRef R)4124 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4125 initializeInstructionCombiningPassPass(*unwrap(R));
4126 }
4127
createInstructionCombiningPass()4128 FunctionPass *llvm::createInstructionCombiningPass() {
4129 return new InstructionCombiningPass();
4130 }
4131
createInstructionCombiningPass(unsigned MaxIterations)4132 FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4133 return new InstructionCombiningPass(MaxIterations);
4134 }
4135
LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM)4136 void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4137 unwrap(PM)->add(createInstructionCombiningPass());
4138 }
4139