1 //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10 //
11 // This SMS implementation is a target-independent back-end pass. When enabled,
12 // the pass runs just prior to the register allocation pass, while the machine
13 // IR is in SSA form. If software pipelining is successful, then the original
14 // loop is replaced by the optimized loop. The optimized loop contains one or
15 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16 // the instructions cannot be scheduled in a given MII, we increase the MII by
17 // one and try again.
18 //
19 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20 // represent loop carried dependences in the DAG as order edges to the Phi
21 // nodes. We also perform several passes over the DAG to eliminate unnecessary
22 // edges that inhibit the ability to pipeline. The implementation uses the
23 // DFAPacketizer class to compute the minimum initiation interval and the check
24 // where an instruction may be inserted in the pipelined schedule.
25 //
26 // In order for the SMS pass to work, several target specific hooks need to be
27 // implemented to get information about the loop structure and to rewrite
28 // instructions.
29 //
30 //===----------------------------------------------------------------------===//
31
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/DenseMap.h"
35 #include "llvm/ADT/MapVector.h"
36 #include "llvm/ADT/PriorityQueue.h"
37 #include "llvm/ADT/SetOperations.h"
38 #include "llvm/ADT/SetVector.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallSet.h"
41 #include "llvm/ADT/SmallVector.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Analysis/AliasAnalysis.h"
45 #include "llvm/Analysis/MemoryLocation.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/CodeGen/DFAPacketizer.h"
48 #include "llvm/CodeGen/LiveIntervals.h"
49 #include "llvm/CodeGen/MachineBasicBlock.h"
50 #include "llvm/CodeGen/MachineDominators.h"
51 #include "llvm/CodeGen/MachineFunction.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstr.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/MachineMemOperand.h"
57 #include "llvm/CodeGen/MachineOperand.h"
58 #include "llvm/CodeGen/MachinePipeliner.h"
59 #include "llvm/CodeGen/MachineRegisterInfo.h"
60 #include "llvm/CodeGen/ModuloSchedule.h"
61 #include "llvm/CodeGen/RegisterPressure.h"
62 #include "llvm/CodeGen/ScheduleDAG.h"
63 #include "llvm/CodeGen/ScheduleDAGMutation.h"
64 #include "llvm/CodeGen/TargetOpcodes.h"
65 #include "llvm/CodeGen/TargetRegisterInfo.h"
66 #include "llvm/CodeGen/TargetSubtargetInfo.h"
67 #include "llvm/Config/llvm-config.h"
68 #include "llvm/IR/Attributes.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCInstrDesc.h"
73 #include "llvm/MC/MCInstrItineraries.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/CommandLine.h"
77 #include "llvm/Support/Compiler.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include <algorithm>
82 #include <cassert>
83 #include <climits>
84 #include <cstdint>
85 #include <deque>
86 #include <functional>
87 #include <iterator>
88 #include <map>
89 #include <memory>
90 #include <tuple>
91 #include <utility>
92 #include <vector>
93
94 using namespace llvm;
95
96 #define DEBUG_TYPE "pipeliner"
97
98 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
99 STATISTIC(NumPipelined, "Number of loops software pipelined");
100 STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
101 STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
102 STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
103 STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
104 STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
105 STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
106 STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
107 STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
108 STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
109
110 /// A command line option to turn software pipelining on or off.
111 static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
112 cl::ZeroOrMore,
113 cl::desc("Enable Software Pipelining"));
114
115 /// A command line option to enable SWP at -Os.
116 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
117 cl::desc("Enable SWP at Os."), cl::Hidden,
118 cl::init(false));
119
120 /// A command line argument to limit minimum initial interval for pipelining.
121 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
122 cl::desc("Size limit for the MII."),
123 cl::Hidden, cl::init(27));
124
125 /// A command line argument to limit the number of stages in the pipeline.
126 static cl::opt<int>
127 SwpMaxStages("pipeliner-max-stages",
128 cl::desc("Maximum stages allowed in the generated scheduled."),
129 cl::Hidden, cl::init(3));
130
131 /// A command line option to disable the pruning of chain dependences due to
132 /// an unrelated Phi.
133 static cl::opt<bool>
134 SwpPruneDeps("pipeliner-prune-deps",
135 cl::desc("Prune dependences between unrelated Phi nodes."),
136 cl::Hidden, cl::init(true));
137
138 /// A command line option to disable the pruning of loop carried order
139 /// dependences.
140 static cl::opt<bool>
141 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
142 cl::desc("Prune loop carried order dependences."),
143 cl::Hidden, cl::init(true));
144
145 #ifndef NDEBUG
146 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
147 #endif
148
149 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
150 cl::ReallyHidden, cl::init(false),
151 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
152
153 static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
154 cl::init(false));
155 static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
156 cl::init(false));
157
158 static cl::opt<bool> EmitTestAnnotations(
159 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
160 cl::desc("Instead of emitting the pipelined code, annotate instructions "
161 "with the generated schedule for feeding into the "
162 "-modulo-schedule-test pass"));
163
164 static cl::opt<bool> ExperimentalCodeGen(
165 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
166 cl::desc(
167 "Use the experimental peeling code generator for software pipelining"));
168
169 namespace llvm {
170
171 // A command line option to enable the CopyToPhi DAG mutation.
172 cl::opt<bool>
173 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
174 cl::init(true), cl::ZeroOrMore,
175 cl::desc("Enable CopyToPhi DAG Mutation"));
176
177 } // end namespace llvm
178
179 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
180 char MachinePipeliner::ID = 0;
181 #ifndef NDEBUG
182 int MachinePipeliner::NumTries = 0;
183 #endif
184 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
185
186 INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
187 "Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)188 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
191 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
192 INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
193 "Modulo Software Pipelining", false, false)
194
195 /// The "main" function for implementing Swing Modulo Scheduling.
196 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
197 if (skipFunction(mf.getFunction()))
198 return false;
199
200 if (!EnableSWP)
201 return false;
202
203 if (mf.getFunction().getAttributes().hasAttribute(
204 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
205 !EnableSWPOptSize.getPosition())
206 return false;
207
208 if (!mf.getSubtarget().enableMachinePipeliner())
209 return false;
210
211 // Cannot pipeline loops without instruction itineraries if we are using
212 // DFA for the pipeliner.
213 if (mf.getSubtarget().useDFAforSMS() &&
214 (!mf.getSubtarget().getInstrItineraryData() ||
215 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
216 return false;
217
218 MF = &mf;
219 MLI = &getAnalysis<MachineLoopInfo>();
220 MDT = &getAnalysis<MachineDominatorTree>();
221 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
222 TII = MF->getSubtarget().getInstrInfo();
223 RegClassInfo.runOnMachineFunction(*MF);
224
225 for (auto &L : *MLI)
226 scheduleLoop(*L);
227
228 return false;
229 }
230
231 /// Attempt to perform the SMS algorithm on the specified loop. This function is
232 /// the main entry point for the algorithm. The function identifies candidate
233 /// loops, calculates the minimum initiation interval, and attempts to schedule
234 /// the loop.
scheduleLoop(MachineLoop & L)235 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
236 bool Changed = false;
237 for (auto &InnerLoop : L)
238 Changed |= scheduleLoop(*InnerLoop);
239
240 #ifndef NDEBUG
241 // Stop trying after reaching the limit (if any).
242 int Limit = SwpLoopLimit;
243 if (Limit >= 0) {
244 if (NumTries >= SwpLoopLimit)
245 return Changed;
246 NumTries++;
247 }
248 #endif
249
250 setPragmaPipelineOptions(L);
251 if (!canPipelineLoop(L)) {
252 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
253 ORE->emit([&]() {
254 return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
255 L.getStartLoc(), L.getHeader())
256 << "Failed to pipeline loop";
257 });
258
259 return Changed;
260 }
261
262 ++NumTrytoPipeline;
263
264 Changed = swingModuloScheduler(L);
265
266 return Changed;
267 }
268
setPragmaPipelineOptions(MachineLoop & L)269 void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
270 // Reset the pragma for the next loop in iteration.
271 disabledByPragma = false;
272 II_setByPragma = 0;
273
274 MachineBasicBlock *LBLK = L.getTopBlock();
275
276 if (LBLK == nullptr)
277 return;
278
279 const BasicBlock *BBLK = LBLK->getBasicBlock();
280 if (BBLK == nullptr)
281 return;
282
283 const Instruction *TI = BBLK->getTerminator();
284 if (TI == nullptr)
285 return;
286
287 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
288 if (LoopID == nullptr)
289 return;
290
291 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
292 assert(LoopID->getOperand(0) == LoopID && "invalid loop");
293
294 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
295 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
296
297 if (MD == nullptr)
298 continue;
299
300 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
301
302 if (S == nullptr)
303 continue;
304
305 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
306 assert(MD->getNumOperands() == 2 &&
307 "Pipeline initiation interval hint metadata should have two operands.");
308 II_setByPragma =
309 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
310 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
311 } else if (S->getString() == "llvm.loop.pipeline.disable") {
312 disabledByPragma = true;
313 }
314 }
315 }
316
317 /// Return true if the loop can be software pipelined. The algorithm is
318 /// restricted to loops with a single basic block. Make sure that the
319 /// branch in the loop can be analyzed.
canPipelineLoop(MachineLoop & L)320 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
321 if (L.getNumBlocks() != 1) {
322 ORE->emit([&]() {
323 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
324 L.getStartLoc(), L.getHeader())
325 << "Not a single basic block: "
326 << ore::NV("NumBlocks", L.getNumBlocks());
327 });
328 return false;
329 }
330
331 if (disabledByPragma) {
332 ORE->emit([&]() {
333 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
334 L.getStartLoc(), L.getHeader())
335 << "Disabled by Pragma.";
336 });
337 return false;
338 }
339
340 // Check if the branch can't be understood because we can't do pipelining
341 // if that's the case.
342 LI.TBB = nullptr;
343 LI.FBB = nullptr;
344 LI.BrCond.clear();
345 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
346 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
347 NumFailBranch++;
348 ORE->emit([&]() {
349 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
350 L.getStartLoc(), L.getHeader())
351 << "The branch can't be understood";
352 });
353 return false;
354 }
355
356 LI.LoopInductionVar = nullptr;
357 LI.LoopCompare = nullptr;
358 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
359 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
360 NumFailLoop++;
361 ORE->emit([&]() {
362 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
363 L.getStartLoc(), L.getHeader())
364 << "The loop structure is not supported";
365 });
366 return false;
367 }
368
369 if (!L.getLoopPreheader()) {
370 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
371 NumFailPreheader++;
372 ORE->emit([&]() {
373 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
374 L.getStartLoc(), L.getHeader())
375 << "No loop preheader found";
376 });
377 return false;
378 }
379
380 // Remove any subregisters from inputs to phi nodes.
381 preprocessPhiNodes(*L.getHeader());
382 return true;
383 }
384
preprocessPhiNodes(MachineBasicBlock & B)385 void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
386 MachineRegisterInfo &MRI = MF->getRegInfo();
387 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
388
389 for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
390 MachineOperand &DefOp = PI.getOperand(0);
391 assert(DefOp.getSubReg() == 0);
392 auto *RC = MRI.getRegClass(DefOp.getReg());
393
394 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
395 MachineOperand &RegOp = PI.getOperand(i);
396 if (RegOp.getSubReg() == 0)
397 continue;
398
399 // If the operand uses a subregister, replace it with a new register
400 // without subregisters, and generate a copy to the new register.
401 Register NewReg = MRI.createVirtualRegister(RC);
402 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
403 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
404 const DebugLoc &DL = PredB.findDebugLoc(At);
405 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
406 .addReg(RegOp.getReg(), getRegState(RegOp),
407 RegOp.getSubReg());
408 Slots.insertMachineInstrInMaps(*Copy);
409 RegOp.setReg(NewReg);
410 RegOp.setSubReg(0);
411 }
412 }
413 }
414
415 /// The SMS algorithm consists of the following main steps:
416 /// 1. Computation and analysis of the dependence graph.
417 /// 2. Ordering of the nodes (instructions).
418 /// 3. Attempt to Schedule the loop.
swingModuloScheduler(MachineLoop & L)419 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
420 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
421
422 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
423 II_setByPragma);
424
425 MachineBasicBlock *MBB = L.getHeader();
426 // The kernel should not include any terminator instructions. These
427 // will be added back later.
428 SMS.startBlock(MBB);
429
430 // Compute the number of 'real' instructions in the basic block by
431 // ignoring terminators.
432 unsigned size = MBB->size();
433 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
434 E = MBB->instr_end();
435 I != E; ++I, --size)
436 ;
437
438 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
439 SMS.schedule();
440 SMS.exitRegion();
441
442 SMS.finishBlock();
443 return SMS.hasNewSchedule();
444 }
445
getAnalysisUsage(AnalysisUsage & AU) const446 void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
447 AU.addRequired<AAResultsWrapperPass>();
448 AU.addPreserved<AAResultsWrapperPass>();
449 AU.addRequired<MachineLoopInfo>();
450 AU.addRequired<MachineDominatorTree>();
451 AU.addRequired<LiveIntervals>();
452 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
453 MachineFunctionPass::getAnalysisUsage(AU);
454 }
455
setMII(unsigned ResMII,unsigned RecMII)456 void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
457 if (II_setByPragma > 0)
458 MII = II_setByPragma;
459 else
460 MII = std::max(ResMII, RecMII);
461 }
462
setMAX_II()463 void SwingSchedulerDAG::setMAX_II() {
464 if (II_setByPragma > 0)
465 MAX_II = II_setByPragma;
466 else
467 MAX_II = MII + 10;
468 }
469
470 /// We override the schedule function in ScheduleDAGInstrs to implement the
471 /// scheduling part of the Swing Modulo Scheduling algorithm.
schedule()472 void SwingSchedulerDAG::schedule() {
473 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
474 buildSchedGraph(AA);
475 addLoopCarriedDependences(AA);
476 updatePhiDependences();
477 Topo.InitDAGTopologicalSorting();
478 changeDependences();
479 postprocessDAG();
480 LLVM_DEBUG(dump());
481
482 NodeSetType NodeSets;
483 findCircuits(NodeSets);
484 NodeSetType Circuits = NodeSets;
485
486 // Calculate the MII.
487 unsigned ResMII = calculateResMII();
488 unsigned RecMII = calculateRecMII(NodeSets);
489
490 fuseRecs(NodeSets);
491
492 // This flag is used for testing and can cause correctness problems.
493 if (SwpIgnoreRecMII)
494 RecMII = 0;
495
496 setMII(ResMII, RecMII);
497 setMAX_II();
498
499 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
500 << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
501
502 // Can't schedule a loop without a valid MII.
503 if (MII == 0) {
504 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
505 NumFailZeroMII++;
506 Pass.ORE->emit([&]() {
507 return MachineOptimizationRemarkAnalysis(
508 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
509 << "Invalid Minimal Initiation Interval: 0";
510 });
511 return;
512 }
513
514 // Don't pipeline large loops.
515 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
516 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
517 << ", we don't pipleline large loops\n");
518 NumFailLargeMaxMII++;
519 Pass.ORE->emit([&]() {
520 return MachineOptimizationRemarkAnalysis(
521 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
522 << "Minimal Initiation Interval too large: "
523 << ore::NV("MII", (int)MII) << " > "
524 << ore::NV("SwpMaxMii", SwpMaxMii) << "."
525 << "Refer to -pipeliner-max-mii.";
526 });
527 return;
528 }
529
530 computeNodeFunctions(NodeSets);
531
532 registerPressureFilter(NodeSets);
533
534 colocateNodeSets(NodeSets);
535
536 checkNodeSets(NodeSets);
537
538 LLVM_DEBUG({
539 for (auto &I : NodeSets) {
540 dbgs() << " Rec NodeSet ";
541 I.dump();
542 }
543 });
544
545 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
546
547 groupRemainingNodes(NodeSets);
548
549 removeDuplicateNodes(NodeSets);
550
551 LLVM_DEBUG({
552 for (auto &I : NodeSets) {
553 dbgs() << " NodeSet ";
554 I.dump();
555 }
556 });
557
558 computeNodeOrder(NodeSets);
559
560 // check for node order issues
561 checkValidNodeOrder(Circuits);
562
563 SMSchedule Schedule(Pass.MF);
564 Scheduled = schedulePipeline(Schedule);
565
566 if (!Scheduled){
567 LLVM_DEBUG(dbgs() << "No schedule found, return\n");
568 NumFailNoSchedule++;
569 Pass.ORE->emit([&]() {
570 return MachineOptimizationRemarkAnalysis(
571 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
572 << "Unable to find schedule";
573 });
574 return;
575 }
576
577 unsigned numStages = Schedule.getMaxStageCount();
578 // No need to generate pipeline if there are no overlapped iterations.
579 if (numStages == 0) {
580 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
581 NumFailZeroStage++;
582 Pass.ORE->emit([&]() {
583 return MachineOptimizationRemarkAnalysis(
584 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
585 << "No need to pipeline - no overlapped iterations in schedule.";
586 });
587 return;
588 }
589 // Check that the maximum stage count is less than user-defined limit.
590 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
591 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
592 << " : too many stages, abort\n");
593 NumFailLargeMaxStage++;
594 Pass.ORE->emit([&]() {
595 return MachineOptimizationRemarkAnalysis(
596 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
597 << "Too many stages in schedule: "
598 << ore::NV("numStages", (int)numStages) << " > "
599 << ore::NV("SwpMaxStages", SwpMaxStages)
600 << ". Refer to -pipeliner-max-stages.";
601 });
602 return;
603 }
604
605 Pass.ORE->emit([&]() {
606 return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
607 Loop.getHeader())
608 << "Pipelined succesfully!";
609 });
610
611 // Generate the schedule as a ModuloSchedule.
612 DenseMap<MachineInstr *, int> Cycles, Stages;
613 std::vector<MachineInstr *> OrderedInsts;
614 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
615 ++Cycle) {
616 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
617 OrderedInsts.push_back(SU->getInstr());
618 Cycles[SU->getInstr()] = Cycle;
619 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
620 }
621 }
622 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
623 for (auto &KV : NewMIs) {
624 Cycles[KV.first] = Cycles[KV.second];
625 Stages[KV.first] = Stages[KV.second];
626 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
627 }
628
629 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
630 std::move(Stages));
631 if (EmitTestAnnotations) {
632 assert(NewInstrChanges.empty() &&
633 "Cannot serialize a schedule with InstrChanges!");
634 ModuloScheduleTestAnnotater MSTI(MF, MS);
635 MSTI.annotate();
636 return;
637 }
638 // The experimental code generator can't work if there are InstChanges.
639 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
640 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
641 MSE.expand();
642 } else {
643 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
644 MSE.expand();
645 MSE.cleanup();
646 }
647 ++NumPipelined;
648 }
649
650 /// Clean up after the software pipeliner runs.
finishBlock()651 void SwingSchedulerDAG::finishBlock() {
652 for (auto &KV : NewMIs)
653 MF.DeleteMachineInstr(KV.second);
654 NewMIs.clear();
655
656 // Call the superclass.
657 ScheduleDAGInstrs::finishBlock();
658 }
659
660 /// Return the register values for the operands of a Phi instruction.
661 /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)662 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
663 unsigned &InitVal, unsigned &LoopVal) {
664 assert(Phi.isPHI() && "Expecting a Phi.");
665
666 InitVal = 0;
667 LoopVal = 0;
668 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
669 if (Phi.getOperand(i + 1).getMBB() != Loop)
670 InitVal = Phi.getOperand(i).getReg();
671 else
672 LoopVal = Phi.getOperand(i).getReg();
673
674 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
675 }
676
677 /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)678 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
679 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
680 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
681 return Phi.getOperand(i).getReg();
682 return 0;
683 }
684
685 /// Return true if SUb can be reached from SUa following the chain edges.
isSuccOrder(SUnit * SUa,SUnit * SUb)686 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
687 SmallPtrSet<SUnit *, 8> Visited;
688 SmallVector<SUnit *, 8> Worklist;
689 Worklist.push_back(SUa);
690 while (!Worklist.empty()) {
691 const SUnit *SU = Worklist.pop_back_val();
692 for (auto &SI : SU->Succs) {
693 SUnit *SuccSU = SI.getSUnit();
694 if (SI.getKind() == SDep::Order) {
695 if (Visited.count(SuccSU))
696 continue;
697 if (SuccSU == SUb)
698 return true;
699 Worklist.push_back(SuccSU);
700 Visited.insert(SuccSU);
701 }
702 }
703 }
704 return false;
705 }
706
707 /// Return true if the instruction causes a chain between memory
708 /// references before and after it.
isDependenceBarrier(MachineInstr & MI,AliasAnalysis * AA)709 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
710 return MI.isCall() || MI.mayRaiseFPException() ||
711 MI.hasUnmodeledSideEffects() ||
712 (MI.hasOrderedMemoryRef() &&
713 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
714 }
715
716 /// Return the underlying objects for the memory references of an instruction.
717 /// This function calls the code in ValueTracking, but first checks that the
718 /// instruction has a memory operand.
getUnderlyingObjects(const MachineInstr * MI,SmallVectorImpl<const Value * > & Objs)719 static void getUnderlyingObjects(const MachineInstr *MI,
720 SmallVectorImpl<const Value *> &Objs) {
721 if (!MI->hasOneMemOperand())
722 return;
723 MachineMemOperand *MM = *MI->memoperands_begin();
724 if (!MM->getValue())
725 return;
726 getUnderlyingObjects(MM->getValue(), Objs);
727 for (const Value *V : Objs) {
728 if (!isIdentifiedObject(V)) {
729 Objs.clear();
730 return;
731 }
732 Objs.push_back(V);
733 }
734 }
735
736 /// Add a chain edge between a load and store if the store can be an
737 /// alias of the load on a subsequent iteration, i.e., a loop carried
738 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
739 /// but that code doesn't create loop carried dependences.
addLoopCarriedDependences(AliasAnalysis * AA)740 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
741 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
742 Value *UnknownValue =
743 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
744 for (auto &SU : SUnits) {
745 MachineInstr &MI = *SU.getInstr();
746 if (isDependenceBarrier(MI, AA))
747 PendingLoads.clear();
748 else if (MI.mayLoad()) {
749 SmallVector<const Value *, 4> Objs;
750 ::getUnderlyingObjects(&MI, Objs);
751 if (Objs.empty())
752 Objs.push_back(UnknownValue);
753 for (auto V : Objs) {
754 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
755 SUs.push_back(&SU);
756 }
757 } else if (MI.mayStore()) {
758 SmallVector<const Value *, 4> Objs;
759 ::getUnderlyingObjects(&MI, Objs);
760 if (Objs.empty())
761 Objs.push_back(UnknownValue);
762 for (auto V : Objs) {
763 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
764 PendingLoads.find(V);
765 if (I == PendingLoads.end())
766 continue;
767 for (auto Load : I->second) {
768 if (isSuccOrder(Load, &SU))
769 continue;
770 MachineInstr &LdMI = *Load->getInstr();
771 // First, perform the cheaper check that compares the base register.
772 // If they are the same and the load offset is less than the store
773 // offset, then mark the dependence as loop carried potentially.
774 const MachineOperand *BaseOp1, *BaseOp2;
775 int64_t Offset1, Offset2;
776 bool Offset1IsScalable, Offset2IsScalable;
777 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
778 Offset1IsScalable, TRI) &&
779 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
780 Offset2IsScalable, TRI)) {
781 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
782 Offset1IsScalable == Offset2IsScalable &&
783 (int)Offset1 < (int)Offset2) {
784 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
785 "What happened to the chain edge?");
786 SDep Dep(Load, SDep::Barrier);
787 Dep.setLatency(1);
788 SU.addPred(Dep);
789 continue;
790 }
791 }
792 // Second, the more expensive check that uses alias analysis on the
793 // base registers. If they alias, and the load offset is less than
794 // the store offset, the mark the dependence as loop carried.
795 if (!AA) {
796 SDep Dep(Load, SDep::Barrier);
797 Dep.setLatency(1);
798 SU.addPred(Dep);
799 continue;
800 }
801 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
802 MachineMemOperand *MMO2 = *MI.memoperands_begin();
803 if (!MMO1->getValue() || !MMO2->getValue()) {
804 SDep Dep(Load, SDep::Barrier);
805 Dep.setLatency(1);
806 SU.addPred(Dep);
807 continue;
808 }
809 if (MMO1->getValue() == MMO2->getValue() &&
810 MMO1->getOffset() <= MMO2->getOffset()) {
811 SDep Dep(Load, SDep::Barrier);
812 Dep.setLatency(1);
813 SU.addPred(Dep);
814 continue;
815 }
816 if (!AA->isNoAlias(
817 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
818 MemoryLocation::getAfter(MMO2->getValue(),
819 MMO2->getAAInfo()))) {
820 SDep Dep(Load, SDep::Barrier);
821 Dep.setLatency(1);
822 SU.addPred(Dep);
823 }
824 }
825 }
826 }
827 }
828 }
829
830 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
831 /// processes dependences for PHIs. This function adds true dependences
832 /// from a PHI to a use, and a loop carried dependence from the use to the
833 /// PHI. The loop carried dependence is represented as an anti dependence
834 /// edge. This function also removes chain dependences between unrelated
835 /// PHIs.
updatePhiDependences()836 void SwingSchedulerDAG::updatePhiDependences() {
837 SmallVector<SDep, 4> RemoveDeps;
838 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
839
840 // Iterate over each DAG node.
841 for (SUnit &I : SUnits) {
842 RemoveDeps.clear();
843 // Set to true if the instruction has an operand defined by a Phi.
844 unsigned HasPhiUse = 0;
845 unsigned HasPhiDef = 0;
846 MachineInstr *MI = I.getInstr();
847 // Iterate over each operand, and we process the definitions.
848 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
849 MOE = MI->operands_end();
850 MOI != MOE; ++MOI) {
851 if (!MOI->isReg())
852 continue;
853 Register Reg = MOI->getReg();
854 if (MOI->isDef()) {
855 // If the register is used by a Phi, then create an anti dependence.
856 for (MachineRegisterInfo::use_instr_iterator
857 UI = MRI.use_instr_begin(Reg),
858 UE = MRI.use_instr_end();
859 UI != UE; ++UI) {
860 MachineInstr *UseMI = &*UI;
861 SUnit *SU = getSUnit(UseMI);
862 if (SU != nullptr && UseMI->isPHI()) {
863 if (!MI->isPHI()) {
864 SDep Dep(SU, SDep::Anti, Reg);
865 Dep.setLatency(1);
866 I.addPred(Dep);
867 } else {
868 HasPhiDef = Reg;
869 // Add a chain edge to a dependent Phi that isn't an existing
870 // predecessor.
871 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
872 I.addPred(SDep(SU, SDep::Barrier));
873 }
874 }
875 }
876 } else if (MOI->isUse()) {
877 // If the register is defined by a Phi, then create a true dependence.
878 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
879 if (DefMI == nullptr)
880 continue;
881 SUnit *SU = getSUnit(DefMI);
882 if (SU != nullptr && DefMI->isPHI()) {
883 if (!MI->isPHI()) {
884 SDep Dep(SU, SDep::Data, Reg);
885 Dep.setLatency(0);
886 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
887 I.addPred(Dep);
888 } else {
889 HasPhiUse = Reg;
890 // Add a chain edge to a dependent Phi that isn't an existing
891 // predecessor.
892 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
893 I.addPred(SDep(SU, SDep::Barrier));
894 }
895 }
896 }
897 }
898 // Remove order dependences from an unrelated Phi.
899 if (!SwpPruneDeps)
900 continue;
901 for (auto &PI : I.Preds) {
902 MachineInstr *PMI = PI.getSUnit()->getInstr();
903 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
904 if (I.getInstr()->isPHI()) {
905 if (PMI->getOperand(0).getReg() == HasPhiUse)
906 continue;
907 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
908 continue;
909 }
910 RemoveDeps.push_back(PI);
911 }
912 }
913 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
914 I.removePred(RemoveDeps[i]);
915 }
916 }
917
918 /// Iterate over each DAG node and see if we can change any dependences
919 /// in order to reduce the recurrence MII.
changeDependences()920 void SwingSchedulerDAG::changeDependences() {
921 // See if an instruction can use a value from the previous iteration.
922 // If so, we update the base and offset of the instruction and change
923 // the dependences.
924 for (SUnit &I : SUnits) {
925 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
926 int64_t NewOffset = 0;
927 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
928 NewOffset))
929 continue;
930
931 // Get the MI and SUnit for the instruction that defines the original base.
932 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
933 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
934 if (!DefMI)
935 continue;
936 SUnit *DefSU = getSUnit(DefMI);
937 if (!DefSU)
938 continue;
939 // Get the MI and SUnit for the instruction that defins the new base.
940 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
941 if (!LastMI)
942 continue;
943 SUnit *LastSU = getSUnit(LastMI);
944 if (!LastSU)
945 continue;
946
947 if (Topo.IsReachable(&I, LastSU))
948 continue;
949
950 // Remove the dependence. The value now depends on a prior iteration.
951 SmallVector<SDep, 4> Deps;
952 for (const SDep &P : I.Preds)
953 if (P.getSUnit() == DefSU)
954 Deps.push_back(P);
955 for (int i = 0, e = Deps.size(); i != e; i++) {
956 Topo.RemovePred(&I, Deps[i].getSUnit());
957 I.removePred(Deps[i]);
958 }
959 // Remove the chain dependence between the instructions.
960 Deps.clear();
961 for (auto &P : LastSU->Preds)
962 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
963 Deps.push_back(P);
964 for (int i = 0, e = Deps.size(); i != e; i++) {
965 Topo.RemovePred(LastSU, Deps[i].getSUnit());
966 LastSU->removePred(Deps[i]);
967 }
968
969 // Add a dependence between the new instruction and the instruction
970 // that defines the new base.
971 SDep Dep(&I, SDep::Anti, NewBase);
972 Topo.AddPred(LastSU, &I);
973 LastSU->addPred(Dep);
974
975 // Remember the base and offset information so that we can update the
976 // instruction during code generation.
977 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
978 }
979 }
980
981 namespace {
982
983 // FuncUnitSorter - Comparison operator used to sort instructions by
984 // the number of functional unit choices.
985 struct FuncUnitSorter {
986 const InstrItineraryData *InstrItins;
987 const MCSubtargetInfo *STI;
988 DenseMap<InstrStage::FuncUnits, unsigned> Resources;
989
FuncUnitSorter__anon2d63c95c0d11::FuncUnitSorter990 FuncUnitSorter(const TargetSubtargetInfo &TSI)
991 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
992
993 // Compute the number of functional unit alternatives needed
994 // at each stage, and take the minimum value. We prioritize the
995 // instructions by the least number of choices first.
minFuncUnits__anon2d63c95c0d11::FuncUnitSorter996 unsigned minFuncUnits(const MachineInstr *Inst,
997 InstrStage::FuncUnits &F) const {
998 unsigned SchedClass = Inst->getDesc().getSchedClass();
999 unsigned min = UINT_MAX;
1000 if (InstrItins && !InstrItins->isEmpty()) {
1001 for (const InstrStage &IS :
1002 make_range(InstrItins->beginStage(SchedClass),
1003 InstrItins->endStage(SchedClass))) {
1004 InstrStage::FuncUnits funcUnits = IS.getUnits();
1005 unsigned numAlternatives = countPopulation(funcUnits);
1006 if (numAlternatives < min) {
1007 min = numAlternatives;
1008 F = funcUnits;
1009 }
1010 }
1011 return min;
1012 }
1013 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1014 const MCSchedClassDesc *SCDesc =
1015 STI->getSchedModel().getSchedClassDesc(SchedClass);
1016 if (!SCDesc->isValid())
1017 // No valid Schedule Class Desc for schedClass, should be
1018 // Pseudo/PostRAPseudo
1019 return min;
1020
1021 for (const MCWriteProcResEntry &PRE :
1022 make_range(STI->getWriteProcResBegin(SCDesc),
1023 STI->getWriteProcResEnd(SCDesc))) {
1024 if (!PRE.Cycles)
1025 continue;
1026 const MCProcResourceDesc *ProcResource =
1027 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1028 unsigned NumUnits = ProcResource->NumUnits;
1029 if (NumUnits < min) {
1030 min = NumUnits;
1031 F = PRE.ProcResourceIdx;
1032 }
1033 }
1034 return min;
1035 }
1036 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1037 }
1038
1039 // Compute the critical resources needed by the instruction. This
1040 // function records the functional units needed by instructions that
1041 // must use only one functional unit. We use this as a tie breaker
1042 // for computing the resource MII. The instrutions that require
1043 // the same, highly used, functional unit have high priority.
calcCriticalResources__anon2d63c95c0d11::FuncUnitSorter1044 void calcCriticalResources(MachineInstr &MI) {
1045 unsigned SchedClass = MI.getDesc().getSchedClass();
1046 if (InstrItins && !InstrItins->isEmpty()) {
1047 for (const InstrStage &IS :
1048 make_range(InstrItins->beginStage(SchedClass),
1049 InstrItins->endStage(SchedClass))) {
1050 InstrStage::FuncUnits FuncUnits = IS.getUnits();
1051 if (countPopulation(FuncUnits) == 1)
1052 Resources[FuncUnits]++;
1053 }
1054 return;
1055 }
1056 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1057 const MCSchedClassDesc *SCDesc =
1058 STI->getSchedModel().getSchedClassDesc(SchedClass);
1059 if (!SCDesc->isValid())
1060 // No valid Schedule Class Desc for schedClass, should be
1061 // Pseudo/PostRAPseudo
1062 return;
1063
1064 for (const MCWriteProcResEntry &PRE :
1065 make_range(STI->getWriteProcResBegin(SCDesc),
1066 STI->getWriteProcResEnd(SCDesc))) {
1067 if (!PRE.Cycles)
1068 continue;
1069 Resources[PRE.ProcResourceIdx]++;
1070 }
1071 return;
1072 }
1073 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
1074 }
1075
1076 /// Return true if IS1 has less priority than IS2.
operator ()__anon2d63c95c0d11::FuncUnitSorter1077 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1078 InstrStage::FuncUnits F1 = 0, F2 = 0;
1079 unsigned MFUs1 = minFuncUnits(IS1, F1);
1080 unsigned MFUs2 = minFuncUnits(IS2, F2);
1081 if (MFUs1 == MFUs2)
1082 return Resources.lookup(F1) < Resources.lookup(F2);
1083 return MFUs1 > MFUs2;
1084 }
1085 };
1086
1087 } // end anonymous namespace
1088
1089 /// Calculate the resource constrained minimum initiation interval for the
1090 /// specified loop. We use the DFA to model the resources needed for
1091 /// each instruction, and we ignore dependences. A different DFA is created
1092 /// for each cycle that is required. When adding a new instruction, we attempt
1093 /// to add it to each existing DFA, until a legal space is found. If the
1094 /// instruction cannot be reserved in an existing DFA, we create a new one.
calculateResMII()1095 unsigned SwingSchedulerDAG::calculateResMII() {
1096
1097 LLVM_DEBUG(dbgs() << "calculateResMII:\n");
1098 SmallVector<ResourceManager*, 8> Resources;
1099 MachineBasicBlock *MBB = Loop.getHeader();
1100 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1101
1102 // Sort the instructions by the number of available choices for scheduling,
1103 // least to most. Use the number of critical resources as the tie breaker.
1104 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1105 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1106 E = MBB->getFirstTerminator();
1107 I != E; ++I)
1108 FUS.calcCriticalResources(*I);
1109 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1110 FuncUnitOrder(FUS);
1111
1112 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1113 E = MBB->getFirstTerminator();
1114 I != E; ++I)
1115 FuncUnitOrder.push(&*I);
1116
1117 while (!FuncUnitOrder.empty()) {
1118 MachineInstr *MI = FuncUnitOrder.top();
1119 FuncUnitOrder.pop();
1120 if (TII->isZeroCost(MI->getOpcode()))
1121 continue;
1122 // Attempt to reserve the instruction in an existing DFA. At least one
1123 // DFA is needed for each cycle.
1124 unsigned NumCycles = getSUnit(MI)->Latency;
1125 unsigned ReservedCycles = 0;
1126 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1127 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1128 LLVM_DEBUG({
1129 dbgs() << "Trying to reserve resource for " << NumCycles
1130 << " cycles for \n";
1131 MI->dump();
1132 });
1133 for (unsigned C = 0; C < NumCycles; ++C)
1134 while (RI != RE) {
1135 if ((*RI)->canReserveResources(*MI)) {
1136 (*RI)->reserveResources(*MI);
1137 ++ReservedCycles;
1138 break;
1139 }
1140 RI++;
1141 }
1142 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
1143 << ", NumCycles:" << NumCycles << "\n");
1144 // Add new DFAs, if needed, to reserve resources.
1145 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1146 LLVM_DEBUG(if (SwpDebugResource) dbgs()
1147 << "NewResource created to reserve resources"
1148 << "\n");
1149 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1150 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1151 NewResource->reserveResources(*MI);
1152 Resources.push_back(NewResource);
1153 }
1154 }
1155 int Resmii = Resources.size();
1156 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
1157 // Delete the memory for each of the DFAs that were created earlier.
1158 for (ResourceManager *RI : Resources) {
1159 ResourceManager *D = RI;
1160 delete D;
1161 }
1162 Resources.clear();
1163 return Resmii;
1164 }
1165
1166 /// Calculate the recurrence-constrainted minimum initiation interval.
1167 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1168 /// for each circuit. The II needs to satisfy the inequality
1169 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1170 /// II that satisfies the inequality, and the RecMII is the maximum
1171 /// of those values.
calculateRecMII(NodeSetType & NodeSets)1172 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1173 unsigned RecMII = 0;
1174
1175 for (NodeSet &Nodes : NodeSets) {
1176 if (Nodes.empty())
1177 continue;
1178
1179 unsigned Delay = Nodes.getLatency();
1180 unsigned Distance = 1;
1181
1182 // ii = ceil(delay / distance)
1183 unsigned CurMII = (Delay + Distance - 1) / Distance;
1184 Nodes.setRecMII(CurMII);
1185 if (CurMII > RecMII)
1186 RecMII = CurMII;
1187 }
1188
1189 return RecMII;
1190 }
1191
1192 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1193 /// but we do this to find the circuits, and then change them back.
swapAntiDependences(std::vector<SUnit> & SUnits)1194 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1195 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1196 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1197 SUnit *SU = &SUnits[i];
1198 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1199 IP != EP; ++IP) {
1200 if (IP->getKind() != SDep::Anti)
1201 continue;
1202 DepsAdded.push_back(std::make_pair(SU, *IP));
1203 }
1204 }
1205 for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1206 // Remove this anti dependency and add one in the reverse direction.
1207 SUnit *SU = P.first;
1208 SDep &D = P.second;
1209 SUnit *TargetSU = D.getSUnit();
1210 unsigned Reg = D.getReg();
1211 unsigned Lat = D.getLatency();
1212 SU->removePred(D);
1213 SDep Dep(SU, SDep::Anti, Reg);
1214 Dep.setLatency(Lat);
1215 TargetSU->addPred(Dep);
1216 }
1217 }
1218
1219 /// Create the adjacency structure of the nodes in the graph.
createAdjacencyStructure(SwingSchedulerDAG * DAG)1220 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1221 SwingSchedulerDAG *DAG) {
1222 BitVector Added(SUnits.size());
1223 DenseMap<int, int> OutputDeps;
1224 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1225 Added.reset();
1226 // Add any successor to the adjacency matrix and exclude duplicates.
1227 for (auto &SI : SUnits[i].Succs) {
1228 // Only create a back-edge on the first and last nodes of a dependence
1229 // chain. This records any chains and adds them later.
1230 if (SI.getKind() == SDep::Output) {
1231 int N = SI.getSUnit()->NodeNum;
1232 int BackEdge = i;
1233 auto Dep = OutputDeps.find(BackEdge);
1234 if (Dep != OutputDeps.end()) {
1235 BackEdge = Dep->second;
1236 OutputDeps.erase(Dep);
1237 }
1238 OutputDeps[N] = BackEdge;
1239 }
1240 // Do not process a boundary node, an artificial node.
1241 // A back-edge is processed only if it goes to a Phi.
1242 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1243 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1244 continue;
1245 int N = SI.getSUnit()->NodeNum;
1246 if (!Added.test(N)) {
1247 AdjK[i].push_back(N);
1248 Added.set(N);
1249 }
1250 }
1251 // A chain edge between a store and a load is treated as a back-edge in the
1252 // adjacency matrix.
1253 for (auto &PI : SUnits[i].Preds) {
1254 if (!SUnits[i].getInstr()->mayStore() ||
1255 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1256 continue;
1257 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1258 int N = PI.getSUnit()->NodeNum;
1259 if (!Added.test(N)) {
1260 AdjK[i].push_back(N);
1261 Added.set(N);
1262 }
1263 }
1264 }
1265 }
1266 // Add back-edges in the adjacency matrix for the output dependences.
1267 for (auto &OD : OutputDeps)
1268 if (!Added.test(OD.second)) {
1269 AdjK[OD.first].push_back(OD.second);
1270 Added.set(OD.second);
1271 }
1272 }
1273
1274 /// Identify an elementary circuit in the dependence graph starting at the
1275 /// specified node.
circuit(int V,int S,NodeSetType & NodeSets,bool HasBackedge)1276 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1277 bool HasBackedge) {
1278 SUnit *SV = &SUnits[V];
1279 bool F = false;
1280 Stack.insert(SV);
1281 Blocked.set(V);
1282
1283 for (auto W : AdjK[V]) {
1284 if (NumPaths > MaxPaths)
1285 break;
1286 if (W < S)
1287 continue;
1288 if (W == S) {
1289 if (!HasBackedge)
1290 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1291 F = true;
1292 ++NumPaths;
1293 break;
1294 } else if (!Blocked.test(W)) {
1295 if (circuit(W, S, NodeSets,
1296 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1297 F = true;
1298 }
1299 }
1300
1301 if (F)
1302 unblock(V);
1303 else {
1304 for (auto W : AdjK[V]) {
1305 if (W < S)
1306 continue;
1307 if (B[W].count(SV) == 0)
1308 B[W].insert(SV);
1309 }
1310 }
1311 Stack.pop_back();
1312 return F;
1313 }
1314
1315 /// Unblock a node in the circuit finding algorithm.
unblock(int U)1316 void SwingSchedulerDAG::Circuits::unblock(int U) {
1317 Blocked.reset(U);
1318 SmallPtrSet<SUnit *, 4> &BU = B[U];
1319 while (!BU.empty()) {
1320 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1321 assert(SI != BU.end() && "Invalid B set.");
1322 SUnit *W = *SI;
1323 BU.erase(W);
1324 if (Blocked.test(W->NodeNum))
1325 unblock(W->NodeNum);
1326 }
1327 }
1328
1329 /// Identify all the elementary circuits in the dependence graph using
1330 /// Johnson's circuit algorithm.
findCircuits(NodeSetType & NodeSets)1331 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1332 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1333 // but we do this to find the circuits, and then change them back.
1334 swapAntiDependences(SUnits);
1335
1336 Circuits Cir(SUnits, Topo);
1337 // Create the adjacency structure.
1338 Cir.createAdjacencyStructure(this);
1339 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1340 Cir.reset();
1341 Cir.circuit(i, i, NodeSets);
1342 }
1343
1344 // Change the dependences back so that we've created a DAG again.
1345 swapAntiDependences(SUnits);
1346 }
1347
1348 // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1349 // is loop-carried to the USE in next iteration. This will help pipeliner avoid
1350 // additional copies that are needed across iterations. An artificial dependence
1351 // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1352
1353 // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1354 // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1355 // PHI-------True-Dep------> USEOfPhi
1356
1357 // The mutation creates
1358 // USEOfPHI -------Artificial-Dep---> SRCOfCopy
1359
1360 // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1361 // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1362 // late to avoid additional copies across iterations. The possible scheduling
1363 // order would be
1364 // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1365
apply(ScheduleDAGInstrs * DAG)1366 void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1367 for (SUnit &SU : DAG->SUnits) {
1368 // Find the COPY/REG_SEQUENCE instruction.
1369 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1370 continue;
1371
1372 // Record the loop carried PHIs.
1373 SmallVector<SUnit *, 4> PHISUs;
1374 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1375 SmallVector<SUnit *, 4> SrcSUs;
1376
1377 for (auto &Dep : SU.Preds) {
1378 SUnit *TmpSU = Dep.getSUnit();
1379 MachineInstr *TmpMI = TmpSU->getInstr();
1380 SDep::Kind DepKind = Dep.getKind();
1381 // Save the loop carried PHI.
1382 if (DepKind == SDep::Anti && TmpMI->isPHI())
1383 PHISUs.push_back(TmpSU);
1384 // Save the source of COPY/REG_SEQUENCE.
1385 // If the source has no pre-decessors, we will end up creating cycles.
1386 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1387 SrcSUs.push_back(TmpSU);
1388 }
1389
1390 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1391 continue;
1392
1393 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1394 // SUnit to the container.
1395 SmallVector<SUnit *, 8> UseSUs;
1396 // Do not use iterator based loop here as we are updating the container.
1397 for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1398 for (auto &Dep : PHISUs[Index]->Succs) {
1399 if (Dep.getKind() != SDep::Data)
1400 continue;
1401
1402 SUnit *TmpSU = Dep.getSUnit();
1403 MachineInstr *TmpMI = TmpSU->getInstr();
1404 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1405 PHISUs.push_back(TmpSU);
1406 continue;
1407 }
1408 UseSUs.push_back(TmpSU);
1409 }
1410 }
1411
1412 if (UseSUs.size() == 0)
1413 continue;
1414
1415 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1416 // Add the artificial dependencies if it does not form a cycle.
1417 for (auto I : UseSUs) {
1418 for (auto Src : SrcSUs) {
1419 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1420 Src->addPred(SDep(I, SDep::Artificial));
1421 SDAG->Topo.AddPred(Src, I);
1422 }
1423 }
1424 }
1425 }
1426 }
1427
1428 /// Return true for DAG nodes that we ignore when computing the cost functions.
1429 /// We ignore the back-edge recurrence in order to avoid unbounded recursion
1430 /// in the calculation of the ASAP, ALAP, etc functions.
ignoreDependence(const SDep & D,bool isPred)1431 static bool ignoreDependence(const SDep &D, bool isPred) {
1432 if (D.isArtificial())
1433 return true;
1434 return D.getKind() == SDep::Anti && isPred;
1435 }
1436
1437 /// Compute several functions need to order the nodes for scheduling.
1438 /// ASAP - Earliest time to schedule a node.
1439 /// ALAP - Latest time to schedule a node.
1440 /// MOV - Mobility function, difference between ALAP and ASAP.
1441 /// D - Depth of each node.
1442 /// H - Height of each node.
computeNodeFunctions(NodeSetType & NodeSets)1443 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1444 ScheduleInfo.resize(SUnits.size());
1445
1446 LLVM_DEBUG({
1447 for (int I : Topo) {
1448 const SUnit &SU = SUnits[I];
1449 dumpNode(SU);
1450 }
1451 });
1452
1453 int maxASAP = 0;
1454 // Compute ASAP and ZeroLatencyDepth.
1455 for (int I : Topo) {
1456 int asap = 0;
1457 int zeroLatencyDepth = 0;
1458 SUnit *SU = &SUnits[I];
1459 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1460 EP = SU->Preds.end();
1461 IP != EP; ++IP) {
1462 SUnit *pred = IP->getSUnit();
1463 if (IP->getLatency() == 0)
1464 zeroLatencyDepth =
1465 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1466 if (ignoreDependence(*IP, true))
1467 continue;
1468 asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
1469 getDistance(pred, SU, *IP) * MII));
1470 }
1471 maxASAP = std::max(maxASAP, asap);
1472 ScheduleInfo[I].ASAP = asap;
1473 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1474 }
1475
1476 // Compute ALAP, ZeroLatencyHeight, and MOV.
1477 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1478 E = Topo.rend();
1479 I != E; ++I) {
1480 int alap = maxASAP;
1481 int zeroLatencyHeight = 0;
1482 SUnit *SU = &SUnits[*I];
1483 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1484 ES = SU->Succs.end();
1485 IS != ES; ++IS) {
1486 SUnit *succ = IS->getSUnit();
1487 if (IS->getLatency() == 0)
1488 zeroLatencyHeight =
1489 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1490 if (ignoreDependence(*IS, true))
1491 continue;
1492 alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
1493 getDistance(SU, succ, *IS) * MII));
1494 }
1495
1496 ScheduleInfo[*I].ALAP = alap;
1497 ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
1498 }
1499
1500 // After computing the node functions, compute the summary for each node set.
1501 for (NodeSet &I : NodeSets)
1502 I.computeNodeSetInfo(this);
1503
1504 LLVM_DEBUG({
1505 for (unsigned i = 0; i < SUnits.size(); i++) {
1506 dbgs() << "\tNode " << i << ":\n";
1507 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1508 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1509 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1510 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1511 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1512 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
1513 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
1514 }
1515 });
1516 }
1517
1518 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1519 /// as the predecessors of the elements of NodeOrder that are not also in
1520 /// NodeOrder.
pred_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Preds,const NodeSet * S=nullptr)1521 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1522 SmallSetVector<SUnit *, 8> &Preds,
1523 const NodeSet *S = nullptr) {
1524 Preds.clear();
1525 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1526 I != E; ++I) {
1527 for (const SDep &Pred : (*I)->Preds) {
1528 if (S && S->count(Pred.getSUnit()) == 0)
1529 continue;
1530 if (ignoreDependence(Pred, true))
1531 continue;
1532 if (NodeOrder.count(Pred.getSUnit()) == 0)
1533 Preds.insert(Pred.getSUnit());
1534 }
1535 // Back-edges are predecessors with an anti-dependence.
1536 for (const SDep &Succ : (*I)->Succs) {
1537 if (Succ.getKind() != SDep::Anti)
1538 continue;
1539 if (S && S->count(Succ.getSUnit()) == 0)
1540 continue;
1541 if (NodeOrder.count(Succ.getSUnit()) == 0)
1542 Preds.insert(Succ.getSUnit());
1543 }
1544 }
1545 return !Preds.empty();
1546 }
1547
1548 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1549 /// as the successors of the elements of NodeOrder that are not also in
1550 /// NodeOrder.
succ_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Succs,const NodeSet * S=nullptr)1551 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1552 SmallSetVector<SUnit *, 8> &Succs,
1553 const NodeSet *S = nullptr) {
1554 Succs.clear();
1555 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1556 I != E; ++I) {
1557 for (SDep &Succ : (*I)->Succs) {
1558 if (S && S->count(Succ.getSUnit()) == 0)
1559 continue;
1560 if (ignoreDependence(Succ, false))
1561 continue;
1562 if (NodeOrder.count(Succ.getSUnit()) == 0)
1563 Succs.insert(Succ.getSUnit());
1564 }
1565 for (SDep &Pred : (*I)->Preds) {
1566 if (Pred.getKind() != SDep::Anti)
1567 continue;
1568 if (S && S->count(Pred.getSUnit()) == 0)
1569 continue;
1570 if (NodeOrder.count(Pred.getSUnit()) == 0)
1571 Succs.insert(Pred.getSUnit());
1572 }
1573 }
1574 return !Succs.empty();
1575 }
1576
1577 /// Return true if there is a path from the specified node to any of the nodes
1578 /// in DestNodes. Keep track and return the nodes in any path.
computePath(SUnit * Cur,SetVector<SUnit * > & Path,SetVector<SUnit * > & DestNodes,SetVector<SUnit * > & Exclude,SmallPtrSet<SUnit *,8> & Visited)1579 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1580 SetVector<SUnit *> &DestNodes,
1581 SetVector<SUnit *> &Exclude,
1582 SmallPtrSet<SUnit *, 8> &Visited) {
1583 if (Cur->isBoundaryNode())
1584 return false;
1585 if (Exclude.contains(Cur))
1586 return false;
1587 if (DestNodes.contains(Cur))
1588 return true;
1589 if (!Visited.insert(Cur).second)
1590 return Path.contains(Cur);
1591 bool FoundPath = false;
1592 for (auto &SI : Cur->Succs)
1593 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1594 for (auto &PI : Cur->Preds)
1595 if (PI.getKind() == SDep::Anti)
1596 FoundPath |=
1597 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1598 if (FoundPath)
1599 Path.insert(Cur);
1600 return FoundPath;
1601 }
1602
1603 /// Compute the live-out registers for the instructions in a node-set.
1604 /// The live-out registers are those that are defined in the node-set,
1605 /// but not used. Except for use operands of Phis.
computeLiveOuts(MachineFunction & MF,RegPressureTracker & RPTracker,NodeSet & NS)1606 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1607 NodeSet &NS) {
1608 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1609 MachineRegisterInfo &MRI = MF.getRegInfo();
1610 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1611 SmallSet<unsigned, 4> Uses;
1612 for (SUnit *SU : NS) {
1613 const MachineInstr *MI = SU->getInstr();
1614 if (MI->isPHI())
1615 continue;
1616 for (const MachineOperand &MO : MI->operands())
1617 if (MO.isReg() && MO.isUse()) {
1618 Register Reg = MO.getReg();
1619 if (Register::isVirtualRegister(Reg))
1620 Uses.insert(Reg);
1621 else if (MRI.isAllocatable(Reg))
1622 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1623 ++Units)
1624 Uses.insert(*Units);
1625 }
1626 }
1627 for (SUnit *SU : NS)
1628 for (const MachineOperand &MO : SU->getInstr()->operands())
1629 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1630 Register Reg = MO.getReg();
1631 if (Register::isVirtualRegister(Reg)) {
1632 if (!Uses.count(Reg))
1633 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1634 LaneBitmask::getNone()));
1635 } else if (MRI.isAllocatable(Reg)) {
1636 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1637 ++Units)
1638 if (!Uses.count(*Units))
1639 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1640 LaneBitmask::getNone()));
1641 }
1642 }
1643 RPTracker.addLiveRegs(LiveOutRegs);
1644 }
1645
1646 /// A heuristic to filter nodes in recurrent node-sets if the register
1647 /// pressure of a set is too high.
registerPressureFilter(NodeSetType & NodeSets)1648 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1649 for (auto &NS : NodeSets) {
1650 // Skip small node-sets since they won't cause register pressure problems.
1651 if (NS.size() <= 2)
1652 continue;
1653 IntervalPressure RecRegPressure;
1654 RegPressureTracker RecRPTracker(RecRegPressure);
1655 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1656 computeLiveOuts(MF, RecRPTracker, NS);
1657 RecRPTracker.closeBottom();
1658
1659 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1660 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1661 return A->NodeNum > B->NodeNum;
1662 });
1663
1664 for (auto &SU : SUnits) {
1665 // Since we're computing the register pressure for a subset of the
1666 // instructions in a block, we need to set the tracker for each
1667 // instruction in the node-set. The tracker is set to the instruction
1668 // just after the one we're interested in.
1669 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1670 RecRPTracker.setPos(std::next(CurInstI));
1671
1672 RegPressureDelta RPDelta;
1673 ArrayRef<PressureChange> CriticalPSets;
1674 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1675 CriticalPSets,
1676 RecRegPressure.MaxSetPressure);
1677 if (RPDelta.Excess.isValid()) {
1678 LLVM_DEBUG(
1679 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1680 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1681 << ":" << RPDelta.Excess.getUnitInc());
1682 NS.setExceedPressure(SU);
1683 break;
1684 }
1685 RecRPTracker.recede();
1686 }
1687 }
1688 }
1689
1690 /// A heuristic to colocate node sets that have the same set of
1691 /// successors.
colocateNodeSets(NodeSetType & NodeSets)1692 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1693 unsigned Colocate = 0;
1694 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1695 NodeSet &N1 = NodeSets[i];
1696 SmallSetVector<SUnit *, 8> S1;
1697 if (N1.empty() || !succ_L(N1, S1))
1698 continue;
1699 for (int j = i + 1; j < e; ++j) {
1700 NodeSet &N2 = NodeSets[j];
1701 if (N1.compareRecMII(N2) != 0)
1702 continue;
1703 SmallSetVector<SUnit *, 8> S2;
1704 if (N2.empty() || !succ_L(N2, S2))
1705 continue;
1706 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1707 N1.setColocate(++Colocate);
1708 N2.setColocate(Colocate);
1709 break;
1710 }
1711 }
1712 }
1713 }
1714
1715 /// Check if the existing node-sets are profitable. If not, then ignore the
1716 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1717 /// a heuristic. If the MII is large and all the recurrent node-sets are small,
1718 /// then it's best to try to schedule all instructions together instead of
1719 /// starting with the recurrent node-sets.
checkNodeSets(NodeSetType & NodeSets)1720 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1721 // Look for loops with a large MII.
1722 if (MII < 17)
1723 return;
1724 // Check if the node-set contains only a simple add recurrence.
1725 for (auto &NS : NodeSets) {
1726 if (NS.getRecMII() > 2)
1727 return;
1728 if (NS.getMaxDepth() > MII)
1729 return;
1730 }
1731 NodeSets.clear();
1732 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
1733 }
1734
1735 /// Add the nodes that do not belong to a recurrence set into groups
1736 /// based upon connected componenets.
groupRemainingNodes(NodeSetType & NodeSets)1737 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1738 SetVector<SUnit *> NodesAdded;
1739 SmallPtrSet<SUnit *, 8> Visited;
1740 // Add the nodes that are on a path between the previous node sets and
1741 // the current node set.
1742 for (NodeSet &I : NodeSets) {
1743 SmallSetVector<SUnit *, 8> N;
1744 // Add the nodes from the current node set to the previous node set.
1745 if (succ_L(I, N)) {
1746 SetVector<SUnit *> Path;
1747 for (SUnit *NI : N) {
1748 Visited.clear();
1749 computePath(NI, Path, NodesAdded, I, Visited);
1750 }
1751 if (!Path.empty())
1752 I.insert(Path.begin(), Path.end());
1753 }
1754 // Add the nodes from the previous node set to the current node set.
1755 N.clear();
1756 if (succ_L(NodesAdded, N)) {
1757 SetVector<SUnit *> Path;
1758 for (SUnit *NI : N) {
1759 Visited.clear();
1760 computePath(NI, Path, I, NodesAdded, Visited);
1761 }
1762 if (!Path.empty())
1763 I.insert(Path.begin(), Path.end());
1764 }
1765 NodesAdded.insert(I.begin(), I.end());
1766 }
1767
1768 // Create a new node set with the connected nodes of any successor of a node
1769 // in a recurrent set.
1770 NodeSet NewSet;
1771 SmallSetVector<SUnit *, 8> N;
1772 if (succ_L(NodesAdded, N))
1773 for (SUnit *I : N)
1774 addConnectedNodes(I, NewSet, NodesAdded);
1775 if (!NewSet.empty())
1776 NodeSets.push_back(NewSet);
1777
1778 // Create a new node set with the connected nodes of any predecessor of a node
1779 // in a recurrent set.
1780 NewSet.clear();
1781 if (pred_L(NodesAdded, N))
1782 for (SUnit *I : N)
1783 addConnectedNodes(I, NewSet, NodesAdded);
1784 if (!NewSet.empty())
1785 NodeSets.push_back(NewSet);
1786
1787 // Create new nodes sets with the connected nodes any remaining node that
1788 // has no predecessor.
1789 for (SUnit &SU : SUnits) {
1790 if (NodesAdded.count(&SU) == 0) {
1791 NewSet.clear();
1792 addConnectedNodes(&SU, NewSet, NodesAdded);
1793 if (!NewSet.empty())
1794 NodeSets.push_back(NewSet);
1795 }
1796 }
1797 }
1798
1799 /// Add the node to the set, and add all of its connected nodes to the set.
addConnectedNodes(SUnit * SU,NodeSet & NewSet,SetVector<SUnit * > & NodesAdded)1800 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1801 SetVector<SUnit *> &NodesAdded) {
1802 NewSet.insert(SU);
1803 NodesAdded.insert(SU);
1804 for (auto &SI : SU->Succs) {
1805 SUnit *Successor = SI.getSUnit();
1806 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1807 addConnectedNodes(Successor, NewSet, NodesAdded);
1808 }
1809 for (auto &PI : SU->Preds) {
1810 SUnit *Predecessor = PI.getSUnit();
1811 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1812 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1813 }
1814 }
1815
1816 /// Return true if Set1 contains elements in Set2. The elements in common
1817 /// are returned in a different container.
isIntersect(SmallSetVector<SUnit *,8> & Set1,const NodeSet & Set2,SmallSetVector<SUnit *,8> & Result)1818 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1819 SmallSetVector<SUnit *, 8> &Result) {
1820 Result.clear();
1821 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1822 SUnit *SU = Set1[i];
1823 if (Set2.count(SU) != 0)
1824 Result.insert(SU);
1825 }
1826 return !Result.empty();
1827 }
1828
1829 /// Merge the recurrence node sets that have the same initial node.
fuseRecs(NodeSetType & NodeSets)1830 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1831 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1832 ++I) {
1833 NodeSet &NI = *I;
1834 for (NodeSetType::iterator J = I + 1; J != E;) {
1835 NodeSet &NJ = *J;
1836 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1837 if (NJ.compareRecMII(NI) > 0)
1838 NI.setRecMII(NJ.getRecMII());
1839 for (SUnit *SU : *J)
1840 I->insert(SU);
1841 NodeSets.erase(J);
1842 E = NodeSets.end();
1843 } else {
1844 ++J;
1845 }
1846 }
1847 }
1848 }
1849
1850 /// Remove nodes that have been scheduled in previous NodeSets.
removeDuplicateNodes(NodeSetType & NodeSets)1851 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1852 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1853 ++I)
1854 for (NodeSetType::iterator J = I + 1; J != E;) {
1855 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1856
1857 if (J->empty()) {
1858 NodeSets.erase(J);
1859 E = NodeSets.end();
1860 } else {
1861 ++J;
1862 }
1863 }
1864 }
1865
1866 /// Compute an ordered list of the dependence graph nodes, which
1867 /// indicates the order that the nodes will be scheduled. This is a
1868 /// two-level algorithm. First, a partial order is created, which
1869 /// consists of a list of sets ordered from highest to lowest priority.
computeNodeOrder(NodeSetType & NodeSets)1870 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1871 SmallSetVector<SUnit *, 8> R;
1872 NodeOrder.clear();
1873
1874 for (auto &Nodes : NodeSets) {
1875 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1876 OrderKind Order;
1877 SmallSetVector<SUnit *, 8> N;
1878 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1879 R.insert(N.begin(), N.end());
1880 Order = BottomUp;
1881 LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
1882 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1883 R.insert(N.begin(), N.end());
1884 Order = TopDown;
1885 LLVM_DEBUG(dbgs() << " Top down (succs) ");
1886 } else if (isIntersect(N, Nodes, R)) {
1887 // If some of the successors are in the existing node-set, then use the
1888 // top-down ordering.
1889 Order = TopDown;
1890 LLVM_DEBUG(dbgs() << " Top down (intersect) ");
1891 } else if (NodeSets.size() == 1) {
1892 for (auto &N : Nodes)
1893 if (N->Succs.size() == 0)
1894 R.insert(N);
1895 Order = BottomUp;
1896 LLVM_DEBUG(dbgs() << " Bottom up (all) ");
1897 } else {
1898 // Find the node with the highest ASAP.
1899 SUnit *maxASAP = nullptr;
1900 for (SUnit *SU : Nodes) {
1901 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1902 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1903 maxASAP = SU;
1904 }
1905 R.insert(maxASAP);
1906 Order = BottomUp;
1907 LLVM_DEBUG(dbgs() << " Bottom up (default) ");
1908 }
1909
1910 while (!R.empty()) {
1911 if (Order == TopDown) {
1912 // Choose the node with the maximum height. If more than one, choose
1913 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1914 // choose the node with the lowest MOV.
1915 while (!R.empty()) {
1916 SUnit *maxHeight = nullptr;
1917 for (SUnit *I : R) {
1918 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1919 maxHeight = I;
1920 else if (getHeight(I) == getHeight(maxHeight) &&
1921 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1922 maxHeight = I;
1923 else if (getHeight(I) == getHeight(maxHeight) &&
1924 getZeroLatencyHeight(I) ==
1925 getZeroLatencyHeight(maxHeight) &&
1926 getMOV(I) < getMOV(maxHeight))
1927 maxHeight = I;
1928 }
1929 NodeOrder.insert(maxHeight);
1930 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
1931 R.remove(maxHeight);
1932 for (const auto &I : maxHeight->Succs) {
1933 if (Nodes.count(I.getSUnit()) == 0)
1934 continue;
1935 if (NodeOrder.contains(I.getSUnit()))
1936 continue;
1937 if (ignoreDependence(I, false))
1938 continue;
1939 R.insert(I.getSUnit());
1940 }
1941 // Back-edges are predecessors with an anti-dependence.
1942 for (const auto &I : maxHeight->Preds) {
1943 if (I.getKind() != SDep::Anti)
1944 continue;
1945 if (Nodes.count(I.getSUnit()) == 0)
1946 continue;
1947 if (NodeOrder.contains(I.getSUnit()))
1948 continue;
1949 R.insert(I.getSUnit());
1950 }
1951 }
1952 Order = BottomUp;
1953 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
1954 SmallSetVector<SUnit *, 8> N;
1955 if (pred_L(NodeOrder, N, &Nodes))
1956 R.insert(N.begin(), N.end());
1957 } else {
1958 // Choose the node with the maximum depth. If more than one, choose
1959 // the node with the maximum ZeroLatencyDepth. If still more than one,
1960 // choose the node with the lowest MOV.
1961 while (!R.empty()) {
1962 SUnit *maxDepth = nullptr;
1963 for (SUnit *I : R) {
1964 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1965 maxDepth = I;
1966 else if (getDepth(I) == getDepth(maxDepth) &&
1967 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1968 maxDepth = I;
1969 else if (getDepth(I) == getDepth(maxDepth) &&
1970 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1971 getMOV(I) < getMOV(maxDepth))
1972 maxDepth = I;
1973 }
1974 NodeOrder.insert(maxDepth);
1975 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
1976 R.remove(maxDepth);
1977 if (Nodes.isExceedSU(maxDepth)) {
1978 Order = TopDown;
1979 R.clear();
1980 R.insert(Nodes.getNode(0));
1981 break;
1982 }
1983 for (const auto &I : maxDepth->Preds) {
1984 if (Nodes.count(I.getSUnit()) == 0)
1985 continue;
1986 if (NodeOrder.contains(I.getSUnit()))
1987 continue;
1988 R.insert(I.getSUnit());
1989 }
1990 // Back-edges are predecessors with an anti-dependence.
1991 for (const auto &I : maxDepth->Succs) {
1992 if (I.getKind() != SDep::Anti)
1993 continue;
1994 if (Nodes.count(I.getSUnit()) == 0)
1995 continue;
1996 if (NodeOrder.contains(I.getSUnit()))
1997 continue;
1998 R.insert(I.getSUnit());
1999 }
2000 }
2001 Order = TopDown;
2002 LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
2003 SmallSetVector<SUnit *, 8> N;
2004 if (succ_L(NodeOrder, N, &Nodes))
2005 R.insert(N.begin(), N.end());
2006 }
2007 }
2008 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
2009 }
2010
2011 LLVM_DEBUG({
2012 dbgs() << "Node order: ";
2013 for (SUnit *I : NodeOrder)
2014 dbgs() << " " << I->NodeNum << " ";
2015 dbgs() << "\n";
2016 });
2017 }
2018
2019 /// Process the nodes in the computed order and create the pipelined schedule
2020 /// of the instructions, if possible. Return true if a schedule is found.
schedulePipeline(SMSchedule & Schedule)2021 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2022
2023 if (NodeOrder.empty()){
2024 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
2025 return false;
2026 }
2027
2028 bool scheduleFound = false;
2029 // Keep increasing II until a valid schedule is found.
2030 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2031 Schedule.reset();
2032 Schedule.setInitiationInterval(II);
2033 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2034
2035 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2036 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2037 do {
2038 SUnit *SU = *NI;
2039
2040 // Compute the schedule time for the instruction, which is based
2041 // upon the scheduled time for any predecessors/successors.
2042 int EarlyStart = INT_MIN;
2043 int LateStart = INT_MAX;
2044 // These values are set when the size of the schedule window is limited
2045 // due to chain dependences.
2046 int SchedEnd = INT_MAX;
2047 int SchedStart = INT_MIN;
2048 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2049 II, this);
2050 LLVM_DEBUG({
2051 dbgs() << "\n";
2052 dbgs() << "Inst (" << SU->NodeNum << ") ";
2053 SU->getInstr()->dump();
2054 dbgs() << "\n";
2055 });
2056 LLVM_DEBUG({
2057 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
2058 LateStart, SchedEnd, SchedStart);
2059 });
2060
2061 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2062 SchedStart > LateStart)
2063 scheduleFound = false;
2064 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2065 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2066 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2067 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2068 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2069 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2070 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2071 SchedEnd =
2072 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2073 // When scheduling a Phi it is better to start at the late cycle and go
2074 // backwards. The default order may insert the Phi too far away from
2075 // its first dependence.
2076 if (SU->getInstr()->isPHI())
2077 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2078 else
2079 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2080 } else {
2081 int FirstCycle = Schedule.getFirstCycle();
2082 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2083 FirstCycle + getASAP(SU) + II - 1, II);
2084 }
2085 // Even if we find a schedule, make sure the schedule doesn't exceed the
2086 // allowable number of stages. We keep trying if this happens.
2087 if (scheduleFound)
2088 if (SwpMaxStages > -1 &&
2089 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2090 scheduleFound = false;
2091
2092 LLVM_DEBUG({
2093 if (!scheduleFound)
2094 dbgs() << "\tCan't schedule\n";
2095 });
2096 } while (++NI != NE && scheduleFound);
2097
2098 // If a schedule is found, check if it is a valid schedule too.
2099 if (scheduleFound)
2100 scheduleFound = Schedule.isValidSchedule(this);
2101 }
2102
2103 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2104 << " (II=" << Schedule.getInitiationInterval()
2105 << ")\n");
2106
2107 if (scheduleFound) {
2108 Schedule.finalizeSchedule(this);
2109 Pass.ORE->emit([&]() {
2110 return MachineOptimizationRemarkAnalysis(
2111 DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2112 << "Schedule found with Initiation Interval: "
2113 << ore::NV("II", Schedule.getInitiationInterval())
2114 << ", MaxStageCount: "
2115 << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2116 });
2117 } else
2118 Schedule.reset();
2119
2120 return scheduleFound && Schedule.getMaxStageCount() > 0;
2121 }
2122
2123 /// Return true if we can compute the amount the instruction changes
2124 /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)2125 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2126 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2127 const MachineOperand *BaseOp;
2128 int64_t Offset;
2129 bool OffsetIsScalable;
2130 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2131 return false;
2132
2133 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2134 if (OffsetIsScalable)
2135 return false;
2136
2137 if (!BaseOp->isReg())
2138 return false;
2139
2140 Register BaseReg = BaseOp->getReg();
2141
2142 MachineRegisterInfo &MRI = MF.getRegInfo();
2143 // Check if there is a Phi. If so, get the definition in the loop.
2144 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2145 if (BaseDef && BaseDef->isPHI()) {
2146 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2147 BaseDef = MRI.getVRegDef(BaseReg);
2148 }
2149 if (!BaseDef)
2150 return false;
2151
2152 int D = 0;
2153 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2154 return false;
2155
2156 Delta = D;
2157 return true;
2158 }
2159
2160 /// Check if we can change the instruction to use an offset value from the
2161 /// previous iteration. If so, return true and set the base and offset values
2162 /// so that we can rewrite the load, if necessary.
2163 /// v1 = Phi(v0, v3)
2164 /// v2 = load v1, 0
2165 /// v3 = post_store v1, 4, x
2166 /// This function enables the load to be rewritten as v2 = load v3, 4.
canUseLastOffsetValue(MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos,unsigned & NewBase,int64_t & Offset)2167 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2168 unsigned &BasePos,
2169 unsigned &OffsetPos,
2170 unsigned &NewBase,
2171 int64_t &Offset) {
2172 // Get the load instruction.
2173 if (TII->isPostIncrement(*MI))
2174 return false;
2175 unsigned BasePosLd, OffsetPosLd;
2176 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2177 return false;
2178 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2179
2180 // Look for the Phi instruction.
2181 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2182 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2183 if (!Phi || !Phi->isPHI())
2184 return false;
2185 // Get the register defined in the loop block.
2186 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2187 if (!PrevReg)
2188 return false;
2189
2190 // Check for the post-increment load/store instruction.
2191 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2192 if (!PrevDef || PrevDef == MI)
2193 return false;
2194
2195 if (!TII->isPostIncrement(*PrevDef))
2196 return false;
2197
2198 unsigned BasePos1 = 0, OffsetPos1 = 0;
2199 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2200 return false;
2201
2202 // Make sure that the instructions do not access the same memory location in
2203 // the next iteration.
2204 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2205 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2206 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2207 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2208 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2209 MF.DeleteMachineInstr(NewMI);
2210 if (!Disjoint)
2211 return false;
2212
2213 // Set the return value once we determine that we return true.
2214 BasePos = BasePosLd;
2215 OffsetPos = OffsetPosLd;
2216 NewBase = PrevReg;
2217 Offset = StoreOffset;
2218 return true;
2219 }
2220
2221 /// Apply changes to the instruction if needed. The changes are need
2222 /// to improve the scheduling and depend up on the final schedule.
applyInstrChange(MachineInstr * MI,SMSchedule & Schedule)2223 void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2224 SMSchedule &Schedule) {
2225 SUnit *SU = getSUnit(MI);
2226 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2227 InstrChanges.find(SU);
2228 if (It != InstrChanges.end()) {
2229 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2230 unsigned BasePos, OffsetPos;
2231 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2232 return;
2233 Register BaseReg = MI->getOperand(BasePos).getReg();
2234 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2235 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2236 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2237 int BaseStageNum = Schedule.stageScheduled(SU);
2238 int BaseCycleNum = Schedule.cycleScheduled(SU);
2239 if (BaseStageNum < DefStageNum) {
2240 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2241 int OffsetDiff = DefStageNum - BaseStageNum;
2242 if (DefCycleNum < BaseCycleNum) {
2243 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2244 if (OffsetDiff > 0)
2245 --OffsetDiff;
2246 }
2247 int64_t NewOffset =
2248 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2249 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2250 SU->setInstr(NewMI);
2251 MISUnitMap[NewMI] = SU;
2252 NewMIs[MI] = NewMI;
2253 }
2254 }
2255 }
2256
2257 /// Return the instruction in the loop that defines the register.
2258 /// If the definition is a Phi, then follow the Phi operand to
2259 /// the instruction in the loop.
findDefInLoop(Register Reg)2260 MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2261 SmallPtrSet<MachineInstr *, 8> Visited;
2262 MachineInstr *Def = MRI.getVRegDef(Reg);
2263 while (Def->isPHI()) {
2264 if (!Visited.insert(Def).second)
2265 break;
2266 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2267 if (Def->getOperand(i + 1).getMBB() == BB) {
2268 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2269 break;
2270 }
2271 }
2272 return Def;
2273 }
2274
2275 /// Return true for an order or output dependence that is loop carried
2276 /// potentially. A dependence is loop carried if the destination defines a valu
2277 /// that may be used or defined by the source in a subsequent iteration.
isLoopCarriedDep(SUnit * Source,const SDep & Dep,bool isSucc)2278 bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2279 bool isSucc) {
2280 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2281 Dep.isArtificial())
2282 return false;
2283
2284 if (!SwpPruneLoopCarried)
2285 return true;
2286
2287 if (Dep.getKind() == SDep::Output)
2288 return true;
2289
2290 MachineInstr *SI = Source->getInstr();
2291 MachineInstr *DI = Dep.getSUnit()->getInstr();
2292 if (!isSucc)
2293 std::swap(SI, DI);
2294 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
2295
2296 // Assume ordered loads and stores may have a loop carried dependence.
2297 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2298 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2299 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2300 return true;
2301
2302 // Only chain dependences between a load and store can be loop carried.
2303 if (!DI->mayStore() || !SI->mayLoad())
2304 return false;
2305
2306 unsigned DeltaS, DeltaD;
2307 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2308 return true;
2309
2310 const MachineOperand *BaseOpS, *BaseOpD;
2311 int64_t OffsetS, OffsetD;
2312 bool OffsetSIsScalable, OffsetDIsScalable;
2313 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2314 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2315 TRI) ||
2316 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2317 TRI))
2318 return true;
2319
2320 assert(!OffsetSIsScalable && !OffsetDIsScalable &&
2321 "Expected offsets to be byte offsets");
2322
2323 if (!BaseOpS->isIdenticalTo(*BaseOpD))
2324 return true;
2325
2326 // Check that the base register is incremented by a constant value for each
2327 // iteration.
2328 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2329 if (!Def || !Def->isPHI())
2330 return true;
2331 unsigned InitVal = 0;
2332 unsigned LoopVal = 0;
2333 getPhiRegs(*Def, BB, InitVal, LoopVal);
2334 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2335 int D = 0;
2336 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2337 return true;
2338
2339 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2340 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2341
2342 // This is the main test, which checks the offset values and the loop
2343 // increment value to determine if the accesses may be loop carried.
2344 if (AccessSizeS == MemoryLocation::UnknownSize ||
2345 AccessSizeD == MemoryLocation::UnknownSize)
2346 return true;
2347
2348 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2349 return true;
2350
2351 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2352 }
2353
postprocessDAG()2354 void SwingSchedulerDAG::postprocessDAG() {
2355 for (auto &M : Mutations)
2356 M->apply(this);
2357 }
2358
2359 /// Try to schedule the node at the specified StartCycle and continue
2360 /// until the node is schedule or the EndCycle is reached. This function
2361 /// returns true if the node is scheduled. This routine may search either
2362 /// forward or backward for a place to insert the instruction based upon
2363 /// the relative values of StartCycle and EndCycle.
insert(SUnit * SU,int StartCycle,int EndCycle,int II)2364 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2365 bool forward = true;
2366 LLVM_DEBUG({
2367 dbgs() << "Trying to insert node between " << StartCycle << " and "
2368 << EndCycle << " II: " << II << "\n";
2369 });
2370 if (StartCycle > EndCycle)
2371 forward = false;
2372
2373 // The terminating condition depends on the direction.
2374 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2375 for (int curCycle = StartCycle; curCycle != termCycle;
2376 forward ? ++curCycle : --curCycle) {
2377
2378 // Add the already scheduled instructions at the specified cycle to the
2379 // DFA.
2380 ProcItinResources.clearResources();
2381 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2382 checkCycle <= LastCycle; checkCycle += II) {
2383 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2384
2385 for (SUnit *CI : cycleInstrs) {
2386 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode()))
2387 continue;
2388 assert(ProcItinResources.canReserveResources(*CI->getInstr()) &&
2389 "These instructions have already been scheduled.");
2390 ProcItinResources.reserveResources(*CI->getInstr());
2391 }
2392 }
2393 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2394 ProcItinResources.canReserveResources(*SU->getInstr())) {
2395 LLVM_DEBUG({
2396 dbgs() << "\tinsert at cycle " << curCycle << " ";
2397 SU->getInstr()->dump();
2398 });
2399
2400 ScheduledInstrs[curCycle].push_back(SU);
2401 InstrToCycle.insert(std::make_pair(SU, curCycle));
2402 if (curCycle > LastCycle)
2403 LastCycle = curCycle;
2404 if (curCycle < FirstCycle)
2405 FirstCycle = curCycle;
2406 return true;
2407 }
2408 LLVM_DEBUG({
2409 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
2410 SU->getInstr()->dump();
2411 });
2412 }
2413 return false;
2414 }
2415
2416 // Return the cycle of the earliest scheduled instruction in the chain.
earliestCycleInChain(const SDep & Dep)2417 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2418 SmallPtrSet<SUnit *, 8> Visited;
2419 SmallVector<SDep, 8> Worklist;
2420 Worklist.push_back(Dep);
2421 int EarlyCycle = INT_MAX;
2422 while (!Worklist.empty()) {
2423 const SDep &Cur = Worklist.pop_back_val();
2424 SUnit *PrevSU = Cur.getSUnit();
2425 if (Visited.count(PrevSU))
2426 continue;
2427 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2428 if (it == InstrToCycle.end())
2429 continue;
2430 EarlyCycle = std::min(EarlyCycle, it->second);
2431 for (const auto &PI : PrevSU->Preds)
2432 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2433 Worklist.push_back(PI);
2434 Visited.insert(PrevSU);
2435 }
2436 return EarlyCycle;
2437 }
2438
2439 // Return the cycle of the latest scheduled instruction in the chain.
latestCycleInChain(const SDep & Dep)2440 int SMSchedule::latestCycleInChain(const SDep &Dep) {
2441 SmallPtrSet<SUnit *, 8> Visited;
2442 SmallVector<SDep, 8> Worklist;
2443 Worklist.push_back(Dep);
2444 int LateCycle = INT_MIN;
2445 while (!Worklist.empty()) {
2446 const SDep &Cur = Worklist.pop_back_val();
2447 SUnit *SuccSU = Cur.getSUnit();
2448 if (Visited.count(SuccSU))
2449 continue;
2450 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2451 if (it == InstrToCycle.end())
2452 continue;
2453 LateCycle = std::max(LateCycle, it->second);
2454 for (const auto &SI : SuccSU->Succs)
2455 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2456 Worklist.push_back(SI);
2457 Visited.insert(SuccSU);
2458 }
2459 return LateCycle;
2460 }
2461
2462 /// If an instruction has a use that spans multiple iterations, then
2463 /// return true. These instructions are characterized by having a back-ege
2464 /// to a Phi, which contains a reference to another Phi.
multipleIterations(SUnit * SU,SwingSchedulerDAG * DAG)2465 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2466 for (auto &P : SU->Preds)
2467 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2468 for (auto &S : P.getSUnit()->Succs)
2469 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2470 return P.getSUnit();
2471 return nullptr;
2472 }
2473
2474 /// Compute the scheduling start slot for the instruction. The start slot
2475 /// depends on any predecessor or successor nodes scheduled already.
computeStart(SUnit * SU,int * MaxEarlyStart,int * MinLateStart,int * MinEnd,int * MaxStart,int II,SwingSchedulerDAG * DAG)2476 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2477 int *MinEnd, int *MaxStart, int II,
2478 SwingSchedulerDAG *DAG) {
2479 // Iterate over each instruction that has been scheduled already. The start
2480 // slot computation depends on whether the previously scheduled instruction
2481 // is a predecessor or successor of the specified instruction.
2482 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2483
2484 // Iterate over each instruction in the current cycle.
2485 for (SUnit *I : getInstructions(cycle)) {
2486 // Because we're processing a DAG for the dependences, we recognize
2487 // the back-edge in recurrences by anti dependences.
2488 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2489 const SDep &Dep = SU->Preds[i];
2490 if (Dep.getSUnit() == I) {
2491 if (!DAG->isBackedge(SU, Dep)) {
2492 int EarlyStart = cycle + Dep.getLatency() -
2493 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2494 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2495 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2496 int End = earliestCycleInChain(Dep) + (II - 1);
2497 *MinEnd = std::min(*MinEnd, End);
2498 }
2499 } else {
2500 int LateStart = cycle - Dep.getLatency() +
2501 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2502 *MinLateStart = std::min(*MinLateStart, LateStart);
2503 }
2504 }
2505 // For instruction that requires multiple iterations, make sure that
2506 // the dependent instruction is not scheduled past the definition.
2507 SUnit *BE = multipleIterations(I, DAG);
2508 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2509 !SU->isPred(I))
2510 *MinLateStart = std::min(*MinLateStart, cycle);
2511 }
2512 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2513 if (SU->Succs[i].getSUnit() == I) {
2514 const SDep &Dep = SU->Succs[i];
2515 if (!DAG->isBackedge(SU, Dep)) {
2516 int LateStart = cycle - Dep.getLatency() +
2517 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2518 *MinLateStart = std::min(*MinLateStart, LateStart);
2519 if (DAG->isLoopCarriedDep(SU, Dep)) {
2520 int Start = latestCycleInChain(Dep) + 1 - II;
2521 *MaxStart = std::max(*MaxStart, Start);
2522 }
2523 } else {
2524 int EarlyStart = cycle + Dep.getLatency() -
2525 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2526 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2527 }
2528 }
2529 }
2530 }
2531 }
2532 }
2533
2534 /// Order the instructions within a cycle so that the definitions occur
2535 /// before the uses. Returns true if the instruction is added to the start
2536 /// of the list, or false if added to the end.
orderDependence(SwingSchedulerDAG * SSD,SUnit * SU,std::deque<SUnit * > & Insts)2537 void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2538 std::deque<SUnit *> &Insts) {
2539 MachineInstr *MI = SU->getInstr();
2540 bool OrderBeforeUse = false;
2541 bool OrderAfterDef = false;
2542 bool OrderBeforeDef = false;
2543 unsigned MoveDef = 0;
2544 unsigned MoveUse = 0;
2545 int StageInst1 = stageScheduled(SU);
2546
2547 unsigned Pos = 0;
2548 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2549 ++I, ++Pos) {
2550 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2551 MachineOperand &MO = MI->getOperand(i);
2552 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2553 continue;
2554
2555 Register Reg = MO.getReg();
2556 unsigned BasePos, OffsetPos;
2557 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2558 if (MI->getOperand(BasePos).getReg() == Reg)
2559 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2560 Reg = NewReg;
2561 bool Reads, Writes;
2562 std::tie(Reads, Writes) =
2563 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2564 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2565 OrderBeforeUse = true;
2566 if (MoveUse == 0)
2567 MoveUse = Pos;
2568 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2569 // Add the instruction after the scheduled instruction.
2570 OrderAfterDef = true;
2571 MoveDef = Pos;
2572 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2573 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2574 OrderBeforeUse = true;
2575 if (MoveUse == 0)
2576 MoveUse = Pos;
2577 } else {
2578 OrderAfterDef = true;
2579 MoveDef = Pos;
2580 }
2581 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2582 OrderBeforeUse = true;
2583 if (MoveUse == 0)
2584 MoveUse = Pos;
2585 if (MoveUse != 0) {
2586 OrderAfterDef = true;
2587 MoveDef = Pos - 1;
2588 }
2589 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2590 // Add the instruction before the scheduled instruction.
2591 OrderBeforeUse = true;
2592 if (MoveUse == 0)
2593 MoveUse = Pos;
2594 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2595 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2596 if (MoveUse == 0) {
2597 OrderBeforeDef = true;
2598 MoveUse = Pos;
2599 }
2600 }
2601 }
2602 // Check for order dependences between instructions. Make sure the source
2603 // is ordered before the destination.
2604 for (auto &S : SU->Succs) {
2605 if (S.getSUnit() != *I)
2606 continue;
2607 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2608 OrderBeforeUse = true;
2609 if (Pos < MoveUse)
2610 MoveUse = Pos;
2611 }
2612 // We did not handle HW dependences in previous for loop,
2613 // and we normally set Latency = 0 for Anti deps,
2614 // so may have nodes in same cycle with Anti denpendent on HW regs.
2615 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2616 OrderBeforeUse = true;
2617 if ((MoveUse == 0) || (Pos < MoveUse))
2618 MoveUse = Pos;
2619 }
2620 }
2621 for (auto &P : SU->Preds) {
2622 if (P.getSUnit() != *I)
2623 continue;
2624 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2625 OrderAfterDef = true;
2626 MoveDef = Pos;
2627 }
2628 }
2629 }
2630
2631 // A circular dependence.
2632 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2633 OrderBeforeUse = false;
2634
2635 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2636 // to a loop-carried dependence.
2637 if (OrderBeforeDef)
2638 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2639
2640 // The uncommon case when the instruction order needs to be updated because
2641 // there is both a use and def.
2642 if (OrderBeforeUse && OrderAfterDef) {
2643 SUnit *UseSU = Insts.at(MoveUse);
2644 SUnit *DefSU = Insts.at(MoveDef);
2645 if (MoveUse > MoveDef) {
2646 Insts.erase(Insts.begin() + MoveUse);
2647 Insts.erase(Insts.begin() + MoveDef);
2648 } else {
2649 Insts.erase(Insts.begin() + MoveDef);
2650 Insts.erase(Insts.begin() + MoveUse);
2651 }
2652 orderDependence(SSD, UseSU, Insts);
2653 orderDependence(SSD, SU, Insts);
2654 orderDependence(SSD, DefSU, Insts);
2655 return;
2656 }
2657 // Put the new instruction first if there is a use in the list. Otherwise,
2658 // put it at the end of the list.
2659 if (OrderBeforeUse)
2660 Insts.push_front(SU);
2661 else
2662 Insts.push_back(SU);
2663 }
2664
2665 /// Return true if the scheduled Phi has a loop carried operand.
isLoopCarried(SwingSchedulerDAG * SSD,MachineInstr & Phi)2666 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2667 if (!Phi.isPHI())
2668 return false;
2669 assert(Phi.isPHI() && "Expecting a Phi.");
2670 SUnit *DefSU = SSD->getSUnit(&Phi);
2671 unsigned DefCycle = cycleScheduled(DefSU);
2672 int DefStage = stageScheduled(DefSU);
2673
2674 unsigned InitVal = 0;
2675 unsigned LoopVal = 0;
2676 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2677 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2678 if (!UseSU)
2679 return true;
2680 if (UseSU->getInstr()->isPHI())
2681 return true;
2682 unsigned LoopCycle = cycleScheduled(UseSU);
2683 int LoopStage = stageScheduled(UseSU);
2684 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2685 }
2686
2687 /// Return true if the instruction is a definition that is loop carried
2688 /// and defines the use on the next iteration.
2689 /// v1 = phi(v2, v3)
2690 /// (Def) v3 = op v1
2691 /// (MO) = v1
2692 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
2693 /// register.
isLoopCarriedDefOfUse(SwingSchedulerDAG * SSD,MachineInstr * Def,MachineOperand & MO)2694 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2695 MachineInstr *Def, MachineOperand &MO) {
2696 if (!MO.isReg())
2697 return false;
2698 if (Def->isPHI())
2699 return false;
2700 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2701 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2702 return false;
2703 if (!isLoopCarried(SSD, *Phi))
2704 return false;
2705 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2706 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2707 MachineOperand &DMO = Def->getOperand(i);
2708 if (!DMO.isReg() || !DMO.isDef())
2709 continue;
2710 if (DMO.getReg() == LoopReg)
2711 return true;
2712 }
2713 return false;
2714 }
2715
2716 // Check if the generated schedule is valid. This function checks if
2717 // an instruction that uses a physical register is scheduled in a
2718 // different stage than the definition. The pipeliner does not handle
2719 // physical register values that may cross a basic block boundary.
isValidSchedule(SwingSchedulerDAG * SSD)2720 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2721 for (SUnit &SU : SSD->SUnits) {
2722 if (!SU.hasPhysRegDefs)
2723 continue;
2724 int StageDef = stageScheduled(&SU);
2725 assert(StageDef != -1 && "Instruction should have been scheduled.");
2726 for (auto &SI : SU.Succs)
2727 if (SI.isAssignedRegDep())
2728 if (Register::isPhysicalRegister(SI.getReg()))
2729 if (stageScheduled(SI.getSUnit()) != StageDef)
2730 return false;
2731 }
2732 return true;
2733 }
2734
2735 /// A property of the node order in swing-modulo-scheduling is
2736 /// that for nodes outside circuits the following holds:
2737 /// none of them is scheduled after both a successor and a
2738 /// predecessor.
2739 /// The method below checks whether the property is met.
2740 /// If not, debug information is printed and statistics information updated.
2741 /// Note that we do not use an assert statement.
2742 /// The reason is that although an invalid node oder may prevent
2743 /// the pipeliner from finding a pipelined schedule for arbitrary II,
2744 /// it does not lead to the generation of incorrect code.
checkValidNodeOrder(const NodeSetType & Circuits) const2745 void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2746
2747 // a sorted vector that maps each SUnit to its index in the NodeOrder
2748 typedef std::pair<SUnit *, unsigned> UnitIndex;
2749 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2750
2751 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2752 Indices.push_back(std::make_pair(NodeOrder[i], i));
2753
2754 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2755 return std::get<0>(i1) < std::get<0>(i2);
2756 };
2757
2758 // sort, so that we can perform a binary search
2759 llvm::sort(Indices, CompareKey);
2760
2761 bool Valid = true;
2762 (void)Valid;
2763 // for each SUnit in the NodeOrder, check whether
2764 // it appears after both a successor and a predecessor
2765 // of the SUnit. If this is the case, and the SUnit
2766 // is not part of circuit, then the NodeOrder is not
2767 // valid.
2768 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2769 SUnit *SU = NodeOrder[i];
2770 unsigned Index = i;
2771
2772 bool PredBefore = false;
2773 bool SuccBefore = false;
2774
2775 SUnit *Succ;
2776 SUnit *Pred;
2777 (void)Succ;
2778 (void)Pred;
2779
2780 for (SDep &PredEdge : SU->Preds) {
2781 SUnit *PredSU = PredEdge.getSUnit();
2782 unsigned PredIndex = std::get<1>(
2783 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2784 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2785 PredBefore = true;
2786 Pred = PredSU;
2787 break;
2788 }
2789 }
2790
2791 for (SDep &SuccEdge : SU->Succs) {
2792 SUnit *SuccSU = SuccEdge.getSUnit();
2793 // Do not process a boundary node, it was not included in NodeOrder,
2794 // hence not in Indices either, call to std::lower_bound() below will
2795 // return Indices.end().
2796 if (SuccSU->isBoundaryNode())
2797 continue;
2798 unsigned SuccIndex = std::get<1>(
2799 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2800 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2801 SuccBefore = true;
2802 Succ = SuccSU;
2803 break;
2804 }
2805 }
2806
2807 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2808 // instructions in circuits are allowed to be scheduled
2809 // after both a successor and predecessor.
2810 bool InCircuit = llvm::any_of(
2811 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2812 if (InCircuit)
2813 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
2814 else {
2815 Valid = false;
2816 NumNodeOrderIssues++;
2817 LLVM_DEBUG(dbgs() << "Predecessor ";);
2818 }
2819 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
2820 << " are scheduled before node " << SU->NodeNum
2821 << "\n";);
2822 }
2823 }
2824
2825 LLVM_DEBUG({
2826 if (!Valid)
2827 dbgs() << "Invalid node order found!\n";
2828 });
2829 }
2830
2831 /// Attempt to fix the degenerate cases when the instruction serialization
2832 /// causes the register lifetimes to overlap. For example,
2833 /// p' = store_pi(p, b)
2834 /// = load p, offset
2835 /// In this case p and p' overlap, which means that two registers are needed.
2836 /// Instead, this function changes the load to use p' and updates the offset.
fixupRegisterOverlaps(std::deque<SUnit * > & Instrs)2837 void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2838 unsigned OverlapReg = 0;
2839 unsigned NewBaseReg = 0;
2840 for (SUnit *SU : Instrs) {
2841 MachineInstr *MI = SU->getInstr();
2842 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2843 const MachineOperand &MO = MI->getOperand(i);
2844 // Look for an instruction that uses p. The instruction occurs in the
2845 // same cycle but occurs later in the serialized order.
2846 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2847 // Check that the instruction appears in the InstrChanges structure,
2848 // which contains instructions that can have the offset updated.
2849 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2850 InstrChanges.find(SU);
2851 if (It != InstrChanges.end()) {
2852 unsigned BasePos, OffsetPos;
2853 // Update the base register and adjust the offset.
2854 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2855 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2856 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2857 int64_t NewOffset =
2858 MI->getOperand(OffsetPos).getImm() - It->second.second;
2859 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2860 SU->setInstr(NewMI);
2861 MISUnitMap[NewMI] = SU;
2862 NewMIs[MI] = NewMI;
2863 }
2864 }
2865 OverlapReg = 0;
2866 NewBaseReg = 0;
2867 break;
2868 }
2869 // Look for an instruction of the form p' = op(p), which uses and defines
2870 // two virtual registers that get allocated to the same physical register.
2871 unsigned TiedUseIdx = 0;
2872 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2873 // OverlapReg is p in the example above.
2874 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2875 // NewBaseReg is p' in the example above.
2876 NewBaseReg = MI->getOperand(i).getReg();
2877 break;
2878 }
2879 }
2880 }
2881 }
2882
2883 /// After the schedule has been formed, call this function to combine
2884 /// the instructions from the different stages/cycles. That is, this
2885 /// function creates a schedule that represents a single iteration.
finalizeSchedule(SwingSchedulerDAG * SSD)2886 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2887 // Move all instructions to the first stage from later stages.
2888 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2889 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2890 ++stage) {
2891 std::deque<SUnit *> &cycleInstrs =
2892 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2893 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
2894 E = cycleInstrs.rend();
2895 I != E; ++I)
2896 ScheduledInstrs[cycle].push_front(*I);
2897 }
2898 }
2899
2900 // Erase all the elements in the later stages. Only one iteration should
2901 // remain in the scheduled list, and it contains all the instructions.
2902 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2903 ScheduledInstrs.erase(cycle);
2904
2905 // Change the registers in instruction as specified in the InstrChanges
2906 // map. We need to use the new registers to create the correct order.
2907 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
2908 SUnit *SU = &SSD->SUnits[i];
2909 SSD->applyInstrChange(SU->getInstr(), *this);
2910 }
2911
2912 // Reorder the instructions in each cycle to fix and improve the
2913 // generated code.
2914 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2915 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2916 std::deque<SUnit *> newOrderPhi;
2917 for (SUnit *SU : cycleInstrs) {
2918 if (SU->getInstr()->isPHI())
2919 newOrderPhi.push_back(SU);
2920 }
2921 std::deque<SUnit *> newOrderI;
2922 for (SUnit *SU : cycleInstrs) {
2923 if (!SU->getInstr()->isPHI())
2924 orderDependence(SSD, SU, newOrderI);
2925 }
2926 // Replace the old order with the new order.
2927 cycleInstrs.swap(newOrderPhi);
2928 llvm::append_range(cycleInstrs, newOrderI);
2929 SSD->fixupRegisterOverlaps(cycleInstrs);
2930 }
2931
2932 LLVM_DEBUG(dump(););
2933 }
2934
print(raw_ostream & os) const2935 void NodeSet::print(raw_ostream &os) const {
2936 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2937 << " depth " << MaxDepth << " col " << Colocate << "\n";
2938 for (const auto &I : Nodes)
2939 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
2940 os << "\n";
2941 }
2942
2943 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2944 /// Print the schedule information to the given output.
print(raw_ostream & os) const2945 void SMSchedule::print(raw_ostream &os) const {
2946 // Iterate over each cycle.
2947 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2948 // Iterate over each instruction in the cycle.
2949 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2950 for (SUnit *CI : cycleInstrs->second) {
2951 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2952 os << "(" << CI->NodeNum << ") ";
2953 CI->getInstr()->print(os);
2954 os << "\n";
2955 }
2956 }
2957 }
2958
2959 /// Utility function used for debugging to print the schedule.
dump() const2960 LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
dump() const2961 LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
2962
2963 #endif
2964
initProcResourceVectors(const MCSchedModel & SM,SmallVectorImpl<uint64_t> & Masks)2965 void ResourceManager::initProcResourceVectors(
2966 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2967 unsigned ProcResourceID = 0;
2968
2969 // We currently limit the resource kinds to 64 and below so that we can use
2970 // uint64_t for Masks
2971 assert(SM.getNumProcResourceKinds() < 64 &&
2972 "Too many kinds of resources, unsupported");
2973 // Create a unique bitmask for every processor resource unit.
2974 // Skip resource at index 0, since it always references 'InvalidUnit'.
2975 Masks.resize(SM.getNumProcResourceKinds());
2976 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2977 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2978 if (Desc.SubUnitsIdxBegin)
2979 continue;
2980 Masks[I] = 1ULL << ProcResourceID;
2981 ProcResourceID++;
2982 }
2983 // Create a unique bitmask for every processor resource group.
2984 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2985 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2986 if (!Desc.SubUnitsIdxBegin)
2987 continue;
2988 Masks[I] = 1ULL << ProcResourceID;
2989 for (unsigned U = 0; U < Desc.NumUnits; ++U)
2990 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
2991 ProcResourceID++;
2992 }
2993 LLVM_DEBUG({
2994 if (SwpShowResMask) {
2995 dbgs() << "ProcResourceDesc:\n";
2996 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2997 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
2998 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
2999 ProcResource->Name, I, Masks[I],
3000 ProcResource->NumUnits);
3001 }
3002 dbgs() << " -----------------\n";
3003 }
3004 });
3005 }
3006
canReserveResources(const MCInstrDesc * MID) const3007 bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
3008
3009 LLVM_DEBUG({
3010 if (SwpDebugResource)
3011 dbgs() << "canReserveResources:\n";
3012 });
3013 if (UseDFA)
3014 return DFAResources->canReserveResources(MID);
3015
3016 unsigned InsnClass = MID->getSchedClass();
3017 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3018 if (!SCDesc->isValid()) {
3019 LLVM_DEBUG({
3020 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3021 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3022 });
3023 return true;
3024 }
3025
3026 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3027 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3028 for (; I != E; ++I) {
3029 if (!I->Cycles)
3030 continue;
3031 const MCProcResourceDesc *ProcResource =
3032 SM.getProcResource(I->ProcResourceIdx);
3033 unsigned NumUnits = ProcResource->NumUnits;
3034 LLVM_DEBUG({
3035 if (SwpDebugResource)
3036 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3037 ProcResource->Name, I->ProcResourceIdx,
3038 ProcResourceCount[I->ProcResourceIdx], NumUnits,
3039 I->Cycles);
3040 });
3041 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3042 return false;
3043 }
3044 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
3045 return true;
3046 }
3047
reserveResources(const MCInstrDesc * MID)3048 void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3049 LLVM_DEBUG({
3050 if (SwpDebugResource)
3051 dbgs() << "reserveResources:\n";
3052 });
3053 if (UseDFA)
3054 return DFAResources->reserveResources(MID);
3055
3056 unsigned InsnClass = MID->getSchedClass();
3057 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3058 if (!SCDesc->isValid()) {
3059 LLVM_DEBUG({
3060 dbgs() << "No valid Schedule Class Desc for schedClass!\n";
3061 dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
3062 });
3063 return;
3064 }
3065 for (const MCWriteProcResEntry &PRE :
3066 make_range(STI->getWriteProcResBegin(SCDesc),
3067 STI->getWriteProcResEnd(SCDesc))) {
3068 if (!PRE.Cycles)
3069 continue;
3070 ++ProcResourceCount[PRE.ProcResourceIdx];
3071 LLVM_DEBUG({
3072 if (SwpDebugResource) {
3073 const MCProcResourceDesc *ProcResource =
3074 SM.getProcResource(PRE.ProcResourceIdx);
3075 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
3076 ProcResource->Name, PRE.ProcResourceIdx,
3077 ProcResourceCount[PRE.ProcResourceIdx],
3078 ProcResource->NumUnits, PRE.Cycles);
3079 }
3080 });
3081 }
3082 LLVM_DEBUG({
3083 if (SwpDebugResource)
3084 dbgs() << "reserveResources: done!\n\n";
3085 });
3086 }
3087
canReserveResources(const MachineInstr & MI) const3088 bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3089 return canReserveResources(&MI.getDesc());
3090 }
3091
reserveResources(const MachineInstr & MI)3092 void ResourceManager::reserveResources(const MachineInstr &MI) {
3093 return reserveResources(&MI.getDesc());
3094 }
3095
clearResources()3096 void ResourceManager::clearResources() {
3097 if (UseDFA)
3098 return DFAResources->clearResources();
3099 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
3100 }
3101