xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Utils/SCCPSolver.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // \file
10 // This file implements the Sparse Conditional Constant Propagation (SCCP)
11 // utility.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Utils/SCCPSolver.h"
16 #include "llvm/Analysis/ConstantFolding.h"
17 #include "llvm/Analysis/InstructionSimplify.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/InitializePasses.h"
20 #include "llvm/Pass.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Transforms/Utils/Local.h"
26 #include <cassert>
27 #include <utility>
28 #include <vector>
29 
30 using namespace llvm;
31 
32 #define DEBUG_TYPE "sccp"
33 
34 // The maximum number of range extensions allowed for operations requiring
35 // widening.
36 static const unsigned MaxNumRangeExtensions = 10;
37 
38 /// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
getMaxWidenStepsOpts()39 static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
40   return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
41       MaxNumRangeExtensions);
42 }
43 
44 namespace {
45 
46 // Helper to check if \p LV is either a constant or a constant
47 // range with a single element. This should cover exactly the same cases as the
48 // old ValueLatticeElement::isConstant() and is intended to be used in the
49 // transition to ValueLatticeElement.
isConstant(const ValueLatticeElement & LV)50 bool isConstant(const ValueLatticeElement &LV) {
51   return LV.isConstant() ||
52          (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
53 }
54 
55 // Helper to check if \p LV is either overdefined or a constant range with more
56 // than a single element. This should cover exactly the same cases as the old
57 // ValueLatticeElement::isOverdefined() and is intended to be used in the
58 // transition to ValueLatticeElement.
isOverdefined(const ValueLatticeElement & LV)59 bool isOverdefined(const ValueLatticeElement &LV) {
60   return !LV.isUnknownOrUndef() && !isConstant(LV);
61 }
62 
63 } // namespace
64 
65 namespace llvm {
66 
67 /// Helper class for SCCPSolver. This implements the instruction visitor and
68 /// holds all the state.
69 class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
70   const DataLayout &DL;
71   std::function<const TargetLibraryInfo &(Function &)> GetTLI;
72   SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
73   DenseMap<Value *, ValueLatticeElement>
74       ValueState; // The state each value is in.
75 
76   /// StructValueState - This maintains ValueState for values that have
77   /// StructType, for example for formal arguments, calls, insertelement, etc.
78   DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
79 
80   /// GlobalValue - If we are tracking any values for the contents of a global
81   /// variable, we keep a mapping from the constant accessor to the element of
82   /// the global, to the currently known value.  If the value becomes
83   /// overdefined, it's entry is simply removed from this map.
84   DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
85 
86   /// TrackedRetVals - If we are tracking arguments into and the return
87   /// value out of a function, it will have an entry in this map, indicating
88   /// what the known return value for the function is.
89   MapVector<Function *, ValueLatticeElement> TrackedRetVals;
90 
91   /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
92   /// that return multiple values.
93   MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
94       TrackedMultipleRetVals;
95 
96   /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
97   /// represented here for efficient lookup.
98   SmallPtrSet<Function *, 16> MRVFunctionsTracked;
99 
100   /// A list of functions whose return cannot be modified.
101   SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
102 
103   /// TrackingIncomingArguments - This is the set of functions for whose
104   /// arguments we make optimistic assumptions about and try to prove as
105   /// constants.
106   SmallPtrSet<Function *, 16> TrackingIncomingArguments;
107 
108   /// The reason for two worklists is that overdefined is the lowest state
109   /// on the lattice, and moving things to overdefined as fast as possible
110   /// makes SCCP converge much faster.
111   ///
112   /// By having a separate worklist, we accomplish this because everything
113   /// possibly overdefined will become overdefined at the soonest possible
114   /// point.
115   SmallVector<Value *, 64> OverdefinedInstWorkList;
116   SmallVector<Value *, 64> InstWorkList;
117 
118   // The BasicBlock work list
119   SmallVector<BasicBlock *, 64> BBWorkList;
120 
121   /// KnownFeasibleEdges - Entries in this set are edges which have already had
122   /// PHI nodes retriggered.
123   using Edge = std::pair<BasicBlock *, BasicBlock *>;
124   DenseSet<Edge> KnownFeasibleEdges;
125 
126   DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
127   DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
128 
129   LLVMContext &Ctx;
130 
131 private:
getConstantInt(const ValueLatticeElement & IV) const132   ConstantInt *getConstantInt(const ValueLatticeElement &IV) const {
133     return dyn_cast_or_null<ConstantInt>(getConstant(IV));
134   }
135 
136   // pushToWorkList - Helper for markConstant/markOverdefined
137   void pushToWorkList(ValueLatticeElement &IV, Value *V);
138 
139   // Helper to push \p V to the worklist, after updating it to \p IV. Also
140   // prints a debug message with the updated value.
141   void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
142 
143   // markConstant - Make a value be marked as "constant".  If the value
144   // is not already a constant, add it to the instruction work list so that
145   // the users of the instruction are updated later.
146   bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
147                     bool MayIncludeUndef = false);
148 
markConstant(Value * V,Constant * C)149   bool markConstant(Value *V, Constant *C) {
150     assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
151     return markConstant(ValueState[V], V, C);
152   }
153 
154   // markOverdefined - Make a value be marked as "overdefined". If the
155   // value is not already overdefined, add it to the overdefined instruction
156   // work list so that the users of the instruction are updated later.
157   bool markOverdefined(ValueLatticeElement &IV, Value *V);
158 
159   /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
160   /// changes.
161   bool mergeInValue(ValueLatticeElement &IV, Value *V,
162                     ValueLatticeElement MergeWithV,
163                     ValueLatticeElement::MergeOptions Opts = {
164                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
165 
mergeInValue(Value * V,ValueLatticeElement MergeWithV,ValueLatticeElement::MergeOptions Opts={ false, false})166   bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
167                     ValueLatticeElement::MergeOptions Opts = {
168                         /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
169     assert(!V->getType()->isStructTy() &&
170            "non-structs should use markConstant");
171     return mergeInValue(ValueState[V], V, MergeWithV, Opts);
172   }
173 
174   /// getValueState - Return the ValueLatticeElement object that corresponds to
175   /// the value.  This function handles the case when the value hasn't been seen
176   /// yet by properly seeding constants etc.
getValueState(Value * V)177   ValueLatticeElement &getValueState(Value *V) {
178     assert(!V->getType()->isStructTy() && "Should use getStructValueState");
179 
180     auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
181     ValueLatticeElement &LV = I.first->second;
182 
183     if (!I.second)
184       return LV; // Common case, already in the map.
185 
186     if (auto *C = dyn_cast<Constant>(V))
187       LV.markConstant(C); // Constants are constant
188 
189     // All others are unknown by default.
190     return LV;
191   }
192 
193   /// getStructValueState - Return the ValueLatticeElement object that
194   /// corresponds to the value/field pair.  This function handles the case when
195   /// the value hasn't been seen yet by properly seeding constants etc.
getStructValueState(Value * V,unsigned i)196   ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
197     assert(V->getType()->isStructTy() && "Should use getValueState");
198     assert(i < cast<StructType>(V->getType())->getNumElements() &&
199            "Invalid element #");
200 
201     auto I = StructValueState.insert(
202         std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
203     ValueLatticeElement &LV = I.first->second;
204 
205     if (!I.second)
206       return LV; // Common case, already in the map.
207 
208     if (auto *C = dyn_cast<Constant>(V)) {
209       Constant *Elt = C->getAggregateElement(i);
210 
211       if (!Elt)
212         LV.markOverdefined(); // Unknown sort of constant.
213       else if (isa<UndefValue>(Elt))
214         ; // Undef values remain unknown.
215       else
216         LV.markConstant(Elt); // Constants are constant.
217     }
218 
219     // All others are underdefined by default.
220     return LV;
221   }
222 
223   /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
224   /// work list if it is not already executable.
225   bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
226 
227   // getFeasibleSuccessors - Return a vector of booleans to indicate which
228   // successors are reachable from a given terminator instruction.
229   void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
230 
231   // OperandChangedState - This method is invoked on all of the users of an
232   // instruction that was just changed state somehow.  Based on this
233   // information, we need to update the specified user of this instruction.
operandChangedState(Instruction * I)234   void operandChangedState(Instruction *I) {
235     if (BBExecutable.count(I->getParent())) // Inst is executable?
236       visit(*I);
237   }
238 
239   // Add U as additional user of V.
addAdditionalUser(Value * V,User * U)240   void addAdditionalUser(Value *V, User *U) {
241     auto Iter = AdditionalUsers.insert({V, {}});
242     Iter.first->second.insert(U);
243   }
244 
245   // Mark I's users as changed, including AdditionalUsers.
markUsersAsChanged(Value * I)246   void markUsersAsChanged(Value *I) {
247     // Functions include their arguments in the use-list. Changed function
248     // values mean that the result of the function changed. We only need to
249     // update the call sites with the new function result and do not have to
250     // propagate the call arguments.
251     if (isa<Function>(I)) {
252       for (User *U : I->users()) {
253         if (auto *CB = dyn_cast<CallBase>(U))
254           handleCallResult(*CB);
255       }
256     } else {
257       for (User *U : I->users())
258         if (auto *UI = dyn_cast<Instruction>(U))
259           operandChangedState(UI);
260     }
261 
262     auto Iter = AdditionalUsers.find(I);
263     if (Iter != AdditionalUsers.end()) {
264       // Copy additional users before notifying them of changes, because new
265       // users may be added, potentially invalidating the iterator.
266       SmallVector<Instruction *, 2> ToNotify;
267       for (User *U : Iter->second)
268         if (auto *UI = dyn_cast<Instruction>(U))
269           ToNotify.push_back(UI);
270       for (Instruction *UI : ToNotify)
271         operandChangedState(UI);
272     }
273   }
274   void handleCallOverdefined(CallBase &CB);
275   void handleCallResult(CallBase &CB);
276   void handleCallArguments(CallBase &CB);
277 
278 private:
279   friend class InstVisitor<SCCPInstVisitor>;
280 
281   // visit implementations - Something changed in this instruction.  Either an
282   // operand made a transition, or the instruction is newly executable.  Change
283   // the value type of I to reflect these changes if appropriate.
284   void visitPHINode(PHINode &I);
285 
286   // Terminators
287 
288   void visitReturnInst(ReturnInst &I);
289   void visitTerminator(Instruction &TI);
290 
291   void visitCastInst(CastInst &I);
292   void visitSelectInst(SelectInst &I);
293   void visitUnaryOperator(Instruction &I);
294   void visitBinaryOperator(Instruction &I);
295   void visitCmpInst(CmpInst &I);
296   void visitExtractValueInst(ExtractValueInst &EVI);
297   void visitInsertValueInst(InsertValueInst &IVI);
298 
visitCatchSwitchInst(CatchSwitchInst & CPI)299   void visitCatchSwitchInst(CatchSwitchInst &CPI) {
300     markOverdefined(&CPI);
301     visitTerminator(CPI);
302   }
303 
304   // Instructions that cannot be folded away.
305 
306   void visitStoreInst(StoreInst &I);
307   void visitLoadInst(LoadInst &I);
308   void visitGetElementPtrInst(GetElementPtrInst &I);
309 
visitCallInst(CallInst & I)310   void visitCallInst(CallInst &I) { visitCallBase(I); }
311 
visitInvokeInst(InvokeInst & II)312   void visitInvokeInst(InvokeInst &II) {
313     visitCallBase(II);
314     visitTerminator(II);
315   }
316 
visitCallBrInst(CallBrInst & CBI)317   void visitCallBrInst(CallBrInst &CBI) {
318     visitCallBase(CBI);
319     visitTerminator(CBI);
320   }
321 
322   void visitCallBase(CallBase &CB);
visitResumeInst(ResumeInst & I)323   void visitResumeInst(ResumeInst &I) { /*returns void*/
324   }
visitUnreachableInst(UnreachableInst & I)325   void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
326   }
visitFenceInst(FenceInst & I)327   void visitFenceInst(FenceInst &I) { /*returns void*/
328   }
329 
330   void visitInstruction(Instruction &I);
331 
332 public:
addAnalysis(Function & F,AnalysisResultsForFn A)333   void addAnalysis(Function &F, AnalysisResultsForFn A) {
334     AnalysisResults.insert({&F, std::move(A)});
335   }
336 
337   bool markBlockExecutable(BasicBlock *BB);
338 
getPredicateInfoFor(Instruction * I)339   const PredicateBase *getPredicateInfoFor(Instruction *I) {
340     auto A = AnalysisResults.find(I->getParent()->getParent());
341     if (A == AnalysisResults.end())
342       return nullptr;
343     return A->second.PredInfo->getPredicateInfoFor(I);
344   }
345 
getDTU(Function & F)346   DomTreeUpdater getDTU(Function &F) {
347     auto A = AnalysisResults.find(&F);
348     assert(A != AnalysisResults.end() && "Need analysis results for function.");
349     return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
350   }
351 
SCCPInstVisitor(const DataLayout & DL,std::function<const TargetLibraryInfo & (Function &)> GetTLI,LLVMContext & Ctx)352   SCCPInstVisitor(const DataLayout &DL,
353                   std::function<const TargetLibraryInfo &(Function &)> GetTLI,
354                   LLVMContext &Ctx)
355       : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
356 
trackValueOfGlobalVariable(GlobalVariable * GV)357   void trackValueOfGlobalVariable(GlobalVariable *GV) {
358     // We only track the contents of scalar globals.
359     if (GV->getValueType()->isSingleValueType()) {
360       ValueLatticeElement &IV = TrackedGlobals[GV];
361       if (!isa<UndefValue>(GV->getInitializer()))
362         IV.markConstant(GV->getInitializer());
363     }
364   }
365 
addTrackedFunction(Function * F)366   void addTrackedFunction(Function *F) {
367     // Add an entry, F -> undef.
368     if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
369       MRVFunctionsTracked.insert(F);
370       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
371         TrackedMultipleRetVals.insert(
372             std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
373     } else if (!F->getReturnType()->isVoidTy())
374       TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
375   }
376 
addToMustPreserveReturnsInFunctions(Function * F)377   void addToMustPreserveReturnsInFunctions(Function *F) {
378     MustPreserveReturnsInFunctions.insert(F);
379   }
380 
mustPreserveReturn(Function * F)381   bool mustPreserveReturn(Function *F) {
382     return MustPreserveReturnsInFunctions.count(F);
383   }
384 
addArgumentTrackedFunction(Function * F)385   void addArgumentTrackedFunction(Function *F) {
386     TrackingIncomingArguments.insert(F);
387   }
388 
isArgumentTrackedFunction(Function * F)389   bool isArgumentTrackedFunction(Function *F) {
390     return TrackingIncomingArguments.count(F);
391   }
392 
393   void solve();
394 
395   bool resolvedUndefsIn(Function &F);
396 
isBlockExecutable(BasicBlock * BB) const397   bool isBlockExecutable(BasicBlock *BB) const {
398     return BBExecutable.count(BB);
399   }
400 
401   bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
402 
getStructLatticeValueFor(Value * V) const403   std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
404     std::vector<ValueLatticeElement> StructValues;
405     auto *STy = dyn_cast<StructType>(V->getType());
406     assert(STy && "getStructLatticeValueFor() can be called only on structs");
407     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
408       auto I = StructValueState.find(std::make_pair(V, i));
409       assert(I != StructValueState.end() && "Value not in valuemap!");
410       StructValues.push_back(I->second);
411     }
412     return StructValues;
413   }
414 
removeLatticeValueFor(Value * V)415   void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
416 
getLatticeValueFor(Value * V) const417   const ValueLatticeElement &getLatticeValueFor(Value *V) const {
418     assert(!V->getType()->isStructTy() &&
419            "Should use getStructLatticeValueFor");
420     DenseMap<Value *, ValueLatticeElement>::const_iterator I =
421         ValueState.find(V);
422     assert(I != ValueState.end() &&
423            "V not found in ValueState nor Paramstate map!");
424     return I->second;
425   }
426 
getTrackedRetVals()427   const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
428     return TrackedRetVals;
429   }
430 
getTrackedGlobals()431   const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
432     return TrackedGlobals;
433   }
434 
getMRVFunctionsTracked()435   const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
436     return MRVFunctionsTracked;
437   }
438 
markOverdefined(Value * V)439   void markOverdefined(Value *V) {
440     if (auto *STy = dyn_cast<StructType>(V->getType()))
441       for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
442         markOverdefined(getStructValueState(V, i), V);
443     else
444       markOverdefined(ValueState[V], V);
445   }
446 
447   bool isStructLatticeConstant(Function *F, StructType *STy);
448 
449   Constant *getConstant(const ValueLatticeElement &LV) const;
450 };
451 
452 } // namespace llvm
453 
markBlockExecutable(BasicBlock * BB)454 bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
455   if (!BBExecutable.insert(BB).second)
456     return false;
457   LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
458   BBWorkList.push_back(BB); // Add the block to the work list!
459   return true;
460 }
461 
pushToWorkList(ValueLatticeElement & IV,Value * V)462 void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
463   if (IV.isOverdefined())
464     return OverdefinedInstWorkList.push_back(V);
465   InstWorkList.push_back(V);
466 }
467 
pushToWorkListMsg(ValueLatticeElement & IV,Value * V)468 void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
469   LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
470   pushToWorkList(IV, V);
471 }
472 
markConstant(ValueLatticeElement & IV,Value * V,Constant * C,bool MayIncludeUndef)473 bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
474                                    Constant *C, bool MayIncludeUndef) {
475   if (!IV.markConstant(C, MayIncludeUndef))
476     return false;
477   LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
478   pushToWorkList(IV, V);
479   return true;
480 }
481 
markOverdefined(ValueLatticeElement & IV,Value * V)482 bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
483   if (!IV.markOverdefined())
484     return false;
485 
486   LLVM_DEBUG(dbgs() << "markOverdefined: ";
487              if (auto *F = dyn_cast<Function>(V)) dbgs()
488              << "Function '" << F->getName() << "'\n";
489              else dbgs() << *V << '\n');
490   // Only instructions go on the work list
491   pushToWorkList(IV, V);
492   return true;
493 }
494 
isStructLatticeConstant(Function * F,StructType * STy)495 bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
496   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
497     const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
498     assert(It != TrackedMultipleRetVals.end());
499     ValueLatticeElement LV = It->second;
500     if (!isConstant(LV))
501       return false;
502   }
503   return true;
504 }
505 
getConstant(const ValueLatticeElement & LV) const506 Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV) const {
507   if (LV.isConstant())
508     return LV.getConstant();
509 
510   if (LV.isConstantRange()) {
511     const auto &CR = LV.getConstantRange();
512     if (CR.getSingleElement())
513       return ConstantInt::get(Ctx, *CR.getSingleElement());
514   }
515   return nullptr;
516 }
517 
visitInstruction(Instruction & I)518 void SCCPInstVisitor::visitInstruction(Instruction &I) {
519   // All the instructions we don't do any special handling for just
520   // go to overdefined.
521   LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
522   markOverdefined(&I);
523 }
524 
mergeInValue(ValueLatticeElement & IV,Value * V,ValueLatticeElement MergeWithV,ValueLatticeElement::MergeOptions Opts)525 bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
526                                    ValueLatticeElement MergeWithV,
527                                    ValueLatticeElement::MergeOptions Opts) {
528   if (IV.mergeIn(MergeWithV, Opts)) {
529     pushToWorkList(IV, V);
530     LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
531                       << IV << "\n");
532     return true;
533   }
534   return false;
535 }
536 
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)537 bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
538   if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
539     return false; // This edge is already known to be executable!
540 
541   if (!markBlockExecutable(Dest)) {
542     // If the destination is already executable, we just made an *edge*
543     // feasible that wasn't before.  Revisit the PHI nodes in the block
544     // because they have potentially new operands.
545     LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
546                       << " -> " << Dest->getName() << '\n');
547 
548     for (PHINode &PN : Dest->phis())
549       visitPHINode(PN);
550   }
551   return true;
552 }
553 
554 // getFeasibleSuccessors - Return a vector of booleans to indicate which
555 // successors are reachable from a given terminator instruction.
getFeasibleSuccessors(Instruction & TI,SmallVectorImpl<bool> & Succs)556 void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
557                                             SmallVectorImpl<bool> &Succs) {
558   Succs.resize(TI.getNumSuccessors());
559   if (auto *BI = dyn_cast<BranchInst>(&TI)) {
560     if (BI->isUnconditional()) {
561       Succs[0] = true;
562       return;
563     }
564 
565     ValueLatticeElement BCValue = getValueState(BI->getCondition());
566     ConstantInt *CI = getConstantInt(BCValue);
567     if (!CI) {
568       // Overdefined condition variables, and branches on unfoldable constant
569       // conditions, mean the branch could go either way.
570       if (!BCValue.isUnknownOrUndef())
571         Succs[0] = Succs[1] = true;
572       return;
573     }
574 
575     // Constant condition variables mean the branch can only go a single way.
576     Succs[CI->isZero()] = true;
577     return;
578   }
579 
580   // Unwinding instructions successors are always executable.
581   if (TI.isExceptionalTerminator()) {
582     Succs.assign(TI.getNumSuccessors(), true);
583     return;
584   }
585 
586   if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
587     if (!SI->getNumCases()) {
588       Succs[0] = true;
589       return;
590     }
591     const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
592     if (ConstantInt *CI = getConstantInt(SCValue)) {
593       Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
594       return;
595     }
596 
597     // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
598     // is ready.
599     if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
600       const ConstantRange &Range = SCValue.getConstantRange();
601       for (const auto &Case : SI->cases()) {
602         const APInt &CaseValue = Case.getCaseValue()->getValue();
603         if (Range.contains(CaseValue))
604           Succs[Case.getSuccessorIndex()] = true;
605       }
606 
607       // TODO: Determine whether default case is reachable.
608       Succs[SI->case_default()->getSuccessorIndex()] = true;
609       return;
610     }
611 
612     // Overdefined or unknown condition? All destinations are executable!
613     if (!SCValue.isUnknownOrUndef())
614       Succs.assign(TI.getNumSuccessors(), true);
615     return;
616   }
617 
618   // In case of indirect branch and its address is a blockaddress, we mark
619   // the target as executable.
620   if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
621     // Casts are folded by visitCastInst.
622     ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
623     BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(getConstant(IBRValue));
624     if (!Addr) { // Overdefined or unknown condition?
625       // All destinations are executable!
626       if (!IBRValue.isUnknownOrUndef())
627         Succs.assign(TI.getNumSuccessors(), true);
628       return;
629     }
630 
631     BasicBlock *T = Addr->getBasicBlock();
632     assert(Addr->getFunction() == T->getParent() &&
633            "Block address of a different function ?");
634     for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
635       // This is the target.
636       if (IBR->getDestination(i) == T) {
637         Succs[i] = true;
638         return;
639       }
640     }
641 
642     // If we didn't find our destination in the IBR successor list, then we
643     // have undefined behavior. Its ok to assume no successor is executable.
644     return;
645   }
646 
647   // In case of callbr, we pessimistically assume that all successors are
648   // feasible.
649   if (isa<CallBrInst>(&TI)) {
650     Succs.assign(TI.getNumSuccessors(), true);
651     return;
652   }
653 
654   LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
655   llvm_unreachable("SCCP: Don't know how to handle this terminator!");
656 }
657 
658 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
659 // block to the 'To' basic block is currently feasible.
isEdgeFeasible(BasicBlock * From,BasicBlock * To) const660 bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
661   // Check if we've called markEdgeExecutable on the edge yet. (We could
662   // be more aggressive and try to consider edges which haven't been marked
663   // yet, but there isn't any need.)
664   return KnownFeasibleEdges.count(Edge(From, To));
665 }
666 
667 // visit Implementations - Something changed in this instruction, either an
668 // operand made a transition, or the instruction is newly executable.  Change
669 // the value type of I to reflect these changes if appropriate.  This method
670 // makes sure to do the following actions:
671 //
672 // 1. If a phi node merges two constants in, and has conflicting value coming
673 //    from different branches, or if the PHI node merges in an overdefined
674 //    value, then the PHI node becomes overdefined.
675 // 2. If a phi node merges only constants in, and they all agree on value, the
676 //    PHI node becomes a constant value equal to that.
677 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
678 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
679 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
680 // 6. If a conditional branch has a value that is constant, make the selected
681 //    destination executable
682 // 7. If a conditional branch has a value that is overdefined, make all
683 //    successors executable.
visitPHINode(PHINode & PN)684 void SCCPInstVisitor::visitPHINode(PHINode &PN) {
685   // If this PN returns a struct, just mark the result overdefined.
686   // TODO: We could do a lot better than this if code actually uses this.
687   if (PN.getType()->isStructTy())
688     return (void)markOverdefined(&PN);
689 
690   if (getValueState(&PN).isOverdefined())
691     return; // Quick exit
692 
693   // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
694   // and slow us down a lot.  Just mark them overdefined.
695   if (PN.getNumIncomingValues() > 64)
696     return (void)markOverdefined(&PN);
697 
698   unsigned NumActiveIncoming = 0;
699 
700   // Look at all of the executable operands of the PHI node.  If any of them
701   // are overdefined, the PHI becomes overdefined as well.  If they are all
702   // constant, and they agree with each other, the PHI becomes the identical
703   // constant.  If they are constant and don't agree, the PHI is a constant
704   // range. If there are no executable operands, the PHI remains unknown.
705   ValueLatticeElement PhiState = getValueState(&PN);
706   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
707     if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
708       continue;
709 
710     ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
711     PhiState.mergeIn(IV);
712     NumActiveIncoming++;
713     if (PhiState.isOverdefined())
714       break;
715   }
716 
717   // We allow up to 1 range extension per active incoming value and one
718   // additional extension. Note that we manually adjust the number of range
719   // extensions to match the number of active incoming values. This helps to
720   // limit multiple extensions caused by the same incoming value, if other
721   // incoming values are equal.
722   mergeInValue(&PN, PhiState,
723                ValueLatticeElement::MergeOptions().setMaxWidenSteps(
724                    NumActiveIncoming + 1));
725   ValueLatticeElement &PhiStateRef = getValueState(&PN);
726   PhiStateRef.setNumRangeExtensions(
727       std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
728 }
729 
visitReturnInst(ReturnInst & I)730 void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
731   if (I.getNumOperands() == 0)
732     return; // ret void
733 
734   Function *F = I.getParent()->getParent();
735   Value *ResultOp = I.getOperand(0);
736 
737   // If we are tracking the return value of this function, merge it in.
738   if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
739     auto TFRVI = TrackedRetVals.find(F);
740     if (TFRVI != TrackedRetVals.end()) {
741       mergeInValue(TFRVI->second, F, getValueState(ResultOp));
742       return;
743     }
744   }
745 
746   // Handle functions that return multiple values.
747   if (!TrackedMultipleRetVals.empty()) {
748     if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
749       if (MRVFunctionsTracked.count(F))
750         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
751           mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
752                        getStructValueState(ResultOp, i));
753   }
754 }
755 
visitTerminator(Instruction & TI)756 void SCCPInstVisitor::visitTerminator(Instruction &TI) {
757   SmallVector<bool, 16> SuccFeasible;
758   getFeasibleSuccessors(TI, SuccFeasible);
759 
760   BasicBlock *BB = TI.getParent();
761 
762   // Mark all feasible successors executable.
763   for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
764     if (SuccFeasible[i])
765       markEdgeExecutable(BB, TI.getSuccessor(i));
766 }
767 
visitCastInst(CastInst & I)768 void SCCPInstVisitor::visitCastInst(CastInst &I) {
769   // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
770   // discover a concrete value later.
771   if (ValueState[&I].isOverdefined())
772     return;
773 
774   ValueLatticeElement OpSt = getValueState(I.getOperand(0));
775   if (Constant *OpC = getConstant(OpSt)) {
776     // Fold the constant as we build.
777     Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL);
778     if (isa<UndefValue>(C))
779       return;
780     // Propagate constant value
781     markConstant(&I, C);
782   } else if (OpSt.isConstantRange() && I.getDestTy()->isIntegerTy()) {
783     auto &LV = getValueState(&I);
784     ConstantRange OpRange = OpSt.getConstantRange();
785     Type *DestTy = I.getDestTy();
786     // Vectors where all elements have the same known constant range are treated
787     // as a single constant range in the lattice. When bitcasting such vectors,
788     // there is a mis-match between the width of the lattice value (single
789     // constant range) and the original operands (vector). Go to overdefined in
790     // that case.
791     if (I.getOpcode() == Instruction::BitCast &&
792         I.getOperand(0)->getType()->isVectorTy() &&
793         OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
794       return (void)markOverdefined(&I);
795 
796     ConstantRange Res =
797         OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
798     mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
799   } else if (!OpSt.isUnknownOrUndef())
800     markOverdefined(&I);
801 }
802 
visitExtractValueInst(ExtractValueInst & EVI)803 void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
804   // If this returns a struct, mark all elements over defined, we don't track
805   // structs in structs.
806   if (EVI.getType()->isStructTy())
807     return (void)markOverdefined(&EVI);
808 
809   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
810   // discover a concrete value later.
811   if (ValueState[&EVI].isOverdefined())
812     return (void)markOverdefined(&EVI);
813 
814   // If this is extracting from more than one level of struct, we don't know.
815   if (EVI.getNumIndices() != 1)
816     return (void)markOverdefined(&EVI);
817 
818   Value *AggVal = EVI.getAggregateOperand();
819   if (AggVal->getType()->isStructTy()) {
820     unsigned i = *EVI.idx_begin();
821     ValueLatticeElement EltVal = getStructValueState(AggVal, i);
822     mergeInValue(getValueState(&EVI), &EVI, EltVal);
823   } else {
824     // Otherwise, must be extracting from an array.
825     return (void)markOverdefined(&EVI);
826   }
827 }
828 
visitInsertValueInst(InsertValueInst & IVI)829 void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
830   auto *STy = dyn_cast<StructType>(IVI.getType());
831   if (!STy)
832     return (void)markOverdefined(&IVI);
833 
834   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
835   // discover a concrete value later.
836   if (isOverdefined(ValueState[&IVI]))
837     return (void)markOverdefined(&IVI);
838 
839   // If this has more than one index, we can't handle it, drive all results to
840   // undef.
841   if (IVI.getNumIndices() != 1)
842     return (void)markOverdefined(&IVI);
843 
844   Value *Aggr = IVI.getAggregateOperand();
845   unsigned Idx = *IVI.idx_begin();
846 
847   // Compute the result based on what we're inserting.
848   for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
849     // This passes through all values that aren't the inserted element.
850     if (i != Idx) {
851       ValueLatticeElement EltVal = getStructValueState(Aggr, i);
852       mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
853       continue;
854     }
855 
856     Value *Val = IVI.getInsertedValueOperand();
857     if (Val->getType()->isStructTy())
858       // We don't track structs in structs.
859       markOverdefined(getStructValueState(&IVI, i), &IVI);
860     else {
861       ValueLatticeElement InVal = getValueState(Val);
862       mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
863     }
864   }
865 }
866 
visitSelectInst(SelectInst & I)867 void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
868   // If this select returns a struct, just mark the result overdefined.
869   // TODO: We could do a lot better than this if code actually uses this.
870   if (I.getType()->isStructTy())
871     return (void)markOverdefined(&I);
872 
873   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
874   // discover a concrete value later.
875   if (ValueState[&I].isOverdefined())
876     return (void)markOverdefined(&I);
877 
878   ValueLatticeElement CondValue = getValueState(I.getCondition());
879   if (CondValue.isUnknownOrUndef())
880     return;
881 
882   if (ConstantInt *CondCB = getConstantInt(CondValue)) {
883     Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
884     mergeInValue(&I, getValueState(OpVal));
885     return;
886   }
887 
888   // Otherwise, the condition is overdefined or a constant we can't evaluate.
889   // See if we can produce something better than overdefined based on the T/F
890   // value.
891   ValueLatticeElement TVal = getValueState(I.getTrueValue());
892   ValueLatticeElement FVal = getValueState(I.getFalseValue());
893 
894   bool Changed = ValueState[&I].mergeIn(TVal);
895   Changed |= ValueState[&I].mergeIn(FVal);
896   if (Changed)
897     pushToWorkListMsg(ValueState[&I], &I);
898 }
899 
900 // Handle Unary Operators.
visitUnaryOperator(Instruction & I)901 void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
902   ValueLatticeElement V0State = getValueState(I.getOperand(0));
903 
904   ValueLatticeElement &IV = ValueState[&I];
905   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
906   // discover a concrete value later.
907   if (isOverdefined(IV))
908     return (void)markOverdefined(&I);
909 
910   if (isConstant(V0State)) {
911     Constant *C = ConstantExpr::get(I.getOpcode(), getConstant(V0State));
912 
913     // op Y -> undef.
914     if (isa<UndefValue>(C))
915       return;
916     return (void)markConstant(IV, &I, C);
917   }
918 
919   // If something is undef, wait for it to resolve.
920   if (!isOverdefined(V0State))
921     return;
922 
923   markOverdefined(&I);
924 }
925 
926 // Handle Binary Operators.
visitBinaryOperator(Instruction & I)927 void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
928   ValueLatticeElement V1State = getValueState(I.getOperand(0));
929   ValueLatticeElement V2State = getValueState(I.getOperand(1));
930 
931   ValueLatticeElement &IV = ValueState[&I];
932   if (IV.isOverdefined())
933     return;
934 
935   // If something is undef, wait for it to resolve.
936   if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
937     return;
938 
939   if (V1State.isOverdefined() && V2State.isOverdefined())
940     return (void)markOverdefined(&I);
941 
942   // If either of the operands is a constant, try to fold it to a constant.
943   // TODO: Use information from notconstant better.
944   if ((V1State.isConstant() || V2State.isConstant())) {
945     Value *V1 = isConstant(V1State) ? getConstant(V1State) : I.getOperand(0);
946     Value *V2 = isConstant(V2State) ? getConstant(V2State) : I.getOperand(1);
947     Value *R = SimplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
948     auto *C = dyn_cast_or_null<Constant>(R);
949     if (C) {
950       // X op Y -> undef.
951       if (isa<UndefValue>(C))
952         return;
953       // Conservatively assume that the result may be based on operands that may
954       // be undef. Note that we use mergeInValue to combine the constant with
955       // the existing lattice value for I, as different constants might be found
956       // after one of the operands go to overdefined, e.g. due to one operand
957       // being a special floating value.
958       ValueLatticeElement NewV;
959       NewV.markConstant(C, /*MayIncludeUndef=*/true);
960       return (void)mergeInValue(&I, NewV);
961     }
962   }
963 
964   // Only use ranges for binary operators on integers.
965   if (!I.getType()->isIntegerTy())
966     return markOverdefined(&I);
967 
968   // Try to simplify to a constant range.
969   ConstantRange A = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
970   ConstantRange B = ConstantRange::getFull(I.getType()->getScalarSizeInBits());
971   if (V1State.isConstantRange())
972     A = V1State.getConstantRange();
973   if (V2State.isConstantRange())
974     B = V2State.getConstantRange();
975 
976   ConstantRange R = A.binaryOp(cast<BinaryOperator>(&I)->getOpcode(), B);
977   mergeInValue(&I, ValueLatticeElement::getRange(R));
978 
979   // TODO: Currently we do not exploit special values that produce something
980   // better than overdefined with an overdefined operand for vector or floating
981   // point types, like and <4 x i32> overdefined, zeroinitializer.
982 }
983 
984 // Handle ICmpInst instruction.
visitCmpInst(CmpInst & I)985 void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
986   // Do not cache this lookup, getValueState calls later in the function might
987   // invalidate the reference.
988   if (isOverdefined(ValueState[&I]))
989     return (void)markOverdefined(&I);
990 
991   Value *Op1 = I.getOperand(0);
992   Value *Op2 = I.getOperand(1);
993 
994   // For parameters, use ParamState which includes constant range info if
995   // available.
996   auto V1State = getValueState(Op1);
997   auto V2State = getValueState(Op2);
998 
999   Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
1000   if (C) {
1001     if (isa<UndefValue>(C))
1002       return;
1003     ValueLatticeElement CV;
1004     CV.markConstant(C);
1005     mergeInValue(&I, CV);
1006     return;
1007   }
1008 
1009   // If operands are still unknown, wait for it to resolve.
1010   if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1011       !isConstant(ValueState[&I]))
1012     return;
1013 
1014   markOverdefined(&I);
1015 }
1016 
1017 // Handle getelementptr instructions.  If all operands are constants then we
1018 // can turn this into a getelementptr ConstantExpr.
visitGetElementPtrInst(GetElementPtrInst & I)1019 void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1020   if (isOverdefined(ValueState[&I]))
1021     return (void)markOverdefined(&I);
1022 
1023   SmallVector<Constant *, 8> Operands;
1024   Operands.reserve(I.getNumOperands());
1025 
1026   for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1027     ValueLatticeElement State = getValueState(I.getOperand(i));
1028     if (State.isUnknownOrUndef())
1029       return; // Operands are not resolved yet.
1030 
1031     if (isOverdefined(State))
1032       return (void)markOverdefined(&I);
1033 
1034     if (Constant *C = getConstant(State)) {
1035       Operands.push_back(C);
1036       continue;
1037     }
1038 
1039     return (void)markOverdefined(&I);
1040   }
1041 
1042   Constant *Ptr = Operands[0];
1043   auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
1044   Constant *C =
1045       ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1046   if (isa<UndefValue>(C))
1047     return;
1048   markConstant(&I, C);
1049 }
1050 
visitStoreInst(StoreInst & SI)1051 void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1052   // If this store is of a struct, ignore it.
1053   if (SI.getOperand(0)->getType()->isStructTy())
1054     return;
1055 
1056   if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1057     return;
1058 
1059   GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1060   auto I = TrackedGlobals.find(GV);
1061   if (I == TrackedGlobals.end())
1062     return;
1063 
1064   // Get the value we are storing into the global, then merge it.
1065   mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1066                ValueLatticeElement::MergeOptions().setCheckWiden(false));
1067   if (I->second.isOverdefined())
1068     TrackedGlobals.erase(I); // No need to keep tracking this!
1069 }
1070 
getValueFromMetadata(const Instruction * I)1071 static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1072   if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1073     if (I->getType()->isIntegerTy())
1074       return ValueLatticeElement::getRange(
1075           getConstantRangeFromMetadata(*Ranges));
1076   if (I->hasMetadata(LLVMContext::MD_nonnull))
1077     return ValueLatticeElement::getNot(
1078         ConstantPointerNull::get(cast<PointerType>(I->getType())));
1079   return ValueLatticeElement::getOverdefined();
1080 }
1081 
1082 // Handle load instructions.  If the operand is a constant pointer to a constant
1083 // global, we can replace the load with the loaded constant value!
visitLoadInst(LoadInst & I)1084 void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1085   // If this load is of a struct or the load is volatile, just mark the result
1086   // as overdefined.
1087   if (I.getType()->isStructTy() || I.isVolatile())
1088     return (void)markOverdefined(&I);
1089 
1090   // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1091   // discover a concrete value later.
1092   if (ValueState[&I].isOverdefined())
1093     return (void)markOverdefined(&I);
1094 
1095   ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1096   if (PtrVal.isUnknownOrUndef())
1097     return; // The pointer is not resolved yet!
1098 
1099   ValueLatticeElement &IV = ValueState[&I];
1100 
1101   if (isConstant(PtrVal)) {
1102     Constant *Ptr = getConstant(PtrVal);
1103 
1104     // load null is undefined.
1105     if (isa<ConstantPointerNull>(Ptr)) {
1106       if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1107         return (void)markOverdefined(IV, &I);
1108       else
1109         return;
1110     }
1111 
1112     // Transform load (constant global) into the value loaded.
1113     if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1114       if (!TrackedGlobals.empty()) {
1115         // If we are tracking this global, merge in the known value for it.
1116         auto It = TrackedGlobals.find(GV);
1117         if (It != TrackedGlobals.end()) {
1118           mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1119           return;
1120         }
1121       }
1122     }
1123 
1124     // Transform load from a constant into a constant if possible.
1125     if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1126       if (isa<UndefValue>(C))
1127         return;
1128       return (void)markConstant(IV, &I, C);
1129     }
1130   }
1131 
1132   // Fall back to metadata.
1133   mergeInValue(&I, getValueFromMetadata(&I));
1134 }
1135 
visitCallBase(CallBase & CB)1136 void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1137   handleCallResult(CB);
1138   handleCallArguments(CB);
1139 }
1140 
handleCallOverdefined(CallBase & CB)1141 void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1142   Function *F = CB.getCalledFunction();
1143 
1144   // Void return and not tracking callee, just bail.
1145   if (CB.getType()->isVoidTy())
1146     return;
1147 
1148   // Always mark struct return as overdefined.
1149   if (CB.getType()->isStructTy())
1150     return (void)markOverdefined(&CB);
1151 
1152   // Otherwise, if we have a single return value case, and if the function is
1153   // a declaration, maybe we can constant fold it.
1154   if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1155     SmallVector<Constant *, 8> Operands;
1156     for (auto AI = CB.arg_begin(), E = CB.arg_end(); AI != E; ++AI) {
1157       if (AI->get()->getType()->isStructTy())
1158         return markOverdefined(&CB); // Can't handle struct args.
1159       ValueLatticeElement State = getValueState(*AI);
1160 
1161       if (State.isUnknownOrUndef())
1162         return; // Operands are not resolved yet.
1163       if (isOverdefined(State))
1164         return (void)markOverdefined(&CB);
1165       assert(isConstant(State) && "Unknown state!");
1166       Operands.push_back(getConstant(State));
1167     }
1168 
1169     if (isOverdefined(getValueState(&CB)))
1170       return (void)markOverdefined(&CB);
1171 
1172     // If we can constant fold this, mark the result of the call as a
1173     // constant.
1174     if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F))) {
1175       // call -> undef.
1176       if (isa<UndefValue>(C))
1177         return;
1178       return (void)markConstant(&CB, C);
1179     }
1180   }
1181 
1182   // Fall back to metadata.
1183   mergeInValue(&CB, getValueFromMetadata(&CB));
1184 }
1185 
handleCallArguments(CallBase & CB)1186 void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1187   Function *F = CB.getCalledFunction();
1188   // If this is a local function that doesn't have its address taken, mark its
1189   // entry block executable and merge in the actual arguments to the call into
1190   // the formal arguments of the function.
1191   if (!TrackingIncomingArguments.empty() &&
1192       TrackingIncomingArguments.count(F)) {
1193     markBlockExecutable(&F->front());
1194 
1195     // Propagate information from this call site into the callee.
1196     auto CAI = CB.arg_begin();
1197     for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1198          ++AI, ++CAI) {
1199       // If this argument is byval, and if the function is not readonly, there
1200       // will be an implicit copy formed of the input aggregate.
1201       if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1202         markOverdefined(&*AI);
1203         continue;
1204       }
1205 
1206       if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1207         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1208           ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1209           mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1210                        getMaxWidenStepsOpts());
1211         }
1212       } else
1213         mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1214     }
1215   }
1216 }
1217 
handleCallResult(CallBase & CB)1218 void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1219   Function *F = CB.getCalledFunction();
1220 
1221   if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1222     if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1223       if (ValueState[&CB].isOverdefined())
1224         return;
1225 
1226       Value *CopyOf = CB.getOperand(0);
1227       ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1228       const auto *PI = getPredicateInfoFor(&CB);
1229       assert(PI && "Missing predicate info for ssa.copy");
1230 
1231       const Optional<PredicateConstraint> &Constraint = PI->getConstraint();
1232       if (!Constraint) {
1233         mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1234         return;
1235       }
1236 
1237       CmpInst::Predicate Pred = Constraint->Predicate;
1238       Value *OtherOp = Constraint->OtherOp;
1239 
1240       // Wait until OtherOp is resolved.
1241       if (getValueState(OtherOp).isUnknown()) {
1242         addAdditionalUser(OtherOp, &CB);
1243         return;
1244       }
1245 
1246       // TODO: Actually filp MayIncludeUndef for the created range to false,
1247       // once most places in the optimizer respect the branches on
1248       // undef/poison are UB rule. The reason why the new range cannot be
1249       // undef is as follows below:
1250       // The new range is based on a branch condition. That guarantees that
1251       // neither of the compare operands can be undef in the branch targets,
1252       // unless we have conditions that are always true/false (e.g. icmp ule
1253       // i32, %a, i32_max). For the latter overdefined/empty range will be
1254       // inferred, but the branch will get folded accordingly anyways.
1255       bool MayIncludeUndef = !isa<PredicateAssume>(PI);
1256 
1257       ValueLatticeElement CondVal = getValueState(OtherOp);
1258       ValueLatticeElement &IV = ValueState[&CB];
1259       if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1260         auto ImposedCR =
1261             ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1262 
1263         // Get the range imposed by the condition.
1264         if (CondVal.isConstantRange())
1265           ImposedCR = ConstantRange::makeAllowedICmpRegion(
1266               Pred, CondVal.getConstantRange());
1267 
1268         // Combine range info for the original value with the new range from the
1269         // condition.
1270         auto CopyOfCR = CopyOfVal.isConstantRange()
1271                             ? CopyOfVal.getConstantRange()
1272                             : ConstantRange::getFull(
1273                                   DL.getTypeSizeInBits(CopyOf->getType()));
1274         auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1275         // If the existing information is != x, do not use the information from
1276         // a chained predicate, as the != x information is more likely to be
1277         // helpful in practice.
1278         if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1279           NewCR = CopyOfCR;
1280 
1281         addAdditionalUser(OtherOp, &CB);
1282         mergeInValue(IV, &CB,
1283                      ValueLatticeElement::getRange(NewCR, MayIncludeUndef));
1284         return;
1285       } else if (Pred == CmpInst::ICMP_EQ && CondVal.isConstant()) {
1286         // For non-integer values or integer constant expressions, only
1287         // propagate equal constants.
1288         addAdditionalUser(OtherOp, &CB);
1289         mergeInValue(IV, &CB, CondVal);
1290         return;
1291       } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant() &&
1292                  !MayIncludeUndef) {
1293         // Propagate inequalities.
1294         addAdditionalUser(OtherOp, &CB);
1295         mergeInValue(IV, &CB,
1296                      ValueLatticeElement::getNot(CondVal.getConstant()));
1297         return;
1298       }
1299 
1300       return (void)mergeInValue(IV, &CB, CopyOfVal);
1301     }
1302 
1303     if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1304       // Compute result range for intrinsics supported by ConstantRange.
1305       // Do this even if we don't know a range for all operands, as we may
1306       // still know something about the result range, e.g. of abs(x).
1307       SmallVector<ConstantRange, 2> OpRanges;
1308       for (Value *Op : II->args()) {
1309         const ValueLatticeElement &State = getValueState(Op);
1310         if (State.isConstantRange())
1311           OpRanges.push_back(State.getConstantRange());
1312         else
1313           OpRanges.push_back(
1314               ConstantRange::getFull(Op->getType()->getScalarSizeInBits()));
1315       }
1316 
1317       ConstantRange Result =
1318           ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1319       return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1320     }
1321   }
1322 
1323   // The common case is that we aren't tracking the callee, either because we
1324   // are not doing interprocedural analysis or the callee is indirect, or is
1325   // external.  Handle these cases first.
1326   if (!F || F->isDeclaration())
1327     return handleCallOverdefined(CB);
1328 
1329   // If this is a single/zero retval case, see if we're tracking the function.
1330   if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1331     if (!MRVFunctionsTracked.count(F))
1332       return handleCallOverdefined(CB); // Not tracking this callee.
1333 
1334     // If we are tracking this callee, propagate the result of the function
1335     // into this call site.
1336     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1337       mergeInValue(getStructValueState(&CB, i), &CB,
1338                    TrackedMultipleRetVals[std::make_pair(F, i)],
1339                    getMaxWidenStepsOpts());
1340   } else {
1341     auto TFRVI = TrackedRetVals.find(F);
1342     if (TFRVI == TrackedRetVals.end())
1343       return handleCallOverdefined(CB); // Not tracking this callee.
1344 
1345     // If so, propagate the return value of the callee into this call result.
1346     mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1347   }
1348 }
1349 
solve()1350 void SCCPInstVisitor::solve() {
1351   // Process the work lists until they are empty!
1352   while (!BBWorkList.empty() || !InstWorkList.empty() ||
1353          !OverdefinedInstWorkList.empty()) {
1354     // Process the overdefined instruction's work list first, which drives other
1355     // things to overdefined more quickly.
1356     while (!OverdefinedInstWorkList.empty()) {
1357       Value *I = OverdefinedInstWorkList.pop_back_val();
1358 
1359       LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1360 
1361       // "I" got into the work list because it either made the transition from
1362       // bottom to constant, or to overdefined.
1363       //
1364       // Anything on this worklist that is overdefined need not be visited
1365       // since all of its users will have already been marked as overdefined
1366       // Update all of the users of this instruction's value.
1367       //
1368       markUsersAsChanged(I);
1369     }
1370 
1371     // Process the instruction work list.
1372     while (!InstWorkList.empty()) {
1373       Value *I = InstWorkList.pop_back_val();
1374 
1375       LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1376 
1377       // "I" got into the work list because it made the transition from undef to
1378       // constant.
1379       //
1380       // Anything on this worklist that is overdefined need not be visited
1381       // since all of its users will have already been marked as overdefined.
1382       // Update all of the users of this instruction's value.
1383       //
1384       if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1385         markUsersAsChanged(I);
1386     }
1387 
1388     // Process the basic block work list.
1389     while (!BBWorkList.empty()) {
1390       BasicBlock *BB = BBWorkList.pop_back_val();
1391 
1392       LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1393 
1394       // Notify all instructions in this basic block that they are newly
1395       // executable.
1396       visit(BB);
1397     }
1398   }
1399 }
1400 
1401 /// resolvedUndefsIn - While solving the dataflow for a function, we assume
1402 /// that branches on undef values cannot reach any of their successors.
1403 /// However, this is not a safe assumption.  After we solve dataflow, this
1404 /// method should be use to handle this.  If this returns true, the solver
1405 /// should be rerun.
1406 ///
1407 /// This method handles this by finding an unresolved branch and marking it one
1408 /// of the edges from the block as being feasible, even though the condition
1409 /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the
1410 /// CFG and only slightly pessimizes the analysis results (by marking one,
1411 /// potentially infeasible, edge feasible).  This cannot usefully modify the
1412 /// constraints on the condition of the branch, as that would impact other users
1413 /// of the value.
1414 ///
1415 /// This scan also checks for values that use undefs. It conservatively marks
1416 /// them as overdefined.
resolvedUndefsIn(Function & F)1417 bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
1418   bool MadeChange = false;
1419   for (BasicBlock &BB : F) {
1420     if (!BBExecutable.count(&BB))
1421       continue;
1422 
1423     for (Instruction &I : BB) {
1424       // Look for instructions which produce undef values.
1425       if (I.getType()->isVoidTy())
1426         continue;
1427 
1428       if (auto *STy = dyn_cast<StructType>(I.getType())) {
1429         // Only a few things that can be structs matter for undef.
1430 
1431         // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1432         if (auto *CB = dyn_cast<CallBase>(&I))
1433           if (Function *F = CB->getCalledFunction())
1434             if (MRVFunctionsTracked.count(F))
1435               continue;
1436 
1437         // extractvalue and insertvalue don't need to be marked; they are
1438         // tracked as precisely as their operands.
1439         if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1440           continue;
1441         // Send the results of everything else to overdefined.  We could be
1442         // more precise than this but it isn't worth bothering.
1443         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1444           ValueLatticeElement &LV = getStructValueState(&I, i);
1445           if (LV.isUnknownOrUndef()) {
1446             markOverdefined(LV, &I);
1447             MadeChange = true;
1448           }
1449         }
1450         continue;
1451       }
1452 
1453       ValueLatticeElement &LV = getValueState(&I);
1454       if (!LV.isUnknownOrUndef())
1455         continue;
1456 
1457       // There are two reasons a call can have an undef result
1458       // 1. It could be tracked.
1459       // 2. It could be constant-foldable.
1460       // Because of the way we solve return values, tracked calls must
1461       // never be marked overdefined in resolvedUndefsIn.
1462       if (auto *CB = dyn_cast<CallBase>(&I))
1463         if (Function *F = CB->getCalledFunction())
1464           if (TrackedRetVals.count(F))
1465             continue;
1466 
1467       if (isa<LoadInst>(I)) {
1468         // A load here means one of two things: a load of undef from a global,
1469         // a load from an unknown pointer.  Either way, having it return undef
1470         // is okay.
1471         continue;
1472       }
1473 
1474       markOverdefined(&I);
1475       MadeChange = true;
1476     }
1477 
1478     // Check to see if we have a branch or switch on an undefined value.  If so
1479     // we force the branch to go one way or the other to make the successor
1480     // values live.  It doesn't really matter which way we force it.
1481     Instruction *TI = BB.getTerminator();
1482     if (auto *BI = dyn_cast<BranchInst>(TI)) {
1483       if (!BI->isConditional())
1484         continue;
1485       if (!getValueState(BI->getCondition()).isUnknownOrUndef())
1486         continue;
1487 
1488       // If the input to SCCP is actually branch on undef, fix the undef to
1489       // false.
1490       if (isa<UndefValue>(BI->getCondition())) {
1491         BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1492         markEdgeExecutable(&BB, TI->getSuccessor(1));
1493         MadeChange = true;
1494         continue;
1495       }
1496 
1497       // Otherwise, it is a branch on a symbolic value which is currently
1498       // considered to be undef.  Make sure some edge is executable, so a
1499       // branch on "undef" always flows somewhere.
1500       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1501       BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
1502       if (markEdgeExecutable(&BB, DefaultSuccessor))
1503         MadeChange = true;
1504 
1505       continue;
1506     }
1507 
1508     if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
1509       // Indirect branch with no successor ?. Its ok to assume it branches
1510       // to no target.
1511       if (IBR->getNumSuccessors() < 1)
1512         continue;
1513 
1514       if (!getValueState(IBR->getAddress()).isUnknownOrUndef())
1515         continue;
1516 
1517       // If the input to SCCP is actually branch on undef, fix the undef to
1518       // the first successor of the indirect branch.
1519       if (isa<UndefValue>(IBR->getAddress())) {
1520         IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
1521         markEdgeExecutable(&BB, IBR->getSuccessor(0));
1522         MadeChange = true;
1523         continue;
1524       }
1525 
1526       // Otherwise, it is a branch on a symbolic value which is currently
1527       // considered to be undef.  Make sure some edge is executable, so a
1528       // branch on "undef" always flows somewhere.
1529       // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
1530       // we can assume the branch has undefined behavior instead.
1531       BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
1532       if (markEdgeExecutable(&BB, DefaultSuccessor))
1533         MadeChange = true;
1534 
1535       continue;
1536     }
1537 
1538     if (auto *SI = dyn_cast<SwitchInst>(TI)) {
1539       if (!SI->getNumCases() ||
1540           !getValueState(SI->getCondition()).isUnknownOrUndef())
1541         continue;
1542 
1543       // If the input to SCCP is actually switch on undef, fix the undef to
1544       // the first constant.
1545       if (isa<UndefValue>(SI->getCondition())) {
1546         SI->setCondition(SI->case_begin()->getCaseValue());
1547         markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
1548         MadeChange = true;
1549         continue;
1550       }
1551 
1552       // Otherwise, it is a branch on a symbolic value which is currently
1553       // considered to be undef.  Make sure some edge is executable, so a
1554       // branch on "undef" always flows somewhere.
1555       // FIXME: Distinguish between dead code and an LLVM "undef" value.
1556       BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
1557       if (markEdgeExecutable(&BB, DefaultSuccessor))
1558         MadeChange = true;
1559 
1560       continue;
1561     }
1562   }
1563 
1564   return MadeChange;
1565 }
1566 
1567 //===----------------------------------------------------------------------===//
1568 //
1569 // SCCPSolver implementations
1570 //
SCCPSolver(const DataLayout & DL,std::function<const TargetLibraryInfo & (Function &)> GetTLI,LLVMContext & Ctx)1571 SCCPSolver::SCCPSolver(
1572     const DataLayout &DL,
1573     std::function<const TargetLibraryInfo &(Function &)> GetTLI,
1574     LLVMContext &Ctx)
1575     : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
1576 
~SCCPSolver()1577 SCCPSolver::~SCCPSolver() { }
1578 
addAnalysis(Function & F,AnalysisResultsForFn A)1579 void SCCPSolver::addAnalysis(Function &F, AnalysisResultsForFn A) {
1580   return Visitor->addAnalysis(F, std::move(A));
1581 }
1582 
markBlockExecutable(BasicBlock * BB)1583 bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
1584   return Visitor->markBlockExecutable(BB);
1585 }
1586 
getPredicateInfoFor(Instruction * I)1587 const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
1588   return Visitor->getPredicateInfoFor(I);
1589 }
1590 
getDTU(Function & F)1591 DomTreeUpdater SCCPSolver::getDTU(Function &F) { return Visitor->getDTU(F); }
1592 
trackValueOfGlobalVariable(GlobalVariable * GV)1593 void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
1594   Visitor->trackValueOfGlobalVariable(GV);
1595 }
1596 
addTrackedFunction(Function * F)1597 void SCCPSolver::addTrackedFunction(Function *F) {
1598   Visitor->addTrackedFunction(F);
1599 }
1600 
addToMustPreserveReturnsInFunctions(Function * F)1601 void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
1602   Visitor->addToMustPreserveReturnsInFunctions(F);
1603 }
1604 
mustPreserveReturn(Function * F)1605 bool SCCPSolver::mustPreserveReturn(Function *F) {
1606   return Visitor->mustPreserveReturn(F);
1607 }
1608 
addArgumentTrackedFunction(Function * F)1609 void SCCPSolver::addArgumentTrackedFunction(Function *F) {
1610   Visitor->addArgumentTrackedFunction(F);
1611 }
1612 
isArgumentTrackedFunction(Function * F)1613 bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
1614   return Visitor->isArgumentTrackedFunction(F);
1615 }
1616 
solve()1617 void SCCPSolver::solve() { Visitor->solve(); }
1618 
resolvedUndefsIn(Function & F)1619 bool SCCPSolver::resolvedUndefsIn(Function &F) {
1620   return Visitor->resolvedUndefsIn(F);
1621 }
1622 
isBlockExecutable(BasicBlock * BB) const1623 bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
1624   return Visitor->isBlockExecutable(BB);
1625 }
1626 
isEdgeFeasible(BasicBlock * From,BasicBlock * To) const1627 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
1628   return Visitor->isEdgeFeasible(From, To);
1629 }
1630 
1631 std::vector<ValueLatticeElement>
getStructLatticeValueFor(Value * V) const1632 SCCPSolver::getStructLatticeValueFor(Value *V) const {
1633   return Visitor->getStructLatticeValueFor(V);
1634 }
1635 
removeLatticeValueFor(Value * V)1636 void SCCPSolver::removeLatticeValueFor(Value *V) {
1637   return Visitor->removeLatticeValueFor(V);
1638 }
1639 
getLatticeValueFor(Value * V) const1640 const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
1641   return Visitor->getLatticeValueFor(V);
1642 }
1643 
1644 const MapVector<Function *, ValueLatticeElement> &
getTrackedRetVals()1645 SCCPSolver::getTrackedRetVals() {
1646   return Visitor->getTrackedRetVals();
1647 }
1648 
1649 const DenseMap<GlobalVariable *, ValueLatticeElement> &
getTrackedGlobals()1650 SCCPSolver::getTrackedGlobals() {
1651   return Visitor->getTrackedGlobals();
1652 }
1653 
getMRVFunctionsTracked()1654 const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
1655   return Visitor->getMRVFunctionsTracked();
1656 }
1657 
markOverdefined(Value * V)1658 void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
1659 
isStructLatticeConstant(Function * F,StructType * STy)1660 bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
1661   return Visitor->isStructLatticeConstant(F, STy);
1662 }
1663 
getConstant(const ValueLatticeElement & LV) const1664 Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV) const {
1665   return Visitor->getConstant(LV);
1666 }
1667