xref: /llvm-project/llvm/lib/Target/X86/X86FixupVectorConstants.cpp (revision 33f9d839eff79707ae8879a497f7ae9fab6b83ac)
1 //===-- X86FixupVectorConstants.cpp - optimize constant generation  -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file examines all full size vector constant pool loads and attempts to
10 // replace them with smaller constant pool entries, including:
11 // * Converting AVX512 memory-fold instructions to their broadcast-fold form.
12 // * Using vzload scalar loads.
13 // * Broadcasting of full width loads.
14 // * Sign/Zero extension of full width loads.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "X86.h"
19 #include "X86InstrFoldTables.h"
20 #include "X86InstrInfo.h"
21 #include "X86Subtarget.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "x86-fixup-vector-constants"
28 
29 STATISTIC(NumInstChanges, "Number of instructions changes");
30 
31 namespace {
32 class X86FixupVectorConstantsPass : public MachineFunctionPass {
33 public:
34   static char ID;
35 
36   X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}
37 
38   StringRef getPassName() const override {
39     return "X86 Fixup Vector Constants";
40   }
41 
42   bool runOnMachineFunction(MachineFunction &MF) override;
43   bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
44                           MachineInstr &MI);
45 
46   // This pass runs after regalloc and doesn't support VReg operands.
47   MachineFunctionProperties getRequiredProperties() const override {
48     return MachineFunctionProperties().set(
49         MachineFunctionProperties::Property::NoVRegs);
50   }
51 
52 private:
53   const X86InstrInfo *TII = nullptr;
54   const X86Subtarget *ST = nullptr;
55   const MCSchedModel *SM = nullptr;
56 };
57 } // end anonymous namespace
58 
59 char X86FixupVectorConstantsPass::ID = 0;
60 
61 INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
62 
63 FunctionPass *llvm::createX86FixupVectorConstants() {
64   return new X86FixupVectorConstantsPass();
65 }
66 
67 /// Normally, we only allow poison in vector splats. However, as this is part
68 /// of the backend, and working with the DAG representation, which currently
69 /// only natively represents undef values, we need to accept undefs here.
70 static Constant *getSplatValueAllowUndef(const ConstantVector *C) {
71   Constant *Res = nullptr;
72   for (Value *Op : C->operands()) {
73     Constant *OpC = cast<Constant>(Op);
74     if (isa<UndefValue>(OpC))
75       continue;
76     if (!Res)
77       Res = OpC;
78     else if (Res != OpC)
79       return nullptr;
80   }
81   return Res;
82 }
83 
84 // Attempt to extract the full width of bits data from the constant.
85 static std::optional<APInt> extractConstantBits(const Constant *C) {
86   unsigned NumBits = C->getType()->getPrimitiveSizeInBits();
87 
88   if (isa<UndefValue>(C))
89     return APInt::getZero(NumBits);
90 
91   if (auto *CInt = dyn_cast<ConstantInt>(C))
92     return CInt->getValue();
93 
94   if (auto *CFP = dyn_cast<ConstantFP>(C))
95     return CFP->getValue().bitcastToAPInt();
96 
97   if (auto *CV = dyn_cast<ConstantVector>(C)) {
98     if (auto *CVSplat = getSplatValueAllowUndef(CV)) {
99       if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
100         assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
101         return APInt::getSplat(NumBits, *Bits);
102       }
103     }
104 
105     APInt Bits = APInt::getZero(NumBits);
106     for (unsigned I = 0, E = CV->getNumOperands(); I != E; ++I) {
107       Constant *Elt = CV->getOperand(I);
108       std::optional<APInt> SubBits = extractConstantBits(Elt);
109       if (!SubBits)
110         return std::nullopt;
111       assert(NumBits == (E * SubBits->getBitWidth()) &&
112              "Illegal vector element size");
113       Bits.insertBits(*SubBits, I * SubBits->getBitWidth());
114     }
115     return Bits;
116   }
117 
118   if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
119     bool IsInteger = CDS->getElementType()->isIntegerTy();
120     bool IsFloat = CDS->getElementType()->isHalfTy() ||
121                    CDS->getElementType()->isBFloatTy() ||
122                    CDS->getElementType()->isFloatTy() ||
123                    CDS->getElementType()->isDoubleTy();
124     if (IsInteger || IsFloat) {
125       APInt Bits = APInt::getZero(NumBits);
126       unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
127       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
128         if (IsInteger)
129           Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
130         else
131           Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
132                           I * EltBits);
133       }
134       return Bits;
135     }
136   }
137 
138   return std::nullopt;
139 }
140 
141 static std::optional<APInt> extractConstantBits(const Constant *C,
142                                                 unsigned NumBits) {
143   if (std::optional<APInt> Bits = extractConstantBits(C))
144     return Bits->zextOrTrunc(NumBits);
145   return std::nullopt;
146 }
147 
148 // Attempt to compute the splat width of bits data by normalizing the splat to
149 // remove undefs.
150 static std::optional<APInt> getSplatableConstant(const Constant *C,
151                                                  unsigned SplatBitWidth) {
152   const Type *Ty = C->getType();
153   assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
154          "Illegal splat width");
155 
156   if (std::optional<APInt> Bits = extractConstantBits(C))
157     if (Bits->isSplat(SplatBitWidth))
158       return Bits->trunc(SplatBitWidth);
159 
160   // Detect general splats with undefs.
161   // TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
162   if (auto *CV = dyn_cast<ConstantVector>(C)) {
163     unsigned NumOps = CV->getNumOperands();
164     unsigned NumEltsBits = Ty->getScalarSizeInBits();
165     unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
166     if ((SplatBitWidth % NumEltsBits) == 0) {
167       // Collect the elements and ensure that within the repeated splat sequence
168       // they either match or are undef.
169       SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
170       for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
171         if (Constant *Elt = CV->getAggregateElement(Idx)) {
172           if (isa<UndefValue>(Elt))
173             continue;
174           unsigned SplatIdx = Idx % NumScaleOps;
175           if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
176             Sequence[SplatIdx] = Elt;
177             continue;
178           }
179         }
180         return std::nullopt;
181       }
182       // Extract the constant bits forming the splat and insert into the bits
183       // data, leave undef as zero.
184       APInt SplatBits = APInt::getZero(SplatBitWidth);
185       for (unsigned I = 0; I != NumScaleOps; ++I) {
186         if (!Sequence[I])
187           continue;
188         if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
189           SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
190           continue;
191         }
192         return std::nullopt;
193       }
194       return SplatBits;
195     }
196   }
197 
198   return std::nullopt;
199 }
200 
201 // Split raw bits into a constant vector of elements of a specific bit width.
202 // NOTE: We don't always bother converting to scalars if the vector length is 1.
203 static Constant *rebuildConstant(LLVMContext &Ctx, Type *SclTy,
204                                  const APInt &Bits, unsigned NumSclBits) {
205   unsigned BitWidth = Bits.getBitWidth();
206 
207   if (NumSclBits == 8) {
208     SmallVector<uint8_t> RawBits;
209     for (unsigned I = 0; I != BitWidth; I += 8)
210       RawBits.push_back(Bits.extractBits(8, I).getZExtValue());
211     return ConstantDataVector::get(Ctx, RawBits);
212   }
213 
214   if (NumSclBits == 16) {
215     SmallVector<uint16_t> RawBits;
216     for (unsigned I = 0; I != BitWidth; I += 16)
217       RawBits.push_back(Bits.extractBits(16, I).getZExtValue());
218     if (SclTy->is16bitFPTy())
219       return ConstantDataVector::getFP(SclTy, RawBits);
220     return ConstantDataVector::get(Ctx, RawBits);
221   }
222 
223   if (NumSclBits == 32) {
224     SmallVector<uint32_t> RawBits;
225     for (unsigned I = 0; I != BitWidth; I += 32)
226       RawBits.push_back(Bits.extractBits(32, I).getZExtValue());
227     if (SclTy->isFloatTy())
228       return ConstantDataVector::getFP(SclTy, RawBits);
229     return ConstantDataVector::get(Ctx, RawBits);
230   }
231 
232   assert(NumSclBits == 64 && "Unhandled vector element width");
233 
234   SmallVector<uint64_t> RawBits;
235   for (unsigned I = 0; I != BitWidth; I += 64)
236     RawBits.push_back(Bits.extractBits(64, I).getZExtValue());
237   if (SclTy->isDoubleTy())
238     return ConstantDataVector::getFP(SclTy, RawBits);
239   return ConstantDataVector::get(Ctx, RawBits);
240 }
241 
242 // Attempt to rebuild a normalized splat vector constant of the requested splat
243 // width, built up of potentially smaller scalar values.
244 static Constant *rebuildSplatCst(const Constant *C, unsigned /*NumBits*/,
245                                  unsigned /*NumElts*/, unsigned SplatBitWidth) {
246   // TODO: Truncate to NumBits once ConvertToBroadcastAVX512 support this.
247   std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
248   if (!Splat)
249     return nullptr;
250 
251   // Determine scalar size to use for the constant splat vector, clamping as we
252   // might have found a splat smaller than the original constant data.
253   Type *SclTy = C->getType()->getScalarType();
254   unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
255   NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);
256 
257   // Fallback to i64 / double.
258   NumSclBits = (NumSclBits == 8 || NumSclBits == 16 || NumSclBits == 32)
259                    ? NumSclBits
260                    : 64;
261 
262   // Extract per-element bits.
263   return rebuildConstant(C->getContext(), SclTy, *Splat, NumSclBits);
264 }
265 
266 static Constant *rebuildZeroUpperCst(const Constant *C, unsigned NumBits,
267                                      unsigned /*NumElts*/,
268                                      unsigned ScalarBitWidth) {
269   Type *SclTy = C->getType()->getScalarType();
270   unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
271   LLVMContext &Ctx = C->getContext();
272 
273   if (NumBits > ScalarBitWidth) {
274     // Determine if the upper bits are all zero.
275     if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
276       if (Bits->countLeadingZeros() >= (NumBits - ScalarBitWidth)) {
277         // If the original constant was made of smaller elements, try to retain
278         // those types.
279         if (ScalarBitWidth > NumSclBits && (ScalarBitWidth % NumSclBits) == 0)
280           return rebuildConstant(Ctx, SclTy, *Bits, NumSclBits);
281 
282         // Fallback to raw integer bits.
283         APInt RawBits = Bits->zextOrTrunc(ScalarBitWidth);
284         return ConstantInt::get(Ctx, RawBits);
285       }
286     }
287   }
288 
289   return nullptr;
290 }
291 
292 static Constant *rebuildExtCst(const Constant *C, bool IsSExt,
293                                unsigned NumBits, unsigned NumElts,
294                                unsigned SrcEltBitWidth) {
295   unsigned DstEltBitWidth = NumBits / NumElts;
296   assert((NumBits % NumElts) == 0 && (NumBits % SrcEltBitWidth) == 0 &&
297          (DstEltBitWidth % SrcEltBitWidth) == 0 &&
298          (DstEltBitWidth > SrcEltBitWidth) && "Illegal extension width");
299 
300   if (std::optional<APInt> Bits = extractConstantBits(C, NumBits)) {
301     assert((Bits->getBitWidth() / DstEltBitWidth) == NumElts &&
302            (Bits->getBitWidth() % DstEltBitWidth) == 0 &&
303            "Unexpected constant extension");
304 
305     // Ensure every vector element can be represented by the src bitwidth.
306     APInt TruncBits = APInt::getZero(NumElts * SrcEltBitWidth);
307     for (unsigned I = 0; I != NumElts; ++I) {
308       APInt Elt = Bits->extractBits(DstEltBitWidth, I * DstEltBitWidth);
309       if ((IsSExt && Elt.getSignificantBits() > SrcEltBitWidth) ||
310           (!IsSExt && Elt.getActiveBits() > SrcEltBitWidth))
311         return nullptr;
312       TruncBits.insertBits(Elt.trunc(SrcEltBitWidth), I * SrcEltBitWidth);
313     }
314 
315     Type *Ty = C->getType();
316     return rebuildConstant(Ty->getContext(), Ty->getScalarType(), TruncBits,
317                            SrcEltBitWidth);
318   }
319 
320   return nullptr;
321 }
322 static Constant *rebuildSExtCst(const Constant *C, unsigned NumBits,
323                                 unsigned NumElts, unsigned SrcEltBitWidth) {
324   return rebuildExtCst(C, true, NumBits, NumElts, SrcEltBitWidth);
325 }
326 static Constant *rebuildZExtCst(const Constant *C, unsigned NumBits,
327                                 unsigned NumElts, unsigned SrcEltBitWidth) {
328   return rebuildExtCst(C, false, NumBits, NumElts, SrcEltBitWidth);
329 }
330 
331 bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
332                                                      MachineBasicBlock &MBB,
333                                                      MachineInstr &MI) {
334   unsigned Opc = MI.getOpcode();
335   MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
336   bool HasSSE41 = ST->hasSSE41();
337   bool HasAVX2 = ST->hasAVX2();
338   bool HasDQI = ST->hasDQI();
339   bool HasBWI = ST->hasBWI();
340   bool HasVLX = ST->hasVLX();
341   bool MultiDomain = ST->hasAVX512() || ST->hasNoDomainDelayMov();
342 
343   struct FixupEntry {
344     int Op;
345     int NumCstElts;
346     int MemBitWidth;
347     std::function<Constant *(const Constant *, unsigned, unsigned, unsigned)>
348         RebuildConstant;
349   };
350   auto FixupConstant = [&](ArrayRef<FixupEntry> Fixups, unsigned RegBitWidth,
351                            unsigned OperandNo) {
352 #ifdef EXPENSIVE_CHECKS
353     assert(llvm::is_sorted(Fixups,
354                            [](const FixupEntry &A, const FixupEntry &B) {
355                              return (A.NumCstElts * A.MemBitWidth) <
356                                     (B.NumCstElts * B.MemBitWidth);
357                            }) &&
358            "Constant fixup table not sorted in ascending constant size");
359 #endif
360     assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
361            "Unexpected number of operands!");
362     if (auto *C = X86::getConstantFromPool(MI, OperandNo)) {
363       RegBitWidth =
364           RegBitWidth ? RegBitWidth : C->getType()->getPrimitiveSizeInBits();
365       for (const FixupEntry &Fixup : Fixups) {
366         if (Fixup.Op) {
367           // Construct a suitable constant and adjust the MI to use the new
368           // constant pool entry.
369           if (Constant *NewCst = Fixup.RebuildConstant(
370                   C, RegBitWidth, Fixup.NumCstElts, Fixup.MemBitWidth)) {
371             unsigned NewCPI =
372                 CP->getConstantPoolIndex(NewCst, Align(Fixup.MemBitWidth / 8));
373             MI.setDesc(TII->get(Fixup.Op));
374             MI.getOperand(OperandNo + X86::AddrDisp).setIndex(NewCPI);
375             return true;
376           }
377         }
378       }
379     }
380     return false;
381   };
382 
383   // Attempt to detect a suitable vzload/broadcast/vextload from increasing
384   // constant bitwidths. Prefer vzload/broadcast/vextload for same bitwidth:
385   // - vzload shouldn't ever need a shuffle port to zero the upper elements and
386   // the fp/int domain versions are equally available so we don't introduce a
387   // domain crossing penalty.
388   // - broadcast sometimes need a shuffle port (especially for 8/16-bit
389   // variants), AVX1 only has fp domain broadcasts but AVX2+ have good fp/int
390   // domain equivalents.
391   // - vextload always needs a shuffle port and is only ever int domain.
392   switch (Opc) {
393   /* FP Loads */
394   case X86::MOVAPDrm:
395   case X86::MOVAPSrm:
396   case X86::MOVUPDrm:
397   case X86::MOVUPSrm:
398     // TODO: SSE3 MOVDDUP Handling
399     return FixupConstant({{X86::MOVSSrm, 1, 32, rebuildZeroUpperCst},
400                           {X86::MOVSDrm, 1, 64, rebuildZeroUpperCst}},
401                          128, 1);
402   case X86::VMOVAPDrm:
403   case X86::VMOVAPSrm:
404   case X86::VMOVUPDrm:
405   case X86::VMOVUPSrm: {
406     FixupEntry Fixups[] = {
407         {MultiDomain ? X86::VPMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
408         {MultiDomain ? X86::VPMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
409         {X86::VMOVSSrm, 1, 32, rebuildZeroUpperCst},
410         {X86::VBROADCASTSSrm, 1, 32, rebuildSplatCst},
411         {MultiDomain ? X86::VPMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
412         {MultiDomain ? X86::VPMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
413         {MultiDomain ? X86::VPMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
414         {MultiDomain ? X86::VPMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
415         {X86::VMOVSDrm, 1, 64, rebuildZeroUpperCst},
416         {X86::VMOVDDUPrm, 1, 64, rebuildSplatCst},
417         {MultiDomain ? X86::VPMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
418         {MultiDomain ? X86::VPMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
419         {MultiDomain ? X86::VPMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
420         {MultiDomain ? X86::VPMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
421     return FixupConstant(Fixups, 128, 1);
422   }
423   case X86::VMOVAPDYrm:
424   case X86::VMOVAPSYrm:
425   case X86::VMOVUPDYrm:
426   case X86::VMOVUPSYrm: {
427     FixupEntry Fixups[] = {
428         {X86::VBROADCASTSSYrm, 1, 32, rebuildSplatCst},
429         {HasAVX2 && MultiDomain ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
430         {HasAVX2 && MultiDomain ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
431         {X86::VBROADCASTSDYrm, 1, 64, rebuildSplatCst},
432         {HasAVX2 && MultiDomain ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
433         {HasAVX2 && MultiDomain ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
434         {HasAVX2 && MultiDomain ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
435         {HasAVX2 && MultiDomain ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
436         {X86::VBROADCASTF128rm, 1, 128, rebuildSplatCst},
437         {HasAVX2 && MultiDomain ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
438         {HasAVX2 && MultiDomain ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
439         {HasAVX2 && MultiDomain ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
440         {HasAVX2 && MultiDomain ? X86::VPMOVZXDQYrm : 0, 4, 32,
441          rebuildZExtCst}};
442     return FixupConstant(Fixups, 256, 1);
443   }
444   case X86::VMOVAPDZ128rm:
445   case X86::VMOVAPSZ128rm:
446   case X86::VMOVUPDZ128rm:
447   case X86::VMOVUPSZ128rm: {
448     FixupEntry Fixups[] = {
449         {MultiDomain ? X86::VPMOVSXBQZ128rm : 0, 2, 8, rebuildSExtCst},
450         {MultiDomain ? X86::VPMOVZXBQZ128rm : 0, 2, 8, rebuildZExtCst},
451         {X86::VMOVSSZrm, 1, 32, rebuildZeroUpperCst},
452         {X86::VBROADCASTSSZ128rm, 1, 32, rebuildSplatCst},
453         {MultiDomain ? X86::VPMOVSXBDZ128rm : 0, 4, 8, rebuildSExtCst},
454         {MultiDomain ? X86::VPMOVZXBDZ128rm : 0, 4, 8, rebuildZExtCst},
455         {MultiDomain ? X86::VPMOVSXWQZ128rm : 0, 2, 16, rebuildSExtCst},
456         {MultiDomain ? X86::VPMOVZXWQZ128rm : 0, 2, 16, rebuildZExtCst},
457         {X86::VMOVSDZrm, 1, 64, rebuildZeroUpperCst},
458         {X86::VMOVDDUPZ128rm, 1, 64, rebuildSplatCst},
459         {MultiDomain ? X86::VPMOVSXWDZ128rm : 0, 4, 16, rebuildSExtCst},
460         {MultiDomain ? X86::VPMOVZXWDZ128rm : 0, 4, 16, rebuildZExtCst},
461         {MultiDomain ? X86::VPMOVSXDQZ128rm : 0, 2, 32, rebuildSExtCst},
462         {MultiDomain ? X86::VPMOVZXDQZ128rm : 0, 2, 32, rebuildZExtCst}};
463     return FixupConstant(Fixups, 128, 1);
464   }
465   case X86::VMOVAPDZ256rm:
466   case X86::VMOVAPSZ256rm:
467   case X86::VMOVUPDZ256rm:
468   case X86::VMOVUPSZ256rm: {
469     FixupEntry Fixups[] = {
470         {X86::VBROADCASTSSZ256rm, 1, 32, rebuildSplatCst},
471         {MultiDomain ? X86::VPMOVSXBQZ256rm : 0, 4, 8, rebuildSExtCst},
472         {MultiDomain ? X86::VPMOVZXBQZ256rm : 0, 4, 8, rebuildZExtCst},
473         {X86::VBROADCASTSDZ256rm, 1, 64, rebuildSplatCst},
474         {MultiDomain ? X86::VPMOVSXBDZ256rm : 0, 8, 8, rebuildSExtCst},
475         {MultiDomain ? X86::VPMOVZXBDZ256rm : 0, 8, 8, rebuildZExtCst},
476         {MultiDomain ? X86::VPMOVSXWQZ256rm : 0, 4, 16, rebuildSExtCst},
477         {MultiDomain ? X86::VPMOVZXWQZ256rm : 0, 4, 16, rebuildZExtCst},
478         {X86::VBROADCASTF32X4Z256rm, 1, 128, rebuildSplatCst},
479         {MultiDomain ? X86::VPMOVSXWDZ256rm : 0, 8, 16, rebuildSExtCst},
480         {MultiDomain ? X86::VPMOVZXWDZ256rm : 0, 8, 16, rebuildZExtCst},
481         {MultiDomain ? X86::VPMOVSXDQZ256rm : 0, 4, 32, rebuildSExtCst},
482         {MultiDomain ? X86::VPMOVZXDQZ256rm : 0, 4, 32, rebuildZExtCst}};
483     return FixupConstant(Fixups, 256, 1);
484   }
485   case X86::VMOVAPDZrm:
486   case X86::VMOVAPSZrm:
487   case X86::VMOVUPDZrm:
488   case X86::VMOVUPSZrm: {
489     FixupEntry Fixups[] = {
490         {X86::VBROADCASTSSZrm, 1, 32, rebuildSplatCst},
491         {X86::VBROADCASTSDZrm, 1, 64, rebuildSplatCst},
492         {MultiDomain ? X86::VPMOVSXBQZrm : 0, 8, 8, rebuildSExtCst},
493         {MultiDomain ? X86::VPMOVZXBQZrm : 0, 8, 8, rebuildZExtCst},
494         {X86::VBROADCASTF32X4Zrm, 1, 128, rebuildSplatCst},
495         {MultiDomain ? X86::VPMOVSXBDZrm : 0, 16, 8, rebuildSExtCst},
496         {MultiDomain ? X86::VPMOVZXBDZrm : 0, 16, 8, rebuildZExtCst},
497         {MultiDomain ? X86::VPMOVSXWQZrm : 0, 8, 16, rebuildSExtCst},
498         {MultiDomain ? X86::VPMOVZXWQZrm : 0, 8, 16, rebuildZExtCst},
499         {X86::VBROADCASTF64X4Zrm, 1, 256, rebuildSplatCst},
500         {MultiDomain ? X86::VPMOVSXWDZrm : 0, 16, 16, rebuildSExtCst},
501         {MultiDomain ? X86::VPMOVZXWDZrm : 0, 16, 16, rebuildZExtCst},
502         {MultiDomain ? X86::VPMOVSXDQZrm : 0, 8, 32, rebuildSExtCst},
503         {MultiDomain ? X86::VPMOVZXDQZrm : 0, 8, 32, rebuildZExtCst}};
504     return FixupConstant(Fixups, 512, 1);
505   }
506     /* Integer Loads */
507   case X86::MOVDQArm:
508   case X86::MOVDQUrm: {
509     FixupEntry Fixups[] = {
510         {HasSSE41 ? X86::PMOVSXBQrm : 0, 2, 8, rebuildSExtCst},
511         {HasSSE41 ? X86::PMOVZXBQrm : 0, 2, 8, rebuildZExtCst},
512         {X86::MOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
513         {HasSSE41 ? X86::PMOVSXBDrm : 0, 4, 8, rebuildSExtCst},
514         {HasSSE41 ? X86::PMOVZXBDrm : 0, 4, 8, rebuildZExtCst},
515         {HasSSE41 ? X86::PMOVSXWQrm : 0, 2, 16, rebuildSExtCst},
516         {HasSSE41 ? X86::PMOVZXWQrm : 0, 2, 16, rebuildZExtCst},
517         {X86::MOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
518         {HasSSE41 ? X86::PMOVSXBWrm : 0, 8, 8, rebuildSExtCst},
519         {HasSSE41 ? X86::PMOVZXBWrm : 0, 8, 8, rebuildZExtCst},
520         {HasSSE41 ? X86::PMOVSXWDrm : 0, 4, 16, rebuildSExtCst},
521         {HasSSE41 ? X86::PMOVZXWDrm : 0, 4, 16, rebuildZExtCst},
522         {HasSSE41 ? X86::PMOVSXDQrm : 0, 2, 32, rebuildSExtCst},
523         {HasSSE41 ? X86::PMOVZXDQrm : 0, 2, 32, rebuildZExtCst}};
524     return FixupConstant(Fixups, 128, 1);
525   }
526   case X86::VMOVDQArm:
527   case X86::VMOVDQUrm: {
528     FixupEntry Fixups[] = {
529         {HasAVX2 ? X86::VPBROADCASTBrm : 0, 1, 8, rebuildSplatCst},
530         {HasAVX2 ? X86::VPBROADCASTWrm : 0, 1, 16, rebuildSplatCst},
531         {X86::VPMOVSXBQrm, 2, 8, rebuildSExtCst},
532         {X86::VPMOVZXBQrm, 2, 8, rebuildZExtCst},
533         {X86::VMOVDI2PDIrm, 1, 32, rebuildZeroUpperCst},
534         {HasAVX2 ? X86::VPBROADCASTDrm : X86::VBROADCASTSSrm, 1, 32,
535          rebuildSplatCst},
536         {X86::VPMOVSXBDrm, 4, 8, rebuildSExtCst},
537         {X86::VPMOVZXBDrm, 4, 8, rebuildZExtCst},
538         {X86::VPMOVSXWQrm, 2, 16, rebuildSExtCst},
539         {X86::VPMOVZXWQrm, 2, 16, rebuildZExtCst},
540         {X86::VMOVQI2PQIrm, 1, 64, rebuildZeroUpperCst},
541         {HasAVX2 ? X86::VPBROADCASTQrm : X86::VMOVDDUPrm, 1, 64,
542          rebuildSplatCst},
543         {X86::VPMOVSXBWrm, 8, 8, rebuildSExtCst},
544         {X86::VPMOVZXBWrm, 8, 8, rebuildZExtCst},
545         {X86::VPMOVSXWDrm, 4, 16, rebuildSExtCst},
546         {X86::VPMOVZXWDrm, 4, 16, rebuildZExtCst},
547         {X86::VPMOVSXDQrm, 2, 32, rebuildSExtCst},
548         {X86::VPMOVZXDQrm, 2, 32, rebuildZExtCst}};
549     return FixupConstant(Fixups, 128, 1);
550   }
551   case X86::VMOVDQAYrm:
552   case X86::VMOVDQUYrm: {
553     FixupEntry Fixups[] = {
554         {HasAVX2 ? X86::VPBROADCASTBYrm : 0, 1, 8, rebuildSplatCst},
555         {HasAVX2 ? X86::VPBROADCASTWYrm : 0, 1, 16, rebuildSplatCst},
556         {HasAVX2 ? X86::VPBROADCASTDYrm : X86::VBROADCASTSSYrm, 1, 32,
557          rebuildSplatCst},
558         {HasAVX2 ? X86::VPMOVSXBQYrm : 0, 4, 8, rebuildSExtCst},
559         {HasAVX2 ? X86::VPMOVZXBQYrm : 0, 4, 8, rebuildZExtCst},
560         {HasAVX2 ? X86::VPBROADCASTQYrm : X86::VBROADCASTSDYrm, 1, 64,
561          rebuildSplatCst},
562         {HasAVX2 ? X86::VPMOVSXBDYrm : 0, 8, 8, rebuildSExtCst},
563         {HasAVX2 ? X86::VPMOVZXBDYrm : 0, 8, 8, rebuildZExtCst},
564         {HasAVX2 ? X86::VPMOVSXWQYrm : 0, 4, 16, rebuildSExtCst},
565         {HasAVX2 ? X86::VPMOVZXWQYrm : 0, 4, 16, rebuildZExtCst},
566         {HasAVX2 ? X86::VBROADCASTI128rm : X86::VBROADCASTF128rm, 1, 128,
567          rebuildSplatCst},
568         {HasAVX2 ? X86::VPMOVSXBWYrm : 0, 16, 8, rebuildSExtCst},
569         {HasAVX2 ? X86::VPMOVZXBWYrm : 0, 16, 8, rebuildZExtCst},
570         {HasAVX2 ? X86::VPMOVSXWDYrm : 0, 8, 16, rebuildSExtCst},
571         {HasAVX2 ? X86::VPMOVZXWDYrm : 0, 8, 16, rebuildZExtCst},
572         {HasAVX2 ? X86::VPMOVSXDQYrm : 0, 4, 32, rebuildSExtCst},
573         {HasAVX2 ? X86::VPMOVZXDQYrm : 0, 4, 32, rebuildZExtCst}};
574     return FixupConstant(Fixups, 256, 1);
575   }
576   case X86::VMOVDQA32Z128rm:
577   case X86::VMOVDQA64Z128rm:
578   case X86::VMOVDQU32Z128rm:
579   case X86::VMOVDQU64Z128rm: {
580     FixupEntry Fixups[] = {
581         {HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1, 8, rebuildSplatCst},
582         {HasBWI ? X86::VPBROADCASTWZ128rm : 0, 1, 16, rebuildSplatCst},
583         {X86::VPMOVSXBQZ128rm, 2, 8, rebuildSExtCst},
584         {X86::VPMOVZXBQZ128rm, 2, 8, rebuildZExtCst},
585         {X86::VMOVDI2PDIZrm, 1, 32, rebuildZeroUpperCst},
586         {X86::VPBROADCASTDZ128rm, 1, 32, rebuildSplatCst},
587         {X86::VPMOVSXBDZ128rm, 4, 8, rebuildSExtCst},
588         {X86::VPMOVZXBDZ128rm, 4, 8, rebuildZExtCst},
589         {X86::VPMOVSXWQZ128rm, 2, 16, rebuildSExtCst},
590         {X86::VPMOVZXWQZ128rm, 2, 16, rebuildZExtCst},
591         {X86::VMOVQI2PQIZrm, 1, 64, rebuildZeroUpperCst},
592         {X86::VPBROADCASTQZ128rm, 1, 64, rebuildSplatCst},
593         {HasBWI ? X86::VPMOVSXBWZ128rm : 0, 8, 8, rebuildSExtCst},
594         {HasBWI ? X86::VPMOVZXBWZ128rm : 0, 8, 8, rebuildZExtCst},
595         {X86::VPMOVSXWDZ128rm, 4, 16, rebuildSExtCst},
596         {X86::VPMOVZXWDZ128rm, 4, 16, rebuildZExtCst},
597         {X86::VPMOVSXDQZ128rm, 2, 32, rebuildSExtCst},
598         {X86::VPMOVZXDQZ128rm, 2, 32, rebuildZExtCst}};
599     return FixupConstant(Fixups, 128, 1);
600   }
601   case X86::VMOVDQA32Z256rm:
602   case X86::VMOVDQA64Z256rm:
603   case X86::VMOVDQU32Z256rm:
604   case X86::VMOVDQU64Z256rm: {
605     FixupEntry Fixups[] = {
606         {HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1, 8, rebuildSplatCst},
607         {HasBWI ? X86::VPBROADCASTWZ256rm : 0, 1, 16, rebuildSplatCst},
608         {X86::VPBROADCASTDZ256rm, 1, 32, rebuildSplatCst},
609         {X86::VPMOVSXBQZ256rm, 4, 8, rebuildSExtCst},
610         {X86::VPMOVZXBQZ256rm, 4, 8, rebuildZExtCst},
611         {X86::VPBROADCASTQZ256rm, 1, 64, rebuildSplatCst},
612         {X86::VPMOVSXBDZ256rm, 8, 8, rebuildSExtCst},
613         {X86::VPMOVZXBDZ256rm, 8, 8, rebuildZExtCst},
614         {X86::VPMOVSXWQZ256rm, 4, 16, rebuildSExtCst},
615         {X86::VPMOVZXWQZ256rm, 4, 16, rebuildZExtCst},
616         {X86::VBROADCASTI32X4Z256rm, 1, 128, rebuildSplatCst},
617         {HasBWI ? X86::VPMOVSXBWZ256rm : 0, 16, 8, rebuildSExtCst},
618         {HasBWI ? X86::VPMOVZXBWZ256rm : 0, 16, 8, rebuildZExtCst},
619         {X86::VPMOVSXWDZ256rm, 8, 16, rebuildSExtCst},
620         {X86::VPMOVZXWDZ256rm, 8, 16, rebuildZExtCst},
621         {X86::VPMOVSXDQZ256rm, 4, 32, rebuildSExtCst},
622         {X86::VPMOVZXDQZ256rm, 4, 32, rebuildZExtCst}};
623     return FixupConstant(Fixups, 256, 1);
624   }
625   case X86::VMOVDQA32Zrm:
626   case X86::VMOVDQA64Zrm:
627   case X86::VMOVDQU32Zrm:
628   case X86::VMOVDQU64Zrm: {
629     FixupEntry Fixups[] = {
630         {HasBWI ? X86::VPBROADCASTBZrm : 0, 1, 8, rebuildSplatCst},
631         {HasBWI ? X86::VPBROADCASTWZrm : 0, 1, 16, rebuildSplatCst},
632         {X86::VPBROADCASTDZrm, 1, 32, rebuildSplatCst},
633         {X86::VPBROADCASTQZrm, 1, 64, rebuildSplatCst},
634         {X86::VPMOVSXBQZrm, 8, 8, rebuildSExtCst},
635         {X86::VPMOVZXBQZrm, 8, 8, rebuildZExtCst},
636         {X86::VBROADCASTI32X4Zrm, 1, 128, rebuildSplatCst},
637         {X86::VPMOVSXBDZrm, 16, 8, rebuildSExtCst},
638         {X86::VPMOVZXBDZrm, 16, 8, rebuildZExtCst},
639         {X86::VPMOVSXWQZrm, 8, 16, rebuildSExtCst},
640         {X86::VPMOVZXWQZrm, 8, 16, rebuildZExtCst},
641         {X86::VBROADCASTI64X4Zrm, 1, 256, rebuildSplatCst},
642         {HasBWI ? X86::VPMOVSXBWZrm : 0, 32, 8, rebuildSExtCst},
643         {HasBWI ? X86::VPMOVZXBWZrm : 0, 32, 8, rebuildZExtCst},
644         {X86::VPMOVSXWDZrm, 16, 16, rebuildSExtCst},
645         {X86::VPMOVZXWDZrm, 16, 16, rebuildZExtCst},
646         {X86::VPMOVSXDQZrm, 8, 32, rebuildSExtCst},
647         {X86::VPMOVZXDQZrm, 8, 32, rebuildZExtCst}};
648     return FixupConstant(Fixups, 512, 1);
649   }
650   }
651 
652   auto ConvertToBroadcast = [&](unsigned OpSrc, int BW) {
653     if (OpSrc) {
654       if (const X86FoldTableEntry *Mem2Bcst =
655               llvm::lookupBroadcastFoldTableBySize(OpSrc, BW)) {
656         unsigned OpBcst = Mem2Bcst->DstOp;
657         unsigned OpNoBcst = Mem2Bcst->Flags & TB_INDEX_MASK;
658         FixupEntry Fixups[] = {{(int)OpBcst, 1, BW, rebuildSplatCst}};
659         // TODO: Add support for RegBitWidth, but currently rebuildSplatCst
660         // doesn't require it (defaults to Constant::getPrimitiveSizeInBits).
661         return FixupConstant(Fixups, 0, OpNoBcst);
662       }
663     }
664     return false;
665   };
666 
667   // Attempt to find a AVX512 mapping from a full width memory-fold instruction
668   // to a broadcast-fold instruction variant.
669   if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX)
670     return ConvertToBroadcast(Opc, 32) || ConvertToBroadcast(Opc, 64);
671 
672   // Reverse the X86InstrInfo::setExecutionDomainCustom EVEX->VEX logic
673   // conversion to see if we can convert to a broadcasted (integer) logic op.
674   if (HasVLX && !HasDQI) {
675     unsigned OpSrc32 = 0, OpSrc64 = 0;
676     switch (Opc) {
677     case X86::VANDPDrm:
678     case X86::VANDPSrm:
679     case X86::VPANDrm:
680       OpSrc32 = X86 ::VPANDDZ128rm;
681       OpSrc64 = X86 ::VPANDQZ128rm;
682       break;
683     case X86::VANDPDYrm:
684     case X86::VANDPSYrm:
685     case X86::VPANDYrm:
686       OpSrc32 = X86 ::VPANDDZ256rm;
687       OpSrc64 = X86 ::VPANDQZ256rm;
688       break;
689     case X86::VANDNPDrm:
690     case X86::VANDNPSrm:
691     case X86::VPANDNrm:
692       OpSrc32 = X86 ::VPANDNDZ128rm;
693       OpSrc64 = X86 ::VPANDNQZ128rm;
694       break;
695     case X86::VANDNPDYrm:
696     case X86::VANDNPSYrm:
697     case X86::VPANDNYrm:
698       OpSrc32 = X86 ::VPANDNDZ256rm;
699       OpSrc64 = X86 ::VPANDNQZ256rm;
700       break;
701     case X86::VORPDrm:
702     case X86::VORPSrm:
703     case X86::VPORrm:
704       OpSrc32 = X86 ::VPORDZ128rm;
705       OpSrc64 = X86 ::VPORQZ128rm;
706       break;
707     case X86::VORPDYrm:
708     case X86::VORPSYrm:
709     case X86::VPORYrm:
710       OpSrc32 = X86 ::VPORDZ256rm;
711       OpSrc64 = X86 ::VPORQZ256rm;
712       break;
713     case X86::VXORPDrm:
714     case X86::VXORPSrm:
715     case X86::VPXORrm:
716       OpSrc32 = X86 ::VPXORDZ128rm;
717       OpSrc64 = X86 ::VPXORQZ128rm;
718       break;
719     case X86::VXORPDYrm:
720     case X86::VXORPSYrm:
721     case X86::VPXORYrm:
722       OpSrc32 = X86 ::VPXORDZ256rm;
723       OpSrc64 = X86 ::VPXORQZ256rm;
724       break;
725     }
726     if (OpSrc32 || OpSrc64)
727       return ConvertToBroadcast(OpSrc32, 32) || ConvertToBroadcast(OpSrc64, 64);
728   }
729 
730   return false;
731 }
732 
733 bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
734   LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
735   bool Changed = false;
736   ST = &MF.getSubtarget<X86Subtarget>();
737   TII = ST->getInstrInfo();
738   SM = &ST->getSchedModel();
739 
740   for (MachineBasicBlock &MBB : MF) {
741     for (MachineInstr &MI : MBB) {
742       if (processInstruction(MF, MBB, MI)) {
743         ++NumInstChanges;
744         Changed = true;
745       }
746     }
747   }
748   LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
749   return Changed;
750 }
751