1 //===-- ValueObject.cpp ---------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Core/ValueObject.h" 10 11 #include "lldb/Core/Address.h" 12 #include "lldb/Core/Declaration.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/ValueObjectCast.h" 15 #include "lldb/Core/ValueObjectChild.h" 16 #include "lldb/Core/ValueObjectConstResult.h" 17 #include "lldb/Core/ValueObjectDynamicValue.h" 18 #include "lldb/Core/ValueObjectMemory.h" 19 #include "lldb/Core/ValueObjectSyntheticFilter.h" 20 #include "lldb/Core/ValueObjectVTable.h" 21 #include "lldb/DataFormatters/DataVisualization.h" 22 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 23 #include "lldb/DataFormatters/FormatManager.h" 24 #include "lldb/DataFormatters/StringPrinter.h" 25 #include "lldb/DataFormatters/TypeFormat.h" 26 #include "lldb/DataFormatters/TypeSummary.h" 27 #include "lldb/DataFormatters/ValueObjectPrinter.h" 28 #include "lldb/Expression/ExpressionVariable.h" 29 #include "lldb/Host/Config.h" 30 #include "lldb/Symbol/CompileUnit.h" 31 #include "lldb/Symbol/CompilerType.h" 32 #include "lldb/Symbol/SymbolContext.h" 33 #include "lldb/Symbol/Type.h" 34 #include "lldb/Symbol/Variable.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/StackFrame.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Target/Thread.h" 42 #include "lldb/Target/ThreadList.h" 43 #include "lldb/Utility/DataBuffer.h" 44 #include "lldb/Utility/DataBufferHeap.h" 45 #include "lldb/Utility/Flags.h" 46 #include "lldb/Utility/LLDBLog.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Scalar.h" 49 #include "lldb/Utility/Stream.h" 50 #include "lldb/Utility/StreamString.h" 51 #include "lldb/lldb-private-types.h" 52 53 #include "llvm/Support/Compiler.h" 54 55 #include <algorithm> 56 #include <cstdint> 57 #include <cstdlib> 58 #include <memory> 59 #include <optional> 60 #include <tuple> 61 62 #include <cassert> 63 #include <cinttypes> 64 #include <cstdio> 65 #include <cstring> 66 67 #include <lldb/Core/ValueObject.h> 68 69 namespace lldb_private { 70 class ExecutionContextScope; 71 } 72 namespace lldb_private { 73 class SymbolContextScope; 74 } 75 76 using namespace lldb; 77 using namespace lldb_private; 78 79 static user_id_t g_value_obj_uid = 0; 80 81 // ValueObject constructor 82 ValueObject::ValueObject(ValueObject &parent) 83 : m_parent(&parent), m_update_point(parent.GetUpdatePoint()), 84 m_manager(parent.GetManager()), m_id(++g_value_obj_uid) { 85 m_flags.m_is_synthetic_children_generated = 86 parent.m_flags.m_is_synthetic_children_generated; 87 m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder()); 88 m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize()); 89 m_manager->ManageObject(this); 90 } 91 92 // ValueObject constructor 93 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 94 ValueObjectManager &manager, 95 AddressType child_ptr_or_ref_addr_type) 96 : m_update_point(exe_scope), m_manager(&manager), 97 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 98 m_id(++g_value_obj_uid) { 99 if (exe_scope) { 100 TargetSP target_sp(exe_scope->CalculateTarget()); 101 if (target_sp) { 102 const ArchSpec &arch = target_sp->GetArchitecture(); 103 m_data.SetByteOrder(arch.GetByteOrder()); 104 m_data.SetAddressByteSize(arch.GetAddressByteSize()); 105 } 106 } 107 m_manager->ManageObject(this); 108 } 109 110 // Destructor 111 ValueObject::~ValueObject() = default; 112 113 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 114 115 bool did_change_formats = false; 116 117 if (update_format) 118 did_change_formats = UpdateFormatsIfNeeded(); 119 120 // If this is a constant value, then our success is predicated on whether we 121 // have an error or not 122 if (GetIsConstant()) { 123 // if you are constant, things might still have changed behind your back 124 // (e.g. you are a frozen object and things have changed deeper than you 125 // cared to freeze-dry yourself) in this case, your value has not changed, 126 // but "computed" entries might have, so you might now have a different 127 // summary, or a different object description. clear these so we will 128 // recompute them 129 if (update_format && !did_change_formats) 130 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 131 eClearUserVisibleDataItemsDescription); 132 return m_error.Success(); 133 } 134 135 bool first_update = IsChecksumEmpty(); 136 137 if (NeedsUpdating()) { 138 m_update_point.SetUpdated(); 139 140 // Save the old value using swap to avoid a string copy which also will 141 // clear our m_value_str 142 if (m_value_str.empty()) { 143 m_flags.m_old_value_valid = false; 144 } else { 145 m_flags.m_old_value_valid = true; 146 m_old_value_str.swap(m_value_str); 147 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 148 } 149 150 ClearUserVisibleData(); 151 152 if (IsInScope()) { 153 const bool value_was_valid = GetValueIsValid(); 154 SetValueDidChange(false); 155 156 m_error.Clear(); 157 158 // Call the pure virtual function to update the value 159 160 bool need_compare_checksums = false; 161 llvm::SmallVector<uint8_t, 16> old_checksum; 162 163 if (!first_update && CanProvideValue()) { 164 need_compare_checksums = true; 165 old_checksum.resize(m_value_checksum.size()); 166 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 167 old_checksum.begin()); 168 } 169 170 bool success = UpdateValue(); 171 172 SetValueIsValid(success); 173 174 if (success) { 175 UpdateChildrenAddressType(); 176 const uint64_t max_checksum_size = 128; 177 m_data.Checksum(m_value_checksum, max_checksum_size); 178 } else { 179 need_compare_checksums = false; 180 m_value_checksum.clear(); 181 } 182 183 assert(!need_compare_checksums || 184 (!old_checksum.empty() && !m_value_checksum.empty())); 185 186 if (first_update) 187 SetValueDidChange(false); 188 else if (!m_flags.m_value_did_change && !success) { 189 // The value wasn't gotten successfully, so we mark this as changed if 190 // the value used to be valid and now isn't 191 SetValueDidChange(value_was_valid); 192 } else if (need_compare_checksums) { 193 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 194 m_value_checksum.size())); 195 } 196 197 } else { 198 m_error.SetErrorString("out of scope"); 199 } 200 } 201 return m_error.Success(); 202 } 203 204 bool ValueObject::UpdateFormatsIfNeeded() { 205 Log *log = GetLog(LLDBLog::DataFormatters); 206 LLDB_LOGF(log, 207 "[%s %p] checking for FormatManager revisions. ValueObject " 208 "rev: %d - Global rev: %d", 209 GetName().GetCString(), static_cast<void *>(this), 210 m_last_format_mgr_revision, 211 DataVisualization::GetCurrentRevision()); 212 213 bool any_change = false; 214 215 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 216 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 217 any_change = true; 218 219 SetValueFormat(DataVisualization::GetFormat(*this, GetDynamicValueType())); 220 SetSummaryFormat( 221 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 222 SetSyntheticChildren( 223 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 224 } 225 226 return any_change; 227 } 228 229 void ValueObject::SetNeedsUpdate() { 230 m_update_point.SetNeedsUpdate(); 231 // We have to clear the value string here so ConstResult children will notice 232 // if their values are changed by hand (i.e. with SetValueAsCString). 233 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 234 } 235 236 void ValueObject::ClearDynamicTypeInformation() { 237 m_flags.m_children_count_valid = false; 238 m_flags.m_did_calculate_complete_objc_class_type = false; 239 m_last_format_mgr_revision = 0; 240 m_override_type = CompilerType(); 241 SetValueFormat(lldb::TypeFormatImplSP()); 242 SetSummaryFormat(lldb::TypeSummaryImplSP()); 243 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 244 } 245 246 CompilerType ValueObject::MaybeCalculateCompleteType() { 247 CompilerType compiler_type(GetCompilerTypeImpl()); 248 249 if (m_flags.m_did_calculate_complete_objc_class_type) { 250 if (m_override_type.IsValid()) 251 return m_override_type; 252 else 253 return compiler_type; 254 } 255 256 m_flags.m_did_calculate_complete_objc_class_type = true; 257 258 ProcessSP process_sp( 259 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 260 261 if (!process_sp) 262 return compiler_type; 263 264 if (auto *runtime = 265 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) { 266 if (std::optional<CompilerType> complete_type = 267 runtime->GetRuntimeType(compiler_type)) { 268 m_override_type = *complete_type; 269 if (m_override_type.IsValid()) 270 return m_override_type; 271 } 272 } 273 return compiler_type; 274 } 275 276 277 278 DataExtractor &ValueObject::GetDataExtractor() { 279 UpdateValueIfNeeded(false); 280 return m_data; 281 } 282 283 const Status &ValueObject::GetError() { 284 UpdateValueIfNeeded(false); 285 return m_error; 286 } 287 288 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 289 const DataExtractor &data) { 290 if (UpdateValueIfNeeded(false)) { 291 if (m_location_str.empty()) { 292 StreamString sstr; 293 294 Value::ValueType value_type = value.GetValueType(); 295 296 switch (value_type) { 297 case Value::ValueType::Invalid: 298 m_location_str = "invalid"; 299 break; 300 case Value::ValueType::Scalar: 301 if (value.GetContextType() == Value::ContextType::RegisterInfo) { 302 RegisterInfo *reg_info = value.GetRegisterInfo(); 303 if (reg_info) { 304 if (reg_info->name) 305 m_location_str = reg_info->name; 306 else if (reg_info->alt_name) 307 m_location_str = reg_info->alt_name; 308 if (m_location_str.empty()) 309 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 310 ? "vector" 311 : "scalar"; 312 } 313 } 314 if (m_location_str.empty()) 315 m_location_str = "scalar"; 316 break; 317 318 case Value::ValueType::LoadAddress: 319 case Value::ValueType::FileAddress: 320 case Value::ValueType::HostAddress: { 321 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 322 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 323 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 324 m_location_str = std::string(sstr.GetString()); 325 } break; 326 } 327 } 328 } 329 return m_location_str.c_str(); 330 } 331 332 bool ValueObject::ResolveValue(Scalar &scalar) { 333 if (UpdateValueIfNeeded( 334 false)) // make sure that you are up to date before returning anything 335 { 336 ExecutionContext exe_ctx(GetExecutionContextRef()); 337 Value tmp_value(m_value); 338 scalar = tmp_value.ResolveValue(&exe_ctx, GetModule().get()); 339 if (scalar.IsValid()) { 340 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 341 if (bitfield_bit_size) 342 return scalar.ExtractBitfield(bitfield_bit_size, 343 GetBitfieldBitOffset()); 344 return true; 345 } 346 } 347 return false; 348 } 349 350 bool ValueObject::IsLogicalTrue(Status &error) { 351 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 352 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 353 switch (is_logical_true) { 354 case eLazyBoolYes: 355 case eLazyBoolNo: 356 return (is_logical_true == true); 357 case eLazyBoolCalculate: 358 break; 359 } 360 } 361 362 Scalar scalar_value; 363 364 if (!ResolveValue(scalar_value)) { 365 error.SetErrorString("failed to get a scalar result"); 366 return false; 367 } 368 369 bool ret; 370 ret = scalar_value.ULongLong(1) != 0; 371 error.Clear(); 372 return ret; 373 } 374 375 ValueObjectSP ValueObject::GetChildAtIndex(uint32_t idx, bool can_create) { 376 ValueObjectSP child_sp; 377 // We may need to update our value if we are dynamic 378 if (IsPossibleDynamicType()) 379 UpdateValueIfNeeded(false); 380 if (idx < GetNumChildrenIgnoringErrors()) { 381 // Check if we have already made the child value object? 382 if (can_create && !m_children.HasChildAtIndex(idx)) { 383 // No we haven't created the child at this index, so lets have our 384 // subclass do it and cache the result for quick future access. 385 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx)); 386 } 387 388 ValueObject *child = m_children.GetChildAtIndex(idx); 389 if (child != nullptr) 390 return child->GetSP(); 391 } 392 return child_sp; 393 } 394 395 lldb::ValueObjectSP 396 ValueObject::GetChildAtNamePath(llvm::ArrayRef<llvm::StringRef> names) { 397 if (names.size() == 0) 398 return GetSP(); 399 ValueObjectSP root(GetSP()); 400 for (llvm::StringRef name : names) { 401 root = root->GetChildMemberWithName(name); 402 if (!root) { 403 return root; 404 } 405 } 406 return root; 407 } 408 409 size_t ValueObject::GetIndexOfChildWithName(llvm::StringRef name) { 410 bool omit_empty_base_classes = true; 411 return GetCompilerType().GetIndexOfChildWithName(name, 412 omit_empty_base_classes); 413 } 414 415 ValueObjectSP ValueObject::GetChildMemberWithName(llvm::StringRef name, 416 bool can_create) { 417 // We may need to update our value if we are dynamic. 418 if (IsPossibleDynamicType()) 419 UpdateValueIfNeeded(false); 420 421 // When getting a child by name, it could be buried inside some base classes 422 // (which really aren't part of the expression path), so we need a vector of 423 // indexes that can get us down to the correct child. 424 std::vector<uint32_t> child_indexes; 425 bool omit_empty_base_classes = true; 426 427 if (!GetCompilerType().IsValid()) 428 return ValueObjectSP(); 429 430 const size_t num_child_indexes = 431 GetCompilerType().GetIndexOfChildMemberWithName( 432 name, omit_empty_base_classes, child_indexes); 433 if (num_child_indexes == 0) 434 return nullptr; 435 436 ValueObjectSP child_sp = GetSP(); 437 for (uint32_t idx : child_indexes) 438 if (child_sp) 439 child_sp = child_sp->GetChildAtIndex(idx, can_create); 440 return child_sp; 441 } 442 443 llvm::Expected<uint32_t> ValueObject::GetNumChildren(uint32_t max) { 444 UpdateValueIfNeeded(); 445 446 if (max < UINT32_MAX) { 447 if (m_flags.m_children_count_valid) { 448 size_t children_count = m_children.GetChildrenCount(); 449 return children_count <= max ? children_count : max; 450 } else 451 return CalculateNumChildren(max); 452 } 453 454 if (!m_flags.m_children_count_valid) { 455 auto num_children_or_err = CalculateNumChildren(); 456 if (num_children_or_err) 457 SetNumChildren(*num_children_or_err); 458 else 459 return num_children_or_err; 460 } 461 return m_children.GetChildrenCount(); 462 } 463 464 uint32_t ValueObject::GetNumChildrenIgnoringErrors(uint32_t max) { 465 auto value_or_err = GetNumChildren(max); 466 if (value_or_err) 467 return *value_or_err; 468 LLDB_LOG_ERRORV(GetLog(LLDBLog::DataFormatters), value_or_err.takeError(), 469 "{0}"); 470 return 0; 471 } 472 473 bool ValueObject::MightHaveChildren() { 474 bool has_children = false; 475 const uint32_t type_info = GetTypeInfo(); 476 if (type_info) { 477 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 478 has_children = true; 479 } else { 480 has_children = GetNumChildrenIgnoringErrors() > 0; 481 } 482 return has_children; 483 } 484 485 // Should only be called by ValueObject::GetNumChildren() 486 void ValueObject::SetNumChildren(uint32_t num_children) { 487 m_flags.m_children_count_valid = true; 488 m_children.SetChildrenCount(num_children); 489 } 490 491 ValueObject *ValueObject::CreateChildAtIndex(size_t idx) { 492 bool omit_empty_base_classes = true; 493 bool ignore_array_bounds = false; 494 std::string child_name; 495 uint32_t child_byte_size = 0; 496 int32_t child_byte_offset = 0; 497 uint32_t child_bitfield_bit_size = 0; 498 uint32_t child_bitfield_bit_offset = 0; 499 bool child_is_base_class = false; 500 bool child_is_deref_of_parent = false; 501 uint64_t language_flags = 0; 502 const bool transparent_pointers = true; 503 504 ExecutionContext exe_ctx(GetExecutionContextRef()); 505 506 auto child_compiler_type_or_err = 507 GetCompilerType().GetChildCompilerTypeAtIndex( 508 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 509 ignore_array_bounds, child_name, child_byte_size, child_byte_offset, 510 child_bitfield_bit_size, child_bitfield_bit_offset, 511 child_is_base_class, child_is_deref_of_parent, this, language_flags); 512 if (!child_compiler_type_or_err || !child_compiler_type_or_err->IsValid()) { 513 LLDB_LOG_ERROR(GetLog(LLDBLog::Types), 514 child_compiler_type_or_err.takeError(), 515 "could not find child: {0}"); 516 return nullptr; 517 } 518 519 return new ValueObjectChild( 520 *this, *child_compiler_type_or_err, ConstString(child_name), 521 child_byte_size, child_byte_offset, child_bitfield_bit_size, 522 child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent, 523 eAddressTypeInvalid, language_flags); 524 } 525 526 ValueObject *ValueObject::CreateSyntheticArrayMember(size_t idx) { 527 bool omit_empty_base_classes = true; 528 bool ignore_array_bounds = true; 529 std::string child_name; 530 uint32_t child_byte_size = 0; 531 int32_t child_byte_offset = 0; 532 uint32_t child_bitfield_bit_size = 0; 533 uint32_t child_bitfield_bit_offset = 0; 534 bool child_is_base_class = false; 535 bool child_is_deref_of_parent = false; 536 uint64_t language_flags = 0; 537 const bool transparent_pointers = false; 538 539 ExecutionContext exe_ctx(GetExecutionContextRef()); 540 541 auto child_compiler_type_or_err = 542 GetCompilerType().GetChildCompilerTypeAtIndex( 543 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 544 ignore_array_bounds, child_name, child_byte_size, child_byte_offset, 545 child_bitfield_bit_size, child_bitfield_bit_offset, 546 child_is_base_class, child_is_deref_of_parent, this, language_flags); 547 if (!child_compiler_type_or_err) { 548 LLDB_LOG_ERROR(GetLog(LLDBLog::Types), 549 child_compiler_type_or_err.takeError(), 550 "could not find child: {0}"); 551 return nullptr; 552 } 553 554 if (child_compiler_type_or_err->IsValid()) { 555 child_byte_offset += child_byte_size * idx; 556 557 return new ValueObjectChild( 558 *this, *child_compiler_type_or_err, ConstString(child_name), 559 child_byte_size, child_byte_offset, child_bitfield_bit_size, 560 child_bitfield_bit_offset, child_is_base_class, 561 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 562 } 563 564 // In case of an incomplete type, try to use the ValueObject's 565 // synthetic value to create the child ValueObject. 566 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue()) 567 return synth_valobj_sp->GetChildAtIndex(idx, /*can_create=*/true).get(); 568 569 return nullptr; 570 } 571 572 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 573 std::string &destination, 574 lldb::LanguageType lang) { 575 return GetSummaryAsCString(summary_ptr, destination, 576 TypeSummaryOptions().SetLanguage(lang)); 577 } 578 579 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 580 std::string &destination, 581 const TypeSummaryOptions &options) { 582 destination.clear(); 583 584 // If we have a forcefully completed type, don't try and show a summary from 585 // a valid summary string or function because the type is not complete and 586 // no member variables or member functions will be available. 587 if (GetCompilerType().IsForcefullyCompleted()) { 588 destination = "<incomplete type>"; 589 return true; 590 } 591 592 // ideally we would like to bail out if passing NULL, but if we do so we end 593 // up not providing the summary for function pointers anymore 594 if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary) 595 return false; 596 597 m_flags.m_is_getting_summary = true; 598 599 TypeSummaryOptions actual_options(options); 600 601 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 602 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 603 604 // this is a hot path in code and we prefer to avoid setting this string all 605 // too often also clearing out other information that we might care to see in 606 // a crash log. might be useful in very specific situations though. 607 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 608 Summary provider's description is %s", 609 GetTypeName().GetCString(), 610 GetName().GetCString(), 611 summary_ptr->GetDescription().c_str());*/ 612 613 if (UpdateValueIfNeeded(false) && summary_ptr) { 614 if (HasSyntheticValue()) 615 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 616 // the synthetic children being 617 // up-to-date (e.g. ${svar%#}) 618 summary_ptr->FormatObject(this, destination, actual_options); 619 } 620 m_flags.m_is_getting_summary = false; 621 return !destination.empty(); 622 } 623 624 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 625 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 626 TypeSummaryOptions summary_options; 627 summary_options.SetLanguage(lang); 628 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 629 summary_options); 630 } 631 if (m_summary_str.empty()) 632 return nullptr; 633 return m_summary_str.c_str(); 634 } 635 636 bool ValueObject::GetSummaryAsCString(std::string &destination, 637 const TypeSummaryOptions &options) { 638 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 639 } 640 641 bool ValueObject::IsCStringContainer(bool check_pointer) { 642 CompilerType pointee_or_element_compiler_type; 643 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 644 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 645 pointee_or_element_compiler_type.IsCharType()); 646 if (!is_char_arr_ptr) 647 return false; 648 if (!check_pointer) 649 return true; 650 if (type_flags.Test(eTypeIsArray)) 651 return true; 652 addr_t cstr_address = LLDB_INVALID_ADDRESS; 653 AddressType cstr_address_type = eAddressTypeInvalid; 654 cstr_address = GetPointerValue(&cstr_address_type); 655 return (cstr_address != LLDB_INVALID_ADDRESS); 656 } 657 658 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 659 uint32_t item_count) { 660 CompilerType pointee_or_element_compiler_type; 661 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 662 const bool is_pointer_type = type_info & eTypeIsPointer; 663 const bool is_array_type = type_info & eTypeIsArray; 664 if (!(is_pointer_type || is_array_type)) 665 return 0; 666 667 if (item_count == 0) 668 return 0; 669 670 ExecutionContext exe_ctx(GetExecutionContextRef()); 671 672 std::optional<uint64_t> item_type_size = 673 pointee_or_element_compiler_type.GetByteSize( 674 exe_ctx.GetBestExecutionContextScope()); 675 if (!item_type_size) 676 return 0; 677 const uint64_t bytes = item_count * *item_type_size; 678 const uint64_t offset = item_idx * *item_type_size; 679 680 if (item_idx == 0 && item_count == 1) // simply a deref 681 { 682 if (is_pointer_type) { 683 Status error; 684 ValueObjectSP pointee_sp = Dereference(error); 685 if (error.Fail() || pointee_sp.get() == nullptr) 686 return 0; 687 return pointee_sp->GetData(data, error); 688 } else { 689 ValueObjectSP child_sp = GetChildAtIndex(0); 690 if (child_sp.get() == nullptr) 691 return 0; 692 Status error; 693 return child_sp->GetData(data, error); 694 } 695 return true; 696 } else /* (items > 1) */ 697 { 698 Status error; 699 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr; 700 lldb::DataBufferSP data_sp(heap_buf_ptr = 701 new lldb_private::DataBufferHeap()); 702 703 AddressType addr_type; 704 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 705 : GetAddressOf(true, &addr_type); 706 707 switch (addr_type) { 708 case eAddressTypeFile: { 709 ModuleSP module_sp(GetModule()); 710 if (module_sp) { 711 addr = addr + offset; 712 Address so_addr; 713 module_sp->ResolveFileAddress(addr, so_addr); 714 ExecutionContext exe_ctx(GetExecutionContextRef()); 715 Target *target = exe_ctx.GetTargetPtr(); 716 if (target) { 717 heap_buf_ptr->SetByteSize(bytes); 718 size_t bytes_read = target->ReadMemory( 719 so_addr, heap_buf_ptr->GetBytes(), bytes, error, true); 720 if (error.Success()) { 721 data.SetData(data_sp); 722 return bytes_read; 723 } 724 } 725 } 726 } break; 727 case eAddressTypeLoad: { 728 ExecutionContext exe_ctx(GetExecutionContextRef()); 729 Process *process = exe_ctx.GetProcessPtr(); 730 if (process) { 731 heap_buf_ptr->SetByteSize(bytes); 732 size_t bytes_read = process->ReadMemory( 733 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 734 if (error.Success() || bytes_read > 0) { 735 data.SetData(data_sp); 736 return bytes_read; 737 } 738 } 739 } break; 740 case eAddressTypeHost: { 741 auto max_bytes = 742 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 743 if (max_bytes && *max_bytes > offset) { 744 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 745 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 746 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 747 break; 748 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 749 data.SetData(data_sp); 750 return bytes_read; 751 } 752 } break; 753 case eAddressTypeInvalid: 754 break; 755 } 756 } 757 return 0; 758 } 759 760 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 761 UpdateValueIfNeeded(false); 762 ExecutionContext exe_ctx(GetExecutionContextRef()); 763 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 764 if (error.Fail()) { 765 if (m_data.GetByteSize()) { 766 data = m_data; 767 error.Clear(); 768 return data.GetByteSize(); 769 } else { 770 return 0; 771 } 772 } 773 data.SetAddressByteSize(m_data.GetAddressByteSize()); 774 data.SetByteOrder(m_data.GetByteOrder()); 775 return data.GetByteSize(); 776 } 777 778 bool ValueObject::SetData(DataExtractor &data, Status &error) { 779 error.Clear(); 780 // Make sure our value is up to date first so that our location and location 781 // type is valid. 782 if (!UpdateValueIfNeeded(false)) { 783 error.SetErrorString("unable to read value"); 784 return false; 785 } 786 787 uint64_t count = 0; 788 const Encoding encoding = GetCompilerType().GetEncoding(count); 789 790 const size_t byte_size = GetByteSize().value_or(0); 791 792 Value::ValueType value_type = m_value.GetValueType(); 793 794 switch (value_type) { 795 case Value::ValueType::Invalid: 796 error.SetErrorString("invalid location"); 797 return false; 798 case Value::ValueType::Scalar: { 799 Status set_error = 800 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 801 802 if (!set_error.Success()) { 803 error.SetErrorStringWithFormat("unable to set scalar value: %s", 804 set_error.AsCString()); 805 return false; 806 } 807 } break; 808 case Value::ValueType::LoadAddress: { 809 // If it is a load address, then the scalar value is the storage location 810 // of the data, and we have to shove this value down to that load location. 811 ExecutionContext exe_ctx(GetExecutionContextRef()); 812 Process *process = exe_ctx.GetProcessPtr(); 813 if (process) { 814 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 815 size_t bytes_written = process->WriteMemory( 816 target_addr, data.GetDataStart(), byte_size, error); 817 if (!error.Success()) 818 return false; 819 if (bytes_written != byte_size) { 820 error.SetErrorString("unable to write value to memory"); 821 return false; 822 } 823 } 824 } break; 825 case Value::ValueType::HostAddress: { 826 // If it is a host address, then we stuff the scalar as a DataBuffer into 827 // the Value's data. 828 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 829 m_data.SetData(buffer_sp, 0); 830 data.CopyByteOrderedData(0, byte_size, 831 const_cast<uint8_t *>(m_data.GetDataStart()), 832 byte_size, m_data.GetByteOrder()); 833 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 834 } break; 835 case Value::ValueType::FileAddress: 836 break; 837 } 838 839 // If we have reached this point, then we have successfully changed the 840 // value. 841 SetNeedsUpdate(); 842 return true; 843 } 844 845 static bool CopyStringDataToBufferSP(const StreamString &source, 846 lldb::WritableDataBufferSP &destination) { 847 llvm::StringRef src = source.GetString(); 848 src = src.rtrim('\0'); 849 destination = std::make_shared<DataBufferHeap>(src.size(), 0); 850 memcpy(destination->GetBytes(), src.data(), src.size()); 851 return true; 852 } 853 854 std::pair<size_t, bool> 855 ValueObject::ReadPointedString(lldb::WritableDataBufferSP &buffer_sp, 856 Status &error, bool honor_array) { 857 bool was_capped = false; 858 StreamString s; 859 ExecutionContext exe_ctx(GetExecutionContextRef()); 860 Target *target = exe_ctx.GetTargetPtr(); 861 862 if (!target) { 863 s << "<no target to read from>"; 864 error.SetErrorString("no target to read from"); 865 CopyStringDataToBufferSP(s, buffer_sp); 866 return {0, was_capped}; 867 } 868 869 const auto max_length = target->GetMaximumSizeOfStringSummary(); 870 871 size_t bytes_read = 0; 872 size_t total_bytes_read = 0; 873 874 CompilerType compiler_type = GetCompilerType(); 875 CompilerType elem_or_pointee_compiler_type; 876 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 877 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 878 elem_or_pointee_compiler_type.IsCharType()) { 879 addr_t cstr_address = LLDB_INVALID_ADDRESS; 880 AddressType cstr_address_type = eAddressTypeInvalid; 881 882 size_t cstr_len = 0; 883 bool capped_data = false; 884 const bool is_array = type_flags.Test(eTypeIsArray); 885 if (is_array) { 886 // We have an array 887 uint64_t array_size = 0; 888 if (compiler_type.IsArrayType(nullptr, &array_size)) { 889 cstr_len = array_size; 890 if (cstr_len > max_length) { 891 capped_data = true; 892 cstr_len = max_length; 893 } 894 } 895 cstr_address = GetAddressOf(true, &cstr_address_type); 896 } else { 897 // We have a pointer 898 cstr_address = GetPointerValue(&cstr_address_type); 899 } 900 901 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 902 if (cstr_address_type == eAddressTypeHost && is_array) { 903 const char *cstr = GetDataExtractor().PeekCStr(0); 904 if (cstr == nullptr) { 905 s << "<invalid address>"; 906 error.SetErrorString("invalid address"); 907 CopyStringDataToBufferSP(s, buffer_sp); 908 return {0, was_capped}; 909 } 910 s << llvm::StringRef(cstr, cstr_len); 911 CopyStringDataToBufferSP(s, buffer_sp); 912 return {cstr_len, was_capped}; 913 } else { 914 s << "<invalid address>"; 915 error.SetErrorString("invalid address"); 916 CopyStringDataToBufferSP(s, buffer_sp); 917 return {0, was_capped}; 918 } 919 } 920 921 Address cstr_so_addr(cstr_address); 922 DataExtractor data; 923 if (cstr_len > 0 && honor_array) { 924 // I am using GetPointeeData() here to abstract the fact that some 925 // ValueObjects are actually frozen pointers in the host but the pointed- 926 // to data lives in the debuggee, and GetPointeeData() automatically 927 // takes care of this 928 GetPointeeData(data, 0, cstr_len); 929 930 if ((bytes_read = data.GetByteSize()) > 0) { 931 total_bytes_read = bytes_read; 932 for (size_t offset = 0; offset < bytes_read; offset++) 933 s.Printf("%c", *data.PeekData(offset, 1)); 934 if (capped_data) 935 was_capped = true; 936 } 937 } else { 938 cstr_len = max_length; 939 const size_t k_max_buf_size = 64; 940 941 size_t offset = 0; 942 943 int cstr_len_displayed = -1; 944 bool capped_cstr = false; 945 // I am using GetPointeeData() here to abstract the fact that some 946 // ValueObjects are actually frozen pointers in the host but the pointed- 947 // to data lives in the debuggee, and GetPointeeData() automatically 948 // takes care of this 949 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 950 total_bytes_read += bytes_read; 951 const char *cstr = data.PeekCStr(0); 952 size_t len = strnlen(cstr, k_max_buf_size); 953 if (cstr_len_displayed < 0) 954 cstr_len_displayed = len; 955 956 if (len == 0) 957 break; 958 cstr_len_displayed += len; 959 if (len > bytes_read) 960 len = bytes_read; 961 if (len > cstr_len) 962 len = cstr_len; 963 964 for (size_t offset = 0; offset < bytes_read; offset++) 965 s.Printf("%c", *data.PeekData(offset, 1)); 966 967 if (len < k_max_buf_size) 968 break; 969 970 if (len >= cstr_len) { 971 capped_cstr = true; 972 break; 973 } 974 975 cstr_len -= len; 976 offset += len; 977 } 978 979 if (cstr_len_displayed >= 0) { 980 if (capped_cstr) 981 was_capped = true; 982 } 983 } 984 } else { 985 error.SetErrorString("not a string object"); 986 s << "<not a string object>"; 987 } 988 CopyStringDataToBufferSP(s, buffer_sp); 989 return {total_bytes_read, was_capped}; 990 } 991 992 llvm::Expected<std::string> ValueObject::GetObjectDescription() { 993 if (!UpdateValueIfNeeded(true)) 994 return llvm::createStringError("could not update value"); 995 996 // Return cached value. 997 if (!m_object_desc_str.empty()) 998 return m_object_desc_str; 999 1000 ExecutionContext exe_ctx(GetExecutionContextRef()); 1001 Process *process = exe_ctx.GetProcessPtr(); 1002 if (!process) 1003 return llvm::createStringError("no process"); 1004 1005 // Returns the object description produced by one language runtime. 1006 auto get_object_description = 1007 [&](LanguageType language) -> llvm::Expected<std::string> { 1008 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) { 1009 StreamString s; 1010 if (llvm::Error error = runtime->GetObjectDescription(s, *this)) 1011 return error; 1012 m_object_desc_str = s.GetString(); 1013 return m_object_desc_str; 1014 } 1015 return llvm::createStringError("no native language runtime"); 1016 }; 1017 1018 // Try the native language runtime first. 1019 LanguageType native_language = GetObjectRuntimeLanguage(); 1020 llvm::Expected<std::string> desc = get_object_description(native_language); 1021 if (desc) 1022 return desc; 1023 1024 // Try the Objective-C language runtime. This fallback is necessary 1025 // for Objective-C++ and mixed Objective-C / C++ programs. 1026 if (Language::LanguageIsCFamily(native_language)) { 1027 // We're going to try again, so let's drop the first error. 1028 llvm::consumeError(desc.takeError()); 1029 return get_object_description(eLanguageTypeObjC); 1030 } 1031 return desc; 1032 } 1033 1034 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1035 std::string &destination) { 1036 if (UpdateValueIfNeeded(false)) 1037 return format.FormatObject(this, destination); 1038 else 1039 return false; 1040 } 1041 1042 bool ValueObject::GetValueAsCString(lldb::Format format, 1043 std::string &destination) { 1044 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1045 } 1046 1047 const char *ValueObject::GetValueAsCString() { 1048 if (UpdateValueIfNeeded(true)) { 1049 lldb::TypeFormatImplSP format_sp; 1050 lldb::Format my_format = GetFormat(); 1051 if (my_format == lldb::eFormatDefault) { 1052 if (m_type_format_sp) 1053 format_sp = m_type_format_sp; 1054 else { 1055 if (m_flags.m_is_bitfield_for_scalar) 1056 my_format = eFormatUnsigned; 1057 else { 1058 if (m_value.GetContextType() == Value::ContextType::RegisterInfo) { 1059 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1060 if (reg_info) 1061 my_format = reg_info->format; 1062 } else { 1063 my_format = GetValue().GetCompilerType().GetFormat(); 1064 } 1065 } 1066 } 1067 } 1068 if (my_format != m_last_format || m_value_str.empty()) { 1069 m_last_format = my_format; 1070 if (!format_sp) 1071 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format); 1072 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1073 if (!m_flags.m_value_did_change && m_flags.m_old_value_valid) { 1074 // The value was gotten successfully, so we consider the value as 1075 // changed if the value string differs 1076 SetValueDidChange(m_old_value_str != m_value_str); 1077 } 1078 } 1079 } 1080 } 1081 if (m_value_str.empty()) 1082 return nullptr; 1083 return m_value_str.c_str(); 1084 } 1085 1086 // if > 8bytes, 0 is returned. this method should mostly be used to read 1087 // address values out of pointers 1088 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1089 // If our byte size is zero this is an aggregate type that has children 1090 if (CanProvideValue()) { 1091 Scalar scalar; 1092 if (ResolveValue(scalar)) { 1093 if (success) 1094 *success = true; 1095 scalar.MakeUnsigned(); 1096 return scalar.ULongLong(fail_value); 1097 } 1098 // fallthrough, otherwise... 1099 } 1100 1101 if (success) 1102 *success = false; 1103 return fail_value; 1104 } 1105 1106 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1107 // If our byte size is zero this is an aggregate type that has children 1108 if (CanProvideValue()) { 1109 Scalar scalar; 1110 if (ResolveValue(scalar)) { 1111 if (success) 1112 *success = true; 1113 scalar.MakeSigned(); 1114 return scalar.SLongLong(fail_value); 1115 } 1116 // fallthrough, otherwise... 1117 } 1118 1119 if (success) 1120 *success = false; 1121 return fail_value; 1122 } 1123 1124 llvm::Expected<llvm::APSInt> ValueObject::GetValueAsAPSInt() { 1125 // Make sure the type can be converted to an APSInt. 1126 if (!GetCompilerType().IsInteger() && 1127 !GetCompilerType().IsScopedEnumerationType() && 1128 !GetCompilerType().IsEnumerationType() && 1129 !GetCompilerType().IsPointerType() && 1130 !GetCompilerType().IsNullPtrType() && 1131 !GetCompilerType().IsReferenceType() && !GetCompilerType().IsBoolean()) 1132 return llvm::make_error<llvm::StringError>( 1133 "type cannot be converted to APSInt", llvm::inconvertibleErrorCode()); 1134 1135 if (CanProvideValue()) { 1136 Scalar scalar; 1137 if (ResolveValue(scalar)) 1138 return scalar.GetAPSInt(); 1139 } 1140 1141 return llvm::make_error<llvm::StringError>( 1142 "error occurred; unable to convert to APSInt", 1143 llvm::inconvertibleErrorCode()); 1144 } 1145 1146 llvm::Expected<llvm::APFloat> ValueObject::GetValueAsAPFloat() { 1147 if (!GetCompilerType().IsFloat()) 1148 return llvm::make_error<llvm::StringError>( 1149 "type cannot be converted to APFloat", llvm::inconvertibleErrorCode()); 1150 1151 if (CanProvideValue()) { 1152 Scalar scalar; 1153 if (ResolveValue(scalar)) 1154 return scalar.GetAPFloat(); 1155 } 1156 1157 return llvm::make_error<llvm::StringError>( 1158 "error occurred; unable to convert to APFloat", 1159 llvm::inconvertibleErrorCode()); 1160 } 1161 1162 llvm::Expected<bool> ValueObject::GetValueAsBool() { 1163 CompilerType val_type = GetCompilerType(); 1164 if (val_type.IsInteger() || val_type.IsUnscopedEnumerationType() || 1165 val_type.IsPointerType()) { 1166 auto value_or_err = GetValueAsAPSInt(); 1167 if (value_or_err) 1168 return value_or_err->getBoolValue(); 1169 } 1170 if (val_type.IsFloat()) { 1171 auto value_or_err = GetValueAsAPFloat(); 1172 if (value_or_err) 1173 return value_or_err->isNonZero(); 1174 } 1175 if (val_type.IsArrayType()) 1176 return GetAddressOf() != 0; 1177 1178 return llvm::make_error<llvm::StringError>("type cannot be converted to bool", 1179 llvm::inconvertibleErrorCode()); 1180 } 1181 1182 void ValueObject::SetValueFromInteger(const llvm::APInt &value, Status &error) { 1183 // Verify the current object is an integer object 1184 CompilerType val_type = GetCompilerType(); 1185 if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() && 1186 !val_type.IsFloat() && !val_type.IsPointerType() && 1187 !val_type.IsScalarType()) { 1188 error.SetErrorString("current value object is not an integer objet"); 1189 return; 1190 } 1191 1192 // Verify the current object is not actually associated with any program 1193 // variable. 1194 if (GetVariable()) { 1195 error.SetErrorString("current value object is not a temporary object"); 1196 return; 1197 } 1198 1199 // Verify the proposed new value is the right size. 1200 lldb::TargetSP target = GetTargetSP(); 1201 uint64_t byte_size = 0; 1202 if (auto temp = GetCompilerType().GetByteSize(target.get())) 1203 byte_size = temp.value(); 1204 if (value.getBitWidth() != byte_size * CHAR_BIT) { 1205 error.SetErrorString( 1206 "illegal argument: new value should be of the same size"); 1207 return; 1208 } 1209 1210 lldb::DataExtractorSP data_sp; 1211 data_sp->SetData(value.getRawData(), byte_size, 1212 target->GetArchitecture().GetByteOrder()); 1213 data_sp->SetAddressByteSize( 1214 static_cast<uint8_t>(target->GetArchitecture().GetAddressByteSize())); 1215 SetData(*data_sp, error); 1216 } 1217 1218 void ValueObject::SetValueFromInteger(lldb::ValueObjectSP new_val_sp, 1219 Status &error) { 1220 // Verify the current object is an integer object 1221 CompilerType val_type = GetCompilerType(); 1222 if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() && 1223 !val_type.IsFloat() && !val_type.IsPointerType() && 1224 !val_type.IsScalarType()) { 1225 error.SetErrorString("current value object is not an integer objet"); 1226 return; 1227 } 1228 1229 // Verify the current object is not actually associated with any program 1230 // variable. 1231 if (GetVariable()) { 1232 error.SetErrorString("current value object is not a temporary object"); 1233 return; 1234 } 1235 1236 // Verify the proposed new value is the right type. 1237 CompilerType new_val_type = new_val_sp->GetCompilerType(); 1238 if (!new_val_type.IsInteger() && !new_val_type.IsFloat() && 1239 !new_val_type.IsPointerType()) { 1240 error.SetErrorString( 1241 "illegal argument: new value should be of the same size"); 1242 return; 1243 } 1244 1245 if (new_val_type.IsInteger()) { 1246 auto value_or_err = new_val_sp->GetValueAsAPSInt(); 1247 if (value_or_err) 1248 SetValueFromInteger(*value_or_err, error); 1249 else 1250 error.SetErrorString("error getting APSInt from new_val_sp"); 1251 } else if (new_val_type.IsFloat()) { 1252 auto value_or_err = new_val_sp->GetValueAsAPFloat(); 1253 if (value_or_err) 1254 SetValueFromInteger(value_or_err->bitcastToAPInt(), error); 1255 else 1256 error.SetErrorString("error getting APFloat from new_val_sp"); 1257 } else if (new_val_type.IsPointerType()) { 1258 bool success = true; 1259 uint64_t int_val = new_val_sp->GetValueAsUnsigned(0, &success); 1260 if (success) { 1261 lldb::TargetSP target = GetTargetSP(); 1262 uint64_t num_bits = 0; 1263 if (auto temp = new_val_sp->GetCompilerType().GetBitSize(target.get())) 1264 num_bits = temp.value(); 1265 SetValueFromInteger(llvm::APInt(num_bits, int_val), error); 1266 } else 1267 error.SetErrorString("error converting new_val_sp to integer"); 1268 } 1269 } 1270 1271 // if any more "special cases" are added to 1272 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1273 // by returning true for your new special cases. We will eventually move to 1274 // checking this call result before trying to display special cases 1275 bool ValueObject::HasSpecialPrintableRepresentation( 1276 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1277 Flags flags(GetTypeInfo()); 1278 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1279 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1280 if (IsCStringContainer(true) && 1281 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1282 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1283 return true; 1284 1285 if (flags.Test(eTypeIsArray)) { 1286 if ((custom_format == eFormatBytes) || 1287 (custom_format == eFormatBytesWithASCII)) 1288 return true; 1289 1290 if ((custom_format == eFormatVectorOfChar) || 1291 (custom_format == eFormatVectorOfFloat32) || 1292 (custom_format == eFormatVectorOfFloat64) || 1293 (custom_format == eFormatVectorOfSInt16) || 1294 (custom_format == eFormatVectorOfSInt32) || 1295 (custom_format == eFormatVectorOfSInt64) || 1296 (custom_format == eFormatVectorOfSInt8) || 1297 (custom_format == eFormatVectorOfUInt128) || 1298 (custom_format == eFormatVectorOfUInt16) || 1299 (custom_format == eFormatVectorOfUInt32) || 1300 (custom_format == eFormatVectorOfUInt64) || 1301 (custom_format == eFormatVectorOfUInt8)) 1302 return true; 1303 } 1304 } 1305 return false; 1306 } 1307 1308 bool ValueObject::DumpPrintableRepresentation( 1309 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1310 Format custom_format, PrintableRepresentationSpecialCases special, 1311 bool do_dump_error) { 1312 1313 // If the ValueObject has an error, we might end up dumping the type, which 1314 // is useful, but if we don't even have a type, then don't examine the object 1315 // further as that's not meaningful, only the error is. 1316 if (m_error.Fail() && !GetCompilerType().IsValid()) { 1317 if (do_dump_error) 1318 s.Printf("<%s>", m_error.AsCString()); 1319 return false; 1320 } 1321 1322 Flags flags(GetTypeInfo()); 1323 1324 bool allow_special = 1325 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1326 const bool only_special = false; 1327 1328 if (allow_special) { 1329 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1330 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1331 // when being asked to get a printable display an array or pointer type 1332 // directly, try to "do the right thing" 1333 1334 if (IsCStringContainer(true) && 1335 (custom_format == eFormatCString || 1336 custom_format == eFormatCharArray || custom_format == eFormatChar || 1337 custom_format == 1338 eFormatVectorOfChar)) // print char[] & char* directly 1339 { 1340 Status error; 1341 lldb::WritableDataBufferSP buffer_sp; 1342 std::pair<size_t, bool> read_string = 1343 ReadPointedString(buffer_sp, error, 1344 (custom_format == eFormatVectorOfChar) || 1345 (custom_format == eFormatCharArray)); 1346 lldb_private::formatters::StringPrinter:: 1347 ReadBufferAndDumpToStreamOptions options(*this); 1348 options.SetData(DataExtractor( 1349 buffer_sp, lldb::eByteOrderInvalid, 1350 8)); // none of this matters for a string - pass some defaults 1351 options.SetStream(&s); 1352 options.SetPrefixToken(nullptr); 1353 options.SetQuote('"'); 1354 options.SetSourceSize(buffer_sp->GetByteSize()); 1355 options.SetIsTruncated(read_string.second); 1356 options.SetBinaryZeroIsTerminator(custom_format != eFormatVectorOfChar); 1357 formatters::StringPrinter::ReadBufferAndDumpToStream< 1358 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1359 options); 1360 return !error.Fail(); 1361 } 1362 1363 if (custom_format == eFormatEnum) 1364 return false; 1365 1366 // this only works for arrays, because I have no way to know when the 1367 // pointed memory ends, and no special \0 end of data marker 1368 if (flags.Test(eTypeIsArray)) { 1369 if ((custom_format == eFormatBytes) || 1370 (custom_format == eFormatBytesWithASCII)) { 1371 const size_t count = GetNumChildrenIgnoringErrors(); 1372 1373 s << '['; 1374 for (size_t low = 0; low < count; low++) { 1375 1376 if (low) 1377 s << ','; 1378 1379 ValueObjectSP child = GetChildAtIndex(low); 1380 if (!child.get()) { 1381 s << "<invalid child>"; 1382 continue; 1383 } 1384 child->DumpPrintableRepresentation( 1385 s, ValueObject::eValueObjectRepresentationStyleValue, 1386 custom_format); 1387 } 1388 1389 s << ']'; 1390 1391 return true; 1392 } 1393 1394 if ((custom_format == eFormatVectorOfChar) || 1395 (custom_format == eFormatVectorOfFloat32) || 1396 (custom_format == eFormatVectorOfFloat64) || 1397 (custom_format == eFormatVectorOfSInt16) || 1398 (custom_format == eFormatVectorOfSInt32) || 1399 (custom_format == eFormatVectorOfSInt64) || 1400 (custom_format == eFormatVectorOfSInt8) || 1401 (custom_format == eFormatVectorOfUInt128) || 1402 (custom_format == eFormatVectorOfUInt16) || 1403 (custom_format == eFormatVectorOfUInt32) || 1404 (custom_format == eFormatVectorOfUInt64) || 1405 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1406 // with ASCII or any vector 1407 // format should be printed 1408 // directly 1409 { 1410 const size_t count = GetNumChildrenIgnoringErrors(); 1411 1412 Format format = FormatManager::GetSingleItemFormat(custom_format); 1413 1414 s << '['; 1415 for (size_t low = 0; low < count; low++) { 1416 1417 if (low) 1418 s << ','; 1419 1420 ValueObjectSP child = GetChildAtIndex(low); 1421 if (!child.get()) { 1422 s << "<invalid child>"; 1423 continue; 1424 } 1425 child->DumpPrintableRepresentation( 1426 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1427 } 1428 1429 s << ']'; 1430 1431 return true; 1432 } 1433 } 1434 1435 if ((custom_format == eFormatBoolean) || 1436 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1437 (custom_format == eFormatCharPrintable) || 1438 (custom_format == eFormatComplexFloat) || 1439 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1440 (custom_format == eFormatHexUppercase) || 1441 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1442 (custom_format == eFormatOSType) || 1443 (custom_format == eFormatUnicode16) || 1444 (custom_format == eFormatUnicode32) || 1445 (custom_format == eFormatUnsigned) || 1446 (custom_format == eFormatPointer) || 1447 (custom_format == eFormatComplexInteger) || 1448 (custom_format == eFormatComplex) || 1449 (custom_format == eFormatDefault)) // use the [] operator 1450 return false; 1451 } 1452 } 1453 1454 if (only_special) 1455 return false; 1456 1457 bool var_success = false; 1458 1459 { 1460 llvm::StringRef str; 1461 1462 // this is a local stream that we are using to ensure that the data pointed 1463 // to by cstr survives long enough for us to copy it to its destination - 1464 // it is necessary to have this temporary storage area for cases where our 1465 // desired output is not backed by some other longer-term storage 1466 StreamString strm; 1467 1468 if (custom_format != eFormatInvalid) 1469 SetFormat(custom_format); 1470 1471 switch (val_obj_display) { 1472 case eValueObjectRepresentationStyleValue: 1473 str = GetValueAsCString(); 1474 break; 1475 1476 case eValueObjectRepresentationStyleSummary: 1477 str = GetSummaryAsCString(); 1478 break; 1479 1480 case eValueObjectRepresentationStyleLanguageSpecific: { 1481 llvm::Expected<std::string> desc = GetObjectDescription(); 1482 if (!desc) { 1483 strm << "error: " << toString(desc.takeError()); 1484 str = strm.GetString(); 1485 } else { 1486 strm << *desc; 1487 str = strm.GetString(); 1488 } 1489 } break; 1490 1491 case eValueObjectRepresentationStyleLocation: 1492 str = GetLocationAsCString(); 1493 break; 1494 1495 case eValueObjectRepresentationStyleChildrenCount: 1496 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildrenIgnoringErrors()); 1497 str = strm.GetString(); 1498 break; 1499 1500 case eValueObjectRepresentationStyleType: 1501 str = GetTypeName().GetStringRef(); 1502 break; 1503 1504 case eValueObjectRepresentationStyleName: 1505 str = GetName().GetStringRef(); 1506 break; 1507 1508 case eValueObjectRepresentationStyleExpressionPath: 1509 GetExpressionPath(strm); 1510 str = strm.GetString(); 1511 break; 1512 } 1513 1514 // If the requested display style produced no output, try falling back to 1515 // alternative presentations. 1516 if (str.empty()) { 1517 if (val_obj_display == eValueObjectRepresentationStyleValue) 1518 str = GetSummaryAsCString(); 1519 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1520 if (!CanProvideValue()) { 1521 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1522 GetLocationAsCString()); 1523 str = strm.GetString(); 1524 } else 1525 str = GetValueAsCString(); 1526 } 1527 } 1528 1529 if (!str.empty()) 1530 s << str; 1531 else { 1532 // We checked for errors at the start, but do it again here in case 1533 // realizing the value for dumping produced an error. 1534 if (m_error.Fail()) { 1535 if (do_dump_error) 1536 s.Printf("<%s>", m_error.AsCString()); 1537 else 1538 return false; 1539 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1540 s.PutCString("<no summary available>"); 1541 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1542 s.PutCString("<no value available>"); 1543 else if (val_obj_display == 1544 eValueObjectRepresentationStyleLanguageSpecific) 1545 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1546 // have other runtimes 1547 // that support a 1548 // description 1549 else 1550 s.PutCString("<no printable representation>"); 1551 } 1552 1553 // we should only return false here if we could not do *anything* even if 1554 // we have an error message as output, that's a success from our callers' 1555 // perspective, so return true 1556 var_success = true; 1557 1558 if (custom_format != eFormatInvalid) 1559 SetFormat(eFormatDefault); 1560 } 1561 1562 return var_success; 1563 } 1564 1565 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1566 AddressType *address_type) { 1567 // Can't take address of a bitfield 1568 if (IsBitfield()) 1569 return LLDB_INVALID_ADDRESS; 1570 1571 if (!UpdateValueIfNeeded(false)) 1572 return LLDB_INVALID_ADDRESS; 1573 1574 switch (m_value.GetValueType()) { 1575 case Value::ValueType::Invalid: 1576 return LLDB_INVALID_ADDRESS; 1577 case Value::ValueType::Scalar: 1578 if (scalar_is_load_address) { 1579 if (address_type) 1580 *address_type = eAddressTypeLoad; 1581 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1582 } 1583 break; 1584 1585 case Value::ValueType::LoadAddress: 1586 case Value::ValueType::FileAddress: { 1587 if (address_type) 1588 *address_type = m_value.GetValueAddressType(); 1589 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1590 } break; 1591 case Value::ValueType::HostAddress: { 1592 if (address_type) 1593 *address_type = m_value.GetValueAddressType(); 1594 return LLDB_INVALID_ADDRESS; 1595 } break; 1596 } 1597 if (address_type) 1598 *address_type = eAddressTypeInvalid; 1599 return LLDB_INVALID_ADDRESS; 1600 } 1601 1602 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1603 addr_t address = LLDB_INVALID_ADDRESS; 1604 if (address_type) 1605 *address_type = eAddressTypeInvalid; 1606 1607 if (!UpdateValueIfNeeded(false)) 1608 return address; 1609 1610 switch (m_value.GetValueType()) { 1611 case Value::ValueType::Invalid: 1612 return LLDB_INVALID_ADDRESS; 1613 case Value::ValueType::Scalar: 1614 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1615 break; 1616 1617 case Value::ValueType::HostAddress: 1618 case Value::ValueType::LoadAddress: 1619 case Value::ValueType::FileAddress: { 1620 lldb::offset_t data_offset = 0; 1621 address = m_data.GetAddress(&data_offset); 1622 } break; 1623 } 1624 1625 if (address_type) 1626 *address_type = GetAddressTypeOfChildren(); 1627 1628 return address; 1629 } 1630 1631 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1632 error.Clear(); 1633 // Make sure our value is up to date first so that our location and location 1634 // type is valid. 1635 if (!UpdateValueIfNeeded(false)) { 1636 error.SetErrorString("unable to read value"); 1637 return false; 1638 } 1639 1640 uint64_t count = 0; 1641 const Encoding encoding = GetCompilerType().GetEncoding(count); 1642 1643 const size_t byte_size = GetByteSize().value_or(0); 1644 1645 Value::ValueType value_type = m_value.GetValueType(); 1646 1647 if (value_type == Value::ValueType::Scalar) { 1648 // If the value is already a scalar, then let the scalar change itself: 1649 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1650 } else if (byte_size <= 16) { 1651 // If the value fits in a scalar, then make a new scalar and again let the 1652 // scalar code do the conversion, then figure out where to put the new 1653 // value. 1654 Scalar new_scalar; 1655 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1656 if (error.Success()) { 1657 switch (value_type) { 1658 case Value::ValueType::LoadAddress: { 1659 // If it is a load address, then the scalar value is the storage 1660 // location of the data, and we have to shove this value down to that 1661 // load location. 1662 ExecutionContext exe_ctx(GetExecutionContextRef()); 1663 Process *process = exe_ctx.GetProcessPtr(); 1664 if (process) { 1665 addr_t target_addr = 1666 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1667 size_t bytes_written = process->WriteScalarToMemory( 1668 target_addr, new_scalar, byte_size, error); 1669 if (!error.Success()) 1670 return false; 1671 if (bytes_written != byte_size) { 1672 error.SetErrorString("unable to write value to memory"); 1673 return false; 1674 } 1675 } 1676 } break; 1677 case Value::ValueType::HostAddress: { 1678 // If it is a host address, then we stuff the scalar as a DataBuffer 1679 // into the Value's data. 1680 DataExtractor new_data; 1681 new_data.SetByteOrder(m_data.GetByteOrder()); 1682 1683 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1684 m_data.SetData(buffer_sp, 0); 1685 bool success = new_scalar.GetData(new_data); 1686 if (success) { 1687 new_data.CopyByteOrderedData( 1688 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1689 byte_size, m_data.GetByteOrder()); 1690 } 1691 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1692 1693 } break; 1694 case Value::ValueType::Invalid: 1695 error.SetErrorString("invalid location"); 1696 return false; 1697 case Value::ValueType::FileAddress: 1698 case Value::ValueType::Scalar: 1699 break; 1700 } 1701 } else { 1702 return false; 1703 } 1704 } else { 1705 // We don't support setting things bigger than a scalar at present. 1706 error.SetErrorString("unable to write aggregate data type"); 1707 return false; 1708 } 1709 1710 // If we have reached this point, then we have successfully changed the 1711 // value. 1712 SetNeedsUpdate(); 1713 return true; 1714 } 1715 1716 bool ValueObject::GetDeclaration(Declaration &decl) { 1717 decl.Clear(); 1718 return false; 1719 } 1720 1721 void ValueObject::AddSyntheticChild(ConstString key, 1722 ValueObject *valobj) { 1723 m_synthetic_children[key] = valobj; 1724 } 1725 1726 ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const { 1727 ValueObjectSP synthetic_child_sp; 1728 std::map<ConstString, ValueObject *>::const_iterator pos = 1729 m_synthetic_children.find(key); 1730 if (pos != m_synthetic_children.end()) 1731 synthetic_child_sp = pos->second->GetSP(); 1732 return synthetic_child_sp; 1733 } 1734 1735 bool ValueObject::IsPossibleDynamicType() { 1736 ExecutionContext exe_ctx(GetExecutionContextRef()); 1737 Process *process = exe_ctx.GetProcessPtr(); 1738 if (process) 1739 return process->IsPossibleDynamicValue(*this); 1740 else 1741 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true); 1742 } 1743 1744 bool ValueObject::IsRuntimeSupportValue() { 1745 Process *process(GetProcessSP().get()); 1746 if (!process) 1747 return false; 1748 1749 // We trust that the compiler did the right thing and marked runtime support 1750 // values as artificial. 1751 if (!GetVariable() || !GetVariable()->IsArtificial()) 1752 return false; 1753 1754 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage())) 1755 if (runtime->IsAllowedRuntimeValue(GetName())) 1756 return false; 1757 1758 return true; 1759 } 1760 1761 bool ValueObject::IsNilReference() { 1762 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1763 return language->IsNilReference(*this); 1764 } 1765 return false; 1766 } 1767 1768 bool ValueObject::IsUninitializedReference() { 1769 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1770 return language->IsUninitializedReference(*this); 1771 } 1772 return false; 1773 } 1774 1775 // This allows you to create an array member using and index that doesn't not 1776 // fall in the normal bounds of the array. Many times structure can be defined 1777 // as: struct Collection { 1778 // uint32_t item_count; 1779 // Item item_array[0]; 1780 // }; 1781 // The size of the "item_array" is 1, but many times in practice there are more 1782 // items in "item_array". 1783 1784 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1785 bool can_create) { 1786 ValueObjectSP synthetic_child_sp; 1787 if (IsPointerType() || IsArrayType()) { 1788 std::string index_str = llvm::formatv("[{0}]", index); 1789 ConstString index_const_str(index_str); 1790 // Check if we have already created a synthetic array member in this valid 1791 // object. If we have we will re-use it. 1792 synthetic_child_sp = GetSyntheticChild(index_const_str); 1793 if (!synthetic_child_sp) { 1794 ValueObject *synthetic_child; 1795 // We haven't made a synthetic array member for INDEX yet, so lets make 1796 // one and cache it for any future reference. 1797 synthetic_child = CreateSyntheticArrayMember(index); 1798 1799 // Cache the value if we got one back... 1800 if (synthetic_child) { 1801 AddSyntheticChild(index_const_str, synthetic_child); 1802 synthetic_child_sp = synthetic_child->GetSP(); 1803 synthetic_child_sp->SetName(ConstString(index_str)); 1804 synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true; 1805 } 1806 } 1807 } 1808 return synthetic_child_sp; 1809 } 1810 1811 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1812 bool can_create) { 1813 ValueObjectSP synthetic_child_sp; 1814 if (IsScalarType()) { 1815 std::string index_str = llvm::formatv("[{0}-{1}]", from, to); 1816 ConstString index_const_str(index_str); 1817 // Check if we have already created a synthetic array member in this valid 1818 // object. If we have we will re-use it. 1819 synthetic_child_sp = GetSyntheticChild(index_const_str); 1820 if (!synthetic_child_sp) { 1821 uint32_t bit_field_size = to - from + 1; 1822 uint32_t bit_field_offset = from; 1823 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1824 bit_field_offset = 1825 GetByteSize().value_or(0) * 8 - bit_field_size - bit_field_offset; 1826 // We haven't made a synthetic array member for INDEX yet, so lets make 1827 // one and cache it for any future reference. 1828 ValueObjectChild *synthetic_child = new ValueObjectChild( 1829 *this, GetCompilerType(), index_const_str, GetByteSize().value_or(0), 1830 0, bit_field_size, bit_field_offset, false, false, 1831 eAddressTypeInvalid, 0); 1832 1833 // Cache the value if we got one back... 1834 if (synthetic_child) { 1835 AddSyntheticChild(index_const_str, synthetic_child); 1836 synthetic_child_sp = synthetic_child->GetSP(); 1837 synthetic_child_sp->SetName(ConstString(index_str)); 1838 synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true; 1839 } 1840 } 1841 } 1842 return synthetic_child_sp; 1843 } 1844 1845 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1846 uint32_t offset, const CompilerType &type, bool can_create, 1847 ConstString name_const_str) { 1848 1849 ValueObjectSP synthetic_child_sp; 1850 1851 if (name_const_str.IsEmpty()) { 1852 name_const_str.SetString("@" + std::to_string(offset)); 1853 } 1854 1855 // Check if we have already created a synthetic array member in this valid 1856 // object. If we have we will re-use it. 1857 synthetic_child_sp = GetSyntheticChild(name_const_str); 1858 1859 if (synthetic_child_sp.get()) 1860 return synthetic_child_sp; 1861 1862 if (!can_create) 1863 return {}; 1864 1865 ExecutionContext exe_ctx(GetExecutionContextRef()); 1866 std::optional<uint64_t> size = 1867 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1868 if (!size) 1869 return {}; 1870 ValueObjectChild *synthetic_child = 1871 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1872 false, false, eAddressTypeInvalid, 0); 1873 if (synthetic_child) { 1874 AddSyntheticChild(name_const_str, synthetic_child); 1875 synthetic_child_sp = synthetic_child->GetSP(); 1876 synthetic_child_sp->SetName(name_const_str); 1877 synthetic_child_sp->m_flags.m_is_child_at_offset = true; 1878 } 1879 return synthetic_child_sp; 1880 } 1881 1882 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1883 const CompilerType &type, 1884 bool can_create, 1885 ConstString name_const_str) { 1886 ValueObjectSP synthetic_child_sp; 1887 1888 if (name_const_str.IsEmpty()) { 1889 char name_str[128]; 1890 snprintf(name_str, sizeof(name_str), "base%s@%i", 1891 type.GetTypeName().AsCString("<unknown>"), offset); 1892 name_const_str.SetCString(name_str); 1893 } 1894 1895 // Check if we have already created a synthetic array member in this valid 1896 // object. If we have we will re-use it. 1897 synthetic_child_sp = GetSyntheticChild(name_const_str); 1898 1899 if (synthetic_child_sp.get()) 1900 return synthetic_child_sp; 1901 1902 if (!can_create) 1903 return {}; 1904 1905 const bool is_base_class = true; 1906 1907 ExecutionContext exe_ctx(GetExecutionContextRef()); 1908 std::optional<uint64_t> size = 1909 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1910 if (!size) 1911 return {}; 1912 ValueObjectChild *synthetic_child = 1913 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1914 is_base_class, false, eAddressTypeInvalid, 0); 1915 if (synthetic_child) { 1916 AddSyntheticChild(name_const_str, synthetic_child); 1917 synthetic_child_sp = synthetic_child->GetSP(); 1918 synthetic_child_sp->SetName(name_const_str); 1919 } 1920 return synthetic_child_sp; 1921 } 1922 1923 // your expression path needs to have a leading . or -> (unless it somehow 1924 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1925 // is meaningful and should be shown to the user, . and -> are just parser 1926 // design, but by no means added information for the user.. strip them off 1927 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1928 if (!expression || !expression[0]) 1929 return expression; 1930 if (expression[0] == '.') 1931 return expression + 1; 1932 if (expression[0] == '-' && expression[1] == '>') 1933 return expression + 2; 1934 return expression; 1935 } 1936 1937 ValueObjectSP 1938 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1939 bool can_create) { 1940 ValueObjectSP synthetic_child_sp; 1941 ConstString name_const_string(expression); 1942 // Check if we have already created a synthetic array member in this valid 1943 // object. If we have we will re-use it. 1944 synthetic_child_sp = GetSyntheticChild(name_const_string); 1945 if (!synthetic_child_sp) { 1946 // We haven't made a synthetic array member for expression yet, so lets 1947 // make one and cache it for any future reference. 1948 synthetic_child_sp = GetValueForExpressionPath( 1949 expression, nullptr, nullptr, 1950 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1951 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1952 None)); 1953 1954 // Cache the value if we got one back... 1955 if (synthetic_child_sp.get()) { 1956 // FIXME: this causes a "real" child to end up with its name changed to 1957 // the contents of expression 1958 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1959 synthetic_child_sp->SetName( 1960 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1961 } 1962 } 1963 return synthetic_child_sp; 1964 } 1965 1966 void ValueObject::CalculateSyntheticValue() { 1967 TargetSP target_sp(GetTargetSP()); 1968 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1969 m_synthetic_value = nullptr; 1970 return; 1971 } 1972 1973 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1974 1975 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1976 return; 1977 1978 if (m_synthetic_children_sp.get() == nullptr) 1979 return; 1980 1981 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1982 return; 1983 1984 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1985 } 1986 1987 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1988 if (use_dynamic == eNoDynamicValues) 1989 return; 1990 1991 if (!m_dynamic_value && !IsDynamic()) { 1992 ExecutionContext exe_ctx(GetExecutionContextRef()); 1993 Process *process = exe_ctx.GetProcessPtr(); 1994 if (process && process->IsPossibleDynamicValue(*this)) { 1995 ClearDynamicTypeInformation(); 1996 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1997 } 1998 } 1999 } 2000 2001 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 2002 if (use_dynamic == eNoDynamicValues) 2003 return ValueObjectSP(); 2004 2005 if (!IsDynamic() && m_dynamic_value == nullptr) { 2006 CalculateDynamicValue(use_dynamic); 2007 } 2008 if (m_dynamic_value && m_dynamic_value->GetError().Success()) 2009 return m_dynamic_value->GetSP(); 2010 else 2011 return ValueObjectSP(); 2012 } 2013 2014 ValueObjectSP ValueObject::GetSyntheticValue() { 2015 CalculateSyntheticValue(); 2016 2017 if (m_synthetic_value) 2018 return m_synthetic_value->GetSP(); 2019 else 2020 return ValueObjectSP(); 2021 } 2022 2023 bool ValueObject::HasSyntheticValue() { 2024 UpdateFormatsIfNeeded(); 2025 2026 if (m_synthetic_children_sp.get() == nullptr) 2027 return false; 2028 2029 CalculateSyntheticValue(); 2030 2031 return m_synthetic_value != nullptr; 2032 } 2033 2034 ValueObject *ValueObject::GetNonBaseClassParent() { 2035 if (GetParent()) { 2036 if (GetParent()->IsBaseClass()) 2037 return GetParent()->GetNonBaseClassParent(); 2038 else 2039 return GetParent(); 2040 } 2041 return nullptr; 2042 } 2043 2044 bool ValueObject::IsBaseClass(uint32_t &depth) { 2045 if (!IsBaseClass()) { 2046 depth = 0; 2047 return false; 2048 } 2049 if (GetParent()) { 2050 GetParent()->IsBaseClass(depth); 2051 depth = depth + 1; 2052 return true; 2053 } 2054 // TODO: a base of no parent? weird.. 2055 depth = 1; 2056 return true; 2057 } 2058 2059 void ValueObject::GetExpressionPath(Stream &s, 2060 GetExpressionPathFormat epformat) { 2061 // synthetic children do not actually "exist" as part of the hierarchy, and 2062 // sometimes they are consed up in ways that don't make sense from an 2063 // underlying language/API standpoint. So, use a special code path here to 2064 // return something that can hopefully be used in expression 2065 if (m_flags.m_is_synthetic_children_generated) { 2066 UpdateValueIfNeeded(); 2067 2068 if (m_value.GetValueType() == Value::ValueType::LoadAddress) { 2069 if (IsPointerOrReferenceType()) { 2070 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2071 GetValueAsUnsigned(0)); 2072 return; 2073 } else { 2074 uint64_t load_addr = 2075 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2076 if (load_addr != LLDB_INVALID_ADDRESS) { 2077 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2078 load_addr); 2079 return; 2080 } 2081 } 2082 } 2083 2084 if (CanProvideValue()) { 2085 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2086 GetValueAsCString()); 2087 return; 2088 } 2089 2090 return; 2091 } 2092 2093 const bool is_deref_of_parent = IsDereferenceOfParent(); 2094 2095 if (is_deref_of_parent && 2096 epformat == eGetExpressionPathFormatDereferencePointers) { 2097 // this is the original format of GetExpressionPath() producing code like 2098 // *(a_ptr).memberName, which is entirely fine, until you put this into 2099 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2100 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2101 // in this latter format 2102 s.PutCString("*("); 2103 } 2104 2105 ValueObject *parent = GetParent(); 2106 2107 if (parent) 2108 parent->GetExpressionPath(s, epformat); 2109 2110 // if we are a deref_of_parent just because we are synthetic array members 2111 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2112 // name ([%d]) to the expression path 2113 if (m_flags.m_is_array_item_for_pointer && 2114 epformat == eGetExpressionPathFormatHonorPointers) 2115 s.PutCString(m_name.GetStringRef()); 2116 2117 if (!IsBaseClass()) { 2118 if (!is_deref_of_parent) { 2119 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2120 if (non_base_class_parent && 2121 !non_base_class_parent->GetName().IsEmpty()) { 2122 CompilerType non_base_class_parent_compiler_type = 2123 non_base_class_parent->GetCompilerType(); 2124 if (non_base_class_parent_compiler_type) { 2125 if (parent && parent->IsDereferenceOfParent() && 2126 epformat == eGetExpressionPathFormatHonorPointers) { 2127 s.PutCString("->"); 2128 } else { 2129 const uint32_t non_base_class_parent_type_info = 2130 non_base_class_parent_compiler_type.GetTypeInfo(); 2131 2132 if (non_base_class_parent_type_info & eTypeIsPointer) { 2133 s.PutCString("->"); 2134 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2135 !(non_base_class_parent_type_info & eTypeIsArray)) { 2136 s.PutChar('.'); 2137 } 2138 } 2139 } 2140 } 2141 2142 const char *name = GetName().GetCString(); 2143 if (name) 2144 s.PutCString(name); 2145 } 2146 } 2147 2148 if (is_deref_of_parent && 2149 epformat == eGetExpressionPathFormatDereferencePointers) { 2150 s.PutChar(')'); 2151 } 2152 } 2153 2154 ValueObjectSP ValueObject::GetValueForExpressionPath( 2155 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2156 ExpressionPathEndResultType *final_value_type, 2157 const GetValueForExpressionPathOptions &options, 2158 ExpressionPathAftermath *final_task_on_target) { 2159 2160 ExpressionPathScanEndReason dummy_reason_to_stop = 2161 ValueObject::eExpressionPathScanEndReasonUnknown; 2162 ExpressionPathEndResultType dummy_final_value_type = 2163 ValueObject::eExpressionPathEndResultTypeInvalid; 2164 ExpressionPathAftermath dummy_final_task_on_target = 2165 ValueObject::eExpressionPathAftermathNothing; 2166 2167 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2168 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2169 final_value_type ? final_value_type : &dummy_final_value_type, options, 2170 final_task_on_target ? final_task_on_target 2171 : &dummy_final_task_on_target); 2172 2173 if (!final_task_on_target || 2174 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2175 return ret_val; 2176 2177 if (ret_val.get() && 2178 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2179 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2180 // of plain objects 2181 { 2182 if ((final_task_on_target ? *final_task_on_target 2183 : dummy_final_task_on_target) == 2184 ValueObject::eExpressionPathAftermathDereference) { 2185 Status error; 2186 ValueObjectSP final_value = ret_val->Dereference(error); 2187 if (error.Fail() || !final_value.get()) { 2188 if (reason_to_stop) 2189 *reason_to_stop = 2190 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2191 if (final_value_type) 2192 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2193 return ValueObjectSP(); 2194 } else { 2195 if (final_task_on_target) 2196 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2197 return final_value; 2198 } 2199 } 2200 if (*final_task_on_target == 2201 ValueObject::eExpressionPathAftermathTakeAddress) { 2202 Status error; 2203 ValueObjectSP final_value = ret_val->AddressOf(error); 2204 if (error.Fail() || !final_value.get()) { 2205 if (reason_to_stop) 2206 *reason_to_stop = 2207 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2208 if (final_value_type) 2209 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2210 return ValueObjectSP(); 2211 } else { 2212 if (final_task_on_target) 2213 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2214 return final_value; 2215 } 2216 } 2217 } 2218 return ret_val; // final_task_on_target will still have its original value, so 2219 // you know I did not do it 2220 } 2221 2222 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2223 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2224 ExpressionPathEndResultType *final_result, 2225 const GetValueForExpressionPathOptions &options, 2226 ExpressionPathAftermath *what_next) { 2227 ValueObjectSP root = GetSP(); 2228 2229 if (!root) 2230 return nullptr; 2231 2232 llvm::StringRef remainder = expression; 2233 2234 while (true) { 2235 llvm::StringRef temp_expression = remainder; 2236 2237 CompilerType root_compiler_type = root->GetCompilerType(); 2238 CompilerType pointee_compiler_type; 2239 Flags pointee_compiler_type_info; 2240 2241 Flags root_compiler_type_info( 2242 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2243 if (pointee_compiler_type) 2244 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2245 2246 if (temp_expression.empty()) { 2247 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2248 return root; 2249 } 2250 2251 switch (temp_expression.front()) { 2252 case '-': { 2253 temp_expression = temp_expression.drop_front(); 2254 if (options.m_check_dot_vs_arrow_syntax && 2255 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2256 // use -> on a 2257 // non-pointer and I 2258 // must catch the error 2259 { 2260 *reason_to_stop = 2261 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2262 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2263 return ValueObjectSP(); 2264 } 2265 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2266 // extract an ObjC IVar 2267 // when this is forbidden 2268 root_compiler_type_info.Test(eTypeIsPointer) && 2269 options.m_no_fragile_ivar) { 2270 *reason_to_stop = 2271 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2272 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2273 return ValueObjectSP(); 2274 } 2275 if (!temp_expression.starts_with(">")) { 2276 *reason_to_stop = 2277 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2278 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2279 return ValueObjectSP(); 2280 } 2281 } 2282 [[fallthrough]]; 2283 case '.': // or fallthrough from -> 2284 { 2285 if (options.m_check_dot_vs_arrow_syntax && 2286 temp_expression.front() == '.' && 2287 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2288 // use . on a pointer 2289 // and I must catch the 2290 // error 2291 { 2292 *reason_to_stop = 2293 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2294 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2295 return nullptr; 2296 } 2297 temp_expression = temp_expression.drop_front(); // skip . or > 2298 2299 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2300 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2301 // expand this last layer 2302 { 2303 llvm::StringRef child_name = temp_expression; 2304 ValueObjectSP child_valobj_sp = 2305 root->GetChildMemberWithName(child_name); 2306 2307 if (child_valobj_sp.get()) // we know we are done, so just return 2308 { 2309 *reason_to_stop = 2310 ValueObject::eExpressionPathScanEndReasonEndOfString; 2311 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2312 return child_valobj_sp; 2313 } else { 2314 switch (options.m_synthetic_children_traversal) { 2315 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2316 None: 2317 break; 2318 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2319 FromSynthetic: 2320 if (root->IsSynthetic()) { 2321 child_valobj_sp = root->GetNonSyntheticValue(); 2322 if (child_valobj_sp.get()) 2323 child_valobj_sp = 2324 child_valobj_sp->GetChildMemberWithName(child_name); 2325 } 2326 break; 2327 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2328 ToSynthetic: 2329 if (!root->IsSynthetic()) { 2330 child_valobj_sp = root->GetSyntheticValue(); 2331 if (child_valobj_sp.get()) 2332 child_valobj_sp = 2333 child_valobj_sp->GetChildMemberWithName(child_name); 2334 } 2335 break; 2336 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2337 Both: 2338 if (root->IsSynthetic()) { 2339 child_valobj_sp = root->GetNonSyntheticValue(); 2340 if (child_valobj_sp.get()) 2341 child_valobj_sp = 2342 child_valobj_sp->GetChildMemberWithName(child_name); 2343 } else { 2344 child_valobj_sp = root->GetSyntheticValue(); 2345 if (child_valobj_sp.get()) 2346 child_valobj_sp = 2347 child_valobj_sp->GetChildMemberWithName(child_name); 2348 } 2349 break; 2350 } 2351 } 2352 2353 // if we are here and options.m_no_synthetic_children is true, 2354 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2355 // branch, and return an error 2356 if (child_valobj_sp.get()) // if it worked, just return 2357 { 2358 *reason_to_stop = 2359 ValueObject::eExpressionPathScanEndReasonEndOfString; 2360 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2361 return child_valobj_sp; 2362 } else { 2363 *reason_to_stop = 2364 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2365 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2366 return nullptr; 2367 } 2368 } else // other layers do expand 2369 { 2370 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2371 llvm::StringRef child_name = temp_expression.slice(0, next_sep_pos); 2372 2373 ValueObjectSP child_valobj_sp = 2374 root->GetChildMemberWithName(child_name); 2375 if (child_valobj_sp.get()) // store the new root and move on 2376 { 2377 root = child_valobj_sp; 2378 remainder = next_separator; 2379 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2380 continue; 2381 } else { 2382 switch (options.m_synthetic_children_traversal) { 2383 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2384 None: 2385 break; 2386 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2387 FromSynthetic: 2388 if (root->IsSynthetic()) { 2389 child_valobj_sp = root->GetNonSyntheticValue(); 2390 if (child_valobj_sp.get()) 2391 child_valobj_sp = 2392 child_valobj_sp->GetChildMemberWithName(child_name); 2393 } 2394 break; 2395 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2396 ToSynthetic: 2397 if (!root->IsSynthetic()) { 2398 child_valobj_sp = root->GetSyntheticValue(); 2399 if (child_valobj_sp.get()) 2400 child_valobj_sp = 2401 child_valobj_sp->GetChildMemberWithName(child_name); 2402 } 2403 break; 2404 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2405 Both: 2406 if (root->IsSynthetic()) { 2407 child_valobj_sp = root->GetNonSyntheticValue(); 2408 if (child_valobj_sp.get()) 2409 child_valobj_sp = 2410 child_valobj_sp->GetChildMemberWithName(child_name); 2411 } else { 2412 child_valobj_sp = root->GetSyntheticValue(); 2413 if (child_valobj_sp.get()) 2414 child_valobj_sp = 2415 child_valobj_sp->GetChildMemberWithName(child_name); 2416 } 2417 break; 2418 } 2419 } 2420 2421 // if we are here and options.m_no_synthetic_children is true, 2422 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2423 // branch, and return an error 2424 if (child_valobj_sp.get()) // if it worked, move on 2425 { 2426 root = child_valobj_sp; 2427 remainder = next_separator; 2428 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2429 continue; 2430 } else { 2431 *reason_to_stop = 2432 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2433 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2434 return nullptr; 2435 } 2436 } 2437 break; 2438 } 2439 case '[': { 2440 if (!root_compiler_type_info.Test(eTypeIsArray) && 2441 !root_compiler_type_info.Test(eTypeIsPointer) && 2442 !root_compiler_type_info.Test( 2443 eTypeIsVector)) // if this is not a T[] nor a T* 2444 { 2445 if (!root_compiler_type_info.Test( 2446 eTypeIsScalar)) // if this is not even a scalar... 2447 { 2448 if (options.m_synthetic_children_traversal == 2449 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2450 None) // ...only chance left is synthetic 2451 { 2452 *reason_to_stop = 2453 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2454 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2455 return ValueObjectSP(); 2456 } 2457 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2458 // check that we can 2459 // expand bitfields 2460 { 2461 *reason_to_stop = 2462 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2463 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2464 return ValueObjectSP(); 2465 } 2466 } 2467 if (temp_expression[1] == 2468 ']') // if this is an unbounded range it only works for arrays 2469 { 2470 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2471 *reason_to_stop = 2472 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2473 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2474 return nullptr; 2475 } else // even if something follows, we cannot expand unbounded ranges, 2476 // just let the caller do it 2477 { 2478 *reason_to_stop = 2479 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2480 *final_result = 2481 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2482 return root; 2483 } 2484 } 2485 2486 size_t close_bracket_position = temp_expression.find(']', 1); 2487 if (close_bracket_position == 2488 llvm::StringRef::npos) // if there is no ], this is a syntax error 2489 { 2490 *reason_to_stop = 2491 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2492 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2493 return nullptr; 2494 } 2495 2496 llvm::StringRef bracket_expr = 2497 temp_expression.slice(1, close_bracket_position); 2498 2499 // If this was an empty expression it would have been caught by the if 2500 // above. 2501 assert(!bracket_expr.empty()); 2502 2503 if (!bracket_expr.contains('-')) { 2504 // if no separator, this is of the form [N]. Note that this cannot be 2505 // an unbounded range of the form [], because that case was handled 2506 // above with an unconditional return. 2507 unsigned long index = 0; 2508 if (bracket_expr.getAsInteger(0, index)) { 2509 *reason_to_stop = 2510 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2511 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2512 return nullptr; 2513 } 2514 2515 // from here on we do have a valid index 2516 if (root_compiler_type_info.Test(eTypeIsArray)) { 2517 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index); 2518 if (!child_valobj_sp) 2519 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2520 if (!child_valobj_sp) 2521 if (root->HasSyntheticValue() && 2522 llvm::expectedToStdOptional( 2523 root->GetSyntheticValue()->GetNumChildren()) 2524 .value_or(0) > index) 2525 child_valobj_sp = 2526 root->GetSyntheticValue()->GetChildAtIndex(index); 2527 if (child_valobj_sp) { 2528 root = child_valobj_sp; 2529 remainder = 2530 temp_expression.substr(close_bracket_position + 1); // skip ] 2531 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2532 continue; 2533 } else { 2534 *reason_to_stop = 2535 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2536 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2537 return nullptr; 2538 } 2539 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2540 if (*what_next == 2541 ValueObject:: 2542 eExpressionPathAftermathDereference && // if this is a 2543 // ptr-to-scalar, I 2544 // am accessing it 2545 // by index and I 2546 // would have 2547 // deref'ed anyway, 2548 // then do it now 2549 // and use this as 2550 // a bitfield 2551 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2552 Status error; 2553 root = root->Dereference(error); 2554 if (error.Fail() || !root) { 2555 *reason_to_stop = 2556 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2557 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2558 return nullptr; 2559 } else { 2560 *what_next = eExpressionPathAftermathNothing; 2561 continue; 2562 } 2563 } else { 2564 if (root->GetCompilerType().GetMinimumLanguage() == 2565 eLanguageTypeObjC && 2566 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2567 root->HasSyntheticValue() && 2568 (options.m_synthetic_children_traversal == 2569 GetValueForExpressionPathOptions:: 2570 SyntheticChildrenTraversal::ToSynthetic || 2571 options.m_synthetic_children_traversal == 2572 GetValueForExpressionPathOptions:: 2573 SyntheticChildrenTraversal::Both)) { 2574 root = root->GetSyntheticValue()->GetChildAtIndex(index); 2575 } else 2576 root = root->GetSyntheticArrayMember(index, true); 2577 if (!root) { 2578 *reason_to_stop = 2579 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2580 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2581 return nullptr; 2582 } else { 2583 remainder = 2584 temp_expression.substr(close_bracket_position + 1); // skip ] 2585 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2586 continue; 2587 } 2588 } 2589 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2590 root = root->GetSyntheticBitFieldChild(index, index, true); 2591 if (!root) { 2592 *reason_to_stop = 2593 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2594 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2595 return nullptr; 2596 } else // we do not know how to expand members of bitfields, so we 2597 // just return and let the caller do any further processing 2598 { 2599 *reason_to_stop = ValueObject:: 2600 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2601 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2602 return root; 2603 } 2604 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2605 root = root->GetChildAtIndex(index); 2606 if (!root) { 2607 *reason_to_stop = 2608 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2609 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2610 return ValueObjectSP(); 2611 } else { 2612 remainder = 2613 temp_expression.substr(close_bracket_position + 1); // skip ] 2614 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2615 continue; 2616 } 2617 } else if (options.m_synthetic_children_traversal == 2618 GetValueForExpressionPathOptions:: 2619 SyntheticChildrenTraversal::ToSynthetic || 2620 options.m_synthetic_children_traversal == 2621 GetValueForExpressionPathOptions:: 2622 SyntheticChildrenTraversal::Both) { 2623 if (root->HasSyntheticValue()) 2624 root = root->GetSyntheticValue(); 2625 else if (!root->IsSynthetic()) { 2626 *reason_to_stop = 2627 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2628 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2629 return nullptr; 2630 } 2631 // if we are here, then root itself is a synthetic VO.. should be 2632 // good to go 2633 2634 if (!root) { 2635 *reason_to_stop = 2636 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2637 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2638 return nullptr; 2639 } 2640 root = root->GetChildAtIndex(index); 2641 if (!root) { 2642 *reason_to_stop = 2643 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2644 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2645 return nullptr; 2646 } else { 2647 remainder = 2648 temp_expression.substr(close_bracket_position + 1); // skip ] 2649 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2650 continue; 2651 } 2652 } else { 2653 *reason_to_stop = 2654 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2655 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2656 return nullptr; 2657 } 2658 } else { 2659 // we have a low and a high index 2660 llvm::StringRef sleft, sright; 2661 unsigned long low_index, high_index; 2662 std::tie(sleft, sright) = bracket_expr.split('-'); 2663 if (sleft.getAsInteger(0, low_index) || 2664 sright.getAsInteger(0, high_index)) { 2665 *reason_to_stop = 2666 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2667 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2668 return nullptr; 2669 } 2670 2671 if (low_index > high_index) // swap indices if required 2672 std::swap(low_index, high_index); 2673 2674 if (root_compiler_type_info.Test( 2675 eTypeIsScalar)) // expansion only works for scalars 2676 { 2677 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2678 if (!root) { 2679 *reason_to_stop = 2680 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2681 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2682 return nullptr; 2683 } else { 2684 *reason_to_stop = ValueObject:: 2685 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2686 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2687 return root; 2688 } 2689 } else if (root_compiler_type_info.Test( 2690 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2691 // accessing it by index and I would 2692 // have deref'ed anyway, then do it 2693 // now and use this as a bitfield 2694 *what_next == 2695 ValueObject::eExpressionPathAftermathDereference && 2696 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2697 Status error; 2698 root = root->Dereference(error); 2699 if (error.Fail() || !root) { 2700 *reason_to_stop = 2701 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2702 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2703 return nullptr; 2704 } else { 2705 *what_next = ValueObject::eExpressionPathAftermathNothing; 2706 continue; 2707 } 2708 } else { 2709 *reason_to_stop = 2710 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2711 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2712 return root; 2713 } 2714 } 2715 break; 2716 } 2717 default: // some non-separator is in the way 2718 { 2719 *reason_to_stop = 2720 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2721 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2722 return nullptr; 2723 } 2724 } 2725 } 2726 } 2727 2728 llvm::Error ValueObject::Dump(Stream &s) { 2729 return Dump(s, DumpValueObjectOptions(*this)); 2730 } 2731 2732 llvm::Error ValueObject::Dump(Stream &s, 2733 const DumpValueObjectOptions &options) { 2734 ValueObjectPrinter printer(*this, &s, options); 2735 return printer.PrintValueObject(); 2736 } 2737 2738 ValueObjectSP ValueObject::CreateConstantValue(ConstString name) { 2739 ValueObjectSP valobj_sp; 2740 2741 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2742 ExecutionContext exe_ctx(GetExecutionContextRef()); 2743 2744 DataExtractor data; 2745 data.SetByteOrder(m_data.GetByteOrder()); 2746 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2747 2748 if (IsBitfield()) { 2749 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2750 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get()); 2751 } else 2752 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get()); 2753 2754 valobj_sp = ValueObjectConstResult::Create( 2755 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2756 GetAddressOf()); 2757 } 2758 2759 if (!valobj_sp) { 2760 ExecutionContext exe_ctx(GetExecutionContextRef()); 2761 valobj_sp = ValueObjectConstResult::Create( 2762 exe_ctx.GetBestExecutionContextScope(), m_error); 2763 } 2764 return valobj_sp; 2765 } 2766 2767 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2768 lldb::DynamicValueType dynValue, bool synthValue) { 2769 ValueObjectSP result_sp; 2770 switch (dynValue) { 2771 case lldb::eDynamicCanRunTarget: 2772 case lldb::eDynamicDontRunTarget: { 2773 if (!IsDynamic()) 2774 result_sp = GetDynamicValue(dynValue); 2775 } break; 2776 case lldb::eNoDynamicValues: { 2777 if (IsDynamic()) 2778 result_sp = GetStaticValue(); 2779 } break; 2780 } 2781 if (!result_sp) 2782 result_sp = GetSP(); 2783 assert(result_sp); 2784 2785 bool is_synthetic = result_sp->IsSynthetic(); 2786 if (synthValue && !is_synthetic) { 2787 if (auto synth_sp = result_sp->GetSyntheticValue()) 2788 return synth_sp; 2789 } 2790 if (!synthValue && is_synthetic) { 2791 if (auto non_synth_sp = result_sp->GetNonSyntheticValue()) 2792 return non_synth_sp; 2793 } 2794 2795 return result_sp; 2796 } 2797 2798 ValueObjectSP ValueObject::Dereference(Status &error) { 2799 if (m_deref_valobj) 2800 return m_deref_valobj->GetSP(); 2801 2802 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2803 if (is_pointer_or_reference_type) { 2804 bool omit_empty_base_classes = true; 2805 bool ignore_array_bounds = false; 2806 2807 std::string child_name_str; 2808 uint32_t child_byte_size = 0; 2809 int32_t child_byte_offset = 0; 2810 uint32_t child_bitfield_bit_size = 0; 2811 uint32_t child_bitfield_bit_offset = 0; 2812 bool child_is_base_class = false; 2813 bool child_is_deref_of_parent = false; 2814 const bool transparent_pointers = false; 2815 CompilerType compiler_type = GetCompilerType(); 2816 uint64_t language_flags = 0; 2817 2818 ExecutionContext exe_ctx(GetExecutionContextRef()); 2819 2820 CompilerType child_compiler_type; 2821 auto child_compiler_type_or_err = compiler_type.GetChildCompilerTypeAtIndex( 2822 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2823 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2824 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2825 child_is_deref_of_parent, this, language_flags); 2826 if (!child_compiler_type_or_err) 2827 LLDB_LOG_ERROR(GetLog(LLDBLog::Types), 2828 child_compiler_type_or_err.takeError(), 2829 "could not find child: {0}"); 2830 else 2831 child_compiler_type = *child_compiler_type_or_err; 2832 2833 if (child_compiler_type && child_byte_size) { 2834 ConstString child_name; 2835 if (!child_name_str.empty()) 2836 child_name.SetCString(child_name_str.c_str()); 2837 2838 m_deref_valobj = new ValueObjectChild( 2839 *this, child_compiler_type, child_name, child_byte_size, 2840 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2841 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2842 language_flags); 2843 } 2844 2845 // In case of incomplete child compiler type, use the pointee type and try 2846 // to recreate a new ValueObjectChild using it. 2847 if (!m_deref_valobj) { 2848 // FIXME(#59012): C++ stdlib formatters break with incomplete types (e.g. 2849 // `std::vector<int> &`). Remove ObjC restriction once that's resolved. 2850 if (Language::LanguageIsObjC(GetPreferredDisplayLanguage()) && 2851 HasSyntheticValue()) { 2852 child_compiler_type = compiler_type.GetPointeeType(); 2853 2854 if (child_compiler_type) { 2855 ConstString child_name; 2856 if (!child_name_str.empty()) 2857 child_name.SetCString(child_name_str.c_str()); 2858 2859 m_deref_valobj = new ValueObjectChild( 2860 *this, child_compiler_type, child_name, child_byte_size, 2861 child_byte_offset, child_bitfield_bit_size, 2862 child_bitfield_bit_offset, child_is_base_class, 2863 child_is_deref_of_parent, eAddressTypeInvalid, language_flags); 2864 } 2865 } 2866 } 2867 2868 } else if (HasSyntheticValue()) { 2869 m_deref_valobj = 2870 GetSyntheticValue()->GetChildMemberWithName("$$dereference$$").get(); 2871 } else if (IsSynthetic()) { 2872 m_deref_valobj = GetChildMemberWithName("$$dereference$$").get(); 2873 } 2874 2875 if (m_deref_valobj) { 2876 error.Clear(); 2877 return m_deref_valobj->GetSP(); 2878 } else { 2879 StreamString strm; 2880 GetExpressionPath(strm); 2881 2882 if (is_pointer_or_reference_type) 2883 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2884 GetTypeName().AsCString("<invalid type>"), 2885 strm.GetData()); 2886 else 2887 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2888 GetTypeName().AsCString("<invalid type>"), 2889 strm.GetData()); 2890 return ValueObjectSP(); 2891 } 2892 } 2893 2894 ValueObjectSP ValueObject::AddressOf(Status &error) { 2895 if (m_addr_of_valobj_sp) 2896 return m_addr_of_valobj_sp; 2897 2898 AddressType address_type = eAddressTypeInvalid; 2899 const bool scalar_is_load_address = false; 2900 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2901 error.Clear(); 2902 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2903 switch (address_type) { 2904 case eAddressTypeInvalid: { 2905 StreamString expr_path_strm; 2906 GetExpressionPath(expr_path_strm); 2907 error.SetErrorStringWithFormat("'%s' is not in memory", 2908 expr_path_strm.GetData()); 2909 } break; 2910 2911 case eAddressTypeFile: 2912 case eAddressTypeLoad: { 2913 CompilerType compiler_type = GetCompilerType(); 2914 if (compiler_type) { 2915 std::string name(1, '&'); 2916 name.append(m_name.AsCString("")); 2917 ExecutionContext exe_ctx(GetExecutionContextRef()); 2918 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2919 exe_ctx.GetBestExecutionContextScope(), 2920 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2921 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2922 } 2923 } break; 2924 default: 2925 break; 2926 } 2927 } else { 2928 StreamString expr_path_strm; 2929 GetExpressionPath(expr_path_strm); 2930 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2931 expr_path_strm.GetData()); 2932 } 2933 2934 return m_addr_of_valobj_sp; 2935 } 2936 2937 ValueObjectSP ValueObject::DoCast(const CompilerType &compiler_type) { 2938 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2939 } 2940 2941 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2942 // Only allow casts if the original type is equal or larger than the cast 2943 // type, unless we know this is a load address. Getting the size wrong for 2944 // a host side storage could leak lldb memory, so we absolutely want to 2945 // prevent that. We may not always get the right value, for instance if we 2946 // have an expression result value that's copied into a storage location in 2947 // the target may not have copied enough memory. I'm not trying to fix that 2948 // here, I'm just making Cast from a smaller to a larger possible in all the 2949 // cases where that doesn't risk making a Value out of random lldb memory. 2950 // You have to check the ValueObject's Value for the address types, since 2951 // ValueObjects that use live addresses will tell you they fetch data from the 2952 // live address, but once they are made, they actually don't. 2953 // FIXME: Can we make ValueObject's with a live address fetch "more data" from 2954 // the live address if it is still valid? 2955 2956 Status error; 2957 CompilerType my_type = GetCompilerType(); 2958 2959 ExecutionContextScope *exe_scope 2960 = ExecutionContext(GetExecutionContextRef()) 2961 .GetBestExecutionContextScope(); 2962 if (compiler_type.GetByteSize(exe_scope) 2963 <= GetCompilerType().GetByteSize(exe_scope) 2964 || m_value.GetValueType() == Value::ValueType::LoadAddress) 2965 return DoCast(compiler_type); 2966 2967 error.SetErrorString("Can only cast to a type that is equal to or smaller " 2968 "than the orignal type."); 2969 2970 return ValueObjectConstResult::Create( 2971 ExecutionContext(GetExecutionContextRef()).GetBestExecutionContextScope(), 2972 error); 2973 } 2974 2975 lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) { 2976 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2977 } 2978 2979 ValueObjectSP ValueObject::CastPointerType(const char *name, 2980 CompilerType &compiler_type) { 2981 ValueObjectSP valobj_sp; 2982 AddressType address_type; 2983 addr_t ptr_value = GetPointerValue(&address_type); 2984 2985 if (ptr_value != LLDB_INVALID_ADDRESS) { 2986 Address ptr_addr(ptr_value); 2987 ExecutionContext exe_ctx(GetExecutionContextRef()); 2988 valobj_sp = ValueObjectMemory::Create( 2989 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2990 } 2991 return valobj_sp; 2992 } 2993 2994 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2995 ValueObjectSP valobj_sp; 2996 AddressType address_type; 2997 addr_t ptr_value = GetPointerValue(&address_type); 2998 2999 if (ptr_value != LLDB_INVALID_ADDRESS) { 3000 Address ptr_addr(ptr_value); 3001 ExecutionContext exe_ctx(GetExecutionContextRef()); 3002 valobj_sp = ValueObjectMemory::Create( 3003 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 3004 } 3005 return valobj_sp; 3006 } 3007 3008 lldb::addr_t ValueObject::GetLoadAddress() { 3009 lldb::addr_t addr_value = LLDB_INVALID_ADDRESS; 3010 if (auto target_sp = GetTargetSP()) { 3011 const bool scalar_is_load_address = true; 3012 AddressType addr_type; 3013 addr_value = GetAddressOf(scalar_is_load_address, &addr_type); 3014 if (addr_type == eAddressTypeFile) { 3015 lldb::ModuleSP module_sp(GetModule()); 3016 if (!module_sp) 3017 addr_value = LLDB_INVALID_ADDRESS; 3018 else { 3019 Address tmp_addr; 3020 module_sp->ResolveFileAddress(addr_value, tmp_addr); 3021 addr_value = tmp_addr.GetLoadAddress(target_sp.get()); 3022 } 3023 } else if (addr_type == eAddressTypeHost || 3024 addr_type == eAddressTypeInvalid) 3025 addr_value = LLDB_INVALID_ADDRESS; 3026 } 3027 return addr_value; 3028 } 3029 3030 llvm::Expected<lldb::ValueObjectSP> ValueObject::CastDerivedToBaseType( 3031 CompilerType type, const llvm::ArrayRef<uint32_t> &base_type_indices) { 3032 // Make sure the starting type and the target type are both valid for this 3033 // type of cast; otherwise return the shared pointer to the original 3034 // (unchanged) ValueObject. 3035 if (!type.IsPointerType() && !type.IsReferenceType()) 3036 return llvm::make_error<llvm::StringError>( 3037 "Invalid target type: should be a pointer or a reference", 3038 llvm::inconvertibleErrorCode()); 3039 3040 CompilerType start_type = GetCompilerType(); 3041 if (start_type.IsReferenceType()) 3042 start_type = start_type.GetNonReferenceType(); 3043 3044 auto target_record_type = 3045 type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType(); 3046 auto start_record_type = 3047 start_type.IsPointerType() ? start_type.GetPointeeType() : start_type; 3048 3049 if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType()) 3050 return llvm::make_error<llvm::StringError>( 3051 "Underlying start & target types should be record types", 3052 llvm::inconvertibleErrorCode()); 3053 3054 if (target_record_type.CompareTypes(start_record_type)) 3055 return llvm::make_error<llvm::StringError>( 3056 "Underlying start & target types should be different", 3057 llvm::inconvertibleErrorCode()); 3058 3059 if (base_type_indices.empty()) 3060 return llvm::make_error<llvm::StringError>( 3061 "Children sequence must be non-empty", llvm::inconvertibleErrorCode()); 3062 3063 // Both the starting & target types are valid for the cast, and the list of 3064 // base class indices is non-empty, so we can proceed with the cast. 3065 3066 lldb::TargetSP target = GetTargetSP(); 3067 // The `value` can be a pointer, but GetChildAtIndex works for pointers too. 3068 lldb::ValueObjectSP inner_value = GetSP(); 3069 3070 for (const uint32_t i : base_type_indices) 3071 // Create synthetic value if needed. 3072 inner_value = 3073 inner_value->GetChildAtIndex(i, /*can_create_synthetic*/ true); 3074 3075 // At this point type of `inner_value` should be the dereferenced target 3076 // type. 3077 CompilerType inner_value_type = inner_value->GetCompilerType(); 3078 if (type.IsPointerType()) { 3079 if (!inner_value_type.CompareTypes(type.GetPointeeType())) 3080 return llvm::make_error<llvm::StringError>( 3081 "casted value doesn't match the desired type", 3082 llvm::inconvertibleErrorCode()); 3083 3084 uintptr_t addr = inner_value->GetLoadAddress(); 3085 llvm::StringRef name = ""; 3086 ExecutionContext exe_ctx(target.get(), false); 3087 return ValueObject::CreateValueObjectFromAddress(name, addr, exe_ctx, type, 3088 /* do deref */ false); 3089 } 3090 3091 // At this point the target type should be a reference. 3092 if (!inner_value_type.CompareTypes(type.GetNonReferenceType())) 3093 return llvm::make_error<llvm::StringError>( 3094 "casted value doesn't match the desired type", 3095 llvm::inconvertibleErrorCode()); 3096 3097 return lldb::ValueObjectSP(inner_value->Cast(type.GetNonReferenceType())); 3098 } 3099 3100 llvm::Expected<lldb::ValueObjectSP> 3101 ValueObject::CastBaseToDerivedType(CompilerType type, uint64_t offset) { 3102 // Make sure the starting type and the target type are both valid for this 3103 // type of cast; otherwise return the shared pointer to the original 3104 // (unchanged) ValueObject. 3105 if (!type.IsPointerType() && !type.IsReferenceType()) 3106 return llvm::make_error<llvm::StringError>( 3107 "Invalid target type: should be a pointer or a reference", 3108 llvm::inconvertibleErrorCode()); 3109 3110 CompilerType start_type = GetCompilerType(); 3111 if (start_type.IsReferenceType()) 3112 start_type = start_type.GetNonReferenceType(); 3113 3114 auto target_record_type = 3115 type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType(); 3116 auto start_record_type = 3117 start_type.IsPointerType() ? start_type.GetPointeeType() : start_type; 3118 3119 if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType()) 3120 return llvm::make_error<llvm::StringError>( 3121 "Underlying start & target types should be record types", 3122 llvm::inconvertibleErrorCode()); 3123 3124 if (target_record_type.CompareTypes(start_record_type)) 3125 return llvm::make_error<llvm::StringError>( 3126 "Underlying start & target types should be different", 3127 llvm::inconvertibleErrorCode()); 3128 3129 CompilerType virtual_base; 3130 if (target_record_type.IsVirtualBase(start_record_type, &virtual_base)) { 3131 if (!virtual_base.IsValid()) 3132 return llvm::make_error<llvm::StringError>( 3133 "virtual base should be valid", llvm::inconvertibleErrorCode()); 3134 return llvm::make_error<llvm::StringError>( 3135 llvm::Twine("cannot cast " + start_type.TypeDescription() + " to " + 3136 type.TypeDescription() + " via virtual base " + 3137 virtual_base.TypeDescription()), 3138 llvm::inconvertibleErrorCode()); 3139 } 3140 3141 // Both the starting & target types are valid for the cast, so we can 3142 // proceed with the cast. 3143 3144 lldb::TargetSP target = GetTargetSP(); 3145 auto pointer_type = 3146 type.IsPointerType() ? type : type.GetNonReferenceType().GetPointerType(); 3147 3148 uintptr_t addr = 3149 type.IsPointerType() ? GetValueAsUnsigned(0) : GetLoadAddress(); 3150 3151 llvm::StringRef name = ""; 3152 ExecutionContext exe_ctx(target.get(), false); 3153 lldb::ValueObjectSP value = ValueObject::CreateValueObjectFromAddress( 3154 name, addr - offset, exe_ctx, pointer_type, /* do_deref */ false); 3155 3156 if (type.IsPointerType()) 3157 return value; 3158 3159 // At this point the target type is a reference. Since `value` is a pointer, 3160 // it has to be dereferenced. 3161 Status error; 3162 return value->Dereference(error); 3163 } 3164 3165 lldb::ValueObjectSP ValueObject::CastToBasicType(CompilerType type) { 3166 bool is_scalar = GetCompilerType().IsScalarType(); 3167 bool is_enum = GetCompilerType().IsEnumerationType(); 3168 bool is_pointer = 3169 GetCompilerType().IsPointerType() || GetCompilerType().IsNullPtrType(); 3170 bool is_float = GetCompilerType().IsFloat(); 3171 bool is_integer = GetCompilerType().IsInteger(); 3172 3173 if (!type.IsScalarType()) { 3174 m_error.SetErrorString("target type must be a scalar"); 3175 return GetSP(); 3176 } 3177 3178 if (!is_scalar && !is_enum && !is_pointer) { 3179 m_error.SetErrorString("argument must be a scalar, enum, or pointer"); 3180 return GetSP(); 3181 } 3182 3183 lldb::TargetSP target = GetTargetSP(); 3184 uint64_t type_byte_size = 0; 3185 uint64_t val_byte_size = 0; 3186 if (auto temp = type.GetByteSize(target.get())) 3187 type_byte_size = temp.value(); 3188 if (auto temp = GetCompilerType().GetByteSize(target.get())) 3189 val_byte_size = temp.value(); 3190 3191 if (is_pointer) { 3192 if (!type.IsInteger() && !type.IsBoolean()) { 3193 m_error.SetErrorString("target type must be an integer or boolean"); 3194 return GetSP(); 3195 } 3196 if (!type.IsBoolean() && type_byte_size < val_byte_size) { 3197 m_error.SetErrorString( 3198 "target type cannot be smaller than the pointer type"); 3199 return GetSP(); 3200 } 3201 } 3202 3203 if (type.IsBoolean()) { 3204 if (!is_scalar || is_integer) 3205 return ValueObject::CreateValueObjectFromBool( 3206 target, GetValueAsUnsigned(0) != 0, "result"); 3207 else if (is_scalar && is_float) { 3208 auto float_value_or_err = GetValueAsAPFloat(); 3209 if (float_value_or_err) 3210 return ValueObject::CreateValueObjectFromBool( 3211 target, !float_value_or_err->isZero(), "result"); 3212 else { 3213 m_error.SetErrorStringWithFormat( 3214 "cannot get value as APFloat: %s", 3215 llvm::toString(float_value_or_err.takeError()).c_str()); 3216 return GetSP(); 3217 } 3218 } 3219 } 3220 3221 if (type.IsInteger()) { 3222 if (!is_scalar || is_integer) { 3223 auto int_value_or_err = GetValueAsAPSInt(); 3224 if (int_value_or_err) { 3225 // Get the value as APSInt and extend or truncate it to the requested 3226 // size. 3227 llvm::APSInt ext = 3228 int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT); 3229 return ValueObject::CreateValueObjectFromAPInt(target, ext, type, 3230 "result"); 3231 } else { 3232 m_error.SetErrorStringWithFormat( 3233 "cannot get value as APSInt: %s", 3234 llvm::toString(int_value_or_err.takeError()).c_str()); 3235 ; 3236 return GetSP(); 3237 } 3238 } else if (is_scalar && is_float) { 3239 llvm::APSInt integer(type_byte_size * CHAR_BIT, !type.IsSigned()); 3240 bool is_exact; 3241 auto float_value_or_err = GetValueAsAPFloat(); 3242 if (float_value_or_err) { 3243 llvm::APFloatBase::opStatus status = 3244 float_value_or_err->convertToInteger( 3245 integer, llvm::APFloat::rmTowardZero, &is_exact); 3246 3247 // Casting floating point values that are out of bounds of the target 3248 // type is undefined behaviour. 3249 if (status & llvm::APFloatBase::opInvalidOp) { 3250 m_error.SetErrorStringWithFormat( 3251 "invalid type cast detected: %s", 3252 llvm::toString(float_value_or_err.takeError()).c_str()); 3253 return GetSP(); 3254 } 3255 return ValueObject::CreateValueObjectFromAPInt(target, integer, type, 3256 "result"); 3257 } 3258 } 3259 } 3260 3261 if (type.IsFloat()) { 3262 if (!is_scalar) { 3263 auto int_value_or_err = GetValueAsAPSInt(); 3264 if (int_value_or_err) { 3265 llvm::APSInt ext = 3266 int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT); 3267 Scalar scalar_int(ext); 3268 llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt( 3269 type.GetCanonicalType().GetBasicTypeEnumeration()); 3270 return ValueObject::CreateValueObjectFromAPFloat(target, f, type, 3271 "result"); 3272 } else { 3273 m_error.SetErrorStringWithFormat( 3274 "cannot get value as APSInt: %s", 3275 llvm::toString(int_value_or_err.takeError()).c_str()); 3276 return GetSP(); 3277 } 3278 } else { 3279 if (is_integer) { 3280 auto int_value_or_err = GetValueAsAPSInt(); 3281 if (int_value_or_err) { 3282 Scalar scalar_int(*int_value_or_err); 3283 llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt( 3284 type.GetCanonicalType().GetBasicTypeEnumeration()); 3285 return ValueObject::CreateValueObjectFromAPFloat(target, f, type, 3286 "result"); 3287 } else { 3288 m_error.SetErrorStringWithFormat( 3289 "cannot get value as APSInt: %s", 3290 llvm::toString(int_value_or_err.takeError()).c_str()); 3291 return GetSP(); 3292 } 3293 } 3294 if (is_float) { 3295 auto float_value_or_err = GetValueAsAPFloat(); 3296 if (float_value_or_err) { 3297 Scalar scalar_float(*float_value_or_err); 3298 llvm::APFloat f = scalar_float.CreateAPFloatFromAPFloat( 3299 type.GetCanonicalType().GetBasicTypeEnumeration()); 3300 return ValueObject::CreateValueObjectFromAPFloat(target, f, type, 3301 "result"); 3302 } else { 3303 m_error.SetErrorStringWithFormat( 3304 "cannot get value as APFloat: %s", 3305 llvm::toString(float_value_or_err.takeError()).c_str()); 3306 return GetSP(); 3307 } 3308 } 3309 } 3310 } 3311 3312 m_error.SetErrorString("Unable to perform requested cast"); 3313 return GetSP(); 3314 } 3315 3316 lldb::ValueObjectSP ValueObject::CastToEnumType(CompilerType type) { 3317 bool is_enum = GetCompilerType().IsEnumerationType(); 3318 bool is_integer = GetCompilerType().IsInteger(); 3319 bool is_float = GetCompilerType().IsFloat(); 3320 3321 if (!is_enum && !is_integer && !is_float) { 3322 m_error.SetErrorString("argument must be an integer, a float, or an enum"); 3323 return GetSP(); 3324 } 3325 3326 if (!type.IsEnumerationType()) { 3327 m_error.SetErrorString("target type must be an enum"); 3328 return GetSP(); 3329 } 3330 3331 lldb::TargetSP target = GetTargetSP(); 3332 uint64_t byte_size = 0; 3333 if (auto temp = type.GetByteSize(target.get())) 3334 byte_size = temp.value(); 3335 3336 if (is_float) { 3337 llvm::APSInt integer(byte_size * CHAR_BIT, !type.IsSigned()); 3338 bool is_exact; 3339 auto value_or_err = GetValueAsAPFloat(); 3340 if (value_or_err) { 3341 llvm::APFloatBase::opStatus status = value_or_err->convertToInteger( 3342 integer, llvm::APFloat::rmTowardZero, &is_exact); 3343 3344 // Casting floating point values that are out of bounds of the target 3345 // type is undefined behaviour. 3346 if (status & llvm::APFloatBase::opInvalidOp) { 3347 m_error.SetErrorStringWithFormat( 3348 "invalid type cast detected: %s", 3349 llvm::toString(value_or_err.takeError()).c_str()); 3350 return GetSP(); 3351 } 3352 return ValueObject::CreateValueObjectFromAPInt(target, integer, type, 3353 "result"); 3354 } else { 3355 m_error.SetErrorString("cannot get value as APFloat"); 3356 return GetSP(); 3357 } 3358 } else { 3359 // Get the value as APSInt and extend or truncate it to the requested size. 3360 auto value_or_err = GetValueAsAPSInt(); 3361 if (value_or_err) { 3362 llvm::APSInt ext = value_or_err->extOrTrunc(byte_size * CHAR_BIT); 3363 return ValueObject::CreateValueObjectFromAPInt(target, ext, type, 3364 "result"); 3365 } else { 3366 m_error.SetErrorStringWithFormat( 3367 "cannot get value as APSInt: %s", 3368 llvm::toString(value_or_err.takeError()).c_str()); 3369 return GetSP(); 3370 } 3371 } 3372 m_error.SetErrorString("Cannot perform requested cast"); 3373 return GetSP(); 3374 } 3375 3376 ValueObject::EvaluationPoint::EvaluationPoint() : m_mod_id(), m_exe_ctx_ref() {} 3377 3378 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 3379 bool use_selected) 3380 : m_mod_id(), m_exe_ctx_ref() { 3381 ExecutionContext exe_ctx(exe_scope); 3382 TargetSP target_sp(exe_ctx.GetTargetSP()); 3383 if (target_sp) { 3384 m_exe_ctx_ref.SetTargetSP(target_sp); 3385 ProcessSP process_sp(exe_ctx.GetProcessSP()); 3386 if (!process_sp) 3387 process_sp = target_sp->GetProcessSP(); 3388 3389 if (process_sp) { 3390 m_mod_id = process_sp->GetModID(); 3391 m_exe_ctx_ref.SetProcessSP(process_sp); 3392 3393 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 3394 3395 if (!thread_sp) { 3396 if (use_selected) 3397 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 3398 } 3399 3400 if (thread_sp) { 3401 m_exe_ctx_ref.SetThreadSP(thread_sp); 3402 3403 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 3404 if (!frame_sp) { 3405 if (use_selected) 3406 frame_sp = thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame); 3407 } 3408 if (frame_sp) 3409 m_exe_ctx_ref.SetFrameSP(frame_sp); 3410 } 3411 } 3412 } 3413 } 3414 3415 ValueObject::EvaluationPoint::EvaluationPoint( 3416 const ValueObject::EvaluationPoint &rhs) 3417 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref) {} 3418 3419 ValueObject::EvaluationPoint::~EvaluationPoint() = default; 3420 3421 // This function checks the EvaluationPoint against the current process state. 3422 // If the current state matches the evaluation point, or the evaluation point 3423 // is already invalid, then we return false, meaning "no change". If the 3424 // current state is different, we update our state, and return true meaning 3425 // "yes, change". If we did see a change, we also set m_needs_update to true, 3426 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3427 // the current execution context scope. 3428 3429 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3430 bool accept_invalid_exe_ctx) { 3431 // Start with the target, if it is NULL, then we're obviously not going to 3432 // get any further: 3433 const bool thread_and_frame_only_if_stopped = true; 3434 ExecutionContext exe_ctx( 3435 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3436 3437 if (exe_ctx.GetTargetPtr() == nullptr) 3438 return false; 3439 3440 // If we don't have a process nothing can change. 3441 Process *process = exe_ctx.GetProcessPtr(); 3442 if (process == nullptr) 3443 return false; 3444 3445 // If our stop id is the current stop ID, nothing has changed: 3446 ProcessModID current_mod_id = process->GetModID(); 3447 3448 // If the current stop id is 0, either we haven't run yet, or the process 3449 // state has been cleared. In either case, we aren't going to be able to sync 3450 // with the process state. 3451 if (current_mod_id.GetStopID() == 0) 3452 return false; 3453 3454 bool changed = false; 3455 const bool was_valid = m_mod_id.IsValid(); 3456 if (was_valid) { 3457 if (m_mod_id == current_mod_id) { 3458 // Everything is already up to date in this object, no need to update the 3459 // execution context scope. 3460 changed = false; 3461 } else { 3462 m_mod_id = current_mod_id; 3463 m_needs_update = true; 3464 changed = true; 3465 } 3466 } 3467 3468 // Now re-look up the thread and frame in case the underlying objects have 3469 // gone away & been recreated. That way we'll be sure to return a valid 3470 // exe_scope. If we used to have a thread or a frame but can't find it 3471 // anymore, then mark ourselves as invalid. 3472 3473 if (!accept_invalid_exe_ctx) { 3474 if (m_exe_ctx_ref.HasThreadRef()) { 3475 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3476 if (thread_sp) { 3477 if (m_exe_ctx_ref.HasFrameRef()) { 3478 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3479 if (!frame_sp) { 3480 // We used to have a frame, but now it is gone 3481 SetInvalid(); 3482 changed = was_valid; 3483 } 3484 } 3485 } else { 3486 // We used to have a thread, but now it is gone 3487 SetInvalid(); 3488 changed = was_valid; 3489 } 3490 } 3491 } 3492 3493 return changed; 3494 } 3495 3496 void ValueObject::EvaluationPoint::SetUpdated() { 3497 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3498 if (process_sp) 3499 m_mod_id = process_sp->GetModID(); 3500 m_needs_update = false; 3501 } 3502 3503 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3504 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3505 eClearUserVisibleDataItemsValue) 3506 m_value_str.clear(); 3507 3508 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3509 eClearUserVisibleDataItemsLocation) 3510 m_location_str.clear(); 3511 3512 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3513 eClearUserVisibleDataItemsSummary) 3514 m_summary_str.clear(); 3515 3516 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3517 eClearUserVisibleDataItemsDescription) 3518 m_object_desc_str.clear(); 3519 3520 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3521 eClearUserVisibleDataItemsSyntheticChildren) { 3522 if (m_synthetic_value) 3523 m_synthetic_value = nullptr; 3524 } 3525 } 3526 3527 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3528 if (m_parent) { 3529 if (!m_parent->IsPointerOrReferenceType()) 3530 return m_parent->GetSymbolContextScope(); 3531 } 3532 return nullptr; 3533 } 3534 3535 lldb::ValueObjectSP 3536 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3537 llvm::StringRef expression, 3538 const ExecutionContext &exe_ctx) { 3539 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3540 EvaluateExpressionOptions()); 3541 } 3542 3543 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3544 llvm::StringRef name, llvm::StringRef expression, 3545 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3546 lldb::ValueObjectSP retval_sp; 3547 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3548 if (!target_sp) 3549 return retval_sp; 3550 if (expression.empty()) 3551 return retval_sp; 3552 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3553 retval_sp, options); 3554 if (retval_sp && !name.empty()) 3555 retval_sp->SetName(ConstString(name)); 3556 return retval_sp; 3557 } 3558 3559 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3560 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3561 CompilerType type, bool do_deref) { 3562 if (type) { 3563 CompilerType pointer_type(type.GetPointerType()); 3564 if (!do_deref) 3565 pointer_type = type; 3566 if (pointer_type) { 3567 lldb::DataBufferSP buffer( 3568 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3569 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3570 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3571 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3572 exe_ctx.GetAddressByteSize())); 3573 if (ptr_result_valobj_sp) { 3574 if (do_deref) 3575 ptr_result_valobj_sp->GetValue().SetValueType( 3576 Value::ValueType::LoadAddress); 3577 Status err; 3578 if (do_deref) 3579 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3580 if (ptr_result_valobj_sp && !name.empty()) 3581 ptr_result_valobj_sp->SetName(ConstString(name)); 3582 } 3583 return ptr_result_valobj_sp; 3584 } 3585 } 3586 return lldb::ValueObjectSP(); 3587 } 3588 3589 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3590 llvm::StringRef name, const DataExtractor &data, 3591 const ExecutionContext &exe_ctx, CompilerType type) { 3592 lldb::ValueObjectSP new_value_sp; 3593 new_value_sp = ValueObjectConstResult::Create( 3594 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3595 LLDB_INVALID_ADDRESS); 3596 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3597 if (new_value_sp && !name.empty()) 3598 new_value_sp->SetName(ConstString(name)); 3599 return new_value_sp; 3600 } 3601 3602 lldb::ValueObjectSP 3603 ValueObject::CreateValueObjectFromAPInt(lldb::TargetSP target, 3604 const llvm::APInt &v, CompilerType type, 3605 llvm::StringRef name) { 3606 ExecutionContext exe_ctx(target.get(), false); 3607 uint64_t byte_size = 0; 3608 if (auto temp = type.GetByteSize(target.get())) 3609 byte_size = temp.value(); 3610 lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>( 3611 reinterpret_cast<const void *>(v.getRawData()), byte_size, 3612 exe_ctx.GetByteOrder(), exe_ctx.GetAddressByteSize()); 3613 return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type); 3614 } 3615 3616 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAPFloat( 3617 lldb::TargetSP target, const llvm::APFloat &v, CompilerType type, 3618 llvm::StringRef name) { 3619 return CreateValueObjectFromAPInt(target, v.bitcastToAPInt(), type, name); 3620 } 3621 3622 lldb::ValueObjectSP 3623 ValueObject::CreateValueObjectFromBool(lldb::TargetSP target, bool value, 3624 llvm::StringRef name) { 3625 CompilerType target_type; 3626 if (target) { 3627 for (auto type_system_sp : target->GetScratchTypeSystems()) 3628 if (auto compiler_type = 3629 type_system_sp->GetBasicTypeFromAST(lldb::eBasicTypeBool)) { 3630 target_type = compiler_type; 3631 break; 3632 } 3633 } 3634 ExecutionContext exe_ctx(target.get(), false); 3635 uint64_t byte_size = 0; 3636 if (auto temp = target_type.GetByteSize(target.get())) 3637 byte_size = temp.value(); 3638 lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>( 3639 reinterpret_cast<const void *>(&value), byte_size, exe_ctx.GetByteOrder(), 3640 exe_ctx.GetAddressByteSize()); 3641 return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, 3642 target_type); 3643 } 3644 3645 lldb::ValueObjectSP ValueObject::CreateValueObjectFromNullptr( 3646 lldb::TargetSP target, CompilerType type, llvm::StringRef name) { 3647 if (!type.IsNullPtrType()) { 3648 lldb::ValueObjectSP ret_val; 3649 return ret_val; 3650 } 3651 uintptr_t zero = 0; 3652 ExecutionContext exe_ctx(target.get(), false); 3653 uint64_t byte_size = 0; 3654 if (auto temp = type.GetByteSize(target.get())) 3655 byte_size = temp.value(); 3656 lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>( 3657 reinterpret_cast<const void *>(zero), byte_size, exe_ctx.GetByteOrder(), 3658 exe_ctx.GetAddressByteSize()); 3659 return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type); 3660 } 3661 3662 ModuleSP ValueObject::GetModule() { 3663 ValueObject *root(GetRoot()); 3664 if (root != this) 3665 return root->GetModule(); 3666 return lldb::ModuleSP(); 3667 } 3668 3669 ValueObject *ValueObject::GetRoot() { 3670 if (m_root) 3671 return m_root; 3672 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3673 return (vo->m_parent != nullptr); 3674 })); 3675 } 3676 3677 ValueObject * 3678 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3679 ValueObject *vo = this; 3680 while (vo) { 3681 if (!f(vo)) 3682 break; 3683 vo = vo->m_parent; 3684 } 3685 return vo; 3686 } 3687 3688 AddressType ValueObject::GetAddressTypeOfChildren() { 3689 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3690 ValueObject *root(GetRoot()); 3691 if (root != this) 3692 return root->GetAddressTypeOfChildren(); 3693 } 3694 return m_address_type_of_ptr_or_ref_children; 3695 } 3696 3697 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3698 ValueObject *with_dv_info = this; 3699 while (with_dv_info) { 3700 if (with_dv_info->HasDynamicValueTypeInfo()) 3701 return with_dv_info->GetDynamicValueTypeImpl(); 3702 with_dv_info = with_dv_info->m_parent; 3703 } 3704 return lldb::eNoDynamicValues; 3705 } 3706 3707 lldb::Format ValueObject::GetFormat() const { 3708 const ValueObject *with_fmt_info = this; 3709 while (with_fmt_info) { 3710 if (with_fmt_info->m_format != lldb::eFormatDefault) 3711 return with_fmt_info->m_format; 3712 with_fmt_info = with_fmt_info->m_parent; 3713 } 3714 return m_format; 3715 } 3716 3717 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3718 lldb::LanguageType type = m_preferred_display_language; 3719 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3720 if (GetRoot()) { 3721 if (GetRoot() == this) { 3722 if (StackFrameSP frame_sp = GetFrameSP()) { 3723 const SymbolContext &sc( 3724 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3725 if (CompileUnit *cu = sc.comp_unit) 3726 type = cu->GetLanguage(); 3727 } 3728 } else { 3729 type = GetRoot()->GetPreferredDisplayLanguage(); 3730 } 3731 } 3732 } 3733 return (m_preferred_display_language = type); // only compute it once 3734 } 3735 3736 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3737 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3738 SetPreferredDisplayLanguage(lt); 3739 } 3740 3741 bool ValueObject::CanProvideValue() { 3742 // we need to support invalid types as providers of values because some bare- 3743 // board debugging scenarios have no notion of types, but still manage to 3744 // have raw numeric values for things like registers. sigh. 3745 CompilerType type = GetCompilerType(); 3746 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3747 } 3748 3749 3750 3751 ValueObjectSP ValueObject::Persist() { 3752 if (!UpdateValueIfNeeded()) 3753 return nullptr; 3754 3755 TargetSP target_sp(GetTargetSP()); 3756 if (!target_sp) 3757 return nullptr; 3758 3759 PersistentExpressionState *persistent_state = 3760 target_sp->GetPersistentExpressionStateForLanguage( 3761 GetPreferredDisplayLanguage()); 3762 3763 if (!persistent_state) 3764 return nullptr; 3765 3766 ConstString name = persistent_state->GetNextPersistentVariableName(); 3767 3768 ValueObjectSP const_result_sp = 3769 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3770 3771 ExpressionVariableSP persistent_var_sp = 3772 persistent_state->CreatePersistentVariable(const_result_sp); 3773 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp; 3774 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3775 3776 return persistent_var_sp->GetValueObject(); 3777 } 3778 3779 lldb::ValueObjectSP ValueObject::GetVTable() { 3780 return ValueObjectVTable::Create(*this); 3781 } 3782