1 //===- llvm/CodeGen/MachineRegisterInfo.h -----------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MachineRegisterInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H 14 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H 15 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/PointerUnion.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringSet.h" 23 #include "llvm/ADT/iterator_range.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFunction.h" 26 #include "llvm/CodeGen/MachineInstrBundle.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/RegisterBank.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/MC/LaneBitmask.h" 32 #include <cassert> 33 #include <cstddef> 34 #include <cstdint> 35 #include <iterator> 36 #include <memory> 37 #include <utility> 38 #include <vector> 39 40 namespace llvm { 41 42 class PSetIterator; 43 44 /// Convenient type to represent either a register class or a register bank. 45 using RegClassOrRegBank = 46 PointerUnion<const TargetRegisterClass *, const RegisterBank *>; 47 48 /// MachineRegisterInfo - Keep track of information for virtual and physical 49 /// registers, including vreg register classes, use/def chains for registers, 50 /// etc. 51 class MachineRegisterInfo { 52 public: 53 class Delegate { 54 virtual void anchor(); 55 56 public: 57 virtual ~Delegate() = default; 58 59 virtual void MRI_NoteNewVirtualRegister(Register Reg) = 0; 60 virtual void MRI_NoteCloneVirtualRegister(Register NewReg, 61 Register SrcReg) { 62 MRI_NoteNewVirtualRegister(NewReg); 63 } 64 }; 65 66 private: 67 MachineFunction *MF; 68 SmallPtrSet<Delegate *, 1> TheDelegates; 69 70 /// True if subregister liveness is tracked. 71 const bool TracksSubRegLiveness; 72 73 /// VRegInfo - Information we keep for each virtual register. 74 /// 75 /// Each element in this list contains the register class of the vreg and the 76 /// start of the use/def list for the register. 77 IndexedMap<std::pair<RegClassOrRegBank, MachineOperand *>, 78 VirtReg2IndexFunctor> 79 VRegInfo; 80 81 /// Map for recovering vreg name from vreg number. 82 /// This map is used by the MIR Printer. 83 IndexedMap<std::string, VirtReg2IndexFunctor> VReg2Name; 84 85 /// StringSet that is used to unique vreg names. 86 StringSet<> VRegNames; 87 88 /// The flag is true upon \p UpdatedCSRs initialization 89 /// and false otherwise. 90 bool IsUpdatedCSRsInitialized = false; 91 92 /// Contains the updated callee saved register list. 93 /// As opposed to the static list defined in register info, 94 /// all registers that were disabled are removed from the list. 95 SmallVector<MCPhysReg, 16> UpdatedCSRs; 96 97 /// RegAllocHints - This vector records register allocation hints for 98 /// virtual registers. For each virtual register, it keeps a pair of hint 99 /// type and hints vector making up the allocation hints. Only the first 100 /// hint may be target specific, and in that case this is reflected by the 101 /// first member of the pair being non-zero. If the hinted register is 102 /// virtual, it means the allocator should prefer the physical register 103 /// allocated to it if any. 104 IndexedMap<std::pair<unsigned, SmallVector<Register, 4>>, 105 VirtReg2IndexFunctor> 106 RegAllocHints; 107 108 /// PhysRegUseDefLists - This is an array of the head of the use/def list for 109 /// physical registers. 110 std::unique_ptr<MachineOperand *[]> PhysRegUseDefLists; 111 112 /// getRegUseDefListHead - Return the head pointer for the register use/def 113 /// list for the specified virtual or physical register. 114 MachineOperand *&getRegUseDefListHead(Register RegNo) { 115 if (RegNo.isVirtual()) 116 return VRegInfo[RegNo.id()].second; 117 return PhysRegUseDefLists[RegNo.id()]; 118 } 119 120 MachineOperand *getRegUseDefListHead(Register RegNo) const { 121 if (RegNo.isVirtual()) 122 return VRegInfo[RegNo.id()].second; 123 return PhysRegUseDefLists[RegNo.id()]; 124 } 125 126 /// Get the next element in the use-def chain. 127 static MachineOperand *getNextOperandForReg(const MachineOperand *MO) { 128 assert(MO && MO->isReg() && "This is not a register operand!"); 129 return MO->Contents.Reg.Next; 130 } 131 132 /// UsedPhysRegMask - Additional used physregs including aliases. 133 /// This bit vector represents all the registers clobbered by function calls. 134 BitVector UsedPhysRegMask; 135 136 /// ReservedRegs - This is a bit vector of reserved registers. The target 137 /// may change its mind about which registers should be reserved. This 138 /// vector is the frozen set of reserved registers when register allocation 139 /// started. 140 BitVector ReservedRegs; 141 142 using VRegToTypeMap = IndexedMap<LLT, VirtReg2IndexFunctor>; 143 /// Map generic virtual registers to their low-level type. 144 VRegToTypeMap VRegToType; 145 146 /// Keep track of the physical registers that are live in to the function. 147 /// Live in values are typically arguments in registers. LiveIn values are 148 /// allowed to have virtual registers associated with them, stored in the 149 /// second element. 150 std::vector<std::pair<MCRegister, Register>> LiveIns; 151 152 public: 153 explicit MachineRegisterInfo(MachineFunction *MF); 154 MachineRegisterInfo(const MachineRegisterInfo &) = delete; 155 MachineRegisterInfo &operator=(const MachineRegisterInfo &) = delete; 156 157 const TargetRegisterInfo *getTargetRegisterInfo() const { 158 return MF->getSubtarget().getRegisterInfo(); 159 } 160 161 void resetDelegate(Delegate *delegate) { 162 // Ensure another delegate does not take over unless the current 163 // delegate first unattaches itself. 164 assert(TheDelegates.count(delegate) && 165 "Only an existing delegate can perform reset!"); 166 TheDelegates.erase(delegate); 167 } 168 169 void addDelegate(Delegate *delegate) { 170 assert(delegate && !TheDelegates.count(delegate) && 171 "Attempted to add null delegate, or to change it without " 172 "first resetting it!"); 173 174 TheDelegates.insert(delegate); 175 } 176 177 void noteNewVirtualRegister(Register Reg) { 178 for (auto *TheDelegate : TheDelegates) 179 TheDelegate->MRI_NoteNewVirtualRegister(Reg); 180 } 181 182 void noteCloneVirtualRegister(Register NewReg, Register SrcReg) { 183 for (auto *TheDelegate : TheDelegates) 184 TheDelegate->MRI_NoteCloneVirtualRegister(NewReg, SrcReg); 185 } 186 187 const MachineFunction &getMF() const { return *MF; } 188 189 //===--------------------------------------------------------------------===// 190 // Function State 191 //===--------------------------------------------------------------------===// 192 193 // isSSA - Returns true when the machine function is in SSA form. Early 194 // passes require the machine function to be in SSA form where every virtual 195 // register has a single defining instruction. 196 // 197 // The TwoAddressInstructionPass and PHIElimination passes take the machine 198 // function out of SSA form when they introduce multiple defs per virtual 199 // register. 200 bool isSSA() const { 201 return MF->getProperties().hasProperty( 202 MachineFunctionProperties::Property::IsSSA); 203 } 204 205 // leaveSSA - Indicates that the machine function is no longer in SSA form. 206 void leaveSSA() { 207 MF->getProperties().reset(MachineFunctionProperties::Property::IsSSA); 208 } 209 210 /// tracksLiveness - Returns true when tracking register liveness accurately. 211 /// (see MachineFUnctionProperties::Property description for details) 212 bool tracksLiveness() const { 213 return MF->getProperties().hasProperty( 214 MachineFunctionProperties::Property::TracksLiveness); 215 } 216 217 /// invalidateLiveness - Indicates that register liveness is no longer being 218 /// tracked accurately. 219 /// 220 /// This should be called by late passes that invalidate the liveness 221 /// information. 222 void invalidateLiveness() { 223 MF->getProperties().reset( 224 MachineFunctionProperties::Property::TracksLiveness); 225 } 226 227 /// Returns true if liveness for register class @p RC should be tracked at 228 /// the subregister level. 229 bool shouldTrackSubRegLiveness(const TargetRegisterClass &RC) const { 230 return subRegLivenessEnabled() && RC.HasDisjunctSubRegs; 231 } 232 bool shouldTrackSubRegLiveness(Register VReg) const { 233 assert(VReg.isVirtual() && "Must pass a VReg"); 234 const TargetRegisterClass *RC = getRegClassOrNull(VReg); 235 return LLVM_LIKELY(RC) ? shouldTrackSubRegLiveness(*RC) : false; 236 } 237 bool subRegLivenessEnabled() const { 238 return TracksSubRegLiveness; 239 } 240 241 //===--------------------------------------------------------------------===// 242 // Register Info 243 //===--------------------------------------------------------------------===// 244 245 /// Returns true if the updated CSR list was initialized and false otherwise. 246 bool isUpdatedCSRsInitialized() const { return IsUpdatedCSRsInitialized; } 247 248 /// Disables the register from the list of CSRs. 249 /// I.e. the register will not appear as part of the CSR mask. 250 /// \see UpdatedCalleeSavedRegs. 251 void disableCalleeSavedRegister(MCRegister Reg); 252 253 /// Returns list of callee saved registers. 254 /// The function returns the updated CSR list (after taking into account 255 /// registers that are disabled from the CSR list). 256 const MCPhysReg *getCalleeSavedRegs() const; 257 258 /// Sets the updated Callee Saved Registers list. 259 /// Notice that it will override ant previously disabled/saved CSRs. 260 void setCalleeSavedRegs(ArrayRef<MCPhysReg> CSRs); 261 262 // Strictly for use by MachineInstr.cpp. 263 void addRegOperandToUseList(MachineOperand *MO); 264 265 // Strictly for use by MachineInstr.cpp. 266 void removeRegOperandFromUseList(MachineOperand *MO); 267 268 // Strictly for use by MachineInstr.cpp. 269 void moveOperands(MachineOperand *Dst, MachineOperand *Src, unsigned NumOps); 270 271 /// Verify the sanity of the use list for Reg. 272 void verifyUseList(Register Reg) const; 273 274 /// Verify the use list of all registers. 275 void verifyUseLists() const; 276 277 /// reg_begin/reg_end - Provide iteration support to walk over all definitions 278 /// and uses of a register within the MachineFunction that corresponds to this 279 /// MachineRegisterInfo object. 280 template<bool Uses, bool Defs, bool SkipDebug, 281 bool ByOperand, bool ByInstr, bool ByBundle> 282 class defusechain_iterator; 283 template<bool Uses, bool Defs, bool SkipDebug, 284 bool ByOperand, bool ByInstr, bool ByBundle> 285 class defusechain_instr_iterator; 286 287 // Make it a friend so it can access getNextOperandForReg(). 288 template<bool, bool, bool, bool, bool, bool> 289 friend class defusechain_iterator; 290 template<bool, bool, bool, bool, bool, bool> 291 friend class defusechain_instr_iterator; 292 293 /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified 294 /// register. 295 using reg_iterator = 296 defusechain_iterator<true, true, false, true, false, false>; 297 reg_iterator reg_begin(Register RegNo) const { 298 return reg_iterator(getRegUseDefListHead(RegNo)); 299 } 300 static reg_iterator reg_end() { return reg_iterator(nullptr); } 301 302 inline iterator_range<reg_iterator> reg_operands(Register Reg) const { 303 return make_range(reg_begin(Reg), reg_end()); 304 } 305 306 /// reg_instr_iterator/reg_instr_begin/reg_instr_end - Walk all defs and uses 307 /// of the specified register, stepping by MachineInstr. 308 using reg_instr_iterator = 309 defusechain_instr_iterator<true, true, false, false, true, false>; 310 reg_instr_iterator reg_instr_begin(Register RegNo) const { 311 return reg_instr_iterator(getRegUseDefListHead(RegNo)); 312 } 313 static reg_instr_iterator reg_instr_end() { 314 return reg_instr_iterator(nullptr); 315 } 316 317 inline iterator_range<reg_instr_iterator> 318 reg_instructions(Register Reg) const { 319 return make_range(reg_instr_begin(Reg), reg_instr_end()); 320 } 321 322 /// reg_bundle_iterator/reg_bundle_begin/reg_bundle_end - Walk all defs and uses 323 /// of the specified register, stepping by bundle. 324 using reg_bundle_iterator = 325 defusechain_instr_iterator<true, true, false, false, false, true>; 326 reg_bundle_iterator reg_bundle_begin(Register RegNo) const { 327 return reg_bundle_iterator(getRegUseDefListHead(RegNo)); 328 } 329 static reg_bundle_iterator reg_bundle_end() { 330 return reg_bundle_iterator(nullptr); 331 } 332 333 inline iterator_range<reg_bundle_iterator> reg_bundles(Register Reg) const { 334 return make_range(reg_bundle_begin(Reg), reg_bundle_end()); 335 } 336 337 /// reg_empty - Return true if there are no instructions using or defining the 338 /// specified register (it may be live-in). 339 bool reg_empty(Register RegNo) const { return reg_begin(RegNo) == reg_end(); } 340 341 /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses 342 /// of the specified register, skipping those marked as Debug. 343 using reg_nodbg_iterator = 344 defusechain_iterator<true, true, true, true, false, false>; 345 reg_nodbg_iterator reg_nodbg_begin(Register RegNo) const { 346 return reg_nodbg_iterator(getRegUseDefListHead(RegNo)); 347 } 348 static reg_nodbg_iterator reg_nodbg_end() { 349 return reg_nodbg_iterator(nullptr); 350 } 351 352 inline iterator_range<reg_nodbg_iterator> 353 reg_nodbg_operands(Register Reg) const { 354 return make_range(reg_nodbg_begin(Reg), reg_nodbg_end()); 355 } 356 357 /// reg_instr_nodbg_iterator/reg_instr_nodbg_begin/reg_instr_nodbg_end - Walk 358 /// all defs and uses of the specified register, stepping by MachineInstr, 359 /// skipping those marked as Debug. 360 using reg_instr_nodbg_iterator = 361 defusechain_instr_iterator<true, true, true, false, true, false>; 362 reg_instr_nodbg_iterator reg_instr_nodbg_begin(Register RegNo) const { 363 return reg_instr_nodbg_iterator(getRegUseDefListHead(RegNo)); 364 } 365 static reg_instr_nodbg_iterator reg_instr_nodbg_end() { 366 return reg_instr_nodbg_iterator(nullptr); 367 } 368 369 inline iterator_range<reg_instr_nodbg_iterator> 370 reg_nodbg_instructions(Register Reg) const { 371 return make_range(reg_instr_nodbg_begin(Reg), reg_instr_nodbg_end()); 372 } 373 374 /// reg_bundle_nodbg_iterator/reg_bundle_nodbg_begin/reg_bundle_nodbg_end - Walk 375 /// all defs and uses of the specified register, stepping by bundle, 376 /// skipping those marked as Debug. 377 using reg_bundle_nodbg_iterator = 378 defusechain_instr_iterator<true, true, true, false, false, true>; 379 reg_bundle_nodbg_iterator reg_bundle_nodbg_begin(Register RegNo) const { 380 return reg_bundle_nodbg_iterator(getRegUseDefListHead(RegNo)); 381 } 382 static reg_bundle_nodbg_iterator reg_bundle_nodbg_end() { 383 return reg_bundle_nodbg_iterator(nullptr); 384 } 385 386 inline iterator_range<reg_bundle_nodbg_iterator> 387 reg_nodbg_bundles(Register Reg) const { 388 return make_range(reg_bundle_nodbg_begin(Reg), reg_bundle_nodbg_end()); 389 } 390 391 /// reg_nodbg_empty - Return true if the only instructions using or defining 392 /// Reg are Debug instructions. 393 bool reg_nodbg_empty(Register RegNo) const { 394 return reg_nodbg_begin(RegNo) == reg_nodbg_end(); 395 } 396 397 /// def_iterator/def_begin/def_end - Walk all defs of the specified register. 398 using def_iterator = 399 defusechain_iterator<false, true, false, true, false, false>; 400 def_iterator def_begin(Register RegNo) const { 401 return def_iterator(getRegUseDefListHead(RegNo)); 402 } 403 static def_iterator def_end() { return def_iterator(nullptr); } 404 405 inline iterator_range<def_iterator> def_operands(Register Reg) const { 406 return make_range(def_begin(Reg), def_end()); 407 } 408 409 /// def_instr_iterator/def_instr_begin/def_instr_end - Walk all defs of the 410 /// specified register, stepping by MachineInst. 411 using def_instr_iterator = 412 defusechain_instr_iterator<false, true, false, false, true, false>; 413 def_instr_iterator def_instr_begin(Register RegNo) const { 414 return def_instr_iterator(getRegUseDefListHead(RegNo)); 415 } 416 static def_instr_iterator def_instr_end() { 417 return def_instr_iterator(nullptr); 418 } 419 420 inline iterator_range<def_instr_iterator> 421 def_instructions(Register Reg) const { 422 return make_range(def_instr_begin(Reg), def_instr_end()); 423 } 424 425 /// def_bundle_iterator/def_bundle_begin/def_bundle_end - Walk all defs of the 426 /// specified register, stepping by bundle. 427 using def_bundle_iterator = 428 defusechain_instr_iterator<false, true, false, false, false, true>; 429 def_bundle_iterator def_bundle_begin(Register RegNo) const { 430 return def_bundle_iterator(getRegUseDefListHead(RegNo)); 431 } 432 static def_bundle_iterator def_bundle_end() { 433 return def_bundle_iterator(nullptr); 434 } 435 436 inline iterator_range<def_bundle_iterator> def_bundles(Register Reg) const { 437 return make_range(def_bundle_begin(Reg), def_bundle_end()); 438 } 439 440 /// def_empty - Return true if there are no instructions defining the 441 /// specified register (it may be live-in). 442 bool def_empty(Register RegNo) const { return def_begin(RegNo) == def_end(); } 443 444 StringRef getVRegName(Register Reg) const { 445 return VReg2Name.inBounds(Reg) ? StringRef(VReg2Name[Reg]) : ""; 446 } 447 448 void insertVRegByName(StringRef Name, Register Reg) { 449 assert((Name.empty() || !VRegNames.contains(Name)) && 450 "Named VRegs Must be Unique."); 451 if (!Name.empty()) { 452 VRegNames.insert(Name); 453 VReg2Name.grow(Reg); 454 VReg2Name[Reg] = Name.str(); 455 } 456 } 457 458 /// Return true if there is exactly one operand defining the specified 459 /// register. 460 bool hasOneDef(Register RegNo) const { 461 return hasSingleElement(def_operands(RegNo)); 462 } 463 464 /// Returns the defining operand if there is exactly one operand defining the 465 /// specified register, otherwise nullptr. 466 MachineOperand *getOneDef(Register Reg) const { 467 def_iterator DI = def_begin(Reg); 468 if (DI == def_end()) // No defs. 469 return nullptr; 470 471 def_iterator OneDef = DI; 472 if (++DI == def_end()) 473 return &*OneDef; 474 return nullptr; // Multiple defs. 475 } 476 477 /// use_iterator/use_begin/use_end - Walk all uses of the specified register. 478 using use_iterator = 479 defusechain_iterator<true, false, false, true, false, false>; 480 use_iterator use_begin(Register RegNo) const { 481 return use_iterator(getRegUseDefListHead(RegNo)); 482 } 483 static use_iterator use_end() { return use_iterator(nullptr); } 484 485 inline iterator_range<use_iterator> use_operands(Register Reg) const { 486 return make_range(use_begin(Reg), use_end()); 487 } 488 489 /// use_instr_iterator/use_instr_begin/use_instr_end - Walk all uses of the 490 /// specified register, stepping by MachineInstr. 491 using use_instr_iterator = 492 defusechain_instr_iterator<true, false, false, false, true, false>; 493 use_instr_iterator use_instr_begin(Register RegNo) const { 494 return use_instr_iterator(getRegUseDefListHead(RegNo)); 495 } 496 static use_instr_iterator use_instr_end() { 497 return use_instr_iterator(nullptr); 498 } 499 500 inline iterator_range<use_instr_iterator> 501 use_instructions(Register Reg) const { 502 return make_range(use_instr_begin(Reg), use_instr_end()); 503 } 504 505 /// use_bundle_iterator/use_bundle_begin/use_bundle_end - Walk all uses of the 506 /// specified register, stepping by bundle. 507 using use_bundle_iterator = 508 defusechain_instr_iterator<true, false, false, false, false, true>; 509 use_bundle_iterator use_bundle_begin(Register RegNo) const { 510 return use_bundle_iterator(getRegUseDefListHead(RegNo)); 511 } 512 static use_bundle_iterator use_bundle_end() { 513 return use_bundle_iterator(nullptr); 514 } 515 516 inline iterator_range<use_bundle_iterator> use_bundles(Register Reg) const { 517 return make_range(use_bundle_begin(Reg), use_bundle_end()); 518 } 519 520 /// use_empty - Return true if there are no instructions using the specified 521 /// register. 522 bool use_empty(Register RegNo) const { return use_begin(RegNo) == use_end(); } 523 524 /// hasOneUse - Return true if there is exactly one instruction using the 525 /// specified register. 526 bool hasOneUse(Register RegNo) const { 527 return hasSingleElement(use_operands(RegNo)); 528 } 529 530 /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the 531 /// specified register, skipping those marked as Debug. 532 using use_nodbg_iterator = 533 defusechain_iterator<true, false, true, true, false, false>; 534 use_nodbg_iterator use_nodbg_begin(Register RegNo) const { 535 return use_nodbg_iterator(getRegUseDefListHead(RegNo)); 536 } 537 static use_nodbg_iterator use_nodbg_end() { 538 return use_nodbg_iterator(nullptr); 539 } 540 541 inline iterator_range<use_nodbg_iterator> 542 use_nodbg_operands(Register Reg) const { 543 return make_range(use_nodbg_begin(Reg), use_nodbg_end()); 544 } 545 546 /// use_instr_nodbg_iterator/use_instr_nodbg_begin/use_instr_nodbg_end - Walk 547 /// all uses of the specified register, stepping by MachineInstr, skipping 548 /// those marked as Debug. 549 using use_instr_nodbg_iterator = 550 defusechain_instr_iterator<true, false, true, false, true, false>; 551 use_instr_nodbg_iterator use_instr_nodbg_begin(Register RegNo) const { 552 return use_instr_nodbg_iterator(getRegUseDefListHead(RegNo)); 553 } 554 static use_instr_nodbg_iterator use_instr_nodbg_end() { 555 return use_instr_nodbg_iterator(nullptr); 556 } 557 558 inline iterator_range<use_instr_nodbg_iterator> 559 use_nodbg_instructions(Register Reg) const { 560 return make_range(use_instr_nodbg_begin(Reg), use_instr_nodbg_end()); 561 } 562 563 /// use_bundle_nodbg_iterator/use_bundle_nodbg_begin/use_bundle_nodbg_end - Walk 564 /// all uses of the specified register, stepping by bundle, skipping 565 /// those marked as Debug. 566 using use_bundle_nodbg_iterator = 567 defusechain_instr_iterator<true, false, true, false, false, true>; 568 use_bundle_nodbg_iterator use_bundle_nodbg_begin(Register RegNo) const { 569 return use_bundle_nodbg_iterator(getRegUseDefListHead(RegNo)); 570 } 571 static use_bundle_nodbg_iterator use_bundle_nodbg_end() { 572 return use_bundle_nodbg_iterator(nullptr); 573 } 574 575 inline iterator_range<use_bundle_nodbg_iterator> 576 use_nodbg_bundles(Register Reg) const { 577 return make_range(use_bundle_nodbg_begin(Reg), use_bundle_nodbg_end()); 578 } 579 580 /// use_nodbg_empty - Return true if there are no non-Debug instructions 581 /// using the specified register. 582 bool use_nodbg_empty(Register RegNo) const { 583 return use_nodbg_begin(RegNo) == use_nodbg_end(); 584 } 585 586 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug 587 /// use of the specified register. 588 bool hasOneNonDBGUse(Register RegNo) const; 589 590 /// hasOneNonDBGUse - Return true if there is exactly one non-Debug 591 /// instruction using the specified register. Said instruction may have 592 /// multiple uses. 593 bool hasOneNonDBGUser(Register RegNo) const; 594 595 596 /// hasAtMostUses - Return true if the given register has at most \p MaxUsers 597 /// non-debug user instructions. 598 bool hasAtMostUserInstrs(Register Reg, unsigned MaxUsers) const; 599 600 /// replaceRegWith - Replace all instances of FromReg with ToReg in the 601 /// machine function. This is like llvm-level X->replaceAllUsesWith(Y), 602 /// except that it also changes any definitions of the register as well. 603 /// 604 /// Note that it is usually necessary to first constrain ToReg's register 605 /// class and register bank to match the FromReg constraints using one of the 606 /// methods: 607 /// 608 /// constrainRegClass(ToReg, getRegClass(FromReg)) 609 /// constrainRegAttrs(ToReg, FromReg) 610 /// RegisterBankInfo::constrainGenericRegister(ToReg, 611 /// *MRI.getRegClass(FromReg), MRI) 612 /// 613 /// These functions will return a falsy result if the virtual registers have 614 /// incompatible constraints. 615 /// 616 /// Note that if ToReg is a physical register the function will replace and 617 /// apply sub registers to ToReg in order to obtain a final/proper physical 618 /// register. 619 void replaceRegWith(Register FromReg, Register ToReg); 620 621 /// getVRegDef - Return the machine instr that defines the specified virtual 622 /// register or null if none is found. This assumes that the code is in SSA 623 /// form, so there should only be one definition. 624 MachineInstr *getVRegDef(Register Reg) const; 625 626 /// getUniqueVRegDef - Return the unique machine instr that defines the 627 /// specified virtual register or null if none is found. If there are 628 /// multiple definitions or no definition, return null. 629 MachineInstr *getUniqueVRegDef(Register Reg) const; 630 631 /// clearKillFlags - Iterate over all the uses of the given register and 632 /// clear the kill flag from the MachineOperand. This function is used by 633 /// optimization passes which extend register lifetimes and need only 634 /// preserve conservative kill flag information. 635 void clearKillFlags(Register Reg) const; 636 637 void dumpUses(Register RegNo) const; 638 639 /// Returns true if PhysReg is unallocatable and constant throughout the 640 /// function. Writing to a constant register has no effect. 641 bool isConstantPhysReg(MCRegister PhysReg) const; 642 643 /// Get an iterator over the pressure sets affected by the given physical or 644 /// virtual register. If RegUnit is physical, it must be a register unit (from 645 /// MCRegUnitIterator). 646 PSetIterator getPressureSets(Register RegUnit) const; 647 648 //===--------------------------------------------------------------------===// 649 // Virtual Register Info 650 //===--------------------------------------------------------------------===// 651 652 /// Return the register class of the specified virtual register. 653 /// This shouldn't be used directly unless \p Reg has a register class. 654 /// \see getRegClassOrNull when this might happen. 655 const TargetRegisterClass *getRegClass(Register Reg) const { 656 assert(isa<const TargetRegisterClass *>(VRegInfo[Reg.id()].first) && 657 "Register class not set, wrong accessor"); 658 return cast<const TargetRegisterClass *>(VRegInfo[Reg.id()].first); 659 } 660 661 /// Return the register class of \p Reg, or null if Reg has not been assigned 662 /// a register class yet. 663 /// 664 /// \note A null register class can only happen when these two 665 /// conditions are met: 666 /// 1. Generic virtual registers are created. 667 /// 2. The machine function has not completely been through the 668 /// instruction selection process. 669 /// None of this condition is possible without GlobalISel for now. 670 /// In other words, if GlobalISel is not used or if the query happens after 671 /// the select pass, using getRegClass is safe. 672 const TargetRegisterClass *getRegClassOrNull(Register Reg) const { 673 const RegClassOrRegBank &Val = VRegInfo[Reg].first; 674 return dyn_cast_if_present<const TargetRegisterClass *>(Val); 675 } 676 677 /// Return the register bank of \p Reg. 678 /// This shouldn't be used directly unless \p Reg has a register bank. 679 const RegisterBank *getRegBank(Register Reg) const { 680 return cast<const RegisterBank *>(VRegInfo[Reg.id()].first); 681 } 682 683 /// Return the register bank of \p Reg, or null if Reg has not been assigned 684 /// a register bank or has been assigned a register class. 685 /// \note It is possible to get the register bank from the register class via 686 /// RegisterBankInfo::getRegBankFromRegClass. 687 const RegisterBank *getRegBankOrNull(Register Reg) const { 688 const RegClassOrRegBank &Val = VRegInfo[Reg].first; 689 return dyn_cast_if_present<const RegisterBank *>(Val); 690 } 691 692 /// Return the register bank or register class of \p Reg. 693 /// \note Before the register bank gets assigned (i.e., before the 694 /// RegBankSelect pass) \p Reg may not have either. 695 const RegClassOrRegBank &getRegClassOrRegBank(Register Reg) const { 696 return VRegInfo[Reg].first; 697 } 698 699 /// setRegClass - Set the register class of the specified virtual register. 700 void setRegClass(Register Reg, const TargetRegisterClass *RC); 701 702 /// Set the register bank to \p RegBank for \p Reg. 703 void setRegBank(Register Reg, const RegisterBank &RegBank); 704 705 void setRegClassOrRegBank(Register Reg, 706 const RegClassOrRegBank &RCOrRB){ 707 VRegInfo[Reg].first = RCOrRB; 708 } 709 710 /// constrainRegClass - Constrain the register class of the specified virtual 711 /// register to be a common subclass of RC and the current register class, 712 /// but only if the new class has at least MinNumRegs registers. Return the 713 /// new register class, or NULL if no such class exists. 714 /// This should only be used when the constraint is known to be trivial, like 715 /// GR32 -> GR32_NOSP. Beware of increasing register pressure. 716 /// 717 /// \note Assumes that the register has a register class assigned. 718 /// Use RegisterBankInfo::constrainGenericRegister in GlobalISel's 719 /// InstructionSelect pass and constrainRegAttrs in every other pass, 720 /// including non-select passes of GlobalISel, instead. 721 const TargetRegisterClass *constrainRegClass(Register Reg, 722 const TargetRegisterClass *RC, 723 unsigned MinNumRegs = 0); 724 725 /// Constrain the register class or the register bank of the virtual register 726 /// \p Reg (and low-level type) to be a common subclass or a common bank of 727 /// both registers provided respectively (and a common low-level type). Do 728 /// nothing if any of the attributes (classes, banks, or low-level types) of 729 /// the registers are deemed incompatible, or if the resulting register will 730 /// have a class smaller than before and of size less than \p MinNumRegs. 731 /// Return true if such register attributes exist, false otherwise. 732 /// 733 /// \note Use this method instead of constrainRegClass and 734 /// RegisterBankInfo::constrainGenericRegister everywhere but SelectionDAG 735 /// ISel / FastISel and GlobalISel's InstructionSelect pass respectively. 736 bool constrainRegAttrs(Register Reg, Register ConstrainingReg, 737 unsigned MinNumRegs = 0); 738 739 /// recomputeRegClass - Try to find a legal super-class of Reg's register 740 /// class that still satisfies the constraints from the instructions using 741 /// Reg. Returns true if Reg was upgraded. 742 /// 743 /// This method can be used after constraints have been removed from a 744 /// virtual register, for example after removing instructions or splitting 745 /// the live range. 746 bool recomputeRegClass(Register Reg); 747 748 /// createVirtualRegister - Create and return a new virtual register in the 749 /// function with the specified register class. 750 Register createVirtualRegister(const TargetRegisterClass *RegClass, 751 StringRef Name = ""); 752 753 /// All attributes(register class or bank and low-level type) a virtual 754 /// register can have. 755 struct VRegAttrs { 756 RegClassOrRegBank RCOrRB; 757 LLT Ty; 758 }; 759 760 /// Returns register class or bank and low level type of \p Reg. Always safe 761 /// to use. Special values are returned when \p Reg does not have some of the 762 /// attributes. 763 VRegAttrs getVRegAttrs(Register Reg) const { 764 return {getRegClassOrRegBank(Reg), getType(Reg)}; 765 } 766 767 /// Create and return a new virtual register in the function with the 768 /// specified register attributes(register class or bank and low level type). 769 Register createVirtualRegister(VRegAttrs RegAttr, StringRef Name = ""); 770 771 /// Create and return a new virtual register in the function with the same 772 /// attributes as the given register. 773 Register cloneVirtualRegister(Register VReg, StringRef Name = ""); 774 775 /// Get the low-level type of \p Reg or LLT{} if Reg is not a generic 776 /// (target independent) virtual register. 777 LLT getType(Register Reg) const { 778 if (Reg.isVirtual() && VRegToType.inBounds(Reg)) 779 return VRegToType[Reg]; 780 return LLT{}; 781 } 782 783 /// Set the low-level type of \p VReg to \p Ty. 784 void setType(Register VReg, LLT Ty); 785 786 /// Create and return a new generic virtual register with low-level 787 /// type \p Ty. 788 Register createGenericVirtualRegister(LLT Ty, StringRef Name = ""); 789 790 /// Remove all types associated to virtual registers (after instruction 791 /// selection and constraining of all generic virtual registers). 792 void clearVirtRegTypes(); 793 794 /// Creates a new virtual register that has no register class, register bank 795 /// or size assigned yet. This is only allowed to be used 796 /// temporarily while constructing machine instructions. Most operations are 797 /// undefined on an incomplete register until one of setRegClass(), 798 /// setRegBank() or setSize() has been called on it. 799 Register createIncompleteVirtualRegister(StringRef Name = ""); 800 801 /// getNumVirtRegs - Return the number of virtual registers created. 802 unsigned getNumVirtRegs() const { return VRegInfo.size(); } 803 804 /// clearVirtRegs - Remove all virtual registers (after physreg assignment). 805 void clearVirtRegs(); 806 807 /// setRegAllocationHint - Specify a register allocation hint for the 808 /// specified virtual register. This is typically used by target, and in case 809 /// of an earlier hint it will be overwritten. 810 void setRegAllocationHint(Register VReg, unsigned Type, Register PrefReg) { 811 assert(VReg.isVirtual()); 812 RegAllocHints.grow(Register::index2VirtReg(getNumVirtRegs())); 813 RegAllocHints[VReg].first = Type; 814 RegAllocHints[VReg].second.clear(); 815 RegAllocHints[VReg].second.push_back(PrefReg); 816 } 817 818 /// addRegAllocationHint - Add a register allocation hint to the hints 819 /// vector for VReg. 820 void addRegAllocationHint(Register VReg, Register PrefReg) { 821 assert(VReg.isVirtual()); 822 RegAllocHints.grow(Register::index2VirtReg(getNumVirtRegs())); 823 RegAllocHints[VReg].second.push_back(PrefReg); 824 } 825 826 /// Specify the preferred (target independent) register allocation hint for 827 /// the specified virtual register. 828 void setSimpleHint(Register VReg, Register PrefReg) { 829 setRegAllocationHint(VReg, /*Type=*/0, PrefReg); 830 } 831 832 void clearSimpleHint(Register VReg) { 833 assert (!RegAllocHints[VReg].first && 834 "Expected to clear a non-target hint!"); 835 if (RegAllocHints.inBounds(VReg)) 836 RegAllocHints[VReg].second.clear(); 837 } 838 839 /// getRegAllocationHint - Return the register allocation hint for the 840 /// specified virtual register. If there are many hints, this returns the 841 /// one with the greatest weight. 842 std::pair<unsigned, Register> getRegAllocationHint(Register VReg) const { 843 assert(VReg.isVirtual()); 844 if (!RegAllocHints.inBounds(VReg)) 845 return {0, Register()}; 846 Register BestHint = (RegAllocHints[VReg.id()].second.size() ? 847 RegAllocHints[VReg.id()].second[0] : Register()); 848 return {RegAllocHints[VReg.id()].first, BestHint}; 849 } 850 851 /// getSimpleHint - same as getRegAllocationHint except it will only return 852 /// a target independent hint. 853 Register getSimpleHint(Register VReg) const { 854 assert(VReg.isVirtual()); 855 std::pair<unsigned, Register> Hint = getRegAllocationHint(VReg); 856 return Hint.first ? Register() : Hint.second; 857 } 858 859 /// getRegAllocationHints - Return a reference to the vector of all 860 /// register allocation hints for VReg. 861 const std::pair<unsigned, SmallVector<Register, 4>> * 862 getRegAllocationHints(Register VReg) const { 863 assert(VReg.isVirtual()); 864 return RegAllocHints.inBounds(VReg) ? &RegAllocHints[VReg] : nullptr; 865 } 866 867 /// markUsesInDebugValueAsUndef - Mark every DBG_VALUE referencing the 868 /// specified register as undefined which causes the DBG_VALUE to be 869 /// deleted during LiveDebugVariables analysis. 870 void markUsesInDebugValueAsUndef(Register Reg) const; 871 872 /// updateDbgUsersToReg - Update a collection of debug instructions 873 /// to refer to the designated register. 874 void updateDbgUsersToReg(MCRegister OldReg, MCRegister NewReg, 875 ArrayRef<MachineInstr *> Users) const { 876 // If this operand is a register, check whether it overlaps with OldReg. 877 // If it does, replace with NewReg. 878 auto UpdateOp = [this, &NewReg, &OldReg](MachineOperand &Op) { 879 if (Op.isReg() && 880 getTargetRegisterInfo()->regsOverlap(Op.getReg(), OldReg)) 881 Op.setReg(NewReg); 882 }; 883 884 // Iterate through (possibly several) operands to DBG_VALUEs and update 885 // each. For DBG_PHIs, only one operand will be present. 886 for (MachineInstr *MI : Users) { 887 if (MI->isDebugValue()) { 888 for (auto &Op : MI->debug_operands()) 889 UpdateOp(Op); 890 assert(MI->hasDebugOperandForReg(NewReg) && 891 "Expected debug value to have some overlap with OldReg"); 892 } else if (MI->isDebugPHI()) { 893 UpdateOp(MI->getOperand(0)); 894 } else { 895 llvm_unreachable("Non-DBG_VALUE, Non-DBG_PHI debug instr updated"); 896 } 897 } 898 } 899 900 /// Return true if the specified register is modified in this function. 901 /// This checks that no defining machine operands exist for the register or 902 /// any of its aliases. Definitions found on functions marked noreturn are 903 /// ignored, to consider them pass 'true' for optional parameter 904 /// SkipNoReturnDef. The register is also considered modified when it is set 905 /// in the UsedPhysRegMask. 906 bool isPhysRegModified(MCRegister PhysReg, bool SkipNoReturnDef = false) const; 907 908 /// Return true if the specified register is modified or read in this 909 /// function. This checks that no machine operands exist for the register or 910 /// any of its aliases. If SkipRegMaskTest is false, the register is 911 /// considered used when it is set in the UsedPhysRegMask. 912 bool isPhysRegUsed(MCRegister PhysReg, bool SkipRegMaskTest = false) const; 913 914 /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used. 915 /// This corresponds to the bit mask attached to register mask operands. 916 void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) { 917 UsedPhysRegMask.setBitsNotInMask(RegMask); 918 } 919 920 const BitVector &getUsedPhysRegsMask() const { return UsedPhysRegMask; } 921 922 //===--------------------------------------------------------------------===// 923 // Reserved Register Info 924 //===--------------------------------------------------------------------===// 925 // 926 // The set of reserved registers must be invariant during register 927 // allocation. For example, the target cannot suddenly decide it needs a 928 // frame pointer when the register allocator has already used the frame 929 // pointer register for something else. 930 // 931 // These methods can be used by target hooks like hasFP() to avoid changing 932 // the reserved register set during register allocation. 933 934 /// freezeReservedRegs - Called by the register allocator to freeze the set 935 /// of reserved registers before allocation begins. 936 void freezeReservedRegs(); 937 938 /// reserveReg -- Mark a register as reserved so checks like isAllocatable 939 /// will not suggest using it. This should not be used during the middle 940 /// of a function walk, or when liveness info is available. 941 void reserveReg(MCRegister PhysReg, const TargetRegisterInfo *TRI) { 942 assert(reservedRegsFrozen() && 943 "Reserved registers haven't been frozen yet. "); 944 MCRegAliasIterator R(PhysReg, TRI, true); 945 946 for (; R.isValid(); ++R) 947 ReservedRegs.set((*R).id()); 948 } 949 950 /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called 951 /// to ensure the set of reserved registers stays constant. 952 bool reservedRegsFrozen() const { 953 return !ReservedRegs.empty(); 954 } 955 956 /// canReserveReg - Returns true if PhysReg can be used as a reserved 957 /// register. Any register can be reserved before freezeReservedRegs() is 958 /// called. 959 bool canReserveReg(MCRegister PhysReg) const { 960 return !reservedRegsFrozen() || ReservedRegs.test(PhysReg.id()); 961 } 962 963 /// getReservedRegs - Returns a reference to the frozen set of reserved 964 /// registers. This method should always be preferred to calling 965 /// TRI::getReservedRegs() when possible. 966 const BitVector &getReservedRegs() const { 967 assert(reservedRegsFrozen() && 968 "Reserved registers haven't been frozen yet. " 969 "Use TRI::getReservedRegs()."); 970 return ReservedRegs; 971 } 972 973 /// isReserved - Returns true when PhysReg is a reserved register. 974 /// 975 /// Reserved registers may belong to an allocatable register class, but the 976 /// target has explicitly requested that they are not used. 977 bool isReserved(MCRegister PhysReg) const { 978 return getReservedRegs().test(PhysReg.id()); 979 } 980 981 /// Returns true when the given register unit is considered reserved. 982 /// 983 /// Register units are considered reserved when for at least one of their 984 /// root registers, the root register and all super registers are reserved. 985 /// This currently iterates the register hierarchy and may be slower than 986 /// expected. 987 bool isReservedRegUnit(unsigned Unit) const; 988 989 /// isAllocatable - Returns true when PhysReg belongs to an allocatable 990 /// register class and it hasn't been reserved. 991 /// 992 /// Allocatable registers may show up in the allocation order of some virtual 993 /// register, so a register allocator needs to track its liveness and 994 /// availability. 995 bool isAllocatable(MCRegister PhysReg) const { 996 return getTargetRegisterInfo()->isInAllocatableClass(PhysReg) && 997 !isReserved(PhysReg); 998 } 999 1000 //===--------------------------------------------------------------------===// 1001 // LiveIn Management 1002 //===--------------------------------------------------------------------===// 1003 1004 /// addLiveIn - Add the specified register as a live-in. Note that it 1005 /// is an error to add the same register to the same set more than once. 1006 void addLiveIn(MCRegister Reg, Register vreg = Register()) { 1007 LiveIns.push_back(std::make_pair(Reg, vreg)); 1008 } 1009 1010 // Iteration support for the live-ins set. It's kept in sorted order 1011 // by register number. 1012 using livein_iterator = 1013 std::vector<std::pair<MCRegister,Register>>::const_iterator; 1014 livein_iterator livein_begin() const { return LiveIns.begin(); } 1015 livein_iterator livein_end() const { return LiveIns.end(); } 1016 bool livein_empty() const { return LiveIns.empty(); } 1017 1018 ArrayRef<std::pair<MCRegister, Register>> liveins() const { 1019 return LiveIns; 1020 } 1021 1022 bool isLiveIn(Register Reg) const; 1023 1024 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the 1025 /// corresponding live-in physical register. 1026 MCRegister getLiveInPhysReg(Register VReg) const; 1027 1028 /// getLiveInVirtReg - If PReg is a live-in physical register, return the 1029 /// corresponding live-in virtual register. 1030 Register getLiveInVirtReg(MCRegister PReg) const; 1031 1032 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers 1033 /// into the given entry block. 1034 void EmitLiveInCopies(MachineBasicBlock *EntryMBB, 1035 const TargetRegisterInfo &TRI, 1036 const TargetInstrInfo &TII); 1037 1038 /// Returns a mask covering all bits that can appear in lane masks of 1039 /// subregisters of the virtual register @p Reg. 1040 LaneBitmask getMaxLaneMaskForVReg(Register Reg) const; 1041 1042 /// defusechain_iterator - This class provides iterator support for machine 1043 /// operands in the function that use or define a specific register. If 1044 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it 1045 /// returns defs. If neither are true then you are silly and it always 1046 /// returns end(). If SkipDebug is true it skips uses marked Debug 1047 /// when incrementing. 1048 template <bool ReturnUses, bool ReturnDefs, bool SkipDebug, bool ByOperand, 1049 bool ByInstr, bool ByBundle> 1050 class defusechain_iterator { 1051 friend class MachineRegisterInfo; 1052 1053 public: 1054 using iterator_category = std::forward_iterator_tag; 1055 using value_type = MachineOperand; 1056 using difference_type = std::ptrdiff_t; 1057 using pointer = value_type *; 1058 using reference = value_type &; 1059 1060 private: 1061 MachineOperand *Op = nullptr; 1062 1063 explicit defusechain_iterator(MachineOperand *op) : Op(op) { 1064 // If the first node isn't one we're interested in, advance to one that 1065 // we are interested in. 1066 if (op) { 1067 if ((!ReturnUses && op->isUse()) || 1068 (!ReturnDefs && op->isDef()) || 1069 (SkipDebug && op->isDebug())) 1070 advance(); 1071 } 1072 } 1073 1074 void advance() { 1075 assert(Op && "Cannot increment end iterator!"); 1076 Op = getNextOperandForReg(Op); 1077 1078 // All defs come before the uses, so stop def_iterator early. 1079 if (!ReturnUses) { 1080 if (Op) { 1081 if (Op->isUse()) 1082 Op = nullptr; 1083 else 1084 assert(!Op->isDebug() && "Can't have debug defs"); 1085 } 1086 } else { 1087 // If this is an operand we don't care about, skip it. 1088 while (Op && ((!ReturnDefs && Op->isDef()) || 1089 (SkipDebug && Op->isDebug()))) 1090 Op = getNextOperandForReg(Op); 1091 } 1092 } 1093 1094 public: 1095 defusechain_iterator() = default; 1096 1097 bool operator==(const defusechain_iterator &x) const { 1098 return Op == x.Op; 1099 } 1100 bool operator!=(const defusechain_iterator &x) const { 1101 return !operator==(x); 1102 } 1103 1104 // Iterator traversal: forward iteration only 1105 defusechain_iterator &operator++() { // Preincrement 1106 assert(Op && "Cannot increment end iterator!"); 1107 if (ByOperand) 1108 advance(); 1109 else if (ByInstr) { 1110 MachineInstr *P = Op->getParent(); 1111 do { 1112 advance(); 1113 } while (Op && Op->getParent() == P); 1114 } else if (ByBundle) { 1115 MachineBasicBlock::instr_iterator P = 1116 getBundleStart(Op->getParent()->getIterator()); 1117 do { 1118 advance(); 1119 } while (Op && getBundleStart(Op->getParent()->getIterator()) == P); 1120 } 1121 1122 return *this; 1123 } 1124 defusechain_iterator operator++(int) { // Postincrement 1125 defusechain_iterator tmp = *this; ++*this; return tmp; 1126 } 1127 1128 /// getOperandNo - Return the operand # of this MachineOperand in its 1129 /// MachineInstr. 1130 unsigned getOperandNo() const { 1131 assert(Op && "Cannot dereference end iterator!"); 1132 return Op - &Op->getParent()->getOperand(0); 1133 } 1134 1135 // Retrieve a reference to the current operand. 1136 MachineOperand &operator*() const { 1137 assert(Op && "Cannot dereference end iterator!"); 1138 return *Op; 1139 } 1140 1141 MachineOperand *operator->() const { 1142 assert(Op && "Cannot dereference end iterator!"); 1143 return Op; 1144 } 1145 }; 1146 1147 /// defusechain_iterator - This class provides iterator support for machine 1148 /// operands in the function that use or define a specific register. If 1149 /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it 1150 /// returns defs. If neither are true then you are silly and it always 1151 /// returns end(). If SkipDebug is true it skips uses marked Debug 1152 /// when incrementing. 1153 template <bool ReturnUses, bool ReturnDefs, bool SkipDebug, bool ByOperand, 1154 bool ByInstr, bool ByBundle> 1155 class defusechain_instr_iterator { 1156 friend class MachineRegisterInfo; 1157 1158 public: 1159 using iterator_category = std::forward_iterator_tag; 1160 using value_type = MachineInstr; 1161 using difference_type = std::ptrdiff_t; 1162 using pointer = value_type *; 1163 using reference = value_type &; 1164 1165 private: 1166 MachineOperand *Op = nullptr; 1167 1168 explicit defusechain_instr_iterator(MachineOperand *op) : Op(op) { 1169 // If the first node isn't one we're interested in, advance to one that 1170 // we are interested in. 1171 if (op) { 1172 if ((!ReturnUses && op->isUse()) || 1173 (!ReturnDefs && op->isDef()) || 1174 (SkipDebug && op->isDebug())) 1175 advance(); 1176 } 1177 } 1178 1179 void advance() { 1180 assert(Op && "Cannot increment end iterator!"); 1181 Op = getNextOperandForReg(Op); 1182 1183 // All defs come before the uses, so stop def_iterator early. 1184 if (!ReturnUses) { 1185 if (Op) { 1186 if (Op->isUse()) 1187 Op = nullptr; 1188 else 1189 assert(!Op->isDebug() && "Can't have debug defs"); 1190 } 1191 } else { 1192 // If this is an operand we don't care about, skip it. 1193 while (Op && ((!ReturnDefs && Op->isDef()) || 1194 (SkipDebug && Op->isDebug()))) 1195 Op = getNextOperandForReg(Op); 1196 } 1197 } 1198 1199 public: 1200 defusechain_instr_iterator() = default; 1201 1202 bool operator==(const defusechain_instr_iterator &x) const { 1203 return Op == x.Op; 1204 } 1205 bool operator!=(const defusechain_instr_iterator &x) const { 1206 return !operator==(x); 1207 } 1208 1209 // Iterator traversal: forward iteration only 1210 defusechain_instr_iterator &operator++() { // Preincrement 1211 assert(Op && "Cannot increment end iterator!"); 1212 if (ByOperand) 1213 advance(); 1214 else if (ByInstr) { 1215 MachineInstr *P = Op->getParent(); 1216 do { 1217 advance(); 1218 } while (Op && Op->getParent() == P); 1219 } else if (ByBundle) { 1220 MachineBasicBlock::instr_iterator P = 1221 getBundleStart(Op->getParent()->getIterator()); 1222 do { 1223 advance(); 1224 } while (Op && getBundleStart(Op->getParent()->getIterator()) == P); 1225 } 1226 1227 return *this; 1228 } 1229 defusechain_instr_iterator operator++(int) { // Postincrement 1230 defusechain_instr_iterator tmp = *this; ++*this; return tmp; 1231 } 1232 1233 // Retrieve a reference to the current operand. 1234 MachineInstr &operator*() const { 1235 assert(Op && "Cannot dereference end iterator!"); 1236 if (ByBundle) 1237 return *getBundleStart(Op->getParent()->getIterator()); 1238 return *Op->getParent(); 1239 } 1240 1241 MachineInstr *operator->() const { return &operator*(); } 1242 }; 1243 }; 1244 1245 /// Iterate over the pressure sets affected by the given physical or virtual 1246 /// register. If Reg is physical, it must be a register unit (from 1247 /// MCRegUnitIterator). 1248 class PSetIterator { 1249 const int *PSet = nullptr; 1250 unsigned Weight = 0; 1251 1252 public: 1253 PSetIterator() = default; 1254 1255 PSetIterator(Register RegUnit, const MachineRegisterInfo *MRI) { 1256 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); 1257 if (RegUnit.isVirtual()) { 1258 const TargetRegisterClass *RC = MRI->getRegClass(RegUnit); 1259 PSet = TRI->getRegClassPressureSets(RC); 1260 Weight = TRI->getRegClassWeight(RC).RegWeight; 1261 } else { 1262 PSet = TRI->getRegUnitPressureSets(RegUnit); 1263 Weight = TRI->getRegUnitWeight(RegUnit); 1264 } 1265 if (*PSet == -1) 1266 PSet = nullptr; 1267 } 1268 1269 bool isValid() const { return PSet; } 1270 1271 unsigned getWeight() const { return Weight; } 1272 1273 unsigned operator*() const { return *PSet; } 1274 1275 void operator++() { 1276 assert(isValid() && "Invalid PSetIterator."); 1277 ++PSet; 1278 if (*PSet == -1) 1279 PSet = nullptr; 1280 } 1281 }; 1282 1283 inline PSetIterator 1284 MachineRegisterInfo::getPressureSets(Register RegUnit) const { 1285 return PSetIterator(RegUnit, this); 1286 } 1287 1288 } // end namespace llvm 1289 1290 #endif // LLVM_CODEGEN_MACHINEREGISTERINFO_H 1291