1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/ErrorHandling.h"
21 #include "llvm/TableGen/Error.h"
22 #include "llvm/TableGen/Record.h"
23 #include <algorithm>
24 #include <cstdio>
25 #include <set>
26 using namespace llvm;
27
28 #define DEBUG_TYPE "dag-patterns"
29
30 //===----------------------------------------------------------------------===//
31 // EEVT::TypeSet Implementation
32 //===----------------------------------------------------------------------===//
33
isInteger(MVT::SimpleValueType VT)34 static inline bool isInteger(MVT::SimpleValueType VT) {
35 return MVT(VT).isInteger();
36 }
isFloatingPoint(MVT::SimpleValueType VT)37 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
38 return MVT(VT).isFloatingPoint();
39 }
isVector(MVT::SimpleValueType VT)40 static inline bool isVector(MVT::SimpleValueType VT) {
41 return MVT(VT).isVector();
42 }
isScalar(MVT::SimpleValueType VT)43 static inline bool isScalar(MVT::SimpleValueType VT) {
44 return !MVT(VT).isVector();
45 }
46
TypeSet(MVT::SimpleValueType VT,TreePattern & TP)47 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
48 if (VT == MVT::iAny)
49 EnforceInteger(TP);
50 else if (VT == MVT::fAny)
51 EnforceFloatingPoint(TP);
52 else if (VT == MVT::vAny)
53 EnforceVector(TP);
54 else {
55 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
56 VT == MVT::iPTRAny) && "Not a concrete type!");
57 TypeVec.push_back(VT);
58 }
59 }
60
61
TypeSet(ArrayRef<MVT::SimpleValueType> VTList)62 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
63 assert(!VTList.empty() && "empty list?");
64 TypeVec.append(VTList.begin(), VTList.end());
65
66 if (!VTList.empty())
67 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
68 VTList[0] != MVT::fAny);
69
70 // Verify no duplicates.
71 array_pod_sort(TypeVec.begin(), TypeVec.end());
72 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
73 }
74
75 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
76 /// on completely unknown type sets.
FillWithPossibleTypes(TreePattern & TP,bool (* Pred)(MVT::SimpleValueType),const char * PredicateName)77 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
78 bool (*Pred)(MVT::SimpleValueType),
79 const char *PredicateName) {
80 assert(isCompletelyUnknown());
81 ArrayRef<MVT::SimpleValueType> LegalTypes =
82 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
83
84 if (TP.hasError())
85 return false;
86
87 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
88 if (!Pred || Pred(LegalTypes[i]))
89 TypeVec.push_back(LegalTypes[i]);
90
91 // If we have nothing that matches the predicate, bail out.
92 if (TypeVec.empty()) {
93 TP.error("Type inference contradiction found, no " +
94 std::string(PredicateName) + " types found");
95 return false;
96 }
97 // No need to sort with one element.
98 if (TypeVec.size() == 1) return true;
99
100 // Remove duplicates.
101 array_pod_sort(TypeVec.begin(), TypeVec.end());
102 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
103
104 return true;
105 }
106
107 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
108 /// integer value type.
hasIntegerTypes() const109 bool EEVT::TypeSet::hasIntegerTypes() const {
110 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
111 if (isInteger(TypeVec[i]))
112 return true;
113 return false;
114 }
115
116 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
117 /// a floating point value type.
hasFloatingPointTypes() const118 bool EEVT::TypeSet::hasFloatingPointTypes() const {
119 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
120 if (isFloatingPoint(TypeVec[i]))
121 return true;
122 return false;
123 }
124
125 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type.
hasScalarTypes() const126 bool EEVT::TypeSet::hasScalarTypes() const {
127 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
128 if (isScalar(TypeVec[i]))
129 return true;
130 return false;
131 }
132
133 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
134 /// value type.
hasVectorTypes() const135 bool EEVT::TypeSet::hasVectorTypes() const {
136 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
137 if (isVector(TypeVec[i]))
138 return true;
139 return false;
140 }
141
142
getName() const143 std::string EEVT::TypeSet::getName() const {
144 if (TypeVec.empty()) return "<empty>";
145
146 std::string Result;
147
148 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
149 std::string VTName = llvm::getEnumName(TypeVec[i]);
150 // Strip off MVT:: prefix if present.
151 if (VTName.substr(0,5) == "MVT::")
152 VTName = VTName.substr(5);
153 if (i) Result += ':';
154 Result += VTName;
155 }
156
157 if (TypeVec.size() == 1)
158 return Result;
159 return "{" + Result + "}";
160 }
161
162 /// MergeInTypeInfo - This merges in type information from the specified
163 /// argument. If 'this' changes, it returns true. If the two types are
164 /// contradictory (e.g. merge f32 into i32) then this flags an error.
MergeInTypeInfo(const EEVT::TypeSet & InVT,TreePattern & TP)165 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
166 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
167 return false;
168
169 if (isCompletelyUnknown()) {
170 *this = InVT;
171 return true;
172 }
173
174 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
175
176 // Handle the abstract cases, seeing if we can resolve them better.
177 switch (TypeVec[0]) {
178 default: break;
179 case MVT::iPTR:
180 case MVT::iPTRAny:
181 if (InVT.hasIntegerTypes()) {
182 EEVT::TypeSet InCopy(InVT);
183 InCopy.EnforceInteger(TP);
184 InCopy.EnforceScalar(TP);
185
186 if (InCopy.isConcrete()) {
187 // If the RHS has one integer type, upgrade iPTR to i32.
188 TypeVec[0] = InVT.TypeVec[0];
189 return true;
190 }
191
192 // If the input has multiple scalar integers, this doesn't add any info.
193 if (!InCopy.isCompletelyUnknown())
194 return false;
195 }
196 break;
197 }
198
199 // If the input constraint is iAny/iPTR and this is an integer type list,
200 // remove non-integer types from the list.
201 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
202 hasIntegerTypes()) {
203 bool MadeChange = EnforceInteger(TP);
204
205 // If we're merging in iPTR/iPTRAny and the node currently has a list of
206 // multiple different integer types, replace them with a single iPTR.
207 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
208 TypeVec.size() != 1) {
209 TypeVec.resize(1);
210 TypeVec[0] = InVT.TypeVec[0];
211 MadeChange = true;
212 }
213
214 return MadeChange;
215 }
216
217 // If this is a type list and the RHS is a typelist as well, eliminate entries
218 // from this list that aren't in the other one.
219 bool MadeChange = false;
220 TypeSet InputSet(*this);
221
222 for (unsigned i = 0; i != TypeVec.size(); ++i) {
223 bool InInVT = false;
224 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
225 if (TypeVec[i] == InVT.TypeVec[j]) {
226 InInVT = true;
227 break;
228 }
229
230 if (InInVT) continue;
231 TypeVec.erase(TypeVec.begin()+i--);
232 MadeChange = true;
233 }
234
235 // If we removed all of our types, we have a type contradiction.
236 if (!TypeVec.empty())
237 return MadeChange;
238
239 // FIXME: Really want an SMLoc here!
240 TP.error("Type inference contradiction found, merging '" +
241 InVT.getName() + "' into '" + InputSet.getName() + "'");
242 return false;
243 }
244
245 /// EnforceInteger - Remove all non-integer types from this set.
EnforceInteger(TreePattern & TP)246 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
247 if (TP.hasError())
248 return false;
249 // If we know nothing, then get the full set.
250 if (TypeVec.empty())
251 return FillWithPossibleTypes(TP, isInteger, "integer");
252 if (!hasFloatingPointTypes())
253 return false;
254
255 TypeSet InputSet(*this);
256
257 // Filter out all the fp types.
258 for (unsigned i = 0; i != TypeVec.size(); ++i)
259 if (!isInteger(TypeVec[i]))
260 TypeVec.erase(TypeVec.begin()+i--);
261
262 if (TypeVec.empty()) {
263 TP.error("Type inference contradiction found, '" +
264 InputSet.getName() + "' needs to be integer");
265 return false;
266 }
267 return true;
268 }
269
270 /// EnforceFloatingPoint - Remove all integer types from this set.
EnforceFloatingPoint(TreePattern & TP)271 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
272 if (TP.hasError())
273 return false;
274 // If we know nothing, then get the full set.
275 if (TypeVec.empty())
276 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
277
278 if (!hasIntegerTypes())
279 return false;
280
281 TypeSet InputSet(*this);
282
283 // Filter out all the fp types.
284 for (unsigned i = 0; i != TypeVec.size(); ++i)
285 if (!isFloatingPoint(TypeVec[i]))
286 TypeVec.erase(TypeVec.begin()+i--);
287
288 if (TypeVec.empty()) {
289 TP.error("Type inference contradiction found, '" +
290 InputSet.getName() + "' needs to be floating point");
291 return false;
292 }
293 return true;
294 }
295
296 /// EnforceScalar - Remove all vector types from this.
EnforceScalar(TreePattern & TP)297 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
298 if (TP.hasError())
299 return false;
300
301 // If we know nothing, then get the full set.
302 if (TypeVec.empty())
303 return FillWithPossibleTypes(TP, isScalar, "scalar");
304
305 if (!hasVectorTypes())
306 return false;
307
308 TypeSet InputSet(*this);
309
310 // Filter out all the vector types.
311 for (unsigned i = 0; i != TypeVec.size(); ++i)
312 if (!isScalar(TypeVec[i]))
313 TypeVec.erase(TypeVec.begin()+i--);
314
315 if (TypeVec.empty()) {
316 TP.error("Type inference contradiction found, '" +
317 InputSet.getName() + "' needs to be scalar");
318 return false;
319 }
320 return true;
321 }
322
323 /// EnforceVector - Remove all vector types from this.
EnforceVector(TreePattern & TP)324 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
325 if (TP.hasError())
326 return false;
327
328 // If we know nothing, then get the full set.
329 if (TypeVec.empty())
330 return FillWithPossibleTypes(TP, isVector, "vector");
331
332 TypeSet InputSet(*this);
333 bool MadeChange = false;
334
335 // Filter out all the scalar types.
336 for (unsigned i = 0; i != TypeVec.size(); ++i)
337 if (!isVector(TypeVec[i])) {
338 TypeVec.erase(TypeVec.begin()+i--);
339 MadeChange = true;
340 }
341
342 if (TypeVec.empty()) {
343 TP.error("Type inference contradiction found, '" +
344 InputSet.getName() + "' needs to be a vector");
345 return false;
346 }
347 return MadeChange;
348 }
349
350
351
352 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors
353 /// this shoud be based on the element type. Update this and other based on
354 /// this information.
EnforceSmallerThan(EEVT::TypeSet & Other,TreePattern & TP)355 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
356 if (TP.hasError())
357 return false;
358
359 // Both operands must be integer or FP, but we don't care which.
360 bool MadeChange = false;
361
362 if (isCompletelyUnknown())
363 MadeChange = FillWithPossibleTypes(TP);
364
365 if (Other.isCompletelyUnknown())
366 MadeChange = Other.FillWithPossibleTypes(TP);
367
368 // If one side is known to be integer or known to be FP but the other side has
369 // no information, get at least the type integrality info in there.
370 if (!hasFloatingPointTypes())
371 MadeChange |= Other.EnforceInteger(TP);
372 else if (!hasIntegerTypes())
373 MadeChange |= Other.EnforceFloatingPoint(TP);
374 if (!Other.hasFloatingPointTypes())
375 MadeChange |= EnforceInteger(TP);
376 else if (!Other.hasIntegerTypes())
377 MadeChange |= EnforceFloatingPoint(TP);
378
379 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
380 "Should have a type list now");
381
382 // If one contains vectors but the other doesn't pull vectors out.
383 if (!hasVectorTypes())
384 MadeChange |= Other.EnforceScalar(TP);
385 else if (!hasScalarTypes())
386 MadeChange |= Other.EnforceVector(TP);
387 if (!Other.hasVectorTypes())
388 MadeChange |= EnforceScalar(TP);
389 else if (!Other.hasScalarTypes())
390 MadeChange |= EnforceVector(TP);
391
392 // For vectors we need to ensure that smaller size doesn't produce larger
393 // vector and vice versa.
394 if (isConcrete() && isVector(getConcrete())) {
395 MVT IVT = getConcrete();
396 unsigned Size = IVT.getSizeInBits();
397
398 // Only keep types that have at least as many bits.
399 TypeSet InputSet(Other);
400
401 for (unsigned i = 0; i != Other.TypeVec.size(); ++i) {
402 assert(isVector(Other.TypeVec[i]) && "EnforceVector didn't work");
403 if (MVT(Other.TypeVec[i]).getSizeInBits() < Size) {
404 Other.TypeVec.erase(Other.TypeVec.begin()+i--);
405 MadeChange = true;
406 }
407 }
408
409 if (Other.TypeVec.empty()) { // FIXME: Really want an SMLoc here!
410 TP.error("Type inference contradiction found, forcing '" +
411 InputSet.getName() + "' to have at least as many bits as " +
412 getName() + "'");
413 return false;
414 }
415 } else if (Other.isConcrete() && isVector(Other.getConcrete())) {
416 MVT IVT = Other.getConcrete();
417 unsigned Size = IVT.getSizeInBits();
418
419 // Only keep types with the same or fewer total bits
420 TypeSet InputSet(*this);
421
422 for (unsigned i = 0; i != TypeVec.size(); ++i) {
423 assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
424 if (MVT(TypeVec[i]).getSizeInBits() > Size) {
425 TypeVec.erase(TypeVec.begin()+i--);
426 MadeChange = true;
427 }
428 }
429
430 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
431 TP.error("Type inference contradiction found, forcing '" +
432 InputSet.getName() + "' to have the same or fewer bits than " +
433 Other.getName() + "'");
434 return false;
435 }
436 }
437
438 // This code does not currently handle nodes which have multiple types,
439 // where some types are integer, and some are fp. Assert that this is not
440 // the case.
441 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
442 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
443 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
444
445 if (TP.hasError())
446 return false;
447
448 // Okay, find the smallest scalar type from the other set and remove
449 // anything the same or smaller from the current set.
450 TypeSet InputSet(Other);
451 MVT::SimpleValueType Smallest = TypeVec[0];
452 for (unsigned i = 0; i != Other.TypeVec.size(); ++i) {
453 if (Other.TypeVec[i] <= Smallest) {
454 Other.TypeVec.erase(Other.TypeVec.begin()+i--);
455 MadeChange = true;
456 }
457 }
458
459 if (Other.TypeVec.empty()) {
460 TP.error("Type inference contradiction found, '" + InputSet.getName() +
461 "' has nothing larger than '" + getName() +"'!");
462 return false;
463 }
464
465 // Okay, find the largest scalar type from the other set and remove
466 // anything the same or larger from the current set.
467 InputSet = TypeSet(*this);
468 MVT::SimpleValueType Largest = Other.TypeVec[Other.TypeVec.size()-1];
469 for (unsigned i = 0; i != TypeVec.size(); ++i) {
470 if (TypeVec[i] >= Largest) {
471 TypeVec.erase(TypeVec.begin()+i--);
472 MadeChange = true;
473 }
474 }
475
476 if (TypeVec.empty()) {
477 TP.error("Type inference contradiction found, '" + InputSet.getName() +
478 "' has nothing smaller than '" + Other.getName() +"'!");
479 return false;
480 }
481
482 return MadeChange;
483 }
484
485 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
486 /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)487 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
488 TreePattern &TP) {
489 if (TP.hasError())
490 return false;
491
492 // "This" must be a vector and "VTOperand" must be a scalar.
493 bool MadeChange = false;
494 MadeChange |= EnforceVector(TP);
495 MadeChange |= VTOperand.EnforceScalar(TP);
496
497 // If we know the vector type, it forces the scalar to agree.
498 if (isConcrete()) {
499 MVT IVT = getConcrete();
500 IVT = IVT.getVectorElementType();
501 return MadeChange |
502 VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
503 }
504
505 // If the scalar type is known, filter out vector types whose element types
506 // disagree.
507 if (!VTOperand.isConcrete())
508 return MadeChange;
509
510 MVT::SimpleValueType VT = VTOperand.getConcrete();
511
512 TypeSet InputSet(*this);
513
514 // Filter out all the types which don't have the right element type.
515 for (unsigned i = 0; i != TypeVec.size(); ++i) {
516 assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
517 if (MVT(TypeVec[i]).getVectorElementType().SimpleTy != VT) {
518 TypeVec.erase(TypeVec.begin()+i--);
519 MadeChange = true;
520 }
521 }
522
523 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
524 TP.error("Type inference contradiction found, forcing '" +
525 InputSet.getName() + "' to have a vector element");
526 return false;
527 }
528 return MadeChange;
529 }
530
531 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
532 /// vector type specified by VTOperand.
EnforceVectorSubVectorTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)533 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
534 TreePattern &TP) {
535 if (TP.hasError())
536 return false;
537
538 // "This" must be a vector and "VTOperand" must be a vector.
539 bool MadeChange = false;
540 MadeChange |= EnforceVector(TP);
541 MadeChange |= VTOperand.EnforceVector(TP);
542
543 // If one side is known to be integer or known to be FP but the other side has
544 // no information, get at least the type integrality info in there.
545 if (!hasFloatingPointTypes())
546 MadeChange |= VTOperand.EnforceInteger(TP);
547 else if (!hasIntegerTypes())
548 MadeChange |= VTOperand.EnforceFloatingPoint(TP);
549 if (!VTOperand.hasFloatingPointTypes())
550 MadeChange |= EnforceInteger(TP);
551 else if (!VTOperand.hasIntegerTypes())
552 MadeChange |= EnforceFloatingPoint(TP);
553
554 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() &&
555 "Should have a type list now");
556
557 // If we know the vector type, it forces the scalar types to agree.
558 // Also force one vector to have more elements than the other.
559 if (isConcrete()) {
560 MVT IVT = getConcrete();
561 unsigned NumElems = IVT.getVectorNumElements();
562 IVT = IVT.getVectorElementType();
563
564 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
565 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
566
567 // Only keep types that have less elements than VTOperand.
568 TypeSet InputSet(VTOperand);
569
570 for (unsigned i = 0; i != VTOperand.TypeVec.size(); ++i) {
571 assert(isVector(VTOperand.TypeVec[i]) && "EnforceVector didn't work");
572 if (MVT(VTOperand.TypeVec[i]).getVectorNumElements() >= NumElems) {
573 VTOperand.TypeVec.erase(VTOperand.TypeVec.begin()+i--);
574 MadeChange = true;
575 }
576 }
577 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here!
578 TP.error("Type inference contradiction found, forcing '" +
579 InputSet.getName() + "' to have less vector elements than '" +
580 getName() + "'");
581 return false;
582 }
583 } else if (VTOperand.isConcrete()) {
584 MVT IVT = VTOperand.getConcrete();
585 unsigned NumElems = IVT.getVectorNumElements();
586 IVT = IVT.getVectorElementType();
587
588 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
589 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
590
591 // Only keep types that have more elements than 'this'.
592 TypeSet InputSet(*this);
593
594 for (unsigned i = 0; i != TypeVec.size(); ++i) {
595 assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
596 if (MVT(TypeVec[i]).getVectorNumElements() <= NumElems) {
597 TypeVec.erase(TypeVec.begin()+i--);
598 MadeChange = true;
599 }
600 }
601 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
602 TP.error("Type inference contradiction found, forcing '" +
603 InputSet.getName() + "' to have more vector elements than '" +
604 VTOperand.getName() + "'");
605 return false;
606 }
607 }
608
609 return MadeChange;
610 }
611
612 //===----------------------------------------------------------------------===//
613 // Helpers for working with extended types.
614
615 /// Dependent variable map for CodeGenDAGPattern variant generation
616 typedef std::map<std::string, int> DepVarMap;
617
618 /// Const iterator shorthand for DepVarMap
619 typedef DepVarMap::const_iterator DepVarMap_citer;
620
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)621 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
622 if (N->isLeaf()) {
623 if (isa<DefInit>(N->getLeafValue()))
624 DepMap[N->getName()]++;
625 } else {
626 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
627 FindDepVarsOf(N->getChild(i), DepMap);
628 }
629 }
630
631 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)632 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
633 DepVarMap depcounts;
634 FindDepVarsOf(N, depcounts);
635 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
636 if (i->second > 1) // std::pair<std::string, int>
637 DepVars.insert(i->first);
638 }
639 }
640
641 #ifndef NDEBUG
642 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)643 static void DumpDepVars(MultipleUseVarSet &DepVars) {
644 if (DepVars.empty()) {
645 DEBUG(errs() << "<empty set>");
646 } else {
647 DEBUG(errs() << "[ ");
648 for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
649 e = DepVars.end(); i != e; ++i) {
650 DEBUG(errs() << (*i) << " ");
651 }
652 DEBUG(errs() << "]");
653 }
654 }
655 #endif
656
657
658 //===----------------------------------------------------------------------===//
659 // TreePredicateFn Implementation
660 //===----------------------------------------------------------------------===//
661
662 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)663 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
664 assert((getPredCode().empty() || getImmCode().empty()) &&
665 ".td file corrupt: can't have a node predicate *and* an imm predicate");
666 }
667
getPredCode() const668 std::string TreePredicateFn::getPredCode() const {
669 return PatFragRec->getRecord()->getValueAsString("PredicateCode");
670 }
671
getImmCode() const672 std::string TreePredicateFn::getImmCode() const {
673 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
674 }
675
676
677 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const678 bool TreePredicateFn::isAlwaysTrue() const {
679 return getPredCode().empty() && getImmCode().empty();
680 }
681
682 /// Return the name to use in the generated code to reference this, this is
683 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const684 std::string TreePredicateFn::getFnName() const {
685 return "Predicate_" + PatFragRec->getRecord()->getName();
686 }
687
688 /// getCodeToRunOnSDNode - Return the code for the function body that
689 /// evaluates this predicate. The argument is expected to be in "Node",
690 /// not N. This handles casting and conversion to a concrete node type as
691 /// appropriate.
getCodeToRunOnSDNode() const692 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
693 // Handle immediate predicates first.
694 std::string ImmCode = getImmCode();
695 if (!ImmCode.empty()) {
696 std::string Result =
697 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
698 return Result + ImmCode;
699 }
700
701 // Handle arbitrary node predicates.
702 assert(!getPredCode().empty() && "Don't have any predicate code!");
703 std::string ClassName;
704 if (PatFragRec->getOnlyTree()->isLeaf())
705 ClassName = "SDNode";
706 else {
707 Record *Op = PatFragRec->getOnlyTree()->getOperator();
708 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
709 }
710 std::string Result;
711 if (ClassName == "SDNode")
712 Result = " SDNode *N = Node;\n";
713 else
714 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
715
716 return Result + getPredCode();
717 }
718
719 //===----------------------------------------------------------------------===//
720 // PatternToMatch implementation
721 //
722
723
724 /// getPatternSize - Return the 'size' of this pattern. We want to match large
725 /// patterns before small ones. This is used to determine the size of a
726 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)727 static unsigned getPatternSize(const TreePatternNode *P,
728 const CodeGenDAGPatterns &CGP) {
729 unsigned Size = 3; // The node itself.
730 // If the root node is a ConstantSDNode, increases its size.
731 // e.g. (set R32:$dst, 0).
732 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
733 Size += 2;
734
735 // FIXME: This is a hack to statically increase the priority of patterns
736 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
737 // Later we can allow complexity / cost for each pattern to be (optionally)
738 // specified. To get best possible pattern match we'll need to dynamically
739 // calculate the complexity of all patterns a dag can potentially map to.
740 const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
741 if (AM) {
742 Size += AM->getNumOperands() * 3;
743
744 // We don't want to count any children twice, so return early.
745 return Size;
746 }
747
748 // If this node has some predicate function that must match, it adds to the
749 // complexity of this node.
750 if (!P->getPredicateFns().empty())
751 ++Size;
752
753 // Count children in the count if they are also nodes.
754 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
755 TreePatternNode *Child = P->getChild(i);
756 if (!Child->isLeaf() && Child->getNumTypes() &&
757 Child->getType(0) != MVT::Other)
758 Size += getPatternSize(Child, CGP);
759 else if (Child->isLeaf()) {
760 if (isa<IntInit>(Child->getLeafValue()))
761 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
762 else if (Child->getComplexPatternInfo(CGP))
763 Size += getPatternSize(Child, CGP);
764 else if (!Child->getPredicateFns().empty())
765 ++Size;
766 }
767 }
768
769 return Size;
770 }
771
772 /// Compute the complexity metric for the input pattern. This roughly
773 /// corresponds to the number of nodes that are covered.
774 int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const775 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
776 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
777 }
778
779
780 /// getPredicateCheck - Return a single string containing all of this
781 /// pattern's predicates concatenated with "&&" operators.
782 ///
getPredicateCheck() const783 std::string PatternToMatch::getPredicateCheck() const {
784 std::string PredicateCheck;
785 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
786 if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) {
787 Record *Def = Pred->getDef();
788 if (!Def->isSubClassOf("Predicate")) {
789 #ifndef NDEBUG
790 Def->dump();
791 #endif
792 llvm_unreachable("Unknown predicate type!");
793 }
794 if (!PredicateCheck.empty())
795 PredicateCheck += " && ";
796 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
797 }
798 }
799
800 return PredicateCheck;
801 }
802
803 //===----------------------------------------------------------------------===//
804 // SDTypeConstraint implementation
805 //
806
SDTypeConstraint(Record * R)807 SDTypeConstraint::SDTypeConstraint(Record *R) {
808 OperandNo = R->getValueAsInt("OperandNum");
809
810 if (R->isSubClassOf("SDTCisVT")) {
811 ConstraintType = SDTCisVT;
812 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
813 if (x.SDTCisVT_Info.VT == MVT::isVoid)
814 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
815
816 } else if (R->isSubClassOf("SDTCisPtrTy")) {
817 ConstraintType = SDTCisPtrTy;
818 } else if (R->isSubClassOf("SDTCisInt")) {
819 ConstraintType = SDTCisInt;
820 } else if (R->isSubClassOf("SDTCisFP")) {
821 ConstraintType = SDTCisFP;
822 } else if (R->isSubClassOf("SDTCisVec")) {
823 ConstraintType = SDTCisVec;
824 } else if (R->isSubClassOf("SDTCisSameAs")) {
825 ConstraintType = SDTCisSameAs;
826 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
827 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
828 ConstraintType = SDTCisVTSmallerThanOp;
829 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
830 R->getValueAsInt("OtherOperandNum");
831 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
832 ConstraintType = SDTCisOpSmallerThanOp;
833 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
834 R->getValueAsInt("BigOperandNum");
835 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
836 ConstraintType = SDTCisEltOfVec;
837 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
838 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
839 ConstraintType = SDTCisSubVecOfVec;
840 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
841 R->getValueAsInt("OtherOpNum");
842 } else {
843 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
844 exit(1);
845 }
846 }
847
848 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
849 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)850 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
851 const SDNodeInfo &NodeInfo,
852 unsigned &ResNo) {
853 unsigned NumResults = NodeInfo.getNumResults();
854 if (OpNo < NumResults) {
855 ResNo = OpNo;
856 return N;
857 }
858
859 OpNo -= NumResults;
860
861 if (OpNo >= N->getNumChildren()) {
862 errs() << "Invalid operand number in type constraint "
863 << (OpNo+NumResults) << " ";
864 N->dump();
865 errs() << '\n';
866 exit(1);
867 }
868
869 return N->getChild(OpNo);
870 }
871
872 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
873 /// constraint to the nodes operands. This returns true if it makes a
874 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const875 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
876 const SDNodeInfo &NodeInfo,
877 TreePattern &TP) const {
878 if (TP.hasError())
879 return false;
880
881 unsigned ResNo = 0; // The result number being referenced.
882 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
883
884 switch (ConstraintType) {
885 case SDTCisVT:
886 // Operand must be a particular type.
887 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
888 case SDTCisPtrTy:
889 // Operand must be same as target pointer type.
890 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
891 case SDTCisInt:
892 // Require it to be one of the legal integer VTs.
893 return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
894 case SDTCisFP:
895 // Require it to be one of the legal fp VTs.
896 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
897 case SDTCisVec:
898 // Require it to be one of the legal vector VTs.
899 return NodeToApply->getExtType(ResNo).EnforceVector(TP);
900 case SDTCisSameAs: {
901 unsigned OResNo = 0;
902 TreePatternNode *OtherNode =
903 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
904 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
905 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
906 }
907 case SDTCisVTSmallerThanOp: {
908 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
909 // have an integer type that is smaller than the VT.
910 if (!NodeToApply->isLeaf() ||
911 !isa<DefInit>(NodeToApply->getLeafValue()) ||
912 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
913 ->isSubClassOf("ValueType")) {
914 TP.error(N->getOperator()->getName() + " expects a VT operand!");
915 return false;
916 }
917 MVT::SimpleValueType VT =
918 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
919
920 EEVT::TypeSet TypeListTmp(VT, TP);
921
922 unsigned OResNo = 0;
923 TreePatternNode *OtherNode =
924 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
925 OResNo);
926
927 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
928 }
929 case SDTCisOpSmallerThanOp: {
930 unsigned BResNo = 0;
931 TreePatternNode *BigOperand =
932 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
933 BResNo);
934 return NodeToApply->getExtType(ResNo).
935 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
936 }
937 case SDTCisEltOfVec: {
938 unsigned VResNo = 0;
939 TreePatternNode *VecOperand =
940 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
941 VResNo);
942
943 // Filter vector types out of VecOperand that don't have the right element
944 // type.
945 return VecOperand->getExtType(VResNo).
946 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
947 }
948 case SDTCisSubVecOfVec: {
949 unsigned VResNo = 0;
950 TreePatternNode *BigVecOperand =
951 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
952 VResNo);
953
954 // Filter vector types out of BigVecOperand that don't have the
955 // right subvector type.
956 return BigVecOperand->getExtType(VResNo).
957 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
958 }
959 }
960 llvm_unreachable("Invalid ConstraintType!");
961 }
962
963 // Update the node type to match an instruction operand or result as specified
964 // in the ins or outs lists on the instruction definition. Return true if the
965 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)966 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
967 Record *Operand,
968 TreePattern &TP) {
969 // The 'unknown' operand indicates that types should be inferred from the
970 // context.
971 if (Operand->isSubClassOf("unknown_class"))
972 return false;
973
974 // The Operand class specifies a type directly.
975 if (Operand->isSubClassOf("Operand"))
976 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
977 TP);
978
979 // PointerLikeRegClass has a type that is determined at runtime.
980 if (Operand->isSubClassOf("PointerLikeRegClass"))
981 return UpdateNodeType(ResNo, MVT::iPTR, TP);
982
983 // Both RegisterClass and RegisterOperand operands derive their types from a
984 // register class def.
985 Record *RC = nullptr;
986 if (Operand->isSubClassOf("RegisterClass"))
987 RC = Operand;
988 else if (Operand->isSubClassOf("RegisterOperand"))
989 RC = Operand->getValueAsDef("RegClass");
990
991 assert(RC && "Unknown operand type");
992 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
993 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
994 }
995
996
997 //===----------------------------------------------------------------------===//
998 // SDNodeInfo implementation
999 //
SDNodeInfo(Record * R)1000 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
1001 EnumName = R->getValueAsString("Opcode");
1002 SDClassName = R->getValueAsString("SDClass");
1003 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1004 NumResults = TypeProfile->getValueAsInt("NumResults");
1005 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1006
1007 // Parse the properties.
1008 Properties = 0;
1009 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
1010 for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
1011 if (PropList[i]->getName() == "SDNPCommutative") {
1012 Properties |= 1 << SDNPCommutative;
1013 } else if (PropList[i]->getName() == "SDNPAssociative") {
1014 Properties |= 1 << SDNPAssociative;
1015 } else if (PropList[i]->getName() == "SDNPHasChain") {
1016 Properties |= 1 << SDNPHasChain;
1017 } else if (PropList[i]->getName() == "SDNPOutGlue") {
1018 Properties |= 1 << SDNPOutGlue;
1019 } else if (PropList[i]->getName() == "SDNPInGlue") {
1020 Properties |= 1 << SDNPInGlue;
1021 } else if (PropList[i]->getName() == "SDNPOptInGlue") {
1022 Properties |= 1 << SDNPOptInGlue;
1023 } else if (PropList[i]->getName() == "SDNPMayStore") {
1024 Properties |= 1 << SDNPMayStore;
1025 } else if (PropList[i]->getName() == "SDNPMayLoad") {
1026 Properties |= 1 << SDNPMayLoad;
1027 } else if (PropList[i]->getName() == "SDNPSideEffect") {
1028 Properties |= 1 << SDNPSideEffect;
1029 } else if (PropList[i]->getName() == "SDNPMemOperand") {
1030 Properties |= 1 << SDNPMemOperand;
1031 } else if (PropList[i]->getName() == "SDNPVariadic") {
1032 Properties |= 1 << SDNPVariadic;
1033 } else {
1034 errs() << "Unknown SD Node property '" << PropList[i]->getName()
1035 << "' on node '" << R->getName() << "'!\n";
1036 exit(1);
1037 }
1038 }
1039
1040
1041 // Parse the type constraints.
1042 std::vector<Record*> ConstraintList =
1043 TypeProfile->getValueAsListOfDefs("Constraints");
1044 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1045 }
1046
1047 /// getKnownType - If the type constraints on this node imply a fixed type
1048 /// (e.g. all stores return void, etc), then return it as an
1049 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1050 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1051 unsigned NumResults = getNumResults();
1052 assert(NumResults <= 1 &&
1053 "We only work with nodes with zero or one result so far!");
1054 assert(ResNo == 0 && "Only handles single result nodes so far");
1055
1056 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
1057 // Make sure that this applies to the correct node result.
1058 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value #
1059 continue;
1060
1061 switch (TypeConstraints[i].ConstraintType) {
1062 default: break;
1063 case SDTypeConstraint::SDTCisVT:
1064 return TypeConstraints[i].x.SDTCisVT_Info.VT;
1065 case SDTypeConstraint::SDTCisPtrTy:
1066 return MVT::iPTR;
1067 }
1068 }
1069 return MVT::Other;
1070 }
1071
1072 //===----------------------------------------------------------------------===//
1073 // TreePatternNode implementation
1074 //
1075
~TreePatternNode()1076 TreePatternNode::~TreePatternNode() {
1077 #if 0 // FIXME: implement refcounted tree nodes!
1078 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1079 delete getChild(i);
1080 #endif
1081 }
1082
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1083 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1084 if (Operator->getName() == "set" ||
1085 Operator->getName() == "implicit")
1086 return 0; // All return nothing.
1087
1088 if (Operator->isSubClassOf("Intrinsic"))
1089 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1090
1091 if (Operator->isSubClassOf("SDNode"))
1092 return CDP.getSDNodeInfo(Operator).getNumResults();
1093
1094 if (Operator->isSubClassOf("PatFrag")) {
1095 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1096 // the forward reference case where one pattern fragment references another
1097 // before it is processed.
1098 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1099 return PFRec->getOnlyTree()->getNumTypes();
1100
1101 // Get the result tree.
1102 DagInit *Tree = Operator->getValueAsDag("Fragment");
1103 Record *Op = nullptr;
1104 if (Tree)
1105 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1106 Op = DI->getDef();
1107 assert(Op && "Invalid Fragment");
1108 return GetNumNodeResults(Op, CDP);
1109 }
1110
1111 if (Operator->isSubClassOf("Instruction")) {
1112 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1113
1114 // FIXME: Should allow access to all the results here.
1115 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1116
1117 // Add on one implicit def if it has a resolvable type.
1118 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1119 ++NumDefsToAdd;
1120 return NumDefsToAdd;
1121 }
1122
1123 if (Operator->isSubClassOf("SDNodeXForm"))
1124 return 1; // FIXME: Generalize SDNodeXForm
1125
1126 if (Operator->isSubClassOf("ValueType"))
1127 return 1; // A type-cast of one result.
1128
1129 if (Operator->isSubClassOf("ComplexPattern"))
1130 return 1;
1131
1132 Operator->dump();
1133 errs() << "Unhandled node in GetNumNodeResults\n";
1134 exit(1);
1135 }
1136
print(raw_ostream & OS) const1137 void TreePatternNode::print(raw_ostream &OS) const {
1138 if (isLeaf())
1139 OS << *getLeafValue();
1140 else
1141 OS << '(' << getOperator()->getName();
1142
1143 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1144 OS << ':' << getExtType(i).getName();
1145
1146 if (!isLeaf()) {
1147 if (getNumChildren() != 0) {
1148 OS << " ";
1149 getChild(0)->print(OS);
1150 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1151 OS << ", ";
1152 getChild(i)->print(OS);
1153 }
1154 }
1155 OS << ")";
1156 }
1157
1158 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
1159 OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
1160 if (TransformFn)
1161 OS << "<<X:" << TransformFn->getName() << ">>";
1162 if (!getName().empty())
1163 OS << ":$" << getName();
1164
1165 }
dump() const1166 void TreePatternNode::dump() const {
1167 print(errs());
1168 }
1169
1170 /// isIsomorphicTo - Return true if this node is recursively
1171 /// isomorphic to the specified node. For this comparison, the node's
1172 /// entire state is considered. The assigned name is ignored, since
1173 /// nodes with differing names are considered isomorphic. However, if
1174 /// the assigned name is present in the dependent variable set, then
1175 /// the assigned name is considered significant and the node is
1176 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1177 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1178 const MultipleUseVarSet &DepVars) const {
1179 if (N == this) return true;
1180 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1181 getPredicateFns() != N->getPredicateFns() ||
1182 getTransformFn() != N->getTransformFn())
1183 return false;
1184
1185 if (isLeaf()) {
1186 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1187 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1188 return ((DI->getDef() == NDI->getDef())
1189 && (DepVars.find(getName()) == DepVars.end()
1190 || getName() == N->getName()));
1191 }
1192 }
1193 return getLeafValue() == N->getLeafValue();
1194 }
1195
1196 if (N->getOperator() != getOperator() ||
1197 N->getNumChildren() != getNumChildren()) return false;
1198 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1199 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1200 return false;
1201 return true;
1202 }
1203
1204 /// clone - Make a copy of this tree and all of its children.
1205 ///
clone() const1206 TreePatternNode *TreePatternNode::clone() const {
1207 TreePatternNode *New;
1208 if (isLeaf()) {
1209 New = new TreePatternNode(getLeafValue(), getNumTypes());
1210 } else {
1211 std::vector<TreePatternNode*> CChildren;
1212 CChildren.reserve(Children.size());
1213 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1214 CChildren.push_back(getChild(i)->clone());
1215 New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1216 }
1217 New->setName(getName());
1218 New->Types = Types;
1219 New->setPredicateFns(getPredicateFns());
1220 New->setTransformFn(getTransformFn());
1221 return New;
1222 }
1223
1224 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1225 void TreePatternNode::RemoveAllTypes() {
1226 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1227 Types[i] = EEVT::TypeSet(); // Reset to unknown type.
1228 if (isLeaf()) return;
1229 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1230 getChild(i)->RemoveAllTypes();
1231 }
1232
1233
1234 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1235 /// with actual values specified by ArgMap.
1236 void TreePatternNode::
SubstituteFormalArguments(std::map<std::string,TreePatternNode * > & ArgMap)1237 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1238 if (isLeaf()) return;
1239
1240 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1241 TreePatternNode *Child = getChild(i);
1242 if (Child->isLeaf()) {
1243 Init *Val = Child->getLeafValue();
1244 // Note that, when substituting into an output pattern, Val might be an
1245 // UnsetInit.
1246 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1247 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1248 // We found a use of a formal argument, replace it with its value.
1249 TreePatternNode *NewChild = ArgMap[Child->getName()];
1250 assert(NewChild && "Couldn't find formal argument!");
1251 assert((Child->getPredicateFns().empty() ||
1252 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1253 "Non-empty child predicate clobbered!");
1254 setChild(i, NewChild);
1255 }
1256 } else {
1257 getChild(i)->SubstituteFormalArguments(ArgMap);
1258 }
1259 }
1260 }
1261
1262
1263 /// InlinePatternFragments - If this pattern refers to any pattern
1264 /// fragments, inline them into place, giving us a pattern without any
1265 /// PatFrag references.
InlinePatternFragments(TreePattern & TP)1266 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1267 if (TP.hasError())
1268 return nullptr;
1269
1270 if (isLeaf())
1271 return this; // nothing to do.
1272 Record *Op = getOperator();
1273
1274 if (!Op->isSubClassOf("PatFrag")) {
1275 // Just recursively inline children nodes.
1276 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1277 TreePatternNode *Child = getChild(i);
1278 TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1279
1280 assert((Child->getPredicateFns().empty() ||
1281 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1282 "Non-empty child predicate clobbered!");
1283
1284 setChild(i, NewChild);
1285 }
1286 return this;
1287 }
1288
1289 // Otherwise, we found a reference to a fragment. First, look up its
1290 // TreePattern record.
1291 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1292
1293 // Verify that we are passing the right number of operands.
1294 if (Frag->getNumArgs() != Children.size()) {
1295 TP.error("'" + Op->getName() + "' fragment requires " +
1296 utostr(Frag->getNumArgs()) + " operands!");
1297 return nullptr;
1298 }
1299
1300 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1301
1302 TreePredicateFn PredFn(Frag);
1303 if (!PredFn.isAlwaysTrue())
1304 FragTree->addPredicateFn(PredFn);
1305
1306 // Resolve formal arguments to their actual value.
1307 if (Frag->getNumArgs()) {
1308 // Compute the map of formal to actual arguments.
1309 std::map<std::string, TreePatternNode*> ArgMap;
1310 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1311 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1312
1313 FragTree->SubstituteFormalArguments(ArgMap);
1314 }
1315
1316 FragTree->setName(getName());
1317 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1318 FragTree->UpdateNodeType(i, getExtType(i), TP);
1319
1320 // Transfer in the old predicates.
1321 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
1322 FragTree->addPredicateFn(getPredicateFns()[i]);
1323
1324 // Get a new copy of this fragment to stitch into here.
1325 //delete this; // FIXME: implement refcounting!
1326
1327 // The fragment we inlined could have recursive inlining that is needed. See
1328 // if there are any pattern fragments in it and inline them as needed.
1329 return FragTree->InlinePatternFragments(TP);
1330 }
1331
1332 /// getImplicitType - Check to see if the specified record has an implicit
1333 /// type which should be applied to it. This will infer the type of register
1334 /// references from the register file information, for example.
1335 ///
1336 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1337 /// the F8RC register class argument in:
1338 ///
1339 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
1340 ///
1341 /// When Unnamed is false, return the type of a named DAG operand such as the
1342 /// GPR:$src operand above.
1343 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)1344 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1345 bool NotRegisters,
1346 bool Unnamed,
1347 TreePattern &TP) {
1348 // Check to see if this is a register operand.
1349 if (R->isSubClassOf("RegisterOperand")) {
1350 assert(ResNo == 0 && "Regoperand ref only has one result!");
1351 if (NotRegisters)
1352 return EEVT::TypeSet(); // Unknown.
1353 Record *RegClass = R->getValueAsDef("RegClass");
1354 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1355 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1356 }
1357
1358 // Check to see if this is a register or a register class.
1359 if (R->isSubClassOf("RegisterClass")) {
1360 assert(ResNo == 0 && "Regclass ref only has one result!");
1361 // An unnamed register class represents itself as an i32 immediate, for
1362 // example on a COPY_TO_REGCLASS instruction.
1363 if (Unnamed)
1364 return EEVT::TypeSet(MVT::i32, TP);
1365
1366 // In a named operand, the register class provides the possible set of
1367 // types.
1368 if (NotRegisters)
1369 return EEVT::TypeSet(); // Unknown.
1370 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1371 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1372 }
1373
1374 if (R->isSubClassOf("PatFrag")) {
1375 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1376 // Pattern fragment types will be resolved when they are inlined.
1377 return EEVT::TypeSet(); // Unknown.
1378 }
1379
1380 if (R->isSubClassOf("Register")) {
1381 assert(ResNo == 0 && "Registers only produce one result!");
1382 if (NotRegisters)
1383 return EEVT::TypeSet(); // Unknown.
1384 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1385 return EEVT::TypeSet(T.getRegisterVTs(R));
1386 }
1387
1388 if (R->isSubClassOf("SubRegIndex")) {
1389 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1390 return EEVT::TypeSet(MVT::i32, TP);
1391 }
1392
1393 if (R->isSubClassOf("ValueType")) {
1394 assert(ResNo == 0 && "This node only has one result!");
1395 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1396 //
1397 // (sext_inreg GPR:$src, i16)
1398 // ~~~
1399 if (Unnamed)
1400 return EEVT::TypeSet(MVT::Other, TP);
1401 // With a name, the ValueType simply provides the type of the named
1402 // variable.
1403 //
1404 // (sext_inreg i32:$src, i16)
1405 // ~~~~~~~~
1406 if (NotRegisters)
1407 return EEVT::TypeSet(); // Unknown.
1408 return EEVT::TypeSet(getValueType(R), TP);
1409 }
1410
1411 if (R->isSubClassOf("CondCode")) {
1412 assert(ResNo == 0 && "This node only has one result!");
1413 // Using a CondCodeSDNode.
1414 return EEVT::TypeSet(MVT::Other, TP);
1415 }
1416
1417 if (R->isSubClassOf("ComplexPattern")) {
1418 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1419 if (NotRegisters)
1420 return EEVT::TypeSet(); // Unknown.
1421 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1422 TP);
1423 }
1424 if (R->isSubClassOf("PointerLikeRegClass")) {
1425 assert(ResNo == 0 && "Regclass can only have one result!");
1426 return EEVT::TypeSet(MVT::iPTR, TP);
1427 }
1428
1429 if (R->getName() == "node" || R->getName() == "srcvalue" ||
1430 R->getName() == "zero_reg") {
1431 // Placeholder.
1432 return EEVT::TypeSet(); // Unknown.
1433 }
1434
1435 if (R->isSubClassOf("Operand"))
1436 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type")));
1437
1438 TP.error("Unknown node flavor used in pattern: " + R->getName());
1439 return EEVT::TypeSet(MVT::Other, TP);
1440 }
1441
1442
1443 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1444 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1445 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const1446 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1447 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1448 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1449 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1450 return nullptr;
1451
1452 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1453 return &CDP.getIntrinsicInfo(IID);
1454 }
1455
1456 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1457 /// return the ComplexPattern information, otherwise return null.
1458 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const1459 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1460 Record *Rec;
1461 if (isLeaf()) {
1462 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1463 if (!DI)
1464 return nullptr;
1465 Rec = DI->getDef();
1466 } else
1467 Rec = getOperator();
1468
1469 if (!Rec->isSubClassOf("ComplexPattern"))
1470 return nullptr;
1471 return &CGP.getComplexPattern(Rec);
1472 }
1473
getNumMIResults(const CodeGenDAGPatterns & CGP) const1474 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
1475 // A ComplexPattern specifically declares how many results it fills in.
1476 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1477 return CP->getNumOperands();
1478
1479 // If MIOperandInfo is specified, that gives the count.
1480 if (isLeaf()) {
1481 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1482 if (DI && DI->getDef()->isSubClassOf("Operand")) {
1483 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
1484 if (MIOps->getNumArgs())
1485 return MIOps->getNumArgs();
1486 }
1487 }
1488
1489 // Otherwise there is just one result.
1490 return 1;
1491 }
1492
1493 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1494 bool TreePatternNode::NodeHasProperty(SDNP Property,
1495 const CodeGenDAGPatterns &CGP) const {
1496 if (isLeaf()) {
1497 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1498 return CP->hasProperty(Property);
1499 return false;
1500 }
1501
1502 Record *Operator = getOperator();
1503 if (!Operator->isSubClassOf("SDNode")) return false;
1504
1505 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1506 }
1507
1508
1509
1510
1511 /// TreeHasProperty - Return true if any node in this tree has the specified
1512 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1513 bool TreePatternNode::TreeHasProperty(SDNP Property,
1514 const CodeGenDAGPatterns &CGP) const {
1515 if (NodeHasProperty(Property, CGP))
1516 return true;
1517 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1518 if (getChild(i)->TreeHasProperty(Property, CGP))
1519 return true;
1520 return false;
1521 }
1522
1523 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1524 /// commutative intrinsic.
1525 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const1526 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1527 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1528 return Int->isCommutative;
1529 return false;
1530 }
1531
isOperandClass(const TreePatternNode * N,StringRef Class)1532 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
1533 if (!N->isLeaf())
1534 return N->getOperator()->isSubClassOf(Class);
1535
1536 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
1537 if (DI && DI->getDef()->isSubClassOf(Class))
1538 return true;
1539
1540 return false;
1541 }
1542
emitTooManyOperandsError(TreePattern & TP,StringRef InstName,unsigned Expected,unsigned Actual)1543 static void emitTooManyOperandsError(TreePattern &TP,
1544 StringRef InstName,
1545 unsigned Expected,
1546 unsigned Actual) {
1547 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
1548 " operands but expected only " + Twine(Expected) + "!");
1549 }
1550
emitTooFewOperandsError(TreePattern & TP,StringRef InstName,unsigned Actual)1551 static void emitTooFewOperandsError(TreePattern &TP,
1552 StringRef InstName,
1553 unsigned Actual) {
1554 TP.error("Instruction '" + InstName +
1555 "' expects more than the provided " + Twine(Actual) + " operands!");
1556 }
1557
1558 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1559 /// this node and its children in the tree. This returns true if it makes a
1560 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)1561 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1562 if (TP.hasError())
1563 return false;
1564
1565 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1566 if (isLeaf()) {
1567 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1568 // If it's a regclass or something else known, include the type.
1569 bool MadeChange = false;
1570 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1571 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1572 NotRegisters,
1573 !hasName(), TP), TP);
1574 return MadeChange;
1575 }
1576
1577 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1578 assert(Types.size() == 1 && "Invalid IntInit");
1579
1580 // Int inits are always integers. :)
1581 bool MadeChange = Types[0].EnforceInteger(TP);
1582
1583 if (!Types[0].isConcrete())
1584 return MadeChange;
1585
1586 MVT::SimpleValueType VT = getType(0);
1587 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1588 return MadeChange;
1589
1590 unsigned Size = MVT(VT).getSizeInBits();
1591 // Make sure that the value is representable for this type.
1592 if (Size >= 32) return MadeChange;
1593
1594 // Check that the value doesn't use more bits than we have. It must either
1595 // be a sign- or zero-extended equivalent of the original.
1596 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1597 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1598 return MadeChange;
1599
1600 TP.error("Integer value '" + itostr(II->getValue()) +
1601 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1602 return false;
1603 }
1604 return false;
1605 }
1606
1607 // special handling for set, which isn't really an SDNode.
1608 if (getOperator()->getName() == "set") {
1609 assert(getNumTypes() == 0 && "Set doesn't produce a value");
1610 assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1611 unsigned NC = getNumChildren();
1612
1613 TreePatternNode *SetVal = getChild(NC-1);
1614 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1615
1616 for (unsigned i = 0; i < NC-1; ++i) {
1617 TreePatternNode *Child = getChild(i);
1618 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1619
1620 // Types of operands must match.
1621 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1622 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1623 }
1624 return MadeChange;
1625 }
1626
1627 if (getOperator()->getName() == "implicit") {
1628 assert(getNumTypes() == 0 && "Node doesn't produce a value");
1629
1630 bool MadeChange = false;
1631 for (unsigned i = 0; i < getNumChildren(); ++i)
1632 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1633 return MadeChange;
1634 }
1635
1636 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1637 bool MadeChange = false;
1638
1639 // Apply the result type to the node.
1640 unsigned NumRetVTs = Int->IS.RetVTs.size();
1641 unsigned NumParamVTs = Int->IS.ParamVTs.size();
1642
1643 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1644 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1645
1646 if (getNumChildren() != NumParamVTs + 1) {
1647 TP.error("Intrinsic '" + Int->Name + "' expects " +
1648 utostr(NumParamVTs) + " operands, not " +
1649 utostr(getNumChildren() - 1) + " operands!");
1650 return false;
1651 }
1652
1653 // Apply type info to the intrinsic ID.
1654 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1655
1656 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1657 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1658
1659 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1660 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1661 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1662 }
1663 return MadeChange;
1664 }
1665
1666 if (getOperator()->isSubClassOf("SDNode")) {
1667 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1668
1669 // Check that the number of operands is sane. Negative operands -> varargs.
1670 if (NI.getNumOperands() >= 0 &&
1671 getNumChildren() != (unsigned)NI.getNumOperands()) {
1672 TP.error(getOperator()->getName() + " node requires exactly " +
1673 itostr(NI.getNumOperands()) + " operands!");
1674 return false;
1675 }
1676
1677 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1678 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1679 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1680 return MadeChange;
1681 }
1682
1683 if (getOperator()->isSubClassOf("Instruction")) {
1684 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1685 CodeGenInstruction &InstInfo =
1686 CDP.getTargetInfo().getInstruction(getOperator());
1687
1688 bool MadeChange = false;
1689
1690 // Apply the result types to the node, these come from the things in the
1691 // (outs) list of the instruction.
1692 // FIXME: Cap at one result so far.
1693 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
1694 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1695 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1696
1697 // If the instruction has implicit defs, we apply the first one as a result.
1698 // FIXME: This sucks, it should apply all implicit defs.
1699 if (!InstInfo.ImplicitDefs.empty()) {
1700 unsigned ResNo = NumResultsToAdd;
1701
1702 // FIXME: Generalize to multiple possible types and multiple possible
1703 // ImplicitDefs.
1704 MVT::SimpleValueType VT =
1705 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1706
1707 if (VT != MVT::Other)
1708 MadeChange |= UpdateNodeType(ResNo, VT, TP);
1709 }
1710
1711 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1712 // be the same.
1713 if (getOperator()->getName() == "INSERT_SUBREG") {
1714 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1715 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1716 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1717 } else if (getOperator()->getName() == "REG_SEQUENCE") {
1718 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
1719 // variadic.
1720
1721 unsigned NChild = getNumChildren();
1722 if (NChild < 3) {
1723 TP.error("REG_SEQUENCE requires at least 3 operands!");
1724 return false;
1725 }
1726
1727 if (NChild % 2 == 0) {
1728 TP.error("REG_SEQUENCE requires an odd number of operands!");
1729 return false;
1730 }
1731
1732 if (!isOperandClass(getChild(0), "RegisterClass")) {
1733 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
1734 return false;
1735 }
1736
1737 for (unsigned I = 1; I < NChild; I += 2) {
1738 TreePatternNode *SubIdxChild = getChild(I + 1);
1739 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
1740 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
1741 itostr(I + 1) + "!");
1742 return false;
1743 }
1744 }
1745 }
1746
1747 unsigned ChildNo = 0;
1748 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1749 Record *OperandNode = Inst.getOperand(i);
1750
1751 // If the instruction expects a predicate or optional def operand, we
1752 // codegen this by setting the operand to it's default value if it has a
1753 // non-empty DefaultOps field.
1754 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1755 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1756 continue;
1757
1758 // Verify that we didn't run out of provided operands.
1759 if (ChildNo >= getNumChildren()) {
1760 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
1761 return false;
1762 }
1763
1764 TreePatternNode *Child = getChild(ChildNo++);
1765 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
1766
1767 // If the operand has sub-operands, they may be provided by distinct
1768 // child patterns, so attempt to match each sub-operand separately.
1769 if (OperandNode->isSubClassOf("Operand")) {
1770 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1771 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1772 // But don't do that if the whole operand is being provided by
1773 // a single ComplexPattern-related Operand.
1774
1775 if (Child->getNumMIResults(CDP) < NumArgs) {
1776 // Match first sub-operand against the child we already have.
1777 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1778 MadeChange |=
1779 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1780
1781 // And the remaining sub-operands against subsequent children.
1782 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1783 if (ChildNo >= getNumChildren()) {
1784 emitTooFewOperandsError(TP, getOperator()->getName(),
1785 getNumChildren());
1786 return false;
1787 }
1788 Child = getChild(ChildNo++);
1789
1790 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1791 MadeChange |=
1792 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1793 }
1794 continue;
1795 }
1796 }
1797 }
1798
1799 // If we didn't match by pieces above, attempt to match the whole
1800 // operand now.
1801 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1802 }
1803
1804 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
1805 emitTooManyOperandsError(TP, getOperator()->getName(),
1806 ChildNo, getNumChildren());
1807 return false;
1808 }
1809
1810 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1811 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1812 return MadeChange;
1813 }
1814
1815 if (getOperator()->isSubClassOf("ComplexPattern")) {
1816 bool MadeChange = false;
1817
1818 for (unsigned i = 0; i < getNumChildren(); ++i)
1819 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1820
1821 return MadeChange;
1822 }
1823
1824 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1825
1826 // Node transforms always take one operand.
1827 if (getNumChildren() != 1) {
1828 TP.error("Node transform '" + getOperator()->getName() +
1829 "' requires one operand!");
1830 return false;
1831 }
1832
1833 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1834
1835
1836 // If either the output or input of the xform does not have exact
1837 // type info. We assume they must be the same. Otherwise, it is perfectly
1838 // legal to transform from one type to a completely different type.
1839 #if 0
1840 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1841 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1842 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1843 return MadeChange;
1844 }
1845 #endif
1846 return MadeChange;
1847 }
1848
1849 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1850 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)1851 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1852 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1853 return true;
1854 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1855 return true;
1856 return false;
1857 }
1858
1859
1860 /// canPatternMatch - If it is impossible for this pattern to match on this
1861 /// target, fill in Reason and return false. Otherwise, return true. This is
1862 /// used as a sanity check for .td files (to prevent people from writing stuff
1863 /// that can never possibly work), and to prevent the pattern permuter from
1864 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)1865 bool TreePatternNode::canPatternMatch(std::string &Reason,
1866 const CodeGenDAGPatterns &CDP) {
1867 if (isLeaf()) return true;
1868
1869 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1870 if (!getChild(i)->canPatternMatch(Reason, CDP))
1871 return false;
1872
1873 // If this is an intrinsic, handle cases that would make it not match. For
1874 // example, if an operand is required to be an immediate.
1875 if (getOperator()->isSubClassOf("Intrinsic")) {
1876 // TODO:
1877 return true;
1878 }
1879
1880 if (getOperator()->isSubClassOf("ComplexPattern"))
1881 return true;
1882
1883 // If this node is a commutative operator, check that the LHS isn't an
1884 // immediate.
1885 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
1886 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
1887 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
1888 // Scan all of the operands of the node and make sure that only the last one
1889 // is a constant node, unless the RHS also is.
1890 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
1891 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
1892 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
1893 if (OnlyOnRHSOfCommutative(getChild(i))) {
1894 Reason="Immediate value must be on the RHS of commutative operators!";
1895 return false;
1896 }
1897 }
1898 }
1899
1900 return true;
1901 }
1902
1903 //===----------------------------------------------------------------------===//
1904 // TreePattern implementation
1905 //
1906
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)1907 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
1908 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1909 isInputPattern(isInput), HasError(false) {
1910 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
1911 Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
1912 }
1913
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)1914 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
1915 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1916 isInputPattern(isInput), HasError(false) {
1917 Trees.push_back(ParseTreePattern(Pat, ""));
1918 }
1919
TreePattern(Record * TheRec,TreePatternNode * Pat,bool isInput,CodeGenDAGPatterns & cdp)1920 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
1921 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
1922 isInputPattern(isInput), HasError(false) {
1923 Trees.push_back(Pat);
1924 }
1925
error(const Twine & Msg)1926 void TreePattern::error(const Twine &Msg) {
1927 if (HasError)
1928 return;
1929 dump();
1930 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
1931 HasError = true;
1932 }
1933
ComputeNamedNodes()1934 void TreePattern::ComputeNamedNodes() {
1935 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
1936 ComputeNamedNodes(Trees[i]);
1937 }
1938
ComputeNamedNodes(TreePatternNode * N)1939 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
1940 if (!N->getName().empty())
1941 NamedNodes[N->getName()].push_back(N);
1942
1943 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
1944 ComputeNamedNodes(N->getChild(i));
1945 }
1946
1947
ParseTreePattern(Init * TheInit,StringRef OpName)1948 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
1949 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
1950 Record *R = DI->getDef();
1951
1952 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
1953 // TreePatternNode of its own. For example:
1954 /// (foo GPR, imm) -> (foo GPR, (imm))
1955 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
1956 return ParseTreePattern(
1957 DagInit::get(DI, "",
1958 std::vector<std::pair<Init*, std::string> >()),
1959 OpName);
1960
1961 // Input argument?
1962 TreePatternNode *Res = new TreePatternNode(DI, 1);
1963 if (R->getName() == "node" && !OpName.empty()) {
1964 if (OpName.empty())
1965 error("'node' argument requires a name to match with operand list");
1966 Args.push_back(OpName);
1967 }
1968
1969 Res->setName(OpName);
1970 return Res;
1971 }
1972
1973 // ?:$name or just $name.
1974 if (TheInit == UnsetInit::get()) {
1975 if (OpName.empty())
1976 error("'?' argument requires a name to match with operand list");
1977 TreePatternNode *Res = new TreePatternNode(TheInit, 1);
1978 Args.push_back(OpName);
1979 Res->setName(OpName);
1980 return Res;
1981 }
1982
1983 if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
1984 if (!OpName.empty())
1985 error("Constant int argument should not have a name!");
1986 return new TreePatternNode(II, 1);
1987 }
1988
1989 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
1990 // Turn this into an IntInit.
1991 Init *II = BI->convertInitializerTo(IntRecTy::get());
1992 if (!II || !isa<IntInit>(II))
1993 error("Bits value must be constants!");
1994 return ParseTreePattern(II, OpName);
1995 }
1996
1997 DagInit *Dag = dyn_cast<DagInit>(TheInit);
1998 if (!Dag) {
1999 TheInit->dump();
2000 error("Pattern has unexpected init kind!");
2001 }
2002 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2003 if (!OpDef) error("Pattern has unexpected operator type!");
2004 Record *Operator = OpDef->getDef();
2005
2006 if (Operator->isSubClassOf("ValueType")) {
2007 // If the operator is a ValueType, then this must be "type cast" of a leaf
2008 // node.
2009 if (Dag->getNumArgs() != 1)
2010 error("Type cast only takes one operand!");
2011
2012 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
2013
2014 // Apply the type cast.
2015 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2016 New->UpdateNodeType(0, getValueType(Operator), *this);
2017
2018 if (!OpName.empty())
2019 error("ValueType cast should not have a name!");
2020 return New;
2021 }
2022
2023 // Verify that this is something that makes sense for an operator.
2024 if (!Operator->isSubClassOf("PatFrag") &&
2025 !Operator->isSubClassOf("SDNode") &&
2026 !Operator->isSubClassOf("Instruction") &&
2027 !Operator->isSubClassOf("SDNodeXForm") &&
2028 !Operator->isSubClassOf("Intrinsic") &&
2029 !Operator->isSubClassOf("ComplexPattern") &&
2030 Operator->getName() != "set" &&
2031 Operator->getName() != "implicit")
2032 error("Unrecognized node '" + Operator->getName() + "'!");
2033
2034 // Check to see if this is something that is illegal in an input pattern.
2035 if (isInputPattern) {
2036 if (Operator->isSubClassOf("Instruction") ||
2037 Operator->isSubClassOf("SDNodeXForm"))
2038 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2039 } else {
2040 if (Operator->isSubClassOf("Intrinsic"))
2041 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2042
2043 if (Operator->isSubClassOf("SDNode") &&
2044 Operator->getName() != "imm" &&
2045 Operator->getName() != "fpimm" &&
2046 Operator->getName() != "tglobaltlsaddr" &&
2047 Operator->getName() != "tconstpool" &&
2048 Operator->getName() != "tjumptable" &&
2049 Operator->getName() != "tframeindex" &&
2050 Operator->getName() != "texternalsym" &&
2051 Operator->getName() != "tblockaddress" &&
2052 Operator->getName() != "tglobaladdr" &&
2053 Operator->getName() != "bb" &&
2054 Operator->getName() != "vt")
2055 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2056 }
2057
2058 std::vector<TreePatternNode*> Children;
2059
2060 // Parse all the operands.
2061 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2062 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
2063
2064 // If the operator is an intrinsic, then this is just syntactic sugar for for
2065 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2066 // convert the intrinsic name to a number.
2067 if (Operator->isSubClassOf("Intrinsic")) {
2068 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2069 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2070
2071 // If this intrinsic returns void, it must have side-effects and thus a
2072 // chain.
2073 if (Int.IS.RetVTs.empty())
2074 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2075 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2076 // Has side-effects, requires chain.
2077 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2078 else // Otherwise, no chain.
2079 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2080
2081 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2082 Children.insert(Children.begin(), IIDNode);
2083 }
2084
2085 if (Operator->isSubClassOf("ComplexPattern")) {
2086 for (unsigned i = 0; i < Children.size(); ++i) {
2087 TreePatternNode *Child = Children[i];
2088
2089 if (Child->getName().empty())
2090 error("All arguments to a ComplexPattern must be named");
2091
2092 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2093 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2094 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2095 auto OperandId = std::make_pair(Operator, i);
2096 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2097 if (PrevOp != ComplexPatternOperands.end()) {
2098 if (PrevOp->getValue() != OperandId)
2099 error("All ComplexPattern operands must appear consistently: "
2100 "in the same order in just one ComplexPattern instance.");
2101 } else
2102 ComplexPatternOperands[Child->getName()] = OperandId;
2103 }
2104 }
2105
2106 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2107 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2108 Result->setName(OpName);
2109
2110 if (!Dag->getName().empty()) {
2111 assert(Result->getName().empty());
2112 Result->setName(Dag->getName());
2113 }
2114 return Result;
2115 }
2116
2117 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2118 /// will never match in favor of something obvious that will. This is here
2119 /// strictly as a convenience to target authors because it allows them to write
2120 /// more type generic things and have useless type casts fold away.
2121 ///
2122 /// This returns true if any change is made.
SimplifyTree(TreePatternNode * & N)2123 static bool SimplifyTree(TreePatternNode *&N) {
2124 if (N->isLeaf())
2125 return false;
2126
2127 // If we have a bitconvert with a resolved type and if the source and
2128 // destination types are the same, then the bitconvert is useless, remove it.
2129 if (N->getOperator()->getName() == "bitconvert" &&
2130 N->getExtType(0).isConcrete() &&
2131 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2132 N->getName().empty()) {
2133 N = N->getChild(0);
2134 SimplifyTree(N);
2135 return true;
2136 }
2137
2138 // Walk all children.
2139 bool MadeChange = false;
2140 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2141 TreePatternNode *Child = N->getChild(i);
2142 MadeChange |= SimplifyTree(Child);
2143 N->setChild(i, Child);
2144 }
2145 return MadeChange;
2146 }
2147
2148
2149
2150 /// InferAllTypes - Infer/propagate as many types throughout the expression
2151 /// patterns as possible. Return true if all types are inferred, false
2152 /// otherwise. Flags an error if a type contradiction is found.
2153 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2154 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2155 if (NamedNodes.empty())
2156 ComputeNamedNodes();
2157
2158 bool MadeChange = true;
2159 while (MadeChange) {
2160 MadeChange = false;
2161 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2162 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
2163 MadeChange |= SimplifyTree(Trees[i]);
2164 }
2165
2166 // If there are constraints on our named nodes, apply them.
2167 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
2168 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
2169 SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
2170
2171 // If we have input named node types, propagate their types to the named
2172 // values here.
2173 if (InNamedTypes) {
2174 if (!InNamedTypes->count(I->getKey())) {
2175 error("Node '" + std::string(I->getKey()) +
2176 "' in output pattern but not input pattern");
2177 return true;
2178 }
2179
2180 const SmallVectorImpl<TreePatternNode*> &InNodes =
2181 InNamedTypes->find(I->getKey())->second;
2182
2183 // The input types should be fully resolved by now.
2184 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
2185 // If this node is a register class, and it is the root of the pattern
2186 // then we're mapping something onto an input register. We allow
2187 // changing the type of the input register in this case. This allows
2188 // us to match things like:
2189 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2190 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
2191 DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue());
2192 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2193 DI->getDef()->isSubClassOf("RegisterOperand")))
2194 continue;
2195 }
2196
2197 assert(Nodes[i]->getNumTypes() == 1 &&
2198 InNodes[0]->getNumTypes() == 1 &&
2199 "FIXME: cannot name multiple result nodes yet");
2200 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
2201 *this);
2202 }
2203 }
2204
2205 // If there are multiple nodes with the same name, they must all have the
2206 // same type.
2207 if (I->second.size() > 1) {
2208 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2209 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2210 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2211 "FIXME: cannot name multiple result nodes yet");
2212
2213 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2214 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2215 }
2216 }
2217 }
2218 }
2219
2220 bool HasUnresolvedTypes = false;
2221 for (unsigned i = 0, e = Trees.size(); i != e; ++i)
2222 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
2223 return !HasUnresolvedTypes;
2224 }
2225
print(raw_ostream & OS) const2226 void TreePattern::print(raw_ostream &OS) const {
2227 OS << getRecord()->getName();
2228 if (!Args.empty()) {
2229 OS << "(" << Args[0];
2230 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2231 OS << ", " << Args[i];
2232 OS << ")";
2233 }
2234 OS << ": ";
2235
2236 if (Trees.size() > 1)
2237 OS << "[\n";
2238 for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
2239 OS << "\t";
2240 Trees[i]->print(OS);
2241 OS << "\n";
2242 }
2243
2244 if (Trees.size() > 1)
2245 OS << "]\n";
2246 }
2247
dump() const2248 void TreePattern::dump() const { print(errs()); }
2249
2250 //===----------------------------------------------------------------------===//
2251 // CodeGenDAGPatterns implementation
2252 //
2253
CodeGenDAGPatterns(RecordKeeper & R)2254 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2255 Records(R), Target(R) {
2256
2257 Intrinsics = LoadIntrinsics(Records, false);
2258 TgtIntrinsics = LoadIntrinsics(Records, true);
2259 ParseNodeInfo();
2260 ParseNodeTransforms();
2261 ParseComplexPatterns();
2262 ParsePatternFragments();
2263 ParseDefaultOperands();
2264 ParseInstructions();
2265 ParsePatternFragments(/*OutFrags*/true);
2266 ParsePatterns();
2267
2268 // Generate variants. For example, commutative patterns can match
2269 // multiple ways. Add them to PatternsToMatch as well.
2270 GenerateVariants();
2271
2272 // Infer instruction flags. For example, we can detect loads,
2273 // stores, and side effects in many cases by examining an
2274 // instruction's pattern.
2275 InferInstructionFlags();
2276
2277 // Verify that instruction flags match the patterns.
2278 VerifyInstructionFlags();
2279 }
2280
getSDNodeNamed(const std::string & Name) const2281 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2282 Record *N = Records.getDef(Name);
2283 if (!N || !N->isSubClassOf("SDNode")) {
2284 errs() << "Error getting SDNode '" << Name << "'!\n";
2285 exit(1);
2286 }
2287 return N;
2288 }
2289
2290 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2291 void CodeGenDAGPatterns::ParseNodeInfo() {
2292 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2293 while (!Nodes.empty()) {
2294 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2295 Nodes.pop_back();
2296 }
2297
2298 // Get the builtin intrinsic nodes.
2299 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
2300 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
2301 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2302 }
2303
2304 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2305 /// map, and emit them to the file as functions.
ParseNodeTransforms()2306 void CodeGenDAGPatterns::ParseNodeTransforms() {
2307 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2308 while (!Xforms.empty()) {
2309 Record *XFormNode = Xforms.back();
2310 Record *SDNode = XFormNode->getValueAsDef("Opcode");
2311 std::string Code = XFormNode->getValueAsString("XFormFunction");
2312 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2313
2314 Xforms.pop_back();
2315 }
2316 }
2317
ParseComplexPatterns()2318 void CodeGenDAGPatterns::ParseComplexPatterns() {
2319 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2320 while (!AMs.empty()) {
2321 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2322 AMs.pop_back();
2323 }
2324 }
2325
2326
2327 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2328 /// file, building up the PatternFragments map. After we've collected them all,
2329 /// inline fragments together as necessary, so that there are no references left
2330 /// inside a pattern fragment to a pattern fragment.
2331 ///
ParsePatternFragments(bool OutFrags)2332 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2333 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2334
2335 // First step, parse all of the fragments.
2336 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2337 if (OutFrags != Fragments[i]->isSubClassOf("OutPatFrag"))
2338 continue;
2339
2340 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
2341 TreePattern *P =
2342 (PatternFragments[Fragments[i]] = llvm::make_unique<TreePattern>(
2343 Fragments[i], Tree, !Fragments[i]->isSubClassOf("OutPatFrag"),
2344 *this)).get();
2345
2346 // Validate the argument list, converting it to set, to discard duplicates.
2347 std::vector<std::string> &Args = P->getArgList();
2348 std::set<std::string> OperandsSet(Args.begin(), Args.end());
2349
2350 if (OperandsSet.count(""))
2351 P->error("Cannot have unnamed 'node' values in pattern fragment!");
2352
2353 // Parse the operands list.
2354 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
2355 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2356 // Special cases: ops == outs == ins. Different names are used to
2357 // improve readability.
2358 if (!OpsOp ||
2359 (OpsOp->getDef()->getName() != "ops" &&
2360 OpsOp->getDef()->getName() != "outs" &&
2361 OpsOp->getDef()->getName() != "ins"))
2362 P->error("Operands list should start with '(ops ... '!");
2363
2364 // Copy over the arguments.
2365 Args.clear();
2366 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2367 if (!isa<DefInit>(OpsList->getArg(j)) ||
2368 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2369 P->error("Operands list should all be 'node' values.");
2370 if (OpsList->getArgName(j).empty())
2371 P->error("Operands list should have names for each operand!");
2372 if (!OperandsSet.count(OpsList->getArgName(j)))
2373 P->error("'" + OpsList->getArgName(j) +
2374 "' does not occur in pattern or was multiply specified!");
2375 OperandsSet.erase(OpsList->getArgName(j));
2376 Args.push_back(OpsList->getArgName(j));
2377 }
2378
2379 if (!OperandsSet.empty())
2380 P->error("Operands list does not contain an entry for operand '" +
2381 *OperandsSet.begin() + "'!");
2382
2383 // If there is a code init for this fragment, keep track of the fact that
2384 // this fragment uses it.
2385 TreePredicateFn PredFn(P);
2386 if (!PredFn.isAlwaysTrue())
2387 P->getOnlyTree()->addPredicateFn(PredFn);
2388
2389 // If there is a node transformation corresponding to this, keep track of
2390 // it.
2391 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
2392 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
2393 P->getOnlyTree()->setTransformFn(Transform);
2394 }
2395
2396 // Now that we've parsed all of the tree fragments, do a closure on them so
2397 // that there are not references to PatFrags left inside of them.
2398 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
2399 if (OutFrags != Fragments[i]->isSubClassOf("OutPatFrag"))
2400 continue;
2401
2402 TreePattern &ThePat = *PatternFragments[Fragments[i]];
2403 ThePat.InlinePatternFragments();
2404
2405 // Infer as many types as possible. Don't worry about it if we don't infer
2406 // all of them, some may depend on the inputs of the pattern.
2407 ThePat.InferAllTypes();
2408 ThePat.resetError();
2409
2410 // If debugging, print out the pattern fragment result.
2411 DEBUG(ThePat.dump());
2412 }
2413 }
2414
ParseDefaultOperands()2415 void CodeGenDAGPatterns::ParseDefaultOperands() {
2416 std::vector<Record*> DefaultOps;
2417 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2418
2419 // Find some SDNode.
2420 assert(!SDNodes.empty() && "No SDNodes parsed?");
2421 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2422
2423 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2424 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2425
2426 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2427 // SomeSDnode so that we can parse this.
2428 std::vector<std::pair<Init*, std::string> > Ops;
2429 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2430 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2431 DefaultInfo->getArgName(op)));
2432 DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2433
2434 // Create a TreePattern to parse this.
2435 TreePattern P(DefaultOps[i], DI, false, *this);
2436 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2437
2438 // Copy the operands over into a DAGDefaultOperand.
2439 DAGDefaultOperand DefaultOpInfo;
2440
2441 TreePatternNode *T = P.getTree(0);
2442 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2443 TreePatternNode *TPN = T->getChild(op);
2444 while (TPN->ApplyTypeConstraints(P, false))
2445 /* Resolve all types */;
2446
2447 if (TPN->ContainsUnresolvedType()) {
2448 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
2449 DefaultOps[i]->getName() +
2450 "' doesn't have a concrete type!");
2451 }
2452 DefaultOpInfo.DefaultOps.push_back(TPN);
2453 }
2454
2455 // Insert it into the DefaultOperands map so we can find it later.
2456 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2457 }
2458 }
2459
2460 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2461 /// instruction input. Return true if this is a real use.
HandleUse(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs)2462 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2463 std::map<std::string, TreePatternNode*> &InstInputs) {
2464 // No name -> not interesting.
2465 if (Pat->getName().empty()) {
2466 if (Pat->isLeaf()) {
2467 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2468 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2469 DI->getDef()->isSubClassOf("RegisterOperand")))
2470 I->error("Input " + DI->getDef()->getName() + " must be named!");
2471 }
2472 return false;
2473 }
2474
2475 Record *Rec;
2476 if (Pat->isLeaf()) {
2477 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2478 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2479 Rec = DI->getDef();
2480 } else {
2481 Rec = Pat->getOperator();
2482 }
2483
2484 // SRCVALUE nodes are ignored.
2485 if (Rec->getName() == "srcvalue")
2486 return false;
2487
2488 TreePatternNode *&Slot = InstInputs[Pat->getName()];
2489 if (!Slot) {
2490 Slot = Pat;
2491 return true;
2492 }
2493 Record *SlotRec;
2494 if (Slot->isLeaf()) {
2495 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2496 } else {
2497 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2498 SlotRec = Slot->getOperator();
2499 }
2500
2501 // Ensure that the inputs agree if we've already seen this input.
2502 if (Rec != SlotRec)
2503 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2504 if (Slot->getExtTypes() != Pat->getExtTypes())
2505 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2506 return true;
2507 }
2508
2509 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2510 /// part of "I", the instruction), computing the set of inputs and outputs of
2511 /// the pattern. Report errors if we see anything naughty.
2512 void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs,std::map<std::string,TreePatternNode * > & InstResults,std::vector<Record * > & InstImpResults)2513 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2514 std::map<std::string, TreePatternNode*> &InstInputs,
2515 std::map<std::string, TreePatternNode*>&InstResults,
2516 std::vector<Record*> &InstImpResults) {
2517 if (Pat->isLeaf()) {
2518 bool isUse = HandleUse(I, Pat, InstInputs);
2519 if (!isUse && Pat->getTransformFn())
2520 I->error("Cannot specify a transform function for a non-input value!");
2521 return;
2522 }
2523
2524 if (Pat->getOperator()->getName() == "implicit") {
2525 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2526 TreePatternNode *Dest = Pat->getChild(i);
2527 if (!Dest->isLeaf())
2528 I->error("implicitly defined value should be a register!");
2529
2530 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2531 if (!Val || !Val->getDef()->isSubClassOf("Register"))
2532 I->error("implicitly defined value should be a register!");
2533 InstImpResults.push_back(Val->getDef());
2534 }
2535 return;
2536 }
2537
2538 if (Pat->getOperator()->getName() != "set") {
2539 // If this is not a set, verify that the children nodes are not void typed,
2540 // and recurse.
2541 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2542 if (Pat->getChild(i)->getNumTypes() == 0)
2543 I->error("Cannot have void nodes inside of patterns!");
2544 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2545 InstImpResults);
2546 }
2547
2548 // If this is a non-leaf node with no children, treat it basically as if
2549 // it were a leaf. This handles nodes like (imm).
2550 bool isUse = HandleUse(I, Pat, InstInputs);
2551
2552 if (!isUse && Pat->getTransformFn())
2553 I->error("Cannot specify a transform function for a non-input value!");
2554 return;
2555 }
2556
2557 // Otherwise, this is a set, validate and collect instruction results.
2558 if (Pat->getNumChildren() == 0)
2559 I->error("set requires operands!");
2560
2561 if (Pat->getTransformFn())
2562 I->error("Cannot specify a transform function on a set node!");
2563
2564 // Check the set destinations.
2565 unsigned NumDests = Pat->getNumChildren()-1;
2566 for (unsigned i = 0; i != NumDests; ++i) {
2567 TreePatternNode *Dest = Pat->getChild(i);
2568 if (!Dest->isLeaf())
2569 I->error("set destination should be a register!");
2570
2571 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2572 if (!Val) {
2573 I->error("set destination should be a register!");
2574 continue;
2575 }
2576
2577 if (Val->getDef()->isSubClassOf("RegisterClass") ||
2578 Val->getDef()->isSubClassOf("ValueType") ||
2579 Val->getDef()->isSubClassOf("RegisterOperand") ||
2580 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2581 if (Dest->getName().empty())
2582 I->error("set destination must have a name!");
2583 if (InstResults.count(Dest->getName()))
2584 I->error("cannot set '" + Dest->getName() +"' multiple times");
2585 InstResults[Dest->getName()] = Dest;
2586 } else if (Val->getDef()->isSubClassOf("Register")) {
2587 InstImpResults.push_back(Val->getDef());
2588 } else {
2589 I->error("set destination should be a register!");
2590 }
2591 }
2592
2593 // Verify and collect info from the computation.
2594 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2595 InstInputs, InstResults, InstImpResults);
2596 }
2597
2598 //===----------------------------------------------------------------------===//
2599 // Instruction Analysis
2600 //===----------------------------------------------------------------------===//
2601
2602 class InstAnalyzer {
2603 const CodeGenDAGPatterns &CDP;
2604 public:
2605 bool hasSideEffects;
2606 bool mayStore;
2607 bool mayLoad;
2608 bool isBitcast;
2609 bool isVariadic;
2610
InstAnalyzer(const CodeGenDAGPatterns & cdp)2611 InstAnalyzer(const CodeGenDAGPatterns &cdp)
2612 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2613 isBitcast(false), isVariadic(false) {}
2614
Analyze(const TreePattern * Pat)2615 void Analyze(const TreePattern *Pat) {
2616 // Assume only the first tree is the pattern. The others are clobber nodes.
2617 AnalyzeNode(Pat->getTree(0));
2618 }
2619
Analyze(const PatternToMatch * Pat)2620 void Analyze(const PatternToMatch *Pat) {
2621 AnalyzeNode(Pat->getSrcPattern());
2622 }
2623
2624 private:
IsNodeBitcast(const TreePatternNode * N) const2625 bool IsNodeBitcast(const TreePatternNode *N) const {
2626 if (hasSideEffects || mayLoad || mayStore || isVariadic)
2627 return false;
2628
2629 if (N->getNumChildren() != 2)
2630 return false;
2631
2632 const TreePatternNode *N0 = N->getChild(0);
2633 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2634 return false;
2635
2636 const TreePatternNode *N1 = N->getChild(1);
2637 if (N1->isLeaf())
2638 return false;
2639 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2640 return false;
2641
2642 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2643 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2644 return false;
2645 return OpInfo.getEnumName() == "ISD::BITCAST";
2646 }
2647
2648 public:
AnalyzeNode(const TreePatternNode * N)2649 void AnalyzeNode(const TreePatternNode *N) {
2650 if (N->isLeaf()) {
2651 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2652 Record *LeafRec = DI->getDef();
2653 // Handle ComplexPattern leaves.
2654 if (LeafRec->isSubClassOf("ComplexPattern")) {
2655 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2656 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2657 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2658 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2659 }
2660 }
2661 return;
2662 }
2663
2664 // Analyze children.
2665 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2666 AnalyzeNode(N->getChild(i));
2667
2668 // Ignore set nodes, which are not SDNodes.
2669 if (N->getOperator()->getName() == "set") {
2670 isBitcast = IsNodeBitcast(N);
2671 return;
2672 }
2673
2674 // Notice properties of the node.
2675 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
2676 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
2677 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
2678 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
2679
2680 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2681 // If this is an intrinsic, analyze it.
2682 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
2683 mayLoad = true;// These may load memory.
2684
2685 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
2686 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2687
2688 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2689 // WriteMem intrinsics can have other strange effects.
2690 hasSideEffects = true;
2691 }
2692 }
2693
2694 };
2695
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)2696 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2697 const InstAnalyzer &PatInfo,
2698 Record *PatDef) {
2699 bool Error = false;
2700
2701 // Remember where InstInfo got its flags.
2702 if (InstInfo.hasUndefFlags())
2703 InstInfo.InferredFrom = PatDef;
2704
2705 // Check explicitly set flags for consistency.
2706 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2707 !InstInfo.hasSideEffects_Unset) {
2708 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2709 // the pattern has no side effects. That could be useful for div/rem
2710 // instructions that may trap.
2711 if (!InstInfo.hasSideEffects) {
2712 Error = true;
2713 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2714 Twine(InstInfo.hasSideEffects));
2715 }
2716 }
2717
2718 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2719 Error = true;
2720 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2721 Twine(InstInfo.mayStore));
2722 }
2723
2724 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2725 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2726 // Some targets translate imediates to loads.
2727 if (!InstInfo.mayLoad) {
2728 Error = true;
2729 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2730 Twine(InstInfo.mayLoad));
2731 }
2732 }
2733
2734 // Transfer inferred flags.
2735 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2736 InstInfo.mayStore |= PatInfo.mayStore;
2737 InstInfo.mayLoad |= PatInfo.mayLoad;
2738
2739 // These flags are silently added without any verification.
2740 InstInfo.isBitcast |= PatInfo.isBitcast;
2741
2742 // Don't infer isVariadic. This flag means something different on SDNodes and
2743 // instructions. For example, a CALL SDNode is variadic because it has the
2744 // call arguments as operands, but a CALL instruction is not variadic - it
2745 // has argument registers as implicit, not explicit uses.
2746
2747 return Error;
2748 }
2749
2750 /// hasNullFragReference - Return true if the DAG has any reference to the
2751 /// null_frag operator.
hasNullFragReference(DagInit * DI)2752 static bool hasNullFragReference(DagInit *DI) {
2753 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2754 if (!OpDef) return false;
2755 Record *Operator = OpDef->getDef();
2756
2757 // If this is the null fragment, return true.
2758 if (Operator->getName() == "null_frag") return true;
2759 // If any of the arguments reference the null fragment, return true.
2760 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2761 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2762 if (Arg && hasNullFragReference(Arg))
2763 return true;
2764 }
2765
2766 return false;
2767 }
2768
2769 /// hasNullFragReference - Return true if any DAG in the list references
2770 /// the null_frag operator.
hasNullFragReference(ListInit * LI)2771 static bool hasNullFragReference(ListInit *LI) {
2772 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
2773 DagInit *DI = dyn_cast<DagInit>(LI->getElement(i));
2774 assert(DI && "non-dag in an instruction Pattern list?!");
2775 if (hasNullFragReference(DI))
2776 return true;
2777 }
2778 return false;
2779 }
2780
2781 /// Get all the instructions in a tree.
2782 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)2783 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2784 if (Tree->isLeaf())
2785 return;
2786 if (Tree->getOperator()->isSubClassOf("Instruction"))
2787 Instrs.push_back(Tree->getOperator());
2788 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2789 getInstructionsInTree(Tree->getChild(i), Instrs);
2790 }
2791
2792 /// Check the class of a pattern leaf node against the instruction operand it
2793 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)2794 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2795 Record *Leaf) {
2796 if (OI.Rec == Leaf)
2797 return true;
2798
2799 // Allow direct value types to be used in instruction set patterns.
2800 // The type will be checked later.
2801 if (Leaf->isSubClassOf("ValueType"))
2802 return true;
2803
2804 // Patterns can also be ComplexPattern instances.
2805 if (Leaf->isSubClassOf("ComplexPattern"))
2806 return true;
2807
2808 return false;
2809 }
2810
parseInstructionPattern(CodeGenInstruction & CGI,ListInit * Pat,DAGInstMap & DAGInsts)2811 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
2812 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
2813
2814 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
2815
2816 // Parse the instruction.
2817 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
2818 // Inline pattern fragments into it.
2819 I->InlinePatternFragments();
2820
2821 // Infer as many types as possible. If we cannot infer all of them, we can
2822 // never do anything with this instruction pattern: report it to the user.
2823 if (!I->InferAllTypes())
2824 I->error("Could not infer all types in pattern!");
2825
2826 // InstInputs - Keep track of all of the inputs of the instruction, along
2827 // with the record they are declared as.
2828 std::map<std::string, TreePatternNode*> InstInputs;
2829
2830 // InstResults - Keep track of all the virtual registers that are 'set'
2831 // in the instruction, including what reg class they are.
2832 std::map<std::string, TreePatternNode*> InstResults;
2833
2834 std::vector<Record*> InstImpResults;
2835
2836 // Verify that the top-level forms in the instruction are of void type, and
2837 // fill in the InstResults map.
2838 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2839 TreePatternNode *Pat = I->getTree(j);
2840 if (Pat->getNumTypes() != 0)
2841 I->error("Top-level forms in instruction pattern should have"
2842 " void types");
2843
2844 // Find inputs and outputs, and verify the structure of the uses/defs.
2845 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2846 InstImpResults);
2847 }
2848
2849 // Now that we have inputs and outputs of the pattern, inspect the operands
2850 // list for the instruction. This determines the order that operands are
2851 // added to the machine instruction the node corresponds to.
2852 unsigned NumResults = InstResults.size();
2853
2854 // Parse the operands list from the (ops) list, validating it.
2855 assert(I->getArgList().empty() && "Args list should still be empty here!");
2856
2857 // Check that all of the results occur first in the list.
2858 std::vector<Record*> Results;
2859 TreePatternNode *Res0Node = nullptr;
2860 for (unsigned i = 0; i != NumResults; ++i) {
2861 if (i == CGI.Operands.size())
2862 I->error("'" + InstResults.begin()->first +
2863 "' set but does not appear in operand list!");
2864 const std::string &OpName = CGI.Operands[i].Name;
2865
2866 // Check that it exists in InstResults.
2867 TreePatternNode *RNode = InstResults[OpName];
2868 if (!RNode)
2869 I->error("Operand $" + OpName + " does not exist in operand list!");
2870
2871 if (i == 0)
2872 Res0Node = RNode;
2873 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
2874 if (!R)
2875 I->error("Operand $" + OpName + " should be a set destination: all "
2876 "outputs must occur before inputs in operand list!");
2877
2878 if (!checkOperandClass(CGI.Operands[i], R))
2879 I->error("Operand $" + OpName + " class mismatch!");
2880
2881 // Remember the return type.
2882 Results.push_back(CGI.Operands[i].Rec);
2883
2884 // Okay, this one checks out.
2885 InstResults.erase(OpName);
2886 }
2887
2888 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
2889 // the copy while we're checking the inputs.
2890 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
2891
2892 std::vector<TreePatternNode*> ResultNodeOperands;
2893 std::vector<Record*> Operands;
2894 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
2895 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
2896 const std::string &OpName = Op.Name;
2897 if (OpName.empty())
2898 I->error("Operand #" + utostr(i) + " in operands list has no name!");
2899
2900 if (!InstInputsCheck.count(OpName)) {
2901 // If this is an operand with a DefaultOps set filled in, we can ignore
2902 // this. When we codegen it, we will do so as always executed.
2903 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
2904 // Does it have a non-empty DefaultOps field? If so, ignore this
2905 // operand.
2906 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
2907 continue;
2908 }
2909 I->error("Operand $" + OpName +
2910 " does not appear in the instruction pattern");
2911 }
2912 TreePatternNode *InVal = InstInputsCheck[OpName];
2913 InstInputsCheck.erase(OpName); // It occurred, remove from map.
2914
2915 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
2916 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
2917 if (!checkOperandClass(Op, InRec))
2918 I->error("Operand $" + OpName + "'s register class disagrees"
2919 " between the operand and pattern");
2920 }
2921 Operands.push_back(Op.Rec);
2922
2923 // Construct the result for the dest-pattern operand list.
2924 TreePatternNode *OpNode = InVal->clone();
2925
2926 // No predicate is useful on the result.
2927 OpNode->clearPredicateFns();
2928
2929 // Promote the xform function to be an explicit node if set.
2930 if (Record *Xform = OpNode->getTransformFn()) {
2931 OpNode->setTransformFn(nullptr);
2932 std::vector<TreePatternNode*> Children;
2933 Children.push_back(OpNode);
2934 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
2935 }
2936
2937 ResultNodeOperands.push_back(OpNode);
2938 }
2939
2940 if (!InstInputsCheck.empty())
2941 I->error("Input operand $" + InstInputsCheck.begin()->first +
2942 " occurs in pattern but not in operands list!");
2943
2944 TreePatternNode *ResultPattern =
2945 new TreePatternNode(I->getRecord(), ResultNodeOperands,
2946 GetNumNodeResults(I->getRecord(), *this));
2947 // Copy fully inferred output node type to instruction result pattern.
2948 for (unsigned i = 0; i != NumResults; ++i)
2949 ResultPattern->setType(i, Res0Node->getExtType(i));
2950
2951 // Create and insert the instruction.
2952 // FIXME: InstImpResults should not be part of DAGInstruction.
2953 DAGInstruction TheInst(I, Results, Operands, InstImpResults);
2954 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
2955
2956 // Use a temporary tree pattern to infer all types and make sure that the
2957 // constructed result is correct. This depends on the instruction already
2958 // being inserted into the DAGInsts map.
2959 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
2960 Temp.InferAllTypes(&I->getNamedNodesMap());
2961
2962 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
2963 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
2964
2965 return TheInsertedInst;
2966 }
2967
2968 /// ParseInstructions - Parse all of the instructions, inlining and resolving
2969 /// any fragments involved. This populates the Instructions list with fully
2970 /// resolved instructions.
ParseInstructions()2971 void CodeGenDAGPatterns::ParseInstructions() {
2972 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
2973
2974 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
2975 ListInit *LI = nullptr;
2976
2977 if (isa<ListInit>(Instrs[i]->getValueInit("Pattern")))
2978 LI = Instrs[i]->getValueAsListInit("Pattern");
2979
2980 // If there is no pattern, only collect minimal information about the
2981 // instruction for its operand list. We have to assume that there is one
2982 // result, as we have no detailed info. A pattern which references the
2983 // null_frag operator is as-if no pattern were specified. Normally this
2984 // is from a multiclass expansion w/ a SDPatternOperator passed in as
2985 // null_frag.
2986 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
2987 std::vector<Record*> Results;
2988 std::vector<Record*> Operands;
2989
2990 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
2991
2992 if (InstInfo.Operands.size() != 0) {
2993 if (InstInfo.Operands.NumDefs == 0) {
2994 // These produce no results
2995 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
2996 Operands.push_back(InstInfo.Operands[j].Rec);
2997 } else {
2998 // Assume the first operand is the result.
2999 Results.push_back(InstInfo.Operands[0].Rec);
3000
3001 // The rest are inputs.
3002 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
3003 Operands.push_back(InstInfo.Operands[j].Rec);
3004 }
3005 }
3006
3007 // Create and insert the instruction.
3008 std::vector<Record*> ImpResults;
3009 Instructions.insert(std::make_pair(Instrs[i],
3010 DAGInstruction(nullptr, Results, Operands, ImpResults)));
3011 continue; // no pattern.
3012 }
3013
3014 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
3015 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3016
3017 (void)DI;
3018 DEBUG(DI.getPattern()->dump());
3019 }
3020
3021 // If we can, convert the instructions to be patterns that are matched!
3022 for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II =
3023 Instructions.begin(),
3024 E = Instructions.end(); II != E; ++II) {
3025 DAGInstruction &TheInst = II->second;
3026 TreePattern *I = TheInst.getPattern();
3027 if (!I) continue; // No pattern.
3028
3029 // FIXME: Assume only the first tree is the pattern. The others are clobber
3030 // nodes.
3031 TreePatternNode *Pattern = I->getTree(0);
3032 TreePatternNode *SrcPattern;
3033 if (Pattern->getOperator()->getName() == "set") {
3034 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3035 } else{
3036 // Not a set (store or something?)
3037 SrcPattern = Pattern;
3038 }
3039
3040 Record *Instr = II->first;
3041 AddPatternToMatch(I,
3042 PatternToMatch(Instr,
3043 Instr->getValueAsListInit("Predicates"),
3044 SrcPattern,
3045 TheInst.getResultPattern(),
3046 TheInst.getImpResults(),
3047 Instr->getValueAsInt("AddedComplexity"),
3048 Instr->getID()));
3049 }
3050 }
3051
3052
3053 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3054
FindNames(const TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)3055 static void FindNames(const TreePatternNode *P,
3056 std::map<std::string, NameRecord> &Names,
3057 TreePattern *PatternTop) {
3058 if (!P->getName().empty()) {
3059 NameRecord &Rec = Names[P->getName()];
3060 // If this is the first instance of the name, remember the node.
3061 if (Rec.second++ == 0)
3062 Rec.first = P;
3063 else if (Rec.first->getExtTypes() != P->getExtTypes())
3064 PatternTop->error("repetition of value: $" + P->getName() +
3065 " where different uses have different types!");
3066 }
3067
3068 if (!P->isLeaf()) {
3069 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3070 FindNames(P->getChild(i), Names, PatternTop);
3071 }
3072 }
3073
AddPatternToMatch(TreePattern * Pattern,const PatternToMatch & PTM)3074 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3075 const PatternToMatch &PTM) {
3076 // Do some sanity checking on the pattern we're about to match.
3077 std::string Reason;
3078 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3079 PrintWarning(Pattern->getRecord()->getLoc(),
3080 Twine("Pattern can never match: ") + Reason);
3081 return;
3082 }
3083
3084 // If the source pattern's root is a complex pattern, that complex pattern
3085 // must specify the nodes it can potentially match.
3086 if (const ComplexPattern *CP =
3087 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3088 if (CP->getRootNodes().empty())
3089 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3090 " could match");
3091
3092
3093 // Find all of the named values in the input and output, ensure they have the
3094 // same type.
3095 std::map<std::string, NameRecord> SrcNames, DstNames;
3096 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3097 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3098
3099 // Scan all of the named values in the destination pattern, rejecting them if
3100 // they don't exist in the input pattern.
3101 for (std::map<std::string, NameRecord>::iterator
3102 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
3103 if (SrcNames[I->first].first == nullptr)
3104 Pattern->error("Pattern has input without matching name in output: $" +
3105 I->first);
3106 }
3107
3108 // Scan all of the named values in the source pattern, rejecting them if the
3109 // name isn't used in the dest, and isn't used to tie two values together.
3110 for (std::map<std::string, NameRecord>::iterator
3111 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
3112 if (DstNames[I->first].first == nullptr && SrcNames[I->first].second == 1)
3113 Pattern->error("Pattern has dead named input: $" + I->first);
3114
3115 PatternsToMatch.push_back(PTM);
3116 }
3117
3118
3119
InferInstructionFlags()3120 void CodeGenDAGPatterns::InferInstructionFlags() {
3121 const std::vector<const CodeGenInstruction*> &Instructions =
3122 Target.getInstructionsByEnumValue();
3123
3124 // First try to infer flags from the primary instruction pattern, if any.
3125 SmallVector<CodeGenInstruction*, 8> Revisit;
3126 unsigned Errors = 0;
3127 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3128 CodeGenInstruction &InstInfo =
3129 const_cast<CodeGenInstruction &>(*Instructions[i]);
3130
3131 // Get the primary instruction pattern.
3132 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3133 if (!Pattern) {
3134 if (InstInfo.hasUndefFlags())
3135 Revisit.push_back(&InstInfo);
3136 continue;
3137 }
3138 InstAnalyzer PatInfo(*this);
3139 PatInfo.Analyze(Pattern);
3140 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3141 }
3142
3143 // Second, look for single-instruction patterns defined outside the
3144 // instruction.
3145 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3146 const PatternToMatch &PTM = *I;
3147
3148 // We can only infer from single-instruction patterns, otherwise we won't
3149 // know which instruction should get the flags.
3150 SmallVector<Record*, 8> PatInstrs;
3151 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3152 if (PatInstrs.size() != 1)
3153 continue;
3154
3155 // Get the single instruction.
3156 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3157
3158 // Only infer properties from the first pattern. We'll verify the others.
3159 if (InstInfo.InferredFrom)
3160 continue;
3161
3162 InstAnalyzer PatInfo(*this);
3163 PatInfo.Analyze(&PTM);
3164 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3165 }
3166
3167 if (Errors)
3168 PrintFatalError("pattern conflicts");
3169
3170 // Revisit instructions with undefined flags and no pattern.
3171 if (Target.guessInstructionProperties()) {
3172 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3173 CodeGenInstruction &InstInfo = *Revisit[i];
3174 if (InstInfo.InferredFrom)
3175 continue;
3176 // The mayLoad and mayStore flags default to false.
3177 // Conservatively assume hasSideEffects if it wasn't explicit.
3178 if (InstInfo.hasSideEffects_Unset)
3179 InstInfo.hasSideEffects = true;
3180 }
3181 return;
3182 }
3183
3184 // Complain about any flags that are still undefined.
3185 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
3186 CodeGenInstruction &InstInfo = *Revisit[i];
3187 if (InstInfo.InferredFrom)
3188 continue;
3189 if (InstInfo.hasSideEffects_Unset)
3190 PrintError(InstInfo.TheDef->getLoc(),
3191 "Can't infer hasSideEffects from patterns");
3192 if (InstInfo.mayStore_Unset)
3193 PrintError(InstInfo.TheDef->getLoc(),
3194 "Can't infer mayStore from patterns");
3195 if (InstInfo.mayLoad_Unset)
3196 PrintError(InstInfo.TheDef->getLoc(),
3197 "Can't infer mayLoad from patterns");
3198 }
3199 }
3200
3201
3202 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()3203 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3204 unsigned Errors = 0;
3205 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3206 const PatternToMatch &PTM = *I;
3207 SmallVector<Record*, 8> Instrs;
3208 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3209 if (Instrs.empty())
3210 continue;
3211
3212 // Count the number of instructions with each flag set.
3213 unsigned NumSideEffects = 0;
3214 unsigned NumStores = 0;
3215 unsigned NumLoads = 0;
3216 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3217 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3218 NumSideEffects += InstInfo.hasSideEffects;
3219 NumStores += InstInfo.mayStore;
3220 NumLoads += InstInfo.mayLoad;
3221 }
3222
3223 // Analyze the source pattern.
3224 InstAnalyzer PatInfo(*this);
3225 PatInfo.Analyze(&PTM);
3226
3227 // Collect error messages.
3228 SmallVector<std::string, 4> Msgs;
3229
3230 // Check for missing flags in the output.
3231 // Permit extra flags for now at least.
3232 if (PatInfo.hasSideEffects && !NumSideEffects)
3233 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3234
3235 // Don't verify store flags on instructions with side effects. At least for
3236 // intrinsics, side effects implies mayStore.
3237 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3238 Msgs.push_back("pattern may store, but mayStore isn't set");
3239
3240 // Similarly, mayStore implies mayLoad on intrinsics.
3241 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3242 Msgs.push_back("pattern may load, but mayLoad isn't set");
3243
3244 // Print error messages.
3245 if (Msgs.empty())
3246 continue;
3247 ++Errors;
3248
3249 for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
3250 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
3251 (Instrs.size() == 1 ?
3252 "instruction" : "output instructions"));
3253 // Provide the location of the relevant instruction definitions.
3254 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
3255 if (Instrs[i] != PTM.getSrcRecord())
3256 PrintError(Instrs[i]->getLoc(), "defined here");
3257 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
3258 if (InstInfo.InferredFrom &&
3259 InstInfo.InferredFrom != InstInfo.TheDef &&
3260 InstInfo.InferredFrom != PTM.getSrcRecord())
3261 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
3262 }
3263 }
3264 if (Errors)
3265 PrintFatalError("Errors in DAG patterns");
3266 }
3267
3268 /// Given a pattern result with an unresolved type, see if we can find one
3269 /// instruction with an unresolved result type. Force this result type to an
3270 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3271 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3272 if (N->isLeaf())
3273 return false;
3274
3275 // Analyze children.
3276 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3277 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3278 return true;
3279
3280 if (!N->getOperator()->isSubClassOf("Instruction"))
3281 return false;
3282
3283 // If this type is already concrete or completely unknown we can't do
3284 // anything.
3285 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3286 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3287 continue;
3288
3289 // Otherwise, force its type to the first possibility (an arbitrary choice).
3290 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3291 return true;
3292 }
3293
3294 return false;
3295 }
3296
ParsePatterns()3297 void CodeGenDAGPatterns::ParsePatterns() {
3298 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3299
3300 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
3301 Record *CurPattern = Patterns[i];
3302 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3303
3304 // If the pattern references the null_frag, there's nothing to do.
3305 if (hasNullFragReference(Tree))
3306 continue;
3307
3308 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3309
3310 // Inline pattern fragments into it.
3311 Pattern->InlinePatternFragments();
3312
3313 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3314 if (LI->getSize() == 0) continue; // no pattern.
3315
3316 // Parse the instruction.
3317 TreePattern Result(CurPattern, LI, false, *this);
3318
3319 // Inline pattern fragments into it.
3320 Result.InlinePatternFragments();
3321
3322 if (Result.getNumTrees() != 1)
3323 Result.error("Cannot handle instructions producing instructions "
3324 "with temporaries yet!");
3325
3326 bool IterateInference;
3327 bool InferredAllPatternTypes, InferredAllResultTypes;
3328 do {
3329 // Infer as many types as possible. If we cannot infer all of them, we
3330 // can never do anything with this pattern: report it to the user.
3331 InferredAllPatternTypes =
3332 Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3333
3334 // Infer as many types as possible. If we cannot infer all of them, we
3335 // can never do anything with this pattern: report it to the user.
3336 InferredAllResultTypes =
3337 Result.InferAllTypes(&Pattern->getNamedNodesMap());
3338
3339 IterateInference = false;
3340
3341 // Apply the type of the result to the source pattern. This helps us
3342 // resolve cases where the input type is known to be a pointer type (which
3343 // is considered resolved), but the result knows it needs to be 32- or
3344 // 64-bits. Infer the other way for good measure.
3345 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3346 Pattern->getTree(0)->getNumTypes());
3347 i != e; ++i) {
3348 IterateInference = Pattern->getTree(0)->UpdateNodeType(
3349 i, Result.getTree(0)->getExtType(i), Result);
3350 IterateInference |= Result.getTree(0)->UpdateNodeType(
3351 i, Pattern->getTree(0)->getExtType(i), Result);
3352 }
3353
3354 // If our iteration has converged and the input pattern's types are fully
3355 // resolved but the result pattern is not fully resolved, we may have a
3356 // situation where we have two instructions in the result pattern and
3357 // the instructions require a common register class, but don't care about
3358 // what actual MVT is used. This is actually a bug in our modelling:
3359 // output patterns should have register classes, not MVTs.
3360 //
3361 // In any case, to handle this, we just go through and disambiguate some
3362 // arbitrary types to the result pattern's nodes.
3363 if (!IterateInference && InferredAllPatternTypes &&
3364 !InferredAllResultTypes)
3365 IterateInference =
3366 ForceArbitraryInstResultType(Result.getTree(0), Result);
3367 } while (IterateInference);
3368
3369 // Verify that we inferred enough types that we can do something with the
3370 // pattern and result. If these fire the user has to add type casts.
3371 if (!InferredAllPatternTypes)
3372 Pattern->error("Could not infer all types in pattern!");
3373 if (!InferredAllResultTypes) {
3374 Pattern->dump();
3375 Result.error("Could not infer all types in pattern result!");
3376 }
3377
3378 // Validate that the input pattern is correct.
3379 std::map<std::string, TreePatternNode*> InstInputs;
3380 std::map<std::string, TreePatternNode*> InstResults;
3381 std::vector<Record*> InstImpResults;
3382 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3383 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3384 InstInputs, InstResults,
3385 InstImpResults);
3386
3387 // Promote the xform function to be an explicit node if set.
3388 TreePatternNode *DstPattern = Result.getOnlyTree();
3389 std::vector<TreePatternNode*> ResultNodeOperands;
3390 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3391 TreePatternNode *OpNode = DstPattern->getChild(ii);
3392 if (Record *Xform = OpNode->getTransformFn()) {
3393 OpNode->setTransformFn(nullptr);
3394 std::vector<TreePatternNode*> Children;
3395 Children.push_back(OpNode);
3396 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3397 }
3398 ResultNodeOperands.push_back(OpNode);
3399 }
3400 DstPattern = Result.getOnlyTree();
3401 if (!DstPattern->isLeaf())
3402 DstPattern = new TreePatternNode(DstPattern->getOperator(),
3403 ResultNodeOperands,
3404 DstPattern->getNumTypes());
3405
3406 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3407 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3408
3409 TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
3410 Temp.InferAllTypes();
3411
3412
3413 AddPatternToMatch(Pattern,
3414 PatternToMatch(CurPattern,
3415 CurPattern->getValueAsListInit("Predicates"),
3416 Pattern->getTree(0),
3417 Temp.getOnlyTree(), InstImpResults,
3418 CurPattern->getValueAsInt("AddedComplexity"),
3419 CurPattern->getID()));
3420 }
3421 }
3422
3423 /// CombineChildVariants - Given a bunch of permutations of each child of the
3424 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNode * Orig,const std::vector<std::vector<TreePatternNode * >> & ChildVariants,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3425 static void CombineChildVariants(TreePatternNode *Orig,
3426 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3427 std::vector<TreePatternNode*> &OutVariants,
3428 CodeGenDAGPatterns &CDP,
3429 const MultipleUseVarSet &DepVars) {
3430 // Make sure that each operand has at least one variant to choose from.
3431 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3432 if (ChildVariants[i].empty())
3433 return;
3434
3435 // The end result is an all-pairs construction of the resultant pattern.
3436 std::vector<unsigned> Idxs;
3437 Idxs.resize(ChildVariants.size());
3438 bool NotDone;
3439 do {
3440 #ifndef NDEBUG
3441 DEBUG(if (!Idxs.empty()) {
3442 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3443 for (unsigned i = 0; i < Idxs.size(); ++i) {
3444 errs() << Idxs[i] << " ";
3445 }
3446 errs() << "]\n";
3447 });
3448 #endif
3449 // Create the variant and add it to the output list.
3450 std::vector<TreePatternNode*> NewChildren;
3451 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3452 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3453 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
3454 Orig->getNumTypes());
3455
3456 // Copy over properties.
3457 R->setName(Orig->getName());
3458 R->setPredicateFns(Orig->getPredicateFns());
3459 R->setTransformFn(Orig->getTransformFn());
3460 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3461 R->setType(i, Orig->getExtType(i));
3462
3463 // If this pattern cannot match, do not include it as a variant.
3464 std::string ErrString;
3465 if (!R->canPatternMatch(ErrString, CDP)) {
3466 delete R;
3467 } else {
3468 bool AlreadyExists = false;
3469
3470 // Scan to see if this pattern has already been emitted. We can get
3471 // duplication due to things like commuting:
3472 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3473 // which are the same pattern. Ignore the dups.
3474 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
3475 if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
3476 AlreadyExists = true;
3477 break;
3478 }
3479
3480 if (AlreadyExists)
3481 delete R;
3482 else
3483 OutVariants.push_back(R);
3484 }
3485
3486 // Increment indices to the next permutation by incrementing the
3487 // indicies from last index backward, e.g., generate the sequence
3488 // [0, 0], [0, 1], [1, 0], [1, 1].
3489 int IdxsIdx;
3490 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3491 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3492 Idxs[IdxsIdx] = 0;
3493 else
3494 break;
3495 }
3496 NotDone = (IdxsIdx >= 0);
3497 } while (NotDone);
3498 }
3499
3500 /// CombineChildVariants - A helper function for binary operators.
3501 ///
CombineChildVariants(TreePatternNode * Orig,const std::vector<TreePatternNode * > & LHS,const std::vector<TreePatternNode * > & RHS,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3502 static void CombineChildVariants(TreePatternNode *Orig,
3503 const std::vector<TreePatternNode*> &LHS,
3504 const std::vector<TreePatternNode*> &RHS,
3505 std::vector<TreePatternNode*> &OutVariants,
3506 CodeGenDAGPatterns &CDP,
3507 const MultipleUseVarSet &DepVars) {
3508 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3509 ChildVariants.push_back(LHS);
3510 ChildVariants.push_back(RHS);
3511 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3512 }
3513
3514
GatherChildrenOfAssociativeOpcode(TreePatternNode * N,std::vector<TreePatternNode * > & Children)3515 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3516 std::vector<TreePatternNode *> &Children) {
3517 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3518 Record *Operator = N->getOperator();
3519
3520 // Only permit raw nodes.
3521 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3522 N->getTransformFn()) {
3523 Children.push_back(N);
3524 return;
3525 }
3526
3527 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3528 Children.push_back(N->getChild(0));
3529 else
3530 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3531
3532 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3533 Children.push_back(N->getChild(1));
3534 else
3535 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3536 }
3537
3538 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3539 /// the (potentially recursive) pattern by using algebraic laws.
3540 ///
GenerateVariantsOf(TreePatternNode * N,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3541 static void GenerateVariantsOf(TreePatternNode *N,
3542 std::vector<TreePatternNode*> &OutVariants,
3543 CodeGenDAGPatterns &CDP,
3544 const MultipleUseVarSet &DepVars) {
3545 // We cannot permute leaves or ComplexPattern uses.
3546 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
3547 OutVariants.push_back(N);
3548 return;
3549 }
3550
3551 // Look up interesting info about the node.
3552 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3553
3554 // If this node is associative, re-associate.
3555 if (NodeInfo.hasProperty(SDNPAssociative)) {
3556 // Re-associate by pulling together all of the linked operators
3557 std::vector<TreePatternNode*> MaximalChildren;
3558 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3559
3560 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3561 // permutations.
3562 if (MaximalChildren.size() == 3) {
3563 // Find the variants of all of our maximal children.
3564 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3565 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3566 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3567 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3568
3569 // There are only two ways we can permute the tree:
3570 // (A op B) op C and A op (B op C)
3571 // Within these forms, we can also permute A/B/C.
3572
3573 // Generate legal pair permutations of A/B/C.
3574 std::vector<TreePatternNode*> ABVariants;
3575 std::vector<TreePatternNode*> BAVariants;
3576 std::vector<TreePatternNode*> ACVariants;
3577 std::vector<TreePatternNode*> CAVariants;
3578 std::vector<TreePatternNode*> BCVariants;
3579 std::vector<TreePatternNode*> CBVariants;
3580 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3581 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3582 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3583 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3584 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3585 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3586
3587 // Combine those into the result: (x op x) op x
3588 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3589 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3590 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3591 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3592 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3593 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3594
3595 // Combine those into the result: x op (x op x)
3596 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3597 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3598 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3599 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3600 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3601 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3602 return;
3603 }
3604 }
3605
3606 // Compute permutations of all children.
3607 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3608 ChildVariants.resize(N->getNumChildren());
3609 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3610 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3611
3612 // Build all permutations based on how the children were formed.
3613 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3614
3615 // If this node is commutative, consider the commuted order.
3616 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3617 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3618 assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3619 "Commutative but doesn't have 2 children!");
3620 // Don't count children which are actually register references.
3621 unsigned NC = 0;
3622 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3623 TreePatternNode *Child = N->getChild(i);
3624 if (Child->isLeaf())
3625 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3626 Record *RR = DI->getDef();
3627 if (RR->isSubClassOf("Register"))
3628 continue;
3629 }
3630 NC++;
3631 }
3632 // Consider the commuted order.
3633 if (isCommIntrinsic) {
3634 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3635 // operands are the commutative operands, and there might be more operands
3636 // after those.
3637 assert(NC >= 3 &&
3638 "Commutative intrinsic should have at least 3 childrean!");
3639 std::vector<std::vector<TreePatternNode*> > Variants;
3640 Variants.push_back(ChildVariants[0]); // Intrinsic id.
3641 Variants.push_back(ChildVariants[2]);
3642 Variants.push_back(ChildVariants[1]);
3643 for (unsigned i = 3; i != NC; ++i)
3644 Variants.push_back(ChildVariants[i]);
3645 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3646 } else if (NC == 2)
3647 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3648 OutVariants, CDP, DepVars);
3649 }
3650 }
3651
3652
3653 // GenerateVariants - Generate variants. For example, commutative patterns can
3654 // match multiple ways. Add them to PatternsToMatch as well.
GenerateVariants()3655 void CodeGenDAGPatterns::GenerateVariants() {
3656 DEBUG(errs() << "Generating instruction variants.\n");
3657
3658 // Loop over all of the patterns we've collected, checking to see if we can
3659 // generate variants of the instruction, through the exploitation of
3660 // identities. This permits the target to provide aggressive matching without
3661 // the .td file having to contain tons of variants of instructions.
3662 //
3663 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3664 // intentionally do not reconsider these. Any variants of added patterns have
3665 // already been added.
3666 //
3667 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3668 MultipleUseVarSet DepVars;
3669 std::vector<TreePatternNode*> Variants;
3670 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3671 DEBUG(errs() << "Dependent/multiply used variables: ");
3672 DEBUG(DumpDepVars(DepVars));
3673 DEBUG(errs() << "\n");
3674 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3675 DepVars);
3676
3677 assert(!Variants.empty() && "Must create at least original variant!");
3678 Variants.erase(Variants.begin()); // Remove the original pattern.
3679
3680 if (Variants.empty()) // No variants for this pattern.
3681 continue;
3682
3683 DEBUG(errs() << "FOUND VARIANTS OF: ";
3684 PatternsToMatch[i].getSrcPattern()->dump();
3685 errs() << "\n");
3686
3687 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3688 TreePatternNode *Variant = Variants[v];
3689
3690 DEBUG(errs() << " VAR#" << v << ": ";
3691 Variant->dump();
3692 errs() << "\n");
3693
3694 // Scan to see if an instruction or explicit pattern already matches this.
3695 bool AlreadyExists = false;
3696 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3697 // Skip if the top level predicates do not match.
3698 if (PatternsToMatch[i].getPredicates() !=
3699 PatternsToMatch[p].getPredicates())
3700 continue;
3701 // Check to see if this variant already exists.
3702 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3703 DepVars)) {
3704 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
3705 AlreadyExists = true;
3706 break;
3707 }
3708 }
3709 // If we already have it, ignore the variant.
3710 if (AlreadyExists) continue;
3711
3712 // Otherwise, add it to the list of patterns we have.
3713 PatternsToMatch.
3714 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
3715 PatternsToMatch[i].getPredicates(),
3716 Variant, PatternsToMatch[i].getDstPattern(),
3717 PatternsToMatch[i].getDstRegs(),
3718 PatternsToMatch[i].getAddedComplexity(),
3719 Record::getNewUID()));
3720 }
3721
3722 DEBUG(errs() << "\n");
3723 }
3724 }
3725