xref: /llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_allocator_primary64.h (revision 9f96f1cb6f2c7a987de590cbb02780df15c60f18)
1 //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the Sanitizer Allocator.
10 //
11 //===----------------------------------------------------------------------===//
12 #ifndef SANITIZER_ALLOCATOR_H
13 #error This file must be included inside sanitizer_allocator.h
14 #endif
15 
16 template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
17 
18 // SizeClassAllocator64 -- allocator for 64-bit address space.
19 // The template parameter Params is a class containing the actual parameters.
20 //
21 // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
22 // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically by mmap.
23 // Otherwise SpaceBeg=kSpaceBeg (fixed address).
24 // kSpaceSize is a power of two.
25 // At the beginning the entire space is mprotect-ed, then small parts of it
26 // are mapped on demand.
27 //
28 // Region: a part of Space dedicated to a single size class.
29 // There are kNumClasses Regions of equal size.
30 //
31 // UserChunk: a piece of memory returned to user.
32 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
33 
34 // FreeArray is an array free-d chunks (stored as 4-byte offsets)
35 //
36 // A Region looks like this:
37 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
38 
39 struct SizeClassAllocator64FlagMasks {  //  Bit masks.
40   enum {
41     kRandomShuffleChunks = 1,
42   };
43 };
44 
45 template <typename Allocator>
46 class MemoryMapper {
47  public:
48   typedef typename Allocator::CompactPtrT CompactPtrT;
49 
50   explicit MemoryMapper(const Allocator &allocator) : allocator_(allocator) {}
51 
52   bool GetAndResetStats(uptr &ranges, uptr &bytes) {
53     ranges = released_ranges_count_;
54     released_ranges_count_ = 0;
55     bytes = released_bytes_;
56     released_bytes_ = 0;
57     return ranges != 0;
58   }
59 
60   u64 *MapPackedCounterArrayBuffer(uptr count) {
61     buffer_.clear();
62     buffer_.resize(count);
63     return buffer_.data();
64   }
65 
66   // Releases [from, to) range of pages back to OS.
67   void ReleasePageRangeToOS(uptr class_id, CompactPtrT from, CompactPtrT to) {
68     const uptr region_base = allocator_.GetRegionBeginBySizeClass(class_id);
69     const uptr from_page = allocator_.CompactPtrToPointer(region_base, from);
70     const uptr to_page = allocator_.CompactPtrToPointer(region_base, to);
71     ReleaseMemoryPagesToOS(from_page, to_page);
72     released_ranges_count_++;
73     released_bytes_ += to_page - from_page;
74   }
75 
76  private:
77   const Allocator &allocator_;
78   uptr released_ranges_count_ = 0;
79   uptr released_bytes_ = 0;
80   InternalMmapVector<u64> buffer_;
81 };
82 
83 template <class Params>
84 class SizeClassAllocator64 {
85  public:
86   using AddressSpaceView = typename Params::AddressSpaceView;
87   static const uptr kSpaceBeg = Params::kSpaceBeg;
88   static const uptr kSpaceSize = Params::kSpaceSize;
89   static const uptr kMetadataSize = Params::kMetadataSize;
90   typedef typename Params::SizeClassMap SizeClassMap;
91   typedef typename Params::MapUnmapCallback MapUnmapCallback;
92 
93   static const bool kRandomShuffleChunks =
94       Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
95 
96   typedef SizeClassAllocator64<Params> ThisT;
97   typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
98   typedef MemoryMapper<ThisT> MemoryMapperT;
99 
100   // When we know the size class (the region base) we can represent a pointer
101   // as a 4-byte integer (offset from the region start shifted right by 4).
102   typedef u32 CompactPtrT;
103   static const uptr kCompactPtrScale = 4;
104   CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
105     return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
106   }
107   uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
108     return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
109   }
110 
111   // If heap_start is nonzero, assumes kSpaceSize bytes are already mapped R/W
112   // at heap_start and places the heap there.  This mode requires kSpaceBeg ==
113   // ~(uptr)0.
114   void Init(s32 release_to_os_interval_ms, uptr heap_start = 0) {
115     uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
116     PremappedHeap = heap_start != 0;
117     if (PremappedHeap) {
118       CHECK(!kUsingConstantSpaceBeg);
119       NonConstSpaceBeg = heap_start;
120       uptr RegionInfoSize = AdditionalSize();
121       RegionInfoSpace =
122           address_range.Init(RegionInfoSize, PrimaryAllocatorName);
123       CHECK_NE(RegionInfoSpace, ~(uptr)0);
124       CHECK_EQ(RegionInfoSpace,
125                address_range.MapOrDie(RegionInfoSpace, RegionInfoSize,
126                                       "SizeClassAllocator: region info"));
127       MapUnmapCallback().OnMap(RegionInfoSpace, RegionInfoSize);
128     } else {
129       if (kUsingConstantSpaceBeg) {
130         CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize));
131         CHECK_EQ(kSpaceBeg,
132                  address_range.Init(TotalSpaceSize, PrimaryAllocatorName,
133                                     kSpaceBeg));
134       } else {
135         // Combined allocator expects that an 2^N allocation is always aligned
136         // to 2^N. For this to work, the start of the space needs to be aligned
137         // as high as the largest size class (which also needs to be a power of
138         // 2).
139         NonConstSpaceBeg = address_range.InitAligned(
140             TotalSpaceSize, SizeClassMap::kMaxSize, PrimaryAllocatorName);
141         CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
142       }
143       RegionInfoSpace = SpaceEnd();
144       MapWithCallbackOrDie(RegionInfoSpace, AdditionalSize(),
145                            "SizeClassAllocator: region info");
146     }
147     SetReleaseToOSIntervalMs(release_to_os_interval_ms);
148     // Check that the RegionInfo array is aligned on the CacheLine size.
149     DCHECK_EQ(RegionInfoSpace % kCacheLineSize, 0);
150   }
151 
152   s32 ReleaseToOSIntervalMs() const {
153     return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
154   }
155 
156   void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
157     atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
158                  memory_order_relaxed);
159   }
160 
161   void ForceReleaseToOS() {
162     MemoryMapperT memory_mapper(*this);
163     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
164       Lock l(&GetRegionInfo(class_id)->mutex);
165       MaybeReleaseToOS(&memory_mapper, class_id, true /*force*/);
166     }
167   }
168 
169   static bool CanAllocate(uptr size, uptr alignment) {
170     return size <= SizeClassMap::kMaxSize &&
171       alignment <= SizeClassMap::kMaxSize;
172   }
173 
174   NOINLINE void ReturnToAllocator(MemoryMapperT *memory_mapper,
175                                   AllocatorStats *stat, uptr class_id,
176                                   const CompactPtrT *chunks, uptr n_chunks) {
177     RegionInfo *region = GetRegionInfo(class_id);
178     uptr region_beg = GetRegionBeginBySizeClass(class_id);
179     CompactPtrT *free_array = GetFreeArray(region_beg);
180 
181     Lock l(&region->mutex);
182     uptr old_num_chunks = region->num_freed_chunks;
183     uptr new_num_freed_chunks = old_num_chunks + n_chunks;
184     // Failure to allocate free array space while releasing memory is non
185     // recoverable.
186     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
187                                        new_num_freed_chunks))) {
188       Report(
189           "FATAL: Internal error: %s's allocator exhausted the free list "
190           "space for size class %zu (%zu bytes).\n",
191           SanitizerToolName, class_id, ClassIdToSize(class_id));
192       Die();
193     }
194     for (uptr i = 0; i < n_chunks; i++)
195       free_array[old_num_chunks + i] = chunks[i];
196     region->num_freed_chunks = new_num_freed_chunks;
197     region->stats.n_freed += n_chunks;
198 
199     MaybeReleaseToOS(memory_mapper, class_id, false /*force*/);
200   }
201 
202   NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
203                                  CompactPtrT *chunks, uptr n_chunks) {
204     RegionInfo *region = GetRegionInfo(class_id);
205     uptr region_beg = GetRegionBeginBySizeClass(class_id);
206     CompactPtrT *free_array = GetFreeArray(region_beg);
207 
208     Lock l(&region->mutex);
209 #if SANITIZER_WINDOWS
210     /* On Windows unmapping of memory during __sanitizer_purge_allocator is
211     explicit and immediate, so unmapped regions must be explicitly mapped back
212     in when they are accessed again. */
213     if (region->rtoi.last_released_bytes > 0) {
214       MmapFixedOrDie(region_beg, region->mapped_user,
215                                       "SizeClassAllocator: region data");
216       region->rtoi.n_freed_at_last_release = 0;
217       region->rtoi.last_released_bytes = 0;
218     }
219 #endif
220     if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
221       if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
222                                       n_chunks - region->num_freed_chunks)))
223         return false;
224       CHECK_GE(region->num_freed_chunks, n_chunks);
225     }
226     region->num_freed_chunks -= n_chunks;
227     uptr base_idx = region->num_freed_chunks;
228     for (uptr i = 0; i < n_chunks; i++)
229       chunks[i] = free_array[base_idx + i];
230     region->stats.n_allocated += n_chunks;
231     return true;
232   }
233 
234   bool PointerIsMine(const void *p) const {
235     uptr P = reinterpret_cast<uptr>(p);
236     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
237       return P / kSpaceSize == kSpaceBeg / kSpaceSize;
238     return P >= SpaceBeg() && P < SpaceEnd();
239   }
240 
241   uptr GetRegionBegin(const void *p) {
242     if (kUsingConstantSpaceBeg)
243       return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
244     uptr space_beg = SpaceBeg();
245     return ((reinterpret_cast<uptr>(p)  - space_beg) & ~(kRegionSize - 1)) +
246         space_beg;
247   }
248 
249   uptr GetRegionBeginBySizeClass(uptr class_id) const {
250     return SpaceBeg() + kRegionSize * class_id;
251   }
252 
253   uptr GetSizeClass(const void *p) {
254     if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
255       return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
256     return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
257            kNumClassesRounded;
258   }
259 
260   void *GetBlockBegin(const void *p) {
261     uptr class_id = GetSizeClass(p);
262     if (class_id >= kNumClasses) return nullptr;
263     uptr size = ClassIdToSize(class_id);
264     if (!size) return nullptr;
265     uptr chunk_idx = GetChunkIdx((uptr)p, size);
266     uptr reg_beg = GetRegionBegin(p);
267     uptr beg = chunk_idx * size;
268     uptr next_beg = beg + size;
269     const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id));
270     if (region->mapped_user >= next_beg)
271       return reinterpret_cast<void*>(reg_beg + beg);
272     return nullptr;
273   }
274 
275   uptr GetActuallyAllocatedSize(void *p) {
276     CHECK(PointerIsMine(p));
277     return ClassIdToSize(GetSizeClass(p));
278   }
279 
280   static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
281 
282   void *GetMetaData(const void *p) {
283     CHECK(kMetadataSize);
284     uptr class_id = GetSizeClass(p);
285     uptr size = ClassIdToSize(class_id);
286     if (!size)
287       return nullptr;
288     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
289     uptr region_beg = GetRegionBeginBySizeClass(class_id);
290     return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
291                                     (1 + chunk_idx) * kMetadataSize);
292   }
293 
294   uptr TotalMemoryUsed() {
295     uptr res = 0;
296     for (uptr i = 0; i < kNumClasses; i++)
297       res += GetRegionInfo(i)->allocated_user;
298     return res;
299   }
300 
301   // Test-only.
302   void TestOnlyUnmap() {
303     UnmapWithCallbackOrDie((uptr)address_range.base(), address_range.size());
304   }
305 
306   static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats) {
307     for (uptr class_id = 0; class_id < kNumClasses; class_id++)
308       if (stats[class_id] == start)
309         stats[class_id] = rss;
310   }
311 
312   void PrintStats(uptr class_id, uptr rss) {
313     RegionInfo *region = GetRegionInfo(class_id);
314     if (region->mapped_user == 0) return;
315     uptr in_use = region->stats.n_allocated - region->stats.n_freed;
316     uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
317     Printf(
318         "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
319         "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
320         "last released: %6lldK region: %p\n",
321         region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
322         region->mapped_user >> 10, region->stats.n_allocated,
323         region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
324         rss >> 10, region->rtoi.num_releases,
325         region->rtoi.last_released_bytes >> 10,
326         (void *)(SpaceBeg() + kRegionSize * class_id));
327   }
328 
329   void PrintStats() {
330     uptr rss_stats[kNumClasses];
331     for (uptr class_id = 0; class_id < kNumClasses; class_id++)
332       rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
333     GetMemoryProfile(FillMemoryProfile, rss_stats);
334 
335     uptr total_mapped = 0;
336     uptr total_rss = 0;
337     uptr n_allocated = 0;
338     uptr n_freed = 0;
339     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
340       RegionInfo *region = GetRegionInfo(class_id);
341       if (region->mapped_user != 0) {
342         total_mapped += region->mapped_user;
343         total_rss += rss_stats[class_id];
344       }
345       n_allocated += region->stats.n_allocated;
346       n_freed += region->stats.n_freed;
347     }
348 
349     Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
350            "%zd allocations; remains %zd\n", total_mapped >> 20,
351            total_rss >> 20, n_allocated, n_allocated - n_freed);
352     for (uptr class_id = 1; class_id < kNumClasses; class_id++)
353       PrintStats(class_id, rss_stats[class_id]);
354   }
355 
356   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
357   // introspection API.
358   void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
359     for (uptr i = 0; i < kNumClasses; i++) {
360       GetRegionInfo(i)->mutex.Lock();
361     }
362   }
363 
364   void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
365     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
366       GetRegionInfo(i)->mutex.Unlock();
367     }
368   }
369 
370   // Iterate over all existing chunks.
371   // The allocator must be locked when calling this function.
372   void ForEachChunk(ForEachChunkCallback callback, void *arg) {
373     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
374       RegionInfo *region = GetRegionInfo(class_id);
375       uptr chunk_size = ClassIdToSize(class_id);
376       uptr region_beg = SpaceBeg() + class_id * kRegionSize;
377       uptr region_allocated_user_size =
378           AddressSpaceView::Load(region)->allocated_user;
379       for (uptr chunk = region_beg;
380            chunk < region_beg + region_allocated_user_size;
381            chunk += chunk_size) {
382         // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
383         callback(chunk, arg);
384       }
385     }
386   }
387 
388   static uptr ClassIdToSize(uptr class_id) {
389     return SizeClassMap::Size(class_id);
390   }
391 
392   static uptr AdditionalSize() {
393     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
394                      GetPageSizeCached());
395   }
396 
397   typedef SizeClassMap SizeClassMapT;
398   static const uptr kNumClasses = SizeClassMap::kNumClasses;
399   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
400 
401   // A packed array of counters. Each counter occupies 2^n bits, enough to store
402   // counter's max_value. Ctor will try to allocate the required buffer via
403   // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
404   // whether the initialization was successful by checking IsAllocated() result.
405   // For the performance sake, none of the accessors check the validity of the
406   // arguments, it is assumed that index is always in [0, n) range and the value
407   // is not incremented past max_value.
408   class PackedCounterArray {
409    public:
410     template <typename MemoryMapper>
411     PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapper *mapper)
412         : n(num_counters) {
413       CHECK_GT(num_counters, 0);
414       CHECK_GT(max_value, 0);
415       constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
416       // Rounding counter storage size up to the power of two allows for using
417       // bit shifts calculating particular counter's index and offset.
418       uptr counter_size_bits =
419           RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
420       CHECK_LE(counter_size_bits, kMaxCounterBits);
421       counter_size_bits_log = Log2(counter_size_bits);
422       counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
423 
424       uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
425       CHECK_GT(packing_ratio, 0);
426       packing_ratio_log = Log2(packing_ratio);
427       bit_offset_mask = packing_ratio - 1;
428 
429       buffer = mapper->MapPackedCounterArrayBuffer(
430           RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log);
431     }
432 
433     bool IsAllocated() const {
434       return !!buffer;
435     }
436 
437     u64 GetCount() const {
438       return n;
439     }
440 
441     uptr Get(uptr i) const {
442       DCHECK_LT(i, n);
443       uptr index = i >> packing_ratio_log;
444       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
445       return (buffer[index] >> bit_offset) & counter_mask;
446     }
447 
448     void Inc(uptr i) const {
449       DCHECK_LT(Get(i), counter_mask);
450       uptr index = i >> packing_ratio_log;
451       uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
452       buffer[index] += 1ULL << bit_offset;
453     }
454 
455     void IncRange(uptr from, uptr to) const {
456       DCHECK_LE(from, to);
457       for (uptr i = from; i <= to; i++)
458         Inc(i);
459     }
460 
461    private:
462     const u64 n;
463     u64 counter_size_bits_log;
464     u64 counter_mask;
465     u64 packing_ratio_log;
466     u64 bit_offset_mask;
467     u64* buffer;
468   };
469 
470   template <class MemoryMapperT>
471   class FreePagesRangeTracker {
472    public:
473     FreePagesRangeTracker(MemoryMapperT *mapper, uptr class_id)
474         : memory_mapper(mapper),
475           class_id(class_id),
476           page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)) {}
477 
478     void NextPage(bool freed) {
479       if (freed) {
480         if (!in_the_range) {
481           current_range_start_page = current_page;
482           in_the_range = true;
483         }
484       } else {
485         CloseOpenedRange();
486       }
487       current_page++;
488     }
489 
490     void Done() {
491       CloseOpenedRange();
492     }
493 
494    private:
495     void CloseOpenedRange() {
496       if (in_the_range) {
497         memory_mapper->ReleasePageRangeToOS(
498             class_id, current_range_start_page << page_size_scaled_log,
499             current_page << page_size_scaled_log);
500         in_the_range = false;
501       }
502     }
503 
504     MemoryMapperT *const memory_mapper = nullptr;
505     const uptr class_id = 0;
506     const uptr page_size_scaled_log = 0;
507     bool in_the_range = false;
508     uptr current_page = 0;
509     uptr current_range_start_page = 0;
510   };
511 
512   // Iterates over the free_array to identify memory pages containing freed
513   // chunks only and returns these pages back to OS.
514   // allocated_pages_count is the total number of pages allocated for the
515   // current bucket.
516   template <typename MemoryMapper>
517   static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
518                                     uptr free_array_count, uptr chunk_size,
519                                     uptr allocated_pages_count,
520                                     MemoryMapper *memory_mapper,
521                                     uptr class_id) {
522     const uptr page_size = GetPageSizeCached();
523 
524     // Figure out the number of chunks per page and whether we can take a fast
525     // path (the number of chunks per page is the same for all pages).
526     uptr full_pages_chunk_count_max;
527     bool same_chunk_count_per_page;
528     if (chunk_size <= page_size && page_size % chunk_size == 0) {
529       // Same number of chunks per page, no cross overs.
530       full_pages_chunk_count_max = page_size / chunk_size;
531       same_chunk_count_per_page = true;
532     } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
533         chunk_size % (page_size % chunk_size) == 0) {
534       // Some chunks are crossing page boundaries, which means that the page
535       // contains one or two partial chunks, but all pages contain the same
536       // number of chunks.
537       full_pages_chunk_count_max = page_size / chunk_size + 1;
538       same_chunk_count_per_page = true;
539     } else if (chunk_size <= page_size) {
540       // Some chunks are crossing page boundaries, which means that the page
541       // contains one or two partial chunks.
542       full_pages_chunk_count_max = page_size / chunk_size + 2;
543       same_chunk_count_per_page = false;
544     } else if (chunk_size > page_size && chunk_size % page_size == 0) {
545       // One chunk covers multiple pages, no cross overs.
546       full_pages_chunk_count_max = 1;
547       same_chunk_count_per_page = true;
548     } else if (chunk_size > page_size) {
549       // One chunk covers multiple pages, Some chunks are crossing page
550       // boundaries. Some pages contain one chunk, some contain two.
551       full_pages_chunk_count_max = 2;
552       same_chunk_count_per_page = false;
553     } else {
554       UNREACHABLE("All chunk_size/page_size ratios must be handled.");
555     }
556 
557     PackedCounterArray counters(allocated_pages_count,
558                                 full_pages_chunk_count_max, memory_mapper);
559     if (!counters.IsAllocated())
560       return;
561 
562     const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
563     const uptr page_size_scaled = page_size >> kCompactPtrScale;
564     const uptr page_size_scaled_log = Log2(page_size_scaled);
565 
566     // Iterate over free chunks and count how many free chunks affect each
567     // allocated page.
568     if (chunk_size <= page_size && page_size % chunk_size == 0) {
569       // Each chunk affects one page only.
570       for (uptr i = 0; i < free_array_count; i++)
571         counters.Inc(free_array[i] >> page_size_scaled_log);
572     } else {
573       // In all other cases chunks might affect more than one page.
574       for (uptr i = 0; i < free_array_count; i++) {
575         counters.IncRange(
576             free_array[i] >> page_size_scaled_log,
577             (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
578       }
579     }
580 
581     // Iterate over pages detecting ranges of pages with chunk counters equal
582     // to the expected number of chunks for the particular page.
583     FreePagesRangeTracker<MemoryMapper> range_tracker(memory_mapper, class_id);
584     if (same_chunk_count_per_page) {
585       // Fast path, every page has the same number of chunks affecting it.
586       for (uptr i = 0; i < counters.GetCount(); i++)
587         range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
588     } else {
589       // Show path, go through the pages keeping count how many chunks affect
590       // each page.
591       const uptr pn =
592           chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
593       const uptr pnc = pn * chunk_size_scaled;
594       // The idea is to increment the current page pointer by the first chunk
595       // size, middle portion size (the portion of the page covered by chunks
596       // except the first and the last one) and then the last chunk size, adding
597       // up the number of chunks on the current page and checking on every step
598       // whether the page boundary was crossed.
599       uptr prev_page_boundary = 0;
600       uptr current_boundary = 0;
601       for (uptr i = 0; i < counters.GetCount(); i++) {
602         uptr page_boundary = prev_page_boundary + page_size_scaled;
603         uptr chunks_per_page = pn;
604         if (current_boundary < page_boundary) {
605           if (current_boundary > prev_page_boundary)
606             chunks_per_page++;
607           current_boundary += pnc;
608           if (current_boundary < page_boundary) {
609             chunks_per_page++;
610             current_boundary += chunk_size_scaled;
611           }
612         }
613         prev_page_boundary = page_boundary;
614 
615         range_tracker.NextPage(counters.Get(i) == chunks_per_page);
616       }
617     }
618     range_tracker.Done();
619   }
620 
621  private:
622   friend class MemoryMapper<ThisT>;
623 
624   ReservedAddressRange address_range;
625 
626   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
627   // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
628   // In the worst case it may require kRegionSize/SizeClassMap::kMinSize
629   // elements, but in reality this will not happen. For simplicity we
630   // dedicate 1/8 of the region's virtual space to FreeArray.
631   static const uptr kFreeArraySize = kRegionSize / 8;
632 
633   static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
634   uptr NonConstSpaceBeg;
635   uptr SpaceBeg() const {
636     return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
637   }
638   uptr SpaceEnd() const { return  SpaceBeg() + kSpaceSize; }
639   // kRegionSize should be able to satisfy the largest size class.
640   static_assert(kRegionSize >= SizeClassMap::kMaxSize,
641                 "Region size exceed largest size");
642   // kRegionSize must be <= 2^36, see CompactPtrT.
643   COMPILER_CHECK((kRegionSize) <=
644                  (1ULL << (sizeof(CompactPtrT) * 8 + kCompactPtrScale)));
645   // Call mmap for user memory with at least this size.
646   static const uptr kUserMapSize = 1 << 18;
647   // Call mmap for metadata memory with at least this size.
648   static const uptr kMetaMapSize = 1 << 16;
649   // Call mmap for free array memory with at least this size.
650   static const uptr kFreeArrayMapSize = 1 << 18;
651 
652   atomic_sint32_t release_to_os_interval_ms_;
653 
654   uptr RegionInfoSpace;
655 
656   // True if the user has already mapped the entire heap R/W.
657   bool PremappedHeap;
658 
659   struct Stats {
660     uptr n_allocated;
661     uptr n_freed;
662   };
663 
664   struct ReleaseToOsInfo {
665     uptr n_freed_at_last_release;
666     uptr num_releases;
667     u64 last_release_at_ns;
668     u64 last_released_bytes;
669   };
670 
671   struct alignas(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
672     Mutex mutex;
673     uptr num_freed_chunks;  // Number of elements in the freearray.
674     uptr mapped_free_array;  // Bytes mapped for freearray.
675     uptr allocated_user;  // Bytes allocated for user memory.
676     uptr allocated_meta;  // Bytes allocated for metadata.
677     uptr mapped_user;  // Bytes mapped for user memory.
678     uptr mapped_meta;  // Bytes mapped for metadata.
679     u32 rand_state;  // Seed for random shuffle, used if kRandomShuffleChunks.
680     bool exhausted;  // Whether region is out of space for new chunks.
681     Stats stats;
682     ReleaseToOsInfo rtoi;
683   };
684   COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
685 
686   RegionInfo *GetRegionInfo(uptr class_id) const {
687     DCHECK_LT(class_id, kNumClasses);
688     RegionInfo *regions = reinterpret_cast<RegionInfo *>(RegionInfoSpace);
689     return &regions[class_id];
690   }
691 
692   uptr GetMetadataEnd(uptr region_beg) const {
693     return region_beg + kRegionSize - kFreeArraySize;
694   }
695 
696   uptr GetChunkIdx(uptr chunk, uptr size) const {
697     if (!kUsingConstantSpaceBeg)
698       chunk -= SpaceBeg();
699 
700     uptr offset = chunk % kRegionSize;
701     // Here we divide by a non-constant. This is costly.
702     // size always fits into 32-bits. If the offset fits too, use 32-bit div.
703     if (offset >> (SANITIZER_WORDSIZE / 2))
704       return offset / size;
705     return (u32)offset / (u32)size;
706   }
707 
708   CompactPtrT *GetFreeArray(uptr region_beg) const {
709     return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
710   }
711 
712   bool MapWithCallback(uptr beg, uptr size, const char *name) {
713     if (PremappedHeap)
714       return beg >= NonConstSpaceBeg &&
715              beg + size <= NonConstSpaceBeg + kSpaceSize;
716     uptr mapped = address_range.Map(beg, size, name);
717     if (UNLIKELY(!mapped))
718       return false;
719     CHECK_EQ(beg, mapped);
720     MapUnmapCallback().OnMap(beg, size);
721     return true;
722   }
723 
724   void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) {
725     if (PremappedHeap) {
726       CHECK_GE(beg, NonConstSpaceBeg);
727       CHECK_LE(beg + size, NonConstSpaceBeg + kSpaceSize);
728       return;
729     }
730     CHECK_EQ(beg, address_range.MapOrDie(beg, size, name));
731     MapUnmapCallback().OnMap(beg, size);
732   }
733 
734   void UnmapWithCallbackOrDie(uptr beg, uptr size) {
735     if (PremappedHeap)
736       return;
737     MapUnmapCallback().OnUnmap(beg, size);
738     address_range.Unmap(beg, size);
739   }
740 
741   bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
742                             uptr num_freed_chunks) {
743     uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
744     if (region->mapped_free_array < needed_space) {
745       uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
746       CHECK_LE(new_mapped_free_array, kFreeArraySize);
747       uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
748                              region->mapped_free_array;
749       uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
750       if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size,
751                                     "SizeClassAllocator: freearray")))
752         return false;
753       region->mapped_free_array = new_mapped_free_array;
754     }
755     return true;
756   }
757 
758   // Check whether this size class is exhausted.
759   bool IsRegionExhausted(RegionInfo *region, uptr class_id,
760                          uptr additional_map_size) {
761     if (LIKELY(region->mapped_user + region->mapped_meta +
762                additional_map_size <= kRegionSize - kFreeArraySize))
763       return false;
764     if (!region->exhausted) {
765       region->exhausted = true;
766       Printf("%s: Out of memory. ", SanitizerToolName);
767       Printf(
768           "The process has exhausted %zu MB for size class %zu (%zu bytes).\n",
769           kRegionSize >> 20, class_id, ClassIdToSize(class_id));
770     }
771     return true;
772   }
773 
774   NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
775                                   RegionInfo *region, uptr requested_count) {
776     // region->mutex is held.
777     const uptr region_beg = GetRegionBeginBySizeClass(class_id);
778     const uptr size = ClassIdToSize(class_id);
779 
780     const uptr total_user_bytes =
781         region->allocated_user + requested_count * size;
782     // Map more space for chunks, if necessary.
783     if (LIKELY(total_user_bytes > region->mapped_user)) {
784       if (UNLIKELY(region->mapped_user == 0)) {
785         if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
786           // The random state is initialized from ASLR.
787           region->rand_state = static_cast<u32>(region_beg >> 12);
788         // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
789         // preventing just allocated memory from being released sooner than
790         // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
791         // for short lived processes.
792         // Do it only when the feature is turned on, to avoid a potentially
793         // extraneous syscall.
794         if (ReleaseToOSIntervalMs() >= 0)
795           region->rtoi.last_release_at_ns = MonotonicNanoTime();
796       }
797       // Do the mmap for the user memory.
798       const uptr user_map_size =
799           RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
800       if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
801         return false;
802       if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
803                                     user_map_size,
804                                     "SizeClassAllocator: region data")))
805         return false;
806       stat->Add(AllocatorStatMapped, user_map_size);
807       region->mapped_user += user_map_size;
808     }
809     const uptr new_chunks_count =
810         (region->mapped_user - region->allocated_user) / size;
811 
812     if (kMetadataSize) {
813       // Calculate the required space for metadata.
814       const uptr total_meta_bytes =
815           region->allocated_meta + new_chunks_count * kMetadataSize;
816       const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
817           RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
818       // Map more space for metadata, if necessary.
819       if (meta_map_size) {
820         if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
821           return false;
822         if (UNLIKELY(!MapWithCallback(
823             GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
824             meta_map_size, "SizeClassAllocator: region metadata")))
825           return false;
826         region->mapped_meta += meta_map_size;
827       }
828     }
829 
830     // If necessary, allocate more space for the free array and populate it with
831     // newly allocated chunks.
832     const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
833     if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
834       return false;
835     CompactPtrT *free_array = GetFreeArray(region_beg);
836     for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
837          i++, chunk += size)
838       free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
839     if (kRandomShuffleChunks)
840       RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
841                     &region->rand_state);
842 
843     // All necessary memory is mapped and now it is safe to advance all
844     // 'allocated_*' counters.
845     region->num_freed_chunks += new_chunks_count;
846     region->allocated_user += new_chunks_count * size;
847     CHECK_LE(region->allocated_user, region->mapped_user);
848     region->allocated_meta += new_chunks_count * kMetadataSize;
849     CHECK_LE(region->allocated_meta, region->mapped_meta);
850     region->exhausted = false;
851 
852     // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
853     // MaybeReleaseToOS from releasing just allocated pages or protect these
854     // not yet used chunks some other way.
855 
856     return true;
857   }
858 
859   // Attempts to release RAM occupied by freed chunks back to OS. The region is
860   // expected to be locked.
861   //
862   // TODO(morehouse): Support a callback on memory release so HWASan can release
863   // aliases as well.
864   void MaybeReleaseToOS(MemoryMapperT *memory_mapper, uptr class_id,
865                         bool force) {
866     RegionInfo *region = GetRegionInfo(class_id);
867     const uptr chunk_size = ClassIdToSize(class_id);
868     const uptr page_size = GetPageSizeCached();
869 
870     uptr n = region->num_freed_chunks;
871     if (n * chunk_size < page_size)
872       return;  // No chance to release anything.
873     if ((region->stats.n_freed -
874          region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
875       return;  // Nothing new to release.
876     }
877 
878     if (!force) {
879       s32 interval_ms = ReleaseToOSIntervalMs();
880       if (interval_ms < 0)
881         return;
882 
883       if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
884           MonotonicNanoTime()) {
885         return;  // Memory was returned recently.
886       }
887     }
888 
889     ReleaseFreeMemoryToOS(
890         GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
891         RoundUpTo(region->allocated_user, page_size) / page_size, memory_mapper,
892         class_id);
893 
894     uptr ranges, bytes;
895     if (memory_mapper->GetAndResetStats(ranges, bytes)) {
896       region->rtoi.n_freed_at_last_release = region->stats.n_freed;
897       region->rtoi.num_releases += ranges;
898       region->rtoi.last_released_bytes = bytes;
899     }
900     region->rtoi.last_release_at_ns = MonotonicNanoTime();
901   }
902 };
903