1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/IR/LLVMContext.h"
17 #include "llvm/ProfileData/InstrProfReader.h"
18 #include "llvm/ProfileData/InstrProfWriter.h"
19 #include "llvm/ProfileData/ProfileCommon.h"
20 #include "llvm/ProfileData/SampleProfReader.h"
21 #include "llvm/ProfileData/SampleProfWriter.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/Errc.h"
24 #include "llvm/Support/FileSystem.h"
25 #include "llvm/Support/Format.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include "llvm/Support/InitLLVM.h"
28 #include "llvm/Support/MemoryBuffer.h"
29 #include "llvm/Support/Path.h"
30 #include "llvm/Support/ThreadPool.h"
31 #include "llvm/Support/Threading.h"
32 #include "llvm/Support/WithColor.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35
36 using namespace llvm;
37
38 enum ProfileFormat {
39 PF_None = 0,
40 PF_Text,
41 PF_Compact_Binary,
42 PF_Ext_Binary,
43 PF_GCC,
44 PF_Binary
45 };
46
warn(Twine Message,std::string Whence="",std::string Hint="")47 static void warn(Twine Message, std::string Whence = "",
48 std::string Hint = "") {
49 WithColor::warning();
50 if (!Whence.empty())
51 errs() << Whence << ": ";
52 errs() << Message << "\n";
53 if (!Hint.empty())
54 WithColor::note() << Hint << "\n";
55 }
56
warn(Error E,StringRef Whence="")57 static void warn(Error E, StringRef Whence = "") {
58 if (E.isA<InstrProfError>()) {
59 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
60 warn(IPE.message(), std::string(Whence), std::string(""));
61 });
62 }
63 }
64
exitWithError(Twine Message,std::string Whence="",std::string Hint="")65 static void exitWithError(Twine Message, std::string Whence = "",
66 std::string Hint = "") {
67 WithColor::error();
68 if (!Whence.empty())
69 errs() << Whence << ": ";
70 errs() << Message << "\n";
71 if (!Hint.empty())
72 WithColor::note() << Hint << "\n";
73 ::exit(1);
74 }
75
exitWithError(Error E,StringRef Whence="")76 static void exitWithError(Error E, StringRef Whence = "") {
77 if (E.isA<InstrProfError>()) {
78 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
79 instrprof_error instrError = IPE.get();
80 StringRef Hint = "";
81 if (instrError == instrprof_error::unrecognized_format) {
82 // Hint for common error of forgetting --sample for sample profiles.
83 Hint = "Perhaps you forgot to use the --sample option?";
84 }
85 exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
86 });
87 }
88
89 exitWithError(toString(std::move(E)), std::string(Whence));
90 }
91
exitWithErrorCode(std::error_code EC,StringRef Whence="")92 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
93 exitWithError(EC.message(), std::string(Whence));
94 }
95
96 namespace {
97 enum ProfileKinds { instr, sample };
98 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
99 }
100
warnOrExitGivenError(FailureMode FailMode,std::error_code EC,StringRef Whence="")101 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
102 StringRef Whence = "") {
103 if (FailMode == failIfAnyAreInvalid)
104 exitWithErrorCode(EC, Whence);
105 else
106 warn(EC.message(), std::string(Whence));
107 }
108
handleMergeWriterError(Error E,StringRef WhenceFile="",StringRef WhenceFunction="",bool ShowHint=true)109 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
110 StringRef WhenceFunction = "",
111 bool ShowHint = true) {
112 if (!WhenceFile.empty())
113 errs() << WhenceFile << ": ";
114 if (!WhenceFunction.empty())
115 errs() << WhenceFunction << ": ";
116
117 auto IPE = instrprof_error::success;
118 E = handleErrors(std::move(E),
119 [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
120 IPE = E->get();
121 return Error(std::move(E));
122 });
123 errs() << toString(std::move(E)) << "\n";
124
125 if (ShowHint) {
126 StringRef Hint = "";
127 if (IPE != instrprof_error::success) {
128 switch (IPE) {
129 case instrprof_error::hash_mismatch:
130 case instrprof_error::count_mismatch:
131 case instrprof_error::value_site_count_mismatch:
132 Hint = "Make sure that all profile data to be merged is generated "
133 "from the same binary.";
134 break;
135 default:
136 break;
137 }
138 }
139
140 if (!Hint.empty())
141 errs() << Hint << "\n";
142 }
143 }
144
145 namespace {
146 /// A remapper from original symbol names to new symbol names based on a file
147 /// containing a list of mappings from old name to new name.
148 class SymbolRemapper {
149 std::unique_ptr<MemoryBuffer> File;
150 DenseMap<StringRef, StringRef> RemappingTable;
151
152 public:
153 /// Build a SymbolRemapper from a file containing a list of old/new symbols.
create(StringRef InputFile)154 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
155 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
156 if (!BufOrError)
157 exitWithErrorCode(BufOrError.getError(), InputFile);
158
159 auto Remapper = std::make_unique<SymbolRemapper>();
160 Remapper->File = std::move(BufOrError.get());
161
162 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
163 !LineIt.is_at_eof(); ++LineIt) {
164 std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
165 if (Parts.first.empty() || Parts.second.empty() ||
166 Parts.second.count(' ')) {
167 exitWithError("unexpected line in remapping file",
168 (InputFile + ":" + Twine(LineIt.line_number())).str(),
169 "expected 'old_symbol new_symbol'");
170 }
171 Remapper->RemappingTable.insert(Parts);
172 }
173 return Remapper;
174 }
175
176 /// Attempt to map the given old symbol into a new symbol.
177 ///
178 /// \return The new symbol, or \p Name if no such symbol was found.
operator ()(StringRef Name)179 StringRef operator()(StringRef Name) {
180 StringRef New = RemappingTable.lookup(Name);
181 return New.empty() ? Name : New;
182 }
183 };
184 }
185
186 struct WeightedFile {
187 std::string Filename;
188 uint64_t Weight;
189 };
190 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
191
192 /// Keep track of merged data and reported errors.
193 struct WriterContext {
194 std::mutex Lock;
195 InstrProfWriter Writer;
196 std::vector<std::pair<Error, std::string>> Errors;
197 std::mutex &ErrLock;
198 SmallSet<instrprof_error, 4> &WriterErrorCodes;
199
WriterContextWriterContext200 WriterContext(bool IsSparse, std::mutex &ErrLock,
201 SmallSet<instrprof_error, 4> &WriterErrorCodes)
202 : Lock(), Writer(IsSparse), Errors(), ErrLock(ErrLock),
203 WriterErrorCodes(WriterErrorCodes) {}
204 };
205
206 /// Computer the overlap b/w profile BaseFilename and TestFileName,
207 /// and store the program level result to Overlap.
overlapInput(const std::string & BaseFilename,const std::string & TestFilename,WriterContext * WC,OverlapStats & Overlap,const OverlapFuncFilters & FuncFilter,raw_fd_ostream & OS,bool IsCS)208 static void overlapInput(const std::string &BaseFilename,
209 const std::string &TestFilename, WriterContext *WC,
210 OverlapStats &Overlap,
211 const OverlapFuncFilters &FuncFilter,
212 raw_fd_ostream &OS, bool IsCS) {
213 auto ReaderOrErr = InstrProfReader::create(TestFilename);
214 if (Error E = ReaderOrErr.takeError()) {
215 // Skip the empty profiles by returning sliently.
216 instrprof_error IPE = InstrProfError::take(std::move(E));
217 if (IPE != instrprof_error::empty_raw_profile)
218 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
219 return;
220 }
221
222 auto Reader = std::move(ReaderOrErr.get());
223 for (auto &I : *Reader) {
224 OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
225 FuncOverlap.setFuncInfo(I.Name, I.Hash);
226
227 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
228 FuncOverlap.dump(OS);
229 }
230 }
231
232 /// Load an input into a writer context.
loadInput(const WeightedFile & Input,SymbolRemapper * Remapper,WriterContext * WC)233 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
234 WriterContext *WC) {
235 std::unique_lock<std::mutex> CtxGuard{WC->Lock};
236
237 // Copy the filename, because llvm::ThreadPool copied the input "const
238 // WeightedFile &" by value, making a reference to the filename within it
239 // invalid outside of this packaged task.
240 std::string Filename = Input.Filename;
241
242 auto ReaderOrErr = InstrProfReader::create(Input.Filename);
243 if (Error E = ReaderOrErr.takeError()) {
244 // Skip the empty profiles by returning sliently.
245 instrprof_error IPE = InstrProfError::take(std::move(E));
246 if (IPE != instrprof_error::empty_raw_profile)
247 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
248 return;
249 }
250
251 auto Reader = std::move(ReaderOrErr.get());
252 bool IsIRProfile = Reader->isIRLevelProfile();
253 bool HasCSIRProfile = Reader->hasCSIRLevelProfile();
254 if (Error E = WC->Writer.setIsIRLevelProfile(IsIRProfile, HasCSIRProfile)) {
255 consumeError(std::move(E));
256 WC->Errors.emplace_back(
257 make_error<StringError>(
258 "Merge IR generated profile with Clang generated profile.",
259 std::error_code()),
260 Filename);
261 return;
262 }
263 WC->Writer.setInstrEntryBBEnabled(Reader->instrEntryBBEnabled());
264
265 for (auto &I : *Reader) {
266 if (Remapper)
267 I.Name = (*Remapper)(I.Name);
268 const StringRef FuncName = I.Name;
269 bool Reported = false;
270 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
271 if (Reported) {
272 consumeError(std::move(E));
273 return;
274 }
275 Reported = true;
276 // Only show hint the first time an error occurs.
277 instrprof_error IPE = InstrProfError::take(std::move(E));
278 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
279 bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
280 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
281 FuncName, firstTime);
282 });
283 }
284 if (Reader->hasError())
285 if (Error E = Reader->getError())
286 WC->Errors.emplace_back(std::move(E), Filename);
287 }
288
289 /// Merge the \p Src writer context into \p Dst.
mergeWriterContexts(WriterContext * Dst,WriterContext * Src)290 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
291 for (auto &ErrorPair : Src->Errors)
292 Dst->Errors.push_back(std::move(ErrorPair));
293 Src->Errors.clear();
294
295 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
296 instrprof_error IPE = InstrProfError::take(std::move(E));
297 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
298 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
299 if (firstTime)
300 warn(toString(make_error<InstrProfError>(IPE)));
301 });
302 }
303
writeInstrProfile(StringRef OutputFilename,ProfileFormat OutputFormat,InstrProfWriter & Writer)304 static void writeInstrProfile(StringRef OutputFilename,
305 ProfileFormat OutputFormat,
306 InstrProfWriter &Writer) {
307 std::error_code EC;
308 raw_fd_ostream Output(OutputFilename.data(), EC,
309 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
310 : sys::fs::OF_None);
311 if (EC)
312 exitWithErrorCode(EC, OutputFilename);
313
314 if (OutputFormat == PF_Text) {
315 if (Error E = Writer.writeText(Output))
316 warn(std::move(E));
317 } else {
318 if (Error E = Writer.write(Output))
319 warn(std::move(E));
320 }
321 }
322
mergeInstrProfile(const WeightedFileVector & Inputs,SymbolRemapper * Remapper,StringRef OutputFilename,ProfileFormat OutputFormat,bool OutputSparse,unsigned NumThreads,FailureMode FailMode)323 static void mergeInstrProfile(const WeightedFileVector &Inputs,
324 SymbolRemapper *Remapper,
325 StringRef OutputFilename,
326 ProfileFormat OutputFormat, bool OutputSparse,
327 unsigned NumThreads, FailureMode FailMode) {
328 if (OutputFilename.compare("-") == 0)
329 exitWithError("Cannot write indexed profdata format to stdout.");
330
331 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
332 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
333 exitWithError("Unknown format is specified.");
334
335 std::mutex ErrorLock;
336 SmallSet<instrprof_error, 4> WriterErrorCodes;
337
338 // If NumThreads is not specified, auto-detect a good default.
339 if (NumThreads == 0)
340 NumThreads = std::min(hardware_concurrency().compute_thread_count(),
341 unsigned((Inputs.size() + 1) / 2));
342 // FIXME: There's a bug here, where setting NumThreads = Inputs.size() fails
343 // the merge_empty_profile.test because the InstrProfWriter.ProfileKind isn't
344 // merged, thus the emitted file ends up with a PF_Unknown kind.
345
346 // Initialize the writer contexts.
347 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
348 for (unsigned I = 0; I < NumThreads; ++I)
349 Contexts.emplace_back(std::make_unique<WriterContext>(
350 OutputSparse, ErrorLock, WriterErrorCodes));
351
352 if (NumThreads == 1) {
353 for (const auto &Input : Inputs)
354 loadInput(Input, Remapper, Contexts[0].get());
355 } else {
356 ThreadPool Pool(hardware_concurrency(NumThreads));
357
358 // Load the inputs in parallel (N/NumThreads serial steps).
359 unsigned Ctx = 0;
360 for (const auto &Input : Inputs) {
361 Pool.async(loadInput, Input, Remapper, Contexts[Ctx].get());
362 Ctx = (Ctx + 1) % NumThreads;
363 }
364 Pool.wait();
365
366 // Merge the writer contexts together (~ lg(NumThreads) serial steps).
367 unsigned Mid = Contexts.size() / 2;
368 unsigned End = Contexts.size();
369 assert(Mid > 0 && "Expected more than one context");
370 do {
371 for (unsigned I = 0; I < Mid; ++I)
372 Pool.async(mergeWriterContexts, Contexts[I].get(),
373 Contexts[I + Mid].get());
374 Pool.wait();
375 if (End & 1) {
376 Pool.async(mergeWriterContexts, Contexts[0].get(),
377 Contexts[End - 1].get());
378 Pool.wait();
379 }
380 End = Mid;
381 Mid /= 2;
382 } while (Mid > 0);
383 }
384
385 // Handle deferred errors encountered during merging. If the number of errors
386 // is equal to the number of inputs the merge failed.
387 unsigned NumErrors = 0;
388 for (std::unique_ptr<WriterContext> &WC : Contexts) {
389 for (auto &ErrorPair : WC->Errors) {
390 ++NumErrors;
391 warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
392 }
393 }
394 if (NumErrors == Inputs.size() ||
395 (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
396 exitWithError("No profiles could be merged.");
397
398 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
399 }
400
401 /// The profile entry for a function in instrumentation profile.
402 struct InstrProfileEntry {
403 uint64_t MaxCount = 0;
404 float ZeroCounterRatio = 0.0;
405 InstrProfRecord *ProfRecord;
406 InstrProfileEntry(InstrProfRecord *Record);
407 InstrProfileEntry() = default;
408 };
409
InstrProfileEntry(InstrProfRecord * Record)410 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
411 ProfRecord = Record;
412 uint64_t CntNum = Record->Counts.size();
413 uint64_t ZeroCntNum = 0;
414 for (size_t I = 0; I < CntNum; ++I) {
415 MaxCount = std::max(MaxCount, Record->Counts[I]);
416 ZeroCntNum += !Record->Counts[I];
417 }
418 ZeroCounterRatio = (float)ZeroCntNum / CntNum;
419 }
420
421 /// Either set all the counters in the instr profile entry \p IFE to -1
422 /// in order to drop the profile or scale up the counters in \p IFP to
423 /// be above hot threshold. We use the ratio of zero counters in the
424 /// profile of a function to decide the profile is helpful or harmful
425 /// for performance, and to choose whether to scale up or drop it.
updateInstrProfileEntry(InstrProfileEntry & IFE,uint64_t HotInstrThreshold,float ZeroCounterThreshold)426 static void updateInstrProfileEntry(InstrProfileEntry &IFE,
427 uint64_t HotInstrThreshold,
428 float ZeroCounterThreshold) {
429 InstrProfRecord *ProfRecord = IFE.ProfRecord;
430 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
431 // If all or most of the counters of the function are zero, the
432 // profile is unaccountable and shuld be dropped. Reset all the
433 // counters to be -1 and PGO profile-use will drop the profile.
434 // All counters being -1 also implies that the function is hot so
435 // PGO profile-use will also set the entry count metadata to be
436 // above hot threshold.
437 for (size_t I = 0; I < ProfRecord->Counts.size(); ++I)
438 ProfRecord->Counts[I] = -1;
439 return;
440 }
441
442 // Scale up the MaxCount to be multiple times above hot threshold.
443 const unsigned MultiplyFactor = 3;
444 uint64_t Numerator = HotInstrThreshold * MultiplyFactor;
445 uint64_t Denominator = IFE.MaxCount;
446 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
447 warn(toString(make_error<InstrProfError>(E)));
448 });
449 }
450
451 const uint64_t ColdPercentileIdx = 15;
452 const uint64_t HotPercentileIdx = 11;
453
454 /// Adjust the instr profile in \p WC based on the sample profile in
455 /// \p Reader.
456 static void
adjustInstrProfile(std::unique_ptr<WriterContext> & WC,std::unique_ptr<sampleprof::SampleProfileReader> & Reader,unsigned SupplMinSizeThreshold,float ZeroCounterThreshold,unsigned InstrProfColdThreshold)457 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
458 std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
459 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
460 unsigned InstrProfColdThreshold) {
461 // Function to its entry in instr profile.
462 StringMap<InstrProfileEntry> InstrProfileMap;
463 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
464 for (auto &PD : WC->Writer.getProfileData()) {
465 // Populate IPBuilder.
466 for (const auto &PDV : PD.getValue()) {
467 InstrProfRecord Record = PDV.second;
468 IPBuilder.addRecord(Record);
469 }
470
471 // If a function has multiple entries in instr profile, skip it.
472 if (PD.getValue().size() != 1)
473 continue;
474
475 // Initialize InstrProfileMap.
476 InstrProfRecord *R = &PD.getValue().begin()->second;
477 InstrProfileMap[PD.getKey()] = InstrProfileEntry(R);
478 }
479
480 ProfileSummary InstrPS = *IPBuilder.getSummary();
481 ProfileSummary SamplePS = Reader->getSummary();
482
483 // Compute cold thresholds for instr profile and sample profile.
484 uint64_t ColdSampleThreshold =
485 ProfileSummaryBuilder::getEntryForPercentile(
486 SamplePS.getDetailedSummary(),
487 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
488 .MinCount;
489 uint64_t HotInstrThreshold =
490 ProfileSummaryBuilder::getEntryForPercentile(
491 InstrPS.getDetailedSummary(),
492 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
493 .MinCount;
494 uint64_t ColdInstrThreshold =
495 InstrProfColdThreshold
496 ? InstrProfColdThreshold
497 : ProfileSummaryBuilder::getEntryForPercentile(
498 InstrPS.getDetailedSummary(),
499 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
500 .MinCount;
501
502 // Find hot/warm functions in sample profile which is cold in instr profile
503 // and adjust the profiles of those functions in the instr profile.
504 for (const auto &PD : Reader->getProfiles()) {
505 StringRef FName = PD.getKey();
506 const sampleprof::FunctionSamples &FS = PD.getValue();
507 auto It = InstrProfileMap.find(FName);
508 if (FS.getHeadSamples() > ColdSampleThreshold &&
509 It != InstrProfileMap.end() &&
510 It->second.MaxCount <= ColdInstrThreshold &&
511 FS.getBodySamples().size() >= SupplMinSizeThreshold) {
512 updateInstrProfileEntry(It->second, HotInstrThreshold,
513 ZeroCounterThreshold);
514 }
515 }
516 }
517
518 /// The main function to supplement instr profile with sample profile.
519 /// \Inputs contains the instr profile. \p SampleFilename specifies the
520 /// sample profile. \p OutputFilename specifies the output profile name.
521 /// \p OutputFormat specifies the output profile format. \p OutputSparse
522 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
523 /// specifies the minimal size for the functions whose profile will be
524 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
525 /// a function contains too many zero counters and whether its profile
526 /// should be dropped. \p InstrProfColdThreshold is the user specified
527 /// cold threshold which will override the cold threshold got from the
528 /// instr profile summary.
supplementInstrProfile(const WeightedFileVector & Inputs,StringRef SampleFilename,StringRef OutputFilename,ProfileFormat OutputFormat,bool OutputSparse,unsigned SupplMinSizeThreshold,float ZeroCounterThreshold,unsigned InstrProfColdThreshold)529 static void supplementInstrProfile(
530 const WeightedFileVector &Inputs, StringRef SampleFilename,
531 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
532 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
533 unsigned InstrProfColdThreshold) {
534 if (OutputFilename.compare("-") == 0)
535 exitWithError("Cannot write indexed profdata format to stdout.");
536 if (Inputs.size() != 1)
537 exitWithError("Expect one input to be an instr profile.");
538 if (Inputs[0].Weight != 1)
539 exitWithError("Expect instr profile doesn't have weight.");
540
541 StringRef InstrFilename = Inputs[0].Filename;
542
543 // Read sample profile.
544 LLVMContext Context;
545 auto ReaderOrErr =
546 sampleprof::SampleProfileReader::create(SampleFilename.str(), Context);
547 if (std::error_code EC = ReaderOrErr.getError())
548 exitWithErrorCode(EC, SampleFilename);
549 auto Reader = std::move(ReaderOrErr.get());
550 if (std::error_code EC = Reader->read())
551 exitWithErrorCode(EC, SampleFilename);
552
553 // Read instr profile.
554 std::mutex ErrorLock;
555 SmallSet<instrprof_error, 4> WriterErrorCodes;
556 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
557 WriterErrorCodes);
558 loadInput(Inputs[0], nullptr, WC.get());
559 if (WC->Errors.size() > 0)
560 exitWithError(std::move(WC->Errors[0].first), InstrFilename);
561
562 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
563 InstrProfColdThreshold);
564 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
565 }
566
567 /// Make a copy of the given function samples with all symbol names remapped
568 /// by the provided symbol remapper.
569 static sampleprof::FunctionSamples
remapSamples(const sampleprof::FunctionSamples & Samples,SymbolRemapper & Remapper,sampleprof_error & Error)570 remapSamples(const sampleprof::FunctionSamples &Samples,
571 SymbolRemapper &Remapper, sampleprof_error &Error) {
572 sampleprof::FunctionSamples Result;
573 Result.setName(Remapper(Samples.getName()));
574 Result.addTotalSamples(Samples.getTotalSamples());
575 Result.addHeadSamples(Samples.getHeadSamples());
576 for (const auto &BodySample : Samples.getBodySamples()) {
577 Result.addBodySamples(BodySample.first.LineOffset,
578 BodySample.first.Discriminator,
579 BodySample.second.getSamples());
580 for (const auto &Target : BodySample.second.getCallTargets()) {
581 Result.addCalledTargetSamples(BodySample.first.LineOffset,
582 BodySample.first.Discriminator,
583 Remapper(Target.first()), Target.second);
584 }
585 }
586 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
587 sampleprof::FunctionSamplesMap &Target =
588 Result.functionSamplesAt(CallsiteSamples.first);
589 for (const auto &Callsite : CallsiteSamples.second) {
590 sampleprof::FunctionSamples Remapped =
591 remapSamples(Callsite.second, Remapper, Error);
592 MergeResult(Error,
593 Target[std::string(Remapped.getName())].merge(Remapped));
594 }
595 }
596 return Result;
597 }
598
599 static sampleprof::SampleProfileFormat FormatMap[] = {
600 sampleprof::SPF_None,
601 sampleprof::SPF_Text,
602 sampleprof::SPF_Compact_Binary,
603 sampleprof::SPF_Ext_Binary,
604 sampleprof::SPF_GCC,
605 sampleprof::SPF_Binary};
606
607 static std::unique_ptr<MemoryBuffer>
getInputFileBuf(const StringRef & InputFile)608 getInputFileBuf(const StringRef &InputFile) {
609 if (InputFile == "")
610 return {};
611
612 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
613 if (!BufOrError)
614 exitWithErrorCode(BufOrError.getError(), InputFile);
615
616 return std::move(*BufOrError);
617 }
618
populateProfileSymbolList(MemoryBuffer * Buffer,sampleprof::ProfileSymbolList & PSL)619 static void populateProfileSymbolList(MemoryBuffer *Buffer,
620 sampleprof::ProfileSymbolList &PSL) {
621 if (!Buffer)
622 return;
623
624 SmallVector<StringRef, 32> SymbolVec;
625 StringRef Data = Buffer->getBuffer();
626 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
627
628 for (StringRef symbol : SymbolVec)
629 PSL.add(symbol);
630 }
631
handleExtBinaryWriter(sampleprof::SampleProfileWriter & Writer,ProfileFormat OutputFormat,MemoryBuffer * Buffer,sampleprof::ProfileSymbolList & WriterList,bool CompressAllSections,bool UseMD5,bool GenPartialProfile)632 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
633 ProfileFormat OutputFormat,
634 MemoryBuffer *Buffer,
635 sampleprof::ProfileSymbolList &WriterList,
636 bool CompressAllSections, bool UseMD5,
637 bool GenPartialProfile) {
638 populateProfileSymbolList(Buffer, WriterList);
639 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
640 warn("Profile Symbol list is not empty but the output format is not "
641 "ExtBinary format. The list will be lost in the output. ");
642
643 Writer.setProfileSymbolList(&WriterList);
644
645 if (CompressAllSections) {
646 if (OutputFormat != PF_Ext_Binary)
647 warn("-compress-all-section is ignored. Specify -extbinary to enable it");
648 else
649 Writer.setToCompressAllSections();
650 }
651 if (UseMD5) {
652 if (OutputFormat != PF_Ext_Binary)
653 warn("-use-md5 is ignored. Specify -extbinary to enable it");
654 else
655 Writer.setUseMD5();
656 }
657 if (GenPartialProfile) {
658 if (OutputFormat != PF_Ext_Binary)
659 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
660 else
661 Writer.setPartialProfile();
662 }
663 }
664
665 static void
mergeSampleProfile(const WeightedFileVector & Inputs,SymbolRemapper * Remapper,StringRef OutputFilename,ProfileFormat OutputFormat,StringRef ProfileSymbolListFile,bool CompressAllSections,bool UseMD5,bool GenPartialProfile,bool SampleMergeColdContext,bool SampleTrimColdContext,FailureMode FailMode)666 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
667 StringRef OutputFilename, ProfileFormat OutputFormat,
668 StringRef ProfileSymbolListFile, bool CompressAllSections,
669 bool UseMD5, bool GenPartialProfile,
670 bool SampleMergeColdContext, bool SampleTrimColdContext,
671 FailureMode FailMode) {
672 using namespace sampleprof;
673 StringMap<FunctionSamples> ProfileMap;
674 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
675 LLVMContext Context;
676 sampleprof::ProfileSymbolList WriterList;
677 Optional<bool> ProfileIsProbeBased;
678 Optional<bool> ProfileIsCS;
679 for (const auto &Input : Inputs) {
680 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context);
681 if (std::error_code EC = ReaderOrErr.getError()) {
682 warnOrExitGivenError(FailMode, EC, Input.Filename);
683 continue;
684 }
685
686 // We need to keep the readers around until after all the files are
687 // read so that we do not lose the function names stored in each
688 // reader's memory. The function names are needed to write out the
689 // merged profile map.
690 Readers.push_back(std::move(ReaderOrErr.get()));
691 const auto Reader = Readers.back().get();
692 if (std::error_code EC = Reader->read()) {
693 warnOrExitGivenError(FailMode, EC, Input.Filename);
694 Readers.pop_back();
695 continue;
696 }
697
698 StringMap<FunctionSamples> &Profiles = Reader->getProfiles();
699 if (ProfileIsProbeBased.hasValue() &&
700 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
701 exitWithError(
702 "cannot merge probe-based profile with non-probe-based profile");
703 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
704 if (ProfileIsCS.hasValue() && ProfileIsCS != FunctionSamples::ProfileIsCS)
705 exitWithError("cannot merge CS profile with non-CS profile");
706 ProfileIsCS = FunctionSamples::ProfileIsCS;
707 for (StringMap<FunctionSamples>::iterator I = Profiles.begin(),
708 E = Profiles.end();
709 I != E; ++I) {
710 sampleprof_error Result = sampleprof_error::success;
711 FunctionSamples Remapped =
712 Remapper ? remapSamples(I->second, *Remapper, Result)
713 : FunctionSamples();
714 FunctionSamples &Samples = Remapper ? Remapped : I->second;
715 StringRef FName = Samples.getNameWithContext();
716 MergeResult(Result, ProfileMap[FName].merge(Samples, Input.Weight));
717 if (Result != sampleprof_error::success) {
718 std::error_code EC = make_error_code(Result);
719 handleMergeWriterError(errorCodeToError(EC), Input.Filename, FName);
720 }
721 }
722
723 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
724 Reader->getProfileSymbolList();
725 if (ReaderList)
726 WriterList.merge(*ReaderList);
727 }
728
729 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
730 // Use threshold calculated from profile summary unless specified.
731 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
732 auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
733 uint64_t SampleProfColdThreshold =
734 ProfileSummaryBuilder::getColdCountThreshold(
735 (Summary->getDetailedSummary()));
736
737 // Trim and merge cold context profile using cold threshold above;
738 SampleContextTrimmer(ProfileMap)
739 .trimAndMergeColdContextProfiles(SampleProfColdThreshold,
740 SampleTrimColdContext,
741 SampleMergeColdContext);
742 }
743
744 auto WriterOrErr =
745 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
746 if (std::error_code EC = WriterOrErr.getError())
747 exitWithErrorCode(EC, OutputFilename);
748
749 auto Writer = std::move(WriterOrErr.get());
750 // WriterList will have StringRef refering to string in Buffer.
751 // Make sure Buffer lives as long as WriterList.
752 auto Buffer = getInputFileBuf(ProfileSymbolListFile);
753 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
754 CompressAllSections, UseMD5, GenPartialProfile);
755 if (std::error_code EC = Writer->write(ProfileMap))
756 exitWithErrorCode(std::move(EC));
757 }
758
parseWeightedFile(const StringRef & WeightedFilename)759 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
760 StringRef WeightStr, FileName;
761 std::tie(WeightStr, FileName) = WeightedFilename.split(',');
762
763 uint64_t Weight;
764 if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
765 exitWithError("Input weight must be a positive integer.");
766
767 return {std::string(FileName), Weight};
768 }
769
addWeightedInput(WeightedFileVector & WNI,const WeightedFile & WF)770 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
771 StringRef Filename = WF.Filename;
772 uint64_t Weight = WF.Weight;
773
774 // If it's STDIN just pass it on.
775 if (Filename == "-") {
776 WNI.push_back({std::string(Filename), Weight});
777 return;
778 }
779
780 llvm::sys::fs::file_status Status;
781 llvm::sys::fs::status(Filename, Status);
782 if (!llvm::sys::fs::exists(Status))
783 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
784 Filename);
785 // If it's a source file, collect it.
786 if (llvm::sys::fs::is_regular_file(Status)) {
787 WNI.push_back({std::string(Filename), Weight});
788 return;
789 }
790
791 if (llvm::sys::fs::is_directory(Status)) {
792 std::error_code EC;
793 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
794 F != E && !EC; F.increment(EC)) {
795 if (llvm::sys::fs::is_regular_file(F->path())) {
796 addWeightedInput(WNI, {F->path(), Weight});
797 }
798 }
799 if (EC)
800 exitWithErrorCode(EC, Filename);
801 }
802 }
803
parseInputFilenamesFile(MemoryBuffer * Buffer,WeightedFileVector & WFV)804 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
805 WeightedFileVector &WFV) {
806 if (!Buffer)
807 return;
808
809 SmallVector<StringRef, 8> Entries;
810 StringRef Data = Buffer->getBuffer();
811 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
812 for (const StringRef &FileWeightEntry : Entries) {
813 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
814 // Skip comments.
815 if (SanitizedEntry.startswith("#"))
816 continue;
817 // If there's no comma, it's an unweighted profile.
818 else if (SanitizedEntry.find(',') == StringRef::npos)
819 addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
820 else
821 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
822 }
823 }
824
merge_main(int argc,const char * argv[])825 static int merge_main(int argc, const char *argv[]) {
826 cl::list<std::string> InputFilenames(cl::Positional,
827 cl::desc("<filename...>"));
828 cl::list<std::string> WeightedInputFilenames("weighted-input",
829 cl::desc("<weight>,<filename>"));
830 cl::opt<std::string> InputFilenamesFile(
831 "input-files", cl::init(""),
832 cl::desc("Path to file containing newline-separated "
833 "[<weight>,]<filename> entries"));
834 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
835 cl::aliasopt(InputFilenamesFile));
836 cl::opt<bool> DumpInputFileList(
837 "dump-input-file-list", cl::init(false), cl::Hidden,
838 cl::desc("Dump the list of input files and their weights, then exit"));
839 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
840 cl::desc("Symbol remapping file"));
841 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
842 cl::aliasopt(RemappingFile));
843 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
844 cl::init("-"), cl::Required,
845 cl::desc("Output file"));
846 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
847 cl::aliasopt(OutputFilename));
848 cl::opt<ProfileKinds> ProfileKind(
849 cl::desc("Profile kind:"), cl::init(instr),
850 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
851 clEnumVal(sample, "Sample profile")));
852 cl::opt<ProfileFormat> OutputFormat(
853 cl::desc("Format of output profile"), cl::init(PF_Binary),
854 cl::values(
855 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
856 clEnumValN(PF_Compact_Binary, "compbinary",
857 "Compact binary encoding"),
858 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
859 clEnumValN(PF_Text, "text", "Text encoding"),
860 clEnumValN(PF_GCC, "gcc",
861 "GCC encoding (only meaningful for -sample)")));
862 cl::opt<FailureMode> FailureMode(
863 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
864 cl::values(clEnumValN(failIfAnyAreInvalid, "any",
865 "Fail if any profile is invalid."),
866 clEnumValN(failIfAllAreInvalid, "all",
867 "Fail only if all profiles are invalid.")));
868 cl::opt<bool> OutputSparse("sparse", cl::init(false),
869 cl::desc("Generate a sparse profile (only meaningful for -instr)"));
870 cl::opt<unsigned> NumThreads(
871 "num-threads", cl::init(0),
872 cl::desc("Number of merge threads to use (default: autodetect)"));
873 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
874 cl::aliasopt(NumThreads));
875 cl::opt<std::string> ProfileSymbolListFile(
876 "prof-sym-list", cl::init(""),
877 cl::desc("Path to file containing the list of function symbols "
878 "used to populate profile symbol list"));
879 cl::opt<bool> CompressAllSections(
880 "compress-all-sections", cl::init(false), cl::Hidden,
881 cl::desc("Compress all sections when writing the profile (only "
882 "meaningful for -extbinary)"));
883 cl::opt<bool> UseMD5(
884 "use-md5", cl::init(false), cl::Hidden,
885 cl::desc("Choose to use MD5 to represent string in name table (only "
886 "meaningful for -extbinary)"));
887 cl::opt<bool> SampleMergeColdContext(
888 "sample-merge-cold-context", cl::init(false), cl::Hidden,
889 cl::desc(
890 "Merge context sample profiles whose count is below cold threshold"));
891 cl::opt<bool> SampleTrimColdContext(
892 "sample-trim-cold-context", cl::init(false), cl::Hidden,
893 cl::desc(
894 "Trim context sample profiles whose count is below cold threshold"));
895 cl::opt<bool> GenPartialProfile(
896 "gen-partial-profile", cl::init(false), cl::Hidden,
897 cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
898 cl::opt<std::string> SupplInstrWithSample(
899 "supplement-instr-with-sample", cl::init(""), cl::Hidden,
900 cl::desc("Supplement an instr profile with sample profile, to correct "
901 "the profile unrepresentativeness issue. The sample "
902 "profile is the input of the flag. Output will be in instr "
903 "format (The flag only works with -instr)"));
904 cl::opt<float> ZeroCounterThreshold(
905 "zero-counter-threshold", cl::init(0.7), cl::Hidden,
906 cl::desc("For the function which is cold in instr profile but hot in "
907 "sample profile, if the ratio of the number of zero counters "
908 "divided by the the total number of counters is above the "
909 "threshold, the profile of the function will be regarded as "
910 "being harmful for performance and will be dropped. "));
911 cl::opt<unsigned> SupplMinSizeThreshold(
912 "suppl-min-size-threshold", cl::init(10), cl::Hidden,
913 cl::desc("If the size of a function is smaller than the threshold, "
914 "assume it can be inlined by PGO early inliner and it won't "
915 "be adjusted based on sample profile. "));
916 cl::opt<unsigned> InstrProfColdThreshold(
917 "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
918 cl::desc("User specified cold threshold for instr profile which will "
919 "override the cold threshold got from profile summary. "));
920
921 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
922
923 WeightedFileVector WeightedInputs;
924 for (StringRef Filename : InputFilenames)
925 addWeightedInput(WeightedInputs, {std::string(Filename), 1});
926 for (StringRef WeightedFilename : WeightedInputFilenames)
927 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
928
929 // Make sure that the file buffer stays alive for the duration of the
930 // weighted input vector's lifetime.
931 auto Buffer = getInputFileBuf(InputFilenamesFile);
932 parseInputFilenamesFile(Buffer.get(), WeightedInputs);
933
934 if (WeightedInputs.empty())
935 exitWithError("No input files specified. See " +
936 sys::path::filename(argv[0]) + " -help");
937
938 if (DumpInputFileList) {
939 for (auto &WF : WeightedInputs)
940 outs() << WF.Weight << "," << WF.Filename << "\n";
941 return 0;
942 }
943
944 std::unique_ptr<SymbolRemapper> Remapper;
945 if (!RemappingFile.empty())
946 Remapper = SymbolRemapper::create(RemappingFile);
947
948 if (!SupplInstrWithSample.empty()) {
949 if (ProfileKind != instr)
950 exitWithError(
951 "-supplement-instr-with-sample can only work with -instr. ");
952
953 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
954 OutputFormat, OutputSparse, SupplMinSizeThreshold,
955 ZeroCounterThreshold, InstrProfColdThreshold);
956 return 0;
957 }
958
959 if (ProfileKind == instr)
960 mergeInstrProfile(WeightedInputs, Remapper.get(), OutputFilename,
961 OutputFormat, OutputSparse, NumThreads, FailureMode);
962 else
963 mergeSampleProfile(WeightedInputs, Remapper.get(), OutputFilename,
964 OutputFormat, ProfileSymbolListFile, CompressAllSections,
965 UseMD5, GenPartialProfile, SampleMergeColdContext,
966 SampleTrimColdContext, FailureMode);
967
968 return 0;
969 }
970
971 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
overlapInstrProfile(const std::string & BaseFilename,const std::string & TestFilename,const OverlapFuncFilters & FuncFilter,raw_fd_ostream & OS,bool IsCS)972 static void overlapInstrProfile(const std::string &BaseFilename,
973 const std::string &TestFilename,
974 const OverlapFuncFilters &FuncFilter,
975 raw_fd_ostream &OS, bool IsCS) {
976 std::mutex ErrorLock;
977 SmallSet<instrprof_error, 4> WriterErrorCodes;
978 WriterContext Context(false, ErrorLock, WriterErrorCodes);
979 WeightedFile WeightedInput{BaseFilename, 1};
980 OverlapStats Overlap;
981 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
982 if (E)
983 exitWithError(std::move(E), "Error in getting profile count sums");
984 if (Overlap.Base.CountSum < 1.0f) {
985 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
986 exit(0);
987 }
988 if (Overlap.Test.CountSum < 1.0f) {
989 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
990 exit(0);
991 }
992 loadInput(WeightedInput, nullptr, &Context);
993 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
994 IsCS);
995 Overlap.dump(OS);
996 }
997
998 namespace {
999 struct SampleOverlapStats {
1000 StringRef BaseName;
1001 StringRef TestName;
1002 // Number of overlap units
1003 uint64_t OverlapCount;
1004 // Total samples of overlap units
1005 uint64_t OverlapSample;
1006 // Number of and total samples of units that only present in base or test
1007 // profile
1008 uint64_t BaseUniqueCount;
1009 uint64_t BaseUniqueSample;
1010 uint64_t TestUniqueCount;
1011 uint64_t TestUniqueSample;
1012 // Number of units and total samples in base or test profile
1013 uint64_t BaseCount;
1014 uint64_t BaseSample;
1015 uint64_t TestCount;
1016 uint64_t TestSample;
1017 // Number of and total samples of units that present in at least one profile
1018 uint64_t UnionCount;
1019 uint64_t UnionSample;
1020 // Weighted similarity
1021 double Similarity;
1022 // For SampleOverlapStats instances representing functions, weights of the
1023 // function in base and test profiles
1024 double BaseWeight;
1025 double TestWeight;
1026
SampleOverlapStats__anon611ca1760911::SampleOverlapStats1027 SampleOverlapStats()
1028 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
1029 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
1030 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
1031 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
1032 };
1033 } // end anonymous namespace
1034
1035 namespace {
1036 struct FuncSampleStats {
1037 uint64_t SampleSum;
1038 uint64_t MaxSample;
1039 uint64_t HotBlockCount;
FuncSampleStats__anon611ca1760a11::FuncSampleStats1040 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
FuncSampleStats__anon611ca1760a11::FuncSampleStats1041 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1042 uint64_t HotBlockCount)
1043 : SampleSum(SampleSum), MaxSample(MaxSample),
1044 HotBlockCount(HotBlockCount) {}
1045 };
1046 } // end anonymous namespace
1047
1048 namespace {
1049 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1050
1051 // Class for updating merging steps for two sorted maps. The class should be
1052 // instantiated with a map iterator type.
1053 template <class T> class MatchStep {
1054 public:
1055 MatchStep() = delete;
1056
MatchStep(T FirstIter,T FirstEnd,T SecondIter,T SecondEnd)1057 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1058 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1059 SecondEnd(SecondEnd), Status(MS_None) {}
1060
areBothFinished() const1061 bool areBothFinished() const {
1062 return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1063 }
1064
isFirstFinished() const1065 bool isFirstFinished() const { return FirstIter == FirstEnd; }
1066
isSecondFinished() const1067 bool isSecondFinished() const { return SecondIter == SecondEnd; }
1068
1069 /// Advance one step based on the previous match status unless the previous
1070 /// status is MS_None. Then update Status based on the comparison between two
1071 /// container iterators at the current step. If the previous status is
1072 /// MS_None, it means two iterators are at the beginning and no comparison has
1073 /// been made, so we simply update Status without advancing the iterators.
1074 void updateOneStep();
1075
getFirstIter() const1076 T getFirstIter() const { return FirstIter; }
1077
getSecondIter() const1078 T getSecondIter() const { return SecondIter; }
1079
getMatchStatus() const1080 MatchStatus getMatchStatus() const { return Status; }
1081
1082 private:
1083 // Current iterator and end iterator of the first container.
1084 T FirstIter;
1085 T FirstEnd;
1086 // Current iterator and end iterator of the second container.
1087 T SecondIter;
1088 T SecondEnd;
1089 // Match status of the current step.
1090 MatchStatus Status;
1091 };
1092 } // end anonymous namespace
1093
updateOneStep()1094 template <class T> void MatchStep<T>::updateOneStep() {
1095 switch (Status) {
1096 case MS_Match:
1097 ++FirstIter;
1098 ++SecondIter;
1099 break;
1100 case MS_FirstUnique:
1101 ++FirstIter;
1102 break;
1103 case MS_SecondUnique:
1104 ++SecondIter;
1105 break;
1106 case MS_None:
1107 break;
1108 }
1109
1110 // Update Status according to iterators at the current step.
1111 if (areBothFinished())
1112 return;
1113 if (FirstIter != FirstEnd &&
1114 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1115 Status = MS_FirstUnique;
1116 else if (SecondIter != SecondEnd &&
1117 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1118 Status = MS_SecondUnique;
1119 else
1120 Status = MS_Match;
1121 }
1122
1123 // Return the sum of line/block samples, the max line/block sample, and the
1124 // number of line/block samples above the given threshold in a function
1125 // including its inlinees.
getFuncSampleStats(const sampleprof::FunctionSamples & Func,FuncSampleStats & FuncStats,uint64_t HotThreshold)1126 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1127 FuncSampleStats &FuncStats,
1128 uint64_t HotThreshold) {
1129 for (const auto &L : Func.getBodySamples()) {
1130 uint64_t Sample = L.second.getSamples();
1131 FuncStats.SampleSum += Sample;
1132 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1133 if (Sample >= HotThreshold)
1134 ++FuncStats.HotBlockCount;
1135 }
1136
1137 for (const auto &C : Func.getCallsiteSamples()) {
1138 for (const auto &F : C.second)
1139 getFuncSampleStats(F.second, FuncStats, HotThreshold);
1140 }
1141 }
1142
1143 /// Predicate that determines if a function is hot with a given threshold. We
1144 /// keep it separate from its callsites for possible extension in the future.
isFunctionHot(const FuncSampleStats & FuncStats,uint64_t HotThreshold)1145 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1146 uint64_t HotThreshold) {
1147 // We intentionally compare the maximum sample count in a function with the
1148 // HotThreshold to get an approximate determination on hot functions.
1149 return (FuncStats.MaxSample >= HotThreshold);
1150 }
1151
1152 namespace {
1153 class SampleOverlapAggregator {
1154 public:
SampleOverlapAggregator(const std::string & BaseFilename,const std::string & TestFilename,double LowSimilarityThreshold,double Epsilon,const OverlapFuncFilters & FuncFilter)1155 SampleOverlapAggregator(const std::string &BaseFilename,
1156 const std::string &TestFilename,
1157 double LowSimilarityThreshold, double Epsilon,
1158 const OverlapFuncFilters &FuncFilter)
1159 : BaseFilename(BaseFilename), TestFilename(TestFilename),
1160 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1161 FuncFilter(FuncFilter) {}
1162
1163 /// Detect 0-sample input profile and report to output stream. This interface
1164 /// should be called after loadProfiles().
1165 bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1166
1167 /// Write out function-level similarity statistics for functions specified by
1168 /// options --function, --value-cutoff, and --similarity-cutoff.
1169 void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1170
1171 /// Write out program-level similarity and overlap statistics.
1172 void dumpProgramSummary(raw_fd_ostream &OS) const;
1173
1174 /// Write out hot-function and hot-block statistics for base_profile,
1175 /// test_profile, and their overlap. For both cases, the overlap HO is
1176 /// calculated as follows:
1177 /// Given the number of functions (or blocks) that are hot in both profiles
1178 /// HCommon and the number of functions (or blocks) that are hot in at
1179 /// least one profile HUnion, HO = HCommon / HUnion.
1180 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1181
1182 /// This function tries matching functions in base and test profiles. For each
1183 /// pair of matched functions, it aggregates the function-level
1184 /// similarity into a profile-level similarity. It also dump function-level
1185 /// similarity information of functions specified by --function,
1186 /// --value-cutoff, and --similarity-cutoff options. The program-level
1187 /// similarity PS is computed as follows:
1188 /// Given function-level similarity FS(A) for all function A, the
1189 /// weight of function A in base profile WB(A), and the weight of function
1190 /// A in test profile WT(A), compute PS(base_profile, test_profile) =
1191 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1192 /// meaning no-overlap.
1193 void computeSampleProfileOverlap(raw_fd_ostream &OS);
1194
1195 /// Initialize ProfOverlap with the sum of samples in base and test
1196 /// profiles. This function also computes and keeps the sum of samples and
1197 /// max sample counts of each function in BaseStats and TestStats for later
1198 /// use to avoid re-computations.
1199 void initializeSampleProfileOverlap();
1200
1201 /// Load profiles specified by BaseFilename and TestFilename.
1202 std::error_code loadProfiles();
1203
1204 private:
1205 SampleOverlapStats ProfOverlap;
1206 SampleOverlapStats HotFuncOverlap;
1207 SampleOverlapStats HotBlockOverlap;
1208 std::string BaseFilename;
1209 std::string TestFilename;
1210 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1211 std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1212 // BaseStats and TestStats hold FuncSampleStats for each function, with
1213 // function name as the key.
1214 StringMap<FuncSampleStats> BaseStats;
1215 StringMap<FuncSampleStats> TestStats;
1216 // Low similarity threshold in floating point number
1217 double LowSimilarityThreshold;
1218 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1219 // for tracking hot blocks.
1220 uint64_t BaseHotThreshold;
1221 uint64_t TestHotThreshold;
1222 // A small threshold used to round the results of floating point accumulations
1223 // to resolve imprecision.
1224 const double Epsilon;
1225 std::multimap<double, SampleOverlapStats, std::greater<double>>
1226 FuncSimilarityDump;
1227 // FuncFilter carries specifications in options --value-cutoff and
1228 // --function.
1229 OverlapFuncFilters FuncFilter;
1230 // Column offsets for printing the function-level details table.
1231 static const unsigned int TestWeightCol = 15;
1232 static const unsigned int SimilarityCol = 30;
1233 static const unsigned int OverlapCol = 43;
1234 static const unsigned int BaseUniqueCol = 53;
1235 static const unsigned int TestUniqueCol = 67;
1236 static const unsigned int BaseSampleCol = 81;
1237 static const unsigned int TestSampleCol = 96;
1238 static const unsigned int FuncNameCol = 111;
1239
1240 /// Return a similarity of two line/block sample counters in the same
1241 /// function in base and test profiles. The line/block-similarity BS(i) is
1242 /// computed as follows:
1243 /// For an offsets i, given the sample count at i in base profile BB(i),
1244 /// the sample count at i in test profile BT(i), the sum of sample counts
1245 /// in this function in base profile SB, and the sum of sample counts in
1246 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1247 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1248 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1249 const SampleOverlapStats &FuncOverlap) const;
1250
1251 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1252 uint64_t HotBlockCount);
1253
1254 void getHotFunctions(const StringMap<FuncSampleStats> &ProfStats,
1255 StringMap<FuncSampleStats> &HotFunc,
1256 uint64_t HotThreshold) const;
1257
1258 void computeHotFuncOverlap();
1259
1260 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1261 /// Difference for two sample units in a matched function according to the
1262 /// given match status.
1263 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
1264 uint64_t HotBlockCount,
1265 SampleOverlapStats &FuncOverlap,
1266 double &Difference, MatchStatus Status);
1267
1268 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1269 /// Difference for unmatched callees that only present in one profile in a
1270 /// matched caller function.
1271 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
1272 SampleOverlapStats &FuncOverlap,
1273 double &Difference, MatchStatus Status);
1274
1275 /// This function updates sample overlap statistics of an overlap function in
1276 /// base and test profile. It also calculates a function-internal similarity
1277 /// FIS as follows:
1278 /// For offsets i that have samples in at least one profile in this
1279 /// function A, given BS(i) returned by computeBlockSimilarity(), compute
1280 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
1281 /// 0.0 meaning no overlap.
1282 double computeSampleFunctionInternalOverlap(
1283 const sampleprof::FunctionSamples &BaseFunc,
1284 const sampleprof::FunctionSamples &TestFunc,
1285 SampleOverlapStats &FuncOverlap);
1286
1287 /// Function-level similarity (FS) is a weighted value over function internal
1288 /// similarity (FIS). This function computes a function's FS from its FIS by
1289 /// applying the weight.
1290 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
1291 uint64_t TestFuncSample) const;
1292
1293 /// The function-level similarity FS(A) for a function A is computed as
1294 /// follows:
1295 /// Compute a function-internal similarity FIS(A) by
1296 /// computeSampleFunctionInternalOverlap(). Then, with the weight of
1297 /// function A in base profile WB(A), and the weight of function A in test
1298 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
1299 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
1300 double
1301 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
1302 const sampleprof::FunctionSamples *TestFunc,
1303 SampleOverlapStats *FuncOverlap,
1304 uint64_t BaseFuncSample,
1305 uint64_t TestFuncSample);
1306
1307 /// Profile-level similarity (PS) is a weighted aggregate over function-level
1308 /// similarities (FS). This method weights the FS value by the function
1309 /// weights in the base and test profiles for the aggregation.
1310 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
1311 uint64_t TestFuncSample) const;
1312 };
1313 } // end anonymous namespace
1314
detectZeroSampleProfile(raw_fd_ostream & OS) const1315 bool SampleOverlapAggregator::detectZeroSampleProfile(
1316 raw_fd_ostream &OS) const {
1317 bool HaveZeroSample = false;
1318 if (ProfOverlap.BaseSample == 0) {
1319 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
1320 HaveZeroSample = true;
1321 }
1322 if (ProfOverlap.TestSample == 0) {
1323 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
1324 HaveZeroSample = true;
1325 }
1326 return HaveZeroSample;
1327 }
1328
computeBlockSimilarity(uint64_t BaseSample,uint64_t TestSample,const SampleOverlapStats & FuncOverlap) const1329 double SampleOverlapAggregator::computeBlockSimilarity(
1330 uint64_t BaseSample, uint64_t TestSample,
1331 const SampleOverlapStats &FuncOverlap) const {
1332 double BaseFrac = 0.0;
1333 double TestFrac = 0.0;
1334 if (FuncOverlap.BaseSample > 0)
1335 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
1336 if (FuncOverlap.TestSample > 0)
1337 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
1338 return 1.0 - std::fabs(BaseFrac - TestFrac);
1339 }
1340
updateHotBlockOverlap(uint64_t BaseSample,uint64_t TestSample,uint64_t HotBlockCount)1341 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
1342 uint64_t TestSample,
1343 uint64_t HotBlockCount) {
1344 bool IsBaseHot = (BaseSample >= BaseHotThreshold);
1345 bool IsTestHot = (TestSample >= TestHotThreshold);
1346 if (!IsBaseHot && !IsTestHot)
1347 return;
1348
1349 HotBlockOverlap.UnionCount += HotBlockCount;
1350 if (IsBaseHot)
1351 HotBlockOverlap.BaseCount += HotBlockCount;
1352 if (IsTestHot)
1353 HotBlockOverlap.TestCount += HotBlockCount;
1354 if (IsBaseHot && IsTestHot)
1355 HotBlockOverlap.OverlapCount += HotBlockCount;
1356 }
1357
getHotFunctions(const StringMap<FuncSampleStats> & ProfStats,StringMap<FuncSampleStats> & HotFunc,uint64_t HotThreshold) const1358 void SampleOverlapAggregator::getHotFunctions(
1359 const StringMap<FuncSampleStats> &ProfStats,
1360 StringMap<FuncSampleStats> &HotFunc, uint64_t HotThreshold) const {
1361 for (const auto &F : ProfStats) {
1362 if (isFunctionHot(F.second, HotThreshold))
1363 HotFunc.try_emplace(F.first(), F.second);
1364 }
1365 }
1366
computeHotFuncOverlap()1367 void SampleOverlapAggregator::computeHotFuncOverlap() {
1368 StringMap<FuncSampleStats> BaseHotFunc;
1369 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
1370 HotFuncOverlap.BaseCount = BaseHotFunc.size();
1371
1372 StringMap<FuncSampleStats> TestHotFunc;
1373 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
1374 HotFuncOverlap.TestCount = TestHotFunc.size();
1375 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
1376
1377 for (const auto &F : BaseHotFunc) {
1378 if (TestHotFunc.count(F.first()))
1379 ++HotFuncOverlap.OverlapCount;
1380 else
1381 ++HotFuncOverlap.UnionCount;
1382 }
1383 }
1384
updateOverlapStatsForFunction(uint64_t BaseSample,uint64_t TestSample,uint64_t HotBlockCount,SampleOverlapStats & FuncOverlap,double & Difference,MatchStatus Status)1385 void SampleOverlapAggregator::updateOverlapStatsForFunction(
1386 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
1387 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
1388 assert(Status != MS_None &&
1389 "Match status should be updated before updating overlap statistics");
1390 if (Status == MS_FirstUnique) {
1391 TestSample = 0;
1392 FuncOverlap.BaseUniqueSample += BaseSample;
1393 } else if (Status == MS_SecondUnique) {
1394 BaseSample = 0;
1395 FuncOverlap.TestUniqueSample += TestSample;
1396 } else {
1397 ++FuncOverlap.OverlapCount;
1398 }
1399
1400 FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
1401 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
1402 Difference +=
1403 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
1404 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
1405 }
1406
updateForUnmatchedCallee(const sampleprof::FunctionSamples & Func,SampleOverlapStats & FuncOverlap,double & Difference,MatchStatus Status)1407 void SampleOverlapAggregator::updateForUnmatchedCallee(
1408 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
1409 double &Difference, MatchStatus Status) {
1410 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
1411 "Status must be either of the two unmatched cases");
1412 FuncSampleStats FuncStats;
1413 if (Status == MS_FirstUnique) {
1414 getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
1415 updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
1416 FuncStats.HotBlockCount, FuncOverlap,
1417 Difference, Status);
1418 } else {
1419 getFuncSampleStats(Func, FuncStats, TestHotThreshold);
1420 updateOverlapStatsForFunction(0, FuncStats.SampleSum,
1421 FuncStats.HotBlockCount, FuncOverlap,
1422 Difference, Status);
1423 }
1424 }
1425
computeSampleFunctionInternalOverlap(const sampleprof::FunctionSamples & BaseFunc,const sampleprof::FunctionSamples & TestFunc,SampleOverlapStats & FuncOverlap)1426 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
1427 const sampleprof::FunctionSamples &BaseFunc,
1428 const sampleprof::FunctionSamples &TestFunc,
1429 SampleOverlapStats &FuncOverlap) {
1430
1431 using namespace sampleprof;
1432
1433 double Difference = 0;
1434
1435 // Accumulate Difference for regular line/block samples in the function.
1436 // We match them through sort-merge join algorithm because
1437 // FunctionSamples::getBodySamples() returns a map of sample counters ordered
1438 // by their offsets.
1439 MatchStep<BodySampleMap::const_iterator> BlockIterStep(
1440 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
1441 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
1442 BlockIterStep.updateOneStep();
1443 while (!BlockIterStep.areBothFinished()) {
1444 uint64_t BaseSample =
1445 BlockIterStep.isFirstFinished()
1446 ? 0
1447 : BlockIterStep.getFirstIter()->second.getSamples();
1448 uint64_t TestSample =
1449 BlockIterStep.isSecondFinished()
1450 ? 0
1451 : BlockIterStep.getSecondIter()->second.getSamples();
1452 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
1453 Difference, BlockIterStep.getMatchStatus());
1454
1455 BlockIterStep.updateOneStep();
1456 }
1457
1458 // Accumulate Difference for callsite lines in the function. We match
1459 // them through sort-merge algorithm because
1460 // FunctionSamples::getCallsiteSamples() returns a map of callsite records
1461 // ordered by their offsets.
1462 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
1463 BaseFunc.getCallsiteSamples().cbegin(),
1464 BaseFunc.getCallsiteSamples().cend(),
1465 TestFunc.getCallsiteSamples().cbegin(),
1466 TestFunc.getCallsiteSamples().cend());
1467 CallsiteIterStep.updateOneStep();
1468 while (!CallsiteIterStep.areBothFinished()) {
1469 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
1470 assert(CallsiteStepStatus != MS_None &&
1471 "Match status should be updated before entering loop body");
1472
1473 if (CallsiteStepStatus != MS_Match) {
1474 auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
1475 ? CallsiteIterStep.getFirstIter()
1476 : CallsiteIterStep.getSecondIter();
1477 for (const auto &F : Callsite->second)
1478 updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
1479 CallsiteStepStatus);
1480 } else {
1481 // There may be multiple inlinees at the same offset, so we need to try
1482 // matching all of them. This match is implemented through sort-merge
1483 // algorithm because callsite records at the same offset are ordered by
1484 // function names.
1485 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
1486 CallsiteIterStep.getFirstIter()->second.cbegin(),
1487 CallsiteIterStep.getFirstIter()->second.cend(),
1488 CallsiteIterStep.getSecondIter()->second.cbegin(),
1489 CallsiteIterStep.getSecondIter()->second.cend());
1490 CalleeIterStep.updateOneStep();
1491 while (!CalleeIterStep.areBothFinished()) {
1492 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
1493 if (CalleeStepStatus != MS_Match) {
1494 auto Callee = (CalleeStepStatus == MS_FirstUnique)
1495 ? CalleeIterStep.getFirstIter()
1496 : CalleeIterStep.getSecondIter();
1497 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
1498 CalleeStepStatus);
1499 } else {
1500 // An inlined function can contain other inlinees inside, so compute
1501 // the Difference recursively.
1502 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
1503 CalleeIterStep.getFirstIter()->second,
1504 CalleeIterStep.getSecondIter()->second,
1505 FuncOverlap);
1506 }
1507 CalleeIterStep.updateOneStep();
1508 }
1509 }
1510 CallsiteIterStep.updateOneStep();
1511 }
1512
1513 // Difference reflects the total differences of line/block samples in this
1514 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
1515 // reflect the similarity between function profiles in [0.0f to 1.0f].
1516 return (2.0 - Difference) / 2;
1517 }
1518
weightForFuncSimilarity(double FuncInternalSimilarity,uint64_t BaseFuncSample,uint64_t TestFuncSample) const1519 double SampleOverlapAggregator::weightForFuncSimilarity(
1520 double FuncInternalSimilarity, uint64_t BaseFuncSample,
1521 uint64_t TestFuncSample) const {
1522 // Compute the weight as the distance between the function weights in two
1523 // profiles.
1524 double BaseFrac = 0.0;
1525 double TestFrac = 0.0;
1526 assert(ProfOverlap.BaseSample > 0 &&
1527 "Total samples in base profile should be greater than 0");
1528 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
1529 assert(ProfOverlap.TestSample > 0 &&
1530 "Total samples in test profile should be greater than 0");
1531 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
1532 double WeightDistance = std::fabs(BaseFrac - TestFrac);
1533
1534 // Take WeightDistance into the similarity.
1535 return FuncInternalSimilarity * (1 - WeightDistance);
1536 }
1537
1538 double
weightByImportance(double FuncSimilarity,uint64_t BaseFuncSample,uint64_t TestFuncSample) const1539 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
1540 uint64_t BaseFuncSample,
1541 uint64_t TestFuncSample) const {
1542
1543 double BaseFrac = 0.0;
1544 double TestFrac = 0.0;
1545 assert(ProfOverlap.BaseSample > 0 &&
1546 "Total samples in base profile should be greater than 0");
1547 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
1548 assert(ProfOverlap.TestSample > 0 &&
1549 "Total samples in test profile should be greater than 0");
1550 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
1551 return FuncSimilarity * (BaseFrac + TestFrac);
1552 }
1553
computeSampleFunctionOverlap(const sampleprof::FunctionSamples * BaseFunc,const sampleprof::FunctionSamples * TestFunc,SampleOverlapStats * FuncOverlap,uint64_t BaseFuncSample,uint64_t TestFuncSample)1554 double SampleOverlapAggregator::computeSampleFunctionOverlap(
1555 const sampleprof::FunctionSamples *BaseFunc,
1556 const sampleprof::FunctionSamples *TestFunc,
1557 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
1558 uint64_t TestFuncSample) {
1559 // Default function internal similarity before weighted, meaning two functions
1560 // has no overlap.
1561 const double DefaultFuncInternalSimilarity = 0;
1562 double FuncSimilarity;
1563 double FuncInternalSimilarity;
1564
1565 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
1566 // In this case, we use DefaultFuncInternalSimilarity as the function internal
1567 // similarity.
1568 if (!BaseFunc || !TestFunc) {
1569 FuncInternalSimilarity = DefaultFuncInternalSimilarity;
1570 } else {
1571 assert(FuncOverlap != nullptr &&
1572 "FuncOverlap should be provided in this case");
1573 FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
1574 *BaseFunc, *TestFunc, *FuncOverlap);
1575 // Now, FuncInternalSimilarity may be a little less than 0 due to
1576 // imprecision of floating point accumulations. Make it zero if the
1577 // difference is below Epsilon.
1578 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
1579 ? 0
1580 : FuncInternalSimilarity;
1581 }
1582 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
1583 BaseFuncSample, TestFuncSample);
1584 return FuncSimilarity;
1585 }
1586
computeSampleProfileOverlap(raw_fd_ostream & OS)1587 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
1588 using namespace sampleprof;
1589
1590 StringMap<const FunctionSamples *> BaseFuncProf;
1591 const auto &BaseProfiles = BaseReader->getProfiles();
1592 for (const auto &BaseFunc : BaseProfiles) {
1593 BaseFuncProf.try_emplace(BaseFunc.second.getNameWithContext(),
1594 &(BaseFunc.second));
1595 }
1596 ProfOverlap.UnionCount = BaseFuncProf.size();
1597
1598 const auto &TestProfiles = TestReader->getProfiles();
1599 for (const auto &TestFunc : TestProfiles) {
1600 SampleOverlapStats FuncOverlap;
1601 FuncOverlap.TestName = TestFunc.second.getNameWithContext();
1602 assert(TestStats.count(FuncOverlap.TestName) &&
1603 "TestStats should have records for all functions in test profile "
1604 "except inlinees");
1605 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
1606
1607 const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
1608 if (Match == BaseFuncProf.end()) {
1609 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
1610 ++ProfOverlap.TestUniqueCount;
1611 ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
1612 FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
1613
1614 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
1615
1616 double FuncSimilarity = computeSampleFunctionOverlap(
1617 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
1618 ProfOverlap.Similarity +=
1619 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
1620
1621 ++ProfOverlap.UnionCount;
1622 ProfOverlap.UnionSample += FuncStats.SampleSum;
1623 } else {
1624 ++ProfOverlap.OverlapCount;
1625
1626 // Two functions match with each other. Compute function-level overlap and
1627 // aggregate them into profile-level overlap.
1628 FuncOverlap.BaseName = Match->second->getNameWithContext();
1629 assert(BaseStats.count(FuncOverlap.BaseName) &&
1630 "BaseStats should have records for all functions in base profile "
1631 "except inlinees");
1632 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
1633
1634 FuncOverlap.Similarity = computeSampleFunctionOverlap(
1635 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
1636 FuncOverlap.TestSample);
1637 ProfOverlap.Similarity +=
1638 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
1639 FuncOverlap.TestSample);
1640 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
1641 ProfOverlap.UnionSample += FuncOverlap.UnionSample;
1642
1643 // Accumulate the percentage of base unique and test unique samples into
1644 // ProfOverlap.
1645 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
1646 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
1647
1648 // Remove matched base functions for later reporting functions not found
1649 // in test profile.
1650 BaseFuncProf.erase(Match);
1651 }
1652
1653 // Print function-level similarity information if specified by options.
1654 assert(TestStats.count(FuncOverlap.TestName) &&
1655 "TestStats should have records for all functions in test profile "
1656 "except inlinees");
1657 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
1658 (Match != BaseFuncProf.end() &&
1659 FuncOverlap.Similarity < LowSimilarityThreshold) ||
1660 (Match != BaseFuncProf.end() && !FuncFilter.NameFilter.empty() &&
1661 FuncOverlap.BaseName.find(FuncFilter.NameFilter) !=
1662 FuncOverlap.BaseName.npos)) {
1663 assert(ProfOverlap.BaseSample > 0 &&
1664 "Total samples in base profile should be greater than 0");
1665 FuncOverlap.BaseWeight =
1666 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
1667 assert(ProfOverlap.TestSample > 0 &&
1668 "Total samples in test profile should be greater than 0");
1669 FuncOverlap.TestWeight =
1670 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
1671 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
1672 }
1673 }
1674
1675 // Traverse through functions in base profile but not in test profile.
1676 for (const auto &F : BaseFuncProf) {
1677 assert(BaseStats.count(F.second->getNameWithContext()) &&
1678 "BaseStats should have records for all functions in base profile "
1679 "except inlinees");
1680 const FuncSampleStats &FuncStats =
1681 BaseStats[F.second->getNameWithContext()];
1682 ++ProfOverlap.BaseUniqueCount;
1683 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
1684
1685 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
1686
1687 double FuncSimilarity = computeSampleFunctionOverlap(
1688 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
1689 ProfOverlap.Similarity +=
1690 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
1691
1692 ProfOverlap.UnionSample += FuncStats.SampleSum;
1693 }
1694
1695 // Now, ProfSimilarity may be a little greater than 1 due to imprecision
1696 // of floating point accumulations. Make it 1.0 if the difference is below
1697 // Epsilon.
1698 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
1699 ? 1
1700 : ProfOverlap.Similarity;
1701
1702 computeHotFuncOverlap();
1703 }
1704
initializeSampleProfileOverlap()1705 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
1706 const auto &BaseProf = BaseReader->getProfiles();
1707 for (const auto &I : BaseProf) {
1708 ++ProfOverlap.BaseCount;
1709 FuncSampleStats FuncStats;
1710 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
1711 ProfOverlap.BaseSample += FuncStats.SampleSum;
1712 BaseStats.try_emplace(I.second.getNameWithContext(), FuncStats);
1713 }
1714
1715 const auto &TestProf = TestReader->getProfiles();
1716 for (const auto &I : TestProf) {
1717 ++ProfOverlap.TestCount;
1718 FuncSampleStats FuncStats;
1719 getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
1720 ProfOverlap.TestSample += FuncStats.SampleSum;
1721 TestStats.try_emplace(I.second.getNameWithContext(), FuncStats);
1722 }
1723
1724 ProfOverlap.BaseName = StringRef(BaseFilename);
1725 ProfOverlap.TestName = StringRef(TestFilename);
1726 }
1727
dumpFuncSimilarity(raw_fd_ostream & OS) const1728 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
1729 using namespace sampleprof;
1730
1731 if (FuncSimilarityDump.empty())
1732 return;
1733
1734 formatted_raw_ostream FOS(OS);
1735 FOS << "Function-level details:\n";
1736 FOS << "Base weight";
1737 FOS.PadToColumn(TestWeightCol);
1738 FOS << "Test weight";
1739 FOS.PadToColumn(SimilarityCol);
1740 FOS << "Similarity";
1741 FOS.PadToColumn(OverlapCol);
1742 FOS << "Overlap";
1743 FOS.PadToColumn(BaseUniqueCol);
1744 FOS << "Base unique";
1745 FOS.PadToColumn(TestUniqueCol);
1746 FOS << "Test unique";
1747 FOS.PadToColumn(BaseSampleCol);
1748 FOS << "Base samples";
1749 FOS.PadToColumn(TestSampleCol);
1750 FOS << "Test samples";
1751 FOS.PadToColumn(FuncNameCol);
1752 FOS << "Function name\n";
1753 for (const auto &F : FuncSimilarityDump) {
1754 double OverlapPercent =
1755 F.second.UnionSample > 0
1756 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
1757 : 0;
1758 double BaseUniquePercent =
1759 F.second.BaseSample > 0
1760 ? static_cast<double>(F.second.BaseUniqueSample) /
1761 F.second.BaseSample
1762 : 0;
1763 double TestUniquePercent =
1764 F.second.TestSample > 0
1765 ? static_cast<double>(F.second.TestUniqueSample) /
1766 F.second.TestSample
1767 : 0;
1768
1769 FOS << format("%.2f%%", F.second.BaseWeight * 100);
1770 FOS.PadToColumn(TestWeightCol);
1771 FOS << format("%.2f%%", F.second.TestWeight * 100);
1772 FOS.PadToColumn(SimilarityCol);
1773 FOS << format("%.2f%%", F.second.Similarity * 100);
1774 FOS.PadToColumn(OverlapCol);
1775 FOS << format("%.2f%%", OverlapPercent * 100);
1776 FOS.PadToColumn(BaseUniqueCol);
1777 FOS << format("%.2f%%", BaseUniquePercent * 100);
1778 FOS.PadToColumn(TestUniqueCol);
1779 FOS << format("%.2f%%", TestUniquePercent * 100);
1780 FOS.PadToColumn(BaseSampleCol);
1781 FOS << F.second.BaseSample;
1782 FOS.PadToColumn(TestSampleCol);
1783 FOS << F.second.TestSample;
1784 FOS.PadToColumn(FuncNameCol);
1785 FOS << F.second.TestName << "\n";
1786 }
1787 }
1788
dumpProgramSummary(raw_fd_ostream & OS) const1789 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
1790 OS << "Profile overlap infomation for base_profile: " << ProfOverlap.BaseName
1791 << " and test_profile: " << ProfOverlap.TestName << "\nProgram level:\n";
1792
1793 OS << " Whole program profile similarity: "
1794 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
1795
1796 assert(ProfOverlap.UnionSample > 0 &&
1797 "Total samples in two profile should be greater than 0");
1798 double OverlapPercent =
1799 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
1800 assert(ProfOverlap.BaseSample > 0 &&
1801 "Total samples in base profile should be greater than 0");
1802 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
1803 ProfOverlap.BaseSample;
1804 assert(ProfOverlap.TestSample > 0 &&
1805 "Total samples in test profile should be greater than 0");
1806 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
1807 ProfOverlap.TestSample;
1808
1809 OS << " Whole program sample overlap: "
1810 << format("%.3f%%", OverlapPercent * 100) << "\n";
1811 OS << " percentage of samples unique in base profile: "
1812 << format("%.3f%%", BaseUniquePercent * 100) << "\n";
1813 OS << " percentage of samples unique in test profile: "
1814 << format("%.3f%%", TestUniquePercent * 100) << "\n";
1815 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
1816 << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
1817
1818 assert(ProfOverlap.UnionCount > 0 &&
1819 "There should be at least one function in two input profiles");
1820 double FuncOverlapPercent =
1821 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
1822 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
1823 << "\n";
1824 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
1825 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
1826 << "\n";
1827 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
1828 << "\n";
1829 }
1830
dumpHotFuncAndBlockOverlap(raw_fd_ostream & OS) const1831 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
1832 raw_fd_ostream &OS) const {
1833 assert(HotFuncOverlap.UnionCount > 0 &&
1834 "There should be at least one hot function in two input profiles");
1835 OS << " Hot-function overlap: "
1836 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
1837 HotFuncOverlap.UnionCount * 100)
1838 << "\n";
1839 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
1840 OS << " hot functions unique in base profile: "
1841 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
1842 OS << " hot functions unique in test profile: "
1843 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
1844
1845 assert(HotBlockOverlap.UnionCount > 0 &&
1846 "There should be at least one hot block in two input profiles");
1847 OS << " Hot-block overlap: "
1848 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
1849 HotBlockOverlap.UnionCount * 100)
1850 << "\n";
1851 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
1852 OS << " hot blocks unique in base profile: "
1853 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
1854 OS << " hot blocks unique in test profile: "
1855 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
1856 }
1857
loadProfiles()1858 std::error_code SampleOverlapAggregator::loadProfiles() {
1859 using namespace sampleprof;
1860
1861 LLVMContext Context;
1862 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context);
1863 if (std::error_code EC = BaseReaderOrErr.getError())
1864 exitWithErrorCode(EC, BaseFilename);
1865
1866 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context);
1867 if (std::error_code EC = TestReaderOrErr.getError())
1868 exitWithErrorCode(EC, TestFilename);
1869
1870 BaseReader = std::move(BaseReaderOrErr.get());
1871 TestReader = std::move(TestReaderOrErr.get());
1872
1873 if (std::error_code EC = BaseReader->read())
1874 exitWithErrorCode(EC, BaseFilename);
1875 if (std::error_code EC = TestReader->read())
1876 exitWithErrorCode(EC, TestFilename);
1877 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
1878 exitWithError(
1879 "cannot compare probe-based profile with non-probe-based profile");
1880 if (BaseReader->profileIsCS() != TestReader->profileIsCS())
1881 exitWithError("cannot compare CS profile with non-CS profile");
1882
1883 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
1884 // profile summary.
1885 const uint64_t HotCutoff = 990000;
1886 ProfileSummary &BasePS = BaseReader->getSummary();
1887 for (const auto &SummaryEntry : BasePS.getDetailedSummary()) {
1888 if (SummaryEntry.Cutoff == HotCutoff) {
1889 BaseHotThreshold = SummaryEntry.MinCount;
1890 break;
1891 }
1892 }
1893
1894 ProfileSummary &TestPS = TestReader->getSummary();
1895 for (const auto &SummaryEntry : TestPS.getDetailedSummary()) {
1896 if (SummaryEntry.Cutoff == HotCutoff) {
1897 TestHotThreshold = SummaryEntry.MinCount;
1898 break;
1899 }
1900 }
1901 return std::error_code();
1902 }
1903
overlapSampleProfile(const std::string & BaseFilename,const std::string & TestFilename,const OverlapFuncFilters & FuncFilter,uint64_t SimilarityCutoff,raw_fd_ostream & OS)1904 void overlapSampleProfile(const std::string &BaseFilename,
1905 const std::string &TestFilename,
1906 const OverlapFuncFilters &FuncFilter,
1907 uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
1908 using namespace sampleprof;
1909
1910 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
1911 // report 2--3 places after decimal point in percentage numbers.
1912 SampleOverlapAggregator OverlapAggr(
1913 BaseFilename, TestFilename,
1914 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
1915 if (std::error_code EC = OverlapAggr.loadProfiles())
1916 exitWithErrorCode(EC);
1917
1918 OverlapAggr.initializeSampleProfileOverlap();
1919 if (OverlapAggr.detectZeroSampleProfile(OS))
1920 return;
1921
1922 OverlapAggr.computeSampleProfileOverlap(OS);
1923
1924 OverlapAggr.dumpProgramSummary(OS);
1925 OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
1926 OverlapAggr.dumpFuncSimilarity(OS);
1927 }
1928
overlap_main(int argc,const char * argv[])1929 static int overlap_main(int argc, const char *argv[]) {
1930 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
1931 cl::desc("<base profile file>"));
1932 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
1933 cl::desc("<test profile file>"));
1934 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
1935 cl::desc("Output file"));
1936 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
1937 cl::opt<bool> IsCS(
1938 "cs", cl::init(false),
1939 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
1940 cl::opt<unsigned long long> ValueCutoff(
1941 "value-cutoff", cl::init(-1),
1942 cl::desc(
1943 "Function level overlap information for every function (with calling "
1944 "context for csspgo) in test "
1945 "profile with max count value greater then the parameter value"));
1946 cl::opt<std::string> FuncNameFilter(
1947 "function",
1948 cl::desc("Function level overlap information for matching functions. For "
1949 "CSSPGO this takes a a function name with calling context"));
1950 cl::opt<unsigned long long> SimilarityCutoff(
1951 "similarity-cutoff", cl::init(0),
1952 cl::desc("For sample profiles, list function names (with calling context "
1953 "for csspgo) for overlapped functions "
1954 "with similarities below the cutoff (percentage times 10000)."));
1955 cl::opt<ProfileKinds> ProfileKind(
1956 cl::desc("Profile kind:"), cl::init(instr),
1957 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
1958 clEnumVal(sample, "Sample profile")));
1959 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
1960
1961 std::error_code EC;
1962 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
1963 if (EC)
1964 exitWithErrorCode(EC, Output);
1965
1966 if (ProfileKind == instr)
1967 overlapInstrProfile(BaseFilename, TestFilename,
1968 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
1969 IsCS);
1970 else
1971 overlapSampleProfile(BaseFilename, TestFilename,
1972 OverlapFuncFilters{ValueCutoff, FuncNameFilter},
1973 SimilarityCutoff, OS);
1974
1975 return 0;
1976 }
1977
1978 typedef struct ValueSitesStats {
ValueSitesStatsValueSitesStats1979 ValueSitesStats()
1980 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
1981 TotalNumValues(0) {}
1982 uint64_t TotalNumValueSites;
1983 uint64_t TotalNumValueSitesWithValueProfile;
1984 uint64_t TotalNumValues;
1985 std::vector<unsigned> ValueSitesHistogram;
1986 } ValueSitesStats;
1987
traverseAllValueSites(const InstrProfRecord & Func,uint32_t VK,ValueSitesStats & Stats,raw_fd_ostream & OS,InstrProfSymtab * Symtab)1988 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
1989 ValueSitesStats &Stats, raw_fd_ostream &OS,
1990 InstrProfSymtab *Symtab) {
1991 uint32_t NS = Func.getNumValueSites(VK);
1992 Stats.TotalNumValueSites += NS;
1993 for (size_t I = 0; I < NS; ++I) {
1994 uint32_t NV = Func.getNumValueDataForSite(VK, I);
1995 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
1996 Stats.TotalNumValues += NV;
1997 if (NV) {
1998 Stats.TotalNumValueSitesWithValueProfile++;
1999 if (NV > Stats.ValueSitesHistogram.size())
2000 Stats.ValueSitesHistogram.resize(NV, 0);
2001 Stats.ValueSitesHistogram[NV - 1]++;
2002 }
2003
2004 uint64_t SiteSum = 0;
2005 for (uint32_t V = 0; V < NV; V++)
2006 SiteSum += VD[V].Count;
2007 if (SiteSum == 0)
2008 SiteSum = 1;
2009
2010 for (uint32_t V = 0; V < NV; V++) {
2011 OS << "\t[ " << format("%2u", I) << ", ";
2012 if (Symtab == nullptr)
2013 OS << format("%4" PRIu64, VD[V].Value);
2014 else
2015 OS << Symtab->getFuncName(VD[V].Value);
2016 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
2017 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
2018 }
2019 }
2020 }
2021
showValueSitesStats(raw_fd_ostream & OS,uint32_t VK,ValueSitesStats & Stats)2022 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2023 ValueSitesStats &Stats) {
2024 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
2025 OS << " Total number of sites with values: "
2026 << Stats.TotalNumValueSitesWithValueProfile << "\n";
2027 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
2028
2029 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
2030 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2031 if (Stats.ValueSitesHistogram[I] > 0)
2032 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2033 }
2034 }
2035
showInstrProfile(const std::string & Filename,bool ShowCounts,uint32_t TopN,bool ShowIndirectCallTargets,bool ShowMemOPSizes,bool ShowDetailedSummary,std::vector<uint32_t> DetailedSummaryCutoffs,bool ShowAllFunctions,bool ShowCS,uint64_t ValueCutoff,bool OnlyListBelow,const std::string & ShowFunction,bool TextFormat,raw_fd_ostream & OS)2036 static int showInstrProfile(const std::string &Filename, bool ShowCounts,
2037 uint32_t TopN, bool ShowIndirectCallTargets,
2038 bool ShowMemOPSizes, bool ShowDetailedSummary,
2039 std::vector<uint32_t> DetailedSummaryCutoffs,
2040 bool ShowAllFunctions, bool ShowCS,
2041 uint64_t ValueCutoff, bool OnlyListBelow,
2042 const std::string &ShowFunction, bool TextFormat,
2043 raw_fd_ostream &OS) {
2044 auto ReaderOrErr = InstrProfReader::create(Filename);
2045 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2046 if (ShowDetailedSummary && Cutoffs.empty()) {
2047 Cutoffs = {800000, 900000, 950000, 990000, 999000, 999900, 999990};
2048 }
2049 InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2050 if (Error E = ReaderOrErr.takeError())
2051 exitWithError(std::move(E), Filename);
2052
2053 auto Reader = std::move(ReaderOrErr.get());
2054 bool IsIRInstr = Reader->isIRLevelProfile();
2055 size_t ShownFunctions = 0;
2056 size_t BelowCutoffFunctions = 0;
2057 int NumVPKind = IPVK_Last - IPVK_First + 1;
2058 std::vector<ValueSitesStats> VPStats(NumVPKind);
2059
2060 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2061 const std::pair<std::string, uint64_t> &v2) {
2062 return v1.second > v2.second;
2063 };
2064
2065 std::priority_queue<std::pair<std::string, uint64_t>,
2066 std::vector<std::pair<std::string, uint64_t>>,
2067 decltype(MinCmp)>
2068 HottestFuncs(MinCmp);
2069
2070 if (!TextFormat && OnlyListBelow) {
2071 OS << "The list of functions with the maximum counter less than "
2072 << ValueCutoff << ":\n";
2073 }
2074
2075 // Add marker so that IR-level instrumentation round-trips properly.
2076 if (TextFormat && IsIRInstr)
2077 OS << ":ir\n";
2078
2079 for (const auto &Func : *Reader) {
2080 if (Reader->isIRLevelProfile()) {
2081 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2082 if (FuncIsCS != ShowCS)
2083 continue;
2084 }
2085 bool Show =
2086 ShowAllFunctions || (!ShowFunction.empty() &&
2087 Func.Name.find(ShowFunction) != Func.Name.npos);
2088
2089 bool doTextFormatDump = (Show && TextFormat);
2090
2091 if (doTextFormatDump) {
2092 InstrProfSymtab &Symtab = Reader->getSymtab();
2093 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2094 OS);
2095 continue;
2096 }
2097
2098 assert(Func.Counts.size() > 0 && "function missing entry counter");
2099 Builder.addRecord(Func);
2100
2101 uint64_t FuncMax = 0;
2102 uint64_t FuncSum = 0;
2103 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2104 if (Func.Counts[I] == (uint64_t)-1)
2105 continue;
2106 FuncMax = std::max(FuncMax, Func.Counts[I]);
2107 FuncSum += Func.Counts[I];
2108 }
2109
2110 if (FuncMax < ValueCutoff) {
2111 ++BelowCutoffFunctions;
2112 if (OnlyListBelow) {
2113 OS << " " << Func.Name << ": (Max = " << FuncMax
2114 << " Sum = " << FuncSum << ")\n";
2115 }
2116 continue;
2117 } else if (OnlyListBelow)
2118 continue;
2119
2120 if (TopN) {
2121 if (HottestFuncs.size() == TopN) {
2122 if (HottestFuncs.top().second < FuncMax) {
2123 HottestFuncs.pop();
2124 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2125 }
2126 } else
2127 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2128 }
2129
2130 if (Show) {
2131 if (!ShownFunctions)
2132 OS << "Counters:\n";
2133
2134 ++ShownFunctions;
2135
2136 OS << " " << Func.Name << ":\n"
2137 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2138 << " Counters: " << Func.Counts.size() << "\n";
2139 if (!IsIRInstr)
2140 OS << " Function count: " << Func.Counts[0] << "\n";
2141
2142 if (ShowIndirectCallTargets)
2143 OS << " Indirect Call Site Count: "
2144 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2145
2146 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2147 if (ShowMemOPSizes && NumMemOPCalls > 0)
2148 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
2149 << "\n";
2150
2151 if (ShowCounts) {
2152 OS << " Block counts: [";
2153 size_t Start = (IsIRInstr ? 0 : 1);
2154 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2155 OS << (I == Start ? "" : ", ") << Func.Counts[I];
2156 }
2157 OS << "]\n";
2158 }
2159
2160 if (ShowIndirectCallTargets) {
2161 OS << " Indirect Target Results:\n";
2162 traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2163 VPStats[IPVK_IndirectCallTarget], OS,
2164 &(Reader->getSymtab()));
2165 }
2166
2167 if (ShowMemOPSizes && NumMemOPCalls > 0) {
2168 OS << " Memory Intrinsic Size Results:\n";
2169 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2170 nullptr);
2171 }
2172 }
2173 }
2174 if (Reader->hasError())
2175 exitWithError(Reader->getError(), Filename);
2176
2177 if (TextFormat)
2178 return 0;
2179 std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2180 bool IsIR = Reader->isIRLevelProfile();
2181 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2182 if (IsIR)
2183 OS << " entry_first = " << Reader->instrEntryBBEnabled();
2184 OS << "\n";
2185 if (ShowAllFunctions || !ShowFunction.empty())
2186 OS << "Functions shown: " << ShownFunctions << "\n";
2187 OS << "Total functions: " << PS->getNumFunctions() << "\n";
2188 if (ValueCutoff > 0) {
2189 OS << "Number of functions with maximum count (< " << ValueCutoff
2190 << "): " << BelowCutoffFunctions << "\n";
2191 OS << "Number of functions with maximum count (>= " << ValueCutoff
2192 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2193 }
2194 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2195 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2196
2197 if (TopN) {
2198 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2199 while (!HottestFuncs.empty()) {
2200 SortedHottestFuncs.emplace_back(HottestFuncs.top());
2201 HottestFuncs.pop();
2202 }
2203 OS << "Top " << TopN
2204 << " functions with the largest internal block counts: \n";
2205 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2206 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2207 }
2208
2209 if (ShownFunctions && ShowIndirectCallTargets) {
2210 OS << "Statistics for indirect call sites profile:\n";
2211 showValueSitesStats(OS, IPVK_IndirectCallTarget,
2212 VPStats[IPVK_IndirectCallTarget]);
2213 }
2214
2215 if (ShownFunctions && ShowMemOPSizes) {
2216 OS << "Statistics for memory intrinsic calls sizes profile:\n";
2217 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2218 }
2219
2220 if (ShowDetailedSummary) {
2221 OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2222 OS << "Total count: " << PS->getTotalCount() << "\n";
2223 PS->printDetailedSummary(OS);
2224 }
2225 return 0;
2226 }
2227
showSectionInfo(sampleprof::SampleProfileReader * Reader,raw_fd_ostream & OS)2228 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2229 raw_fd_ostream &OS) {
2230 if (!Reader->dumpSectionInfo(OS)) {
2231 WithColor::warning() << "-show-sec-info-only is only supported for "
2232 << "sample profile in extbinary format and is "
2233 << "ignored for other formats.\n";
2234 return;
2235 }
2236 }
2237
2238 namespace {
2239 struct HotFuncInfo {
2240 StringRef FuncName;
2241 uint64_t TotalCount;
2242 double TotalCountPercent;
2243 uint64_t MaxCount;
2244 uint64_t EntryCount;
2245
HotFuncInfo__anon611ca1760e11::HotFuncInfo2246 HotFuncInfo()
2247 : FuncName(), TotalCount(0), TotalCountPercent(0.0f), MaxCount(0),
2248 EntryCount(0) {}
2249
HotFuncInfo__anon611ca1760e11::HotFuncInfo2250 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
2251 : FuncName(FN), TotalCount(TS), TotalCountPercent(TSP), MaxCount(MS),
2252 EntryCount(ES) {}
2253 };
2254 } // namespace
2255
2256 // Print out detailed information about hot functions in PrintValues vector.
2257 // Users specify titles and offset of every columns through ColumnTitle and
2258 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
2259 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
2260 // print out or let it be an empty string.
dumpHotFunctionList(const std::vector<std::string> & ColumnTitle,const std::vector<int> & ColumnOffset,const std::vector<HotFuncInfo> & PrintValues,uint64_t HotFuncCount,uint64_t TotalFuncCount,uint64_t HotProfCount,uint64_t TotalProfCount,const std::string & HotFuncMetric,raw_fd_ostream & OS)2261 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
2262 const std::vector<int> &ColumnOffset,
2263 const std::vector<HotFuncInfo> &PrintValues,
2264 uint64_t HotFuncCount, uint64_t TotalFuncCount,
2265 uint64_t HotProfCount, uint64_t TotalProfCount,
2266 const std::string &HotFuncMetric,
2267 raw_fd_ostream &OS) {
2268 assert(ColumnOffset.size() == ColumnTitle.size() &&
2269 "ColumnOffset and ColumnTitle should have the same size");
2270 assert(ColumnTitle.size() >= 4 &&
2271 "ColumnTitle should have at least 4 elements");
2272 assert(TotalFuncCount > 0 &&
2273 "There should be at least one function in the profile");
2274 double TotalProfPercent = 0;
2275 if (TotalProfCount > 0)
2276 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
2277
2278 formatted_raw_ostream FOS(OS);
2279 FOS << HotFuncCount << " out of " << TotalFuncCount
2280 << " functions with profile ("
2281 << format("%.2f%%",
2282 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
2283 << ") are considered hot functions";
2284 if (!HotFuncMetric.empty())
2285 FOS << " (" << HotFuncMetric << ")";
2286 FOS << ".\n";
2287 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
2288 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
2289
2290 for (size_t I = 0; I < ColumnTitle.size(); ++I) {
2291 FOS.PadToColumn(ColumnOffset[I]);
2292 FOS << ColumnTitle[I];
2293 }
2294 FOS << "\n";
2295
2296 for (const HotFuncInfo &R : PrintValues) {
2297 FOS.PadToColumn(ColumnOffset[0]);
2298 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
2299 FOS.PadToColumn(ColumnOffset[1]);
2300 FOS << R.MaxCount;
2301 FOS.PadToColumn(ColumnOffset[2]);
2302 FOS << R.EntryCount;
2303 FOS.PadToColumn(ColumnOffset[3]);
2304 FOS << R.FuncName << "\n";
2305 }
2306 }
2307
2308 static int
showHotFunctionList(const StringMap<sampleprof::FunctionSamples> & Profiles,ProfileSummary & PS,raw_fd_ostream & OS)2309 showHotFunctionList(const StringMap<sampleprof::FunctionSamples> &Profiles,
2310 ProfileSummary &PS, raw_fd_ostream &OS) {
2311 using namespace sampleprof;
2312
2313 const uint32_t HotFuncCutoff = 990000;
2314 auto &SummaryVector = PS.getDetailedSummary();
2315 uint64_t MinCountThreshold = 0;
2316 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
2317 if (SummaryEntry.Cutoff == HotFuncCutoff) {
2318 MinCountThreshold = SummaryEntry.MinCount;
2319 break;
2320 }
2321 }
2322
2323 // Traverse all functions in the profile and keep only hot functions.
2324 // The following loop also calculates the sum of total samples of all
2325 // functions.
2326 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
2327 std::greater<uint64_t>>
2328 HotFunc;
2329 uint64_t ProfileTotalSample = 0;
2330 uint64_t HotFuncSample = 0;
2331 uint64_t HotFuncCount = 0;
2332
2333 for (const auto &I : Profiles) {
2334 FuncSampleStats FuncStats;
2335 const FunctionSamples &FuncProf = I.second;
2336 ProfileTotalSample += FuncProf.getTotalSamples();
2337 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
2338
2339 if (isFunctionHot(FuncStats, MinCountThreshold)) {
2340 HotFunc.emplace(FuncProf.getTotalSamples(),
2341 std::make_pair(&(I.second), FuncStats.MaxSample));
2342 HotFuncSample += FuncProf.getTotalSamples();
2343 ++HotFuncCount;
2344 }
2345 }
2346
2347 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
2348 "Entry sample", "Function name"};
2349 std::vector<int> ColumnOffset{0, 24, 42, 58};
2350 std::string Metric =
2351 std::string("max sample >= ") + std::to_string(MinCountThreshold);
2352 std::vector<HotFuncInfo> PrintValues;
2353 for (const auto &FuncPair : HotFunc) {
2354 const FunctionSamples &Func = *FuncPair.second.first;
2355 double TotalSamplePercent =
2356 (ProfileTotalSample > 0)
2357 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
2358 : 0;
2359 PrintValues.emplace_back(HotFuncInfo(
2360 Func.getNameWithContext(), Func.getTotalSamples(), TotalSamplePercent,
2361 FuncPair.second.second, Func.getEntrySamples()));
2362 }
2363 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
2364 Profiles.size(), HotFuncSample, ProfileTotalSample,
2365 Metric, OS);
2366
2367 return 0;
2368 }
2369
showSampleProfile(const std::string & Filename,bool ShowCounts,bool ShowAllFunctions,bool ShowDetailedSummary,const std::string & ShowFunction,bool ShowProfileSymbolList,bool ShowSectionInfoOnly,bool ShowHotFuncList,raw_fd_ostream & OS)2370 static int showSampleProfile(const std::string &Filename, bool ShowCounts,
2371 bool ShowAllFunctions, bool ShowDetailedSummary,
2372 const std::string &ShowFunction,
2373 bool ShowProfileSymbolList,
2374 bool ShowSectionInfoOnly, bool ShowHotFuncList,
2375 raw_fd_ostream &OS) {
2376 using namespace sampleprof;
2377 LLVMContext Context;
2378 auto ReaderOrErr = SampleProfileReader::create(Filename, Context);
2379 if (std::error_code EC = ReaderOrErr.getError())
2380 exitWithErrorCode(EC, Filename);
2381
2382 auto Reader = std::move(ReaderOrErr.get());
2383
2384 if (ShowSectionInfoOnly) {
2385 showSectionInfo(Reader.get(), OS);
2386 return 0;
2387 }
2388
2389 if (std::error_code EC = Reader->read())
2390 exitWithErrorCode(EC, Filename);
2391
2392 if (ShowAllFunctions || ShowFunction.empty())
2393 Reader->dump(OS);
2394 else
2395 Reader->dumpFunctionProfile(ShowFunction, OS);
2396
2397 if (ShowProfileSymbolList) {
2398 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
2399 Reader->getProfileSymbolList();
2400 ReaderList->dump(OS);
2401 }
2402
2403 if (ShowDetailedSummary) {
2404 auto &PS = Reader->getSummary();
2405 PS.printSummary(OS);
2406 PS.printDetailedSummary(OS);
2407 }
2408
2409 if (ShowHotFuncList)
2410 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), OS);
2411
2412 return 0;
2413 }
2414
show_main(int argc,const char * argv[])2415 static int show_main(int argc, const char *argv[]) {
2416 cl::opt<std::string> Filename(cl::Positional, cl::Required,
2417 cl::desc("<profdata-file>"));
2418
2419 cl::opt<bool> ShowCounts("counts", cl::init(false),
2420 cl::desc("Show counter values for shown functions"));
2421 cl::opt<bool> TextFormat(
2422 "text", cl::init(false),
2423 cl::desc("Show instr profile data in text dump format"));
2424 cl::opt<bool> ShowIndirectCallTargets(
2425 "ic-targets", cl::init(false),
2426 cl::desc("Show indirect call site target values for shown functions"));
2427 cl::opt<bool> ShowMemOPSizes(
2428 "memop-sizes", cl::init(false),
2429 cl::desc("Show the profiled sizes of the memory intrinsic calls "
2430 "for shown functions"));
2431 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
2432 cl::desc("Show detailed profile summary"));
2433 cl::list<uint32_t> DetailedSummaryCutoffs(
2434 cl::CommaSeparated, "detailed-summary-cutoffs",
2435 cl::desc(
2436 "Cutoff percentages (times 10000) for generating detailed summary"),
2437 cl::value_desc("800000,901000,999999"));
2438 cl::opt<bool> ShowHotFuncList(
2439 "hot-func-list", cl::init(false),
2440 cl::desc("Show profile summary of a list of hot functions"));
2441 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
2442 cl::desc("Details for every function"));
2443 cl::opt<bool> ShowCS("showcs", cl::init(false),
2444 cl::desc("Show context sensitive counts"));
2445 cl::opt<std::string> ShowFunction("function",
2446 cl::desc("Details for matching functions"));
2447
2448 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
2449 cl::init("-"), cl::desc("Output file"));
2450 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
2451 cl::aliasopt(OutputFilename));
2452 cl::opt<ProfileKinds> ProfileKind(
2453 cl::desc("Profile kind:"), cl::init(instr),
2454 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2455 clEnumVal(sample, "Sample profile")));
2456 cl::opt<uint32_t> TopNFunctions(
2457 "topn", cl::init(0),
2458 cl::desc("Show the list of functions with the largest internal counts"));
2459 cl::opt<uint32_t> ValueCutoff(
2460 "value-cutoff", cl::init(0),
2461 cl::desc("Set the count value cutoff. Functions with the maximum count "
2462 "less than this value will not be printed out. (Default is 0)"));
2463 cl::opt<bool> OnlyListBelow(
2464 "list-below-cutoff", cl::init(false),
2465 cl::desc("Only output names of functions whose max count values are "
2466 "below the cutoff value"));
2467 cl::opt<bool> ShowProfileSymbolList(
2468 "show-prof-sym-list", cl::init(false),
2469 cl::desc("Show profile symbol list if it exists in the profile. "));
2470 cl::opt<bool> ShowSectionInfoOnly(
2471 "show-sec-info-only", cl::init(false),
2472 cl::desc("Show the information of each section in the sample profile. "
2473 "The flag is only usable when the sample profile is in "
2474 "extbinary format"));
2475
2476 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
2477
2478 if (OutputFilename.empty())
2479 OutputFilename = "-";
2480
2481 if (Filename == OutputFilename) {
2482 errs() << sys::path::filename(argv[0])
2483 << ": Input file name cannot be the same as the output file name!\n";
2484 return 1;
2485 }
2486
2487 std::error_code EC;
2488 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2489 if (EC)
2490 exitWithErrorCode(EC, OutputFilename);
2491
2492 if (ShowAllFunctions && !ShowFunction.empty())
2493 WithColor::warning() << "-function argument ignored: showing all functions\n";
2494
2495 if (ProfileKind == instr)
2496 return showInstrProfile(Filename, ShowCounts, TopNFunctions,
2497 ShowIndirectCallTargets, ShowMemOPSizes,
2498 ShowDetailedSummary, DetailedSummaryCutoffs,
2499 ShowAllFunctions, ShowCS, ValueCutoff,
2500 OnlyListBelow, ShowFunction, TextFormat, OS);
2501 else
2502 return showSampleProfile(Filename, ShowCounts, ShowAllFunctions,
2503 ShowDetailedSummary, ShowFunction,
2504 ShowProfileSymbolList, ShowSectionInfoOnly,
2505 ShowHotFuncList, OS);
2506 }
2507
main(int argc,const char * argv[])2508 int main(int argc, const char *argv[]) {
2509 InitLLVM X(argc, argv);
2510
2511 StringRef ProgName(sys::path::filename(argv[0]));
2512 if (argc > 1) {
2513 int (*func)(int, const char *[]) = nullptr;
2514
2515 if (strcmp(argv[1], "merge") == 0)
2516 func = merge_main;
2517 else if (strcmp(argv[1], "show") == 0)
2518 func = show_main;
2519 else if (strcmp(argv[1], "overlap") == 0)
2520 func = overlap_main;
2521
2522 if (func) {
2523 std::string Invocation(ProgName.str() + " " + argv[1]);
2524 argv[1] = Invocation.c_str();
2525 return func(argc - 1, argv + 1);
2526 }
2527
2528 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
2529 strcmp(argv[1], "--help") == 0) {
2530
2531 errs() << "OVERVIEW: LLVM profile data tools\n\n"
2532 << "USAGE: " << ProgName << " <command> [args...]\n"
2533 << "USAGE: " << ProgName << " <command> -help\n\n"
2534 << "See each individual command --help for more details.\n"
2535 << "Available commands: merge, show, overlap\n";
2536 return 0;
2537 }
2538 }
2539
2540 if (argc < 2)
2541 errs() << ProgName << ": No command specified!\n";
2542 else
2543 errs() << ProgName << ": Unknown command!\n";
2544
2545 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
2546 return 1;
2547 }
2548