1 //===- HexagonCommonGEP.cpp -----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/ADT/ArrayRef.h" 10 #include "llvm/ADT/FoldingSet.h" 11 #include "llvm/ADT/GraphTraits.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringRef.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/Analysis/PostDominators.h" 18 #include "llvm/IR/BasicBlock.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/Dominators.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/Instruction.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/Type.h" 27 #include "llvm/IR/Use.h" 28 #include "llvm/IR/User.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/IR/Verifier.h" 31 #include "llvm/InitializePasses.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/Allocator.h" 34 #include "llvm/Support/Casting.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Compiler.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 #include <cassert> 41 #include <cstddef> 42 #include <cstdint> 43 #include <iterator> 44 #include <map> 45 #include <set> 46 #include <utility> 47 #include <vector> 48 49 #define DEBUG_TYPE "commgep" 50 51 using namespace llvm; 52 53 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true), 54 cl::Hidden); 55 56 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden); 57 58 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true), 59 cl::Hidden); 60 61 namespace llvm { 62 63 void initializeHexagonCommonGEPPass(PassRegistry&); 64 65 } // end namespace llvm 66 67 namespace { 68 69 struct GepNode; 70 using NodeSet = std::set<GepNode *>; 71 using NodeToValueMap = std::map<GepNode *, Value *>; 72 using NodeVect = std::vector<GepNode *>; 73 using NodeChildrenMap = std::map<GepNode *, NodeVect>; 74 using UseSet = SetVector<Use *>; 75 using NodeToUsesMap = std::map<GepNode *, UseSet>; 76 77 // Numbering map for gep nodes. Used to keep track of ordering for 78 // gep nodes. 79 struct NodeOrdering { 80 NodeOrdering() = default; 81 82 void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); } 83 void clear() { Map.clear(); } 84 85 bool operator()(const GepNode *N1, const GepNode *N2) const { 86 auto F1 = Map.find(N1), F2 = Map.find(N2); 87 assert(F1 != Map.end() && F2 != Map.end()); 88 return F1->second < F2->second; 89 } 90 91 private: 92 std::map<const GepNode *, unsigned> Map; 93 unsigned LastNum = 0; 94 }; 95 96 class HexagonCommonGEP : public FunctionPass { 97 public: 98 static char ID; 99 100 HexagonCommonGEP() : FunctionPass(ID) { 101 initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry()); 102 } 103 104 bool runOnFunction(Function &F) override; 105 StringRef getPassName() const override { return "Hexagon Common GEP"; } 106 107 void getAnalysisUsage(AnalysisUsage &AU) const override { 108 AU.addRequired<DominatorTreeWrapperPass>(); 109 AU.addPreserved<DominatorTreeWrapperPass>(); 110 AU.addRequired<PostDominatorTreeWrapperPass>(); 111 AU.addPreserved<PostDominatorTreeWrapperPass>(); 112 AU.addRequired<LoopInfoWrapperPass>(); 113 AU.addPreserved<LoopInfoWrapperPass>(); 114 FunctionPass::getAnalysisUsage(AU); 115 } 116 117 private: 118 using ValueToNodeMap = std::map<Value *, GepNode *>; 119 using ValueVect = std::vector<Value *>; 120 using NodeToValuesMap = std::map<GepNode *, ValueVect>; 121 122 void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order); 123 bool isHandledGepForm(GetElementPtrInst *GepI); 124 void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM); 125 void collect(); 126 void common(); 127 128 BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM, 129 NodeToValueMap &Loc); 130 BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM, 131 NodeToValueMap &Loc); 132 bool isInvariantIn(Value *Val, Loop *L); 133 bool isInvariantIn(GepNode *Node, Loop *L); 134 bool isInMainPath(BasicBlock *B, Loop *L); 135 BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM, 136 NodeToValueMap &Loc); 137 void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc); 138 void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM, 139 NodeToValueMap &Loc); 140 void computeNodePlacement(NodeToValueMap &Loc); 141 142 Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 143 BasicBlock *LocB); 144 void getAllUsersForNode(GepNode *Node, ValueVect &Values, 145 NodeChildrenMap &NCM); 146 void materialize(NodeToValueMap &Loc); 147 148 void removeDeadCode(); 149 150 NodeVect Nodes; 151 NodeToUsesMap Uses; 152 NodeOrdering NodeOrder; // Node ordering, for deterministic behavior. 153 SpecificBumpPtrAllocator<GepNode> *Mem; 154 LLVMContext *Ctx; 155 LoopInfo *LI; 156 DominatorTree *DT; 157 PostDominatorTree *PDT; 158 Function *Fn; 159 }; 160 161 } // end anonymous namespace 162 163 char HexagonCommonGEP::ID = 0; 164 165 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 166 false, false) 167 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 170 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP", 171 false, false) 172 173 namespace { 174 175 struct GepNode { 176 enum { 177 None = 0, 178 Root = 0x01, 179 Internal = 0x02, 180 Used = 0x04, 181 InBounds = 0x08, 182 Pointer = 0x10, // See note below. 183 }; 184 // Note: GEP indices generally traverse nested types, and so a GepNode 185 // (representing a single index) can be associated with some composite 186 // type. The exception is the GEP input, which is a pointer, and not 187 // a composite type (at least not in the sense of having sub-types). 188 // Also, the corresponding index plays a different role as well: it is 189 // simply added to the input pointer. Since pointer types are becoming 190 // opaque (i.e. are no longer going to include the pointee type), the 191 // two pieces of information (1) the fact that it's a pointer, and 192 // (2) the pointee type, need to be stored separately. The pointee type 193 // will be stored in the PTy member, while the fact that the node 194 // operates on a pointer will be reflected by the flag "Pointer". 195 196 uint32_t Flags = 0; 197 union { 198 GepNode *Parent; 199 Value *BaseVal; 200 }; 201 Value *Idx = nullptr; 202 Type *PTy = nullptr; // Type indexed by this node. For pointer nodes 203 // this is the "pointee" type, and indexing a 204 // pointer does not change the type. 205 206 GepNode() : Parent(nullptr) {} 207 GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) { 208 if (Flags & Root) 209 BaseVal = N->BaseVal; 210 else 211 Parent = N->Parent; 212 } 213 214 friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN); 215 }; 216 217 raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) { 218 OS << "{ {"; 219 bool Comma = false; 220 if (GN.Flags & GepNode::Root) { 221 OS << "root"; 222 Comma = true; 223 } 224 if (GN.Flags & GepNode::Internal) { 225 if (Comma) 226 OS << ','; 227 OS << "internal"; 228 Comma = true; 229 } 230 if (GN.Flags & GepNode::Used) { 231 if (Comma) 232 OS << ','; 233 OS << "used"; 234 } 235 if (GN.Flags & GepNode::InBounds) { 236 if (Comma) 237 OS << ','; 238 OS << "inbounds"; 239 } 240 if (GN.Flags & GepNode::Pointer) { 241 if (Comma) 242 OS << ','; 243 OS << "pointer"; 244 } 245 OS << "} "; 246 if (GN.Flags & GepNode::Root) 247 OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')'; 248 else 249 OS << "Parent:" << GN.Parent; 250 251 OS << " Idx:"; 252 if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx)) 253 OS << CI->getValue().getSExtValue(); 254 else if (GN.Idx->hasName()) 255 OS << GN.Idx->getName(); 256 else 257 OS << "<anon> =" << *GN.Idx; 258 259 OS << " PTy:"; 260 if (GN.PTy->isStructTy()) { 261 StructType *STy = cast<StructType>(GN.PTy); 262 if (!STy->isLiteral()) 263 OS << GN.PTy->getStructName(); 264 else 265 OS << "<anon-struct>:" << *STy; 266 } 267 else 268 OS << *GN.PTy; 269 OS << " }"; 270 return OS; 271 } 272 273 template <typename NodeContainer> 274 void dump_node_container(raw_ostream &OS, const NodeContainer &S) { 275 using const_iterator = typename NodeContainer::const_iterator; 276 277 for (const_iterator I = S.begin(), E = S.end(); I != E; ++I) 278 OS << *I << ' ' << **I << '\n'; 279 } 280 281 raw_ostream &operator<< (raw_ostream &OS, 282 const NodeVect &S) LLVM_ATTRIBUTE_UNUSED; 283 raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) { 284 dump_node_container(OS, S); 285 return OS; 286 } 287 288 raw_ostream &operator<< (raw_ostream &OS, 289 const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED; 290 raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){ 291 for (const auto &I : M) { 292 const UseSet &Us = I.second; 293 OS << I.first << " -> #" << Us.size() << '{'; 294 for (const Use *U : Us) { 295 User *R = U->getUser(); 296 if (R->hasName()) 297 OS << ' ' << R->getName(); 298 else 299 OS << " <?>(" << *R << ')'; 300 } 301 OS << " }\n"; 302 } 303 return OS; 304 } 305 306 struct in_set { 307 in_set(const NodeSet &S) : NS(S) {} 308 309 bool operator() (GepNode *N) const { 310 return NS.find(N) != NS.end(); 311 } 312 313 private: 314 const NodeSet &NS; 315 }; 316 317 } // end anonymous namespace 318 319 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) { 320 return A.Allocate(); 321 } 322 323 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root, 324 ValueVect &Order) { 325 // Compute block ordering for a typical DT-based traversal of the flow 326 // graph: "before visiting a block, all of its dominators must have been 327 // visited". 328 329 Order.push_back(Root); 330 for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root))) 331 getBlockTraversalOrder(DTN->getBlock(), Order); 332 } 333 334 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) { 335 // No vector GEPs. 336 if (!GepI->getType()->isPointerTy()) 337 return false; 338 // No GEPs without any indices. (Is this possible?) 339 if (GepI->idx_begin() == GepI->idx_end()) 340 return false; 341 return true; 342 } 343 344 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI, 345 ValueToNodeMap &NM) { 346 LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n'); 347 GepNode *N = new (*Mem) GepNode; 348 Value *PtrOp = GepI->getPointerOperand(); 349 uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0; 350 ValueToNodeMap::iterator F = NM.find(PtrOp); 351 if (F == NM.end()) { 352 N->BaseVal = PtrOp; 353 N->Flags |= GepNode::Root | InBounds; 354 } else { 355 // If PtrOp was a GEP instruction, it must have already been processed. 356 // The ValueToNodeMap entry for it is the last gep node in the generated 357 // chain. Link to it here. 358 N->Parent = F->second; 359 } 360 N->PTy = GepI->getSourceElementType(); 361 N->Flags |= GepNode::Pointer; 362 N->Idx = *GepI->idx_begin(); 363 364 // Collect the list of users of this GEP instruction. Will add it to the 365 // last node created for it. 366 UseSet Us; 367 for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end(); 368 UI != UE; ++UI) { 369 // Check if this gep is used by anything other than other geps that 370 // we will process. 371 if (isa<GetElementPtrInst>(*UI)) { 372 GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI); 373 if (isHandledGepForm(UserG)) 374 continue; 375 } 376 Us.insert(&UI.getUse()); 377 } 378 Nodes.push_back(N); 379 NodeOrder.insert(N); 380 381 // Skip the first index operand, since it was already handled above. This 382 // dereferences the pointer operand. 383 GepNode *PN = N; 384 Type *PtrTy = GepI->getSourceElementType(); 385 for (Use &U : llvm::drop_begin(GepI->indices())) { 386 Value *Op = U; 387 GepNode *Nx = new (*Mem) GepNode; 388 Nx->Parent = PN; // Link Nx to the previous node. 389 Nx->Flags |= GepNode::Internal | InBounds; 390 Nx->PTy = PtrTy; 391 Nx->Idx = Op; 392 Nodes.push_back(Nx); 393 NodeOrder.insert(Nx); 394 PN = Nx; 395 396 PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op); 397 } 398 399 // After last node has been created, update the use information. 400 if (!Us.empty()) { 401 PN->Flags |= GepNode::Used; 402 Uses[PN].insert(Us.begin(), Us.end()); 403 } 404 405 // Link the last node with the originating GEP instruction. This is to 406 // help with linking chained GEP instructions. 407 NM.insert(std::make_pair(GepI, PN)); 408 } 409 410 void HexagonCommonGEP::collect() { 411 // Establish depth-first traversal order of the dominator tree. 412 ValueVect BO; 413 getBlockTraversalOrder(&Fn->front(), BO); 414 415 // The creation of gep nodes requires DT-traversal. When processing a GEP 416 // instruction that uses another GEP instruction as the base pointer, the 417 // gep node for the base pointer should already exist. 418 ValueToNodeMap NM; 419 for (Value *I : BO) { 420 BasicBlock *B = cast<BasicBlock>(I); 421 for (Instruction &J : *B) 422 if (auto *GepI = dyn_cast<GetElementPtrInst>(&J)) 423 if (isHandledGepForm(GepI)) 424 processGepInst(GepI, NM); 425 } 426 427 LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes); 428 } 429 430 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM, 431 NodeVect &Roots) { 432 for (GepNode *N : Nodes) { 433 if (N->Flags & GepNode::Root) { 434 Roots.push_back(N); 435 continue; 436 } 437 GepNode *PN = N->Parent; 438 NCM[PN].push_back(N); 439 } 440 } 441 442 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM, 443 NodeSet &Nodes) { 444 NodeVect Work; 445 Work.push_back(Root); 446 Nodes.insert(Root); 447 448 while (!Work.empty()) { 449 NodeVect::iterator First = Work.begin(); 450 GepNode *N = *First; 451 Work.erase(First); 452 NodeChildrenMap::iterator CF = NCM.find(N); 453 if (CF != NCM.end()) { 454 llvm::append_range(Work, CF->second); 455 Nodes.insert(CF->second.begin(), CF->second.end()); 456 } 457 } 458 } 459 460 namespace { 461 462 using NodeSymRel = std::set<NodeSet>; 463 using NodePair = std::pair<GepNode *, GepNode *>; 464 using NodePairSet = std::set<NodePair>; 465 466 } // end anonymous namespace 467 468 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) { 469 for (const NodeSet &S : Rel) 470 if (S.count(N)) 471 return &S; 472 return nullptr; 473 } 474 475 // Create an ordered pair of GepNode pointers. The pair will be used in 476 // determining equality. The only purpose of the ordering is to eliminate 477 // duplication due to the commutativity of equality/non-equality. 478 static NodePair node_pair(GepNode *N1, GepNode *N2) { 479 uintptr_t P1 = reinterpret_cast<uintptr_t>(N1); 480 uintptr_t P2 = reinterpret_cast<uintptr_t>(N2); 481 if (P1 <= P2) 482 return std::make_pair(N1, N2); 483 return std::make_pair(N2, N1); 484 } 485 486 static unsigned node_hash(GepNode *N) { 487 // Include everything except flags and parent. 488 FoldingSetNodeID ID; 489 ID.AddPointer(N->Idx); 490 ID.AddPointer(N->PTy); 491 return ID.ComputeHash(); 492 } 493 494 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq, 495 NodePairSet &Ne) { 496 // Don't cache the result for nodes with different hashes. The hash 497 // comparison is fast enough. 498 if (node_hash(N1) != node_hash(N2)) 499 return false; 500 501 NodePair NP = node_pair(N1, N2); 502 NodePairSet::iterator FEq = Eq.find(NP); 503 if (FEq != Eq.end()) 504 return true; 505 NodePairSet::iterator FNe = Ne.find(NP); 506 if (FNe != Ne.end()) 507 return false; 508 // Not previously compared. 509 bool Root1 = N1->Flags & GepNode::Root; 510 uint32_t CmpFlags = GepNode::Root | GepNode::Pointer; 511 bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags); 512 NodePair P = node_pair(N1, N2); 513 // If the root/pointer flags have different values, the nodes are 514 // different. 515 // If both nodes are root nodes, but their base pointers differ, 516 // they are different. 517 if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) { 518 Ne.insert(P); 519 return false; 520 } 521 // Here the root/pointer flags are identical, and for root nodes the 522 // base pointers are equal, so the root nodes are equal. 523 // For non-root nodes, compare their parent nodes. 524 if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) { 525 Eq.insert(P); 526 return true; 527 } 528 return false; 529 } 530 531 void HexagonCommonGEP::common() { 532 // The essence of this commoning is finding gep nodes that are equal. 533 // To do this we need to compare all pairs of nodes. To save time, 534 // first, partition the set of all nodes into sets of potentially equal 535 // nodes, and then compare pairs from within each partition. 536 using NodeSetMap = std::map<unsigned, NodeSet>; 537 NodeSetMap MaybeEq; 538 539 for (GepNode *N : Nodes) { 540 unsigned H = node_hash(N); 541 MaybeEq[H].insert(N); 542 } 543 544 // Compute the equivalence relation for the gep nodes. Use two caches, 545 // one for equality and the other for non-equality. 546 NodeSymRel EqRel; // Equality relation (as set of equivalence classes). 547 NodePairSet Eq, Ne; // Caches. 548 for (auto &I : MaybeEq) { 549 NodeSet &S = I.second; 550 for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) { 551 GepNode *N = *NI; 552 // If node already has a class, then the class must have been created 553 // in a prior iteration of this loop. Since equality is transitive, 554 // nothing more will be added to that class, so skip it. 555 if (node_class(N, EqRel)) 556 continue; 557 558 // Create a new class candidate now. 559 NodeSet C; 560 for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ) 561 if (node_eq(N, *NJ, Eq, Ne)) 562 C.insert(*NJ); 563 // If Tmp is empty, N would be the only element in it. Don't bother 564 // creating a class for it then. 565 if (!C.empty()) { 566 C.insert(N); // Finalize the set before adding it to the relation. 567 std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C); 568 (void)Ins; 569 assert(Ins.second && "Cannot add a class"); 570 } 571 } 572 } 573 574 LLVM_DEBUG({ 575 dbgs() << "Gep node equality:\n"; 576 for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I) 577 dbgs() << "{ " << I->first << ", " << I->second << " }\n"; 578 579 dbgs() << "Gep equivalence classes:\n"; 580 for (const NodeSet &S : EqRel) { 581 dbgs() << '{'; 582 for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) { 583 if (J != S.begin()) 584 dbgs() << ','; 585 dbgs() << ' ' << *J; 586 } 587 dbgs() << " }\n"; 588 } 589 }); 590 591 // Create a projection from a NodeSet to the minimal element in it. 592 using ProjMap = std::map<const NodeSet *, GepNode *>; 593 ProjMap PM; 594 for (const NodeSet &S : EqRel) { 595 GepNode *Min = *llvm::min_element(S, NodeOrder); 596 std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min)); 597 (void)Ins; 598 assert(Ins.second && "Cannot add minimal element"); 599 600 // Update the min element's flags, and user list. 601 uint32_t Flags = 0; 602 UseSet &MinUs = Uses[Min]; 603 for (GepNode *N : S) { 604 uint32_t NF = N->Flags; 605 // If N is used, append all original values of N to the list of 606 // original values of Min. 607 if (NF & GepNode::Used) 608 MinUs.insert(Uses[N].begin(), Uses[N].end()); 609 Flags |= NF; 610 } 611 if (MinUs.empty()) 612 Uses.erase(Min); 613 614 // The collected flags should include all the flags from the min element. 615 assert((Min->Flags & Flags) == Min->Flags); 616 Min->Flags = Flags; 617 } 618 619 // Commoning: for each non-root gep node, replace "Parent" with the 620 // selected (minimum) node from the corresponding equivalence class. 621 // If a given parent does not have an equivalence class, leave it 622 // unchanged (it means that it's the only element in its class). 623 for (GepNode *N : Nodes) { 624 if (N->Flags & GepNode::Root) 625 continue; 626 const NodeSet *PC = node_class(N->Parent, EqRel); 627 if (!PC) 628 continue; 629 ProjMap::iterator F = PM.find(PC); 630 if (F == PM.end()) 631 continue; 632 // Found a replacement, use it. 633 GepNode *Rep = F->second; 634 N->Parent = Rep; 635 } 636 637 LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes); 638 639 // Finally, erase the nodes that are no longer used. 640 NodeSet Erase; 641 for (GepNode *N : Nodes) { 642 const NodeSet *PC = node_class(N, EqRel); 643 if (!PC) 644 continue; 645 ProjMap::iterator F = PM.find(PC); 646 if (F == PM.end()) 647 continue; 648 if (N == F->second) 649 continue; 650 // Node for removal. 651 Erase.insert(N); 652 } 653 erase_if(Nodes, in_set(Erase)); 654 655 LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes); 656 } 657 658 template <typename T> 659 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) { 660 LLVM_DEBUG({ 661 dbgs() << "NCD of {"; 662 for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E; 663 ++I) { 664 if (!*I) 665 continue; 666 BasicBlock *B = cast<BasicBlock>(*I); 667 dbgs() << ' ' << B->getName(); 668 } 669 dbgs() << " }\n"; 670 }); 671 672 // Allow null basic blocks in Blocks. In such cases, return nullptr. 673 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 674 if (I == E || !*I) 675 return nullptr; 676 BasicBlock *Dom = cast<BasicBlock>(*I); 677 while (++I != E) { 678 BasicBlock *B = cast_or_null<BasicBlock>(*I); 679 Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr; 680 if (!Dom) 681 return nullptr; 682 } 683 LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n'); 684 return Dom; 685 } 686 687 template <typename T> 688 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) { 689 // If two blocks, A and B, dominate a block C, then A dominates B, 690 // or B dominates A. 691 typename T::iterator I = Blocks.begin(), E = Blocks.end(); 692 // Find the first non-null block. 693 while (I != E && !*I) 694 ++I; 695 if (I == E) 696 return DT->getRoot(); 697 BasicBlock *DomB = cast<BasicBlock>(*I); 698 while (++I != E) { 699 if (!*I) 700 continue; 701 BasicBlock *B = cast<BasicBlock>(*I); 702 if (DT->dominates(B, DomB)) 703 continue; 704 if (!DT->dominates(DomB, B)) 705 return nullptr; 706 DomB = B; 707 } 708 return DomB; 709 } 710 711 // Find the first use in B of any value from Values. If no such use, 712 // return B->end(). 713 template <typename T> 714 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) { 715 BasicBlock::iterator FirstUse = B->end(), BEnd = B->end(); 716 717 using iterator = typename T::iterator; 718 719 for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) { 720 Value *V = *I; 721 // If V is used in a PHI node, the use belongs to the incoming block, 722 // not the block with the PHI node. In the incoming block, the use 723 // would be considered as being at the end of it, so it cannot 724 // influence the position of the first use (which is assumed to be 725 // at the end to start with). 726 if (isa<PHINode>(V)) 727 continue; 728 if (!isa<Instruction>(V)) 729 continue; 730 Instruction *In = cast<Instruction>(V); 731 if (In->getParent() != B) 732 continue; 733 BasicBlock::iterator It = In->getIterator(); 734 if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd)) 735 FirstUse = It; 736 } 737 return FirstUse; 738 } 739 740 static bool is_empty(const BasicBlock *B) { 741 return B->empty() || (&*B->begin() == B->getTerminator()); 742 } 743 744 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node, 745 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 746 LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n'); 747 // Recalculate the placement for Node, assuming that the locations of 748 // its children in Loc are valid. 749 // Return nullptr if there is no valid placement for Node (for example, it 750 // uses an index value that is not available at the location required 751 // to dominate all children, etc.). 752 753 // Find the nearest common dominator for: 754 // - all users, if the node is used, and 755 // - all children. 756 ValueVect Bs; 757 if (Node->Flags & GepNode::Used) { 758 // Append all blocks with uses of the original values to the 759 // block vector Bs. 760 NodeToUsesMap::iterator UF = Uses.find(Node); 761 assert(UF != Uses.end() && "Used node with no use information"); 762 UseSet &Us = UF->second; 763 for (Use *U : Us) { 764 User *R = U->getUser(); 765 if (!isa<Instruction>(R)) 766 continue; 767 BasicBlock *PB = isa<PHINode>(R) 768 ? cast<PHINode>(R)->getIncomingBlock(*U) 769 : cast<Instruction>(R)->getParent(); 770 Bs.push_back(PB); 771 } 772 } 773 // Append the location of each child. 774 NodeChildrenMap::iterator CF = NCM.find(Node); 775 if (CF != NCM.end()) { 776 NodeVect &Cs = CF->second; 777 for (GepNode *CN : Cs) { 778 NodeToValueMap::iterator LF = Loc.find(CN); 779 // If the child is only used in GEP instructions (i.e. is not used in 780 // non-GEP instructions), the nearest dominator computed for it may 781 // have been null. In such case it won't have a location available. 782 if (LF == Loc.end()) 783 continue; 784 Bs.push_back(LF->second); 785 } 786 } 787 788 BasicBlock *DomB = nearest_common_dominator(DT, Bs); 789 if (!DomB) 790 return nullptr; 791 // Check if the index used by Node dominates the computed dominator. 792 Instruction *IdxI = dyn_cast<Instruction>(Node->Idx); 793 if (IdxI && !DT->dominates(IdxI->getParent(), DomB)) 794 return nullptr; 795 796 // Avoid putting nodes into empty blocks. 797 while (is_empty(DomB)) { 798 DomTreeNode *N = (*DT)[DomB]->getIDom(); 799 if (!N) 800 break; 801 DomB = N->getBlock(); 802 } 803 804 // Otherwise, DomB is fine. Update the location map. 805 Loc[Node] = DomB; 806 return DomB; 807 } 808 809 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node, 810 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 811 LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n'); 812 // Recalculate the placement of Node, after recursively recalculating the 813 // placements of all its children. 814 NodeChildrenMap::iterator CF = NCM.find(Node); 815 if (CF != NCM.end()) { 816 NodeVect &Cs = CF->second; 817 for (GepNode *C : Cs) 818 recalculatePlacementRec(C, NCM, Loc); 819 } 820 BasicBlock *LB = recalculatePlacement(Node, NCM, Loc); 821 LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n'); 822 return LB; 823 } 824 825 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) { 826 if (isa<Constant>(Val) || isa<Argument>(Val)) 827 return true; 828 Instruction *In = dyn_cast<Instruction>(Val); 829 if (!In) 830 return false; 831 BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent(); 832 return DT->properlyDominates(DefB, HdrB); 833 } 834 835 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) { 836 if (Node->Flags & GepNode::Root) 837 if (!isInvariantIn(Node->BaseVal, L)) 838 return false; 839 return isInvariantIn(Node->Idx, L); 840 } 841 842 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) { 843 BasicBlock *HB = L->getHeader(); 844 BasicBlock *LB = L->getLoopLatch(); 845 // B must post-dominate the loop header or dominate the loop latch. 846 if (PDT->dominates(B, HB)) 847 return true; 848 if (LB && DT->dominates(B, LB)) 849 return true; 850 return false; 851 } 852 853 static BasicBlock *preheader(DominatorTree *DT, Loop *L) { 854 if (BasicBlock *PH = L->getLoopPreheader()) 855 return PH; 856 if (!OptSpeculate) 857 return nullptr; 858 DomTreeNode *DN = DT->getNode(L->getHeader()); 859 if (!DN) 860 return nullptr; 861 return DN->getIDom()->getBlock(); 862 } 863 864 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node, 865 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 866 // Find the "topmost" location for Node: it must be dominated by both, 867 // its parent (or the BaseVal, if it's a root node), and by the index 868 // value. 869 ValueVect Bs; 870 if (Node->Flags & GepNode::Root) { 871 if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal)) 872 Bs.push_back(PIn->getParent()); 873 } else { 874 Bs.push_back(Loc[Node->Parent]); 875 } 876 if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx)) 877 Bs.push_back(IIn->getParent()); 878 BasicBlock *TopB = nearest_common_dominatee(DT, Bs); 879 880 // Traverse the loop nest upwards until we find a loop in which Node 881 // is no longer invariant, or until we get to the upper limit of Node's 882 // placement. The traversal will also stop when a suitable "preheader" 883 // cannot be found for a given loop. The "preheader" may actually be 884 // a regular block outside of the loop (i.e. not guarded), in which case 885 // the Node will be speculated. 886 // For nodes that are not in the main path of the containing loop (i.e. 887 // are not executed in each iteration), do not move them out of the loop. 888 BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]); 889 if (LocB) { 890 Loop *Lp = LI->getLoopFor(LocB); 891 while (Lp) { 892 if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp)) 893 break; 894 BasicBlock *NewLoc = preheader(DT, Lp); 895 if (!NewLoc || !DT->dominates(TopB, NewLoc)) 896 break; 897 Lp = Lp->getParentLoop(); 898 LocB = NewLoc; 899 } 900 } 901 Loc[Node] = LocB; 902 903 // Recursively compute the locations of all children nodes. 904 NodeChildrenMap::iterator CF = NCM.find(Node); 905 if (CF != NCM.end()) { 906 NodeVect &Cs = CF->second; 907 for (GepNode *C : Cs) 908 adjustForInvariance(C, NCM, Loc); 909 } 910 return LocB; 911 } 912 913 namespace { 914 915 struct LocationAsBlock { 916 LocationAsBlock(const NodeToValueMap &L) : Map(L) {} 917 918 const NodeToValueMap ⤅ 919 }; 920 921 raw_ostream &operator<< (raw_ostream &OS, 922 const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ; 923 raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) { 924 for (const auto &I : Loc.Map) { 925 OS << I.first << " -> "; 926 if (BasicBlock *B = cast_or_null<BasicBlock>(I.second)) 927 OS << B->getName() << '(' << B << ')'; 928 else 929 OS << "<null-block>"; 930 OS << '\n'; 931 } 932 return OS; 933 } 934 935 inline bool is_constant(GepNode *N) { 936 return isa<ConstantInt>(N->Idx); 937 } 938 939 } // end anonymous namespace 940 941 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U, 942 NodeToValueMap &Loc) { 943 User *R = U->getUser(); 944 LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R 945 << '\n'); 946 BasicBlock *PB = cast<Instruction>(R)->getParent(); 947 948 GepNode *N = Node; 949 GepNode *C = nullptr, *NewNode = nullptr; 950 while (is_constant(N) && !(N->Flags & GepNode::Root)) { 951 // XXX if (single-use) dont-replicate; 952 GepNode *NewN = new (*Mem) GepNode(N); 953 Nodes.push_back(NewN); 954 Loc[NewN] = PB; 955 956 if (N == Node) 957 NewNode = NewN; 958 NewN->Flags &= ~GepNode::Used; 959 if (C) 960 C->Parent = NewN; 961 C = NewN; 962 N = N->Parent; 963 } 964 if (!NewNode) 965 return; 966 967 // Move over all uses that share the same user as U from Node to NewNode. 968 NodeToUsesMap::iterator UF = Uses.find(Node); 969 assert(UF != Uses.end()); 970 UseSet &Us = UF->second; 971 UseSet NewUs; 972 for (Use *U : Us) { 973 if (U->getUser() == R) 974 NewUs.insert(U); 975 } 976 for (Use *U : NewUs) 977 Us.remove(U); // erase takes an iterator. 978 979 if (Us.empty()) { 980 Node->Flags &= ~GepNode::Used; 981 Uses.erase(UF); 982 } 983 984 // Should at least have U in NewUs. 985 NewNode->Flags |= GepNode::Used; 986 LLVM_DEBUG(dbgs() << "new node: " << NewNode << " " << *NewNode << '\n'); 987 assert(!NewUs.empty()); 988 Uses[NewNode] = NewUs; 989 } 990 991 void HexagonCommonGEP::separateConstantChains(GepNode *Node, 992 NodeChildrenMap &NCM, NodeToValueMap &Loc) { 993 // First approximation: extract all chains. 994 NodeSet Ns; 995 nodes_for_root(Node, NCM, Ns); 996 997 LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n'); 998 // Collect all used nodes together with the uses from loads and stores, 999 // where the GEP node could be folded into the load/store instruction. 1000 NodeToUsesMap FNs; // Foldable nodes. 1001 for (GepNode *N : Ns) { 1002 if (!(N->Flags & GepNode::Used)) 1003 continue; 1004 NodeToUsesMap::iterator UF = Uses.find(N); 1005 assert(UF != Uses.end()); 1006 UseSet &Us = UF->second; 1007 // Loads/stores that use the node N. 1008 UseSet LSs; 1009 for (Use *U : Us) { 1010 User *R = U->getUser(); 1011 // We're interested in uses that provide the address. It can happen 1012 // that the value may also be provided via GEP, but we won't handle 1013 // those cases here for now. 1014 if (LoadInst *Ld = dyn_cast<LoadInst>(R)) { 1015 unsigned PtrX = LoadInst::getPointerOperandIndex(); 1016 if (&Ld->getOperandUse(PtrX) == U) 1017 LSs.insert(U); 1018 } else if (StoreInst *St = dyn_cast<StoreInst>(R)) { 1019 unsigned PtrX = StoreInst::getPointerOperandIndex(); 1020 if (&St->getOperandUse(PtrX) == U) 1021 LSs.insert(U); 1022 } 1023 } 1024 // Even if the total use count is 1, separating the chain may still be 1025 // beneficial, since the constant chain may be longer than the GEP alone 1026 // would be (e.g. if the parent node has a constant index and also has 1027 // other children). 1028 if (!LSs.empty()) 1029 FNs.insert(std::make_pair(N, LSs)); 1030 } 1031 1032 LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs); 1033 1034 for (auto &FN : FNs) { 1035 GepNode *N = FN.first; 1036 UseSet &Us = FN.second; 1037 for (Use *U : Us) 1038 separateChainForNode(N, U, Loc); 1039 } 1040 } 1041 1042 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) { 1043 // Compute the inverse of the Node.Parent links. Also, collect the set 1044 // of root nodes. 1045 NodeChildrenMap NCM; 1046 NodeVect Roots; 1047 invert_find_roots(Nodes, NCM, Roots); 1048 1049 // Compute the initial placement determined by the users' locations, and 1050 // the locations of the child nodes. 1051 for (GepNode *Root : Roots) 1052 recalculatePlacementRec(Root, NCM, Loc); 1053 1054 LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc)); 1055 1056 if (OptEnableInv) { 1057 for (GepNode *Root : Roots) 1058 adjustForInvariance(Root, NCM, Loc); 1059 1060 LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n" 1061 << LocationAsBlock(Loc)); 1062 } 1063 if (OptEnableConst) { 1064 for (GepNode *Root : Roots) 1065 separateConstantChains(Root, NCM, Loc); 1066 } 1067 LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses); 1068 1069 // At the moment, there is no further refinement of the initial placement. 1070 // Such a refinement could include splitting the nodes if they are placed 1071 // too far from some of its users. 1072 1073 LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc)); 1074 } 1075 1076 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At, 1077 BasicBlock *LocB) { 1078 LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName() 1079 << " for nodes:\n" 1080 << NA); 1081 unsigned Num = NA.size(); 1082 GepNode *RN = NA[0]; 1083 assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root"); 1084 1085 GetElementPtrInst *NewInst = nullptr; 1086 Value *Input = RN->BaseVal; 1087 Type *InpTy = RN->PTy; 1088 1089 unsigned Idx = 0; 1090 do { 1091 SmallVector<Value*, 4> IdxList; 1092 // If the type of the input of the first node is not a pointer, 1093 // we need to add an artificial i32 0 to the indices (because the 1094 // actual input in the IR will be a pointer). 1095 if (!(NA[Idx]->Flags & GepNode::Pointer)) { 1096 Type *Int32Ty = Type::getInt32Ty(*Ctx); 1097 IdxList.push_back(ConstantInt::get(Int32Ty, 0)); 1098 } 1099 1100 // Keep adding indices from NA until we have to stop and generate 1101 // an "intermediate" GEP. 1102 while (++Idx <= Num) { 1103 GepNode *N = NA[Idx-1]; 1104 IdxList.push_back(N->Idx); 1105 if (Idx < Num) { 1106 // We have to stop if we reach a pointer. 1107 if (NA[Idx]->Flags & GepNode::Pointer) 1108 break; 1109 } 1110 } 1111 NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", At); 1112 NewInst->setIsInBounds(RN->Flags & GepNode::InBounds); 1113 LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n'); 1114 if (Idx < Num) { 1115 Input = NewInst; 1116 InpTy = NA[Idx]->PTy; 1117 } 1118 } while (Idx <= Num); 1119 1120 return NewInst; 1121 } 1122 1123 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values, 1124 NodeChildrenMap &NCM) { 1125 NodeVect Work; 1126 Work.push_back(Node); 1127 1128 while (!Work.empty()) { 1129 NodeVect::iterator First = Work.begin(); 1130 GepNode *N = *First; 1131 Work.erase(First); 1132 if (N->Flags & GepNode::Used) { 1133 NodeToUsesMap::iterator UF = Uses.find(N); 1134 assert(UF != Uses.end() && "No use information for used node"); 1135 UseSet &Us = UF->second; 1136 for (const auto &U : Us) 1137 Values.push_back(U->getUser()); 1138 } 1139 NodeChildrenMap::iterator CF = NCM.find(N); 1140 if (CF != NCM.end()) { 1141 NodeVect &Cs = CF->second; 1142 llvm::append_range(Work, Cs); 1143 } 1144 } 1145 } 1146 1147 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) { 1148 LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n'); 1149 NodeChildrenMap NCM; 1150 NodeVect Roots; 1151 // Compute the inversion again, since computing placement could alter 1152 // "parent" relation between nodes. 1153 invert_find_roots(Nodes, NCM, Roots); 1154 1155 while (!Roots.empty()) { 1156 NodeVect::iterator First = Roots.begin(); 1157 GepNode *Root = *First, *Last = *First; 1158 Roots.erase(First); 1159 1160 NodeVect NA; // Nodes to assemble. 1161 // Append to NA all child nodes up to (and including) the first child 1162 // that: 1163 // (1) has more than 1 child, or 1164 // (2) is used, or 1165 // (3) has a child located in a different block. 1166 bool LastUsed = false; 1167 unsigned LastCN = 0; 1168 // The location may be null if the computation failed (it can legitimately 1169 // happen for nodes created from dead GEPs). 1170 Value *LocV = Loc[Last]; 1171 if (!LocV) 1172 continue; 1173 BasicBlock *LastB = cast<BasicBlock>(LocV); 1174 do { 1175 NA.push_back(Last); 1176 LastUsed = (Last->Flags & GepNode::Used); 1177 if (LastUsed) 1178 break; 1179 NodeChildrenMap::iterator CF = NCM.find(Last); 1180 LastCN = (CF != NCM.end()) ? CF->second.size() : 0; 1181 if (LastCN != 1) 1182 break; 1183 GepNode *Child = CF->second.front(); 1184 BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]); 1185 if (ChildB != nullptr && LastB != ChildB) 1186 break; 1187 Last = Child; 1188 } while (true); 1189 1190 BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator(); 1191 if (LastUsed || LastCN > 0) { 1192 ValueVect Urs; 1193 getAllUsersForNode(Root, Urs, NCM); 1194 BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB); 1195 if (FirstUse != LastB->end()) 1196 InsertAt = FirstUse; 1197 } 1198 1199 // Generate a new instruction for NA. 1200 Value *NewInst = fabricateGEP(NA, InsertAt, LastB); 1201 1202 // Convert all the children of Last node into roots, and append them 1203 // to the Roots list. 1204 if (LastCN > 0) { 1205 NodeVect &Cs = NCM[Last]; 1206 for (GepNode *CN : Cs) { 1207 CN->Flags &= ~GepNode::Internal; 1208 CN->Flags |= GepNode::Root; 1209 CN->BaseVal = NewInst; 1210 Roots.push_back(CN); 1211 } 1212 } 1213 1214 // Lastly, if the Last node was used, replace all uses with the new GEP. 1215 // The uses reference the original GEP values. 1216 if (LastUsed) { 1217 NodeToUsesMap::iterator UF = Uses.find(Last); 1218 assert(UF != Uses.end() && "No use information found"); 1219 UseSet &Us = UF->second; 1220 for (Use *U : Us) 1221 U->set(NewInst); 1222 } 1223 } 1224 } 1225 1226 void HexagonCommonGEP::removeDeadCode() { 1227 ValueVect BO; 1228 BO.push_back(&Fn->front()); 1229 1230 for (unsigned i = 0; i < BO.size(); ++i) { 1231 BasicBlock *B = cast<BasicBlock>(BO[i]); 1232 for (auto *DTN : children<DomTreeNode *>(DT->getNode(B))) 1233 BO.push_back(DTN->getBlock()); 1234 } 1235 1236 for (Value *V : llvm::reverse(BO)) { 1237 BasicBlock *B = cast<BasicBlock>(V); 1238 ValueVect Ins; 1239 for (Instruction &I : llvm::reverse(*B)) 1240 Ins.push_back(&I); 1241 for (Value *I : Ins) { 1242 Instruction *In = cast<Instruction>(I); 1243 if (isInstructionTriviallyDead(In)) 1244 In->eraseFromParent(); 1245 } 1246 } 1247 } 1248 1249 bool HexagonCommonGEP::runOnFunction(Function &F) { 1250 if (skipFunction(F)) 1251 return false; 1252 1253 // For now bail out on C++ exception handling. 1254 for (const BasicBlock &BB : F) 1255 for (const Instruction &I : BB) 1256 if (isa<InvokeInst>(I) || isa<LandingPadInst>(I)) 1257 return false; 1258 1259 Fn = &F; 1260 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1261 PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree(); 1262 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1263 Ctx = &F.getContext(); 1264 1265 Nodes.clear(); 1266 Uses.clear(); 1267 NodeOrder.clear(); 1268 1269 SpecificBumpPtrAllocator<GepNode> Allocator; 1270 Mem = &Allocator; 1271 1272 collect(); 1273 common(); 1274 1275 NodeToValueMap Loc; 1276 computeNodePlacement(Loc); 1277 materialize(Loc); 1278 removeDeadCode(); 1279 1280 #ifdef EXPENSIVE_CHECKS 1281 // Run this only when expensive checks are enabled. 1282 if (verifyFunction(F, &dbgs())) 1283 report_fatal_error("Broken function"); 1284 #endif 1285 return true; 1286 } 1287 1288 namespace llvm { 1289 1290 FunctionPass *createHexagonCommonGEP() { 1291 return new HexagonCommonGEP(); 1292 } 1293 1294 } // end namespace llvm 1295