xref: /llvm-project/llvm/lib/Target/Hexagon/HexagonCommonGEP.cpp (revision 7e8bc5cf77bdda9e32b984b3fa91953361f24abb)
1 //===- HexagonCommonGEP.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/ADT/ArrayRef.h"
10 #include "llvm/ADT/FoldingSet.h"
11 #include "llvm/ADT/GraphTraits.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/PostDominators.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Function.h"
24 #include "llvm/IR/Instruction.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/IR/Use.h"
28 #include "llvm/IR/User.h"
29 #include "llvm/IR/Value.h"
30 #include "llvm/IR/Verifier.h"
31 #include "llvm/InitializePasses.h"
32 #include "llvm/Pass.h"
33 #include "llvm/Support/Allocator.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include <cassert>
41 #include <cstddef>
42 #include <cstdint>
43 #include <iterator>
44 #include <map>
45 #include <set>
46 #include <utility>
47 #include <vector>
48 
49 #define DEBUG_TYPE "commgep"
50 
51 using namespace llvm;
52 
53 static cl::opt<bool> OptSpeculate("commgep-speculate", cl::init(true),
54                                   cl::Hidden);
55 
56 static cl::opt<bool> OptEnableInv("commgep-inv", cl::init(true), cl::Hidden);
57 
58 static cl::opt<bool> OptEnableConst("commgep-const", cl::init(true),
59                                     cl::Hidden);
60 
61 namespace llvm {
62 
63   void initializeHexagonCommonGEPPass(PassRegistry&);
64 
65 } // end namespace llvm
66 
67 namespace {
68 
69   struct GepNode;
70   using NodeSet = std::set<GepNode *>;
71   using NodeToValueMap = std::map<GepNode *, Value *>;
72   using NodeVect = std::vector<GepNode *>;
73   using NodeChildrenMap = std::map<GepNode *, NodeVect>;
74   using UseSet = SetVector<Use *>;
75   using NodeToUsesMap = std::map<GepNode *, UseSet>;
76 
77   // Numbering map for gep nodes. Used to keep track of ordering for
78   // gep nodes.
79   struct NodeOrdering {
80     NodeOrdering() = default;
81 
82     void insert(const GepNode *N) { Map.insert(std::make_pair(N, ++LastNum)); }
83     void clear() { Map.clear(); }
84 
85     bool operator()(const GepNode *N1, const GepNode *N2) const {
86       auto F1 = Map.find(N1), F2 = Map.find(N2);
87       assert(F1 != Map.end() && F2 != Map.end());
88       return F1->second < F2->second;
89     }
90 
91   private:
92     std::map<const GepNode *, unsigned> Map;
93     unsigned LastNum = 0;
94   };
95 
96   class HexagonCommonGEP : public FunctionPass {
97   public:
98     static char ID;
99 
100     HexagonCommonGEP() : FunctionPass(ID) {
101       initializeHexagonCommonGEPPass(*PassRegistry::getPassRegistry());
102     }
103 
104     bool runOnFunction(Function &F) override;
105     StringRef getPassName() const override { return "Hexagon Common GEP"; }
106 
107     void getAnalysisUsage(AnalysisUsage &AU) const override {
108       AU.addRequired<DominatorTreeWrapperPass>();
109       AU.addPreserved<DominatorTreeWrapperPass>();
110       AU.addRequired<PostDominatorTreeWrapperPass>();
111       AU.addPreserved<PostDominatorTreeWrapperPass>();
112       AU.addRequired<LoopInfoWrapperPass>();
113       AU.addPreserved<LoopInfoWrapperPass>();
114       FunctionPass::getAnalysisUsage(AU);
115     }
116 
117   private:
118     using ValueToNodeMap = std::map<Value *, GepNode *>;
119     using ValueVect = std::vector<Value *>;
120     using NodeToValuesMap = std::map<GepNode *, ValueVect>;
121 
122     void getBlockTraversalOrder(BasicBlock *Root, ValueVect &Order);
123     bool isHandledGepForm(GetElementPtrInst *GepI);
124     void processGepInst(GetElementPtrInst *GepI, ValueToNodeMap &NM);
125     void collect();
126     void common();
127 
128     BasicBlock *recalculatePlacement(GepNode *Node, NodeChildrenMap &NCM,
129                                      NodeToValueMap &Loc);
130     BasicBlock *recalculatePlacementRec(GepNode *Node, NodeChildrenMap &NCM,
131                                         NodeToValueMap &Loc);
132     bool isInvariantIn(Value *Val, Loop *L);
133     bool isInvariantIn(GepNode *Node, Loop *L);
134     bool isInMainPath(BasicBlock *B, Loop *L);
135     BasicBlock *adjustForInvariance(GepNode *Node, NodeChildrenMap &NCM,
136                                     NodeToValueMap &Loc);
137     void separateChainForNode(GepNode *Node, Use *U, NodeToValueMap &Loc);
138     void separateConstantChains(GepNode *Node, NodeChildrenMap &NCM,
139                                 NodeToValueMap &Loc);
140     void computeNodePlacement(NodeToValueMap &Loc);
141 
142     Value *fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
143                         BasicBlock *LocB);
144     void getAllUsersForNode(GepNode *Node, ValueVect &Values,
145                             NodeChildrenMap &NCM);
146     void materialize(NodeToValueMap &Loc);
147 
148     void removeDeadCode();
149 
150     NodeVect Nodes;
151     NodeToUsesMap Uses;
152     NodeOrdering NodeOrder;   // Node ordering, for deterministic behavior.
153     SpecificBumpPtrAllocator<GepNode> *Mem;
154     LLVMContext *Ctx;
155     LoopInfo *LI;
156     DominatorTree *DT;
157     PostDominatorTree *PDT;
158     Function *Fn;
159   };
160 
161 } // end anonymous namespace
162 
163 char HexagonCommonGEP::ID = 0;
164 
165 INITIALIZE_PASS_BEGIN(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
166       false, false)
167 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
168 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
170 INITIALIZE_PASS_END(HexagonCommonGEP, "hcommgep", "Hexagon Common GEP",
171       false, false)
172 
173 namespace {
174 
175   struct GepNode {
176     enum {
177       None      = 0,
178       Root      = 0x01,
179       Internal  = 0x02,
180       Used      = 0x04,
181       InBounds  = 0x08,
182       Pointer   = 0x10,   // See note below.
183     };
184     // Note: GEP indices generally traverse nested types, and so a GepNode
185     // (representing a single index) can be associated with some composite
186     // type. The exception is the GEP input, which is a pointer, and not
187     // a composite type (at least not in the sense of having sub-types).
188     // Also, the corresponding index plays a different role as well: it is
189     // simply added to the input pointer. Since pointer types are becoming
190     // opaque (i.e. are no longer going to include the pointee type), the
191     // two pieces of information (1) the fact that it's a pointer, and
192     // (2) the pointee type, need to be stored separately. The pointee type
193     // will be stored in the PTy member, while the fact that the node
194     // operates on a pointer will be reflected by the flag "Pointer".
195 
196     uint32_t Flags = 0;
197     union {
198       GepNode *Parent;
199       Value *BaseVal;
200     };
201     Value *Idx = nullptr;
202     Type *PTy = nullptr;    // Type indexed by this node. For pointer nodes
203                             // this is the "pointee" type, and indexing a
204                             // pointer does not change the type.
205 
206     GepNode() : Parent(nullptr) {}
207     GepNode(const GepNode *N) : Flags(N->Flags), Idx(N->Idx), PTy(N->PTy) {
208       if (Flags & Root)
209         BaseVal = N->BaseVal;
210       else
211         Parent = N->Parent;
212     }
213 
214     friend raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN);
215   };
216 
217   raw_ostream &operator<< (raw_ostream &OS, const GepNode &GN) {
218     OS << "{ {";
219     bool Comma = false;
220     if (GN.Flags & GepNode::Root) {
221       OS << "root";
222       Comma = true;
223     }
224     if (GN.Flags & GepNode::Internal) {
225       if (Comma)
226         OS << ',';
227       OS << "internal";
228       Comma = true;
229     }
230     if (GN.Flags & GepNode::Used) {
231       if (Comma)
232         OS << ',';
233       OS << "used";
234     }
235     if (GN.Flags & GepNode::InBounds) {
236       if (Comma)
237         OS << ',';
238       OS << "inbounds";
239     }
240     if (GN.Flags & GepNode::Pointer) {
241       if (Comma)
242         OS << ',';
243       OS << "pointer";
244     }
245     OS << "} ";
246     if (GN.Flags & GepNode::Root)
247       OS << "BaseVal:" << GN.BaseVal->getName() << '(' << GN.BaseVal << ')';
248     else
249       OS << "Parent:" << GN.Parent;
250 
251     OS << " Idx:";
252     if (ConstantInt *CI = dyn_cast<ConstantInt>(GN.Idx))
253       OS << CI->getValue().getSExtValue();
254     else if (GN.Idx->hasName())
255       OS << GN.Idx->getName();
256     else
257       OS << "<anon> =" << *GN.Idx;
258 
259     OS << " PTy:";
260     if (GN.PTy->isStructTy()) {
261       StructType *STy = cast<StructType>(GN.PTy);
262       if (!STy->isLiteral())
263         OS << GN.PTy->getStructName();
264       else
265         OS << "<anon-struct>:" << *STy;
266     }
267     else
268       OS << *GN.PTy;
269     OS << " }";
270     return OS;
271   }
272 
273   template <typename NodeContainer>
274   void dump_node_container(raw_ostream &OS, const NodeContainer &S) {
275     using const_iterator = typename NodeContainer::const_iterator;
276 
277     for (const_iterator I = S.begin(), E = S.end(); I != E; ++I)
278       OS << *I << ' ' << **I << '\n';
279   }
280 
281   raw_ostream &operator<< (raw_ostream &OS,
282                            const NodeVect &S) LLVM_ATTRIBUTE_UNUSED;
283   raw_ostream &operator<< (raw_ostream &OS, const NodeVect &S) {
284     dump_node_container(OS, S);
285     return OS;
286   }
287 
288   raw_ostream &operator<< (raw_ostream &OS,
289                            const NodeToUsesMap &M) LLVM_ATTRIBUTE_UNUSED;
290   raw_ostream &operator<< (raw_ostream &OS, const NodeToUsesMap &M){
291     for (const auto &I : M) {
292       const UseSet &Us = I.second;
293       OS << I.first << " -> #" << Us.size() << '{';
294       for (const Use *U : Us) {
295         User *R = U->getUser();
296         if (R->hasName())
297           OS << ' ' << R->getName();
298         else
299           OS << " <?>(" << *R << ')';
300       }
301       OS << " }\n";
302     }
303     return OS;
304   }
305 
306   struct in_set {
307     in_set(const NodeSet &S) : NS(S) {}
308 
309     bool operator() (GepNode *N) const {
310       return NS.find(N) != NS.end();
311     }
312 
313   private:
314     const NodeSet &NS;
315   };
316 
317 } // end anonymous namespace
318 
319 inline void *operator new(size_t, SpecificBumpPtrAllocator<GepNode> &A) {
320   return A.Allocate();
321 }
322 
323 void HexagonCommonGEP::getBlockTraversalOrder(BasicBlock *Root,
324       ValueVect &Order) {
325   // Compute block ordering for a typical DT-based traversal of the flow
326   // graph: "before visiting a block, all of its dominators must have been
327   // visited".
328 
329   Order.push_back(Root);
330   for (auto *DTN : children<DomTreeNode*>(DT->getNode(Root)))
331     getBlockTraversalOrder(DTN->getBlock(), Order);
332 }
333 
334 bool HexagonCommonGEP::isHandledGepForm(GetElementPtrInst *GepI) {
335   // No vector GEPs.
336   if (!GepI->getType()->isPointerTy())
337     return false;
338   // No GEPs without any indices.  (Is this possible?)
339   if (GepI->idx_begin() == GepI->idx_end())
340     return false;
341   return true;
342 }
343 
344 void HexagonCommonGEP::processGepInst(GetElementPtrInst *GepI,
345       ValueToNodeMap &NM) {
346   LLVM_DEBUG(dbgs() << "Visiting GEP: " << *GepI << '\n');
347   GepNode *N = new (*Mem) GepNode;
348   Value *PtrOp = GepI->getPointerOperand();
349   uint32_t InBounds = GepI->isInBounds() ? GepNode::InBounds : 0;
350   ValueToNodeMap::iterator F = NM.find(PtrOp);
351   if (F == NM.end()) {
352     N->BaseVal = PtrOp;
353     N->Flags |= GepNode::Root | InBounds;
354   } else {
355     // If PtrOp was a GEP instruction, it must have already been processed.
356     // The ValueToNodeMap entry for it is the last gep node in the generated
357     // chain. Link to it here.
358     N->Parent = F->second;
359   }
360   N->PTy = GepI->getSourceElementType();
361   N->Flags |= GepNode::Pointer;
362   N->Idx = *GepI->idx_begin();
363 
364   // Collect the list of users of this GEP instruction. Will add it to the
365   // last node created for it.
366   UseSet Us;
367   for (Value::user_iterator UI = GepI->user_begin(), UE = GepI->user_end();
368        UI != UE; ++UI) {
369     // Check if this gep is used by anything other than other geps that
370     // we will process.
371     if (isa<GetElementPtrInst>(*UI)) {
372       GetElementPtrInst *UserG = cast<GetElementPtrInst>(*UI);
373       if (isHandledGepForm(UserG))
374         continue;
375     }
376     Us.insert(&UI.getUse());
377   }
378   Nodes.push_back(N);
379   NodeOrder.insert(N);
380 
381   // Skip the first index operand, since it was already handled above. This
382   // dereferences the pointer operand.
383   GepNode *PN = N;
384   Type *PtrTy = GepI->getSourceElementType();
385   for (Use &U : llvm::drop_begin(GepI->indices())) {
386     Value *Op = U;
387     GepNode *Nx = new (*Mem) GepNode;
388     Nx->Parent = PN;  // Link Nx to the previous node.
389     Nx->Flags |= GepNode::Internal | InBounds;
390     Nx->PTy = PtrTy;
391     Nx->Idx = Op;
392     Nodes.push_back(Nx);
393     NodeOrder.insert(Nx);
394     PN = Nx;
395 
396     PtrTy = GetElementPtrInst::getTypeAtIndex(PtrTy, Op);
397   }
398 
399   // After last node has been created, update the use information.
400   if (!Us.empty()) {
401     PN->Flags |= GepNode::Used;
402     Uses[PN].insert(Us.begin(), Us.end());
403   }
404 
405   // Link the last node with the originating GEP instruction. This is to
406   // help with linking chained GEP instructions.
407   NM.insert(std::make_pair(GepI, PN));
408 }
409 
410 void HexagonCommonGEP::collect() {
411   // Establish depth-first traversal order of the dominator tree.
412   ValueVect BO;
413   getBlockTraversalOrder(&Fn->front(), BO);
414 
415   // The creation of gep nodes requires DT-traversal. When processing a GEP
416   // instruction that uses another GEP instruction as the base pointer, the
417   // gep node for the base pointer should already exist.
418   ValueToNodeMap NM;
419   for (Value *I : BO) {
420     BasicBlock *B = cast<BasicBlock>(I);
421     for (Instruction &J : *B)
422       if (auto *GepI = dyn_cast<GetElementPtrInst>(&J))
423         if (isHandledGepForm(GepI))
424           processGepInst(GepI, NM);
425   }
426 
427   LLVM_DEBUG(dbgs() << "Gep nodes after initial collection:\n" << Nodes);
428 }
429 
430 static void invert_find_roots(const NodeVect &Nodes, NodeChildrenMap &NCM,
431                               NodeVect &Roots) {
432   for (GepNode *N : Nodes) {
433     if (N->Flags & GepNode::Root) {
434       Roots.push_back(N);
435       continue;
436     }
437     GepNode *PN = N->Parent;
438     NCM[PN].push_back(N);
439   }
440 }
441 
442 static void nodes_for_root(GepNode *Root, NodeChildrenMap &NCM,
443                            NodeSet &Nodes) {
444     NodeVect Work;
445     Work.push_back(Root);
446     Nodes.insert(Root);
447 
448     while (!Work.empty()) {
449       NodeVect::iterator First = Work.begin();
450       GepNode *N = *First;
451       Work.erase(First);
452       NodeChildrenMap::iterator CF = NCM.find(N);
453       if (CF != NCM.end()) {
454         llvm::append_range(Work, CF->second);
455         Nodes.insert(CF->second.begin(), CF->second.end());
456       }
457     }
458 }
459 
460 namespace {
461 
462   using NodeSymRel = std::set<NodeSet>;
463   using NodePair = std::pair<GepNode *, GepNode *>;
464   using NodePairSet = std::set<NodePair>;
465 
466 } // end anonymous namespace
467 
468 static const NodeSet *node_class(GepNode *N, NodeSymRel &Rel) {
469   for (const NodeSet &S : Rel)
470     if (S.count(N))
471       return &S;
472   return nullptr;
473 }
474 
475   // Create an ordered pair of GepNode pointers. The pair will be used in
476   // determining equality. The only purpose of the ordering is to eliminate
477   // duplication due to the commutativity of equality/non-equality.
478 static NodePair node_pair(GepNode *N1, GepNode *N2) {
479   uintptr_t P1 = reinterpret_cast<uintptr_t>(N1);
480   uintptr_t P2 = reinterpret_cast<uintptr_t>(N2);
481   if (P1 <= P2)
482     return std::make_pair(N1, N2);
483   return std::make_pair(N2, N1);
484 }
485 
486 static unsigned node_hash(GepNode *N) {
487     // Include everything except flags and parent.
488     FoldingSetNodeID ID;
489     ID.AddPointer(N->Idx);
490     ID.AddPointer(N->PTy);
491     return ID.ComputeHash();
492 }
493 
494 static bool node_eq(GepNode *N1, GepNode *N2, NodePairSet &Eq,
495                     NodePairSet &Ne) {
496     // Don't cache the result for nodes with different hashes. The hash
497     // comparison is fast enough.
498     if (node_hash(N1) != node_hash(N2))
499       return false;
500 
501     NodePair NP = node_pair(N1, N2);
502     NodePairSet::iterator FEq = Eq.find(NP);
503     if (FEq != Eq.end())
504       return true;
505     NodePairSet::iterator FNe = Ne.find(NP);
506     if (FNe != Ne.end())
507       return false;
508     // Not previously compared.
509     bool Root1 = N1->Flags & GepNode::Root;
510     uint32_t CmpFlags = GepNode::Root | GepNode::Pointer;
511     bool Different = (N1->Flags & CmpFlags) != (N2->Flags & CmpFlags);
512     NodePair P = node_pair(N1, N2);
513     // If the root/pointer flags have different values, the nodes are
514     // different.
515     // If both nodes are root nodes, but their base pointers differ,
516     // they are different.
517     if (Different || (Root1 && N1->BaseVal != N2->BaseVal)) {
518       Ne.insert(P);
519       return false;
520     }
521     // Here the root/pointer flags are identical, and for root nodes the
522     // base pointers are equal, so the root nodes are equal.
523     // For non-root nodes, compare their parent nodes.
524     if (Root1 || node_eq(N1->Parent, N2->Parent, Eq, Ne)) {
525       Eq.insert(P);
526       return true;
527     }
528     return false;
529 }
530 
531 void HexagonCommonGEP::common() {
532   // The essence of this commoning is finding gep nodes that are equal.
533   // To do this we need to compare all pairs of nodes. To save time,
534   // first, partition the set of all nodes into sets of potentially equal
535   // nodes, and then compare pairs from within each partition.
536   using NodeSetMap = std::map<unsigned, NodeSet>;
537   NodeSetMap MaybeEq;
538 
539   for (GepNode *N : Nodes) {
540     unsigned H = node_hash(N);
541     MaybeEq[H].insert(N);
542   }
543 
544   // Compute the equivalence relation for the gep nodes.  Use two caches,
545   // one for equality and the other for non-equality.
546   NodeSymRel EqRel;  // Equality relation (as set of equivalence classes).
547   NodePairSet Eq, Ne;  // Caches.
548   for (auto &I : MaybeEq) {
549     NodeSet &S = I.second;
550     for (NodeSet::iterator NI = S.begin(), NE = S.end(); NI != NE; ++NI) {
551       GepNode *N = *NI;
552       // If node already has a class, then the class must have been created
553       // in a prior iteration of this loop. Since equality is transitive,
554       // nothing more will be added to that class, so skip it.
555       if (node_class(N, EqRel))
556         continue;
557 
558       // Create a new class candidate now.
559       NodeSet C;
560       for (NodeSet::iterator NJ = std::next(NI); NJ != NE; ++NJ)
561         if (node_eq(N, *NJ, Eq, Ne))
562           C.insert(*NJ);
563       // If Tmp is empty, N would be the only element in it. Don't bother
564       // creating a class for it then.
565       if (!C.empty()) {
566         C.insert(N);  // Finalize the set before adding it to the relation.
567         std::pair<NodeSymRel::iterator, bool> Ins = EqRel.insert(C);
568         (void)Ins;
569         assert(Ins.second && "Cannot add a class");
570       }
571     }
572   }
573 
574   LLVM_DEBUG({
575     dbgs() << "Gep node equality:\n";
576     for (NodePairSet::iterator I = Eq.begin(), E = Eq.end(); I != E; ++I)
577       dbgs() << "{ " << I->first << ", " << I->second << " }\n";
578 
579     dbgs() << "Gep equivalence classes:\n";
580     for (const NodeSet &S : EqRel) {
581       dbgs() << '{';
582       for (NodeSet::const_iterator J = S.begin(), F = S.end(); J != F; ++J) {
583         if (J != S.begin())
584           dbgs() << ',';
585         dbgs() << ' ' << *J;
586       }
587       dbgs() << " }\n";
588     }
589   });
590 
591   // Create a projection from a NodeSet to the minimal element in it.
592   using ProjMap = std::map<const NodeSet *, GepNode *>;
593   ProjMap PM;
594   for (const NodeSet &S : EqRel) {
595     GepNode *Min = *llvm::min_element(S, NodeOrder);
596     std::pair<ProjMap::iterator,bool> Ins = PM.insert(std::make_pair(&S, Min));
597     (void)Ins;
598     assert(Ins.second && "Cannot add minimal element");
599 
600     // Update the min element's flags, and user list.
601     uint32_t Flags = 0;
602     UseSet &MinUs = Uses[Min];
603     for (GepNode *N : S) {
604       uint32_t NF = N->Flags;
605       // If N is used, append all original values of N to the list of
606       // original values of Min.
607       if (NF & GepNode::Used)
608         MinUs.insert(Uses[N].begin(), Uses[N].end());
609       Flags |= NF;
610     }
611     if (MinUs.empty())
612       Uses.erase(Min);
613 
614     // The collected flags should include all the flags from the min element.
615     assert((Min->Flags & Flags) == Min->Flags);
616     Min->Flags = Flags;
617   }
618 
619   // Commoning: for each non-root gep node, replace "Parent" with the
620   // selected (minimum) node from the corresponding equivalence class.
621   // If a given parent does not have an equivalence class, leave it
622   // unchanged (it means that it's the only element in its class).
623   for (GepNode *N : Nodes) {
624     if (N->Flags & GepNode::Root)
625       continue;
626     const NodeSet *PC = node_class(N->Parent, EqRel);
627     if (!PC)
628       continue;
629     ProjMap::iterator F = PM.find(PC);
630     if (F == PM.end())
631       continue;
632     // Found a replacement, use it.
633     GepNode *Rep = F->second;
634     N->Parent = Rep;
635   }
636 
637   LLVM_DEBUG(dbgs() << "Gep nodes after commoning:\n" << Nodes);
638 
639   // Finally, erase the nodes that are no longer used.
640   NodeSet Erase;
641   for (GepNode *N : Nodes) {
642     const NodeSet *PC = node_class(N, EqRel);
643     if (!PC)
644       continue;
645     ProjMap::iterator F = PM.find(PC);
646     if (F == PM.end())
647       continue;
648     if (N == F->second)
649       continue;
650     // Node for removal.
651     Erase.insert(N);
652   }
653   erase_if(Nodes, in_set(Erase));
654 
655   LLVM_DEBUG(dbgs() << "Gep nodes after post-commoning cleanup:\n" << Nodes);
656 }
657 
658 template <typename T>
659 static BasicBlock *nearest_common_dominator(DominatorTree *DT, T &Blocks) {
660   LLVM_DEBUG({
661     dbgs() << "NCD of {";
662     for (typename T::iterator I = Blocks.begin(), E = Blocks.end(); I != E;
663          ++I) {
664       if (!*I)
665         continue;
666       BasicBlock *B = cast<BasicBlock>(*I);
667       dbgs() << ' ' << B->getName();
668     }
669     dbgs() << " }\n";
670   });
671 
672   // Allow null basic blocks in Blocks.  In such cases, return nullptr.
673   typename T::iterator I = Blocks.begin(), E = Blocks.end();
674   if (I == E || !*I)
675     return nullptr;
676   BasicBlock *Dom = cast<BasicBlock>(*I);
677   while (++I != E) {
678     BasicBlock *B = cast_or_null<BasicBlock>(*I);
679     Dom = B ? DT->findNearestCommonDominator(Dom, B) : nullptr;
680     if (!Dom)
681       return nullptr;
682     }
683     LLVM_DEBUG(dbgs() << "computed:" << Dom->getName() << '\n');
684     return Dom;
685 }
686 
687 template <typename T>
688 static BasicBlock *nearest_common_dominatee(DominatorTree *DT, T &Blocks) {
689     // If two blocks, A and B, dominate a block C, then A dominates B,
690     // or B dominates A.
691     typename T::iterator I = Blocks.begin(), E = Blocks.end();
692     // Find the first non-null block.
693     while (I != E && !*I)
694       ++I;
695     if (I == E)
696       return DT->getRoot();
697     BasicBlock *DomB = cast<BasicBlock>(*I);
698     while (++I != E) {
699       if (!*I)
700         continue;
701       BasicBlock *B = cast<BasicBlock>(*I);
702       if (DT->dominates(B, DomB))
703         continue;
704       if (!DT->dominates(DomB, B))
705         return nullptr;
706       DomB = B;
707     }
708     return DomB;
709 }
710 
711 // Find the first use in B of any value from Values. If no such use,
712 // return B->end().
713 template <typename T>
714 static BasicBlock::iterator first_use_of_in_block(T &Values, BasicBlock *B) {
715     BasicBlock::iterator FirstUse = B->end(), BEnd = B->end();
716 
717     using iterator = typename T::iterator;
718 
719     for (iterator I = Values.begin(), E = Values.end(); I != E; ++I) {
720       Value *V = *I;
721       // If V is used in a PHI node, the use belongs to the incoming block,
722       // not the block with the PHI node. In the incoming block, the use
723       // would be considered as being at the end of it, so it cannot
724       // influence the position of the first use (which is assumed to be
725       // at the end to start with).
726       if (isa<PHINode>(V))
727         continue;
728       if (!isa<Instruction>(V))
729         continue;
730       Instruction *In = cast<Instruction>(V);
731       if (In->getParent() != B)
732         continue;
733       BasicBlock::iterator It = In->getIterator();
734       if (std::distance(FirstUse, BEnd) < std::distance(It, BEnd))
735         FirstUse = It;
736     }
737     return FirstUse;
738 }
739 
740 static bool is_empty(const BasicBlock *B) {
741     return B->empty() || (&*B->begin() == B->getTerminator());
742 }
743 
744 BasicBlock *HexagonCommonGEP::recalculatePlacement(GepNode *Node,
745       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
746   LLVM_DEBUG(dbgs() << "Loc for node:" << Node << '\n');
747   // Recalculate the placement for Node, assuming that the locations of
748   // its children in Loc are valid.
749   // Return nullptr if there is no valid placement for Node (for example, it
750   // uses an index value that is not available at the location required
751   // to dominate all children, etc.).
752 
753   // Find the nearest common dominator for:
754   // - all users, if the node is used, and
755   // - all children.
756   ValueVect Bs;
757   if (Node->Flags & GepNode::Used) {
758     // Append all blocks with uses of the original values to the
759     // block vector Bs.
760     NodeToUsesMap::iterator UF = Uses.find(Node);
761     assert(UF != Uses.end() && "Used node with no use information");
762     UseSet &Us = UF->second;
763     for (Use *U : Us) {
764       User *R = U->getUser();
765       if (!isa<Instruction>(R))
766         continue;
767       BasicBlock *PB = isa<PHINode>(R)
768           ? cast<PHINode>(R)->getIncomingBlock(*U)
769           : cast<Instruction>(R)->getParent();
770       Bs.push_back(PB);
771     }
772   }
773   // Append the location of each child.
774   NodeChildrenMap::iterator CF = NCM.find(Node);
775   if (CF != NCM.end()) {
776     NodeVect &Cs = CF->second;
777     for (GepNode *CN : Cs) {
778       NodeToValueMap::iterator LF = Loc.find(CN);
779       // If the child is only used in GEP instructions (i.e. is not used in
780       // non-GEP instructions), the nearest dominator computed for it may
781       // have been null. In such case it won't have a location available.
782       if (LF == Loc.end())
783         continue;
784       Bs.push_back(LF->second);
785     }
786   }
787 
788   BasicBlock *DomB = nearest_common_dominator(DT, Bs);
789   if (!DomB)
790     return nullptr;
791   // Check if the index used by Node dominates the computed dominator.
792   Instruction *IdxI = dyn_cast<Instruction>(Node->Idx);
793   if (IdxI && !DT->dominates(IdxI->getParent(), DomB))
794     return nullptr;
795 
796   // Avoid putting nodes into empty blocks.
797   while (is_empty(DomB)) {
798     DomTreeNode *N = (*DT)[DomB]->getIDom();
799     if (!N)
800       break;
801     DomB = N->getBlock();
802   }
803 
804   // Otherwise, DomB is fine. Update the location map.
805   Loc[Node] = DomB;
806   return DomB;
807 }
808 
809 BasicBlock *HexagonCommonGEP::recalculatePlacementRec(GepNode *Node,
810       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
811   LLVM_DEBUG(dbgs() << "LocRec begin for node:" << Node << '\n');
812   // Recalculate the placement of Node, after recursively recalculating the
813   // placements of all its children.
814   NodeChildrenMap::iterator CF = NCM.find(Node);
815   if (CF != NCM.end()) {
816     NodeVect &Cs = CF->second;
817     for (GepNode *C : Cs)
818       recalculatePlacementRec(C, NCM, Loc);
819   }
820   BasicBlock *LB = recalculatePlacement(Node, NCM, Loc);
821   LLVM_DEBUG(dbgs() << "LocRec end for node:" << Node << '\n');
822   return LB;
823 }
824 
825 bool HexagonCommonGEP::isInvariantIn(Value *Val, Loop *L) {
826   if (isa<Constant>(Val) || isa<Argument>(Val))
827     return true;
828   Instruction *In = dyn_cast<Instruction>(Val);
829   if (!In)
830     return false;
831   BasicBlock *HdrB = L->getHeader(), *DefB = In->getParent();
832   return DT->properlyDominates(DefB, HdrB);
833 }
834 
835 bool HexagonCommonGEP::isInvariantIn(GepNode *Node, Loop *L) {
836   if (Node->Flags & GepNode::Root)
837     if (!isInvariantIn(Node->BaseVal, L))
838       return false;
839   return isInvariantIn(Node->Idx, L);
840 }
841 
842 bool HexagonCommonGEP::isInMainPath(BasicBlock *B, Loop *L) {
843   BasicBlock *HB = L->getHeader();
844   BasicBlock *LB = L->getLoopLatch();
845   // B must post-dominate the loop header or dominate the loop latch.
846   if (PDT->dominates(B, HB))
847     return true;
848   if (LB && DT->dominates(B, LB))
849     return true;
850   return false;
851 }
852 
853 static BasicBlock *preheader(DominatorTree *DT, Loop *L) {
854   if (BasicBlock *PH = L->getLoopPreheader())
855     return PH;
856   if (!OptSpeculate)
857     return nullptr;
858   DomTreeNode *DN = DT->getNode(L->getHeader());
859   if (!DN)
860     return nullptr;
861   return DN->getIDom()->getBlock();
862 }
863 
864 BasicBlock *HexagonCommonGEP::adjustForInvariance(GepNode *Node,
865       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
866   // Find the "topmost" location for Node: it must be dominated by both,
867   // its parent (or the BaseVal, if it's a root node), and by the index
868   // value.
869   ValueVect Bs;
870   if (Node->Flags & GepNode::Root) {
871     if (Instruction *PIn = dyn_cast<Instruction>(Node->BaseVal))
872       Bs.push_back(PIn->getParent());
873   } else {
874     Bs.push_back(Loc[Node->Parent]);
875   }
876   if (Instruction *IIn = dyn_cast<Instruction>(Node->Idx))
877     Bs.push_back(IIn->getParent());
878   BasicBlock *TopB = nearest_common_dominatee(DT, Bs);
879 
880   // Traverse the loop nest upwards until we find a loop in which Node
881   // is no longer invariant, or until we get to the upper limit of Node's
882   // placement. The traversal will also stop when a suitable "preheader"
883   // cannot be found for a given loop. The "preheader" may actually be
884   // a regular block outside of the loop (i.e. not guarded), in which case
885   // the Node will be speculated.
886   // For nodes that are not in the main path of the containing loop (i.e.
887   // are not executed in each iteration), do not move them out of the loop.
888   BasicBlock *LocB = cast_or_null<BasicBlock>(Loc[Node]);
889   if (LocB) {
890     Loop *Lp = LI->getLoopFor(LocB);
891     while (Lp) {
892       if (!isInvariantIn(Node, Lp) || !isInMainPath(LocB, Lp))
893         break;
894       BasicBlock *NewLoc = preheader(DT, Lp);
895       if (!NewLoc || !DT->dominates(TopB, NewLoc))
896         break;
897       Lp = Lp->getParentLoop();
898       LocB = NewLoc;
899     }
900   }
901   Loc[Node] = LocB;
902 
903   // Recursively compute the locations of all children nodes.
904   NodeChildrenMap::iterator CF = NCM.find(Node);
905   if (CF != NCM.end()) {
906     NodeVect &Cs = CF->second;
907     for (GepNode *C : Cs)
908       adjustForInvariance(C, NCM, Loc);
909   }
910   return LocB;
911 }
912 
913 namespace {
914 
915   struct LocationAsBlock {
916     LocationAsBlock(const NodeToValueMap &L) : Map(L) {}
917 
918     const NodeToValueMap &Map;
919   };
920 
921   raw_ostream &operator<< (raw_ostream &OS,
922                            const LocationAsBlock &Loc) LLVM_ATTRIBUTE_UNUSED ;
923   raw_ostream &operator<< (raw_ostream &OS, const LocationAsBlock &Loc) {
924     for (const auto &I : Loc.Map) {
925       OS << I.first << " -> ";
926       if (BasicBlock *B = cast_or_null<BasicBlock>(I.second))
927         OS << B->getName() << '(' << B << ')';
928       else
929         OS << "<null-block>";
930       OS << '\n';
931     }
932     return OS;
933   }
934 
935   inline bool is_constant(GepNode *N) {
936     return isa<ConstantInt>(N->Idx);
937   }
938 
939 } // end anonymous namespace
940 
941 void HexagonCommonGEP::separateChainForNode(GepNode *Node, Use *U,
942       NodeToValueMap &Loc) {
943   User *R = U->getUser();
944   LLVM_DEBUG(dbgs() << "Separating chain for node (" << Node << ") user: " << *R
945                     << '\n');
946   BasicBlock *PB = cast<Instruction>(R)->getParent();
947 
948   GepNode *N = Node;
949   GepNode *C = nullptr, *NewNode = nullptr;
950   while (is_constant(N) && !(N->Flags & GepNode::Root)) {
951     // XXX if (single-use) dont-replicate;
952     GepNode *NewN = new (*Mem) GepNode(N);
953     Nodes.push_back(NewN);
954     Loc[NewN] = PB;
955 
956     if (N == Node)
957       NewNode = NewN;
958     NewN->Flags &= ~GepNode::Used;
959     if (C)
960       C->Parent = NewN;
961     C = NewN;
962     N = N->Parent;
963   }
964   if (!NewNode)
965     return;
966 
967   // Move over all uses that share the same user as U from Node to NewNode.
968   NodeToUsesMap::iterator UF = Uses.find(Node);
969   assert(UF != Uses.end());
970   UseSet &Us = UF->second;
971   UseSet NewUs;
972   for (Use *U : Us) {
973     if (U->getUser() == R)
974       NewUs.insert(U);
975   }
976   for (Use *U : NewUs)
977     Us.remove(U); // erase takes an iterator.
978 
979   if (Us.empty()) {
980     Node->Flags &= ~GepNode::Used;
981     Uses.erase(UF);
982   }
983 
984   // Should at least have U in NewUs.
985   NewNode->Flags |= GepNode::Used;
986   LLVM_DEBUG(dbgs() << "new node: " << NewNode << "  " << *NewNode << '\n');
987   assert(!NewUs.empty());
988   Uses[NewNode] = NewUs;
989 }
990 
991 void HexagonCommonGEP::separateConstantChains(GepNode *Node,
992       NodeChildrenMap &NCM, NodeToValueMap &Loc) {
993   // First approximation: extract all chains.
994   NodeSet Ns;
995   nodes_for_root(Node, NCM, Ns);
996 
997   LLVM_DEBUG(dbgs() << "Separating constant chains for node: " << Node << '\n');
998   // Collect all used nodes together with the uses from loads and stores,
999   // where the GEP node could be folded into the load/store instruction.
1000   NodeToUsesMap FNs; // Foldable nodes.
1001   for (GepNode *N : Ns) {
1002     if (!(N->Flags & GepNode::Used))
1003       continue;
1004     NodeToUsesMap::iterator UF = Uses.find(N);
1005     assert(UF != Uses.end());
1006     UseSet &Us = UF->second;
1007     // Loads/stores that use the node N.
1008     UseSet LSs;
1009     for (Use *U : Us) {
1010       User *R = U->getUser();
1011       // We're interested in uses that provide the address. It can happen
1012       // that the value may also be provided via GEP, but we won't handle
1013       // those cases here for now.
1014       if (LoadInst *Ld = dyn_cast<LoadInst>(R)) {
1015         unsigned PtrX = LoadInst::getPointerOperandIndex();
1016         if (&Ld->getOperandUse(PtrX) == U)
1017           LSs.insert(U);
1018       } else if (StoreInst *St = dyn_cast<StoreInst>(R)) {
1019         unsigned PtrX = StoreInst::getPointerOperandIndex();
1020         if (&St->getOperandUse(PtrX) == U)
1021           LSs.insert(U);
1022       }
1023     }
1024     // Even if the total use count is 1, separating the chain may still be
1025     // beneficial, since the constant chain may be longer than the GEP alone
1026     // would be (e.g. if the parent node has a constant index and also has
1027     // other children).
1028     if (!LSs.empty())
1029       FNs.insert(std::make_pair(N, LSs));
1030   }
1031 
1032   LLVM_DEBUG(dbgs() << "Nodes with foldable users:\n" << FNs);
1033 
1034   for (auto &FN : FNs) {
1035     GepNode *N = FN.first;
1036     UseSet &Us = FN.second;
1037     for (Use *U : Us)
1038       separateChainForNode(N, U, Loc);
1039   }
1040 }
1041 
1042 void HexagonCommonGEP::computeNodePlacement(NodeToValueMap &Loc) {
1043   // Compute the inverse of the Node.Parent links. Also, collect the set
1044   // of root nodes.
1045   NodeChildrenMap NCM;
1046   NodeVect Roots;
1047   invert_find_roots(Nodes, NCM, Roots);
1048 
1049   // Compute the initial placement determined by the users' locations, and
1050   // the locations of the child nodes.
1051   for (GepNode *Root : Roots)
1052     recalculatePlacementRec(Root, NCM, Loc);
1053 
1054   LLVM_DEBUG(dbgs() << "Initial node placement:\n" << LocationAsBlock(Loc));
1055 
1056   if (OptEnableInv) {
1057     for (GepNode *Root : Roots)
1058       adjustForInvariance(Root, NCM, Loc);
1059 
1060     LLVM_DEBUG(dbgs() << "Node placement after adjustment for invariance:\n"
1061                       << LocationAsBlock(Loc));
1062   }
1063   if (OptEnableConst) {
1064     for (GepNode *Root : Roots)
1065       separateConstantChains(Root, NCM, Loc);
1066   }
1067   LLVM_DEBUG(dbgs() << "Node use information:\n" << Uses);
1068 
1069   // At the moment, there is no further refinement of the initial placement.
1070   // Such a refinement could include splitting the nodes if they are placed
1071   // too far from some of its users.
1072 
1073   LLVM_DEBUG(dbgs() << "Final node placement:\n" << LocationAsBlock(Loc));
1074 }
1075 
1076 Value *HexagonCommonGEP::fabricateGEP(NodeVect &NA, BasicBlock::iterator At,
1077       BasicBlock *LocB) {
1078   LLVM_DEBUG(dbgs() << "Fabricating GEP in " << LocB->getName()
1079                     << " for nodes:\n"
1080                     << NA);
1081   unsigned Num = NA.size();
1082   GepNode *RN = NA[0];
1083   assert((RN->Flags & GepNode::Root) && "Creating GEP for non-root");
1084 
1085   GetElementPtrInst *NewInst = nullptr;
1086   Value *Input = RN->BaseVal;
1087   Type *InpTy = RN->PTy;
1088 
1089   unsigned Idx = 0;
1090   do {
1091     SmallVector<Value*, 4> IdxList;
1092     // If the type of the input of the first node is not a pointer,
1093     // we need to add an artificial i32 0 to the indices (because the
1094     // actual input in the IR will be a pointer).
1095     if (!(NA[Idx]->Flags & GepNode::Pointer)) {
1096       Type *Int32Ty = Type::getInt32Ty(*Ctx);
1097       IdxList.push_back(ConstantInt::get(Int32Ty, 0));
1098     }
1099 
1100     // Keep adding indices from NA until we have to stop and generate
1101     // an "intermediate" GEP.
1102     while (++Idx <= Num) {
1103       GepNode *N = NA[Idx-1];
1104       IdxList.push_back(N->Idx);
1105       if (Idx < Num) {
1106         // We have to stop if we reach a pointer.
1107         if (NA[Idx]->Flags & GepNode::Pointer)
1108           break;
1109       }
1110     }
1111     NewInst = GetElementPtrInst::Create(InpTy, Input, IdxList, "cgep", At);
1112     NewInst->setIsInBounds(RN->Flags & GepNode::InBounds);
1113     LLVM_DEBUG(dbgs() << "new GEP: " << *NewInst << '\n');
1114     if (Idx < Num) {
1115       Input = NewInst;
1116       InpTy = NA[Idx]->PTy;
1117     }
1118   } while (Idx <= Num);
1119 
1120   return NewInst;
1121 }
1122 
1123 void HexagonCommonGEP::getAllUsersForNode(GepNode *Node, ValueVect &Values,
1124       NodeChildrenMap &NCM) {
1125   NodeVect Work;
1126   Work.push_back(Node);
1127 
1128   while (!Work.empty()) {
1129     NodeVect::iterator First = Work.begin();
1130     GepNode *N = *First;
1131     Work.erase(First);
1132     if (N->Flags & GepNode::Used) {
1133       NodeToUsesMap::iterator UF = Uses.find(N);
1134       assert(UF != Uses.end() && "No use information for used node");
1135       UseSet &Us = UF->second;
1136       for (const auto &U : Us)
1137         Values.push_back(U->getUser());
1138     }
1139     NodeChildrenMap::iterator CF = NCM.find(N);
1140     if (CF != NCM.end()) {
1141       NodeVect &Cs = CF->second;
1142       llvm::append_range(Work, Cs);
1143     }
1144   }
1145 }
1146 
1147 void HexagonCommonGEP::materialize(NodeToValueMap &Loc) {
1148   LLVM_DEBUG(dbgs() << "Nodes before materialization:\n" << Nodes << '\n');
1149   NodeChildrenMap NCM;
1150   NodeVect Roots;
1151   // Compute the inversion again, since computing placement could alter
1152   // "parent" relation between nodes.
1153   invert_find_roots(Nodes, NCM, Roots);
1154 
1155   while (!Roots.empty()) {
1156     NodeVect::iterator First = Roots.begin();
1157     GepNode *Root = *First, *Last = *First;
1158     Roots.erase(First);
1159 
1160     NodeVect NA;  // Nodes to assemble.
1161     // Append to NA all child nodes up to (and including) the first child
1162     // that:
1163     // (1) has more than 1 child, or
1164     // (2) is used, or
1165     // (3) has a child located in a different block.
1166     bool LastUsed = false;
1167     unsigned LastCN = 0;
1168     // The location may be null if the computation failed (it can legitimately
1169     // happen for nodes created from dead GEPs).
1170     Value *LocV = Loc[Last];
1171     if (!LocV)
1172       continue;
1173     BasicBlock *LastB = cast<BasicBlock>(LocV);
1174     do {
1175       NA.push_back(Last);
1176       LastUsed = (Last->Flags & GepNode::Used);
1177       if (LastUsed)
1178         break;
1179       NodeChildrenMap::iterator CF = NCM.find(Last);
1180       LastCN = (CF != NCM.end()) ? CF->second.size() : 0;
1181       if (LastCN != 1)
1182         break;
1183       GepNode *Child = CF->second.front();
1184       BasicBlock *ChildB = cast_or_null<BasicBlock>(Loc[Child]);
1185       if (ChildB != nullptr && LastB != ChildB)
1186         break;
1187       Last = Child;
1188     } while (true);
1189 
1190     BasicBlock::iterator InsertAt = LastB->getTerminator()->getIterator();
1191     if (LastUsed || LastCN > 0) {
1192       ValueVect Urs;
1193       getAllUsersForNode(Root, Urs, NCM);
1194       BasicBlock::iterator FirstUse = first_use_of_in_block(Urs, LastB);
1195       if (FirstUse != LastB->end())
1196         InsertAt = FirstUse;
1197     }
1198 
1199     // Generate a new instruction for NA.
1200     Value *NewInst = fabricateGEP(NA, InsertAt, LastB);
1201 
1202     // Convert all the children of Last node into roots, and append them
1203     // to the Roots list.
1204     if (LastCN > 0) {
1205       NodeVect &Cs = NCM[Last];
1206       for (GepNode *CN : Cs) {
1207         CN->Flags &= ~GepNode::Internal;
1208         CN->Flags |= GepNode::Root;
1209         CN->BaseVal = NewInst;
1210         Roots.push_back(CN);
1211       }
1212     }
1213 
1214     // Lastly, if the Last node was used, replace all uses with the new GEP.
1215     // The uses reference the original GEP values.
1216     if (LastUsed) {
1217       NodeToUsesMap::iterator UF = Uses.find(Last);
1218       assert(UF != Uses.end() && "No use information found");
1219       UseSet &Us = UF->second;
1220       for (Use *U : Us)
1221         U->set(NewInst);
1222     }
1223   }
1224 }
1225 
1226 void HexagonCommonGEP::removeDeadCode() {
1227   ValueVect BO;
1228   BO.push_back(&Fn->front());
1229 
1230   for (unsigned i = 0; i < BO.size(); ++i) {
1231     BasicBlock *B = cast<BasicBlock>(BO[i]);
1232     for (auto *DTN : children<DomTreeNode *>(DT->getNode(B)))
1233       BO.push_back(DTN->getBlock());
1234   }
1235 
1236   for (Value *V : llvm::reverse(BO)) {
1237     BasicBlock *B = cast<BasicBlock>(V);
1238     ValueVect Ins;
1239     for (Instruction &I : llvm::reverse(*B))
1240       Ins.push_back(&I);
1241     for (Value *I : Ins) {
1242       Instruction *In = cast<Instruction>(I);
1243       if (isInstructionTriviallyDead(In))
1244         In->eraseFromParent();
1245     }
1246   }
1247 }
1248 
1249 bool HexagonCommonGEP::runOnFunction(Function &F) {
1250   if (skipFunction(F))
1251     return false;
1252 
1253   // For now bail out on C++ exception handling.
1254   for (const BasicBlock &BB : F)
1255     for (const Instruction &I : BB)
1256       if (isa<InvokeInst>(I) || isa<LandingPadInst>(I))
1257         return false;
1258 
1259   Fn = &F;
1260   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1261   PDT = &getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1262   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1263   Ctx = &F.getContext();
1264 
1265   Nodes.clear();
1266   Uses.clear();
1267   NodeOrder.clear();
1268 
1269   SpecificBumpPtrAllocator<GepNode> Allocator;
1270   Mem = &Allocator;
1271 
1272   collect();
1273   common();
1274 
1275   NodeToValueMap Loc;
1276   computeNodePlacement(Loc);
1277   materialize(Loc);
1278   removeDeadCode();
1279 
1280 #ifdef EXPENSIVE_CHECKS
1281   // Run this only when expensive checks are enabled.
1282   if (verifyFunction(F, &dbgs()))
1283     report_fatal_error("Broken function");
1284 #endif
1285   return true;
1286 }
1287 
1288 namespace llvm {
1289 
1290   FunctionPass *createHexagonCommonGEP() {
1291     return new HexagonCommonGEP();
1292   }
1293 
1294 } // end namespace llvm
1295