xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 //  https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12 //
13 // FIXME: This sanitizer does not yet handle scalable vectors
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/BinaryFormat/MachO.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DIBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstVisitor.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCSectionMachO.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/ScopedPrinter.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Transforms/Utils/ModuleUtils.h"
79 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iomanip>
85 #include <limits>
86 #include <memory>
87 #include <sstream>
88 #include <string>
89 #include <tuple>
90 
91 using namespace llvm;
92 
93 #define DEBUG_TYPE "asan"
94 
95 static const uint64_t kDefaultShadowScale = 3;
96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
98 static const uint64_t kDynamicShadowSentinel =
99     std::numeric_limits<uint64_t>::max();
100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF;  // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
108 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
111 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
112 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
113 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
114 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
115 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
116 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
117 static const uint64_t kEmscriptenShadowOffset = 0;
118 
119 static const uint64_t kMyriadShadowScale = 5;
120 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
121 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
122 static const uint64_t kMyriadTagShift = 29;
123 static const uint64_t kMyriadDDRTag = 4;
124 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
125 
126 // The shadow memory space is dynamically allocated.
127 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
128 
129 static const size_t kMinStackMallocSize = 1 << 6;   // 64B
130 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
131 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
132 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
133 
134 const char kAsanModuleCtorName[] = "asan.module_ctor";
135 const char kAsanModuleDtorName[] = "asan.module_dtor";
136 static const uint64_t kAsanCtorAndDtorPriority = 1;
137 // On Emscripten, the system needs more than one priorities for constructors.
138 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
139 const char kAsanReportErrorTemplate[] = "__asan_report_";
140 const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
141 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
142 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
143 const char kAsanUnregisterImageGlobalsName[] =
144     "__asan_unregister_image_globals";
145 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
146 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
147 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
148 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
149 const char kAsanInitName[] = "__asan_init";
150 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
151 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
152 const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
153 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass = 10;
155 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
156 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
157 const char kAsanGenPrefix[] = "___asan_gen_";
158 const char kODRGenPrefix[] = "__odr_asan_gen_";
159 const char kSanCovGenPrefix[] = "__sancov_gen_";
160 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
161 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
162 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
163 
164 // ASan version script has __asan_* wildcard. Triple underscore prevents a
165 // linker (gold) warning about attempting to export a local symbol.
166 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
167 
168 const char kAsanOptionDetectUseAfterReturn[] =
169     "__asan_option_detect_stack_use_after_return";
170 
171 const char kAsanShadowMemoryDynamicAddress[] =
172     "__asan_shadow_memory_dynamic_address";
173 
174 const char kAsanAllocaPoison[] = "__asan_alloca_poison";
175 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
176 
177 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
178 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
179 
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes = 5;
182 
183 static const unsigned kAllocaRzSize = 32;
184 
185 // Command-line flags.
186 
187 static cl::opt<bool> ClEnableKasan(
188     "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189     cl::Hidden, cl::init(false));
190 
191 static cl::opt<bool> ClRecover(
192     "asan-recover",
193     cl::desc("Enable recovery mode (continue-after-error)."),
194     cl::Hidden, cl::init(false));
195 
196 static cl::opt<bool> ClInsertVersionCheck(
197     "asan-guard-against-version-mismatch",
198     cl::desc("Guard against compiler/runtime version mismatch."),
199     cl::Hidden, cl::init(true));
200 
201 // This flag may need to be replaced with -f[no-]asan-reads.
202 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
203                                        cl::desc("instrument read instructions"),
204                                        cl::Hidden, cl::init(true));
205 
206 static cl::opt<bool> ClInstrumentWrites(
207     "asan-instrument-writes", cl::desc("instrument write instructions"),
208     cl::Hidden, cl::init(true));
209 
210 static cl::opt<bool> ClInstrumentAtomics(
211     "asan-instrument-atomics",
212     cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
213     cl::init(true));
214 
215 static cl::opt<bool>
216     ClInstrumentByval("asan-instrument-byval",
217                       cl::desc("instrument byval call arguments"), cl::Hidden,
218                       cl::init(true));
219 
220 static cl::opt<bool> ClAlwaysSlowPath(
221     "asan-always-slow-path",
222     cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
223     cl::init(false));
224 
225 static cl::opt<bool> ClForceDynamicShadow(
226     "asan-force-dynamic-shadow",
227     cl::desc("Load shadow address into a local variable for each function"),
228     cl::Hidden, cl::init(false));
229 
230 static cl::opt<bool>
231     ClWithIfunc("asan-with-ifunc",
232                 cl::desc("Access dynamic shadow through an ifunc global on "
233                          "platforms that support this"),
234                 cl::Hidden, cl::init(true));
235 
236 static cl::opt<bool> ClWithIfuncSuppressRemat(
237     "asan-with-ifunc-suppress-remat",
238     cl::desc("Suppress rematerialization of dynamic shadow address by passing "
239              "it through inline asm in prologue."),
240     cl::Hidden, cl::init(true));
241 
242 // This flag limits the number of instructions to be instrumented
243 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
244 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
245 // set it to 10000.
246 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
247     "asan-max-ins-per-bb", cl::init(10000),
248     cl::desc("maximal number of instructions to instrument in any given BB"),
249     cl::Hidden);
250 
251 // This flag may need to be replaced with -f[no]asan-stack.
252 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
253                              cl::Hidden, cl::init(true));
254 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
255     "asan-max-inline-poisoning-size",
256     cl::desc(
257         "Inline shadow poisoning for blocks up to the given size in bytes."),
258     cl::Hidden, cl::init(64));
259 
260 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
261                                       cl::desc("Check stack-use-after-return"),
262                                       cl::Hidden, cl::init(true));
263 
264 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
265                                         cl::desc("Create redzones for byval "
266                                                  "arguments (extra copy "
267                                                  "required)"), cl::Hidden,
268                                         cl::init(true));
269 
270 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
271                                      cl::desc("Check stack-use-after-scope"),
272                                      cl::Hidden, cl::init(false));
273 
274 // This flag may need to be replaced with -f[no]asan-globals.
275 static cl::opt<bool> ClGlobals("asan-globals",
276                                cl::desc("Handle global objects"), cl::Hidden,
277                                cl::init(true));
278 
279 static cl::opt<bool> ClInitializers("asan-initialization-order",
280                                     cl::desc("Handle C++ initializer order"),
281                                     cl::Hidden, cl::init(true));
282 
283 static cl::opt<bool> ClInvalidPointerPairs(
284     "asan-detect-invalid-pointer-pair",
285     cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
286     cl::init(false));
287 
288 static cl::opt<bool> ClInvalidPointerCmp(
289     "asan-detect-invalid-pointer-cmp",
290     cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
291     cl::init(false));
292 
293 static cl::opt<bool> ClInvalidPointerSub(
294     "asan-detect-invalid-pointer-sub",
295     cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
296     cl::init(false));
297 
298 static cl::opt<unsigned> ClRealignStack(
299     "asan-realign-stack",
300     cl::desc("Realign stack to the value of this flag (power of two)"),
301     cl::Hidden, cl::init(32));
302 
303 static cl::opt<int> ClInstrumentationWithCallsThreshold(
304     "asan-instrumentation-with-call-threshold",
305     cl::desc(
306         "If the function being instrumented contains more than "
307         "this number of memory accesses, use callbacks instead of "
308         "inline checks (-1 means never use callbacks)."),
309     cl::Hidden, cl::init(7000));
310 
311 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
312     "asan-memory-access-callback-prefix",
313     cl::desc("Prefix for memory access callbacks"), cl::Hidden,
314     cl::init("__asan_"));
315 
316 static cl::opt<bool>
317     ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
318                                cl::desc("instrument dynamic allocas"),
319                                cl::Hidden, cl::init(true));
320 
321 static cl::opt<bool> ClSkipPromotableAllocas(
322     "asan-skip-promotable-allocas",
323     cl::desc("Do not instrument promotable allocas"), cl::Hidden,
324     cl::init(true));
325 
326 // These flags allow to change the shadow mapping.
327 // The shadow mapping looks like
328 //    Shadow = (Mem >> scale) + offset
329 
330 static cl::opt<int> ClMappingScale("asan-mapping-scale",
331                                    cl::desc("scale of asan shadow mapping"),
332                                    cl::Hidden, cl::init(0));
333 
334 static cl::opt<uint64_t>
335     ClMappingOffset("asan-mapping-offset",
336                     cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
337                     cl::Hidden, cl::init(0));
338 
339 // Optimization flags. Not user visible, used mostly for testing
340 // and benchmarking the tool.
341 
342 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
343                            cl::Hidden, cl::init(true));
344 
345 static cl::opt<bool> ClOptSameTemp(
346     "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
347     cl::Hidden, cl::init(true));
348 
349 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
350                                   cl::desc("Don't instrument scalar globals"),
351                                   cl::Hidden, cl::init(true));
352 
353 static cl::opt<bool> ClOptStack(
354     "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
355     cl::Hidden, cl::init(false));
356 
357 static cl::opt<bool> ClDynamicAllocaStack(
358     "asan-stack-dynamic-alloca",
359     cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
360     cl::init(true));
361 
362 static cl::opt<uint32_t> ClForceExperiment(
363     "asan-force-experiment",
364     cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
365     cl::init(0));
366 
367 static cl::opt<bool>
368     ClUsePrivateAlias("asan-use-private-alias",
369                       cl::desc("Use private aliases for global variables"),
370                       cl::Hidden, cl::init(false));
371 
372 static cl::opt<bool>
373     ClUseOdrIndicator("asan-use-odr-indicator",
374                       cl::desc("Use odr indicators to improve ODR reporting"),
375                       cl::Hidden, cl::init(false));
376 
377 static cl::opt<bool>
378     ClUseGlobalsGC("asan-globals-live-support",
379                    cl::desc("Use linker features to support dead "
380                             "code stripping of globals"),
381                    cl::Hidden, cl::init(true));
382 
383 // This is on by default even though there is a bug in gold:
384 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
385 static cl::opt<bool>
386     ClWithComdat("asan-with-comdat",
387                  cl::desc("Place ASan constructors in comdat sections"),
388                  cl::Hidden, cl::init(true));
389 
390 static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
391     "asan-destructor-kind",
392     cl::desc("Sets the ASan destructor kind. The default is to use the value "
393              "provided to the pass constructor"),
394     cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
395                clEnumValN(AsanDtorKind::Global, "global",
396                           "Use global destructors")),
397     cl::init(AsanDtorKind::Invalid), cl::Hidden);
398 
399 // Debug flags.
400 
401 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
402                             cl::init(0));
403 
404 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
405                                  cl::Hidden, cl::init(0));
406 
407 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
408                                         cl::desc("Debug func"));
409 
410 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
411                                cl::Hidden, cl::init(-1));
412 
413 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
414                                cl::Hidden, cl::init(-1));
415 
416 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
417 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
418 STATISTIC(NumOptimizedAccessesToGlobalVar,
419           "Number of optimized accesses to global vars");
420 STATISTIC(NumOptimizedAccessesToStackVar,
421           "Number of optimized accesses to stack vars");
422 
423 namespace {
424 
425 /// This struct defines the shadow mapping using the rule:
426 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
427 /// If InGlobal is true, then
428 ///   extern char __asan_shadow[];
429 ///   shadow = (mem >> Scale) + &__asan_shadow
430 struct ShadowMapping {
431   int Scale;
432   uint64_t Offset;
433   bool OrShadowOffset;
434   bool InGlobal;
435 };
436 
437 } // end anonymous namespace
438 
getShadowMapping(Triple & TargetTriple,int LongSize,bool IsKasan)439 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
440                                       bool IsKasan) {
441   bool IsAndroid = TargetTriple.isAndroid();
442   bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
443   bool IsMacOS = TargetTriple.isMacOSX();
444   bool IsFreeBSD = TargetTriple.isOSFreeBSD();
445   bool IsNetBSD = TargetTriple.isOSNetBSD();
446   bool IsPS4CPU = TargetTriple.isPS4CPU();
447   bool IsLinux = TargetTriple.isOSLinux();
448   bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
449                  TargetTriple.getArch() == Triple::ppc64le;
450   bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
451   bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
452   bool IsMIPS32 = TargetTriple.isMIPS32();
453   bool IsMIPS64 = TargetTriple.isMIPS64();
454   bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
455   bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
456   bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
457   bool IsWindows = TargetTriple.isOSWindows();
458   bool IsFuchsia = TargetTriple.isOSFuchsia();
459   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
460   bool IsEmscripten = TargetTriple.isOSEmscripten();
461   bool IsAMDGPU = TargetTriple.isAMDGPU();
462 
463   // Asan support for AMDGPU assumes X86 as the host right now.
464   if (IsAMDGPU)
465     IsX86_64 = true;
466 
467   ShadowMapping Mapping;
468 
469   Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
470   if (ClMappingScale.getNumOccurrences() > 0) {
471     Mapping.Scale = ClMappingScale;
472   }
473 
474   if (LongSize == 32) {
475     if (IsAndroid)
476       Mapping.Offset = kDynamicShadowSentinel;
477     else if (IsMIPS32)
478       Mapping.Offset = kMIPS32_ShadowOffset32;
479     else if (IsFreeBSD)
480       Mapping.Offset = kFreeBSD_ShadowOffset32;
481     else if (IsNetBSD)
482       Mapping.Offset = kNetBSD_ShadowOffset32;
483     else if (IsIOS)
484       Mapping.Offset = kDynamicShadowSentinel;
485     else if (IsWindows)
486       Mapping.Offset = kWindowsShadowOffset32;
487     else if (IsEmscripten)
488       Mapping.Offset = kEmscriptenShadowOffset;
489     else if (IsMyriad) {
490       uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
491                                (kMyriadMemorySize32 >> Mapping.Scale));
492       Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
493     }
494     else
495       Mapping.Offset = kDefaultShadowOffset32;
496   } else {  // LongSize == 64
497     // Fuchsia is always PIE, which means that the beginning of the address
498     // space is always available.
499     if (IsFuchsia)
500       Mapping.Offset = 0;
501     else if (IsPPC64)
502       Mapping.Offset = kPPC64_ShadowOffset64;
503     else if (IsSystemZ)
504       Mapping.Offset = kSystemZ_ShadowOffset64;
505     else if (IsFreeBSD && !IsMIPS64) {
506       if (IsKasan)
507         Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
508       else
509         Mapping.Offset = kFreeBSD_ShadowOffset64;
510     } else if (IsNetBSD) {
511       if (IsKasan)
512         Mapping.Offset = kNetBSDKasan_ShadowOffset64;
513       else
514         Mapping.Offset = kNetBSD_ShadowOffset64;
515     } else if (IsPS4CPU)
516       Mapping.Offset = kPS4CPU_ShadowOffset64;
517     else if (IsLinux && IsX86_64) {
518       if (IsKasan)
519         Mapping.Offset = kLinuxKasan_ShadowOffset64;
520       else
521         Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
522                           (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
523     } else if (IsWindows && IsX86_64) {
524       Mapping.Offset = kWindowsShadowOffset64;
525     } else if (IsMIPS64)
526       Mapping.Offset = kMIPS64_ShadowOffset64;
527     else if (IsIOS)
528       Mapping.Offset = kDynamicShadowSentinel;
529     else if (IsMacOS && IsAArch64)
530       Mapping.Offset = kDynamicShadowSentinel;
531     else if (IsAArch64)
532       Mapping.Offset = kAArch64_ShadowOffset64;
533     else if (IsRISCV64)
534       Mapping.Offset = kRISCV64_ShadowOffset64;
535     else
536       Mapping.Offset = kDefaultShadowOffset64;
537   }
538 
539   if (ClForceDynamicShadow) {
540     Mapping.Offset = kDynamicShadowSentinel;
541   }
542 
543   if (ClMappingOffset.getNumOccurrences() > 0) {
544     Mapping.Offset = ClMappingOffset;
545   }
546 
547   // OR-ing shadow offset if more efficient (at least on x86) if the offset
548   // is a power of two, but on ppc64 we have to use add since the shadow
549   // offset is not necessary 1/8-th of the address space.  On SystemZ,
550   // we could OR the constant in a single instruction, but it's more
551   // efficient to load it once and use indexed addressing.
552   Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
553                            !IsRISCV64 &&
554                            !(Mapping.Offset & (Mapping.Offset - 1)) &&
555                            Mapping.Offset != kDynamicShadowSentinel;
556   bool IsAndroidWithIfuncSupport =
557       IsAndroid && !TargetTriple.isAndroidVersionLT(21);
558   Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
559 
560   return Mapping;
561 }
562 
getRedzoneSizeForScale(int MappingScale)563 static uint64_t getRedzoneSizeForScale(int MappingScale) {
564   // Redzone used for stack and globals is at least 32 bytes.
565   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
566   return std::max(32U, 1U << MappingScale);
567 }
568 
GetCtorAndDtorPriority(Triple & TargetTriple)569 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
570   if (TargetTriple.isOSEmscripten()) {
571     return kAsanEmscriptenCtorAndDtorPriority;
572   } else {
573     return kAsanCtorAndDtorPriority;
574   }
575 }
576 
577 namespace {
578 
579 /// Module analysis for getting various metadata about the module.
580 class ASanGlobalsMetadataWrapperPass : public ModulePass {
581 public:
582   static char ID;
583 
ASanGlobalsMetadataWrapperPass()584   ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
585     initializeASanGlobalsMetadataWrapperPassPass(
586         *PassRegistry::getPassRegistry());
587   }
588 
runOnModule(Module & M)589   bool runOnModule(Module &M) override {
590     GlobalsMD = GlobalsMetadata(M);
591     return false;
592   }
593 
getPassName() const594   StringRef getPassName() const override {
595     return "ASanGlobalsMetadataWrapperPass";
596   }
597 
getAnalysisUsage(AnalysisUsage & AU) const598   void getAnalysisUsage(AnalysisUsage &AU) const override {
599     AU.setPreservesAll();
600   }
601 
getGlobalsMD()602   GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
603 
604 private:
605   GlobalsMetadata GlobalsMD;
606 };
607 
608 char ASanGlobalsMetadataWrapperPass::ID = 0;
609 
610 /// AddressSanitizer: instrument the code in module to find memory bugs.
611 struct AddressSanitizer {
AddressSanitizer__anonac73263b0211::AddressSanitizer612   AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
613                    bool CompileKernel = false, bool Recover = false,
614                    bool UseAfterScope = false)
615       : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
616                                                             : CompileKernel),
617         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
618         UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
619     C = &(M.getContext());
620     LongSize = M.getDataLayout().getPointerSizeInBits();
621     IntptrTy = Type::getIntNTy(*C, LongSize);
622     TargetTriple = Triple(M.getTargetTriple());
623 
624     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
625   }
626 
getAllocaSizeInBytes__anonac73263b0211::AddressSanitizer627   uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
628     uint64_t ArraySize = 1;
629     if (AI.isArrayAllocation()) {
630       const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
631       assert(CI && "non-constant array size");
632       ArraySize = CI->getZExtValue();
633     }
634     Type *Ty = AI.getAllocatedType();
635     uint64_t SizeInBytes =
636         AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
637     return SizeInBytes * ArraySize;
638   }
639 
640   /// Check if we want (and can) handle this alloca.
641   bool isInterestingAlloca(const AllocaInst &AI);
642 
643   bool ignoreAccess(Value *Ptr);
644   void getInterestingMemoryOperands(
645       Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
646 
647   void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
648                      InterestingMemoryOperand &O, bool UseCalls,
649                      const DataLayout &DL);
650   void instrumentPointerComparisonOrSubtraction(Instruction *I);
651   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
652                          Value *Addr, uint32_t TypeSize, bool IsWrite,
653                          Value *SizeArgument, bool UseCalls, uint32_t Exp);
654   Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
655                                        Instruction *InsertBefore, Value *Addr,
656                                        uint32_t TypeSize, bool IsWrite,
657                                        Value *SizeArgument);
658   void instrumentUnusualSizeOrAlignment(Instruction *I,
659                                         Instruction *InsertBefore, Value *Addr,
660                                         uint32_t TypeSize, bool IsWrite,
661                                         Value *SizeArgument, bool UseCalls,
662                                         uint32_t Exp);
663   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
664                            Value *ShadowValue, uint32_t TypeSize);
665   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
666                                  bool IsWrite, size_t AccessSizeIndex,
667                                  Value *SizeArgument, uint32_t Exp);
668   void instrumentMemIntrinsic(MemIntrinsic *MI);
669   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
670   bool suppressInstrumentationSiteForDebug(int &Instrumented);
671   bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
672   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
673   bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
674   void markEscapedLocalAllocas(Function &F);
675 
676 private:
677   friend struct FunctionStackPoisoner;
678 
679   void initializeCallbacks(Module &M);
680 
681   bool LooksLikeCodeInBug11395(Instruction *I);
682   bool GlobalIsLinkerInitialized(GlobalVariable *G);
683   bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
684                     uint64_t TypeSize) const;
685 
686   /// Helper to cleanup per-function state.
687   struct FunctionStateRAII {
688     AddressSanitizer *Pass;
689 
FunctionStateRAII__anonac73263b0211::AddressSanitizer::FunctionStateRAII690     FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
691       assert(Pass->ProcessedAllocas.empty() &&
692              "last pass forgot to clear cache");
693       assert(!Pass->LocalDynamicShadow);
694     }
695 
~FunctionStateRAII__anonac73263b0211::AddressSanitizer::FunctionStateRAII696     ~FunctionStateRAII() {
697       Pass->LocalDynamicShadow = nullptr;
698       Pass->ProcessedAllocas.clear();
699     }
700   };
701 
702   LLVMContext *C;
703   Triple TargetTriple;
704   int LongSize;
705   bool CompileKernel;
706   bool Recover;
707   bool UseAfterScope;
708   Type *IntptrTy;
709   ShadowMapping Mapping;
710   FunctionCallee AsanHandleNoReturnFunc;
711   FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
712   Constant *AsanShadowGlobal;
713 
714   // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
715   FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
716   FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
717 
718   // These arrays is indexed by AccessIsWrite and Experiment.
719   FunctionCallee AsanErrorCallbackSized[2][2];
720   FunctionCallee AsanMemoryAccessCallbackSized[2][2];
721 
722   FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
723   Value *LocalDynamicShadow = nullptr;
724   const GlobalsMetadata &GlobalsMD;
725   DenseMap<const AllocaInst *, bool> ProcessedAllocas;
726 
727   FunctionCallee AMDGPUAddressShared;
728   FunctionCallee AMDGPUAddressPrivate;
729 };
730 
731 class AddressSanitizerLegacyPass : public FunctionPass {
732 public:
733   static char ID;
734 
AddressSanitizerLegacyPass(bool CompileKernel=false,bool Recover=false,bool UseAfterScope=false)735   explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
736                                       bool Recover = false,
737                                       bool UseAfterScope = false)
738       : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
739         UseAfterScope(UseAfterScope) {
740     initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
741   }
742 
getPassName() const743   StringRef getPassName() const override {
744     return "AddressSanitizerFunctionPass";
745   }
746 
getAnalysisUsage(AnalysisUsage & AU) const747   void getAnalysisUsage(AnalysisUsage &AU) const override {
748     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
749     AU.addRequired<TargetLibraryInfoWrapperPass>();
750   }
751 
runOnFunction(Function & F)752   bool runOnFunction(Function &F) override {
753     GlobalsMetadata &GlobalsMD =
754         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
755     const TargetLibraryInfo *TLI =
756         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
757     AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
758                           UseAfterScope);
759     return ASan.instrumentFunction(F, TLI);
760   }
761 
762 private:
763   bool CompileKernel;
764   bool Recover;
765   bool UseAfterScope;
766 };
767 
768 class ModuleAddressSanitizer {
769 public:
ModuleAddressSanitizer(Module & M,const GlobalsMetadata * GlobalsMD,bool CompileKernel=false,bool Recover=false,bool UseGlobalsGC=true,bool UseOdrIndicator=false,AsanDtorKind DestructorKind=AsanDtorKind::Global)770   ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
771                          bool CompileKernel = false, bool Recover = false,
772                          bool UseGlobalsGC = true, bool UseOdrIndicator = false,
773                          AsanDtorKind DestructorKind = AsanDtorKind::Global)
774       : GlobalsMD(*GlobalsMD),
775         CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
776                                                             : CompileKernel),
777         Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
778         UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
779         // Enable aliases as they should have no downside with ODR indicators.
780         UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
781         UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
782         // Not a typo: ClWithComdat is almost completely pointless without
783         // ClUseGlobalsGC (because then it only works on modules without
784         // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
785         // and both suffer from gold PR19002 for which UseGlobalsGC constructor
786         // argument is designed as workaround. Therefore, disable both
787         // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
788         // do globals-gc.
789         UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
790         DestructorKind(DestructorKind) {
791     C = &(M.getContext());
792     int LongSize = M.getDataLayout().getPointerSizeInBits();
793     IntptrTy = Type::getIntNTy(*C, LongSize);
794     TargetTriple = Triple(M.getTargetTriple());
795     Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
796 
797     if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
798       this->DestructorKind = ClOverrideDestructorKind;
799     assert(this->DestructorKind != AsanDtorKind::Invalid);
800   }
801 
802   bool instrumentModule(Module &);
803 
804 private:
805   void initializeCallbacks(Module &M);
806 
807   bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
808   void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
809                              ArrayRef<GlobalVariable *> ExtendedGlobals,
810                              ArrayRef<Constant *> MetadataInitializers);
811   void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
812                             ArrayRef<GlobalVariable *> ExtendedGlobals,
813                             ArrayRef<Constant *> MetadataInitializers,
814                             const std::string &UniqueModuleId);
815   void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
816                               ArrayRef<GlobalVariable *> ExtendedGlobals,
817                               ArrayRef<Constant *> MetadataInitializers);
818   void
819   InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
820                                      ArrayRef<GlobalVariable *> ExtendedGlobals,
821                                      ArrayRef<Constant *> MetadataInitializers);
822 
823   GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
824                                        StringRef OriginalName);
825   void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
826                                   StringRef InternalSuffix);
827   Instruction *CreateAsanModuleDtor(Module &M);
828 
829   const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
830   bool shouldInstrumentGlobal(GlobalVariable *G) const;
831   bool ShouldUseMachOGlobalsSection() const;
832   StringRef getGlobalMetadataSection() const;
833   void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
834   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
getMinRedzoneSizeForGlobal() const835   uint64_t getMinRedzoneSizeForGlobal() const {
836     return getRedzoneSizeForScale(Mapping.Scale);
837   }
838   uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
839   int GetAsanVersion(const Module &M) const;
840 
841   const GlobalsMetadata &GlobalsMD;
842   bool CompileKernel;
843   bool Recover;
844   bool UseGlobalsGC;
845   bool UsePrivateAlias;
846   bool UseOdrIndicator;
847   bool UseCtorComdat;
848   AsanDtorKind DestructorKind;
849   Type *IntptrTy;
850   LLVMContext *C;
851   Triple TargetTriple;
852   ShadowMapping Mapping;
853   FunctionCallee AsanPoisonGlobals;
854   FunctionCallee AsanUnpoisonGlobals;
855   FunctionCallee AsanRegisterGlobals;
856   FunctionCallee AsanUnregisterGlobals;
857   FunctionCallee AsanRegisterImageGlobals;
858   FunctionCallee AsanUnregisterImageGlobals;
859   FunctionCallee AsanRegisterElfGlobals;
860   FunctionCallee AsanUnregisterElfGlobals;
861 
862   Function *AsanCtorFunction = nullptr;
863   Function *AsanDtorFunction = nullptr;
864 };
865 
866 class ModuleAddressSanitizerLegacyPass : public ModulePass {
867 public:
868   static char ID;
869 
ModuleAddressSanitizerLegacyPass(bool CompileKernel=false,bool Recover=false,bool UseGlobalGC=true,bool UseOdrIndicator=false,AsanDtorKind DestructorKind=AsanDtorKind::Global)870   explicit ModuleAddressSanitizerLegacyPass(
871       bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true,
872       bool UseOdrIndicator = false,
873       AsanDtorKind DestructorKind = AsanDtorKind::Global)
874       : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
875         UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator),
876         DestructorKind(DestructorKind) {
877     initializeModuleAddressSanitizerLegacyPassPass(
878         *PassRegistry::getPassRegistry());
879   }
880 
getPassName() const881   StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
882 
getAnalysisUsage(AnalysisUsage & AU) const883   void getAnalysisUsage(AnalysisUsage &AU) const override {
884     AU.addRequired<ASanGlobalsMetadataWrapperPass>();
885   }
886 
runOnModule(Module & M)887   bool runOnModule(Module &M) override {
888     GlobalsMetadata &GlobalsMD =
889         getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
890     ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
891                                       UseGlobalGC, UseOdrIndicator,
892                                       DestructorKind);
893     return ASanModule.instrumentModule(M);
894   }
895 
896 private:
897   bool CompileKernel;
898   bool Recover;
899   bool UseGlobalGC;
900   bool UseOdrIndicator;
901   AsanDtorKind DestructorKind;
902 };
903 
904 // Stack poisoning does not play well with exception handling.
905 // When an exception is thrown, we essentially bypass the code
906 // that unpoisones the stack. This is why the run-time library has
907 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
908 // stack in the interceptor. This however does not work inside the
909 // actual function which catches the exception. Most likely because the
910 // compiler hoists the load of the shadow value somewhere too high.
911 // This causes asan to report a non-existing bug on 453.povray.
912 // It sounds like an LLVM bug.
913 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
914   Function &F;
915   AddressSanitizer &ASan;
916   DIBuilder DIB;
917   LLVMContext *C;
918   Type *IntptrTy;
919   Type *IntptrPtrTy;
920   ShadowMapping Mapping;
921 
922   SmallVector<AllocaInst *, 16> AllocaVec;
923   SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
924   SmallVector<Instruction *, 8> RetVec;
925   unsigned StackAlignment;
926 
927   FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
928       AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
929   FunctionCallee AsanSetShadowFunc[0x100] = {};
930   FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
931   FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
932 
933   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
934   struct AllocaPoisonCall {
935     IntrinsicInst *InsBefore;
936     AllocaInst *AI;
937     uint64_t Size;
938     bool DoPoison;
939   };
940   SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
941   SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
942   bool HasUntracedLifetimeIntrinsic = false;
943 
944   SmallVector<AllocaInst *, 1> DynamicAllocaVec;
945   SmallVector<IntrinsicInst *, 1> StackRestoreVec;
946   AllocaInst *DynamicAllocaLayout = nullptr;
947   IntrinsicInst *LocalEscapeCall = nullptr;
948 
949   bool HasInlineAsm = false;
950   bool HasReturnsTwiceCall = false;
951   bool PoisonStack;
952 
FunctionStackPoisoner__anonac73263b0211::FunctionStackPoisoner953   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
954       : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
955         C(ASan.C), IntptrTy(ASan.IntptrTy),
956         IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
957         StackAlignment(1 << Mapping.Scale),
958         PoisonStack(ClStack &&
959                     !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
960 
runOnFunction__anonac73263b0211::FunctionStackPoisoner961   bool runOnFunction() {
962     if (!PoisonStack)
963       return false;
964 
965     if (ClRedzoneByvalArgs)
966       copyArgsPassedByValToAllocas();
967 
968     // Collect alloca, ret, lifetime instructions etc.
969     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
970 
971     if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
972 
973     initializeCallbacks(*F.getParent());
974 
975     if (HasUntracedLifetimeIntrinsic) {
976       // If there are lifetime intrinsics which couldn't be traced back to an
977       // alloca, we may not know exactly when a variable enters scope, and
978       // therefore should "fail safe" by not poisoning them.
979       StaticAllocaPoisonCallVec.clear();
980       DynamicAllocaPoisonCallVec.clear();
981     }
982 
983     processDynamicAllocas();
984     processStaticAllocas();
985 
986     if (ClDebugStack) {
987       LLVM_DEBUG(dbgs() << F);
988     }
989     return true;
990   }
991 
992   // Arguments marked with the "byval" attribute are implicitly copied without
993   // using an alloca instruction.  To produce redzones for those arguments, we
994   // copy them a second time into memory allocated with an alloca instruction.
995   void copyArgsPassedByValToAllocas();
996 
997   // Finds all Alloca instructions and puts
998   // poisoned red zones around all of them.
999   // Then unpoison everything back before the function returns.
1000   void processStaticAllocas();
1001   void processDynamicAllocas();
1002 
1003   void createDynamicAllocasInitStorage();
1004 
1005   // ----------------------- Visitors.
1006   /// Collect all Ret instructions, or the musttail call instruction if it
1007   /// precedes the return instruction.
visitReturnInst__anonac73263b0211::FunctionStackPoisoner1008   void visitReturnInst(ReturnInst &RI) {
1009     if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1010       RetVec.push_back(CI);
1011     else
1012       RetVec.push_back(&RI);
1013   }
1014 
1015   /// Collect all Resume instructions.
visitResumeInst__anonac73263b0211::FunctionStackPoisoner1016   void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1017 
1018   /// Collect all CatchReturnInst instructions.
visitCleanupReturnInst__anonac73263b0211::FunctionStackPoisoner1019   void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1020 
unpoisonDynamicAllocasBeforeInst__anonac73263b0211::FunctionStackPoisoner1021   void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1022                                         Value *SavedStack) {
1023     IRBuilder<> IRB(InstBefore);
1024     Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1025     // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1026     // need to adjust extracted SP to compute the address of the most recent
1027     // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1028     // this purpose.
1029     if (!isa<ReturnInst>(InstBefore)) {
1030       Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1031           InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1032           {IntptrTy});
1033 
1034       Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1035 
1036       DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1037                                      DynamicAreaOffset);
1038     }
1039 
1040     IRB.CreateCall(
1041         AsanAllocasUnpoisonFunc,
1042         {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1043   }
1044 
1045   // Unpoison dynamic allocas redzones.
unpoisonDynamicAllocas__anonac73263b0211::FunctionStackPoisoner1046   void unpoisonDynamicAllocas() {
1047     for (Instruction *Ret : RetVec)
1048       unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1049 
1050     for (Instruction *StackRestoreInst : StackRestoreVec)
1051       unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1052                                        StackRestoreInst->getOperand(0));
1053   }
1054 
1055   // Deploy and poison redzones around dynamic alloca call. To do this, we
1056   // should replace this call with another one with changed parameters and
1057   // replace all its uses with new address, so
1058   //   addr = alloca type, old_size, align
1059   // is replaced by
1060   //   new_size = (old_size + additional_size) * sizeof(type)
1061   //   tmp = alloca i8, new_size, max(align, 32)
1062   //   addr = tmp + 32 (first 32 bytes are for the left redzone).
1063   // Additional_size is added to make new memory allocation contain not only
1064   // requested memory, but also left, partial and right redzones.
1065   void handleDynamicAllocaCall(AllocaInst *AI);
1066 
1067   /// Collect Alloca instructions we want (and can) handle.
visitAllocaInst__anonac73263b0211::FunctionStackPoisoner1068   void visitAllocaInst(AllocaInst &AI) {
1069     if (!ASan.isInterestingAlloca(AI)) {
1070       if (AI.isStaticAlloca()) {
1071         // Skip over allocas that are present *before* the first instrumented
1072         // alloca, we don't want to move those around.
1073         if (AllocaVec.empty())
1074           return;
1075 
1076         StaticAllocasToMoveUp.push_back(&AI);
1077       }
1078       return;
1079     }
1080 
1081     StackAlignment = std::max(StackAlignment, AI.getAlignment());
1082     if (!AI.isStaticAlloca())
1083       DynamicAllocaVec.push_back(&AI);
1084     else
1085       AllocaVec.push_back(&AI);
1086   }
1087 
1088   /// Collect lifetime intrinsic calls to check for use-after-scope
1089   /// errors.
visitIntrinsicInst__anonac73263b0211::FunctionStackPoisoner1090   void visitIntrinsicInst(IntrinsicInst &II) {
1091     Intrinsic::ID ID = II.getIntrinsicID();
1092     if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1093     if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1094     if (!ASan.UseAfterScope)
1095       return;
1096     if (!II.isLifetimeStartOrEnd())
1097       return;
1098     // Found lifetime intrinsic, add ASan instrumentation if necessary.
1099     auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1100     // If size argument is undefined, don't do anything.
1101     if (Size->isMinusOne()) return;
1102     // Check that size doesn't saturate uint64_t and can
1103     // be stored in IntptrTy.
1104     const uint64_t SizeValue = Size->getValue().getLimitedValue();
1105     if (SizeValue == ~0ULL ||
1106         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1107       return;
1108     // Find alloca instruction that corresponds to llvm.lifetime argument.
1109     // Currently we can only handle lifetime markers pointing to the
1110     // beginning of the alloca.
1111     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1112     if (!AI) {
1113       HasUntracedLifetimeIntrinsic = true;
1114       return;
1115     }
1116     // We're interested only in allocas we can handle.
1117     if (!ASan.isInterestingAlloca(*AI))
1118       return;
1119     bool DoPoison = (ID == Intrinsic::lifetime_end);
1120     AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1121     if (AI->isStaticAlloca())
1122       StaticAllocaPoisonCallVec.push_back(APC);
1123     else if (ClInstrumentDynamicAllocas)
1124       DynamicAllocaPoisonCallVec.push_back(APC);
1125   }
1126 
visitCallBase__anonac73263b0211::FunctionStackPoisoner1127   void visitCallBase(CallBase &CB) {
1128     if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1129       HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1130       HasReturnsTwiceCall |= CI->canReturnTwice();
1131     }
1132   }
1133 
1134   // ---------------------- Helpers.
1135   void initializeCallbacks(Module &M);
1136 
1137   // Copies bytes from ShadowBytes into shadow memory for indexes where
1138   // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1139   // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1140   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1141                     IRBuilder<> &IRB, Value *ShadowBase);
1142   void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1143                     size_t Begin, size_t End, IRBuilder<> &IRB,
1144                     Value *ShadowBase);
1145   void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1146                           ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1147                           size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1148 
1149   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1150 
1151   Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1152                                bool Dynamic);
1153   PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1154                      Instruction *ThenTerm, Value *ValueIfFalse);
1155 };
1156 
1157 } // end anonymous namespace
1158 
parse(MDNode * MDN)1159 void LocationMetadata::parse(MDNode *MDN) {
1160   assert(MDN->getNumOperands() == 3);
1161   MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1162   Filename = DIFilename->getString();
1163   LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1164   ColumnNo =
1165       mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1166 }
1167 
1168 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1169 // we want to sanitize instead and reading this metadata on each pass over a
1170 // function instead of reading module level metadata at first.
GlobalsMetadata(Module & M)1171 GlobalsMetadata::GlobalsMetadata(Module &M) {
1172   NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1173   if (!Globals)
1174     return;
1175   for (auto MDN : Globals->operands()) {
1176     // Metadata node contains the global and the fields of "Entry".
1177     assert(MDN->getNumOperands() == 5);
1178     auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1179     // The optimizer may optimize away a global entirely.
1180     if (!V)
1181       continue;
1182     auto *StrippedV = V->stripPointerCasts();
1183     auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1184     if (!GV)
1185       continue;
1186     // We can already have an entry for GV if it was merged with another
1187     // global.
1188     Entry &E = Entries[GV];
1189     if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1190       E.SourceLoc.parse(Loc);
1191     if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1192       E.Name = Name->getString();
1193     ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1194     E.IsDynInit |= IsDynInit->isOne();
1195     ConstantInt *IsExcluded =
1196         mdconst::extract<ConstantInt>(MDN->getOperand(4));
1197     E.IsExcluded |= IsExcluded->isOne();
1198   }
1199 }
1200 
1201 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1202 
run(Module & M,ModuleAnalysisManager & AM)1203 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1204                                                  ModuleAnalysisManager &AM) {
1205   return GlobalsMetadata(M);
1206 }
1207 
AddressSanitizerPass(bool CompileKernel,bool Recover,bool UseAfterScope)1208 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1209                                            bool UseAfterScope)
1210     : CompileKernel(CompileKernel), Recover(Recover),
1211       UseAfterScope(UseAfterScope) {}
1212 
run(Function & F,AnalysisManager<Function> & AM)1213 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1214                                             AnalysisManager<Function> &AM) {
1215   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1216   Module &M = *F.getParent();
1217   if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1218     const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1219     AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
1220     if (Sanitizer.instrumentFunction(F, TLI))
1221       return PreservedAnalyses::none();
1222     return PreservedAnalyses::all();
1223   }
1224 
1225   report_fatal_error(
1226       "The ASanGlobalsMetadataAnalysis is required to run before "
1227       "AddressSanitizer can run");
1228   return PreservedAnalyses::all();
1229 }
1230 
ModuleAddressSanitizerPass(bool CompileKernel,bool Recover,bool UseGlobalGC,bool UseOdrIndicator,AsanDtorKind DestructorKind)1231 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
1232     bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator,
1233     AsanDtorKind DestructorKind)
1234     : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1235       UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}
1236 
run(Module & M,AnalysisManager<Module> & AM)1237 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1238                                                   AnalysisManager<Module> &AM) {
1239   GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1240   ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1241                                    UseGlobalGC, UseOdrIndicator,
1242                                    DestructorKind);
1243   if (Sanitizer.instrumentModule(M))
1244     return PreservedAnalyses::none();
1245   return PreservedAnalyses::all();
1246 }
1247 
1248 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1249                 "Read metadata to mark which globals should be instrumented "
1250                 "when running ASan.",
1251                 false, true)
1252 
1253 char AddressSanitizerLegacyPass::ID = 0;
1254 
1255 INITIALIZE_PASS_BEGIN(
1256     AddressSanitizerLegacyPass, "asan",
1257     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1258     false)
INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)1259 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1260 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1261 INITIALIZE_PASS_END(
1262     AddressSanitizerLegacyPass, "asan",
1263     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1264     false)
1265 
1266 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1267                                                        bool Recover,
1268                                                        bool UseAfterScope) {
1269   assert(!CompileKernel || Recover);
1270   return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1271 }
1272 
1273 char ModuleAddressSanitizerLegacyPass::ID = 0;
1274 
1275 INITIALIZE_PASS(
1276     ModuleAddressSanitizerLegacyPass, "asan-module",
1277     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1278     "ModulePass",
1279     false, false)
1280 
createModuleAddressSanitizerLegacyPassPass(bool CompileKernel,bool Recover,bool UseGlobalsGC,bool UseOdrIndicator,AsanDtorKind Destructor)1281 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1282     bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator,
1283     AsanDtorKind Destructor) {
1284   assert(!CompileKernel || Recover);
1285   return new ModuleAddressSanitizerLegacyPass(
1286       CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor);
1287 }
1288 
TypeSizeToSizeIndex(uint32_t TypeSize)1289 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1290   size_t Res = countTrailingZeros(TypeSize / 8);
1291   assert(Res < kNumberOfAccessSizes);
1292   return Res;
1293 }
1294 
1295 /// Create a global describing a source location.
createPrivateGlobalForSourceLoc(Module & M,LocationMetadata MD)1296 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1297                                                        LocationMetadata MD) {
1298   Constant *LocData[] = {
1299       createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1300       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1301       ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1302   };
1303   auto LocStruct = ConstantStruct::getAnon(LocData);
1304   auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1305                                GlobalValue::PrivateLinkage, LocStruct,
1306                                kAsanGenPrefix);
1307   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1308   return GV;
1309 }
1310 
1311 /// Check if \p G has been created by a trusted compiler pass.
GlobalWasGeneratedByCompiler(GlobalVariable * G)1312 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1313   // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1314   if (G->getName().startswith("llvm."))
1315     return true;
1316 
1317   // Do not instrument asan globals.
1318   if (G->getName().startswith(kAsanGenPrefix) ||
1319       G->getName().startswith(kSanCovGenPrefix) ||
1320       G->getName().startswith(kODRGenPrefix))
1321     return true;
1322 
1323   // Do not instrument gcov counter arrays.
1324   if (G->getName() == "__llvm_gcov_ctr")
1325     return true;
1326 
1327   return false;
1328 }
1329 
isUnsupportedAMDGPUAddrspace(Value * Addr)1330 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1331   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1332   unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1333   if (AddrSpace == 3 || AddrSpace == 5)
1334     return true;
1335   return false;
1336 }
1337 
memToShadow(Value * Shadow,IRBuilder<> & IRB)1338 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1339   // Shadow >> scale
1340   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1341   if (Mapping.Offset == 0) return Shadow;
1342   // (Shadow >> scale) | offset
1343   Value *ShadowBase;
1344   if (LocalDynamicShadow)
1345     ShadowBase = LocalDynamicShadow;
1346   else
1347     ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1348   if (Mapping.OrShadowOffset)
1349     return IRB.CreateOr(Shadow, ShadowBase);
1350   else
1351     return IRB.CreateAdd(Shadow, ShadowBase);
1352 }
1353 
1354 // Instrument memset/memmove/memcpy
instrumentMemIntrinsic(MemIntrinsic * MI)1355 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1356   IRBuilder<> IRB(MI);
1357   if (isa<MemTransferInst>(MI)) {
1358     IRB.CreateCall(
1359         isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1360         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1361          IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1362          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1363   } else if (isa<MemSetInst>(MI)) {
1364     IRB.CreateCall(
1365         AsanMemset,
1366         {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1367          IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1368          IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1369   }
1370   MI->eraseFromParent();
1371 }
1372 
1373 /// Check if we want (and can) handle this alloca.
isInterestingAlloca(const AllocaInst & AI)1374 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1375   auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1376 
1377   if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1378     return PreviouslySeenAllocaInfo->getSecond();
1379 
1380   bool IsInteresting =
1381       (AI.getAllocatedType()->isSized() &&
1382        // alloca() may be called with 0 size, ignore it.
1383        ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1384        // We are only interested in allocas not promotable to registers.
1385        // Promotable allocas are common under -O0.
1386        (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1387        // inalloca allocas are not treated as static, and we don't want
1388        // dynamic alloca instrumentation for them as well.
1389        !AI.isUsedWithInAlloca() &&
1390        // swifterror allocas are register promoted by ISel
1391        !AI.isSwiftError());
1392 
1393   ProcessedAllocas[&AI] = IsInteresting;
1394   return IsInteresting;
1395 }
1396 
ignoreAccess(Value * Ptr)1397 bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1398   // Instrument acesses from different address spaces only for AMDGPU.
1399   Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1400   if (PtrTy->getPointerAddressSpace() != 0 &&
1401       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1402     return true;
1403 
1404   // Ignore swifterror addresses.
1405   // swifterror memory addresses are mem2reg promoted by instruction
1406   // selection. As such they cannot have regular uses like an instrumentation
1407   // function and it makes no sense to track them as memory.
1408   if (Ptr->isSwiftError())
1409     return true;
1410 
1411   // Treat memory accesses to promotable allocas as non-interesting since they
1412   // will not cause memory violations. This greatly speeds up the instrumented
1413   // executable at -O0.
1414   if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1415     if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1416       return true;
1417 
1418   return false;
1419 }
1420 
getInterestingMemoryOperands(Instruction * I,SmallVectorImpl<InterestingMemoryOperand> & Interesting)1421 void AddressSanitizer::getInterestingMemoryOperands(
1422     Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1423   // Skip memory accesses inserted by another instrumentation.
1424   if (I->hasMetadata("nosanitize"))
1425     return;
1426 
1427   // Do not instrument the load fetching the dynamic shadow address.
1428   if (LocalDynamicShadow == I)
1429     return;
1430 
1431   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1432     if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1433       return;
1434     Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1435                              LI->getType(), LI->getAlign());
1436   } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1437     if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1438       return;
1439     Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1440                              SI->getValueOperand()->getType(), SI->getAlign());
1441   } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1442     if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1443       return;
1444     Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1445                              RMW->getValOperand()->getType(), None);
1446   } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1447     if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1448       return;
1449     Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1450                              XCHG->getCompareOperand()->getType(), None);
1451   } else if (auto CI = dyn_cast<CallInst>(I)) {
1452     auto *F = CI->getCalledFunction();
1453     if (F && (F->getName().startswith("llvm.masked.load.") ||
1454               F->getName().startswith("llvm.masked.store."))) {
1455       bool IsWrite = F->getName().startswith("llvm.masked.store.");
1456       // Masked store has an initial operand for the value.
1457       unsigned OpOffset = IsWrite ? 1 : 0;
1458       if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1459         return;
1460 
1461       auto BasePtr = CI->getOperand(OpOffset);
1462       if (ignoreAccess(BasePtr))
1463         return;
1464       auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1465       MaybeAlign Alignment = Align(1);
1466       // Otherwise no alignment guarantees. We probably got Undef.
1467       if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1468         Alignment = Op->getMaybeAlignValue();
1469       Value *Mask = CI->getOperand(2 + OpOffset);
1470       Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1471     } else {
1472       for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1473         if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1474             ignoreAccess(CI->getArgOperand(ArgNo)))
1475           continue;
1476         Type *Ty = CI->getParamByValType(ArgNo);
1477         Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1478       }
1479     }
1480   }
1481 }
1482 
isPointerOperand(Value * V)1483 static bool isPointerOperand(Value *V) {
1484   return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1485 }
1486 
1487 // This is a rough heuristic; it may cause both false positives and
1488 // false negatives. The proper implementation requires cooperation with
1489 // the frontend.
isInterestingPointerComparison(Instruction * I)1490 static bool isInterestingPointerComparison(Instruction *I) {
1491   if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1492     if (!Cmp->isRelational())
1493       return false;
1494   } else {
1495     return false;
1496   }
1497   return isPointerOperand(I->getOperand(0)) &&
1498          isPointerOperand(I->getOperand(1));
1499 }
1500 
1501 // This is a rough heuristic; it may cause both false positives and
1502 // false negatives. The proper implementation requires cooperation with
1503 // the frontend.
isInterestingPointerSubtraction(Instruction * I)1504 static bool isInterestingPointerSubtraction(Instruction *I) {
1505   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1506     if (BO->getOpcode() != Instruction::Sub)
1507       return false;
1508   } else {
1509     return false;
1510   }
1511   return isPointerOperand(I->getOperand(0)) &&
1512          isPointerOperand(I->getOperand(1));
1513 }
1514 
GlobalIsLinkerInitialized(GlobalVariable * G)1515 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1516   // If a global variable does not have dynamic initialization we don't
1517   // have to instrument it.  However, if a global does not have initializer
1518   // at all, we assume it has dynamic initializer (in other TU).
1519   //
1520   // FIXME: Metadata should be attched directly to the global directly instead
1521   // of being added to llvm.asan.globals.
1522   return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1523 }
1524 
instrumentPointerComparisonOrSubtraction(Instruction * I)1525 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1526     Instruction *I) {
1527   IRBuilder<> IRB(I);
1528   FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1529   Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1530   for (Value *&i : Param) {
1531     if (i->getType()->isPointerTy())
1532       i = IRB.CreatePointerCast(i, IntptrTy);
1533   }
1534   IRB.CreateCall(F, Param);
1535 }
1536 
doInstrumentAddress(AddressSanitizer * Pass,Instruction * I,Instruction * InsertBefore,Value * Addr,MaybeAlign Alignment,unsigned Granularity,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1537 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1538                                 Instruction *InsertBefore, Value *Addr,
1539                                 MaybeAlign Alignment, unsigned Granularity,
1540                                 uint32_t TypeSize, bool IsWrite,
1541                                 Value *SizeArgument, bool UseCalls,
1542                                 uint32_t Exp) {
1543   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1544   // if the data is properly aligned.
1545   if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1546        TypeSize == 128) &&
1547       (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
1548     return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1549                                    nullptr, UseCalls, Exp);
1550   Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1551                                          IsWrite, nullptr, UseCalls, Exp);
1552 }
1553 
instrumentMaskedLoadOrStore(AddressSanitizer * Pass,const DataLayout & DL,Type * IntptrTy,Value * Mask,Instruction * I,Value * Addr,MaybeAlign Alignment,unsigned Granularity,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1554 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1555                                         const DataLayout &DL, Type *IntptrTy,
1556                                         Value *Mask, Instruction *I,
1557                                         Value *Addr, MaybeAlign Alignment,
1558                                         unsigned Granularity, uint32_t TypeSize,
1559                                         bool IsWrite, Value *SizeArgument,
1560                                         bool UseCalls, uint32_t Exp) {
1561   auto *VTy = cast<FixedVectorType>(
1562       cast<PointerType>(Addr->getType())->getElementType());
1563   uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1564   unsigned Num = VTy->getNumElements();
1565   auto Zero = ConstantInt::get(IntptrTy, 0);
1566   for (unsigned Idx = 0; Idx < Num; ++Idx) {
1567     Value *InstrumentedAddress = nullptr;
1568     Instruction *InsertBefore = I;
1569     if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1570       // dyn_cast as we might get UndefValue
1571       if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1572         if (Masked->isZero())
1573           // Mask is constant false, so no instrumentation needed.
1574           continue;
1575         // If we have a true or undef value, fall through to doInstrumentAddress
1576         // with InsertBefore == I
1577       }
1578     } else {
1579       IRBuilder<> IRB(I);
1580       Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1581       Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1582       InsertBefore = ThenTerm;
1583     }
1584 
1585     IRBuilder<> IRB(InsertBefore);
1586     InstrumentedAddress =
1587         IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1588     doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1589                         Granularity, ElemTypeSize, IsWrite, SizeArgument,
1590                         UseCalls, Exp);
1591   }
1592 }
1593 
instrumentMop(ObjectSizeOffsetVisitor & ObjSizeVis,InterestingMemoryOperand & O,bool UseCalls,const DataLayout & DL)1594 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1595                                      InterestingMemoryOperand &O, bool UseCalls,
1596                                      const DataLayout &DL) {
1597   Value *Addr = O.getPtr();
1598 
1599   // Optimization experiments.
1600   // The experiments can be used to evaluate potential optimizations that remove
1601   // instrumentation (assess false negatives). Instead of completely removing
1602   // some instrumentation, you set Exp to a non-zero value (mask of optimization
1603   // experiments that want to remove instrumentation of this instruction).
1604   // If Exp is non-zero, this pass will emit special calls into runtime
1605   // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1606   // make runtime terminate the program in a special way (with a different
1607   // exit status). Then you run the new compiler on a buggy corpus, collect
1608   // the special terminations (ideally, you don't see them at all -- no false
1609   // negatives) and make the decision on the optimization.
1610   uint32_t Exp = ClForceExperiment;
1611 
1612   if (ClOpt && ClOptGlobals) {
1613     // If initialization order checking is disabled, a simple access to a
1614     // dynamically initialized global is always valid.
1615     GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1616     if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1617         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1618       NumOptimizedAccessesToGlobalVar++;
1619       return;
1620     }
1621   }
1622 
1623   if (ClOpt && ClOptStack) {
1624     // A direct inbounds access to a stack variable is always valid.
1625     if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1626         isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1627       NumOptimizedAccessesToStackVar++;
1628       return;
1629     }
1630   }
1631 
1632   if (O.IsWrite)
1633     NumInstrumentedWrites++;
1634   else
1635     NumInstrumentedReads++;
1636 
1637   unsigned Granularity = 1 << Mapping.Scale;
1638   if (O.MaybeMask) {
1639     instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1640                                 Addr, O.Alignment, Granularity, O.TypeSize,
1641                                 O.IsWrite, nullptr, UseCalls, Exp);
1642   } else {
1643     doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1644                         Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1645                         Exp);
1646   }
1647 }
1648 
generateCrashCode(Instruction * InsertBefore,Value * Addr,bool IsWrite,size_t AccessSizeIndex,Value * SizeArgument,uint32_t Exp)1649 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1650                                                  Value *Addr, bool IsWrite,
1651                                                  size_t AccessSizeIndex,
1652                                                  Value *SizeArgument,
1653                                                  uint32_t Exp) {
1654   IRBuilder<> IRB(InsertBefore);
1655   Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1656   CallInst *Call = nullptr;
1657   if (SizeArgument) {
1658     if (Exp == 0)
1659       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1660                             {Addr, SizeArgument});
1661     else
1662       Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1663                             {Addr, SizeArgument, ExpVal});
1664   } else {
1665     if (Exp == 0)
1666       Call =
1667           IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1668     else
1669       Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1670                             {Addr, ExpVal});
1671   }
1672 
1673   Call->setCannotMerge();
1674   return Call;
1675 }
1676 
createSlowPathCmp(IRBuilder<> & IRB,Value * AddrLong,Value * ShadowValue,uint32_t TypeSize)1677 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1678                                            Value *ShadowValue,
1679                                            uint32_t TypeSize) {
1680   size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1681   // Addr & (Granularity - 1)
1682   Value *LastAccessedByte =
1683       IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1684   // (Addr & (Granularity - 1)) + size - 1
1685   if (TypeSize / 8 > 1)
1686     LastAccessedByte = IRB.CreateAdd(
1687         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1688   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1689   LastAccessedByte =
1690       IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1691   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1692   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1693 }
1694 
instrumentAMDGPUAddress(Instruction * OrigIns,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument)1695 Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1696     Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1697     uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
1698   // Do not instrument unsupported addrspaces.
1699   if (isUnsupportedAMDGPUAddrspace(Addr))
1700     return nullptr;
1701   Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1702   // Follow host instrumentation for global and constant addresses.
1703   if (PtrTy->getPointerAddressSpace() != 0)
1704     return InsertBefore;
1705   // Instrument generic addresses in supported addressspaces.
1706   IRBuilder<> IRB(InsertBefore);
1707   Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
1708   Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
1709   Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
1710   Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1711   Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
1712   Value *AddrSpaceZeroLanding =
1713       SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1714   InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1715   return InsertBefore;
1716 }
1717 
instrumentAddress(Instruction * OrigIns,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1718 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1719                                          Instruction *InsertBefore, Value *Addr,
1720                                          uint32_t TypeSize, bool IsWrite,
1721                                          Value *SizeArgument, bool UseCalls,
1722                                          uint32_t Exp) {
1723   bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1724 
1725   if (TargetTriple.isAMDGPU()) {
1726     InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1727                                            TypeSize, IsWrite, SizeArgument);
1728     if (!InsertBefore)
1729       return;
1730   }
1731 
1732   IRBuilder<> IRB(InsertBefore);
1733   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1734   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1735 
1736   if (UseCalls) {
1737     if (Exp == 0)
1738       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1739                      AddrLong);
1740     else
1741       IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1742                      {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1743     return;
1744   }
1745 
1746   if (IsMyriad) {
1747     // Strip the cache bit and do range check.
1748     // AddrLong &= ~kMyriadCacheBitMask32
1749     AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1750     // Tag = AddrLong >> kMyriadTagShift
1751     Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1752     // Tag == kMyriadDDRTag
1753     Value *TagCheck =
1754         IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1755 
1756     Instruction *TagCheckTerm =
1757         SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1758                                   MDBuilder(*C).createBranchWeights(1, 100000));
1759     assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1760     IRB.SetInsertPoint(TagCheckTerm);
1761     InsertBefore = TagCheckTerm;
1762   }
1763 
1764   Type *ShadowTy =
1765       IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1766   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1767   Value *ShadowPtr = memToShadow(AddrLong, IRB);
1768   Value *CmpVal = Constant::getNullValue(ShadowTy);
1769   Value *ShadowValue =
1770       IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1771 
1772   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1773   size_t Granularity = 1ULL << Mapping.Scale;
1774   Instruction *CrashTerm = nullptr;
1775 
1776   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1777     // We use branch weights for the slow path check, to indicate that the slow
1778     // path is rarely taken. This seems to be the case for SPEC benchmarks.
1779     Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1780         Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1781     assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1782     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1783     IRB.SetInsertPoint(CheckTerm);
1784     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1785     if (Recover) {
1786       CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1787     } else {
1788       BasicBlock *CrashBlock =
1789         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1790       CrashTerm = new UnreachableInst(*C, CrashBlock);
1791       BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1792       ReplaceInstWithInst(CheckTerm, NewTerm);
1793     }
1794   } else {
1795     CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1796   }
1797 
1798   Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1799                                          AccessSizeIndex, SizeArgument, Exp);
1800   Crash->setDebugLoc(OrigIns->getDebugLoc());
1801 }
1802 
1803 // Instrument unusual size or unusual alignment.
1804 // We can not do it with a single check, so we do 1-byte check for the first
1805 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1806 // to report the actual access size.
instrumentUnusualSizeOrAlignment(Instruction * I,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1807 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1808     Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1809     bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1810   IRBuilder<> IRB(InsertBefore);
1811   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1812   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1813   if (UseCalls) {
1814     if (Exp == 0)
1815       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1816                      {AddrLong, Size});
1817     else
1818       IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1819                      {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1820   } else {
1821     Value *LastByte = IRB.CreateIntToPtr(
1822         IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1823         Addr->getType());
1824     instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1825     instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1826   }
1827 }
1828 
poisonOneInitializer(Function & GlobalInit,GlobalValue * ModuleName)1829 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1830                                                   GlobalValue *ModuleName) {
1831   // Set up the arguments to our poison/unpoison functions.
1832   IRBuilder<> IRB(&GlobalInit.front(),
1833                   GlobalInit.front().getFirstInsertionPt());
1834 
1835   // Add a call to poison all external globals before the given function starts.
1836   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1837   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1838 
1839   // Add calls to unpoison all globals before each return instruction.
1840   for (auto &BB : GlobalInit.getBasicBlockList())
1841     if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1842       CallInst::Create(AsanUnpoisonGlobals, "", RI);
1843 }
1844 
createInitializerPoisonCalls(Module & M,GlobalValue * ModuleName)1845 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1846     Module &M, GlobalValue *ModuleName) {
1847   GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1848   if (!GV)
1849     return;
1850 
1851   ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1852   if (!CA)
1853     return;
1854 
1855   for (Use &OP : CA->operands()) {
1856     if (isa<ConstantAggregateZero>(OP)) continue;
1857     ConstantStruct *CS = cast<ConstantStruct>(OP);
1858 
1859     // Must have a function or null ptr.
1860     if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1861       if (F->getName() == kAsanModuleCtorName) continue;
1862       auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1863       // Don't instrument CTORs that will run before asan.module_ctor.
1864       if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1865         continue;
1866       poisonOneInitializer(*F, ModuleName);
1867     }
1868   }
1869 }
1870 
1871 const GlobalVariable *
getExcludedAliasedGlobal(const GlobalAlias & GA) const1872 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1873   // In case this function should be expanded to include rules that do not just
1874   // apply when CompileKernel is true, either guard all existing rules with an
1875   // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1876   // should also apply to user space.
1877   assert(CompileKernel && "Only expecting to be called when compiling kernel");
1878 
1879   const Constant *C = GA.getAliasee();
1880 
1881   // When compiling the kernel, globals that are aliased by symbols prefixed
1882   // by "__" are special and cannot be padded with a redzone.
1883   if (GA.getName().startswith("__"))
1884     return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1885 
1886   return nullptr;
1887 }
1888 
shouldInstrumentGlobal(GlobalVariable * G) const1889 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1890   Type *Ty = G->getValueType();
1891   LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1892 
1893   // FIXME: Metadata should be attched directly to the global directly instead
1894   // of being added to llvm.asan.globals.
1895   if (GlobalsMD.get(G).IsExcluded) return false;
1896   if (!Ty->isSized()) return false;
1897   if (!G->hasInitializer()) return false;
1898   // Globals in address space 1 and 4 are supported for AMDGPU.
1899   if (G->getAddressSpace() &&
1900       !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1901     return false;
1902   if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1903   // Two problems with thread-locals:
1904   //   - The address of the main thread's copy can't be computed at link-time.
1905   //   - Need to poison all copies, not just the main thread's one.
1906   if (G->isThreadLocal()) return false;
1907   // For now, just ignore this Global if the alignment is large.
1908   if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1909 
1910   // For non-COFF targets, only instrument globals known to be defined by this
1911   // TU.
1912   // FIXME: We can instrument comdat globals on ELF if we are using the
1913   // GC-friendly metadata scheme.
1914   if (!TargetTriple.isOSBinFormatCOFF()) {
1915     if (!G->hasExactDefinition() || G->hasComdat())
1916       return false;
1917   } else {
1918     // On COFF, don't instrument non-ODR linkages.
1919     if (G->isInterposable())
1920       return false;
1921   }
1922 
1923   // If a comdat is present, it must have a selection kind that implies ODR
1924   // semantics: no duplicates, any, or exact match.
1925   if (Comdat *C = G->getComdat()) {
1926     switch (C->getSelectionKind()) {
1927     case Comdat::Any:
1928     case Comdat::ExactMatch:
1929     case Comdat::NoDuplicates:
1930       break;
1931     case Comdat::Largest:
1932     case Comdat::SameSize:
1933       return false;
1934     }
1935   }
1936 
1937   if (G->hasSection()) {
1938     // The kernel uses explicit sections for mostly special global variables
1939     // that we should not instrument. E.g. the kernel may rely on their layout
1940     // without redzones, or remove them at link time ("discard.*"), etc.
1941     if (CompileKernel)
1942       return false;
1943 
1944     StringRef Section = G->getSection();
1945 
1946     // Globals from llvm.metadata aren't emitted, do not instrument them.
1947     if (Section == "llvm.metadata") return false;
1948     // Do not instrument globals from special LLVM sections.
1949     if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1950 
1951     // Do not instrument function pointers to initialization and termination
1952     // routines: dynamic linker will not properly handle redzones.
1953     if (Section.startswith(".preinit_array") ||
1954         Section.startswith(".init_array") ||
1955         Section.startswith(".fini_array")) {
1956       return false;
1957     }
1958 
1959     // Do not instrument user-defined sections (with names resembling
1960     // valid C identifiers)
1961     if (TargetTriple.isOSBinFormatELF()) {
1962       if (llvm::all_of(Section,
1963                        [](char c) { return llvm::isAlnum(c) || c == '_'; }))
1964         return false;
1965     }
1966 
1967     // On COFF, if the section name contains '$', it is highly likely that the
1968     // user is using section sorting to create an array of globals similar to
1969     // the way initialization callbacks are registered in .init_array and
1970     // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1971     // to such globals is counterproductive, because the intent is that they
1972     // will form an array, and out-of-bounds accesses are expected.
1973     // See https://github.com/google/sanitizers/issues/305
1974     // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1975     if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1976       LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1977                         << *G << "\n");
1978       return false;
1979     }
1980 
1981     if (TargetTriple.isOSBinFormatMachO()) {
1982       StringRef ParsedSegment, ParsedSection;
1983       unsigned TAA = 0, StubSize = 0;
1984       bool TAAParsed;
1985       cantFail(MCSectionMachO::ParseSectionSpecifier(
1986           Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
1987 
1988       // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1989       // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1990       // them.
1991       if (ParsedSegment == "__OBJC" ||
1992           (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1993         LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1994         return false;
1995       }
1996       // See https://github.com/google/sanitizers/issues/32
1997       // Constant CFString instances are compiled in the following way:
1998       //  -- the string buffer is emitted into
1999       //     __TEXT,__cstring,cstring_literals
2000       //  -- the constant NSConstantString structure referencing that buffer
2001       //     is placed into __DATA,__cfstring
2002       // Therefore there's no point in placing redzones into __DATA,__cfstring.
2003       // Moreover, it causes the linker to crash on OS X 10.7
2004       if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2005         LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2006         return false;
2007       }
2008       // The linker merges the contents of cstring_literals and removes the
2009       // trailing zeroes.
2010       if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2011         LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2012         return false;
2013       }
2014     }
2015   }
2016 
2017   if (CompileKernel) {
2018     // Globals that prefixed by "__" are special and cannot be padded with a
2019     // redzone.
2020     if (G->getName().startswith("__"))
2021       return false;
2022   }
2023 
2024   return true;
2025 }
2026 
2027 // On Mach-O platforms, we emit global metadata in a separate section of the
2028 // binary in order to allow the linker to properly dead strip. This is only
2029 // supported on recent versions of ld64.
ShouldUseMachOGlobalsSection() const2030 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2031   if (!TargetTriple.isOSBinFormatMachO())
2032     return false;
2033 
2034   if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2035     return true;
2036   if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2037     return true;
2038   if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2039     return true;
2040 
2041   return false;
2042 }
2043 
getGlobalMetadataSection() const2044 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2045   switch (TargetTriple.getObjectFormat()) {
2046   case Triple::COFF:  return ".ASAN$GL";
2047   case Triple::ELF:   return "asan_globals";
2048   case Triple::MachO: return "__DATA,__asan_globals,regular";
2049   case Triple::Wasm:
2050   case Triple::GOFF:
2051   case Triple::XCOFF:
2052     report_fatal_error(
2053         "ModuleAddressSanitizer not implemented for object file format");
2054   case Triple::UnknownObjectFormat:
2055     break;
2056   }
2057   llvm_unreachable("unsupported object format");
2058 }
2059 
initializeCallbacks(Module & M)2060 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2061   IRBuilder<> IRB(*C);
2062 
2063   // Declare our poisoning and unpoisoning functions.
2064   AsanPoisonGlobals =
2065       M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2066   AsanUnpoisonGlobals =
2067       M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2068 
2069   // Declare functions that register/unregister globals.
2070   AsanRegisterGlobals = M.getOrInsertFunction(
2071       kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2072   AsanUnregisterGlobals = M.getOrInsertFunction(
2073       kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2074 
2075   // Declare the functions that find globals in a shared object and then invoke
2076   // the (un)register function on them.
2077   AsanRegisterImageGlobals = M.getOrInsertFunction(
2078       kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2079   AsanUnregisterImageGlobals = M.getOrInsertFunction(
2080       kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2081 
2082   AsanRegisterElfGlobals =
2083       M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2084                             IntptrTy, IntptrTy, IntptrTy);
2085   AsanUnregisterElfGlobals =
2086       M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2087                             IntptrTy, IntptrTy, IntptrTy);
2088 }
2089 
2090 // Put the metadata and the instrumented global in the same group. This ensures
2091 // that the metadata is discarded if the instrumented global is discarded.
SetComdatForGlobalMetadata(GlobalVariable * G,GlobalVariable * Metadata,StringRef InternalSuffix)2092 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2093     GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2094   Module &M = *G->getParent();
2095   Comdat *C = G->getComdat();
2096   if (!C) {
2097     if (!G->hasName()) {
2098       // If G is unnamed, it must be internal. Give it an artificial name
2099       // so we can put it in a comdat.
2100       assert(G->hasLocalLinkage());
2101       G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2102     }
2103 
2104     if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2105       std::string Name = std::string(G->getName());
2106       Name += InternalSuffix;
2107       C = M.getOrInsertComdat(Name);
2108     } else {
2109       C = M.getOrInsertComdat(G->getName());
2110     }
2111 
2112     // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2113     // linkage to internal linkage so that a symbol table entry is emitted. This
2114     // is necessary in order to create the comdat group.
2115     if (TargetTriple.isOSBinFormatCOFF()) {
2116       C->setSelectionKind(Comdat::NoDuplicates);
2117       if (G->hasPrivateLinkage())
2118         G->setLinkage(GlobalValue::InternalLinkage);
2119     }
2120     G->setComdat(C);
2121   }
2122 
2123   assert(G->hasComdat());
2124   Metadata->setComdat(G->getComdat());
2125 }
2126 
2127 // Create a separate metadata global and put it in the appropriate ASan
2128 // global registration section.
2129 GlobalVariable *
CreateMetadataGlobal(Module & M,Constant * Initializer,StringRef OriginalName)2130 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2131                                              StringRef OriginalName) {
2132   auto Linkage = TargetTriple.isOSBinFormatMachO()
2133                      ? GlobalVariable::InternalLinkage
2134                      : GlobalVariable::PrivateLinkage;
2135   GlobalVariable *Metadata = new GlobalVariable(
2136       M, Initializer->getType(), false, Linkage, Initializer,
2137       Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2138   Metadata->setSection(getGlobalMetadataSection());
2139   return Metadata;
2140 }
2141 
CreateAsanModuleDtor(Module & M)2142 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2143   AsanDtorFunction = Function::createWithDefaultAttr(
2144       FunctionType::get(Type::getVoidTy(*C), false),
2145       GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2146   AsanDtorFunction->addAttribute(AttributeList::FunctionIndex,
2147                                  Attribute::NoUnwind);
2148   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2149 
2150   return ReturnInst::Create(*C, AsanDtorBB);
2151 }
2152 
InstrumentGlobalsCOFF(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)2153 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2154     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2155     ArrayRef<Constant *> MetadataInitializers) {
2156   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2157   auto &DL = M.getDataLayout();
2158 
2159   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2160   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2161     Constant *Initializer = MetadataInitializers[i];
2162     GlobalVariable *G = ExtendedGlobals[i];
2163     GlobalVariable *Metadata =
2164         CreateMetadataGlobal(M, Initializer, G->getName());
2165     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2166     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2167     MetadataGlobals[i] = Metadata;
2168 
2169     // The MSVC linker always inserts padding when linking incrementally. We
2170     // cope with that by aligning each struct to its size, which must be a power
2171     // of two.
2172     unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2173     assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2174            "global metadata will not be padded appropriately");
2175     Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2176 
2177     SetComdatForGlobalMetadata(G, Metadata, "");
2178   }
2179 
2180   // Update llvm.compiler.used, adding the new metadata globals. This is
2181   // needed so that during LTO these variables stay alive.
2182   if (!MetadataGlobals.empty())
2183     appendToCompilerUsed(M, MetadataGlobals);
2184 }
2185 
InstrumentGlobalsELF(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers,const std::string & UniqueModuleId)2186 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2187     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2188     ArrayRef<Constant *> MetadataInitializers,
2189     const std::string &UniqueModuleId) {
2190   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2191 
2192   // Putting globals in a comdat changes the semantic and potentially cause
2193   // false negative odr violations at link time. If odr indicators are used, we
2194   // keep the comdat sections, as link time odr violations will be dectected on
2195   // the odr indicator symbols.
2196   bool UseComdatForGlobalsGC = UseOdrIndicator;
2197 
2198   SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2199   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2200     GlobalVariable *G = ExtendedGlobals[i];
2201     GlobalVariable *Metadata =
2202         CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2203     MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2204     Metadata->setMetadata(LLVMContext::MD_associated, MD);
2205     MetadataGlobals[i] = Metadata;
2206 
2207     if (UseComdatForGlobalsGC)
2208       SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2209   }
2210 
2211   // Update llvm.compiler.used, adding the new metadata globals. This is
2212   // needed so that during LTO these variables stay alive.
2213   if (!MetadataGlobals.empty())
2214     appendToCompilerUsed(M, MetadataGlobals);
2215 
2216   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2217   // to look up the loaded image that contains it. Second, we can store in it
2218   // whether registration has already occurred, to prevent duplicate
2219   // registration.
2220   //
2221   // Common linkage ensures that there is only one global per shared library.
2222   GlobalVariable *RegisteredFlag = new GlobalVariable(
2223       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2224       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2225   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2226 
2227   // Create start and stop symbols.
2228   GlobalVariable *StartELFMetadata = new GlobalVariable(
2229       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2230       "__start_" + getGlobalMetadataSection());
2231   StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2232   GlobalVariable *StopELFMetadata = new GlobalVariable(
2233       M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2234       "__stop_" + getGlobalMetadataSection());
2235   StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2236 
2237   // Create a call to register the globals with the runtime.
2238   IRB.CreateCall(AsanRegisterElfGlobals,
2239                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2240                   IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2241                   IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2242 
2243   // We also need to unregister globals at the end, e.g., when a shared library
2244   // gets closed.
2245   if (DestructorKind != AsanDtorKind::None) {
2246     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2247     IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2248                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2249                         IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2250                         IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2251   }
2252 }
2253 
InstrumentGlobalsMachO(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)2254 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2255     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2256     ArrayRef<Constant *> MetadataInitializers) {
2257   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2258 
2259   // On recent Mach-O platforms, use a structure which binds the liveness of
2260   // the global variable to the metadata struct. Keep the list of "Liveness" GV
2261   // created to be added to llvm.compiler.used
2262   StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2263   SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2264 
2265   for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2266     Constant *Initializer = MetadataInitializers[i];
2267     GlobalVariable *G = ExtendedGlobals[i];
2268     GlobalVariable *Metadata =
2269         CreateMetadataGlobal(M, Initializer, G->getName());
2270 
2271     // On recent Mach-O platforms, we emit the global metadata in a way that
2272     // allows the linker to properly strip dead globals.
2273     auto LivenessBinder =
2274         ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2275                             ConstantExpr::getPointerCast(Metadata, IntptrTy));
2276     GlobalVariable *Liveness = new GlobalVariable(
2277         M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2278         Twine("__asan_binder_") + G->getName());
2279     Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2280     LivenessGlobals[i] = Liveness;
2281   }
2282 
2283   // Update llvm.compiler.used, adding the new liveness globals. This is
2284   // needed so that during LTO these variables stay alive. The alternative
2285   // would be to have the linker handling the LTO symbols, but libLTO
2286   // current API does not expose access to the section for each symbol.
2287   if (!LivenessGlobals.empty())
2288     appendToCompilerUsed(M, LivenessGlobals);
2289 
2290   // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2291   // to look up the loaded image that contains it. Second, we can store in it
2292   // whether registration has already occurred, to prevent duplicate
2293   // registration.
2294   //
2295   // common linkage ensures that there is only one global per shared library.
2296   GlobalVariable *RegisteredFlag = new GlobalVariable(
2297       M, IntptrTy, false, GlobalVariable::CommonLinkage,
2298       ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2299   RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2300 
2301   IRB.CreateCall(AsanRegisterImageGlobals,
2302                  {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2303 
2304   // We also need to unregister globals at the end, e.g., when a shared library
2305   // gets closed.
2306   if (DestructorKind != AsanDtorKind::None) {
2307     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2308     IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2309                        {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2310   }
2311 }
2312 
InstrumentGlobalsWithMetadataArray(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)2313 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2314     IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2315     ArrayRef<Constant *> MetadataInitializers) {
2316   assert(ExtendedGlobals.size() == MetadataInitializers.size());
2317   unsigned N = ExtendedGlobals.size();
2318   assert(N > 0);
2319 
2320   // On platforms that don't have a custom metadata section, we emit an array
2321   // of global metadata structures.
2322   ArrayType *ArrayOfGlobalStructTy =
2323       ArrayType::get(MetadataInitializers[0]->getType(), N);
2324   auto AllGlobals = new GlobalVariable(
2325       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2326       ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2327   if (Mapping.Scale > 3)
2328     AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2329 
2330   IRB.CreateCall(AsanRegisterGlobals,
2331                  {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2332                   ConstantInt::get(IntptrTy, N)});
2333 
2334   // We also need to unregister globals at the end, e.g., when a shared library
2335   // gets closed.
2336   if (DestructorKind != AsanDtorKind::None) {
2337     IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2338     IrbDtor.CreateCall(AsanUnregisterGlobals,
2339                        {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2340                         ConstantInt::get(IntptrTy, N)});
2341   }
2342 }
2343 
2344 // This function replaces all global variables with new variables that have
2345 // trailing redzones. It also creates a function that poisons
2346 // redzones and inserts this function into llvm.global_ctors.
2347 // Sets *CtorComdat to true if the global registration code emitted into the
2348 // asan constructor is comdat-compatible.
InstrumentGlobals(IRBuilder<> & IRB,Module & M,bool * CtorComdat)2349 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2350                                                bool *CtorComdat) {
2351   *CtorComdat = false;
2352 
2353   // Build set of globals that are aliased by some GA, where
2354   // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2355   SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2356   if (CompileKernel) {
2357     for (auto &GA : M.aliases()) {
2358       if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2359         AliasedGlobalExclusions.insert(GV);
2360     }
2361   }
2362 
2363   SmallVector<GlobalVariable *, 16> GlobalsToChange;
2364   for (auto &G : M.globals()) {
2365     if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2366       GlobalsToChange.push_back(&G);
2367   }
2368 
2369   size_t n = GlobalsToChange.size();
2370   if (n == 0) {
2371     *CtorComdat = true;
2372     return false;
2373   }
2374 
2375   auto &DL = M.getDataLayout();
2376 
2377   // A global is described by a structure
2378   //   size_t beg;
2379   //   size_t size;
2380   //   size_t size_with_redzone;
2381   //   const char *name;
2382   //   const char *module_name;
2383   //   size_t has_dynamic_init;
2384   //   void *source_location;
2385   //   size_t odr_indicator;
2386   // We initialize an array of such structures and pass it to a run-time call.
2387   StructType *GlobalStructTy =
2388       StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2389                       IntptrTy, IntptrTy, IntptrTy);
2390   SmallVector<GlobalVariable *, 16> NewGlobals(n);
2391   SmallVector<Constant *, 16> Initializers(n);
2392 
2393   bool HasDynamicallyInitializedGlobals = false;
2394 
2395   // We shouldn't merge same module names, as this string serves as unique
2396   // module ID in runtime.
2397   GlobalVariable *ModuleName = createPrivateGlobalForString(
2398       M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2399 
2400   for (size_t i = 0; i < n; i++) {
2401     GlobalVariable *G = GlobalsToChange[i];
2402 
2403     // FIXME: Metadata should be attched directly to the global directly instead
2404     // of being added to llvm.asan.globals.
2405     auto MD = GlobalsMD.get(G);
2406     StringRef NameForGlobal = G->getName();
2407     // Create string holding the global name (use global name from metadata
2408     // if it's available, otherwise just write the name of global variable).
2409     GlobalVariable *Name = createPrivateGlobalForString(
2410         M, MD.Name.empty() ? NameForGlobal : MD.Name,
2411         /*AllowMerging*/ true, kAsanGenPrefix);
2412 
2413     Type *Ty = G->getValueType();
2414     const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2415     const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2416     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2417 
2418     StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2419     Constant *NewInitializer = ConstantStruct::get(
2420         NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2421 
2422     // Create a new global variable with enough space for a redzone.
2423     GlobalValue::LinkageTypes Linkage = G->getLinkage();
2424     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2425       Linkage = GlobalValue::InternalLinkage;
2426     GlobalVariable *NewGlobal = new GlobalVariable(
2427         M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2428         G->getThreadLocalMode(), G->getAddressSpace());
2429     NewGlobal->copyAttributesFrom(G);
2430     NewGlobal->setComdat(G->getComdat());
2431     NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2432     // Don't fold globals with redzones. ODR violation detector and redzone
2433     // poisoning implicitly creates a dependence on the global's address, so it
2434     // is no longer valid for it to be marked unnamed_addr.
2435     NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2436 
2437     // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2438     if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2439         G->isConstant()) {
2440       auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2441       if (Seq && Seq->isCString())
2442         NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2443     }
2444 
2445     // Transfer the debug info and type metadata.  The payload starts at offset
2446     // zero so we can copy the metadata over as is.
2447     NewGlobal->copyMetadata(G, 0);
2448 
2449     Value *Indices2[2];
2450     Indices2[0] = IRB.getInt32(0);
2451     Indices2[1] = IRB.getInt32(0);
2452 
2453     G->replaceAllUsesWith(
2454         ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2455     NewGlobal->takeName(G);
2456     G->eraseFromParent();
2457     NewGlobals[i] = NewGlobal;
2458 
2459     Constant *SourceLoc;
2460     if (!MD.SourceLoc.empty()) {
2461       auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2462       SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2463     } else {
2464       SourceLoc = ConstantInt::get(IntptrTy, 0);
2465     }
2466 
2467     Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2468     GlobalValue *InstrumentedGlobal = NewGlobal;
2469 
2470     bool CanUsePrivateAliases =
2471         TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2472         TargetTriple.isOSBinFormatWasm();
2473     if (CanUsePrivateAliases && UsePrivateAlias) {
2474       // Create local alias for NewGlobal to avoid crash on ODR between
2475       // instrumented and non-instrumented libraries.
2476       InstrumentedGlobal =
2477           GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2478     }
2479 
2480     // ODR should not happen for local linkage.
2481     if (NewGlobal->hasLocalLinkage()) {
2482       ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2483                                                IRB.getInt8PtrTy());
2484     } else if (UseOdrIndicator) {
2485       // With local aliases, we need to provide another externally visible
2486       // symbol __odr_asan_XXX to detect ODR violation.
2487       auto *ODRIndicatorSym =
2488           new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2489                              Constant::getNullValue(IRB.getInt8Ty()),
2490                              kODRGenPrefix + NameForGlobal, nullptr,
2491                              NewGlobal->getThreadLocalMode());
2492 
2493       // Set meaningful attributes for indicator symbol.
2494       ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2495       ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2496       ODRIndicatorSym->setAlignment(Align(1));
2497       ODRIndicator = ODRIndicatorSym;
2498     }
2499 
2500     Constant *Initializer = ConstantStruct::get(
2501         GlobalStructTy,
2502         ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2503         ConstantInt::get(IntptrTy, SizeInBytes),
2504         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2505         ConstantExpr::getPointerCast(Name, IntptrTy),
2506         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2507         ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2508         ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2509 
2510     if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2511 
2512     LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2513 
2514     Initializers[i] = Initializer;
2515   }
2516 
2517   // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2518   // ConstantMerge'ing them.
2519   SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2520   for (size_t i = 0; i < n; i++) {
2521     GlobalVariable *G = NewGlobals[i];
2522     if (G->getName().empty()) continue;
2523     GlobalsToAddToUsedList.push_back(G);
2524   }
2525   appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2526 
2527   std::string ELFUniqueModuleId =
2528       (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2529                                                         : "";
2530 
2531   if (!ELFUniqueModuleId.empty()) {
2532     InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2533     *CtorComdat = true;
2534   } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2535     InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2536   } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2537     InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2538   } else {
2539     InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2540   }
2541 
2542   // Create calls for poisoning before initializers run and unpoisoning after.
2543   if (HasDynamicallyInitializedGlobals)
2544     createInitializerPoisonCalls(M, ModuleName);
2545 
2546   LLVM_DEBUG(dbgs() << M);
2547   return true;
2548 }
2549 
2550 uint64_t
getRedzoneSizeForGlobal(uint64_t SizeInBytes) const2551 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2552   constexpr uint64_t kMaxRZ = 1 << 18;
2553   const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2554 
2555   uint64_t RZ = 0;
2556   if (SizeInBytes <= MinRZ / 2) {
2557     // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2558     // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2559     // half of MinRZ.
2560     RZ = MinRZ - SizeInBytes;
2561   } else {
2562     // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2563     RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2564 
2565     // Round up to multiple of MinRZ.
2566     if (SizeInBytes % MinRZ)
2567       RZ += MinRZ - (SizeInBytes % MinRZ);
2568   }
2569 
2570   assert((RZ + SizeInBytes) % MinRZ == 0);
2571 
2572   return RZ;
2573 }
2574 
GetAsanVersion(const Module & M) const2575 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2576   int LongSize = M.getDataLayout().getPointerSizeInBits();
2577   bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2578   int Version = 8;
2579   // 32-bit Android is one version ahead because of the switch to dynamic
2580   // shadow.
2581   Version += (LongSize == 32 && isAndroid);
2582   return Version;
2583 }
2584 
instrumentModule(Module & M)2585 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2586   initializeCallbacks(M);
2587 
2588   // Create a module constructor. A destructor is created lazily because not all
2589   // platforms, and not all modules need it.
2590   if (CompileKernel) {
2591     // The kernel always builds with its own runtime, and therefore does not
2592     // need the init and version check calls.
2593     AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2594   } else {
2595     std::string AsanVersion = std::to_string(GetAsanVersion(M));
2596     std::string VersionCheckName =
2597         ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2598     std::tie(AsanCtorFunction, std::ignore) =
2599         createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2600                                             kAsanInitName, /*InitArgTypes=*/{},
2601                                             /*InitArgs=*/{}, VersionCheckName);
2602   }
2603 
2604   bool CtorComdat = true;
2605   if (ClGlobals) {
2606     IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2607     InstrumentGlobals(IRB, M, &CtorComdat);
2608   }
2609 
2610   const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2611 
2612   // Put the constructor and destructor in comdat if both
2613   // (1) global instrumentation is not TU-specific
2614   // (2) target is ELF.
2615   if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2616     AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2617     appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2618     if (AsanDtorFunction) {
2619       AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2620       appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2621     }
2622   } else {
2623     appendToGlobalCtors(M, AsanCtorFunction, Priority);
2624     if (AsanDtorFunction)
2625       appendToGlobalDtors(M, AsanDtorFunction, Priority);
2626   }
2627 
2628   return true;
2629 }
2630 
initializeCallbacks(Module & M)2631 void AddressSanitizer::initializeCallbacks(Module &M) {
2632   IRBuilder<> IRB(*C);
2633   // Create __asan_report* callbacks.
2634   // IsWrite, TypeSize and Exp are encoded in the function name.
2635   for (int Exp = 0; Exp < 2; Exp++) {
2636     for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2637       const std::string TypeStr = AccessIsWrite ? "store" : "load";
2638       const std::string ExpStr = Exp ? "exp_" : "";
2639       const std::string EndingStr = Recover ? "_noabort" : "";
2640 
2641       SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2642       SmallVector<Type *, 2> Args1{1, IntptrTy};
2643       if (Exp) {
2644         Type *ExpType = Type::getInt32Ty(*C);
2645         Args2.push_back(ExpType);
2646         Args1.push_back(ExpType);
2647       }
2648       AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2649           kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2650           FunctionType::get(IRB.getVoidTy(), Args2, false));
2651 
2652       AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2653           ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2654           FunctionType::get(IRB.getVoidTy(), Args2, false));
2655 
2656       for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2657            AccessSizeIndex++) {
2658         const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2659         AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2660             M.getOrInsertFunction(
2661                 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2662                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2663 
2664         AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2665             M.getOrInsertFunction(
2666                 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2667                 FunctionType::get(IRB.getVoidTy(), Args1, false));
2668       }
2669     }
2670   }
2671 
2672   const std::string MemIntrinCallbackPrefix =
2673       CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2674   AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2675                                       IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2676                                       IRB.getInt8PtrTy(), IntptrTy);
2677   AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2678                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2679                                      IRB.getInt8PtrTy(), IntptrTy);
2680   AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2681                                      IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2682                                      IRB.getInt32Ty(), IntptrTy);
2683 
2684   AsanHandleNoReturnFunc =
2685       M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2686 
2687   AsanPtrCmpFunction =
2688       M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2689   AsanPtrSubFunction =
2690       M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2691   if (Mapping.InGlobal)
2692     AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2693                                            ArrayType::get(IRB.getInt8Ty(), 0));
2694 
2695   AMDGPUAddressShared = M.getOrInsertFunction(
2696       kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2697   AMDGPUAddressPrivate = M.getOrInsertFunction(
2698       kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2699 }
2700 
maybeInsertAsanInitAtFunctionEntry(Function & F)2701 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2702   // For each NSObject descendant having a +load method, this method is invoked
2703   // by the ObjC runtime before any of the static constructors is called.
2704   // Therefore we need to instrument such methods with a call to __asan_init
2705   // at the beginning in order to initialize our runtime before any access to
2706   // the shadow memory.
2707   // We cannot just ignore these methods, because they may call other
2708   // instrumented functions.
2709   if (F.getName().find(" load]") != std::string::npos) {
2710     FunctionCallee AsanInitFunction =
2711         declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2712     IRBuilder<> IRB(&F.front(), F.front().begin());
2713     IRB.CreateCall(AsanInitFunction, {});
2714     return true;
2715   }
2716   return false;
2717 }
2718 
maybeInsertDynamicShadowAtFunctionEntry(Function & F)2719 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2720   // Generate code only when dynamic addressing is needed.
2721   if (Mapping.Offset != kDynamicShadowSentinel)
2722     return false;
2723 
2724   IRBuilder<> IRB(&F.front().front());
2725   if (Mapping.InGlobal) {
2726     if (ClWithIfuncSuppressRemat) {
2727       // An empty inline asm with input reg == output reg.
2728       // An opaque pointer-to-int cast, basically.
2729       InlineAsm *Asm = InlineAsm::get(
2730           FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2731           StringRef(""), StringRef("=r,0"),
2732           /*hasSideEffects=*/false);
2733       LocalDynamicShadow =
2734           IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2735     } else {
2736       LocalDynamicShadow =
2737           IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2738     }
2739   } else {
2740     Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2741         kAsanShadowMemoryDynamicAddress, IntptrTy);
2742     LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2743   }
2744   return true;
2745 }
2746 
markEscapedLocalAllocas(Function & F)2747 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2748   // Find the one possible call to llvm.localescape and pre-mark allocas passed
2749   // to it as uninteresting. This assumes we haven't started processing allocas
2750   // yet. This check is done up front because iterating the use list in
2751   // isInterestingAlloca would be algorithmically slower.
2752   assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2753 
2754   // Try to get the declaration of llvm.localescape. If it's not in the module,
2755   // we can exit early.
2756   if (!F.getParent()->getFunction("llvm.localescape")) return;
2757 
2758   // Look for a call to llvm.localescape call in the entry block. It can't be in
2759   // any other block.
2760   for (Instruction &I : F.getEntryBlock()) {
2761     IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2762     if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2763       // We found a call. Mark all the allocas passed in as uninteresting.
2764       for (Value *Arg : II->arg_operands()) {
2765         AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2766         assert(AI && AI->isStaticAlloca() &&
2767                "non-static alloca arg to localescape");
2768         ProcessedAllocas[AI] = false;
2769       }
2770       break;
2771     }
2772   }
2773 }
2774 
suppressInstrumentationSiteForDebug(int & Instrumented)2775 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2776   bool ShouldInstrument =
2777       ClDebugMin < 0 || ClDebugMax < 0 ||
2778       (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2779   Instrumented++;
2780   return !ShouldInstrument;
2781 }
2782 
instrumentFunction(Function & F,const TargetLibraryInfo * TLI)2783 bool AddressSanitizer::instrumentFunction(Function &F,
2784                                           const TargetLibraryInfo *TLI) {
2785   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2786   if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2787   if (F.getName().startswith("__asan_")) return false;
2788 
2789   bool FunctionModified = false;
2790 
2791   // If needed, insert __asan_init before checking for SanitizeAddress attr.
2792   // This function needs to be called even if the function body is not
2793   // instrumented.
2794   if (maybeInsertAsanInitAtFunctionEntry(F))
2795     FunctionModified = true;
2796 
2797   // Leave if the function doesn't need instrumentation.
2798   if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2799 
2800   LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2801 
2802   initializeCallbacks(*F.getParent());
2803 
2804   FunctionStateRAII CleanupObj(this);
2805 
2806   FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2807 
2808   // We can't instrument allocas used with llvm.localescape. Only static allocas
2809   // can be passed to that intrinsic.
2810   markEscapedLocalAllocas(F);
2811 
2812   // We want to instrument every address only once per basic block (unless there
2813   // are calls between uses).
2814   SmallPtrSet<Value *, 16> TempsToInstrument;
2815   SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2816   SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2817   SmallVector<Instruction *, 8> NoReturnCalls;
2818   SmallVector<BasicBlock *, 16> AllBlocks;
2819   SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2820   int NumAllocas = 0;
2821 
2822   // Fill the set of memory operations to instrument.
2823   for (auto &BB : F) {
2824     AllBlocks.push_back(&BB);
2825     TempsToInstrument.clear();
2826     int NumInsnsPerBB = 0;
2827     for (auto &Inst : BB) {
2828       if (LooksLikeCodeInBug11395(&Inst)) return false;
2829       SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2830       getInterestingMemoryOperands(&Inst, InterestingOperands);
2831 
2832       if (!InterestingOperands.empty()) {
2833         for (auto &Operand : InterestingOperands) {
2834           if (ClOpt && ClOptSameTemp) {
2835             Value *Ptr = Operand.getPtr();
2836             // If we have a mask, skip instrumentation if we've already
2837             // instrumented the full object. But don't add to TempsToInstrument
2838             // because we might get another load/store with a different mask.
2839             if (Operand.MaybeMask) {
2840               if (TempsToInstrument.count(Ptr))
2841                 continue; // We've seen this (whole) temp in the current BB.
2842             } else {
2843               if (!TempsToInstrument.insert(Ptr).second)
2844                 continue; // We've seen this temp in the current BB.
2845             }
2846           }
2847           OperandsToInstrument.push_back(Operand);
2848           NumInsnsPerBB++;
2849         }
2850       } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2851                   isInterestingPointerComparison(&Inst)) ||
2852                  ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2853                   isInterestingPointerSubtraction(&Inst))) {
2854         PointerComparisonsOrSubtracts.push_back(&Inst);
2855       } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2856         // ok, take it.
2857         IntrinToInstrument.push_back(MI);
2858         NumInsnsPerBB++;
2859       } else {
2860         if (isa<AllocaInst>(Inst)) NumAllocas++;
2861         if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2862           // A call inside BB.
2863           TempsToInstrument.clear();
2864           if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2865             NoReturnCalls.push_back(CB);
2866         }
2867         if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2868           maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2869       }
2870       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2871     }
2872   }
2873 
2874   bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2875                    OperandsToInstrument.size() + IntrinToInstrument.size() >
2876                        (unsigned)ClInstrumentationWithCallsThreshold);
2877   const DataLayout &DL = F.getParent()->getDataLayout();
2878   ObjectSizeOpts ObjSizeOpts;
2879   ObjSizeOpts.RoundToAlign = true;
2880   ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2881 
2882   // Instrument.
2883   int NumInstrumented = 0;
2884   for (auto &Operand : OperandsToInstrument) {
2885     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2886       instrumentMop(ObjSizeVis, Operand, UseCalls,
2887                     F.getParent()->getDataLayout());
2888     FunctionModified = true;
2889   }
2890   for (auto Inst : IntrinToInstrument) {
2891     if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2892       instrumentMemIntrinsic(Inst);
2893     FunctionModified = true;
2894   }
2895 
2896   FunctionStackPoisoner FSP(F, *this);
2897   bool ChangedStack = FSP.runOnFunction();
2898 
2899   // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2900   // See e.g. https://github.com/google/sanitizers/issues/37
2901   for (auto CI : NoReturnCalls) {
2902     IRBuilder<> IRB(CI);
2903     IRB.CreateCall(AsanHandleNoReturnFunc, {});
2904   }
2905 
2906   for (auto Inst : PointerComparisonsOrSubtracts) {
2907     instrumentPointerComparisonOrSubtraction(Inst);
2908     FunctionModified = true;
2909   }
2910 
2911   if (ChangedStack || !NoReturnCalls.empty())
2912     FunctionModified = true;
2913 
2914   LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2915                     << F << "\n");
2916 
2917   return FunctionModified;
2918 }
2919 
2920 // Workaround for bug 11395: we don't want to instrument stack in functions
2921 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2922 // FIXME: remove once the bug 11395 is fixed.
LooksLikeCodeInBug11395(Instruction * I)2923 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2924   if (LongSize != 32) return false;
2925   CallInst *CI = dyn_cast<CallInst>(I);
2926   if (!CI || !CI->isInlineAsm()) return false;
2927   if (CI->getNumArgOperands() <= 5) return false;
2928   // We have inline assembly with quite a few arguments.
2929   return true;
2930 }
2931 
initializeCallbacks(Module & M)2932 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2933   IRBuilder<> IRB(*C);
2934   for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2935     std::string Suffix = itostr(i);
2936     AsanStackMallocFunc[i] = M.getOrInsertFunction(
2937         kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2938     AsanStackFreeFunc[i] =
2939         M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2940                               IRB.getVoidTy(), IntptrTy, IntptrTy);
2941   }
2942   if (ASan.UseAfterScope) {
2943     AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2944         kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2945     AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2946         kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2947   }
2948 
2949   for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2950     std::ostringstream Name;
2951     Name << kAsanSetShadowPrefix;
2952     Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2953     AsanSetShadowFunc[Val] =
2954         M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2955   }
2956 
2957   AsanAllocaPoisonFunc = M.getOrInsertFunction(
2958       kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2959   AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2960       kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2961 }
2962 
copyToShadowInline(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,size_t Begin,size_t End,IRBuilder<> & IRB,Value * ShadowBase)2963 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2964                                                ArrayRef<uint8_t> ShadowBytes,
2965                                                size_t Begin, size_t End,
2966                                                IRBuilder<> &IRB,
2967                                                Value *ShadowBase) {
2968   if (Begin >= End)
2969     return;
2970 
2971   const size_t LargestStoreSizeInBytes =
2972       std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2973 
2974   const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2975 
2976   // Poison given range in shadow using larges store size with out leading and
2977   // trailing zeros in ShadowMask. Zeros never change, so they need neither
2978   // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2979   // middle of a store.
2980   for (size_t i = Begin; i < End;) {
2981     if (!ShadowMask[i]) {
2982       assert(!ShadowBytes[i]);
2983       ++i;
2984       continue;
2985     }
2986 
2987     size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2988     // Fit store size into the range.
2989     while (StoreSizeInBytes > End - i)
2990       StoreSizeInBytes /= 2;
2991 
2992     // Minimize store size by trimming trailing zeros.
2993     for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2994       while (j <= StoreSizeInBytes / 2)
2995         StoreSizeInBytes /= 2;
2996     }
2997 
2998     uint64_t Val = 0;
2999     for (size_t j = 0; j < StoreSizeInBytes; j++) {
3000       if (IsLittleEndian)
3001         Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3002       else
3003         Val = (Val << 8) | ShadowBytes[i + j];
3004     }
3005 
3006     Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3007     Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3008     IRB.CreateAlignedStore(
3009         Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
3010         Align(1));
3011 
3012     i += StoreSizeInBytes;
3013   }
3014 }
3015 
copyToShadow(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,IRBuilder<> & IRB,Value * ShadowBase)3016 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3017                                          ArrayRef<uint8_t> ShadowBytes,
3018                                          IRBuilder<> &IRB, Value *ShadowBase) {
3019   copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3020 }
3021 
copyToShadow(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,size_t Begin,size_t End,IRBuilder<> & IRB,Value * ShadowBase)3022 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3023                                          ArrayRef<uint8_t> ShadowBytes,
3024                                          size_t Begin, size_t End,
3025                                          IRBuilder<> &IRB, Value *ShadowBase) {
3026   assert(ShadowMask.size() == ShadowBytes.size());
3027   size_t Done = Begin;
3028   for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3029     if (!ShadowMask[i]) {
3030       assert(!ShadowBytes[i]);
3031       continue;
3032     }
3033     uint8_t Val = ShadowBytes[i];
3034     if (!AsanSetShadowFunc[Val])
3035       continue;
3036 
3037     // Skip same values.
3038     for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3039     }
3040 
3041     if (j - i >= ClMaxInlinePoisoningSize) {
3042       copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3043       IRB.CreateCall(AsanSetShadowFunc[Val],
3044                      {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3045                       ConstantInt::get(IntptrTy, j - i)});
3046       Done = j;
3047     }
3048   }
3049 
3050   copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3051 }
3052 
3053 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
3054 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
StackMallocSizeClass(uint64_t LocalStackSize)3055 static int StackMallocSizeClass(uint64_t LocalStackSize) {
3056   assert(LocalStackSize <= kMaxStackMallocSize);
3057   uint64_t MaxSize = kMinStackMallocSize;
3058   for (int i = 0;; i++, MaxSize *= 2)
3059     if (LocalStackSize <= MaxSize) return i;
3060   llvm_unreachable("impossible LocalStackSize");
3061 }
3062 
copyArgsPassedByValToAllocas()3063 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3064   Instruction *CopyInsertPoint = &F.front().front();
3065   if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3066     // Insert after the dynamic shadow location is determined
3067     CopyInsertPoint = CopyInsertPoint->getNextNode();
3068     assert(CopyInsertPoint);
3069   }
3070   IRBuilder<> IRB(CopyInsertPoint);
3071   const DataLayout &DL = F.getParent()->getDataLayout();
3072   for (Argument &Arg : F.args()) {
3073     if (Arg.hasByValAttr()) {
3074       Type *Ty = Arg.getParamByValType();
3075       const Align Alignment =
3076           DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3077 
3078       AllocaInst *AI = IRB.CreateAlloca(
3079           Ty, nullptr,
3080           (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3081               ".byval");
3082       AI->setAlignment(Alignment);
3083       Arg.replaceAllUsesWith(AI);
3084 
3085       uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3086       IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3087     }
3088   }
3089 }
3090 
createPHI(IRBuilder<> & IRB,Value * Cond,Value * ValueIfTrue,Instruction * ThenTerm,Value * ValueIfFalse)3091 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3092                                           Value *ValueIfTrue,
3093                                           Instruction *ThenTerm,
3094                                           Value *ValueIfFalse) {
3095   PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3096   BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3097   PHI->addIncoming(ValueIfFalse, CondBlock);
3098   BasicBlock *ThenBlock = ThenTerm->getParent();
3099   PHI->addIncoming(ValueIfTrue, ThenBlock);
3100   return PHI;
3101 }
3102 
createAllocaForLayout(IRBuilder<> & IRB,const ASanStackFrameLayout & L,bool Dynamic)3103 Value *FunctionStackPoisoner::createAllocaForLayout(
3104     IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3105   AllocaInst *Alloca;
3106   if (Dynamic) {
3107     Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3108                               ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3109                               "MyAlloca");
3110   } else {
3111     Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3112                               nullptr, "MyAlloca");
3113     assert(Alloca->isStaticAlloca());
3114   }
3115   assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3116   size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
3117   Alloca->setAlignment(Align(FrameAlignment));
3118   return IRB.CreatePointerCast(Alloca, IntptrTy);
3119 }
3120 
createDynamicAllocasInitStorage()3121 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3122   BasicBlock &FirstBB = *F.begin();
3123   IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3124   DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3125   IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3126   DynamicAllocaLayout->setAlignment(Align(32));
3127 }
3128 
processDynamicAllocas()3129 void FunctionStackPoisoner::processDynamicAllocas() {
3130   if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3131     assert(DynamicAllocaPoisonCallVec.empty());
3132     return;
3133   }
3134 
3135   // Insert poison calls for lifetime intrinsics for dynamic allocas.
3136   for (const auto &APC : DynamicAllocaPoisonCallVec) {
3137     assert(APC.InsBefore);
3138     assert(APC.AI);
3139     assert(ASan.isInterestingAlloca(*APC.AI));
3140     assert(!APC.AI->isStaticAlloca());
3141 
3142     IRBuilder<> IRB(APC.InsBefore);
3143     poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3144     // Dynamic allocas will be unpoisoned unconditionally below in
3145     // unpoisonDynamicAllocas.
3146     // Flag that we need unpoison static allocas.
3147   }
3148 
3149   // Handle dynamic allocas.
3150   createDynamicAllocasInitStorage();
3151   for (auto &AI : DynamicAllocaVec)
3152     handleDynamicAllocaCall(AI);
3153   unpoisonDynamicAllocas();
3154 }
3155 
3156 /// Collect instructions in the entry block after \p InsBefore which initialize
3157 /// permanent storage for a function argument. These instructions must remain in
3158 /// the entry block so that uninitialized values do not appear in backtraces. An
3159 /// added benefit is that this conserves spill slots. This does not move stores
3160 /// before instrumented / "interesting" allocas.
findStoresToUninstrumentedArgAllocas(AddressSanitizer & ASan,Instruction & InsBefore,SmallVectorImpl<Instruction * > & InitInsts)3161 static void findStoresToUninstrumentedArgAllocas(
3162     AddressSanitizer &ASan, Instruction &InsBefore,
3163     SmallVectorImpl<Instruction *> &InitInsts) {
3164   Instruction *Start = InsBefore.getNextNonDebugInstruction();
3165   for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3166     // Argument initialization looks like:
3167     // 1) store <Argument>, <Alloca> OR
3168     // 2) <CastArgument> = cast <Argument> to ...
3169     //    store <CastArgument> to <Alloca>
3170     // Do not consider any other kind of instruction.
3171     //
3172     // Note: This covers all known cases, but may not be exhaustive. An
3173     // alternative to pattern-matching stores is to DFS over all Argument uses:
3174     // this might be more general, but is probably much more complicated.
3175     if (isa<AllocaInst>(It) || isa<CastInst>(It))
3176       continue;
3177     if (auto *Store = dyn_cast<StoreInst>(It)) {
3178       // The store destination must be an alloca that isn't interesting for
3179       // ASan to instrument. These are moved up before InsBefore, and they're
3180       // not interesting because allocas for arguments can be mem2reg'd.
3181       auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3182       if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3183         continue;
3184 
3185       Value *Val = Store->getValueOperand();
3186       bool IsDirectArgInit = isa<Argument>(Val);
3187       bool IsArgInitViaCast =
3188           isa<CastInst>(Val) &&
3189           isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3190           // Check that the cast appears directly before the store. Otherwise
3191           // moving the cast before InsBefore may break the IR.
3192           Val == It->getPrevNonDebugInstruction();
3193       bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3194       if (!IsArgInit)
3195         continue;
3196 
3197       if (IsArgInitViaCast)
3198         InitInsts.push_back(cast<Instruction>(Val));
3199       InitInsts.push_back(Store);
3200       continue;
3201     }
3202 
3203     // Do not reorder past unknown instructions: argument initialization should
3204     // only involve casts and stores.
3205     return;
3206   }
3207 }
3208 
processStaticAllocas()3209 void FunctionStackPoisoner::processStaticAllocas() {
3210   if (AllocaVec.empty()) {
3211     assert(StaticAllocaPoisonCallVec.empty());
3212     return;
3213   }
3214 
3215   int StackMallocIdx = -1;
3216   DebugLoc EntryDebugLocation;
3217   if (auto SP = F.getSubprogram())
3218     EntryDebugLocation =
3219         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3220 
3221   Instruction *InsBefore = AllocaVec[0];
3222   IRBuilder<> IRB(InsBefore);
3223 
3224   // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3225   // debug info is broken, because only entry-block allocas are treated as
3226   // regular stack slots.
3227   auto InsBeforeB = InsBefore->getParent();
3228   assert(InsBeforeB == &F.getEntryBlock());
3229   for (auto *AI : StaticAllocasToMoveUp)
3230     if (AI->getParent() == InsBeforeB)
3231       AI->moveBefore(InsBefore);
3232 
3233   // Move stores of arguments into entry-block allocas as well. This prevents
3234   // extra stack slots from being generated (to house the argument values until
3235   // they can be stored into the allocas). This also prevents uninitialized
3236   // values from being shown in backtraces.
3237   SmallVector<Instruction *, 8> ArgInitInsts;
3238   findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3239   for (Instruction *ArgInitInst : ArgInitInsts)
3240     ArgInitInst->moveBefore(InsBefore);
3241 
3242   // If we have a call to llvm.localescape, keep it in the entry block.
3243   if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3244 
3245   SmallVector<ASanStackVariableDescription, 16> SVD;
3246   SVD.reserve(AllocaVec.size());
3247   for (AllocaInst *AI : AllocaVec) {
3248     ASanStackVariableDescription D = {AI->getName().data(),
3249                                       ASan.getAllocaSizeInBytes(*AI),
3250                                       0,
3251                                       AI->getAlignment(),
3252                                       AI,
3253                                       0,
3254                                       0};
3255     SVD.push_back(D);
3256   }
3257 
3258   // Minimal header size (left redzone) is 4 pointers,
3259   // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3260   size_t Granularity = 1ULL << Mapping.Scale;
3261   size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3262   const ASanStackFrameLayout &L =
3263       ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3264 
3265   // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3266   DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3267   for (auto &Desc : SVD)
3268     AllocaToSVDMap[Desc.AI] = &Desc;
3269 
3270   // Update SVD with information from lifetime intrinsics.
3271   for (const auto &APC : StaticAllocaPoisonCallVec) {
3272     assert(APC.InsBefore);
3273     assert(APC.AI);
3274     assert(ASan.isInterestingAlloca(*APC.AI));
3275     assert(APC.AI->isStaticAlloca());
3276 
3277     ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3278     Desc.LifetimeSize = Desc.Size;
3279     if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3280       if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3281         if (LifetimeLoc->getFile() == FnLoc->getFile())
3282           if (unsigned Line = LifetimeLoc->getLine())
3283             Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3284       }
3285     }
3286   }
3287 
3288   auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3289   LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3290   uint64_t LocalStackSize = L.FrameSize;
3291   bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3292                        LocalStackSize <= kMaxStackMallocSize;
3293   bool DoDynamicAlloca = ClDynamicAllocaStack;
3294   // Don't do dynamic alloca or stack malloc if:
3295   // 1) There is inline asm: too often it makes assumptions on which registers
3296   //    are available.
3297   // 2) There is a returns_twice call (typically setjmp), which is
3298   //    optimization-hostile, and doesn't play well with introduced indirect
3299   //    register-relative calculation of local variable addresses.
3300   DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3301   DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3302 
3303   Value *StaticAlloca =
3304       DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3305 
3306   Value *FakeStack;
3307   Value *LocalStackBase;
3308   Value *LocalStackBaseAlloca;
3309   uint8_t DIExprFlags = DIExpression::ApplyOffset;
3310 
3311   if (DoStackMalloc) {
3312     LocalStackBaseAlloca =
3313         IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3314     // void *FakeStack = __asan_option_detect_stack_use_after_return
3315     //     ? __asan_stack_malloc_N(LocalStackSize)
3316     //     : nullptr;
3317     // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3318     Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3319         kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3320     Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3321         IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3322         Constant::getNullValue(IRB.getInt32Ty()));
3323     Instruction *Term =
3324         SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3325     IRBuilder<> IRBIf(Term);
3326     StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3327     assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3328     Value *FakeStackValue =
3329         IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3330                          ConstantInt::get(IntptrTy, LocalStackSize));
3331     IRB.SetInsertPoint(InsBefore);
3332     FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3333                           ConstantInt::get(IntptrTy, 0));
3334 
3335     Value *NoFakeStack =
3336         IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3337     Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3338     IRBIf.SetInsertPoint(Term);
3339     Value *AllocaValue =
3340         DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3341 
3342     IRB.SetInsertPoint(InsBefore);
3343     LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3344     IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3345     DIExprFlags |= DIExpression::DerefBefore;
3346   } else {
3347     // void *FakeStack = nullptr;
3348     // void *LocalStackBase = alloca(LocalStackSize);
3349     FakeStack = ConstantInt::get(IntptrTy, 0);
3350     LocalStackBase =
3351         DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3352     LocalStackBaseAlloca = LocalStackBase;
3353   }
3354 
3355   // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3356   // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3357   // later passes and can result in dropped variable coverage in debug info.
3358   Value *LocalStackBaseAllocaPtr =
3359       isa<PtrToIntInst>(LocalStackBaseAlloca)
3360           ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3361           : LocalStackBaseAlloca;
3362   assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3363          "Variable descriptions relative to ASan stack base will be dropped");
3364 
3365   // Replace Alloca instructions with base+offset.
3366   for (const auto &Desc : SVD) {
3367     AllocaInst *AI = Desc.AI;
3368     replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3369                       Desc.Offset);
3370     Value *NewAllocaPtr = IRB.CreateIntToPtr(
3371         IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3372         AI->getType());
3373     AI->replaceAllUsesWith(NewAllocaPtr);
3374   }
3375 
3376   // The left-most redzone has enough space for at least 4 pointers.
3377   // Write the Magic value to redzone[0].
3378   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3379   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3380                   BasePlus0);
3381   // Write the frame description constant to redzone[1].
3382   Value *BasePlus1 = IRB.CreateIntToPtr(
3383       IRB.CreateAdd(LocalStackBase,
3384                     ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3385       IntptrPtrTy);
3386   GlobalVariable *StackDescriptionGlobal =
3387       createPrivateGlobalForString(*F.getParent(), DescriptionString,
3388                                    /*AllowMerging*/ true, kAsanGenPrefix);
3389   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3390   IRB.CreateStore(Description, BasePlus1);
3391   // Write the PC to redzone[2].
3392   Value *BasePlus2 = IRB.CreateIntToPtr(
3393       IRB.CreateAdd(LocalStackBase,
3394                     ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3395       IntptrPtrTy);
3396   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3397 
3398   const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3399 
3400   // Poison the stack red zones at the entry.
3401   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3402   // As mask we must use most poisoned case: red zones and after scope.
3403   // As bytes we can use either the same or just red zones only.
3404   copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3405 
3406   if (!StaticAllocaPoisonCallVec.empty()) {
3407     const auto &ShadowInScope = GetShadowBytes(SVD, L);
3408 
3409     // Poison static allocas near lifetime intrinsics.
3410     for (const auto &APC : StaticAllocaPoisonCallVec) {
3411       const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3412       assert(Desc.Offset % L.Granularity == 0);
3413       size_t Begin = Desc.Offset / L.Granularity;
3414       size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3415 
3416       IRBuilder<> IRB(APC.InsBefore);
3417       copyToShadow(ShadowAfterScope,
3418                    APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3419                    IRB, ShadowBase);
3420     }
3421   }
3422 
3423   SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3424   SmallVector<uint8_t, 64> ShadowAfterReturn;
3425 
3426   // (Un)poison the stack before all ret instructions.
3427   for (Instruction *Ret : RetVec) {
3428     IRBuilder<> IRBRet(Ret);
3429     // Mark the current frame as retired.
3430     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3431                        BasePlus0);
3432     if (DoStackMalloc) {
3433       assert(StackMallocIdx >= 0);
3434       // if FakeStack != 0  // LocalStackBase == FakeStack
3435       //     // In use-after-return mode, poison the whole stack frame.
3436       //     if StackMallocIdx <= 4
3437       //         // For small sizes inline the whole thing:
3438       //         memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3439       //         **SavedFlagPtr(FakeStack) = 0
3440       //     else
3441       //         __asan_stack_free_N(FakeStack, LocalStackSize)
3442       // else
3443       //     <This is not a fake stack; unpoison the redzones>
3444       Value *Cmp =
3445           IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3446       Instruction *ThenTerm, *ElseTerm;
3447       SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3448 
3449       IRBuilder<> IRBPoison(ThenTerm);
3450       if (StackMallocIdx <= 4) {
3451         int ClassSize = kMinStackMallocSize << StackMallocIdx;
3452         ShadowAfterReturn.resize(ClassSize / L.Granularity,
3453                                  kAsanStackUseAfterReturnMagic);
3454         copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3455                      ShadowBase);
3456         Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3457             FakeStack,
3458             ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3459         Value *SavedFlagPtr = IRBPoison.CreateLoad(
3460             IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3461         IRBPoison.CreateStore(
3462             Constant::getNullValue(IRBPoison.getInt8Ty()),
3463             IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3464       } else {
3465         // For larger frames call __asan_stack_free_*.
3466         IRBPoison.CreateCall(
3467             AsanStackFreeFunc[StackMallocIdx],
3468             {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3469       }
3470 
3471       IRBuilder<> IRBElse(ElseTerm);
3472       copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3473     } else {
3474       copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3475     }
3476   }
3477 
3478   // We are done. Remove the old unused alloca instructions.
3479   for (auto AI : AllocaVec) AI->eraseFromParent();
3480 }
3481 
poisonAlloca(Value * V,uint64_t Size,IRBuilder<> & IRB,bool DoPoison)3482 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3483                                          IRBuilder<> &IRB, bool DoPoison) {
3484   // For now just insert the call to ASan runtime.
3485   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3486   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3487   IRB.CreateCall(
3488       DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3489       {AddrArg, SizeArg});
3490 }
3491 
3492 // Handling llvm.lifetime intrinsics for a given %alloca:
3493 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3494 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3495 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3496 //     could be poisoned by previous llvm.lifetime.end instruction, as the
3497 //     variable may go in and out of scope several times, e.g. in loops).
3498 // (3) if we poisoned at least one %alloca in a function,
3499 //     unpoison the whole stack frame at function exit.
handleDynamicAllocaCall(AllocaInst * AI)3500 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3501   IRBuilder<> IRB(AI);
3502 
3503   const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
3504   const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3505 
3506   Value *Zero = Constant::getNullValue(IntptrTy);
3507   Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3508   Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3509 
3510   // Since we need to extend alloca with additional memory to locate
3511   // redzones, and OldSize is number of allocated blocks with
3512   // ElementSize size, get allocated memory size in bytes by
3513   // OldSize * ElementSize.
3514   const unsigned ElementSize =
3515       F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3516   Value *OldSize =
3517       IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3518                     ConstantInt::get(IntptrTy, ElementSize));
3519 
3520   // PartialSize = OldSize % 32
3521   Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3522 
3523   // Misalign = kAllocaRzSize - PartialSize;
3524   Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3525 
3526   // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3527   Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3528   Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3529 
3530   // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3531   // Alignment is added to locate left redzone, PartialPadding for possible
3532   // partial redzone and kAllocaRzSize for right redzone respectively.
3533   Value *AdditionalChunkSize = IRB.CreateAdd(
3534       ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3535 
3536   Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3537 
3538   // Insert new alloca with new NewSize and Alignment params.
3539   AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3540   NewAlloca->setAlignment(Align(Alignment));
3541 
3542   // NewAddress = Address + Alignment
3543   Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3544                                     ConstantInt::get(IntptrTy, Alignment));
3545 
3546   // Insert __asan_alloca_poison call for new created alloca.
3547   IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3548 
3549   // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3550   // for unpoisoning stuff.
3551   IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3552 
3553   Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3554 
3555   // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3556   AI->replaceAllUsesWith(NewAddressPtr);
3557 
3558   // We are done. Erase old alloca from parent.
3559   AI->eraseFromParent();
3560 }
3561 
3562 // isSafeAccess returns true if Addr is always inbounds with respect to its
3563 // base object. For example, it is a field access or an array access with
3564 // constant inbounds index.
isSafeAccess(ObjectSizeOffsetVisitor & ObjSizeVis,Value * Addr,uint64_t TypeSize) const3565 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3566                                     Value *Addr, uint64_t TypeSize) const {
3567   SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3568   if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3569   uint64_t Size = SizeOffset.first.getZExtValue();
3570   int64_t Offset = SizeOffset.second.getSExtValue();
3571   // Three checks are required to ensure safety:
3572   // . Offset >= 0  (since the offset is given from the base ptr)
3573   // . Size >= Offset  (unsigned)
3574   // . Size - Offset >= NeededSize  (unsigned)
3575   return Offset >= 0 && Size >= uint64_t(Offset) &&
3576          Size - uint64_t(Offset) >= TypeSize / 8;
3577 }
3578