1 //===- AddressSanitizer.cpp - memory error detector -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
10 // Details of the algorithm:
11 // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12 //
13 // FIXME: This sanitizer does not yet handle scalable vectors
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DepthFirstIterator.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/ADT/Twine.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/BinaryFormat/MachO.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DIBuilder.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalAlias.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/IRBuilder.h"
49 #include "llvm/IR/InlineAsm.h"
50 #include "llvm/IR/InstVisitor.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/MDBuilder.h"
58 #include "llvm/IR/Metadata.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/Use.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/InitializePasses.h"
64 #include "llvm/MC/MCSectionMachO.h"
65 #include "llvm/Pass.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/ScopedPrinter.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Transforms/Instrumentation.h"
74 #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Transforms/Utils/ModuleUtils.h"
79 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iomanip>
85 #include <limits>
86 #include <memory>
87 #include <sstream>
88 #include <string>
89 #include <tuple>
90
91 using namespace llvm;
92
93 #define DEBUG_TYPE "asan"
94
95 static const uint64_t kDefaultShadowScale = 3;
96 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
97 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
98 static const uint64_t kDynamicShadowSentinel =
99 std::numeric_limits<uint64_t>::max();
100 static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
101 static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
102 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
103 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
104 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
105 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
106 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
107 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
108 static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
109 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
110 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
111 static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
112 static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
113 static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
114 static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
115 static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
116 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
117 static const uint64_t kEmscriptenShadowOffset = 0;
118
119 static const uint64_t kMyriadShadowScale = 5;
120 static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL;
121 static const uint64_t kMyriadMemorySize32 = 0x20000000ULL;
122 static const uint64_t kMyriadTagShift = 29;
123 static const uint64_t kMyriadDDRTag = 4;
124 static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL;
125
126 // The shadow memory space is dynamically allocated.
127 static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
128
129 static const size_t kMinStackMallocSize = 1 << 6; // 64B
130 static const size_t kMaxStackMallocSize = 1 << 16; // 64K
131 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
132 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
133
134 const char kAsanModuleCtorName[] = "asan.module_ctor";
135 const char kAsanModuleDtorName[] = "asan.module_dtor";
136 static const uint64_t kAsanCtorAndDtorPriority = 1;
137 // On Emscripten, the system needs more than one priorities for constructors.
138 static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
139 const char kAsanReportErrorTemplate[] = "__asan_report_";
140 const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
141 const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
142 const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
143 const char kAsanUnregisterImageGlobalsName[] =
144 "__asan_unregister_image_globals";
145 const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
146 const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
147 const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
148 const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
149 const char kAsanInitName[] = "__asan_init";
150 const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
151 const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
152 const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
153 const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
154 static const int kMaxAsanStackMallocSizeClass = 10;
155 const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
156 const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
157 const char kAsanGenPrefix[] = "___asan_gen_";
158 const char kODRGenPrefix[] = "__odr_asan_gen_";
159 const char kSanCovGenPrefix[] = "__sancov_gen_";
160 const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
161 const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
162 const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
163
164 // ASan version script has __asan_* wildcard. Triple underscore prevents a
165 // linker (gold) warning about attempting to export a local symbol.
166 const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
167
168 const char kAsanOptionDetectUseAfterReturn[] =
169 "__asan_option_detect_stack_use_after_return";
170
171 const char kAsanShadowMemoryDynamicAddress[] =
172 "__asan_shadow_memory_dynamic_address";
173
174 const char kAsanAllocaPoison[] = "__asan_alloca_poison";
175 const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
176
177 const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
178 const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
179
180 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
181 static const size_t kNumberOfAccessSizes = 5;
182
183 static const unsigned kAllocaRzSize = 32;
184
185 // Command-line flags.
186
187 static cl::opt<bool> ClEnableKasan(
188 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
189 cl::Hidden, cl::init(false));
190
191 static cl::opt<bool> ClRecover(
192 "asan-recover",
193 cl::desc("Enable recovery mode (continue-after-error)."),
194 cl::Hidden, cl::init(false));
195
196 static cl::opt<bool> ClInsertVersionCheck(
197 "asan-guard-against-version-mismatch",
198 cl::desc("Guard against compiler/runtime version mismatch."),
199 cl::Hidden, cl::init(true));
200
201 // This flag may need to be replaced with -f[no-]asan-reads.
202 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
203 cl::desc("instrument read instructions"),
204 cl::Hidden, cl::init(true));
205
206 static cl::opt<bool> ClInstrumentWrites(
207 "asan-instrument-writes", cl::desc("instrument write instructions"),
208 cl::Hidden, cl::init(true));
209
210 static cl::opt<bool> ClInstrumentAtomics(
211 "asan-instrument-atomics",
212 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
213 cl::init(true));
214
215 static cl::opt<bool>
216 ClInstrumentByval("asan-instrument-byval",
217 cl::desc("instrument byval call arguments"), cl::Hidden,
218 cl::init(true));
219
220 static cl::opt<bool> ClAlwaysSlowPath(
221 "asan-always-slow-path",
222 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
223 cl::init(false));
224
225 static cl::opt<bool> ClForceDynamicShadow(
226 "asan-force-dynamic-shadow",
227 cl::desc("Load shadow address into a local variable for each function"),
228 cl::Hidden, cl::init(false));
229
230 static cl::opt<bool>
231 ClWithIfunc("asan-with-ifunc",
232 cl::desc("Access dynamic shadow through an ifunc global on "
233 "platforms that support this"),
234 cl::Hidden, cl::init(true));
235
236 static cl::opt<bool> ClWithIfuncSuppressRemat(
237 "asan-with-ifunc-suppress-remat",
238 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
239 "it through inline asm in prologue."),
240 cl::Hidden, cl::init(true));
241
242 // This flag limits the number of instructions to be instrumented
243 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
244 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
245 // set it to 10000.
246 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
247 "asan-max-ins-per-bb", cl::init(10000),
248 cl::desc("maximal number of instructions to instrument in any given BB"),
249 cl::Hidden);
250
251 // This flag may need to be replaced with -f[no]asan-stack.
252 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
253 cl::Hidden, cl::init(true));
254 static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
255 "asan-max-inline-poisoning-size",
256 cl::desc(
257 "Inline shadow poisoning for blocks up to the given size in bytes."),
258 cl::Hidden, cl::init(64));
259
260 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
261 cl::desc("Check stack-use-after-return"),
262 cl::Hidden, cl::init(true));
263
264 static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
265 cl::desc("Create redzones for byval "
266 "arguments (extra copy "
267 "required)"), cl::Hidden,
268 cl::init(true));
269
270 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
271 cl::desc("Check stack-use-after-scope"),
272 cl::Hidden, cl::init(false));
273
274 // This flag may need to be replaced with -f[no]asan-globals.
275 static cl::opt<bool> ClGlobals("asan-globals",
276 cl::desc("Handle global objects"), cl::Hidden,
277 cl::init(true));
278
279 static cl::opt<bool> ClInitializers("asan-initialization-order",
280 cl::desc("Handle C++ initializer order"),
281 cl::Hidden, cl::init(true));
282
283 static cl::opt<bool> ClInvalidPointerPairs(
284 "asan-detect-invalid-pointer-pair",
285 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
286 cl::init(false));
287
288 static cl::opt<bool> ClInvalidPointerCmp(
289 "asan-detect-invalid-pointer-cmp",
290 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
291 cl::init(false));
292
293 static cl::opt<bool> ClInvalidPointerSub(
294 "asan-detect-invalid-pointer-sub",
295 cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
296 cl::init(false));
297
298 static cl::opt<unsigned> ClRealignStack(
299 "asan-realign-stack",
300 cl::desc("Realign stack to the value of this flag (power of two)"),
301 cl::Hidden, cl::init(32));
302
303 static cl::opt<int> ClInstrumentationWithCallsThreshold(
304 "asan-instrumentation-with-call-threshold",
305 cl::desc(
306 "If the function being instrumented contains more than "
307 "this number of memory accesses, use callbacks instead of "
308 "inline checks (-1 means never use callbacks)."),
309 cl::Hidden, cl::init(7000));
310
311 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
312 "asan-memory-access-callback-prefix",
313 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
314 cl::init("__asan_"));
315
316 static cl::opt<bool>
317 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
318 cl::desc("instrument dynamic allocas"),
319 cl::Hidden, cl::init(true));
320
321 static cl::opt<bool> ClSkipPromotableAllocas(
322 "asan-skip-promotable-allocas",
323 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
324 cl::init(true));
325
326 // These flags allow to change the shadow mapping.
327 // The shadow mapping looks like
328 // Shadow = (Mem >> scale) + offset
329
330 static cl::opt<int> ClMappingScale("asan-mapping-scale",
331 cl::desc("scale of asan shadow mapping"),
332 cl::Hidden, cl::init(0));
333
334 static cl::opt<uint64_t>
335 ClMappingOffset("asan-mapping-offset",
336 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
337 cl::Hidden, cl::init(0));
338
339 // Optimization flags. Not user visible, used mostly for testing
340 // and benchmarking the tool.
341
342 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
343 cl::Hidden, cl::init(true));
344
345 static cl::opt<bool> ClOptSameTemp(
346 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
347 cl::Hidden, cl::init(true));
348
349 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
350 cl::desc("Don't instrument scalar globals"),
351 cl::Hidden, cl::init(true));
352
353 static cl::opt<bool> ClOptStack(
354 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
355 cl::Hidden, cl::init(false));
356
357 static cl::opt<bool> ClDynamicAllocaStack(
358 "asan-stack-dynamic-alloca",
359 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
360 cl::init(true));
361
362 static cl::opt<uint32_t> ClForceExperiment(
363 "asan-force-experiment",
364 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
365 cl::init(0));
366
367 static cl::opt<bool>
368 ClUsePrivateAlias("asan-use-private-alias",
369 cl::desc("Use private aliases for global variables"),
370 cl::Hidden, cl::init(false));
371
372 static cl::opt<bool>
373 ClUseOdrIndicator("asan-use-odr-indicator",
374 cl::desc("Use odr indicators to improve ODR reporting"),
375 cl::Hidden, cl::init(false));
376
377 static cl::opt<bool>
378 ClUseGlobalsGC("asan-globals-live-support",
379 cl::desc("Use linker features to support dead "
380 "code stripping of globals"),
381 cl::Hidden, cl::init(true));
382
383 // This is on by default even though there is a bug in gold:
384 // https://sourceware.org/bugzilla/show_bug.cgi?id=19002
385 static cl::opt<bool>
386 ClWithComdat("asan-with-comdat",
387 cl::desc("Place ASan constructors in comdat sections"),
388 cl::Hidden, cl::init(true));
389
390 static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
391 "asan-destructor-kind",
392 cl::desc("Sets the ASan destructor kind. The default is to use the value "
393 "provided to the pass constructor"),
394 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors"),
395 clEnumValN(AsanDtorKind::Global, "global",
396 "Use global destructors")),
397 cl::init(AsanDtorKind::Invalid), cl::Hidden);
398
399 // Debug flags.
400
401 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
402 cl::init(0));
403
404 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
405 cl::Hidden, cl::init(0));
406
407 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
408 cl::desc("Debug func"));
409
410 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
411 cl::Hidden, cl::init(-1));
412
413 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
414 cl::Hidden, cl::init(-1));
415
416 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
417 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
418 STATISTIC(NumOptimizedAccessesToGlobalVar,
419 "Number of optimized accesses to global vars");
420 STATISTIC(NumOptimizedAccessesToStackVar,
421 "Number of optimized accesses to stack vars");
422
423 namespace {
424
425 /// This struct defines the shadow mapping using the rule:
426 /// shadow = (mem >> Scale) ADD-or-OR Offset.
427 /// If InGlobal is true, then
428 /// extern char __asan_shadow[];
429 /// shadow = (mem >> Scale) + &__asan_shadow
430 struct ShadowMapping {
431 int Scale;
432 uint64_t Offset;
433 bool OrShadowOffset;
434 bool InGlobal;
435 };
436
437 } // end anonymous namespace
438
getShadowMapping(Triple & TargetTriple,int LongSize,bool IsKasan)439 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
440 bool IsKasan) {
441 bool IsAndroid = TargetTriple.isAndroid();
442 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
443 bool IsMacOS = TargetTriple.isMacOSX();
444 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
445 bool IsNetBSD = TargetTriple.isOSNetBSD();
446 bool IsPS4CPU = TargetTriple.isPS4CPU();
447 bool IsLinux = TargetTriple.isOSLinux();
448 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
449 TargetTriple.getArch() == Triple::ppc64le;
450 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
451 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
452 bool IsMIPS32 = TargetTriple.isMIPS32();
453 bool IsMIPS64 = TargetTriple.isMIPS64();
454 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
455 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
456 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
457 bool IsWindows = TargetTriple.isOSWindows();
458 bool IsFuchsia = TargetTriple.isOSFuchsia();
459 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
460 bool IsEmscripten = TargetTriple.isOSEmscripten();
461 bool IsAMDGPU = TargetTriple.isAMDGPU();
462
463 // Asan support for AMDGPU assumes X86 as the host right now.
464 if (IsAMDGPU)
465 IsX86_64 = true;
466
467 ShadowMapping Mapping;
468
469 Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale;
470 if (ClMappingScale.getNumOccurrences() > 0) {
471 Mapping.Scale = ClMappingScale;
472 }
473
474 if (LongSize == 32) {
475 if (IsAndroid)
476 Mapping.Offset = kDynamicShadowSentinel;
477 else if (IsMIPS32)
478 Mapping.Offset = kMIPS32_ShadowOffset32;
479 else if (IsFreeBSD)
480 Mapping.Offset = kFreeBSD_ShadowOffset32;
481 else if (IsNetBSD)
482 Mapping.Offset = kNetBSD_ShadowOffset32;
483 else if (IsIOS)
484 Mapping.Offset = kDynamicShadowSentinel;
485 else if (IsWindows)
486 Mapping.Offset = kWindowsShadowOffset32;
487 else if (IsEmscripten)
488 Mapping.Offset = kEmscriptenShadowOffset;
489 else if (IsMyriad) {
490 uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 -
491 (kMyriadMemorySize32 >> Mapping.Scale));
492 Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale);
493 }
494 else
495 Mapping.Offset = kDefaultShadowOffset32;
496 } else { // LongSize == 64
497 // Fuchsia is always PIE, which means that the beginning of the address
498 // space is always available.
499 if (IsFuchsia)
500 Mapping.Offset = 0;
501 else if (IsPPC64)
502 Mapping.Offset = kPPC64_ShadowOffset64;
503 else if (IsSystemZ)
504 Mapping.Offset = kSystemZ_ShadowOffset64;
505 else if (IsFreeBSD && !IsMIPS64) {
506 if (IsKasan)
507 Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
508 else
509 Mapping.Offset = kFreeBSD_ShadowOffset64;
510 } else if (IsNetBSD) {
511 if (IsKasan)
512 Mapping.Offset = kNetBSDKasan_ShadowOffset64;
513 else
514 Mapping.Offset = kNetBSD_ShadowOffset64;
515 } else if (IsPS4CPU)
516 Mapping.Offset = kPS4CPU_ShadowOffset64;
517 else if (IsLinux && IsX86_64) {
518 if (IsKasan)
519 Mapping.Offset = kLinuxKasan_ShadowOffset64;
520 else
521 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
522 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
523 } else if (IsWindows && IsX86_64) {
524 Mapping.Offset = kWindowsShadowOffset64;
525 } else if (IsMIPS64)
526 Mapping.Offset = kMIPS64_ShadowOffset64;
527 else if (IsIOS)
528 Mapping.Offset = kDynamicShadowSentinel;
529 else if (IsMacOS && IsAArch64)
530 Mapping.Offset = kDynamicShadowSentinel;
531 else if (IsAArch64)
532 Mapping.Offset = kAArch64_ShadowOffset64;
533 else if (IsRISCV64)
534 Mapping.Offset = kRISCV64_ShadowOffset64;
535 else
536 Mapping.Offset = kDefaultShadowOffset64;
537 }
538
539 if (ClForceDynamicShadow) {
540 Mapping.Offset = kDynamicShadowSentinel;
541 }
542
543 if (ClMappingOffset.getNumOccurrences() > 0) {
544 Mapping.Offset = ClMappingOffset;
545 }
546
547 // OR-ing shadow offset if more efficient (at least on x86) if the offset
548 // is a power of two, but on ppc64 we have to use add since the shadow
549 // offset is not necessary 1/8-th of the address space. On SystemZ,
550 // we could OR the constant in a single instruction, but it's more
551 // efficient to load it once and use indexed addressing.
552 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
553 !IsRISCV64 &&
554 !(Mapping.Offset & (Mapping.Offset - 1)) &&
555 Mapping.Offset != kDynamicShadowSentinel;
556 bool IsAndroidWithIfuncSupport =
557 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
558 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
559
560 return Mapping;
561 }
562
getRedzoneSizeForScale(int MappingScale)563 static uint64_t getRedzoneSizeForScale(int MappingScale) {
564 // Redzone used for stack and globals is at least 32 bytes.
565 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
566 return std::max(32U, 1U << MappingScale);
567 }
568
GetCtorAndDtorPriority(Triple & TargetTriple)569 static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
570 if (TargetTriple.isOSEmscripten()) {
571 return kAsanEmscriptenCtorAndDtorPriority;
572 } else {
573 return kAsanCtorAndDtorPriority;
574 }
575 }
576
577 namespace {
578
579 /// Module analysis for getting various metadata about the module.
580 class ASanGlobalsMetadataWrapperPass : public ModulePass {
581 public:
582 static char ID;
583
ASanGlobalsMetadataWrapperPass()584 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
585 initializeASanGlobalsMetadataWrapperPassPass(
586 *PassRegistry::getPassRegistry());
587 }
588
runOnModule(Module & M)589 bool runOnModule(Module &M) override {
590 GlobalsMD = GlobalsMetadata(M);
591 return false;
592 }
593
getPassName() const594 StringRef getPassName() const override {
595 return "ASanGlobalsMetadataWrapperPass";
596 }
597
getAnalysisUsage(AnalysisUsage & AU) const598 void getAnalysisUsage(AnalysisUsage &AU) const override {
599 AU.setPreservesAll();
600 }
601
getGlobalsMD()602 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
603
604 private:
605 GlobalsMetadata GlobalsMD;
606 };
607
608 char ASanGlobalsMetadataWrapperPass::ID = 0;
609
610 /// AddressSanitizer: instrument the code in module to find memory bugs.
611 struct AddressSanitizer {
AddressSanitizer__anonac73263b0211::AddressSanitizer612 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
613 bool CompileKernel = false, bool Recover = false,
614 bool UseAfterScope = false)
615 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
616 : CompileKernel),
617 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
618 UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) {
619 C = &(M.getContext());
620 LongSize = M.getDataLayout().getPointerSizeInBits();
621 IntptrTy = Type::getIntNTy(*C, LongSize);
622 TargetTriple = Triple(M.getTargetTriple());
623
624 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
625 }
626
getAllocaSizeInBytes__anonac73263b0211::AddressSanitizer627 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
628 uint64_t ArraySize = 1;
629 if (AI.isArrayAllocation()) {
630 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
631 assert(CI && "non-constant array size");
632 ArraySize = CI->getZExtValue();
633 }
634 Type *Ty = AI.getAllocatedType();
635 uint64_t SizeInBytes =
636 AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
637 return SizeInBytes * ArraySize;
638 }
639
640 /// Check if we want (and can) handle this alloca.
641 bool isInterestingAlloca(const AllocaInst &AI);
642
643 bool ignoreAccess(Value *Ptr);
644 void getInterestingMemoryOperands(
645 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
646
647 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
648 InterestingMemoryOperand &O, bool UseCalls,
649 const DataLayout &DL);
650 void instrumentPointerComparisonOrSubtraction(Instruction *I);
651 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
652 Value *Addr, uint32_t TypeSize, bool IsWrite,
653 Value *SizeArgument, bool UseCalls, uint32_t Exp);
654 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
655 Instruction *InsertBefore, Value *Addr,
656 uint32_t TypeSize, bool IsWrite,
657 Value *SizeArgument);
658 void instrumentUnusualSizeOrAlignment(Instruction *I,
659 Instruction *InsertBefore, Value *Addr,
660 uint32_t TypeSize, bool IsWrite,
661 Value *SizeArgument, bool UseCalls,
662 uint32_t Exp);
663 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
664 Value *ShadowValue, uint32_t TypeSize);
665 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
666 bool IsWrite, size_t AccessSizeIndex,
667 Value *SizeArgument, uint32_t Exp);
668 void instrumentMemIntrinsic(MemIntrinsic *MI);
669 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
670 bool suppressInstrumentationSiteForDebug(int &Instrumented);
671 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
672 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
673 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
674 void markEscapedLocalAllocas(Function &F);
675
676 private:
677 friend struct FunctionStackPoisoner;
678
679 void initializeCallbacks(Module &M);
680
681 bool LooksLikeCodeInBug11395(Instruction *I);
682 bool GlobalIsLinkerInitialized(GlobalVariable *G);
683 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
684 uint64_t TypeSize) const;
685
686 /// Helper to cleanup per-function state.
687 struct FunctionStateRAII {
688 AddressSanitizer *Pass;
689
FunctionStateRAII__anonac73263b0211::AddressSanitizer::FunctionStateRAII690 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
691 assert(Pass->ProcessedAllocas.empty() &&
692 "last pass forgot to clear cache");
693 assert(!Pass->LocalDynamicShadow);
694 }
695
~FunctionStateRAII__anonac73263b0211::AddressSanitizer::FunctionStateRAII696 ~FunctionStateRAII() {
697 Pass->LocalDynamicShadow = nullptr;
698 Pass->ProcessedAllocas.clear();
699 }
700 };
701
702 LLVMContext *C;
703 Triple TargetTriple;
704 int LongSize;
705 bool CompileKernel;
706 bool Recover;
707 bool UseAfterScope;
708 Type *IntptrTy;
709 ShadowMapping Mapping;
710 FunctionCallee AsanHandleNoReturnFunc;
711 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
712 Constant *AsanShadowGlobal;
713
714 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
715 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
716 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
717
718 // These arrays is indexed by AccessIsWrite and Experiment.
719 FunctionCallee AsanErrorCallbackSized[2][2];
720 FunctionCallee AsanMemoryAccessCallbackSized[2][2];
721
722 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
723 Value *LocalDynamicShadow = nullptr;
724 const GlobalsMetadata &GlobalsMD;
725 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
726
727 FunctionCallee AMDGPUAddressShared;
728 FunctionCallee AMDGPUAddressPrivate;
729 };
730
731 class AddressSanitizerLegacyPass : public FunctionPass {
732 public:
733 static char ID;
734
AddressSanitizerLegacyPass(bool CompileKernel=false,bool Recover=false,bool UseAfterScope=false)735 explicit AddressSanitizerLegacyPass(bool CompileKernel = false,
736 bool Recover = false,
737 bool UseAfterScope = false)
738 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
739 UseAfterScope(UseAfterScope) {
740 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
741 }
742
getPassName() const743 StringRef getPassName() const override {
744 return "AddressSanitizerFunctionPass";
745 }
746
getAnalysisUsage(AnalysisUsage & AU) const747 void getAnalysisUsage(AnalysisUsage &AU) const override {
748 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
749 AU.addRequired<TargetLibraryInfoWrapperPass>();
750 }
751
runOnFunction(Function & F)752 bool runOnFunction(Function &F) override {
753 GlobalsMetadata &GlobalsMD =
754 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
755 const TargetLibraryInfo *TLI =
756 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
757 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
758 UseAfterScope);
759 return ASan.instrumentFunction(F, TLI);
760 }
761
762 private:
763 bool CompileKernel;
764 bool Recover;
765 bool UseAfterScope;
766 };
767
768 class ModuleAddressSanitizer {
769 public:
ModuleAddressSanitizer(Module & M,const GlobalsMetadata * GlobalsMD,bool CompileKernel=false,bool Recover=false,bool UseGlobalsGC=true,bool UseOdrIndicator=false,AsanDtorKind DestructorKind=AsanDtorKind::Global)770 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
771 bool CompileKernel = false, bool Recover = false,
772 bool UseGlobalsGC = true, bool UseOdrIndicator = false,
773 AsanDtorKind DestructorKind = AsanDtorKind::Global)
774 : GlobalsMD(*GlobalsMD),
775 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
776 : CompileKernel),
777 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
778 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
779 // Enable aliases as they should have no downside with ODR indicators.
780 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
781 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
782 // Not a typo: ClWithComdat is almost completely pointless without
783 // ClUseGlobalsGC (because then it only works on modules without
784 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
785 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
786 // argument is designed as workaround. Therefore, disable both
787 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
788 // do globals-gc.
789 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
790 DestructorKind(DestructorKind) {
791 C = &(M.getContext());
792 int LongSize = M.getDataLayout().getPointerSizeInBits();
793 IntptrTy = Type::getIntNTy(*C, LongSize);
794 TargetTriple = Triple(M.getTargetTriple());
795 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
796
797 if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
798 this->DestructorKind = ClOverrideDestructorKind;
799 assert(this->DestructorKind != AsanDtorKind::Invalid);
800 }
801
802 bool instrumentModule(Module &);
803
804 private:
805 void initializeCallbacks(Module &M);
806
807 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
808 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
809 ArrayRef<GlobalVariable *> ExtendedGlobals,
810 ArrayRef<Constant *> MetadataInitializers);
811 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
812 ArrayRef<GlobalVariable *> ExtendedGlobals,
813 ArrayRef<Constant *> MetadataInitializers,
814 const std::string &UniqueModuleId);
815 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
816 ArrayRef<GlobalVariable *> ExtendedGlobals,
817 ArrayRef<Constant *> MetadataInitializers);
818 void
819 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
820 ArrayRef<GlobalVariable *> ExtendedGlobals,
821 ArrayRef<Constant *> MetadataInitializers);
822
823 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
824 StringRef OriginalName);
825 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
826 StringRef InternalSuffix);
827 Instruction *CreateAsanModuleDtor(Module &M);
828
829 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
830 bool shouldInstrumentGlobal(GlobalVariable *G) const;
831 bool ShouldUseMachOGlobalsSection() const;
832 StringRef getGlobalMetadataSection() const;
833 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
834 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
getMinRedzoneSizeForGlobal() const835 uint64_t getMinRedzoneSizeForGlobal() const {
836 return getRedzoneSizeForScale(Mapping.Scale);
837 }
838 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
839 int GetAsanVersion(const Module &M) const;
840
841 const GlobalsMetadata &GlobalsMD;
842 bool CompileKernel;
843 bool Recover;
844 bool UseGlobalsGC;
845 bool UsePrivateAlias;
846 bool UseOdrIndicator;
847 bool UseCtorComdat;
848 AsanDtorKind DestructorKind;
849 Type *IntptrTy;
850 LLVMContext *C;
851 Triple TargetTriple;
852 ShadowMapping Mapping;
853 FunctionCallee AsanPoisonGlobals;
854 FunctionCallee AsanUnpoisonGlobals;
855 FunctionCallee AsanRegisterGlobals;
856 FunctionCallee AsanUnregisterGlobals;
857 FunctionCallee AsanRegisterImageGlobals;
858 FunctionCallee AsanUnregisterImageGlobals;
859 FunctionCallee AsanRegisterElfGlobals;
860 FunctionCallee AsanUnregisterElfGlobals;
861
862 Function *AsanCtorFunction = nullptr;
863 Function *AsanDtorFunction = nullptr;
864 };
865
866 class ModuleAddressSanitizerLegacyPass : public ModulePass {
867 public:
868 static char ID;
869
ModuleAddressSanitizerLegacyPass(bool CompileKernel=false,bool Recover=false,bool UseGlobalGC=true,bool UseOdrIndicator=false,AsanDtorKind DestructorKind=AsanDtorKind::Global)870 explicit ModuleAddressSanitizerLegacyPass(
871 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true,
872 bool UseOdrIndicator = false,
873 AsanDtorKind DestructorKind = AsanDtorKind::Global)
874 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
875 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator),
876 DestructorKind(DestructorKind) {
877 initializeModuleAddressSanitizerLegacyPassPass(
878 *PassRegistry::getPassRegistry());
879 }
880
getPassName() const881 StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
882
getAnalysisUsage(AnalysisUsage & AU) const883 void getAnalysisUsage(AnalysisUsage &AU) const override {
884 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
885 }
886
runOnModule(Module & M)887 bool runOnModule(Module &M) override {
888 GlobalsMetadata &GlobalsMD =
889 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
890 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
891 UseGlobalGC, UseOdrIndicator,
892 DestructorKind);
893 return ASanModule.instrumentModule(M);
894 }
895
896 private:
897 bool CompileKernel;
898 bool Recover;
899 bool UseGlobalGC;
900 bool UseOdrIndicator;
901 AsanDtorKind DestructorKind;
902 };
903
904 // Stack poisoning does not play well with exception handling.
905 // When an exception is thrown, we essentially bypass the code
906 // that unpoisones the stack. This is why the run-time library has
907 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
908 // stack in the interceptor. This however does not work inside the
909 // actual function which catches the exception. Most likely because the
910 // compiler hoists the load of the shadow value somewhere too high.
911 // This causes asan to report a non-existing bug on 453.povray.
912 // It sounds like an LLVM bug.
913 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
914 Function &F;
915 AddressSanitizer &ASan;
916 DIBuilder DIB;
917 LLVMContext *C;
918 Type *IntptrTy;
919 Type *IntptrPtrTy;
920 ShadowMapping Mapping;
921
922 SmallVector<AllocaInst *, 16> AllocaVec;
923 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
924 SmallVector<Instruction *, 8> RetVec;
925 unsigned StackAlignment;
926
927 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
928 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
929 FunctionCallee AsanSetShadowFunc[0x100] = {};
930 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
931 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
932
933 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
934 struct AllocaPoisonCall {
935 IntrinsicInst *InsBefore;
936 AllocaInst *AI;
937 uint64_t Size;
938 bool DoPoison;
939 };
940 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
941 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
942 bool HasUntracedLifetimeIntrinsic = false;
943
944 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
945 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
946 AllocaInst *DynamicAllocaLayout = nullptr;
947 IntrinsicInst *LocalEscapeCall = nullptr;
948
949 bool HasInlineAsm = false;
950 bool HasReturnsTwiceCall = false;
951 bool PoisonStack;
952
FunctionStackPoisoner__anonac73263b0211::FunctionStackPoisoner953 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
954 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
955 C(ASan.C), IntptrTy(ASan.IntptrTy),
956 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
957 StackAlignment(1 << Mapping.Scale),
958 PoisonStack(ClStack &&
959 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
960
runOnFunction__anonac73263b0211::FunctionStackPoisoner961 bool runOnFunction() {
962 if (!PoisonStack)
963 return false;
964
965 if (ClRedzoneByvalArgs)
966 copyArgsPassedByValToAllocas();
967
968 // Collect alloca, ret, lifetime instructions etc.
969 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
970
971 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
972
973 initializeCallbacks(*F.getParent());
974
975 if (HasUntracedLifetimeIntrinsic) {
976 // If there are lifetime intrinsics which couldn't be traced back to an
977 // alloca, we may not know exactly when a variable enters scope, and
978 // therefore should "fail safe" by not poisoning them.
979 StaticAllocaPoisonCallVec.clear();
980 DynamicAllocaPoisonCallVec.clear();
981 }
982
983 processDynamicAllocas();
984 processStaticAllocas();
985
986 if (ClDebugStack) {
987 LLVM_DEBUG(dbgs() << F);
988 }
989 return true;
990 }
991
992 // Arguments marked with the "byval" attribute are implicitly copied without
993 // using an alloca instruction. To produce redzones for those arguments, we
994 // copy them a second time into memory allocated with an alloca instruction.
995 void copyArgsPassedByValToAllocas();
996
997 // Finds all Alloca instructions and puts
998 // poisoned red zones around all of them.
999 // Then unpoison everything back before the function returns.
1000 void processStaticAllocas();
1001 void processDynamicAllocas();
1002
1003 void createDynamicAllocasInitStorage();
1004
1005 // ----------------------- Visitors.
1006 /// Collect all Ret instructions, or the musttail call instruction if it
1007 /// precedes the return instruction.
visitReturnInst__anonac73263b0211::FunctionStackPoisoner1008 void visitReturnInst(ReturnInst &RI) {
1009 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1010 RetVec.push_back(CI);
1011 else
1012 RetVec.push_back(&RI);
1013 }
1014
1015 /// Collect all Resume instructions.
visitResumeInst__anonac73263b0211::FunctionStackPoisoner1016 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1017
1018 /// Collect all CatchReturnInst instructions.
visitCleanupReturnInst__anonac73263b0211::FunctionStackPoisoner1019 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1020
unpoisonDynamicAllocasBeforeInst__anonac73263b0211::FunctionStackPoisoner1021 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1022 Value *SavedStack) {
1023 IRBuilder<> IRB(InstBefore);
1024 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1025 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1026 // need to adjust extracted SP to compute the address of the most recent
1027 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1028 // this purpose.
1029 if (!isa<ReturnInst>(InstBefore)) {
1030 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1031 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1032 {IntptrTy});
1033
1034 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1035
1036 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1037 DynamicAreaOffset);
1038 }
1039
1040 IRB.CreateCall(
1041 AsanAllocasUnpoisonFunc,
1042 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1043 }
1044
1045 // Unpoison dynamic allocas redzones.
unpoisonDynamicAllocas__anonac73263b0211::FunctionStackPoisoner1046 void unpoisonDynamicAllocas() {
1047 for (Instruction *Ret : RetVec)
1048 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1049
1050 for (Instruction *StackRestoreInst : StackRestoreVec)
1051 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1052 StackRestoreInst->getOperand(0));
1053 }
1054
1055 // Deploy and poison redzones around dynamic alloca call. To do this, we
1056 // should replace this call with another one with changed parameters and
1057 // replace all its uses with new address, so
1058 // addr = alloca type, old_size, align
1059 // is replaced by
1060 // new_size = (old_size + additional_size) * sizeof(type)
1061 // tmp = alloca i8, new_size, max(align, 32)
1062 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1063 // Additional_size is added to make new memory allocation contain not only
1064 // requested memory, but also left, partial and right redzones.
1065 void handleDynamicAllocaCall(AllocaInst *AI);
1066
1067 /// Collect Alloca instructions we want (and can) handle.
visitAllocaInst__anonac73263b0211::FunctionStackPoisoner1068 void visitAllocaInst(AllocaInst &AI) {
1069 if (!ASan.isInterestingAlloca(AI)) {
1070 if (AI.isStaticAlloca()) {
1071 // Skip over allocas that are present *before* the first instrumented
1072 // alloca, we don't want to move those around.
1073 if (AllocaVec.empty())
1074 return;
1075
1076 StaticAllocasToMoveUp.push_back(&AI);
1077 }
1078 return;
1079 }
1080
1081 StackAlignment = std::max(StackAlignment, AI.getAlignment());
1082 if (!AI.isStaticAlloca())
1083 DynamicAllocaVec.push_back(&AI);
1084 else
1085 AllocaVec.push_back(&AI);
1086 }
1087
1088 /// Collect lifetime intrinsic calls to check for use-after-scope
1089 /// errors.
visitIntrinsicInst__anonac73263b0211::FunctionStackPoisoner1090 void visitIntrinsicInst(IntrinsicInst &II) {
1091 Intrinsic::ID ID = II.getIntrinsicID();
1092 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1093 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
1094 if (!ASan.UseAfterScope)
1095 return;
1096 if (!II.isLifetimeStartOrEnd())
1097 return;
1098 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1099 auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1100 // If size argument is undefined, don't do anything.
1101 if (Size->isMinusOne()) return;
1102 // Check that size doesn't saturate uint64_t and can
1103 // be stored in IntptrTy.
1104 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1105 if (SizeValue == ~0ULL ||
1106 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
1107 return;
1108 // Find alloca instruction that corresponds to llvm.lifetime argument.
1109 // Currently we can only handle lifetime markers pointing to the
1110 // beginning of the alloca.
1111 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1112 if (!AI) {
1113 HasUntracedLifetimeIntrinsic = true;
1114 return;
1115 }
1116 // We're interested only in allocas we can handle.
1117 if (!ASan.isInterestingAlloca(*AI))
1118 return;
1119 bool DoPoison = (ID == Intrinsic::lifetime_end);
1120 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1121 if (AI->isStaticAlloca())
1122 StaticAllocaPoisonCallVec.push_back(APC);
1123 else if (ClInstrumentDynamicAllocas)
1124 DynamicAllocaPoisonCallVec.push_back(APC);
1125 }
1126
visitCallBase__anonac73263b0211::FunctionStackPoisoner1127 void visitCallBase(CallBase &CB) {
1128 if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1129 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1130 HasReturnsTwiceCall |= CI->canReturnTwice();
1131 }
1132 }
1133
1134 // ---------------------- Helpers.
1135 void initializeCallbacks(Module &M);
1136
1137 // Copies bytes from ShadowBytes into shadow memory for indexes where
1138 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1139 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1140 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1141 IRBuilder<> &IRB, Value *ShadowBase);
1142 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1143 size_t Begin, size_t End, IRBuilder<> &IRB,
1144 Value *ShadowBase);
1145 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1146 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1147 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1148
1149 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1150
1151 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1152 bool Dynamic);
1153 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1154 Instruction *ThenTerm, Value *ValueIfFalse);
1155 };
1156
1157 } // end anonymous namespace
1158
parse(MDNode * MDN)1159 void LocationMetadata::parse(MDNode *MDN) {
1160 assert(MDN->getNumOperands() == 3);
1161 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1162 Filename = DIFilename->getString();
1163 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1164 ColumnNo =
1165 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1166 }
1167
1168 // FIXME: It would be cleaner to instead attach relevant metadata to the globals
1169 // we want to sanitize instead and reading this metadata on each pass over a
1170 // function instead of reading module level metadata at first.
GlobalsMetadata(Module & M)1171 GlobalsMetadata::GlobalsMetadata(Module &M) {
1172 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1173 if (!Globals)
1174 return;
1175 for (auto MDN : Globals->operands()) {
1176 // Metadata node contains the global and the fields of "Entry".
1177 assert(MDN->getNumOperands() == 5);
1178 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1179 // The optimizer may optimize away a global entirely.
1180 if (!V)
1181 continue;
1182 auto *StrippedV = V->stripPointerCasts();
1183 auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1184 if (!GV)
1185 continue;
1186 // We can already have an entry for GV if it was merged with another
1187 // global.
1188 Entry &E = Entries[GV];
1189 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1190 E.SourceLoc.parse(Loc);
1191 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1192 E.Name = Name->getString();
1193 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1194 E.IsDynInit |= IsDynInit->isOne();
1195 ConstantInt *IsExcluded =
1196 mdconst::extract<ConstantInt>(MDN->getOperand(4));
1197 E.IsExcluded |= IsExcluded->isOne();
1198 }
1199 }
1200
1201 AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1202
run(Module & M,ModuleAnalysisManager & AM)1203 GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1204 ModuleAnalysisManager &AM) {
1205 return GlobalsMetadata(M);
1206 }
1207
AddressSanitizerPass(bool CompileKernel,bool Recover,bool UseAfterScope)1208 AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover,
1209 bool UseAfterScope)
1210 : CompileKernel(CompileKernel), Recover(Recover),
1211 UseAfterScope(UseAfterScope) {}
1212
run(Function & F,AnalysisManager<Function> & AM)1213 PreservedAnalyses AddressSanitizerPass::run(Function &F,
1214 AnalysisManager<Function> &AM) {
1215 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1216 Module &M = *F.getParent();
1217 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1218 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1219 AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope);
1220 if (Sanitizer.instrumentFunction(F, TLI))
1221 return PreservedAnalyses::none();
1222 return PreservedAnalyses::all();
1223 }
1224
1225 report_fatal_error(
1226 "The ASanGlobalsMetadataAnalysis is required to run before "
1227 "AddressSanitizer can run");
1228 return PreservedAnalyses::all();
1229 }
1230
ModuleAddressSanitizerPass(bool CompileKernel,bool Recover,bool UseGlobalGC,bool UseOdrIndicator,AsanDtorKind DestructorKind)1231 ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
1232 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator,
1233 AsanDtorKind DestructorKind)
1234 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1235 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}
1236
run(Module & M,AnalysisManager<Module> & AM)1237 PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1238 AnalysisManager<Module> &AM) {
1239 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1240 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1241 UseGlobalGC, UseOdrIndicator,
1242 DestructorKind);
1243 if (Sanitizer.instrumentModule(M))
1244 return PreservedAnalyses::none();
1245 return PreservedAnalyses::all();
1246 }
1247
1248 INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",
1249 "Read metadata to mark which globals should be instrumented "
1250 "when running ASan.",
1251 false, true)
1252
1253 char AddressSanitizerLegacyPass::ID = 0;
1254
1255 INITIALIZE_PASS_BEGIN(
1256 AddressSanitizerLegacyPass, "asan",
1257 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1258 false)
INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)1259 INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)
1260 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1261 INITIALIZE_PASS_END(
1262 AddressSanitizerLegacyPass, "asan",
1263 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
1264 false)
1265
1266 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
1267 bool Recover,
1268 bool UseAfterScope) {
1269 assert(!CompileKernel || Recover);
1270 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope);
1271 }
1272
1273 char ModuleAddressSanitizerLegacyPass::ID = 0;
1274
1275 INITIALIZE_PASS(
1276 ModuleAddressSanitizerLegacyPass, "asan-module",
1277 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
1278 "ModulePass",
1279 false, false)
1280
createModuleAddressSanitizerLegacyPassPass(bool CompileKernel,bool Recover,bool UseGlobalsGC,bool UseOdrIndicator,AsanDtorKind Destructor)1281 ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1282 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator,
1283 AsanDtorKind Destructor) {
1284 assert(!CompileKernel || Recover);
1285 return new ModuleAddressSanitizerLegacyPass(
1286 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor);
1287 }
1288
TypeSizeToSizeIndex(uint32_t TypeSize)1289 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1290 size_t Res = countTrailingZeros(TypeSize / 8);
1291 assert(Res < kNumberOfAccessSizes);
1292 return Res;
1293 }
1294
1295 /// Create a global describing a source location.
createPrivateGlobalForSourceLoc(Module & M,LocationMetadata MD)1296 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1297 LocationMetadata MD) {
1298 Constant *LocData[] = {
1299 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1300 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1301 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1302 };
1303 auto LocStruct = ConstantStruct::getAnon(LocData);
1304 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1305 GlobalValue::PrivateLinkage, LocStruct,
1306 kAsanGenPrefix);
1307 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1308 return GV;
1309 }
1310
1311 /// Check if \p G has been created by a trusted compiler pass.
GlobalWasGeneratedByCompiler(GlobalVariable * G)1312 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1313 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1314 if (G->getName().startswith("llvm."))
1315 return true;
1316
1317 // Do not instrument asan globals.
1318 if (G->getName().startswith(kAsanGenPrefix) ||
1319 G->getName().startswith(kSanCovGenPrefix) ||
1320 G->getName().startswith(kODRGenPrefix))
1321 return true;
1322
1323 // Do not instrument gcov counter arrays.
1324 if (G->getName() == "__llvm_gcov_ctr")
1325 return true;
1326
1327 return false;
1328 }
1329
isUnsupportedAMDGPUAddrspace(Value * Addr)1330 static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1331 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1332 unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1333 if (AddrSpace == 3 || AddrSpace == 5)
1334 return true;
1335 return false;
1336 }
1337
memToShadow(Value * Shadow,IRBuilder<> & IRB)1338 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1339 // Shadow >> scale
1340 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1341 if (Mapping.Offset == 0) return Shadow;
1342 // (Shadow >> scale) | offset
1343 Value *ShadowBase;
1344 if (LocalDynamicShadow)
1345 ShadowBase = LocalDynamicShadow;
1346 else
1347 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1348 if (Mapping.OrShadowOffset)
1349 return IRB.CreateOr(Shadow, ShadowBase);
1350 else
1351 return IRB.CreateAdd(Shadow, ShadowBase);
1352 }
1353
1354 // Instrument memset/memmove/memcpy
instrumentMemIntrinsic(MemIntrinsic * MI)1355 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1356 IRBuilder<> IRB(MI);
1357 if (isa<MemTransferInst>(MI)) {
1358 IRB.CreateCall(
1359 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1360 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1361 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1362 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1363 } else if (isa<MemSetInst>(MI)) {
1364 IRB.CreateCall(
1365 AsanMemset,
1366 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1367 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1368 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1369 }
1370 MI->eraseFromParent();
1371 }
1372
1373 /// Check if we want (and can) handle this alloca.
isInterestingAlloca(const AllocaInst & AI)1374 bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1375 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1376
1377 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1378 return PreviouslySeenAllocaInfo->getSecond();
1379
1380 bool IsInteresting =
1381 (AI.getAllocatedType()->isSized() &&
1382 // alloca() may be called with 0 size, ignore it.
1383 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
1384 // We are only interested in allocas not promotable to registers.
1385 // Promotable allocas are common under -O0.
1386 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1387 // inalloca allocas are not treated as static, and we don't want
1388 // dynamic alloca instrumentation for them as well.
1389 !AI.isUsedWithInAlloca() &&
1390 // swifterror allocas are register promoted by ISel
1391 !AI.isSwiftError());
1392
1393 ProcessedAllocas[&AI] = IsInteresting;
1394 return IsInteresting;
1395 }
1396
ignoreAccess(Value * Ptr)1397 bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1398 // Instrument acesses from different address spaces only for AMDGPU.
1399 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1400 if (PtrTy->getPointerAddressSpace() != 0 &&
1401 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1402 return true;
1403
1404 // Ignore swifterror addresses.
1405 // swifterror memory addresses are mem2reg promoted by instruction
1406 // selection. As such they cannot have regular uses like an instrumentation
1407 // function and it makes no sense to track them as memory.
1408 if (Ptr->isSwiftError())
1409 return true;
1410
1411 // Treat memory accesses to promotable allocas as non-interesting since they
1412 // will not cause memory violations. This greatly speeds up the instrumented
1413 // executable at -O0.
1414 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1415 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1416 return true;
1417
1418 return false;
1419 }
1420
getInterestingMemoryOperands(Instruction * I,SmallVectorImpl<InterestingMemoryOperand> & Interesting)1421 void AddressSanitizer::getInterestingMemoryOperands(
1422 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1423 // Skip memory accesses inserted by another instrumentation.
1424 if (I->hasMetadata("nosanitize"))
1425 return;
1426
1427 // Do not instrument the load fetching the dynamic shadow address.
1428 if (LocalDynamicShadow == I)
1429 return;
1430
1431 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1432 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1433 return;
1434 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1435 LI->getType(), LI->getAlign());
1436 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1437 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1438 return;
1439 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1440 SI->getValueOperand()->getType(), SI->getAlign());
1441 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1442 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1443 return;
1444 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1445 RMW->getValOperand()->getType(), None);
1446 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1447 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1448 return;
1449 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1450 XCHG->getCompareOperand()->getType(), None);
1451 } else if (auto CI = dyn_cast<CallInst>(I)) {
1452 auto *F = CI->getCalledFunction();
1453 if (F && (F->getName().startswith("llvm.masked.load.") ||
1454 F->getName().startswith("llvm.masked.store."))) {
1455 bool IsWrite = F->getName().startswith("llvm.masked.store.");
1456 // Masked store has an initial operand for the value.
1457 unsigned OpOffset = IsWrite ? 1 : 0;
1458 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1459 return;
1460
1461 auto BasePtr = CI->getOperand(OpOffset);
1462 if (ignoreAccess(BasePtr))
1463 return;
1464 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1465 MaybeAlign Alignment = Align(1);
1466 // Otherwise no alignment guarantees. We probably got Undef.
1467 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1468 Alignment = Op->getMaybeAlignValue();
1469 Value *Mask = CI->getOperand(2 + OpOffset);
1470 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1471 } else {
1472 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1473 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1474 ignoreAccess(CI->getArgOperand(ArgNo)))
1475 continue;
1476 Type *Ty = CI->getParamByValType(ArgNo);
1477 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1478 }
1479 }
1480 }
1481 }
1482
isPointerOperand(Value * V)1483 static bool isPointerOperand(Value *V) {
1484 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1485 }
1486
1487 // This is a rough heuristic; it may cause both false positives and
1488 // false negatives. The proper implementation requires cooperation with
1489 // the frontend.
isInterestingPointerComparison(Instruction * I)1490 static bool isInterestingPointerComparison(Instruction *I) {
1491 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1492 if (!Cmp->isRelational())
1493 return false;
1494 } else {
1495 return false;
1496 }
1497 return isPointerOperand(I->getOperand(0)) &&
1498 isPointerOperand(I->getOperand(1));
1499 }
1500
1501 // This is a rough heuristic; it may cause both false positives and
1502 // false negatives. The proper implementation requires cooperation with
1503 // the frontend.
isInterestingPointerSubtraction(Instruction * I)1504 static bool isInterestingPointerSubtraction(Instruction *I) {
1505 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1506 if (BO->getOpcode() != Instruction::Sub)
1507 return false;
1508 } else {
1509 return false;
1510 }
1511 return isPointerOperand(I->getOperand(0)) &&
1512 isPointerOperand(I->getOperand(1));
1513 }
1514
GlobalIsLinkerInitialized(GlobalVariable * G)1515 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1516 // If a global variable does not have dynamic initialization we don't
1517 // have to instrument it. However, if a global does not have initializer
1518 // at all, we assume it has dynamic initializer (in other TU).
1519 //
1520 // FIXME: Metadata should be attched directly to the global directly instead
1521 // of being added to llvm.asan.globals.
1522 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1523 }
1524
instrumentPointerComparisonOrSubtraction(Instruction * I)1525 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1526 Instruction *I) {
1527 IRBuilder<> IRB(I);
1528 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1529 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1530 for (Value *&i : Param) {
1531 if (i->getType()->isPointerTy())
1532 i = IRB.CreatePointerCast(i, IntptrTy);
1533 }
1534 IRB.CreateCall(F, Param);
1535 }
1536
doInstrumentAddress(AddressSanitizer * Pass,Instruction * I,Instruction * InsertBefore,Value * Addr,MaybeAlign Alignment,unsigned Granularity,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1537 static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1538 Instruction *InsertBefore, Value *Addr,
1539 MaybeAlign Alignment, unsigned Granularity,
1540 uint32_t TypeSize, bool IsWrite,
1541 Value *SizeArgument, bool UseCalls,
1542 uint32_t Exp) {
1543 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1544 // if the data is properly aligned.
1545 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1546 TypeSize == 128) &&
1547 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
1548 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1549 nullptr, UseCalls, Exp);
1550 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1551 IsWrite, nullptr, UseCalls, Exp);
1552 }
1553
instrumentMaskedLoadOrStore(AddressSanitizer * Pass,const DataLayout & DL,Type * IntptrTy,Value * Mask,Instruction * I,Value * Addr,MaybeAlign Alignment,unsigned Granularity,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1554 static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1555 const DataLayout &DL, Type *IntptrTy,
1556 Value *Mask, Instruction *I,
1557 Value *Addr, MaybeAlign Alignment,
1558 unsigned Granularity, uint32_t TypeSize,
1559 bool IsWrite, Value *SizeArgument,
1560 bool UseCalls, uint32_t Exp) {
1561 auto *VTy = cast<FixedVectorType>(
1562 cast<PointerType>(Addr->getType())->getElementType());
1563 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1564 unsigned Num = VTy->getNumElements();
1565 auto Zero = ConstantInt::get(IntptrTy, 0);
1566 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1567 Value *InstrumentedAddress = nullptr;
1568 Instruction *InsertBefore = I;
1569 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1570 // dyn_cast as we might get UndefValue
1571 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1572 if (Masked->isZero())
1573 // Mask is constant false, so no instrumentation needed.
1574 continue;
1575 // If we have a true or undef value, fall through to doInstrumentAddress
1576 // with InsertBefore == I
1577 }
1578 } else {
1579 IRBuilder<> IRB(I);
1580 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1581 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1582 InsertBefore = ThenTerm;
1583 }
1584
1585 IRBuilder<> IRB(InsertBefore);
1586 InstrumentedAddress =
1587 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1588 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1589 Granularity, ElemTypeSize, IsWrite, SizeArgument,
1590 UseCalls, Exp);
1591 }
1592 }
1593
instrumentMop(ObjectSizeOffsetVisitor & ObjSizeVis,InterestingMemoryOperand & O,bool UseCalls,const DataLayout & DL)1594 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1595 InterestingMemoryOperand &O, bool UseCalls,
1596 const DataLayout &DL) {
1597 Value *Addr = O.getPtr();
1598
1599 // Optimization experiments.
1600 // The experiments can be used to evaluate potential optimizations that remove
1601 // instrumentation (assess false negatives). Instead of completely removing
1602 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1603 // experiments that want to remove instrumentation of this instruction).
1604 // If Exp is non-zero, this pass will emit special calls into runtime
1605 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1606 // make runtime terminate the program in a special way (with a different
1607 // exit status). Then you run the new compiler on a buggy corpus, collect
1608 // the special terminations (ideally, you don't see them at all -- no false
1609 // negatives) and make the decision on the optimization.
1610 uint32_t Exp = ClForceExperiment;
1611
1612 if (ClOpt && ClOptGlobals) {
1613 // If initialization order checking is disabled, a simple access to a
1614 // dynamically initialized global is always valid.
1615 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1616 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1617 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1618 NumOptimizedAccessesToGlobalVar++;
1619 return;
1620 }
1621 }
1622
1623 if (ClOpt && ClOptStack) {
1624 // A direct inbounds access to a stack variable is always valid.
1625 if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1626 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1627 NumOptimizedAccessesToStackVar++;
1628 return;
1629 }
1630 }
1631
1632 if (O.IsWrite)
1633 NumInstrumentedWrites++;
1634 else
1635 NumInstrumentedReads++;
1636
1637 unsigned Granularity = 1 << Mapping.Scale;
1638 if (O.MaybeMask) {
1639 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1640 Addr, O.Alignment, Granularity, O.TypeSize,
1641 O.IsWrite, nullptr, UseCalls, Exp);
1642 } else {
1643 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1644 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1645 Exp);
1646 }
1647 }
1648
generateCrashCode(Instruction * InsertBefore,Value * Addr,bool IsWrite,size_t AccessSizeIndex,Value * SizeArgument,uint32_t Exp)1649 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1650 Value *Addr, bool IsWrite,
1651 size_t AccessSizeIndex,
1652 Value *SizeArgument,
1653 uint32_t Exp) {
1654 IRBuilder<> IRB(InsertBefore);
1655 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1656 CallInst *Call = nullptr;
1657 if (SizeArgument) {
1658 if (Exp == 0)
1659 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1660 {Addr, SizeArgument});
1661 else
1662 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1663 {Addr, SizeArgument, ExpVal});
1664 } else {
1665 if (Exp == 0)
1666 Call =
1667 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1668 else
1669 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1670 {Addr, ExpVal});
1671 }
1672
1673 Call->setCannotMerge();
1674 return Call;
1675 }
1676
createSlowPathCmp(IRBuilder<> & IRB,Value * AddrLong,Value * ShadowValue,uint32_t TypeSize)1677 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1678 Value *ShadowValue,
1679 uint32_t TypeSize) {
1680 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1681 // Addr & (Granularity - 1)
1682 Value *LastAccessedByte =
1683 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1684 // (Addr & (Granularity - 1)) + size - 1
1685 if (TypeSize / 8 > 1)
1686 LastAccessedByte = IRB.CreateAdd(
1687 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1688 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1689 LastAccessedByte =
1690 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1691 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1692 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1693 }
1694
instrumentAMDGPUAddress(Instruction * OrigIns,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument)1695 Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1696 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1697 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
1698 // Do not instrument unsupported addrspaces.
1699 if (isUnsupportedAMDGPUAddrspace(Addr))
1700 return nullptr;
1701 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1702 // Follow host instrumentation for global and constant addresses.
1703 if (PtrTy->getPointerAddressSpace() != 0)
1704 return InsertBefore;
1705 // Instrument generic addresses in supported addressspaces.
1706 IRBuilder<> IRB(InsertBefore);
1707 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
1708 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
1709 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
1710 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1711 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
1712 Value *AddrSpaceZeroLanding =
1713 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1714 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1715 return InsertBefore;
1716 }
1717
instrumentAddress(Instruction * OrigIns,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1718 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1719 Instruction *InsertBefore, Value *Addr,
1720 uint32_t TypeSize, bool IsWrite,
1721 Value *SizeArgument, bool UseCalls,
1722 uint32_t Exp) {
1723 bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad;
1724
1725 if (TargetTriple.isAMDGPU()) {
1726 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1727 TypeSize, IsWrite, SizeArgument);
1728 if (!InsertBefore)
1729 return;
1730 }
1731
1732 IRBuilder<> IRB(InsertBefore);
1733 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1734 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1735
1736 if (UseCalls) {
1737 if (Exp == 0)
1738 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1739 AddrLong);
1740 else
1741 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1742 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1743 return;
1744 }
1745
1746 if (IsMyriad) {
1747 // Strip the cache bit and do range check.
1748 // AddrLong &= ~kMyriadCacheBitMask32
1749 AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32);
1750 // Tag = AddrLong >> kMyriadTagShift
1751 Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift);
1752 // Tag == kMyriadDDRTag
1753 Value *TagCheck =
1754 IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag));
1755
1756 Instruction *TagCheckTerm =
1757 SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false,
1758 MDBuilder(*C).createBranchWeights(1, 100000));
1759 assert(cast<BranchInst>(TagCheckTerm)->isUnconditional());
1760 IRB.SetInsertPoint(TagCheckTerm);
1761 InsertBefore = TagCheckTerm;
1762 }
1763
1764 Type *ShadowTy =
1765 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1766 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1767 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1768 Value *CmpVal = Constant::getNullValue(ShadowTy);
1769 Value *ShadowValue =
1770 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1771
1772 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1773 size_t Granularity = 1ULL << Mapping.Scale;
1774 Instruction *CrashTerm = nullptr;
1775
1776 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1777 // We use branch weights for the slow path check, to indicate that the slow
1778 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1779 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1780 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1781 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1782 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1783 IRB.SetInsertPoint(CheckTerm);
1784 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1785 if (Recover) {
1786 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1787 } else {
1788 BasicBlock *CrashBlock =
1789 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1790 CrashTerm = new UnreachableInst(*C, CrashBlock);
1791 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1792 ReplaceInstWithInst(CheckTerm, NewTerm);
1793 }
1794 } else {
1795 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1796 }
1797
1798 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1799 AccessSizeIndex, SizeArgument, Exp);
1800 Crash->setDebugLoc(OrigIns->getDebugLoc());
1801 }
1802
1803 // Instrument unusual size or unusual alignment.
1804 // We can not do it with a single check, so we do 1-byte check for the first
1805 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1806 // to report the actual access size.
instrumentUnusualSizeOrAlignment(Instruction * I,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1807 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1808 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1809 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1810 IRBuilder<> IRB(InsertBefore);
1811 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1812 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1813 if (UseCalls) {
1814 if (Exp == 0)
1815 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1816 {AddrLong, Size});
1817 else
1818 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1819 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1820 } else {
1821 Value *LastByte = IRB.CreateIntToPtr(
1822 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1823 Addr->getType());
1824 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1825 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1826 }
1827 }
1828
poisonOneInitializer(Function & GlobalInit,GlobalValue * ModuleName)1829 void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1830 GlobalValue *ModuleName) {
1831 // Set up the arguments to our poison/unpoison functions.
1832 IRBuilder<> IRB(&GlobalInit.front(),
1833 GlobalInit.front().getFirstInsertionPt());
1834
1835 // Add a call to poison all external globals before the given function starts.
1836 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1837 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1838
1839 // Add calls to unpoison all globals before each return instruction.
1840 for (auto &BB : GlobalInit.getBasicBlockList())
1841 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1842 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1843 }
1844
createInitializerPoisonCalls(Module & M,GlobalValue * ModuleName)1845 void ModuleAddressSanitizer::createInitializerPoisonCalls(
1846 Module &M, GlobalValue *ModuleName) {
1847 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1848 if (!GV)
1849 return;
1850
1851 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1852 if (!CA)
1853 return;
1854
1855 for (Use &OP : CA->operands()) {
1856 if (isa<ConstantAggregateZero>(OP)) continue;
1857 ConstantStruct *CS = cast<ConstantStruct>(OP);
1858
1859 // Must have a function or null ptr.
1860 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1861 if (F->getName() == kAsanModuleCtorName) continue;
1862 auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1863 // Don't instrument CTORs that will run before asan.module_ctor.
1864 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1865 continue;
1866 poisonOneInitializer(*F, ModuleName);
1867 }
1868 }
1869 }
1870
1871 const GlobalVariable *
getExcludedAliasedGlobal(const GlobalAlias & GA) const1872 ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1873 // In case this function should be expanded to include rules that do not just
1874 // apply when CompileKernel is true, either guard all existing rules with an
1875 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1876 // should also apply to user space.
1877 assert(CompileKernel && "Only expecting to be called when compiling kernel");
1878
1879 const Constant *C = GA.getAliasee();
1880
1881 // When compiling the kernel, globals that are aliased by symbols prefixed
1882 // by "__" are special and cannot be padded with a redzone.
1883 if (GA.getName().startswith("__"))
1884 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1885
1886 return nullptr;
1887 }
1888
shouldInstrumentGlobal(GlobalVariable * G) const1889 bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1890 Type *Ty = G->getValueType();
1891 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1892
1893 // FIXME: Metadata should be attched directly to the global directly instead
1894 // of being added to llvm.asan.globals.
1895 if (GlobalsMD.get(G).IsExcluded) return false;
1896 if (!Ty->isSized()) return false;
1897 if (!G->hasInitializer()) return false;
1898 // Globals in address space 1 and 4 are supported for AMDGPU.
1899 if (G->getAddressSpace() &&
1900 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1901 return false;
1902 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1903 // Two problems with thread-locals:
1904 // - The address of the main thread's copy can't be computed at link-time.
1905 // - Need to poison all copies, not just the main thread's one.
1906 if (G->isThreadLocal()) return false;
1907 // For now, just ignore this Global if the alignment is large.
1908 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1909
1910 // For non-COFF targets, only instrument globals known to be defined by this
1911 // TU.
1912 // FIXME: We can instrument comdat globals on ELF if we are using the
1913 // GC-friendly metadata scheme.
1914 if (!TargetTriple.isOSBinFormatCOFF()) {
1915 if (!G->hasExactDefinition() || G->hasComdat())
1916 return false;
1917 } else {
1918 // On COFF, don't instrument non-ODR linkages.
1919 if (G->isInterposable())
1920 return false;
1921 }
1922
1923 // If a comdat is present, it must have a selection kind that implies ODR
1924 // semantics: no duplicates, any, or exact match.
1925 if (Comdat *C = G->getComdat()) {
1926 switch (C->getSelectionKind()) {
1927 case Comdat::Any:
1928 case Comdat::ExactMatch:
1929 case Comdat::NoDuplicates:
1930 break;
1931 case Comdat::Largest:
1932 case Comdat::SameSize:
1933 return false;
1934 }
1935 }
1936
1937 if (G->hasSection()) {
1938 // The kernel uses explicit sections for mostly special global variables
1939 // that we should not instrument. E.g. the kernel may rely on their layout
1940 // without redzones, or remove them at link time ("discard.*"), etc.
1941 if (CompileKernel)
1942 return false;
1943
1944 StringRef Section = G->getSection();
1945
1946 // Globals from llvm.metadata aren't emitted, do not instrument them.
1947 if (Section == "llvm.metadata") return false;
1948 // Do not instrument globals from special LLVM sections.
1949 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1950
1951 // Do not instrument function pointers to initialization and termination
1952 // routines: dynamic linker will not properly handle redzones.
1953 if (Section.startswith(".preinit_array") ||
1954 Section.startswith(".init_array") ||
1955 Section.startswith(".fini_array")) {
1956 return false;
1957 }
1958
1959 // Do not instrument user-defined sections (with names resembling
1960 // valid C identifiers)
1961 if (TargetTriple.isOSBinFormatELF()) {
1962 if (llvm::all_of(Section,
1963 [](char c) { return llvm::isAlnum(c) || c == '_'; }))
1964 return false;
1965 }
1966
1967 // On COFF, if the section name contains '$', it is highly likely that the
1968 // user is using section sorting to create an array of globals similar to
1969 // the way initialization callbacks are registered in .init_array and
1970 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
1971 // to such globals is counterproductive, because the intent is that they
1972 // will form an array, and out-of-bounds accesses are expected.
1973 // See https://github.com/google/sanitizers/issues/305
1974 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1975 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
1976 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "
1977 << *G << "\n");
1978 return false;
1979 }
1980
1981 if (TargetTriple.isOSBinFormatMachO()) {
1982 StringRef ParsedSegment, ParsedSection;
1983 unsigned TAA = 0, StubSize = 0;
1984 bool TAAParsed;
1985 cantFail(MCSectionMachO::ParseSectionSpecifier(
1986 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
1987
1988 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1989 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1990 // them.
1991 if (ParsedSegment == "__OBJC" ||
1992 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1993 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1994 return false;
1995 }
1996 // See https://github.com/google/sanitizers/issues/32
1997 // Constant CFString instances are compiled in the following way:
1998 // -- the string buffer is emitted into
1999 // __TEXT,__cstring,cstring_literals
2000 // -- the constant NSConstantString structure referencing that buffer
2001 // is placed into __DATA,__cfstring
2002 // Therefore there's no point in placing redzones into __DATA,__cfstring.
2003 // Moreover, it causes the linker to crash on OS X 10.7
2004 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2005 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
2006 return false;
2007 }
2008 // The linker merges the contents of cstring_literals and removes the
2009 // trailing zeroes.
2010 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2011 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
2012 return false;
2013 }
2014 }
2015 }
2016
2017 if (CompileKernel) {
2018 // Globals that prefixed by "__" are special and cannot be padded with a
2019 // redzone.
2020 if (G->getName().startswith("__"))
2021 return false;
2022 }
2023
2024 return true;
2025 }
2026
2027 // On Mach-O platforms, we emit global metadata in a separate section of the
2028 // binary in order to allow the linker to properly dead strip. This is only
2029 // supported on recent versions of ld64.
ShouldUseMachOGlobalsSection() const2030 bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2031 if (!TargetTriple.isOSBinFormatMachO())
2032 return false;
2033
2034 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2035 return true;
2036 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2037 return true;
2038 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2039 return true;
2040
2041 return false;
2042 }
2043
getGlobalMetadataSection() const2044 StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2045 switch (TargetTriple.getObjectFormat()) {
2046 case Triple::COFF: return ".ASAN$GL";
2047 case Triple::ELF: return "asan_globals";
2048 case Triple::MachO: return "__DATA,__asan_globals,regular";
2049 case Triple::Wasm:
2050 case Triple::GOFF:
2051 case Triple::XCOFF:
2052 report_fatal_error(
2053 "ModuleAddressSanitizer not implemented for object file format");
2054 case Triple::UnknownObjectFormat:
2055 break;
2056 }
2057 llvm_unreachable("unsupported object format");
2058 }
2059
initializeCallbacks(Module & M)2060 void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2061 IRBuilder<> IRB(*C);
2062
2063 // Declare our poisoning and unpoisoning functions.
2064 AsanPoisonGlobals =
2065 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2066 AsanUnpoisonGlobals =
2067 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2068
2069 // Declare functions that register/unregister globals.
2070 AsanRegisterGlobals = M.getOrInsertFunction(
2071 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2072 AsanUnregisterGlobals = M.getOrInsertFunction(
2073 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2074
2075 // Declare the functions that find globals in a shared object and then invoke
2076 // the (un)register function on them.
2077 AsanRegisterImageGlobals = M.getOrInsertFunction(
2078 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2079 AsanUnregisterImageGlobals = M.getOrInsertFunction(
2080 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2081
2082 AsanRegisterElfGlobals =
2083 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2084 IntptrTy, IntptrTy, IntptrTy);
2085 AsanUnregisterElfGlobals =
2086 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2087 IntptrTy, IntptrTy, IntptrTy);
2088 }
2089
2090 // Put the metadata and the instrumented global in the same group. This ensures
2091 // that the metadata is discarded if the instrumented global is discarded.
SetComdatForGlobalMetadata(GlobalVariable * G,GlobalVariable * Metadata,StringRef InternalSuffix)2092 void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2093 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2094 Module &M = *G->getParent();
2095 Comdat *C = G->getComdat();
2096 if (!C) {
2097 if (!G->hasName()) {
2098 // If G is unnamed, it must be internal. Give it an artificial name
2099 // so we can put it in a comdat.
2100 assert(G->hasLocalLinkage());
2101 G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2102 }
2103
2104 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2105 std::string Name = std::string(G->getName());
2106 Name += InternalSuffix;
2107 C = M.getOrInsertComdat(Name);
2108 } else {
2109 C = M.getOrInsertComdat(G->getName());
2110 }
2111
2112 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2113 // linkage to internal linkage so that a symbol table entry is emitted. This
2114 // is necessary in order to create the comdat group.
2115 if (TargetTriple.isOSBinFormatCOFF()) {
2116 C->setSelectionKind(Comdat::NoDuplicates);
2117 if (G->hasPrivateLinkage())
2118 G->setLinkage(GlobalValue::InternalLinkage);
2119 }
2120 G->setComdat(C);
2121 }
2122
2123 assert(G->hasComdat());
2124 Metadata->setComdat(G->getComdat());
2125 }
2126
2127 // Create a separate metadata global and put it in the appropriate ASan
2128 // global registration section.
2129 GlobalVariable *
CreateMetadataGlobal(Module & M,Constant * Initializer,StringRef OriginalName)2130 ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2131 StringRef OriginalName) {
2132 auto Linkage = TargetTriple.isOSBinFormatMachO()
2133 ? GlobalVariable::InternalLinkage
2134 : GlobalVariable::PrivateLinkage;
2135 GlobalVariable *Metadata = new GlobalVariable(
2136 M, Initializer->getType(), false, Linkage, Initializer,
2137 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2138 Metadata->setSection(getGlobalMetadataSection());
2139 return Metadata;
2140 }
2141
CreateAsanModuleDtor(Module & M)2142 Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2143 AsanDtorFunction = Function::createWithDefaultAttr(
2144 FunctionType::get(Type::getVoidTy(*C), false),
2145 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2146 AsanDtorFunction->addAttribute(AttributeList::FunctionIndex,
2147 Attribute::NoUnwind);
2148 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2149
2150 return ReturnInst::Create(*C, AsanDtorBB);
2151 }
2152
InstrumentGlobalsCOFF(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)2153 void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2154 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2155 ArrayRef<Constant *> MetadataInitializers) {
2156 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2157 auto &DL = M.getDataLayout();
2158
2159 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2160 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2161 Constant *Initializer = MetadataInitializers[i];
2162 GlobalVariable *G = ExtendedGlobals[i];
2163 GlobalVariable *Metadata =
2164 CreateMetadataGlobal(M, Initializer, G->getName());
2165 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2166 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2167 MetadataGlobals[i] = Metadata;
2168
2169 // The MSVC linker always inserts padding when linking incrementally. We
2170 // cope with that by aligning each struct to its size, which must be a power
2171 // of two.
2172 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2173 assert(isPowerOf2_32(SizeOfGlobalStruct) &&
2174 "global metadata will not be padded appropriately");
2175 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2176
2177 SetComdatForGlobalMetadata(G, Metadata, "");
2178 }
2179
2180 // Update llvm.compiler.used, adding the new metadata globals. This is
2181 // needed so that during LTO these variables stay alive.
2182 if (!MetadataGlobals.empty())
2183 appendToCompilerUsed(M, MetadataGlobals);
2184 }
2185
InstrumentGlobalsELF(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers,const std::string & UniqueModuleId)2186 void ModuleAddressSanitizer::InstrumentGlobalsELF(
2187 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2188 ArrayRef<Constant *> MetadataInitializers,
2189 const std::string &UniqueModuleId) {
2190 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2191
2192 // Putting globals in a comdat changes the semantic and potentially cause
2193 // false negative odr violations at link time. If odr indicators are used, we
2194 // keep the comdat sections, as link time odr violations will be dectected on
2195 // the odr indicator symbols.
2196 bool UseComdatForGlobalsGC = UseOdrIndicator;
2197
2198 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2199 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2200 GlobalVariable *G = ExtendedGlobals[i];
2201 GlobalVariable *Metadata =
2202 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2203 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2204 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2205 MetadataGlobals[i] = Metadata;
2206
2207 if (UseComdatForGlobalsGC)
2208 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2209 }
2210
2211 // Update llvm.compiler.used, adding the new metadata globals. This is
2212 // needed so that during LTO these variables stay alive.
2213 if (!MetadataGlobals.empty())
2214 appendToCompilerUsed(M, MetadataGlobals);
2215
2216 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2217 // to look up the loaded image that contains it. Second, we can store in it
2218 // whether registration has already occurred, to prevent duplicate
2219 // registration.
2220 //
2221 // Common linkage ensures that there is only one global per shared library.
2222 GlobalVariable *RegisteredFlag = new GlobalVariable(
2223 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2224 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2225 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2226
2227 // Create start and stop symbols.
2228 GlobalVariable *StartELFMetadata = new GlobalVariable(
2229 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2230 "__start_" + getGlobalMetadataSection());
2231 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2232 GlobalVariable *StopELFMetadata = new GlobalVariable(
2233 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2234 "__stop_" + getGlobalMetadataSection());
2235 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2236
2237 // Create a call to register the globals with the runtime.
2238 IRB.CreateCall(AsanRegisterElfGlobals,
2239 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2240 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2241 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2242
2243 // We also need to unregister globals at the end, e.g., when a shared library
2244 // gets closed.
2245 if (DestructorKind != AsanDtorKind::None) {
2246 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2247 IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2248 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2249 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2250 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2251 }
2252 }
2253
InstrumentGlobalsMachO(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)2254 void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2255 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2256 ArrayRef<Constant *> MetadataInitializers) {
2257 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2258
2259 // On recent Mach-O platforms, use a structure which binds the liveness of
2260 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2261 // created to be added to llvm.compiler.used
2262 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2263 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2264
2265 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2266 Constant *Initializer = MetadataInitializers[i];
2267 GlobalVariable *G = ExtendedGlobals[i];
2268 GlobalVariable *Metadata =
2269 CreateMetadataGlobal(M, Initializer, G->getName());
2270
2271 // On recent Mach-O platforms, we emit the global metadata in a way that
2272 // allows the linker to properly strip dead globals.
2273 auto LivenessBinder =
2274 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2275 ConstantExpr::getPointerCast(Metadata, IntptrTy));
2276 GlobalVariable *Liveness = new GlobalVariable(
2277 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2278 Twine("__asan_binder_") + G->getName());
2279 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2280 LivenessGlobals[i] = Liveness;
2281 }
2282
2283 // Update llvm.compiler.used, adding the new liveness globals. This is
2284 // needed so that during LTO these variables stay alive. The alternative
2285 // would be to have the linker handling the LTO symbols, but libLTO
2286 // current API does not expose access to the section for each symbol.
2287 if (!LivenessGlobals.empty())
2288 appendToCompilerUsed(M, LivenessGlobals);
2289
2290 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2291 // to look up the loaded image that contains it. Second, we can store in it
2292 // whether registration has already occurred, to prevent duplicate
2293 // registration.
2294 //
2295 // common linkage ensures that there is only one global per shared library.
2296 GlobalVariable *RegisteredFlag = new GlobalVariable(
2297 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2298 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2299 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2300
2301 IRB.CreateCall(AsanRegisterImageGlobals,
2302 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2303
2304 // We also need to unregister globals at the end, e.g., when a shared library
2305 // gets closed.
2306 if (DestructorKind != AsanDtorKind::None) {
2307 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2308 IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2309 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2310 }
2311 }
2312
InstrumentGlobalsWithMetadataArray(IRBuilder<> & IRB,Module & M,ArrayRef<GlobalVariable * > ExtendedGlobals,ArrayRef<Constant * > MetadataInitializers)2313 void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2314 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2315 ArrayRef<Constant *> MetadataInitializers) {
2316 assert(ExtendedGlobals.size() == MetadataInitializers.size());
2317 unsigned N = ExtendedGlobals.size();
2318 assert(N > 0);
2319
2320 // On platforms that don't have a custom metadata section, we emit an array
2321 // of global metadata structures.
2322 ArrayType *ArrayOfGlobalStructTy =
2323 ArrayType::get(MetadataInitializers[0]->getType(), N);
2324 auto AllGlobals = new GlobalVariable(
2325 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2326 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2327 if (Mapping.Scale > 3)
2328 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2329
2330 IRB.CreateCall(AsanRegisterGlobals,
2331 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2332 ConstantInt::get(IntptrTy, N)});
2333
2334 // We also need to unregister globals at the end, e.g., when a shared library
2335 // gets closed.
2336 if (DestructorKind != AsanDtorKind::None) {
2337 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2338 IrbDtor.CreateCall(AsanUnregisterGlobals,
2339 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2340 ConstantInt::get(IntptrTy, N)});
2341 }
2342 }
2343
2344 // This function replaces all global variables with new variables that have
2345 // trailing redzones. It also creates a function that poisons
2346 // redzones and inserts this function into llvm.global_ctors.
2347 // Sets *CtorComdat to true if the global registration code emitted into the
2348 // asan constructor is comdat-compatible.
InstrumentGlobals(IRBuilder<> & IRB,Module & M,bool * CtorComdat)2349 bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2350 bool *CtorComdat) {
2351 *CtorComdat = false;
2352
2353 // Build set of globals that are aliased by some GA, where
2354 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2355 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2356 if (CompileKernel) {
2357 for (auto &GA : M.aliases()) {
2358 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2359 AliasedGlobalExclusions.insert(GV);
2360 }
2361 }
2362
2363 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2364 for (auto &G : M.globals()) {
2365 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2366 GlobalsToChange.push_back(&G);
2367 }
2368
2369 size_t n = GlobalsToChange.size();
2370 if (n == 0) {
2371 *CtorComdat = true;
2372 return false;
2373 }
2374
2375 auto &DL = M.getDataLayout();
2376
2377 // A global is described by a structure
2378 // size_t beg;
2379 // size_t size;
2380 // size_t size_with_redzone;
2381 // const char *name;
2382 // const char *module_name;
2383 // size_t has_dynamic_init;
2384 // void *source_location;
2385 // size_t odr_indicator;
2386 // We initialize an array of such structures and pass it to a run-time call.
2387 StructType *GlobalStructTy =
2388 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2389 IntptrTy, IntptrTy, IntptrTy);
2390 SmallVector<GlobalVariable *, 16> NewGlobals(n);
2391 SmallVector<Constant *, 16> Initializers(n);
2392
2393 bool HasDynamicallyInitializedGlobals = false;
2394
2395 // We shouldn't merge same module names, as this string serves as unique
2396 // module ID in runtime.
2397 GlobalVariable *ModuleName = createPrivateGlobalForString(
2398 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2399
2400 for (size_t i = 0; i < n; i++) {
2401 GlobalVariable *G = GlobalsToChange[i];
2402
2403 // FIXME: Metadata should be attched directly to the global directly instead
2404 // of being added to llvm.asan.globals.
2405 auto MD = GlobalsMD.get(G);
2406 StringRef NameForGlobal = G->getName();
2407 // Create string holding the global name (use global name from metadata
2408 // if it's available, otherwise just write the name of global variable).
2409 GlobalVariable *Name = createPrivateGlobalForString(
2410 M, MD.Name.empty() ? NameForGlobal : MD.Name,
2411 /*AllowMerging*/ true, kAsanGenPrefix);
2412
2413 Type *Ty = G->getValueType();
2414 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2415 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2416 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2417
2418 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2419 Constant *NewInitializer = ConstantStruct::get(
2420 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2421
2422 // Create a new global variable with enough space for a redzone.
2423 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2424 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2425 Linkage = GlobalValue::InternalLinkage;
2426 GlobalVariable *NewGlobal = new GlobalVariable(
2427 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2428 G->getThreadLocalMode(), G->getAddressSpace());
2429 NewGlobal->copyAttributesFrom(G);
2430 NewGlobal->setComdat(G->getComdat());
2431 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2432 // Don't fold globals with redzones. ODR violation detector and redzone
2433 // poisoning implicitly creates a dependence on the global's address, so it
2434 // is no longer valid for it to be marked unnamed_addr.
2435 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2436
2437 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2438 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2439 G->isConstant()) {
2440 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2441 if (Seq && Seq->isCString())
2442 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2443 }
2444
2445 // Transfer the debug info and type metadata. The payload starts at offset
2446 // zero so we can copy the metadata over as is.
2447 NewGlobal->copyMetadata(G, 0);
2448
2449 Value *Indices2[2];
2450 Indices2[0] = IRB.getInt32(0);
2451 Indices2[1] = IRB.getInt32(0);
2452
2453 G->replaceAllUsesWith(
2454 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2455 NewGlobal->takeName(G);
2456 G->eraseFromParent();
2457 NewGlobals[i] = NewGlobal;
2458
2459 Constant *SourceLoc;
2460 if (!MD.SourceLoc.empty()) {
2461 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2462 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2463 } else {
2464 SourceLoc = ConstantInt::get(IntptrTy, 0);
2465 }
2466
2467 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2468 GlobalValue *InstrumentedGlobal = NewGlobal;
2469
2470 bool CanUsePrivateAliases =
2471 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2472 TargetTriple.isOSBinFormatWasm();
2473 if (CanUsePrivateAliases && UsePrivateAlias) {
2474 // Create local alias for NewGlobal to avoid crash on ODR between
2475 // instrumented and non-instrumented libraries.
2476 InstrumentedGlobal =
2477 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2478 }
2479
2480 // ODR should not happen for local linkage.
2481 if (NewGlobal->hasLocalLinkage()) {
2482 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2483 IRB.getInt8PtrTy());
2484 } else if (UseOdrIndicator) {
2485 // With local aliases, we need to provide another externally visible
2486 // symbol __odr_asan_XXX to detect ODR violation.
2487 auto *ODRIndicatorSym =
2488 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2489 Constant::getNullValue(IRB.getInt8Ty()),
2490 kODRGenPrefix + NameForGlobal, nullptr,
2491 NewGlobal->getThreadLocalMode());
2492
2493 // Set meaningful attributes for indicator symbol.
2494 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2495 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2496 ODRIndicatorSym->setAlignment(Align(1));
2497 ODRIndicator = ODRIndicatorSym;
2498 }
2499
2500 Constant *Initializer = ConstantStruct::get(
2501 GlobalStructTy,
2502 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2503 ConstantInt::get(IntptrTy, SizeInBytes),
2504 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2505 ConstantExpr::getPointerCast(Name, IntptrTy),
2506 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2507 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2508 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2509
2510 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2511
2512 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
2513
2514 Initializers[i] = Initializer;
2515 }
2516
2517 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2518 // ConstantMerge'ing them.
2519 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2520 for (size_t i = 0; i < n; i++) {
2521 GlobalVariable *G = NewGlobals[i];
2522 if (G->getName().empty()) continue;
2523 GlobalsToAddToUsedList.push_back(G);
2524 }
2525 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2526
2527 std::string ELFUniqueModuleId =
2528 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2529 : "";
2530
2531 if (!ELFUniqueModuleId.empty()) {
2532 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2533 *CtorComdat = true;
2534 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2535 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2536 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2537 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2538 } else {
2539 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2540 }
2541
2542 // Create calls for poisoning before initializers run and unpoisoning after.
2543 if (HasDynamicallyInitializedGlobals)
2544 createInitializerPoisonCalls(M, ModuleName);
2545
2546 LLVM_DEBUG(dbgs() << M);
2547 return true;
2548 }
2549
2550 uint64_t
getRedzoneSizeForGlobal(uint64_t SizeInBytes) const2551 ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2552 constexpr uint64_t kMaxRZ = 1 << 18;
2553 const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2554
2555 uint64_t RZ = 0;
2556 if (SizeInBytes <= MinRZ / 2) {
2557 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2558 // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2559 // half of MinRZ.
2560 RZ = MinRZ - SizeInBytes;
2561 } else {
2562 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2563 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2564
2565 // Round up to multiple of MinRZ.
2566 if (SizeInBytes % MinRZ)
2567 RZ += MinRZ - (SizeInBytes % MinRZ);
2568 }
2569
2570 assert((RZ + SizeInBytes) % MinRZ == 0);
2571
2572 return RZ;
2573 }
2574
GetAsanVersion(const Module & M) const2575 int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2576 int LongSize = M.getDataLayout().getPointerSizeInBits();
2577 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2578 int Version = 8;
2579 // 32-bit Android is one version ahead because of the switch to dynamic
2580 // shadow.
2581 Version += (LongSize == 32 && isAndroid);
2582 return Version;
2583 }
2584
instrumentModule(Module & M)2585 bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2586 initializeCallbacks(M);
2587
2588 // Create a module constructor. A destructor is created lazily because not all
2589 // platforms, and not all modules need it.
2590 if (CompileKernel) {
2591 // The kernel always builds with its own runtime, and therefore does not
2592 // need the init and version check calls.
2593 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2594 } else {
2595 std::string AsanVersion = std::to_string(GetAsanVersion(M));
2596 std::string VersionCheckName =
2597 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2598 std::tie(AsanCtorFunction, std::ignore) =
2599 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2600 kAsanInitName, /*InitArgTypes=*/{},
2601 /*InitArgs=*/{}, VersionCheckName);
2602 }
2603
2604 bool CtorComdat = true;
2605 if (ClGlobals) {
2606 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2607 InstrumentGlobals(IRB, M, &CtorComdat);
2608 }
2609
2610 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2611
2612 // Put the constructor and destructor in comdat if both
2613 // (1) global instrumentation is not TU-specific
2614 // (2) target is ELF.
2615 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2616 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2617 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2618 if (AsanDtorFunction) {
2619 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2620 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2621 }
2622 } else {
2623 appendToGlobalCtors(M, AsanCtorFunction, Priority);
2624 if (AsanDtorFunction)
2625 appendToGlobalDtors(M, AsanDtorFunction, Priority);
2626 }
2627
2628 return true;
2629 }
2630
initializeCallbacks(Module & M)2631 void AddressSanitizer::initializeCallbacks(Module &M) {
2632 IRBuilder<> IRB(*C);
2633 // Create __asan_report* callbacks.
2634 // IsWrite, TypeSize and Exp are encoded in the function name.
2635 for (int Exp = 0; Exp < 2; Exp++) {
2636 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2637 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2638 const std::string ExpStr = Exp ? "exp_" : "";
2639 const std::string EndingStr = Recover ? "_noabort" : "";
2640
2641 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2642 SmallVector<Type *, 2> Args1{1, IntptrTy};
2643 if (Exp) {
2644 Type *ExpType = Type::getInt32Ty(*C);
2645 Args2.push_back(ExpType);
2646 Args1.push_back(ExpType);
2647 }
2648 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2649 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2650 FunctionType::get(IRB.getVoidTy(), Args2, false));
2651
2652 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2653 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2654 FunctionType::get(IRB.getVoidTy(), Args2, false));
2655
2656 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2657 AccessSizeIndex++) {
2658 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2659 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2660 M.getOrInsertFunction(
2661 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2662 FunctionType::get(IRB.getVoidTy(), Args1, false));
2663
2664 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2665 M.getOrInsertFunction(
2666 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2667 FunctionType::get(IRB.getVoidTy(), Args1, false));
2668 }
2669 }
2670 }
2671
2672 const std::string MemIntrinCallbackPrefix =
2673 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2674 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2675 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2676 IRB.getInt8PtrTy(), IntptrTy);
2677 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2678 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2679 IRB.getInt8PtrTy(), IntptrTy);
2680 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2681 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2682 IRB.getInt32Ty(), IntptrTy);
2683
2684 AsanHandleNoReturnFunc =
2685 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2686
2687 AsanPtrCmpFunction =
2688 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2689 AsanPtrSubFunction =
2690 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2691 if (Mapping.InGlobal)
2692 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2693 ArrayType::get(IRB.getInt8Ty(), 0));
2694
2695 AMDGPUAddressShared = M.getOrInsertFunction(
2696 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2697 AMDGPUAddressPrivate = M.getOrInsertFunction(
2698 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2699 }
2700
maybeInsertAsanInitAtFunctionEntry(Function & F)2701 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2702 // For each NSObject descendant having a +load method, this method is invoked
2703 // by the ObjC runtime before any of the static constructors is called.
2704 // Therefore we need to instrument such methods with a call to __asan_init
2705 // at the beginning in order to initialize our runtime before any access to
2706 // the shadow memory.
2707 // We cannot just ignore these methods, because they may call other
2708 // instrumented functions.
2709 if (F.getName().find(" load]") != std::string::npos) {
2710 FunctionCallee AsanInitFunction =
2711 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2712 IRBuilder<> IRB(&F.front(), F.front().begin());
2713 IRB.CreateCall(AsanInitFunction, {});
2714 return true;
2715 }
2716 return false;
2717 }
2718
maybeInsertDynamicShadowAtFunctionEntry(Function & F)2719 bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2720 // Generate code only when dynamic addressing is needed.
2721 if (Mapping.Offset != kDynamicShadowSentinel)
2722 return false;
2723
2724 IRBuilder<> IRB(&F.front().front());
2725 if (Mapping.InGlobal) {
2726 if (ClWithIfuncSuppressRemat) {
2727 // An empty inline asm with input reg == output reg.
2728 // An opaque pointer-to-int cast, basically.
2729 InlineAsm *Asm = InlineAsm::get(
2730 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2731 StringRef(""), StringRef("=r,0"),
2732 /*hasSideEffects=*/false);
2733 LocalDynamicShadow =
2734 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2735 } else {
2736 LocalDynamicShadow =
2737 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2738 }
2739 } else {
2740 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2741 kAsanShadowMemoryDynamicAddress, IntptrTy);
2742 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2743 }
2744 return true;
2745 }
2746
markEscapedLocalAllocas(Function & F)2747 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2748 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2749 // to it as uninteresting. This assumes we haven't started processing allocas
2750 // yet. This check is done up front because iterating the use list in
2751 // isInterestingAlloca would be algorithmically slower.
2752 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
2753
2754 // Try to get the declaration of llvm.localescape. If it's not in the module,
2755 // we can exit early.
2756 if (!F.getParent()->getFunction("llvm.localescape")) return;
2757
2758 // Look for a call to llvm.localescape call in the entry block. It can't be in
2759 // any other block.
2760 for (Instruction &I : F.getEntryBlock()) {
2761 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2762 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2763 // We found a call. Mark all the allocas passed in as uninteresting.
2764 for (Value *Arg : II->arg_operands()) {
2765 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2766 assert(AI && AI->isStaticAlloca() &&
2767 "non-static alloca arg to localescape");
2768 ProcessedAllocas[AI] = false;
2769 }
2770 break;
2771 }
2772 }
2773 }
2774
suppressInstrumentationSiteForDebug(int & Instrumented)2775 bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2776 bool ShouldInstrument =
2777 ClDebugMin < 0 || ClDebugMax < 0 ||
2778 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2779 Instrumented++;
2780 return !ShouldInstrument;
2781 }
2782
instrumentFunction(Function & F,const TargetLibraryInfo * TLI)2783 bool AddressSanitizer::instrumentFunction(Function &F,
2784 const TargetLibraryInfo *TLI) {
2785 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2786 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2787 if (F.getName().startswith("__asan_")) return false;
2788
2789 bool FunctionModified = false;
2790
2791 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2792 // This function needs to be called even if the function body is not
2793 // instrumented.
2794 if (maybeInsertAsanInitAtFunctionEntry(F))
2795 FunctionModified = true;
2796
2797 // Leave if the function doesn't need instrumentation.
2798 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2799
2800 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
2801
2802 initializeCallbacks(*F.getParent());
2803
2804 FunctionStateRAII CleanupObj(this);
2805
2806 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2807
2808 // We can't instrument allocas used with llvm.localescape. Only static allocas
2809 // can be passed to that intrinsic.
2810 markEscapedLocalAllocas(F);
2811
2812 // We want to instrument every address only once per basic block (unless there
2813 // are calls between uses).
2814 SmallPtrSet<Value *, 16> TempsToInstrument;
2815 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2816 SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2817 SmallVector<Instruction *, 8> NoReturnCalls;
2818 SmallVector<BasicBlock *, 16> AllBlocks;
2819 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2820 int NumAllocas = 0;
2821
2822 // Fill the set of memory operations to instrument.
2823 for (auto &BB : F) {
2824 AllBlocks.push_back(&BB);
2825 TempsToInstrument.clear();
2826 int NumInsnsPerBB = 0;
2827 for (auto &Inst : BB) {
2828 if (LooksLikeCodeInBug11395(&Inst)) return false;
2829 SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2830 getInterestingMemoryOperands(&Inst, InterestingOperands);
2831
2832 if (!InterestingOperands.empty()) {
2833 for (auto &Operand : InterestingOperands) {
2834 if (ClOpt && ClOptSameTemp) {
2835 Value *Ptr = Operand.getPtr();
2836 // If we have a mask, skip instrumentation if we've already
2837 // instrumented the full object. But don't add to TempsToInstrument
2838 // because we might get another load/store with a different mask.
2839 if (Operand.MaybeMask) {
2840 if (TempsToInstrument.count(Ptr))
2841 continue; // We've seen this (whole) temp in the current BB.
2842 } else {
2843 if (!TempsToInstrument.insert(Ptr).second)
2844 continue; // We've seen this temp in the current BB.
2845 }
2846 }
2847 OperandsToInstrument.push_back(Operand);
2848 NumInsnsPerBB++;
2849 }
2850 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2851 isInterestingPointerComparison(&Inst)) ||
2852 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2853 isInterestingPointerSubtraction(&Inst))) {
2854 PointerComparisonsOrSubtracts.push_back(&Inst);
2855 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2856 // ok, take it.
2857 IntrinToInstrument.push_back(MI);
2858 NumInsnsPerBB++;
2859 } else {
2860 if (isa<AllocaInst>(Inst)) NumAllocas++;
2861 if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2862 // A call inside BB.
2863 TempsToInstrument.clear();
2864 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2865 NoReturnCalls.push_back(CB);
2866 }
2867 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2868 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2869 }
2870 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2871 }
2872 }
2873
2874 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2875 OperandsToInstrument.size() + IntrinToInstrument.size() >
2876 (unsigned)ClInstrumentationWithCallsThreshold);
2877 const DataLayout &DL = F.getParent()->getDataLayout();
2878 ObjectSizeOpts ObjSizeOpts;
2879 ObjSizeOpts.RoundToAlign = true;
2880 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2881
2882 // Instrument.
2883 int NumInstrumented = 0;
2884 for (auto &Operand : OperandsToInstrument) {
2885 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2886 instrumentMop(ObjSizeVis, Operand, UseCalls,
2887 F.getParent()->getDataLayout());
2888 FunctionModified = true;
2889 }
2890 for (auto Inst : IntrinToInstrument) {
2891 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2892 instrumentMemIntrinsic(Inst);
2893 FunctionModified = true;
2894 }
2895
2896 FunctionStackPoisoner FSP(F, *this);
2897 bool ChangedStack = FSP.runOnFunction();
2898
2899 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2900 // See e.g. https://github.com/google/sanitizers/issues/37
2901 for (auto CI : NoReturnCalls) {
2902 IRBuilder<> IRB(CI);
2903 IRB.CreateCall(AsanHandleNoReturnFunc, {});
2904 }
2905
2906 for (auto Inst : PointerComparisonsOrSubtracts) {
2907 instrumentPointerComparisonOrSubtraction(Inst);
2908 FunctionModified = true;
2909 }
2910
2911 if (ChangedStack || !NoReturnCalls.empty())
2912 FunctionModified = true;
2913
2914 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "
2915 << F << "\n");
2916
2917 return FunctionModified;
2918 }
2919
2920 // Workaround for bug 11395: we don't want to instrument stack in functions
2921 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2922 // FIXME: remove once the bug 11395 is fixed.
LooksLikeCodeInBug11395(Instruction * I)2923 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2924 if (LongSize != 32) return false;
2925 CallInst *CI = dyn_cast<CallInst>(I);
2926 if (!CI || !CI->isInlineAsm()) return false;
2927 if (CI->getNumArgOperands() <= 5) return false;
2928 // We have inline assembly with quite a few arguments.
2929 return true;
2930 }
2931
initializeCallbacks(Module & M)2932 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2933 IRBuilder<> IRB(*C);
2934 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
2935 std::string Suffix = itostr(i);
2936 AsanStackMallocFunc[i] = M.getOrInsertFunction(
2937 kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2938 AsanStackFreeFunc[i] =
2939 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2940 IRB.getVoidTy(), IntptrTy, IntptrTy);
2941 }
2942 if (ASan.UseAfterScope) {
2943 AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2944 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2945 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2946 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2947 }
2948
2949 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2950 std::ostringstream Name;
2951 Name << kAsanSetShadowPrefix;
2952 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2953 AsanSetShadowFunc[Val] =
2954 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
2955 }
2956
2957 AsanAllocaPoisonFunc = M.getOrInsertFunction(
2958 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2959 AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
2960 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
2961 }
2962
copyToShadowInline(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,size_t Begin,size_t End,IRBuilder<> & IRB,Value * ShadowBase)2963 void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
2964 ArrayRef<uint8_t> ShadowBytes,
2965 size_t Begin, size_t End,
2966 IRBuilder<> &IRB,
2967 Value *ShadowBase) {
2968 if (Begin >= End)
2969 return;
2970
2971 const size_t LargestStoreSizeInBytes =
2972 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
2973
2974 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
2975
2976 // Poison given range in shadow using larges store size with out leading and
2977 // trailing zeros in ShadowMask. Zeros never change, so they need neither
2978 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
2979 // middle of a store.
2980 for (size_t i = Begin; i < End;) {
2981 if (!ShadowMask[i]) {
2982 assert(!ShadowBytes[i]);
2983 ++i;
2984 continue;
2985 }
2986
2987 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
2988 // Fit store size into the range.
2989 while (StoreSizeInBytes > End - i)
2990 StoreSizeInBytes /= 2;
2991
2992 // Minimize store size by trimming trailing zeros.
2993 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
2994 while (j <= StoreSizeInBytes / 2)
2995 StoreSizeInBytes /= 2;
2996 }
2997
2998 uint64_t Val = 0;
2999 for (size_t j = 0; j < StoreSizeInBytes; j++) {
3000 if (IsLittleEndian)
3001 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3002 else
3003 Val = (Val << 8) | ShadowBytes[i + j];
3004 }
3005
3006 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3007 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3008 IRB.CreateAlignedStore(
3009 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
3010 Align(1));
3011
3012 i += StoreSizeInBytes;
3013 }
3014 }
3015
copyToShadow(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,IRBuilder<> & IRB,Value * ShadowBase)3016 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3017 ArrayRef<uint8_t> ShadowBytes,
3018 IRBuilder<> &IRB, Value *ShadowBase) {
3019 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3020 }
3021
copyToShadow(ArrayRef<uint8_t> ShadowMask,ArrayRef<uint8_t> ShadowBytes,size_t Begin,size_t End,IRBuilder<> & IRB,Value * ShadowBase)3022 void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3023 ArrayRef<uint8_t> ShadowBytes,
3024 size_t Begin, size_t End,
3025 IRBuilder<> &IRB, Value *ShadowBase) {
3026 assert(ShadowMask.size() == ShadowBytes.size());
3027 size_t Done = Begin;
3028 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3029 if (!ShadowMask[i]) {
3030 assert(!ShadowBytes[i]);
3031 continue;
3032 }
3033 uint8_t Val = ShadowBytes[i];
3034 if (!AsanSetShadowFunc[Val])
3035 continue;
3036
3037 // Skip same values.
3038 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3039 }
3040
3041 if (j - i >= ClMaxInlinePoisoningSize) {
3042 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3043 IRB.CreateCall(AsanSetShadowFunc[Val],
3044 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3045 ConstantInt::get(IntptrTy, j - i)});
3046 Done = j;
3047 }
3048 }
3049
3050 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3051 }
3052
3053 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
3054 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
StackMallocSizeClass(uint64_t LocalStackSize)3055 static int StackMallocSizeClass(uint64_t LocalStackSize) {
3056 assert(LocalStackSize <= kMaxStackMallocSize);
3057 uint64_t MaxSize = kMinStackMallocSize;
3058 for (int i = 0;; i++, MaxSize *= 2)
3059 if (LocalStackSize <= MaxSize) return i;
3060 llvm_unreachable("impossible LocalStackSize");
3061 }
3062
copyArgsPassedByValToAllocas()3063 void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3064 Instruction *CopyInsertPoint = &F.front().front();
3065 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3066 // Insert after the dynamic shadow location is determined
3067 CopyInsertPoint = CopyInsertPoint->getNextNode();
3068 assert(CopyInsertPoint);
3069 }
3070 IRBuilder<> IRB(CopyInsertPoint);
3071 const DataLayout &DL = F.getParent()->getDataLayout();
3072 for (Argument &Arg : F.args()) {
3073 if (Arg.hasByValAttr()) {
3074 Type *Ty = Arg.getParamByValType();
3075 const Align Alignment =
3076 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3077
3078 AllocaInst *AI = IRB.CreateAlloca(
3079 Ty, nullptr,
3080 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3081 ".byval");
3082 AI->setAlignment(Alignment);
3083 Arg.replaceAllUsesWith(AI);
3084
3085 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3086 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3087 }
3088 }
3089 }
3090
createPHI(IRBuilder<> & IRB,Value * Cond,Value * ValueIfTrue,Instruction * ThenTerm,Value * ValueIfFalse)3091 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3092 Value *ValueIfTrue,
3093 Instruction *ThenTerm,
3094 Value *ValueIfFalse) {
3095 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3096 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3097 PHI->addIncoming(ValueIfFalse, CondBlock);
3098 BasicBlock *ThenBlock = ThenTerm->getParent();
3099 PHI->addIncoming(ValueIfTrue, ThenBlock);
3100 return PHI;
3101 }
3102
createAllocaForLayout(IRBuilder<> & IRB,const ASanStackFrameLayout & L,bool Dynamic)3103 Value *FunctionStackPoisoner::createAllocaForLayout(
3104 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3105 AllocaInst *Alloca;
3106 if (Dynamic) {
3107 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3108 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3109 "MyAlloca");
3110 } else {
3111 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3112 nullptr, "MyAlloca");
3113 assert(Alloca->isStaticAlloca());
3114 }
3115 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
3116 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
3117 Alloca->setAlignment(Align(FrameAlignment));
3118 return IRB.CreatePointerCast(Alloca, IntptrTy);
3119 }
3120
createDynamicAllocasInitStorage()3121 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3122 BasicBlock &FirstBB = *F.begin();
3123 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3124 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3125 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3126 DynamicAllocaLayout->setAlignment(Align(32));
3127 }
3128
processDynamicAllocas()3129 void FunctionStackPoisoner::processDynamicAllocas() {
3130 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3131 assert(DynamicAllocaPoisonCallVec.empty());
3132 return;
3133 }
3134
3135 // Insert poison calls for lifetime intrinsics for dynamic allocas.
3136 for (const auto &APC : DynamicAllocaPoisonCallVec) {
3137 assert(APC.InsBefore);
3138 assert(APC.AI);
3139 assert(ASan.isInterestingAlloca(*APC.AI));
3140 assert(!APC.AI->isStaticAlloca());
3141
3142 IRBuilder<> IRB(APC.InsBefore);
3143 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3144 // Dynamic allocas will be unpoisoned unconditionally below in
3145 // unpoisonDynamicAllocas.
3146 // Flag that we need unpoison static allocas.
3147 }
3148
3149 // Handle dynamic allocas.
3150 createDynamicAllocasInitStorage();
3151 for (auto &AI : DynamicAllocaVec)
3152 handleDynamicAllocaCall(AI);
3153 unpoisonDynamicAllocas();
3154 }
3155
3156 /// Collect instructions in the entry block after \p InsBefore which initialize
3157 /// permanent storage for a function argument. These instructions must remain in
3158 /// the entry block so that uninitialized values do not appear in backtraces. An
3159 /// added benefit is that this conserves spill slots. This does not move stores
3160 /// before instrumented / "interesting" allocas.
findStoresToUninstrumentedArgAllocas(AddressSanitizer & ASan,Instruction & InsBefore,SmallVectorImpl<Instruction * > & InitInsts)3161 static void findStoresToUninstrumentedArgAllocas(
3162 AddressSanitizer &ASan, Instruction &InsBefore,
3163 SmallVectorImpl<Instruction *> &InitInsts) {
3164 Instruction *Start = InsBefore.getNextNonDebugInstruction();
3165 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3166 // Argument initialization looks like:
3167 // 1) store <Argument>, <Alloca> OR
3168 // 2) <CastArgument> = cast <Argument> to ...
3169 // store <CastArgument> to <Alloca>
3170 // Do not consider any other kind of instruction.
3171 //
3172 // Note: This covers all known cases, but may not be exhaustive. An
3173 // alternative to pattern-matching stores is to DFS over all Argument uses:
3174 // this might be more general, but is probably much more complicated.
3175 if (isa<AllocaInst>(It) || isa<CastInst>(It))
3176 continue;
3177 if (auto *Store = dyn_cast<StoreInst>(It)) {
3178 // The store destination must be an alloca that isn't interesting for
3179 // ASan to instrument. These are moved up before InsBefore, and they're
3180 // not interesting because allocas for arguments can be mem2reg'd.
3181 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3182 if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3183 continue;
3184
3185 Value *Val = Store->getValueOperand();
3186 bool IsDirectArgInit = isa<Argument>(Val);
3187 bool IsArgInitViaCast =
3188 isa<CastInst>(Val) &&
3189 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3190 // Check that the cast appears directly before the store. Otherwise
3191 // moving the cast before InsBefore may break the IR.
3192 Val == It->getPrevNonDebugInstruction();
3193 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3194 if (!IsArgInit)
3195 continue;
3196
3197 if (IsArgInitViaCast)
3198 InitInsts.push_back(cast<Instruction>(Val));
3199 InitInsts.push_back(Store);
3200 continue;
3201 }
3202
3203 // Do not reorder past unknown instructions: argument initialization should
3204 // only involve casts and stores.
3205 return;
3206 }
3207 }
3208
processStaticAllocas()3209 void FunctionStackPoisoner::processStaticAllocas() {
3210 if (AllocaVec.empty()) {
3211 assert(StaticAllocaPoisonCallVec.empty());
3212 return;
3213 }
3214
3215 int StackMallocIdx = -1;
3216 DebugLoc EntryDebugLocation;
3217 if (auto SP = F.getSubprogram())
3218 EntryDebugLocation =
3219 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3220
3221 Instruction *InsBefore = AllocaVec[0];
3222 IRBuilder<> IRB(InsBefore);
3223
3224 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3225 // debug info is broken, because only entry-block allocas are treated as
3226 // regular stack slots.
3227 auto InsBeforeB = InsBefore->getParent();
3228 assert(InsBeforeB == &F.getEntryBlock());
3229 for (auto *AI : StaticAllocasToMoveUp)
3230 if (AI->getParent() == InsBeforeB)
3231 AI->moveBefore(InsBefore);
3232
3233 // Move stores of arguments into entry-block allocas as well. This prevents
3234 // extra stack slots from being generated (to house the argument values until
3235 // they can be stored into the allocas). This also prevents uninitialized
3236 // values from being shown in backtraces.
3237 SmallVector<Instruction *, 8> ArgInitInsts;
3238 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3239 for (Instruction *ArgInitInst : ArgInitInsts)
3240 ArgInitInst->moveBefore(InsBefore);
3241
3242 // If we have a call to llvm.localescape, keep it in the entry block.
3243 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3244
3245 SmallVector<ASanStackVariableDescription, 16> SVD;
3246 SVD.reserve(AllocaVec.size());
3247 for (AllocaInst *AI : AllocaVec) {
3248 ASanStackVariableDescription D = {AI->getName().data(),
3249 ASan.getAllocaSizeInBytes(*AI),
3250 0,
3251 AI->getAlignment(),
3252 AI,
3253 0,
3254 0};
3255 SVD.push_back(D);
3256 }
3257
3258 // Minimal header size (left redzone) is 4 pointers,
3259 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3260 size_t Granularity = 1ULL << Mapping.Scale;
3261 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3262 const ASanStackFrameLayout &L =
3263 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3264
3265 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3266 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3267 for (auto &Desc : SVD)
3268 AllocaToSVDMap[Desc.AI] = &Desc;
3269
3270 // Update SVD with information from lifetime intrinsics.
3271 for (const auto &APC : StaticAllocaPoisonCallVec) {
3272 assert(APC.InsBefore);
3273 assert(APC.AI);
3274 assert(ASan.isInterestingAlloca(*APC.AI));
3275 assert(APC.AI->isStaticAlloca());
3276
3277 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3278 Desc.LifetimeSize = Desc.Size;
3279 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3280 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3281 if (LifetimeLoc->getFile() == FnLoc->getFile())
3282 if (unsigned Line = LifetimeLoc->getLine())
3283 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3284 }
3285 }
3286 }
3287
3288 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3289 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n");
3290 uint64_t LocalStackSize = L.FrameSize;
3291 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
3292 LocalStackSize <= kMaxStackMallocSize;
3293 bool DoDynamicAlloca = ClDynamicAllocaStack;
3294 // Don't do dynamic alloca or stack malloc if:
3295 // 1) There is inline asm: too often it makes assumptions on which registers
3296 // are available.
3297 // 2) There is a returns_twice call (typically setjmp), which is
3298 // optimization-hostile, and doesn't play well with introduced indirect
3299 // register-relative calculation of local variable addresses.
3300 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3301 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3302
3303 Value *StaticAlloca =
3304 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3305
3306 Value *FakeStack;
3307 Value *LocalStackBase;
3308 Value *LocalStackBaseAlloca;
3309 uint8_t DIExprFlags = DIExpression::ApplyOffset;
3310
3311 if (DoStackMalloc) {
3312 LocalStackBaseAlloca =
3313 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3314 // void *FakeStack = __asan_option_detect_stack_use_after_return
3315 // ? __asan_stack_malloc_N(LocalStackSize)
3316 // : nullptr;
3317 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
3318 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3319 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3320 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3321 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3322 Constant::getNullValue(IRB.getInt32Ty()));
3323 Instruction *Term =
3324 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3325 IRBuilder<> IRBIf(Term);
3326 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3327 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
3328 Value *FakeStackValue =
3329 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3330 ConstantInt::get(IntptrTy, LocalStackSize));
3331 IRB.SetInsertPoint(InsBefore);
3332 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3333 ConstantInt::get(IntptrTy, 0));
3334
3335 Value *NoFakeStack =
3336 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3337 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3338 IRBIf.SetInsertPoint(Term);
3339 Value *AllocaValue =
3340 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3341
3342 IRB.SetInsertPoint(InsBefore);
3343 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3344 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3345 DIExprFlags |= DIExpression::DerefBefore;
3346 } else {
3347 // void *FakeStack = nullptr;
3348 // void *LocalStackBase = alloca(LocalStackSize);
3349 FakeStack = ConstantInt::get(IntptrTy, 0);
3350 LocalStackBase =
3351 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3352 LocalStackBaseAlloca = LocalStackBase;
3353 }
3354
3355 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3356 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3357 // later passes and can result in dropped variable coverage in debug info.
3358 Value *LocalStackBaseAllocaPtr =
3359 isa<PtrToIntInst>(LocalStackBaseAlloca)
3360 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3361 : LocalStackBaseAlloca;
3362 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&
3363 "Variable descriptions relative to ASan stack base will be dropped");
3364
3365 // Replace Alloca instructions with base+offset.
3366 for (const auto &Desc : SVD) {
3367 AllocaInst *AI = Desc.AI;
3368 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3369 Desc.Offset);
3370 Value *NewAllocaPtr = IRB.CreateIntToPtr(
3371 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3372 AI->getType());
3373 AI->replaceAllUsesWith(NewAllocaPtr);
3374 }
3375
3376 // The left-most redzone has enough space for at least 4 pointers.
3377 // Write the Magic value to redzone[0].
3378 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3379 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3380 BasePlus0);
3381 // Write the frame description constant to redzone[1].
3382 Value *BasePlus1 = IRB.CreateIntToPtr(
3383 IRB.CreateAdd(LocalStackBase,
3384 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3385 IntptrPtrTy);
3386 GlobalVariable *StackDescriptionGlobal =
3387 createPrivateGlobalForString(*F.getParent(), DescriptionString,
3388 /*AllowMerging*/ true, kAsanGenPrefix);
3389 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3390 IRB.CreateStore(Description, BasePlus1);
3391 // Write the PC to redzone[2].
3392 Value *BasePlus2 = IRB.CreateIntToPtr(
3393 IRB.CreateAdd(LocalStackBase,
3394 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3395 IntptrPtrTy);
3396 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3397
3398 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3399
3400 // Poison the stack red zones at the entry.
3401 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3402 // As mask we must use most poisoned case: red zones and after scope.
3403 // As bytes we can use either the same or just red zones only.
3404 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3405
3406 if (!StaticAllocaPoisonCallVec.empty()) {
3407 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3408
3409 // Poison static allocas near lifetime intrinsics.
3410 for (const auto &APC : StaticAllocaPoisonCallVec) {
3411 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3412 assert(Desc.Offset % L.Granularity == 0);
3413 size_t Begin = Desc.Offset / L.Granularity;
3414 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3415
3416 IRBuilder<> IRB(APC.InsBefore);
3417 copyToShadow(ShadowAfterScope,
3418 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3419 IRB, ShadowBase);
3420 }
3421 }
3422
3423 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3424 SmallVector<uint8_t, 64> ShadowAfterReturn;
3425
3426 // (Un)poison the stack before all ret instructions.
3427 for (Instruction *Ret : RetVec) {
3428 IRBuilder<> IRBRet(Ret);
3429 // Mark the current frame as retired.
3430 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3431 BasePlus0);
3432 if (DoStackMalloc) {
3433 assert(StackMallocIdx >= 0);
3434 // if FakeStack != 0 // LocalStackBase == FakeStack
3435 // // In use-after-return mode, poison the whole stack frame.
3436 // if StackMallocIdx <= 4
3437 // // For small sizes inline the whole thing:
3438 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3439 // **SavedFlagPtr(FakeStack) = 0
3440 // else
3441 // __asan_stack_free_N(FakeStack, LocalStackSize)
3442 // else
3443 // <This is not a fake stack; unpoison the redzones>
3444 Value *Cmp =
3445 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3446 Instruction *ThenTerm, *ElseTerm;
3447 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3448
3449 IRBuilder<> IRBPoison(ThenTerm);
3450 if (StackMallocIdx <= 4) {
3451 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3452 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3453 kAsanStackUseAfterReturnMagic);
3454 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3455 ShadowBase);
3456 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3457 FakeStack,
3458 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3459 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3460 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3461 IRBPoison.CreateStore(
3462 Constant::getNullValue(IRBPoison.getInt8Ty()),
3463 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3464 } else {
3465 // For larger frames call __asan_stack_free_*.
3466 IRBPoison.CreateCall(
3467 AsanStackFreeFunc[StackMallocIdx],
3468 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3469 }
3470
3471 IRBuilder<> IRBElse(ElseTerm);
3472 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3473 } else {
3474 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3475 }
3476 }
3477
3478 // We are done. Remove the old unused alloca instructions.
3479 for (auto AI : AllocaVec) AI->eraseFromParent();
3480 }
3481
poisonAlloca(Value * V,uint64_t Size,IRBuilder<> & IRB,bool DoPoison)3482 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3483 IRBuilder<> &IRB, bool DoPoison) {
3484 // For now just insert the call to ASan runtime.
3485 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3486 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3487 IRB.CreateCall(
3488 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3489 {AddrArg, SizeArg});
3490 }
3491
3492 // Handling llvm.lifetime intrinsics for a given %alloca:
3493 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3494 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3495 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3496 // could be poisoned by previous llvm.lifetime.end instruction, as the
3497 // variable may go in and out of scope several times, e.g. in loops).
3498 // (3) if we poisoned at least one %alloca in a function,
3499 // unpoison the whole stack frame at function exit.
handleDynamicAllocaCall(AllocaInst * AI)3500 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3501 IRBuilder<> IRB(AI);
3502
3503 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
3504 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3505
3506 Value *Zero = Constant::getNullValue(IntptrTy);
3507 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3508 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3509
3510 // Since we need to extend alloca with additional memory to locate
3511 // redzones, and OldSize is number of allocated blocks with
3512 // ElementSize size, get allocated memory size in bytes by
3513 // OldSize * ElementSize.
3514 const unsigned ElementSize =
3515 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3516 Value *OldSize =
3517 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3518 ConstantInt::get(IntptrTy, ElementSize));
3519
3520 // PartialSize = OldSize % 32
3521 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3522
3523 // Misalign = kAllocaRzSize - PartialSize;
3524 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3525
3526 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3527 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3528 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3529
3530 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3531 // Alignment is added to locate left redzone, PartialPadding for possible
3532 // partial redzone and kAllocaRzSize for right redzone respectively.
3533 Value *AdditionalChunkSize = IRB.CreateAdd(
3534 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3535
3536 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3537
3538 // Insert new alloca with new NewSize and Alignment params.
3539 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3540 NewAlloca->setAlignment(Align(Alignment));
3541
3542 // NewAddress = Address + Alignment
3543 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3544 ConstantInt::get(IntptrTy, Alignment));
3545
3546 // Insert __asan_alloca_poison call for new created alloca.
3547 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3548
3549 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3550 // for unpoisoning stuff.
3551 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3552
3553 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3554
3555 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3556 AI->replaceAllUsesWith(NewAddressPtr);
3557
3558 // We are done. Erase old alloca from parent.
3559 AI->eraseFromParent();
3560 }
3561
3562 // isSafeAccess returns true if Addr is always inbounds with respect to its
3563 // base object. For example, it is a field access or an array access with
3564 // constant inbounds index.
isSafeAccess(ObjectSizeOffsetVisitor & ObjSizeVis,Value * Addr,uint64_t TypeSize) const3565 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3566 Value *Addr, uint64_t TypeSize) const {
3567 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3568 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3569 uint64_t Size = SizeOffset.first.getZExtValue();
3570 int64_t Offset = SizeOffset.second.getSExtValue();
3571 // Three checks are required to ensure safety:
3572 // . Offset >= 0 (since the offset is given from the base ptr)
3573 // . Size >= Offset (unsigned)
3574 // . Size - Offset >= NeededSize (unsigned)
3575 return Offset >= 0 && Size >= uint64_t(Offset) &&
3576 Size - uint64_t(Offset) >= TypeSize / 8;
3577 }
3578