xref: /netbsd-src/sys/arch/arm/sociox/if_scx.c (revision 370101fd086382f33db81ba453b492ef10cfae66)
1 /*	$NetBSD: if_scx.c,v 1.44 2024/06/29 11:27:12 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Tohru Nishimura.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #define NOT_MP_SAFE	0
33 
34 /*
35  * Socionext SC2A11 SynQuacer NetSec GbE driver
36  *
37  * Multiple Tx and Rx queues exist inside and dedicated descriptor
38  * fields specifies which queue is to use. Three internal micro-processors
39  * to handle incoming frames, outgoing frames and packet data crypto
40  * processing. uP programs are stored in an external flash memory and
41  * have to be loaded by device driver.
42  * NetSec uses Synopsys DesignWare Core EMAC.  DWC implementation
43  * register (0x20) is known to have 0x10.36 and feature register (0x1058)
44  * reports 0x11056f37.
45  *  <24> alternative/enhanced desc format
46  *  <18> receive IP type 2 checksum offload
47  *  <16> transmit checksum offload
48  *  <11> event counter (mac management counter, MMC)
49  */
50 
51 #include <sys/cdefs.h>
52 __KERNEL_RCSID(0, "$NetBSD: if_scx.c,v 1.44 2024/06/29 11:27:12 riastradh Exp $");
53 
54 #include <sys/param.h>
55 #include <sys/bus.h>
56 #include <sys/intr.h>
57 #include <sys/device.h>
58 #include <sys/callout.h>
59 #include <sys/mbuf.h>
60 #include <sys/errno.h>
61 #include <sys/rndsource.h>
62 #include <sys/kernel.h>
63 #include <sys/systm.h>
64 
65 #include <net/if.h>
66 #include <net/if_media.h>
67 #include <net/if_dl.h>
68 #include <net/if_ether.h>
69 #include <dev/mii/mii.h>
70 #include <dev/mii/miivar.h>
71 #include <net/bpf.h>
72 
73 #include <dev/fdt/fdtvar.h>
74 #include <dev/acpi/acpireg.h>
75 #include <dev/acpi/acpivar.h>
76 #include <dev/acpi/acpi_intr.h>
77 
78 /* SC2A11 GbE has 64-bit paddr descriptor */
79 struct tdes {
80 	uint32_t t0, t1, t2, t3;
81 };
82 struct rdes {
83 	uint32_t r0, r1, r2, r3;
84 };
85 #define T0_OWN		(1U<<31)	/* desc is ready to Tx */
86 #define T0_LD		(1U<<30)	/* last descriptor in array */
87 #define T0_DRID		(24)		/* 29:24 desc ring id */
88 #define T0_PT		(1U<<21)	/* 23:21 "pass-through" */
89 #define T0_TDRID	(16)		/* 20:16 target desc ring id: GMAC=15 */
90 #define T0_CC		(1U<<15)	/* ??? */
91 #define T0_FS		(1U<<9)		/* first segment of frame */
92 #define T0_LS		(1U<<8)		/* last segment of frame */
93 #define T0_CSUM		(1U<<7)		/* enable check sum offload */
94 #define T0_TSO		(1U<<6)		/* enable TCP segment offload */
95 #define T0_TRS		(1U<<4)		/* 5:4 "TRS" ??? */
96 /* T1 frame segment address 63:32 */
97 /* T2 frame segment address 31:0 */
98 /* T3 31:16 TCP segment length, 15:0 frame segment length to transmit */
99 #define R0_OWN		(1U<<31)	/* desc is empty */
100 #define R0_LD		(1U<<30)	/* last descriptor in array */
101 #define R0_SDRID	(24)		/* 29:24 source desc ring id */
102 #define R0_FR		(1U<<23)	/* found fragmented */
103 #define R0_ER		(1U<<21)	/* Rx error indication */
104 #define R0_ERR		(3U<<16)	/* 18:16 receive error code */
105 #define R0_TDRID	(12)		/* 15:12 target desc ring id */
106 #define R0_FS		(1U<<9)		/* first segment of frame */
107 #define R0_LS		(1U<<8)		/* last segment of frame */
108 #define R0_CSUM		(3U<<6)		/* 7:6 checksum status, 0: undone */
109 #define R0_CERR		(2U<<6)		/* 2: found bad */
110 #define R0_COK		(1U<<6)		/* 1: found ok */
111 /* R1 frame address 63:32 */
112 /* R2 frame address 31:0 */
113 /* R3 31:16 received frame length, 15:0 buffer length to receive */
114 
115 /*
116  * SC2A11 registers. 0x100 - 1204
117  */
118 #define SWRESET		0x104
119 #define  SRST_RUN	(1U<<31)	/* instruct start, 0 to stop */
120 #define COMINIT		0x120
121 #define  INIT_DB	(1U<<2)		/* ???; self clear when done */
122 #define  INIT_CLS	(1U<<1)		/* ???; self clear when done */
123 #define xINTSR		0x200		/* aggregated interrupt status */
124 #define  IRQ_UCODE	(1U<<20)	/* ucode load completed; W1C */
125 #define  IRQ_MAC	(1U<<19)	/* ??? */
126 #define  IRQ_PKT	(1U<<18)	/* ??? */
127 #define  IRQ_BOOTCODE	(1U<<5)		/* ??? */
128 #define  IRQ_XDONE	(1U<<4)		/* ??? mode change completed */
129 #define  IRQ_RX		(1U<<1)		/* top level Rx interrupt */
130 #define  IRQ_TX		(1U<<0)		/* top level Tx interrupt */
131 #define xINTAEN		0x204		/* INT_A enable */
132 #define xINTAE_SET	0x234		/* bit to set */
133 #define xINTAE_CLR	0x238		/* bit to clr */
134 #define xINTBEN		0x23c		/* INT_B enable */
135 #define xINTBE_SET	0x240		/* bit to set */
136 #define xINTBE_CLR	0x244		/* bit to clr */
137 #define TXISR		0x400		/* transmit status; W1C */
138 #define TXIEN		0x404		/* tx interrupt enable */
139 #define TXIE_SET	0x428		/* bit to set */
140 #define TXIE_CLR	0x42c		/* bit to clr */
141 #define  TXI_NTOWNR	(1U<<17)	/* ??? desc array got empty */
142 #define  TXI_TR_ERR	(1U<<16)	/* xmit error detected */
143 #define  TXI_TXDONE	(1U<<15)	/* xmit completed */
144 #define  TXI_TMREXP	(1U<<14)	/* coalesce guard timer expired */
145 #define RXISR		0x440		/* receive status; W1C */
146 #define RXIEN		0x444		/* rx interrupt enable */
147 #define RXIE_SET	0x468		/* bit to set */
148 #define RXIE_CLR	0x46c		/* bit to clr */
149 #define  RXI_RC_ERR	(1U<<16)	/* recv error detected */
150 #define  RXI_PKTCNT	(1U<<15)	/* recv counter has new value */
151 #define  RXI_TMREXP	(1U<<14)	/* coalesce guard timer expired */
152 #define TDBA_LO		0x408		/* tdes array base addr 31:0 */
153 #define TDBA_HI		0x434		/* tdes array base addr 63:32 */
154 #define RDBA_LO		0x448		/* rdes array base addr 31:0 */
155 #define RDBA_HI		0x474		/* rdes array base addr 63:32 */
156 #define TXCONF		0x430		/* tdes config */
157 #define RXCONF		0x470		/* rdes config */
158 #define  DESCNF_UP	(1U<<31)	/* 'up-and-running' */
159 #define  DESCNF_CHRST	(1U<<30)	/* channel reset */
160 #define  DESCNF_TMR	(1U<<4)		/* coalesce timer unit select */
161 #define  DESCNF_LE	(1)		/* little endian desc format */
162 #define TXSUBMIT	0x410		/* submit frame(s) to transmit */
163 #define TXCOALESC	0x418		/* tx intr coalesce upper bound */
164 #define RXCOALESC	0x458		/* rx intr coalesce upper bound */
165 #define TCLSCTIME	0x420		/* tintr guard time usec */
166 #define RCLSCTIME	0x460		/* rintr guard time usec */
167 #define TXDONECNT	0x414		/* tx completed count, auto-zero */
168 #define RXAVAILCNT	0x454		/* rx available count, auto-zero */
169 #define DMACTL_TMR	0x20c		/* DMA cycle tick value */
170 #define PKTCTRL		0x140		/* pkt engine control */
171 #define  MODENRM	(1U<<28)	/* set operational mode to 'normal' */
172 #define  ENJUMBO	(1U<<27)	/* allow jumbo frame */
173 #define  RPTCSUMERR	(1U<<3)		/* log Rx checksum error */
174 #define  RPTHDCOMP	(1U<<2)		/* log header incomplete condition */
175 #define  RPTHDERR	(1U<<1)		/* log header error */
176 #define  DROPNOMATCH	(1U<<0)		/* drop no match frames */
177 #define UCODE_PKT	0x0d0		/* packet engine ucode port */
178 #define UCODE_H2M	0x210		/* host2media engine ucode port */
179 #define UCODE_M2H	0x21c		/* media2host engine ucode port */
180 #define CORESTAT	0x218		/* engine run state */
181 #define  PKTSTOP	(1U<<2)		/* pkt engine stopped */
182 #define  M2HSTOP	(1U<<1)		/* M2H engine stopped */
183 #define  H2MSTOP	(1U<<0)		/* H2M engine stopped */
184 #define DMACTL_H2M	0x214		/* host2media engine control */
185 #define DMACTL_M2H	0x220		/* media2host engine control */
186 #define  DMACTL_STOP	(1U<<0)		/* instruct stop; self-clear */
187 #define  M2H_MODE_TRANS	(1U<<20)	/* initiate M2H mode change */
188 #define MODE_TRANS	0x500		/* mode change completion status */
189 #define  N2T_DONE	(1U<<20)	/* normal->taiki change completed */
190 #define  T2N_DONE	(1U<<19)	/* taiki->normal change completed */
191 #define CLKEN		0x100		/* clock distribution enable */
192 #define  CLK_G		(1U<<5)		/* feed clk domain G */
193 #define  CLK_C		(1U<<1)		/* feed clk domain C */
194 #define  CLK_D		(1U<<0)		/* feed clk domain D */
195 #define DESC_INIT	0x11fc		/* write 1 for desc init, SC */
196 #define DESC_SRST	0x1204		/* write 1 for desc sw reset, SC */
197 
198 /* GMAC register indirect access. thru MACCMD/MACDATA operation */
199 #define MACDATA		0x11c0		/* gmac register rd/wr data */
200 #define MACCMD		0x11c4		/* gmac register operation */
201 #define  CMD_IOWR	(1U<<28)	/* write op */
202 #define  CMD_BUSY	(1U<<31)	/* busy bit */
203 #define MACSTAT		0x1024		/* mac interrupt status (unused) */
204 #define MACINTE		0x1028		/* mac interrupt enable (unused) */
205 
206 #define FLOWTHR		0x11cc		/* flow control threshold */
207 /* 31:16 pause threshold, 15:0 resume threshold */
208 #define INTF_SEL	0x11d4		/* phy interface type */
209 #define  INTF_GMII	0
210 #define  INTF_RGMII	1
211 #define  INTF_RMII	4
212 
213 #define MCVER		0x22c		/* micro controller version */
214 #define HWVER		0x230		/* hardware version */
215 
216 /*
217  * GMAC registers are mostly identical to Synopsys DesignWare Core
218  * Ethernet. These must be handled by indirect access.
219  */
220 #define GMACMCR		0x0000		/* MAC configuration */
221 #define  MCR_IBN	(1U<<30)	/* watch in-band-signal */
222 #define  MCR_CST	(1U<<25)	/* strip CRC */
223 #define  MCR_TC		(1U<<24)	/* keep RGMII PHY notified */
224 #define  MCR_WD		(1U<<23)	/* allow long >2048 tx frame */
225 #define  MCR_JE		(1U<<20)	/* allow ~9018 tx jumbo frame */
226 #define  MCR_IFG	(7U<<17)	/* 19:17 IFG value 0~7 */
227 #define  MCR_DCRS	(1U<<16)	/* ignore (G)MII HDX Tx error */
228 #define  MCR_PS		(1U<<15)	/* 1: MII 10/100, 0: GMII 1000 */
229 #define  MCR_FES	(1U<<14)	/* force speed 100 */
230 #define  MCR_DO		(1U<<13)	/* don't receive my own HDX Tx frames */
231 #define  MCR_LOOP	(1U<<12)	/* run loop back */
232 #define  MCR_USEFDX	(1U<<11)	/* force full duplex */
233 #define  MCR_IPCEN	(1U<<10)	/* handle checksum */
234 #define  MCR_DR		(1U<<9)		/* attempt no tx retry, send once */
235 #define  MCR_LUD	(1U<<8)		/* link condition report when RGMII */
236 #define  MCR_ACS	(1U<<7)		/* auto pad auto strip CRC */
237 #define  MCR_DC		(1U<<4)		/* report excessive tx deferral */
238 #define  MCR_TE		(1U<<3)		/* run Tx MAC engine, 0 to stop */
239 #define  MCR_RE		(1U<<2)		/* run Rx MAC engine, 0 to stop */
240 #define  MCR_PREA	(3U)		/* 1:0 preamble len. 0~2 */
241 #define GMACAFR		0x0004		/* frame DA/SA address filter */
242 #define  AFR_RA		(1U<<31)	/* accept all irrespective of filt. */
243 #define  AFR_HPF	(1U<<10)	/* hash+perfect filter, or hash only */
244 #define  AFR_SAF	(1U<<9)		/* source address filter */
245 #define  AFR_SAIF	(1U<<8)		/* SA inverse filtering */
246 #define  AFR_PCF	(2U<<6)		/* 7:6 accept pause frame 0~3 */
247 #define  AFR_DBF	(1U<<5)		/* reject broadcast frame */
248 #define  AFR_PM		(1U<<4)		/* accept all multicast frame */
249 #define  AFR_DAIF	(1U<<3)		/* DA inverse filtering */
250 #define  AFR_MHTE	(1U<<2)		/* use multicast hash table */
251 #define  AFR_UHTE	(1U<<1)		/* use hash table for unicast */
252 #define  AFR_PR		(1U<<0)		/* run promisc mode */
253 #define GMACGAR		0x0010		/* MDIO operation */
254 #define  GAR_PHY	(11)		/* 15:11 mii phy */
255 #define  GAR_REG	(6)		/* 10:6 mii reg */
256 #define  GAR_CLK	(2)		/* 5:2 mdio clock tick ratio */
257 #define  GAR_IOWR	(1U<<1)		/* MDIO write op */
258 #define  GAR_BUSY	(1U<<0)		/* busy bit */
259 #define  GAR_MDIO_25_35MHZ	2
260 #define  GAR_MDIO_35_60MHZ	3
261 #define  GAR_MDIO_60_100MHZ	0
262 #define  GAR_MDIO_100_150MHZ	1
263 #define  GAR_MDIO_150_250MHZ	4
264 #define  GAR_MDIO_250_300MHZ	5
265 #define GMACGDR		0x0014		/* MDIO rd/wr data */
266 #define GMACFCR		0x0018		/* 802.3x flowcontrol */
267 /* 31:16 pause timer value, 5:4 pause timer threshold */
268 #define  FCR_RFE	(1U<<2)		/* accept PAUSE to throttle Tx */
269 #define  FCR_TFE	(1U<<1)		/* generate PAUSE to moderate Rx lvl */
270 #define GMACIMPL	0x0020		/* implementation id */
271 #define GMACISR		0x0038		/* interrupt status indication */
272 #define GMACIMR		0x003c		/* interrupt mask to inhibit */
273 #define  ISR_TS		(1U<<9)		/* time stamp operation detected */
274 #define  ISR_CO		(1U<<7)		/* Rx checksum offload completed */
275 #define  ISR_TX		(1U<<6)		/* Tx completed */
276 #define  ISR_RX		(1U<<5)		/* Rx completed */
277 #define  ISR_ANY	(1U<<4)		/* any of above 5-7 report */
278 #define  ISR_LC		(1U<<0)		/* link status change detected */
279 #define GMACMAH0	0x0040		/* my own MAC address 47:32 */
280 #define GMACMAL0	0x0044		/* my own MAC address 31:0 */
281 #define GMACMAH(i) 	((i)*8+0x40)	/* supplemental MAC addr 1-15 */
282 #define GMACMAL(i) 	((i)*8+0x44)	/* 31:0 MAC address low part */
283 /* MAH bit-31: slot in use, 30: SA to match, 29:24 byte-wise don'care */
284 #define GMACAMAH(i)	((i)*8+0x800)	/* supplemental MAC addr 16-31 */
285 #define GMACAMAL(i)	((i)*8+0x804)	/* 31: MAC address low part */
286 /* supplimental MAH bit-31: slot in use, no other bit is effective */
287 #define GMACMHTH	0x0008		/* 64bit multicast hash table 63:32 */
288 #define GMACMHTL	0x000c		/* 64bit multicast hash table 31:0 */
289 #define GMACMHT(i)	((i)*4+0x500)	/* 256-bit alternative mcast hash 0-7 */
290 #define GMACVTAG	0x001c		/* VLAN tag control */
291 #define  VTAG_HASH	(1U<<19)	/* use VLAN tag hash table */
292 #define  VTAG_SVLAN	(1U<<18)	/* handle type 0x88A8 SVLAN frame */
293 #define  VTAG_INV	(1U<<17)	/* run inverse match logic */
294 #define  VTAG_ETV	(1U<<16)	/* use only 12bit VID field to match */
295 /* 15:0 concat of PRIO+CFI+VID */
296 #define GMACVHT		0x0588		/* 16-bit VLAN tag hash */
297 #define GMACMIISR	0x00d8		/* resolved RGMII/SGMII link status */
298 #define  MIISR_LUP	(1U<<3)		/* link up(1)/down(0) report */
299 #define  MIISR_SPD	(3U<<1)		/* 2:1 speed 10(0)/100(1)/1000(2) */
300 #define  MIISR_FDX	(1U<<0)		/* fdx detected */
301 
302 #define GMACLPIS	0x0030		/* LPI control & status */
303 #define  LPIS_TXA	(1U<<19)	/* complete Tx in progress and LPI */
304 #define  LPIS_PLS	(1U<<17)
305 #define  LPIS_EN	(1U<<16)	/* 1: enter LPI mode, 0: exit */
306 #define  LPIS_TEN	(1U<<0)		/* Tx LPI report */
307 #define GMACLPIC	0x0034		/* LPI timer control */
308 #define  LPIC_LST	(5)		/* 16:5 ??? */
309 #define  LPIC_TWT	(0)		/* 15:0 ??? */
310 /* 0x700-764 Time Stamp control */
311 
312 #define GMACBMR		0x1000		/* DMA bus mode control */
313 /* 24    8xPBL multiply by 8 for RPBL & PBL values
314  * 23    USP 1 to use RPBL for Rx DMA burst, 0 to share PBL by Rx and Tx
315  * 22:17 RPBL
316  * 16    FB fixed burst
317  * 15:14 priority between Rx and Tx
318  *  3    rxtx ratio 41
319  *  2    rxtx ratio 31
320  *  1    rxtx ratio 21
321  *  0    rxtx ratio 11
322  * 13:8  PBL possible DMA burst length
323  *  7    ATDS select 32-byte descriptor format for advanced features
324  *  6:2	 DSL descriptor skip length, 0 for adjuscent, counted on bus width
325  *  0    MAC reset op. self-clear
326  */
327 #define  BMR_RST	(1)		/* reset op. self clear when done */
328 #define GMACTPD		0x1004		/* write any to resume tdes */
329 #define GMACRPD		0x1008		/* write any to resume rdes */
330 #define GMACRDLA	0x100c		/* rdes base address 32bit paddr */
331 #define GMACTDLA	0x1010		/* tdes base address 32bit paddr */
332 #define GMACDSR		0x1014		/* DMA status detail report; W1C */
333 #define GMACDIE		0x101c		/* DMA interrupt enable */
334 #define  DMAI_LPI	(1U<<30)	/* LPI interrupt */
335 #define  DMAI_TTI	(1U<<29)	/* timestamp trigger interrupt */
336 #define  DMAI_GMI	(1U<<27)	/* management counter interrupt */
337 #define  DMAI_GLI	(1U<<26)	/* xMII link change detected */
338 #define  DMAI_EB	(23)		/* 25:23 DMA bus error detected */
339 #define  DMAI_TS	(20)		/* 22:20 Tx DMA state report */
340 #define  DMAI_RS	(17)		/* 29:17 Rx DMA state report */
341 #define  DMAI_NIS	(1U<<16)	/* normal interrupt summary; W1C */
342 #define  DMAI_AIS	(1U<<15)	/* abnormal interrupt summary; W1C */
343 #define  DMAI_ERI	(1U<<14)	/* the first Rx buffer is filled */
344 #define  DMAI_FBI	(1U<<13)	/* DMA bus error detected */
345 #define  DMAI_ETI	(1U<<10)	/* single frame Tx completed */
346 #define  DMAI_RWT	(1U<<9)		/* longer than 2048 frame received */
347 #define  DMAI_RPS	(1U<<8)		/* Rx process is now stopped */
348 #define  DMAI_RU	(1U<<7)		/* Rx descriptor not available */
349 #define  DMAI_RI	(1U<<6)		/* frame Rx completed by !R1_DIC */
350 #define  DMAI_UNF	(1U<<5)		/* Tx underflow detected */
351 #define  DMAI_OVF	(1U<<4)		/* receive buffer overflow detected */
352 #define  DMAI_TJT	(1U<<3)		/* longer than 2048 frame sent */
353 #define  DMAI_TU	(1U<<2)		/* Tx descriptor not available */
354 #define  DMAI_TPS	(1U<<1)		/* transmission is stopped */
355 #define  DMAI_TI	(1U<<0)		/* frame Tx completed by T0_IC */
356 #define GMACOMR		0x1018		/* DMA operation mode */
357 #define  OMR_DT		(1U<<26)	/* don't drop error frames */
358 #define  OMR_RSF	(1U<<25)	/* 1: Rx store&forward, 0: immed. */
359 #define  OMR_DFF	(1U<<24)	/* don't flush rx frames on shortage */
360 #define  OMR_TSF	(1U<<21)	/* 1: Tx store&forward, 0: immed. */
361 #define  OMR_FTF	(1U<<20)	/* initiate tx FIFO reset, SC */
362 #define  OMR_TTC	(14)		/* 16:14 Tx threshold */
363 #define  OMR_ST		(1U<<13)	/* run Tx DMA engine, 0 to stop */
364 #define  OMR_RFD	(11)		/* 12:11 Rx FIFO fill level */
365 #define  OMR_EFC	(1U<<8)		/* transmit PAUSE to throttle Rx lvl. */
366 #define  OMR_FEF	(1U<<7)		/* allow to receive error frames */
367 #define  OMR_SR		(1U<<1)		/* run Rx DMA engine, 0 to stop */
368 #define GMACEVCS	0x1020		/* missed frame or ovf detected */
369 #define GMACRWDT	0x1024		/* enable rx watchdog timer interrupt */
370 #define GMACAXIB	0x1028		/* AXI bus mode control */
371 #define GMACAXIS	0x102c		/* AXI status report */
372 /* 0x1048 current tx desc address */
373 /* 0x104c current rx desc address */
374 /* 0x1050 current tx buffer address */
375 /* 0x1054 current rx buffer address */
376 #define HWFEA		0x1058		/* DWC feature report */
377 #define  FEA_EXDESC	(1U<<24)	/* alternative/enhanced desc layout */
378 #define  FEA_2COE	(1U<<18)	/* Rx type 2 IP checksum offload */
379 #define  FEA_1COE	(1U<<17)	/* Rx type 1 IP checksum offload */
380 #define  FEA_TXOE	(1U<<16)	/* Tx checksum offload */
381 #define  FEA_MMC	(1U<<11)	/* RMON event counter */
382 
383 #define GMACEVCTL	0x0100		/* event counter control */
384 #define  EVC_FHP	(1U<<5)		/* full-half preset */
385 #define  EVC_CP		(1U<<4)		/* counter preset */
386 #define  EVC_MCF	(1U<<3)		/* counter freeze */
387 #define  EVC_ROR	(1U<<2)		/* auto-zero on counter read */
388 #define  EVC_CSR	(1U<<1)		/* counter stop rollover */
389 #define  EVC_CR		(1U<<0)		/* reset counters */
390 #define GMACEVCNT(i)	((i)*4+0x114)	/* 80 event counters 0x114 - 0x284 */
391 
392 /* 0x400-4ac L3/L4 control */
393 
394 /*
395  * flash memory layout
396  * 0x00 - 07	48-bit MAC station address. 4 byte wise in BE order.
397  * 0x08 - 0b	H->MAC xfer engine program start addr 63:32.
398  * 0x0c - 0f	H2M program addr 31:0 (these are absolute addr, not offset)
399  * 0x10 - 13	H2M program length in 4 byte count.
400  * 0x14 - 0b	M->HOST xfer engine program start addr 63:32.
401  * 0x18 - 0f	M2H program addr 31:0 (absolute addr, not relative)
402  * 0x1c - 13	M2H program length in 4 byte count.
403  * 0x20 - 23	packet engine program addr 31:0, (absolute addr, not offset)
404  * 0x24 - 27	packet program length in 4 byte count.
405  *
406  * above ucode are loaded via mapped reg 0x210, 0x21c and 0x0c0.
407  */
408 
409 #define  _BMR		0x00412080	/* NetSec BMR value, magic spell */
410 /* NetSec uses local RAM to handle GMAC desc arrays */
411 #define  _RDLA		0x18000
412 #define  _TDLA		0x1c000
413 /* lower address region is used for intermediate frame data buffers */
414 
415 /*
416  * all below are software construction.
417  */
418 #define MD_NTXDESC		128
419 #define MD_NRXDESC		64
420 
421 #define MD_NTXSEGS		16
422 #define MD_TXQUEUELEN		8
423 #define MD_TXQUEUELEN_MASK	(MD_TXQUEUELEN - 1)
424 #define MD_TXQUEUE_GC		(MD_TXQUEUELEN / 4)
425 #define MD_NTXDESC_MASK	(MD_NTXDESC - 1)
426 #define MD_NEXTTX(x)		(((x) + 1) & MD_NTXDESC_MASK)
427 #define MD_NEXTTXS(x)		(((x) + 1) & MD_TXQUEUELEN_MASK)
428 
429 #define MD_NRXDESC_MASK	(MD_NRXDESC - 1)
430 #define MD_NEXTRX(x)		(((x) + 1) & MD_NRXDESC_MASK)
431 
432 struct control_data {
433 	struct tdes cd_txdescs[MD_NTXDESC];
434 	struct rdes cd_rxdescs[MD_NRXDESC];
435 };
436 #define SCX_CDOFF(x)		offsetof(struct control_data, x)
437 #define SCX_CDTXOFF(x)		SCX_CDOFF(cd_txdescs[(x)])
438 #define SCX_CDRXOFF(x)		SCX_CDOFF(cd_rxdescs[(x)])
439 
440 struct scx_txsoft {
441 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
442 	bus_dmamap_t txs_dmamap;	/* our DMA map */
443 	int txs_firstdesc;		/* first descriptor in packet */
444 	int txs_lastdesc;		/* last descriptor in packet */
445 	int txs_ndesc;			/* # of descriptors used */
446 };
447 
448 struct scx_rxsoft {
449 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
450 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
451 };
452 
453 struct scx_softc {
454 	device_t sc_dev;		/* generic device information */
455 	bus_space_tag_t sc_st;		/* bus space tag */
456 	bus_space_handle_t sc_sh;	/* bus space handle */
457 	bus_size_t sc_sz;		/* csr map size */
458 	bus_space_handle_t sc_eesh;	/* eeprom section handle */
459 	bus_size_t sc_eesz;		/* eeprom map size */
460 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
461 	struct ethercom sc_ethercom;	/* Ethernet common data */
462 	struct mii_data sc_mii;		/* MII */
463 	callout_t sc_callout;		/* PHY monitor callout */
464 	bus_dma_segment_t sc_seg;	/* descriptor store seg */
465 	int sc_nseg;			/* descriptor store nseg */
466 	void *sc_ih;			/* interrupt cookie */
467 	int sc_phy_id;			/* PHY address */
468 	int sc_flowflags;		/* 802.3x PAUSE flow control */
469 	uint32_t sc_mdclk;		/* GAR 5:2 clock selection */
470 	uint32_t sc_t0cotso;		/* T0_CSUM | T0_TSO to run */
471 	int sc_miigmii;			/* 1: MII/GMII, 0: RGMII */
472 	int sc_phandle;			/* fdt phandle */
473 	uint64_t sc_freq;
474 	uint32_t sc_maxsize;
475 
476 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
477 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
478 
479 	struct control_data *sc_control_data;
480 #define sc_txdescs	sc_control_data->cd_txdescs
481 #define sc_rxdescs	sc_control_data->cd_rxdescs
482 
483 	struct scx_txsoft sc_txsoft[MD_TXQUEUELEN];
484 	struct scx_rxsoft sc_rxsoft[MD_NRXDESC];
485 	int sc_txfree;			/* number of free Tx descriptors */
486 	int sc_txnext;			/* next ready Tx descriptor */
487 	int sc_txsfree;			/* number of free Tx jobs */
488 	int sc_txsnext;			/* next ready Tx job */
489 	int sc_txsdirty;		/* dirty Tx jobs */
490 	int sc_rxptr;			/* next ready Rx descriptor/descsoft */
491 
492 	krndsource_t rnd_source;	/* random source */
493 #ifdef GMAC_EVENT_COUNTERS
494 	/* 80 event counters exist */
495 #endif
496 };
497 
498 #define SCX_CDTXADDR(sc, x)	((sc)->sc_cddma + SCX_CDTXOFF((x)))
499 #define SCX_CDRXADDR(sc, x)	((sc)->sc_cddma + SCX_CDRXOFF((x)))
500 
501 #define SCX_CDTXSYNC(sc, x, n, ops)					\
502 do {									\
503 	int __x, __n;							\
504 									\
505 	__x = (x);							\
506 	__n = (n);							\
507 									\
508 	/* If it will wrap around, sync to the end of the ring. */	\
509 	if ((__x + __n) > MD_NTXDESC) {				\
510 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
511 		    SCX_CDTXOFF(__x), sizeof(struct tdes) *		\
512 		    (MD_NTXDESC - __x), (ops));			\
513 		__n -= (MD_NTXDESC - __x);				\
514 		__x = 0;						\
515 	}								\
516 									\
517 	/* Now sync whatever is left. */				\
518 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
519 	    SCX_CDTXOFF(__x), sizeof(struct tdes) * __n, (ops));	\
520 } while (/*CONSTCOND*/0)
521 
522 #define SCX_CDRXSYNC(sc, x, ops)					\
523 do {									\
524 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
525 	    SCX_CDRXOFF((x)), sizeof(struct rdes), (ops));		\
526 } while (/*CONSTCOND*/0)
527 
528 #define SCX_INIT_RXDESC(sc, x)						\
529 do {									\
530 	struct scx_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
531 	struct rdes *__rxd = &(sc)->sc_rxdescs[(x)];			\
532 	struct mbuf *__m = __rxs->rxs_mbuf;				\
533 	bus_addr_t __p = __rxs->rxs_dmamap->dm_segs[0].ds_addr;		\
534 	bus_size_t __z = __rxs->rxs_dmamap->dm_segs[0].ds_len;		\
535 	__m->m_data = __m->m_ext.ext_buf;				\
536 	__rxd->r3 = htole32(__z - 4);					\
537 	__rxd->r2 = htole32(BUS_ADDR_LO32(__p));			\
538 	__rxd->r1 = htole32(BUS_ADDR_HI32(__p));			\
539 	__rxd->r0 &= htole32(R0_LD);					\
540 	__rxd->r0 |= htole32(R0_OWN);					\
541 } while (/*CONSTCOND*/0)
542 
543 /* memory mapped CSR register access */
544 #define CSR_READ(sc,off) \
545 	    bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (off))
546 #define CSR_WRITE(sc,off,val) \
547 	    bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (off), (val))
548 
549 /* flash memory access */
550 #define EE_READ(sc,off) \
551 	    bus_space_read_4((sc)->sc_st, (sc)->sc_eesh, (off))
552 
553 static int scx_fdt_match(device_t, cfdata_t, void *);
554 static void scx_fdt_attach(device_t, device_t, void *);
555 static int scx_acpi_match(device_t, cfdata_t, void *);
556 static void scx_acpi_attach(device_t, device_t, void *);
557 
558 CFATTACH_DECL_NEW(scx_fdt, sizeof(struct scx_softc),
559     scx_fdt_match, scx_fdt_attach, NULL, NULL);
560 
561 CFATTACH_DECL_NEW(scx_acpi, sizeof(struct scx_softc),
562     scx_acpi_match, scx_acpi_attach, NULL, NULL);
563 
564 static void scx_attach_i(struct scx_softc *);
565 static void scx_reset(struct scx_softc *);
566 static void scx_stop(struct ifnet *, int);
567 static int scx_init(struct ifnet *);
568 static int scx_ioctl(struct ifnet *, u_long, void *);
569 static void scx_set_rcvfilt(struct scx_softc *);
570 static void scx_start(struct ifnet *);
571 static void scx_watchdog(struct ifnet *);
572 static int scx_intr(void *);
573 static void txreap(struct scx_softc *);
574 static void rxfill(struct scx_softc *);
575 static int add_rxbuf(struct scx_softc *, int);
576 static void rxdrain(struct scx_softc *sc);
577 static void mii_statchg(struct ifnet *);
578 static void scx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
579 static int mii_readreg(device_t, int, int, uint16_t *);
580 static int mii_writereg(device_t, int, int, uint16_t);
581 static void phy_tick(void *);
582 static void dump_hwfeature(struct scx_softc *);
583 
584 static void resetuengine(struct scx_softc *);
585 static void loaducode(struct scx_softc *);
586 static void injectucode(struct scx_softc *, int, bus_addr_t, bus_size_t);
587 static void forcephyloopback(struct scx_softc *);
588 static void resetphytonormal(struct scx_softc *);
589 
590 static int get_mdioclk(uint32_t);
591 
592 #define WAIT_FOR_SET(sc, reg, set) \
593 	wait_for_bits(sc, reg, set, ~0, 0)
594 #define WAIT_FOR_CLR(sc, reg, clr) \
595 	wait_for_bits(sc, reg, 0, clr, 0)
596 
597 static int
wait_for_bits(struct scx_softc * sc,int reg,uint32_t set,uint32_t clr,uint32_t fail)598 wait_for_bits(struct scx_softc *sc, int reg,
599     uint32_t set, uint32_t clr, uint32_t fail)
600 {
601 	uint32_t val;
602 	int ntries;
603 
604 	for (ntries = 0; ntries < 1000; ntries++) {
605 		val = CSR_READ(sc, reg);
606 		if ((val & set) || !(val & clr))
607 			return 0;
608 		if (val & fail)
609 			return 1;
610 		DELAY(1);
611 	}
612 	return 1;
613 }
614 
615 /* GMAC register indirect access */
616 static int
mac_read(struct scx_softc * sc,int reg)617 mac_read(struct scx_softc *sc, int reg)
618 {
619 
620 	CSR_WRITE(sc, MACCMD, reg | CMD_BUSY);
621 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
622 	return CSR_READ(sc, MACDATA);
623 }
624 
625 static void
mac_write(struct scx_softc * sc,int reg,int val)626 mac_write(struct scx_softc *sc, int reg, int val)
627 {
628 
629 	CSR_WRITE(sc, MACDATA, val);
630 	CSR_WRITE(sc, MACCMD, reg | CMD_IOWR | CMD_BUSY);
631 	(void)WAIT_FOR_CLR(sc, MACCMD, CMD_BUSY);
632 }
633 
634 /* dig and decode "clock-frequency" value for a given clkname */
635 static int
get_clk_freq(int phandle,const char * clkname)636 get_clk_freq(int phandle, const char *clkname)
637 {
638 	u_int index, n, cells;
639 	const u_int *p;
640 	int err, len, resid;
641 	unsigned int freq = 0;
642 
643 	err = fdtbus_get_index(phandle, "clock-names", clkname, &index);
644 	if (err == -1)
645 		return -1;
646 	p = fdtbus_get_prop(phandle, "clocks", &len);
647 	if (p == NULL)
648 		return -1;
649 	for (n = 0, resid = len; resid > 0; n++) {
650 		const int cc_phandle =
651 		    fdtbus_get_phandle_from_native(be32toh(p[0]));
652 		if (of_getprop_uint32(cc_phandle, "#clock-cells", &cells))
653 			return -1;
654 		if (n == index) {
655 			if (of_getprop_uint32(cc_phandle,
656 			    "clock-frequency", &freq))
657 				return -1;
658 			return freq;
659 		}
660 		resid -= (cells + 1) * 4;
661 		p += (cells + 1) * 4;
662 	}
663 	return -1;
664 }
665 
666 #define ATTACH_DEBUG 1
667 
668 static const struct device_compatible_entry compat_data[] = {
669 	{ .compat = "socionext,synquacer-netsec" },
670 	DEVICE_COMPAT_EOL
671 };
672 static const struct device_compatible_entry compatible[] = {
673 	{ .compat = "SCX0001" },
674 	DEVICE_COMPAT_EOL
675 };
676 
677 static int
scx_fdt_match(device_t parent,cfdata_t cf,void * aux)678 scx_fdt_match(device_t parent, cfdata_t cf, void *aux)
679 {
680 	struct fdt_attach_args * const faa = aux;
681 
682 	return of_compatible_match(faa->faa_phandle, compat_data);
683 }
684 
685 static void
scx_fdt_attach(device_t parent,device_t self,void * aux)686 scx_fdt_attach(device_t parent, device_t self, void *aux)
687 {
688 	struct scx_softc * const sc = device_private(self);
689 	struct fdt_attach_args * const faa = aux;
690 	const int phandle = faa->faa_phandle;
691 	bus_space_handle_t bsh;
692 	bus_space_handle_t eebsh;
693 	bus_addr_t addr[2];
694 	bus_size_t size[2];
695 	void *intrh;
696 	char intrstr[128];
697 	int phy_phandle;
698 	const char *phy_mode;
699 	bus_addr_t phy_id;
700 	long ref_clk;
701 
702 	if (fdtbus_get_reg(phandle, 0, addr+0, size+0) != 0
703 	    || bus_space_map(faa->faa_bst, addr[0], size[0], 0, &bsh) != 0) {
704 		aprint_error(": unable to map registers\n");
705 		return;
706 	}
707 	if (fdtbus_get_reg(phandle, 1, addr+1, size+1) != 0
708 	    || bus_space_map(faa->faa_bst, addr[1], size[1], 0, &eebsh) != 0) {
709 		aprint_error(": unable to map device eeprom\n");
710 		goto fail;
711 	}
712 	if (!fdtbus_intr_str(phandle, 0, intrstr, sizeof(intrstr))) {
713 		aprint_error(": failed to decode interrupt\n");
714 		goto fail;
715 	}
716 
717 	phy_mode = fdtbus_get_string(phandle, "phy-mode");
718 	if (phy_mode == NULL)
719 		aprint_error(": missing 'phy-mode' property\n");
720 	phy_phandle = fdtbus_get_phandle(phandle, "phy-handle");
721 	if (phy_phandle == -1
722 	    || fdtbus_get_reg(phy_phandle, 0, &phy_id, NULL) != 0)
723 		phy_id = MII_PHY_ANY;
724 	ref_clk = get_clk_freq(phandle, "phy_ref_clk");
725 	if (ref_clk == -1)
726 		ref_clk = 250 * 1000 * 1000;
727 
728 #if ATTACH_DEBUG == 1
729 aprint_normal("\n");
730 aprint_normal_dev(self,
731     "[FDT] phy mode %s, phy id %d, freq %ld\n",
732     phy_mode, (int)phy_id, ref_clk);
733 aprint_normal("%s", device_xname(self));
734 #endif
735 
736 	intrh = fdtbus_intr_establish(phandle, 0, IPL_NET,
737 		NOT_MP_SAFE, scx_intr, sc);
738 	if (intrh == NULL) {
739 		aprint_error(": couldn't establish interrupt\n");
740 		goto fail;
741 	}
742 	aprint_normal(" interrupt on %s", intrstr);
743 
744 	sc->sc_dev = self;
745 	sc->sc_st = faa->faa_bst;
746 	sc->sc_sh = bsh;
747 	sc->sc_sz = size[0];
748 	sc->sc_eesh = eebsh;
749 	sc->sc_eesz = size[1];
750 	sc->sc_ih = intrh;
751 	sc->sc_dmat = faa->faa_dmat;
752 	sc->sc_phandle = phandle;
753 	sc->sc_phy_id = phy_id;
754 	sc->sc_freq = ref_clk;
755 
756 	scx_attach_i(sc);
757 
758 	return;
759  fail:
760 	if (sc->sc_eesz)
761 		bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
762 	if (sc->sc_sz)
763 		bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
764 	return;
765 }
766 
767 static int
scx_acpi_match(device_t parent,cfdata_t cf,void * aux)768 scx_acpi_match(device_t parent, cfdata_t cf, void *aux)
769 {
770 	struct acpi_attach_args *aa = aux;
771 
772 	return acpi_compatible_match(aa, compatible);
773 }
774 
775 #define HWFEA_DEBUG 1
776 
777 static void
scx_acpi_attach(device_t parent,device_t self,void * aux)778 scx_acpi_attach(device_t parent, device_t self, void *aux)
779 {
780 	struct scx_softc * const sc = device_private(self);
781 	struct acpi_attach_args * const aa = aux;
782 	ACPI_HANDLE handle = aa->aa_node->ad_handle;
783 	bus_space_handle_t bsh, eebsh;
784 	struct acpi_resources res;
785 	struct acpi_mem *mem, *mem1;
786 	struct acpi_irq *irq;
787 	ACPI_INTEGER max_spd, max_frame, phy_id, phy_freq;
788 	ACPI_STATUS rv;
789 	void *intrh;
790 
791 	rv = acpi_resource_parse(self, handle, "_CRS",
792 	    &res, &acpi_resource_parse_ops_default);
793 	if (ACPI_FAILURE(rv))
794 		return;
795 	mem = acpi_res_mem(&res, 0);
796 	irq = acpi_res_irq(&res, 0);
797 	if (mem == NULL || irq == NULL || mem->ar_length == 0) {
798 		aprint_error(": incomplete crs resources\n");
799 		goto done;
800 	}
801 	if (bus_space_map(aa->aa_memt, mem->ar_base, mem->ar_length, 0,
802 	    &bsh) != 0) {
803 		aprint_error(": unable to map registers\n");
804 		goto done;
805 	}
806 	mem1 = acpi_res_mem(&res, 1); /* EEPROM for MAC address and ucode */
807 	if (mem1 == NULL || mem1->ar_length == 0) {
808 		aprint_error(": incomplete eeprom resources\n");
809 		goto fail_0;
810 	}
811 	if (bus_space_map(aa->aa_memt, mem1->ar_base, mem1->ar_length, 0,
812 	    &eebsh)) {
813 		aprint_error(": unable to map device eeprom\n");
814 		goto fail_0;
815 	}
816 	rv = acpi_dsd_integer(handle, "max-speed", &max_spd);
817 	if (ACPI_FAILURE(rv))
818 		max_spd = 1000;
819 	rv = acpi_dsd_integer(handle, "max-frame-size", &max_frame);
820 	if (ACPI_FAILURE(rv))
821 		max_frame = 2048;
822 	rv = acpi_dsd_integer(handle, "phy-channel", &phy_id);
823 	if (ACPI_FAILURE(rv))
824 		phy_id = MII_PHY_ANY;
825 	rv = acpi_dsd_integer(handle, "socionext,phy-clock-frequency",
826 			&phy_freq);
827 	if (ACPI_FAILURE(rv))
828 		phy_freq = 250 * 1000 * 1000;
829 
830 #if ATTACH_DEBUG == 1
831 aprint_normal_dev(self,
832     "[ACPI] max-speed %d, phy id %d, freq %ld\n",
833     (int)max_spd, (int)phy_id, phy_freq);
834 aprint_normal("%s", device_xname(self));
835 #endif
836 
837 	intrh = acpi_intr_establish(self, (uint64_t)(uintptr_t)handle,
838 	    IPL_NET, NOT_MP_SAFE, scx_intr, sc, device_xname(self));
839 	if (intrh == NULL) {
840 		aprint_error(": couldn't establish interrupt\n");
841 		goto fail_1;
842 	}
843 
844 	sc->sc_dev = self;
845 	sc->sc_st = aa->aa_memt;
846 	sc->sc_sh = bsh;
847 	sc->sc_sz = mem->ar_length;
848 	sc->sc_eesh = eebsh;
849 	sc->sc_eesz = mem1->ar_length;
850 	sc->sc_ih = intrh;
851 	sc->sc_dmat =
852 	    BUS_DMA_TAG_VALID(aa->aa_dmat64) ? aa->aa_dmat64 : aa->aa_dmat;
853 	sc->sc_phy_id = (int)phy_id;
854 	sc->sc_freq = phy_freq;
855 	sc->sc_maxsize = max_frame;
856 
857 	scx_attach_i(sc);
858  done:
859 	acpi_resource_cleanup(&res);
860 	return;
861  fail_1:
862 	bus_space_unmap(sc->sc_st, sc->sc_eesh, sc->sc_eesz);
863  fail_0:
864 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
865 	acpi_resource_cleanup(&res);
866 	return;
867 }
868 
869 static void
scx_attach_i(struct scx_softc * sc)870 scx_attach_i(struct scx_softc *sc)
871 {
872 	struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
873 	struct mii_data * const mii = &sc->sc_mii;
874 	struct ifmedia * const ifm = &mii->mii_media;
875 	uint32_t which, dwimp, dwfea;
876 	uint8_t enaddr[ETHER_ADDR_LEN];
877 	bus_dma_segment_t seg;
878 	paddr_t p, q;
879 	uint32_t csr;
880 	int i, nseg, error = 0;
881 
882 	which = CSR_READ(sc, HWVER);	/* Socionext version 5.xx */
883 	dwimp = mac_read(sc, GMACIMPL);	/* DWC implementation XX.YY */
884 	dwfea = mac_read(sc, HWFEA);	/* DWC feature bits */
885 
886 	aprint_naive("\n");
887 	aprint_normal(": Socionext NetSec Gigabit Ethernet controller "
888 	    "%x.%x\n", which >> 16, which & 0xffff);
889 
890 	aprint_normal_dev(sc->sc_dev,
891 	    "DesignWare EMAC ver 0x%x (0x%x) hw feature %08x\n",
892 	    dwimp & 0xff, dwimp >> 8, dwfea);
893 	dump_hwfeature(sc);
894 
895 	/* detected PHY type */
896 	sc->sc_miigmii = ((dwfea & __BITS(30,28) >> 28) == 0);
897 
898 	/* fetch MAC address in flash 0:7, stored in big endian order */
899 	csr = EE_READ(sc, 0x00);
900 	enaddr[0] = csr >> 24;
901 	enaddr[1] = csr >> 16;
902 	enaddr[2] = csr >> 8;
903 	enaddr[3] = csr;
904 	csr = EE_READ(sc, 0x04);
905 	enaddr[4] = csr >> 24;
906 	enaddr[5] = csr >> 16;
907 	aprint_normal_dev(sc->sc_dev,
908 	    "Ethernet address %s\n", ether_sprintf(enaddr));
909 
910 	sc->sc_mdclk = get_mdioclk(sc->sc_freq) << GAR_CLK; /* 5:2 clk ratio */
911 
912 	mii->mii_ifp = ifp;
913 	mii->mii_readreg = mii_readreg;
914 	mii->mii_writereg = mii_writereg;
915 	mii->mii_statchg = mii_statchg;
916 
917 	sc->sc_ethercom.ec_mii = mii;
918 	ifmedia_init(ifm, 0, ether_mediachange, scx_ifmedia_sts);
919 	mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id,
920 	    MII_OFFSET_ANY, MIIF_DOPAUSE);
921 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
922 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
923 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
924 	} else
925 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
926 	ifm->ifm_media = ifm->ifm_cur->ifm_media; /* as if user has requested */
927 
928 	/*
929 	 * Allocate the control data structures, and create and load the
930 	 * DMA map for it.
931 	 */
932 	error = bus_dmamem_alloc(sc->sc_dmat,
933 	    sizeof(struct control_data), PAGE_SIZE, 0, &seg, 1, &nseg, 0);
934 	if (error != 0) {
935 		aprint_error_dev(sc->sc_dev,
936 		    "unable to allocate control data, error = %d\n", error);
937 		goto fail_0;
938 	}
939 	error = bus_dmamem_map(sc->sc_dmat, &seg, nseg,
940 	    sizeof(struct control_data), (void **)&sc->sc_control_data,
941 	    BUS_DMA_COHERENT);
942 	if (error != 0) {
943 		aprint_error_dev(sc->sc_dev,
944 		    "unable to map control data, error = %d\n", error);
945 		goto fail_1;
946 	}
947 	error = bus_dmamap_create(sc->sc_dmat,
948 	    sizeof(struct control_data), 1,
949 	    sizeof(struct control_data), 0, 0, &sc->sc_cddmamap);
950 	if (error != 0) {
951 		aprint_error_dev(sc->sc_dev,
952 		    "unable to create control data DMA map, "
953 		    "error = %d\n", error);
954 		goto fail_2;
955 	}
956 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
957 	    sc->sc_control_data, sizeof(struct control_data), NULL, 0);
958 	if (error != 0) {
959 		aprint_error_dev(sc->sc_dev,
960 		    "unable to load control data DMA map, error = %d\n",
961 		    error);
962 		goto fail_3;
963 	}
964 	for (i = 0; i < MD_TXQUEUELEN; i++) {
965 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
966 		    MD_NTXSEGS, MCLBYTES, 0, 0,
967 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
968 			aprint_error_dev(sc->sc_dev,
969 			    "unable to create tx DMA map %d, error = %d\n",
970 			    i, error);
971 			goto fail_4;
972 		}
973 	}
974 	for (i = 0; i < MD_NRXDESC; i++) {
975 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
976 		    1, MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
977 			aprint_error_dev(sc->sc_dev,
978 			    "unable to create rx DMA map %d, error = %d\n",
979 			    i, error);
980 			goto fail_5;
981 		}
982 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
983 	}
984 	sc->sc_seg = seg;
985 	sc->sc_nseg = nseg;
986 #if 0
987 aprint_normal_dev(sc->sc_dev, "descriptor ds_addr %lx, ds_len %lx, nseg %d\n", seg.ds_addr, seg.ds_len, nseg);
988 #endif
989 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
990 	ifp->if_softc = sc;
991 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
992 	ifp->if_ioctl = scx_ioctl;
993 	ifp->if_start = scx_start;
994 	ifp->if_watchdog = scx_watchdog;
995 	ifp->if_init = scx_init;
996 	ifp->if_stop = scx_stop;
997 	IFQ_SET_READY(&ifp->if_snd);
998 
999 	/* 802.1Q VLAN-sized frames, and 9000 jumbo frame are supported */
1000 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
1001 	/* sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU; not yet */
1002 
1003 	sc->sc_flowflags = 0; /* track PAUSE flow caps */
1004 
1005 	if_attach(ifp);
1006 	if_deferred_start_init(ifp, NULL);
1007 	ether_ifattach(ifp, enaddr);
1008 
1009 	callout_init(&sc->sc_callout, 0);
1010 	callout_setfunc(&sc->sc_callout, phy_tick, sc);
1011 
1012 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
1013 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
1014 
1015 	resetuengine(sc);
1016 	loaducode(sc);
1017 
1018 	/* feed NetSec descriptor array base addresses and timer value */
1019 	p = SCX_CDTXADDR(sc, 0);		/* tdes array (ring#0) */
1020 	q = SCX_CDRXADDR(sc, 0);		/* rdes array (ring#1) */
1021 	CSR_WRITE(sc, TDBA_LO, BUS_ADDR_LO32(p));
1022 	CSR_WRITE(sc, TDBA_HI, BUS_ADDR_HI32(p));
1023 	CSR_WRITE(sc, RDBA_LO, BUS_ADDR_LO32(q));
1024 	CSR_WRITE(sc, RDBA_HI, BUS_ADDR_HI32(q));
1025 	CSR_WRITE(sc, TXCONF, DESCNF_LE);	/* little endian */
1026 	CSR_WRITE(sc, RXCONF, DESCNF_LE);	/* little endian */
1027 	CSR_WRITE(sc, DMACTL_TMR, sc->sc_freq / 1000000 - 1);
1028 
1029 	forcephyloopback(sc);/* make PHY loopback mode for uengine init */
1030 
1031 	CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* pre-cautional W1C */
1032 	CSR_WRITE(sc, CORESTAT, 0);	  /* start uengine to reprogram */
1033 	error = WAIT_FOR_SET(sc, xINTSR, IRQ_UCODE);
1034 	if (error) {
1035 		aprint_error_dev(sc->sc_dev, "uengine start failed\n");
1036 	}
1037 	CSR_WRITE(sc, xINTSR, IRQ_UCODE); /* W1C load complete report */
1038 
1039 	resetphytonormal(sc); /* take back PHY to normal mode */
1040 
1041 	CSR_WRITE(sc, DMACTL_M2H, M2H_MODE_TRANS);
1042 	CSR_WRITE(sc, PKTCTRL, MODENRM); /* change to use normal mode */
1043 	error = WAIT_FOR_SET(sc, MODE_TRANS, T2N_DONE);
1044 	if (error) {
1045 		aprint_error_dev(sc->sc_dev, "uengine mode change failed\n");
1046 	}
1047 
1048 	CSR_WRITE(sc, TXISR, ~0);	/* clear pending emtpry/error irq */
1049 	CSR_WRITE(sc, xINTAE_CLR, ~0);	/* disable tx / rx interrupts */
1050 
1051 	return;
1052 
1053   fail_5:
1054 	for (i = 0; i < MD_NRXDESC; i++) {
1055 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1056 			bus_dmamap_destroy(sc->sc_dmat,
1057 			    sc->sc_rxsoft[i].rxs_dmamap);
1058 	}
1059   fail_4:
1060 	for (i = 0; i < MD_TXQUEUELEN; i++) {
1061 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
1062 			bus_dmamap_destroy(sc->sc_dmat,
1063 			    sc->sc_txsoft[i].txs_dmamap);
1064 	}
1065 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1066   fail_3:
1067 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1068   fail_2:
1069 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1070 	    sizeof(struct control_data));
1071   fail_1:
1072 	bus_dmamem_free(sc->sc_dmat, &seg, nseg);
1073   fail_0:
1074 	if (sc->sc_phandle)
1075 		fdtbus_intr_disestablish(sc->sc_phandle, sc->sc_ih);
1076 	else
1077 		acpi_intr_disestablish(sc->sc_ih);
1078 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
1079 	return;
1080 }
1081 
1082 static void
scx_reset(struct scx_softc * sc)1083 scx_reset(struct scx_softc *sc)
1084 {
1085 	int loop = 0, busy;
1086 
1087 	mac_write(sc, GMACOMR, 0);
1088 	mac_write(sc, GMACBMR, BMR_RST);
1089 	do {
1090 		DELAY(1);
1091 		busy = mac_read(sc, GMACBMR) & BMR_RST;
1092 	} while (++loop < 3000 && busy);
1093 	mac_write(sc, GMACBMR, _BMR);
1094 	mac_write(sc, GMACAFR, 0);
1095 }
1096 
1097 static void
scx_stop(struct ifnet * ifp,int disable)1098 scx_stop(struct ifnet *ifp, int disable)
1099 {
1100 	struct scx_softc *sc = ifp->if_softc;
1101 	uint32_t csr;
1102 
1103 	/* Stop the one second clock. */
1104 	callout_stop(&sc->sc_callout);
1105 
1106 	/* Down the MII. */
1107 	mii_down(&sc->sc_mii);
1108 
1109 	/* Mark the interface down and cancel the watchdog timer. */
1110 	ifp->if_flags &= ~IFF_RUNNING;
1111 	ifp->if_timer = 0;
1112 
1113 	CSR_WRITE(sc, RXIE_CLR, ~0);
1114 	CSR_WRITE(sc, TXIE_CLR, ~0);
1115 	CSR_WRITE(sc, xINTAE_CLR, ~0);
1116 	CSR_WRITE(sc, TXISR, ~0);
1117 	CSR_WRITE(sc, RXISR, ~0);
1118 
1119 	csr = mac_read(sc, GMACOMR);
1120 	mac_write(sc, GMACOMR, csr &~ (OMR_SR | OMR_ST));
1121 }
1122 
1123 static int
scx_init(struct ifnet * ifp)1124 scx_init(struct ifnet *ifp)
1125 {
1126 	struct scx_softc *sc = ifp->if_softc;
1127 	const uint8_t *ea = CLLADDR(ifp->if_sadl);
1128 	uint32_t csr;
1129 	int i, error;
1130 
1131 	/* Cancel pending I/O. */
1132 	scx_stop(ifp, 0);
1133 
1134 	/* Reset the chip to a known state. */
1135 	scx_reset(sc);
1136 
1137 	/* build sane Tx */
1138 	memset(sc->sc_txdescs, 0, sizeof(struct tdes) * MD_NTXDESC);
1139 	sc->sc_txdescs[MD_NTXDESC - 1].t0 = htole32(T0_LD); /* tie off */
1140 	SCX_CDTXSYNC(sc, 0, MD_NTXDESC,
1141 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1142 	sc->sc_txfree = MD_NTXDESC;
1143 	sc->sc_txnext = 0;
1144 	for (i = 0; i < MD_TXQUEUELEN; i++)
1145 		sc->sc_txsoft[i].txs_mbuf = NULL;
1146 	sc->sc_txsfree = MD_TXQUEUELEN;
1147 	sc->sc_txsnext = 0;
1148 	sc->sc_txsdirty = 0;
1149 
1150 	/* load Rx descriptors with fresh mbuf */
1151 	for (i = 0; i < MD_NRXDESC; i++) {
1152 		if (sc->sc_rxsoft[i].rxs_mbuf == NULL) {
1153 			if ((error = add_rxbuf(sc, i)) != 0) {
1154 				aprint_error_dev(sc->sc_dev,
1155 				    "unable to allocate or map rx "
1156 				    "buffer %d, error = %d\n",
1157 				    i, error);
1158 				rxdrain(sc);
1159 				goto out;
1160 			}
1161 		}
1162 		else
1163 			SCX_INIT_RXDESC(sc, i);
1164 	}
1165 	sc->sc_rxdescs[MD_NRXDESC - 1].r0 = htole32(R0_LD); /* tie off */
1166 	sc->sc_rxptr = 0;
1167 
1168 	/* set my address in perfect match slot 0. little endian order */
1169 	csr = (ea[3] << 24) | (ea[2] << 16) | (ea[1] << 8) |  ea[0];
1170 	mac_write(sc, GMACMAL0, csr);
1171 	csr = (ea[5] << 8) | ea[4];
1172 	mac_write(sc, GMACMAH0, csr);
1173 
1174 	/* accept multicast frame or run promisc mode */
1175 	scx_set_rcvfilt(sc);
1176 
1177 	/* set current media */
1178 	if ((error = ether_mediachange(ifp)) != 0)
1179 		goto out;
1180 
1181 	CSR_WRITE(sc, DESC_SRST, 01);
1182 	WAIT_FOR_CLR(sc, DESC_SRST, 01);
1183 
1184 	CSR_WRITE(sc, DESC_INIT, 01);
1185 	WAIT_FOR_CLR(sc, DESC_INIT, 01);
1186 
1187 	/* feed local memory descriptor array base addresses */
1188 	mac_write(sc, GMACRDLA, _RDLA);		/* GMAC rdes store */
1189 	mac_write(sc, GMACTDLA, _TDLA);		/* GMAC tdes store */
1190 
1191 	CSR_WRITE(sc, FLOWTHR, (48<<16) | 36);	/* pause|resume threshold */
1192 	mac_write(sc, GMACFCR, 256 << 16);	/* 31:16 pause value */
1193 
1194 	CSR_WRITE(sc, INTF_SEL, sc->sc_miigmii ? INTF_GMII : INTF_RGMII);
1195 
1196 	CSR_WRITE(sc, RXCOALESC, 8);		/* Rx coalesce bound */
1197 	CSR_WRITE(sc, TXCOALESC, 8);		/* Tx coalesce bound */
1198 	CSR_WRITE(sc, RCLSCTIME, 500);		/* Rx co. guard time usec */
1199 	CSR_WRITE(sc, TCLSCTIME, 500);		/* Tx co. guard time usec */
1200 
1201 	CSR_WRITE(sc, RXIE_SET, RXI_RC_ERR | RXI_PKTCNT | RXI_TMREXP);
1202 	CSR_WRITE(sc, TXIE_SET, TXI_TR_ERR | TXI_TXDONE | TXI_TMREXP);
1203 	CSR_WRITE(sc, xINTAE_SET, IRQ_RX | IRQ_TX);
1204 #if 1
1205 	/* clear event counters, auto-zero after every read */
1206 	mac_write(sc, GMACEVCTL, EVC_CR | EVC_ROR);
1207 #endif
1208 	/* kick to start GMAC engine */
1209 	csr = mac_read(sc, GMACOMR);
1210 	mac_write(sc, GMACOMR, csr | OMR_SR | OMR_ST);
1211 
1212 	ifp->if_flags |= IFF_RUNNING;
1213 
1214 	/* start one second timer */
1215 	callout_schedule(&sc->sc_callout, hz);
1216  out:
1217 	return error;
1218 }
1219 
1220 static int
scx_ioctl(struct ifnet * ifp,u_long cmd,void * data)1221 scx_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1222 {
1223 	struct scx_softc *sc = ifp->if_softc;
1224 	struct ifreq *ifr = (struct ifreq *)data;
1225 	struct ifmedia *ifm = &sc->sc_mii.mii_media;
1226 	int s, error;
1227 
1228 	s = splnet();
1229 
1230 	switch (cmd) {
1231 	case SIOCSIFMEDIA:
1232 		/* Flow control requires full-duplex mode. */
1233 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1234 		    (ifr->ifr_media & IFM_FDX) == 0)
1235 			ifr->ifr_media &= ~IFM_ETH_FMASK;
1236 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1237 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1238 				/* We can do both TXPAUSE and RXPAUSE. */
1239 				ifr->ifr_media |=
1240 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1241 			}
1242 			sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1243 		}
1244 		error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
1245 		break;
1246 	default:
1247 		error = ether_ioctl(ifp, cmd, data);
1248 		if (error != ENETRESET)
1249 			break;
1250 		error = 0;
1251 		if (cmd == SIOCSIFCAP)
1252 			error = if_init(ifp);
1253 		if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1254 			;
1255 		else if (ifp->if_flags & IFF_RUNNING) {
1256 			/*
1257 			 * Multicast list has changed; set the hardware filter
1258 			 * accordingly.
1259 			 */
1260 			scx_set_rcvfilt(sc);
1261 		}
1262 		break;
1263 	}
1264 
1265 	splx(s);
1266 	return error;
1267 }
1268 
1269 static uint32_t
bit_reverse_32(uint32_t x)1270 bit_reverse_32(uint32_t x)
1271 {
1272 	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
1273 	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
1274 	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
1275 	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
1276 	return (x >> 16) | (x << 16);
1277 }
1278 
1279 #define MCAST_DEBUG 0
1280 
1281 static void
scx_set_rcvfilt(struct scx_softc * sc)1282 scx_set_rcvfilt(struct scx_softc *sc)
1283 {
1284 	struct ethercom * const ec = &sc->sc_ethercom;
1285 	struct ifnet * const ifp = &ec->ec_if;
1286 	struct ether_multistep step;
1287 	struct ether_multi *enm;
1288 	uint32_t mchash[2]; 	/* 2x 32 = 64 bit */
1289 	uint32_t csr, crc;
1290 	int i;
1291 
1292 	csr = mac_read(sc, GMACAFR);
1293 	csr &= ~(AFR_PR | AFR_PM | AFR_MHTE | AFR_HPF);
1294 	mac_write(sc, GMACAFR, csr);
1295 
1296 	/* clear 15 entry supplemental perfect match filter */
1297 	for (i = 1; i < 16; i++)
1298 		 mac_write(sc, GMACMAH(i), 0);
1299 	/* build 64 bit multicast hash filter */
1300 	crc = mchash[1] = mchash[0] = 0;
1301 
1302 	ETHER_LOCK(ec);
1303 	if (ifp->if_flags & IFF_PROMISC) {
1304 		ec->ec_flags |= ETHER_F_ALLMULTI;
1305 		ETHER_UNLOCK(ec);
1306 		/* run promisc. mode */
1307 		csr |= AFR_PR;
1308 		goto update;
1309 	}
1310 	ec->ec_flags &= ~ETHER_F_ALLMULTI;
1311 	ETHER_FIRST_MULTI(step, ec, enm);
1312 	i = 1; /* slot 0 is occupied */
1313 	while (enm != NULL) {
1314 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1315 			/*
1316 			 * We must listen to a range of multicast addresses.
1317 			 * For now, just accept all multicasts, rather than
1318 			 * trying to set only those filter bits needed to match
1319 			 * the range.  (At this time, the only use of address
1320 			 * ranges is for IP multicast routing, for which the
1321 			 * range is big enough to require all bits set.)
1322 			 */
1323 			ec->ec_flags |= ETHER_F_ALLMULTI;
1324 			ETHER_UNLOCK(ec);
1325 			/* accept all multi */
1326 			csr |= AFR_PM;
1327 			goto update;
1328 		}
1329 #if MCAST_DEBUG == 1
1330 aprint_normal_dev(sc->sc_dev, "[%d] %s\n", i, ether_sprintf(enm->enm_addrlo));
1331 #endif
1332 		if (i < 16) {
1333 			/* use 15 entry perfect match filter */
1334 			uint32_t addr;
1335 			uint8_t *ep = enm->enm_addrlo;
1336 			addr = (ep[3] << 24) | (ep[2] << 16)
1337 			     | (ep[1] <<  8) |  ep[0];
1338 			mac_write(sc, GMACMAL(i), addr);
1339 			addr = (ep[5] << 8) | ep[4];
1340 			mac_write(sc, GMACMAH(i), addr | 1U<<31);
1341 		} else {
1342 			/* use hash table when too many */
1343 			crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1344 			crc = bit_reverse_32(~crc);
1345 			/* 1(31) 5(30:26) bit sampling */
1346 			mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
1347 		}
1348 		ETHER_NEXT_MULTI(step, enm);
1349 		i++;
1350 	}
1351 	ETHER_UNLOCK(ec);
1352 	if (crc)
1353 		csr |= AFR_MHTE; /* use mchash[] */
1354 	csr |= AFR_HPF; /* use perfect match as well */
1355  update:
1356 	mac_write(sc, GMACMHTH, mchash[1]);
1357 	mac_write(sc, GMACMHTL, mchash[0]);
1358 	mac_write(sc, GMACAFR, csr);
1359 	return;
1360 }
1361 
1362 static void
scx_start(struct ifnet * ifp)1363 scx_start(struct ifnet *ifp)
1364 {
1365 	struct scx_softc *sc = ifp->if_softc;
1366 	struct mbuf *m0;
1367 	struct scx_txsoft *txs;
1368 	bus_dmamap_t dmamap;
1369 	int error, nexttx, lasttx, ofree, seg;
1370 	uint32_t tdes0;
1371 
1372 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1373 		return;
1374 
1375 	/* Remember the previous number of free descriptors. */
1376 	ofree = sc->sc_txfree;
1377 	/*
1378 	 * Loop through the send queue, setting up transmit descriptors
1379 	 * until we drain the queue, or use up all available transmit
1380 	 * descriptors.
1381 	 */
1382 	for (;;) {
1383 		IFQ_POLL(&ifp->if_snd, m0);
1384 		if (m0 == NULL)
1385 			break;
1386 		if (sc->sc_txsfree < MD_TXQUEUE_GC) {
1387 			txreap(sc);
1388 			if (sc->sc_txsfree == 0)
1389 				break;
1390 		}
1391 		txs = &sc->sc_txsoft[sc->sc_txsnext];
1392 		dmamap = txs->txs_dmamap;
1393 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1394 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1395 		if (error) {
1396 			if (error == EFBIG) {
1397 				aprint_error_dev(sc->sc_dev,
1398 				    "Tx packet consumes too many "
1399 				    "DMA segments, dropping...\n");
1400 				IFQ_DEQUEUE(&ifp->if_snd, m0);
1401 				m_freem(m0);
1402 				if_statinc(ifp, if_oerrors);
1403 				continue;
1404 			}
1405 			/* Short on resources, just stop for now. */
1406 			break;
1407 		}
1408 		if (dmamap->dm_nsegs > sc->sc_txfree) {
1409 			/*
1410 			 * Not enough free descriptors to transmit this
1411 			 * packet.  We haven't committed anything yet,
1412 			 * so just unload the DMA map, put the packet
1413 			 * back on the queue, and punt.
1414 			 */
1415 			bus_dmamap_unload(sc->sc_dmat, dmamap);
1416 			break;
1417 		}
1418 
1419 		IFQ_DEQUEUE(&ifp->if_snd, m0);
1420 		/*
1421 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1422 		 */
1423 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1424 		    BUS_DMASYNC_PREWRITE);
1425 
1426 		tdes0 = 0; /* to postpone 1st segment T0_OWN write */
1427 		lasttx = -1;
1428 		for (nexttx = sc->sc_txnext, seg = 0;
1429 		     seg < dmamap->dm_nsegs;
1430 		     seg++, nexttx = MD_NEXTTX(nexttx)) {
1431 			struct tdes *tdes = &sc->sc_txdescs[nexttx];
1432 			bus_addr_t p = dmamap->dm_segs[seg].ds_addr;
1433 			bus_size_t z = dmamap->dm_segs[seg].ds_len;
1434 			/*
1435 			 * If this is the first descriptor we're
1436 			 * enqueueing, don't set the OWN bit just
1437 			 * yet.	 That could cause a race condition.
1438 			 * We'll do it below.
1439 			 */
1440 			tdes->t3 = htole32(z);
1441 			tdes->t2 = htole32(BUS_ADDR_LO32(p));
1442 			tdes->t1 = htole32(BUS_ADDR_HI32(p));
1443 			tdes->t0 &= htole32(T0_LD);
1444 			tdes->t0 |= htole32(tdes0 |
1445 					(15 << T0_TDRID) | T0_PT |
1446 					sc->sc_t0cotso | T0_TRS);
1447 			tdes0 = T0_OWN; /* 2nd and other segments */
1448 			/* NB; t0 DRID field contains zero */
1449 			lasttx = nexttx;
1450 		}
1451 
1452 		/* HW lacks of per-frame xmit done interrupt control */
1453 
1454 		/* Write deferred 1st segment T0_OWN at the final stage */
1455 		sc->sc_txdescs[lasttx].t0 |= htole32(T0_LS);
1456 		sc->sc_txdescs[sc->sc_txnext].t0 |= htole32(T0_FS | T0_OWN);
1457 		SCX_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1458 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1459 
1460 		/* submit one frame to xmit */
1461 		CSR_WRITE(sc, TXSUBMIT, 1);
1462 
1463 		txs->txs_mbuf = m0;
1464 		txs->txs_firstdesc = sc->sc_txnext;
1465 		txs->txs_lastdesc = lasttx;
1466 		txs->txs_ndesc = dmamap->dm_nsegs;
1467 		sc->sc_txfree -= txs->txs_ndesc;
1468 		sc->sc_txnext = nexttx;
1469 		sc->sc_txsfree--;
1470 		sc->sc_txsnext = MD_NEXTTXS(sc->sc_txsnext);
1471 		/*
1472 		 * Pass the packet to any BPF listeners.
1473 		 */
1474 		bpf_mtap(ifp, m0, BPF_D_OUT);
1475 	}
1476 	if (sc->sc_txfree != ofree) {
1477 		/* Set a watchdog timer in case the chip flakes out. */
1478 		ifp->if_timer = 5;
1479 	}
1480 }
1481 
1482 #define EVENT_DEBUG 1
1483 
1484 static void
scx_watchdog(struct ifnet * ifp)1485 scx_watchdog(struct ifnet *ifp)
1486 {
1487 	struct scx_softc *sc = ifp->if_softc;
1488 
1489 	/*
1490 	 * Since we're not interrupting every packet, sweep
1491 	 * up before we report an error.
1492 	 */
1493 	txreap(sc);
1494 
1495 	if (sc->sc_txfree != MD_NTXDESC) {
1496 		aprint_error_dev(sc->sc_dev,
1497 		    "device timeout (txfree %d txsfree %d txnext %d)\n",
1498 		    sc->sc_txfree, sc->sc_txsfree, sc->sc_txnext);
1499 		if_statinc(ifp, if_oerrors);
1500 #if EVENT_DEBUG == 1
1501 aprint_error_dev(sc->sc_dev,
1502     "tx frames %d, octects %d, bcast %d, mcast %d\n",
1503     mac_read(sc, GMACEVCNT(1)),
1504     mac_read(sc, GMACEVCNT(0)),
1505     mac_read(sc, GMACEVCNT(2)),
1506     mac_read(sc, GMACEVCNT(3)));
1507 aprint_error_dev(sc->sc_dev,
1508     "rx frames %d, octects %d, bcast %d, mcast %d\n",
1509     mac_read(sc, GMACEVCNT(27)),
1510     mac_read(sc, GMACEVCNT(28)),
1511     mac_read(sc, GMACEVCNT(30)),
1512     mac_read(sc, GMACEVCNT(31)));
1513 aprint_error_dev(sc->sc_dev,
1514     "current tdes addr %x, buf addr %x\n",
1515     mac_read(sc, 0x1048), mac_read(sc, 0x1050));
1516 aprint_error_dev(sc->sc_dev,
1517     "current rdes addr %x, buf addr %x\n",
1518     mac_read(sc, 0x104c), mac_read(sc, 0x1054));
1519 #endif
1520 		/* Reset the interface. */
1521 		scx_init(ifp);
1522 	}
1523 
1524 	scx_start(ifp);
1525 }
1526 
1527 static int
scx_intr(void * arg)1528 scx_intr(void *arg)
1529 {
1530 	struct scx_softc *sc = arg;
1531 	uint32_t enable, status;
1532 
1533 	status = CSR_READ(sc, xINTSR); /* not W1C */
1534 	enable = CSR_READ(sc, xINTAEN);
1535 	if ((status & enable) == 0)
1536 		return 0;
1537 	if (status & (IRQ_TX | IRQ_RX)) {
1538 		CSR_WRITE(sc, xINTAE_CLR, (IRQ_TX | IRQ_RX));
1539 
1540 		status = CSR_READ(sc, RXISR);
1541 		CSR_WRITE(sc, RXISR, status);
1542 		if (status & RXI_RC_ERR)
1543 			aprint_error_dev(sc->sc_dev, "Rx error\n");
1544 		if (status & (RXI_PKTCNT | RXI_TMREXP)) {
1545 			rxfill(sc);
1546 			(void)CSR_READ(sc, RXAVAILCNT); /* clear IRQ_RX ? */
1547 		}
1548 
1549 		status = CSR_READ(sc, TXISR);
1550 		CSR_WRITE(sc, TXISR, status);
1551 		if (status & TXI_TR_ERR)
1552 			aprint_error_dev(sc->sc_dev, "Tx error\n");
1553 		if (status & (TXI_TXDONE | TXI_TMREXP)) {
1554 			txreap(sc);
1555 			(void)CSR_READ(sc, TXDONECNT); /* clear IRQ_TX ? */
1556 		}
1557 
1558 		CSR_WRITE(sc, xINTAE_SET, (IRQ_TX | IRQ_RX));
1559 	}
1560 	return 1;
1561 }
1562 
1563 static void
txreap(struct scx_softc * sc)1564 txreap(struct scx_softc *sc)
1565 {
1566 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1567 	struct scx_txsoft *txs;
1568 	uint32_t txstat;
1569 	int i;
1570 
1571 	for (i = sc->sc_txsdirty; sc->sc_txsfree != MD_TXQUEUELEN;
1572 	     i = MD_NEXTTXS(i), sc->sc_txsfree++) {
1573 		txs = &sc->sc_txsoft[i];
1574 
1575 		SCX_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndesc,
1576 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1577 
1578 		txstat = le32toh(sc->sc_txdescs[txs->txs_lastdesc].t0);
1579 		if (txstat & T0_OWN) /* desc is still in use */
1580 			break;
1581 
1582 		/* There is no way to tell transmission status per frame */
1583 
1584 		if_statinc(ifp, if_opackets);
1585 
1586 		sc->sc_txfree += txs->txs_ndesc;
1587 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1588 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1589 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1590 		m_freem(txs->txs_mbuf);
1591 		txs->txs_mbuf = NULL;
1592 	}
1593 	sc->sc_txsdirty = i;
1594 	if (sc->sc_txsfree == MD_TXQUEUELEN)
1595 		ifp->if_timer = 0;
1596 }
1597 
1598 static void
rxfill(struct scx_softc * sc)1599 rxfill(struct scx_softc *sc)
1600 {
1601 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1602 	struct scx_rxsoft *rxs;
1603 	struct mbuf *m;
1604 	uint32_t rxstat, rlen;
1605 	int i;
1606 
1607 	for (i = sc->sc_rxptr; /*CONSTCOND*/ 1; i = MD_NEXTRX(i)) {
1608 		SCX_CDRXSYNC(sc, i,
1609 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1610 
1611 		rxstat = le32toh(sc->sc_rxdescs[i].r0);
1612 		if (rxstat & R0_OWN) /* desc is left empty */
1613 			break;
1614 
1615 		/* received frame length in R3 31:16 */
1616 		rlen = le32toh(sc->sc_rxdescs[i].r3) >> 16;
1617 
1618 		/* R0_FS | R0_LS must have been marked for this desc */
1619 		rxs = &sc->sc_rxsoft[i];
1620 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1621 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1622 
1623 		/* dispense new storage to receive frame */
1624 		m = rxs->rxs_mbuf;
1625 		if (add_rxbuf(sc, i) != 0) {
1626 			if_statinc(ifp, if_ierrors);	/* resource shortage */
1627 			SCX_INIT_RXDESC(sc, i);		/* then reuse */
1628 			bus_dmamap_sync(sc->sc_dmat,
1629 			    rxs->rxs_dmamap, 0,
1630 			    rxs->rxs_dmamap->dm_mapsize,
1631 			    BUS_DMASYNC_PREREAD);
1632 			continue;
1633 		}
1634 		/* complete mbuf */
1635 		m_set_rcvif(m, ifp);
1636 		m->m_pkthdr.len = m->m_len = rlen;
1637 		m->m_flags |= M_HASFCS;
1638 		if (rxstat & R0_CSUM) {
1639 			uint32_t csum = M_CSUM_IPv4;
1640 			if (rxstat & R0_CERR)
1641 				csum |= M_CSUM_IPv4_BAD;
1642 			m->m_pkthdr.csum_flags |= csum;
1643 		}
1644 		/* and pass to upper layer */
1645 		if_percpuq_enqueue(ifp->if_percpuq, m);
1646 	}
1647 	sc->sc_rxptr = i;
1648 }
1649 
1650 static int
add_rxbuf(struct scx_softc * sc,int i)1651 add_rxbuf(struct scx_softc *sc, int i)
1652 {
1653 	struct scx_rxsoft *rxs = &sc->sc_rxsoft[i];
1654 	struct mbuf *m;
1655 	int error;
1656 
1657 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1658 	if (m == NULL)
1659 		return ENOBUFS;
1660 	MCLGET(m, M_DONTWAIT);
1661 	if ((m->m_flags & M_EXT) == 0) {
1662 		m_freem(m);
1663 		return ENOBUFS;
1664 	}
1665 	if (rxs->rxs_mbuf != NULL)
1666 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1667 	rxs->rxs_mbuf = m;
1668 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
1669 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
1670 	if (error) {
1671 		aprint_error_dev(sc->sc_dev,
1672 		    "can't load rx DMA map %d, error = %d\n", i, error);
1673 		panic("add_rxbuf");
1674 	}
1675 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1676 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1677 	SCX_INIT_RXDESC(sc, i);
1678 
1679 	return 0;
1680 }
1681 
1682 static void
rxdrain(struct scx_softc * sc)1683 rxdrain(struct scx_softc *sc)
1684 {
1685 	struct scx_rxsoft *rxs;
1686 	int i;
1687 
1688 	for (i = 0; i < MD_NRXDESC; i++) {
1689 		rxs = &sc->sc_rxsoft[i];
1690 		if (rxs->rxs_mbuf != NULL) {
1691 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1692 			m_freem(rxs->rxs_mbuf);
1693 			rxs->rxs_mbuf = NULL;
1694 		}
1695 	}
1696 }
1697 
1698 #define LINK_DEBUG 0
1699 
1700 static void
mii_statchg(struct ifnet * ifp)1701 mii_statchg(struct ifnet *ifp)
1702 {
1703 	struct scx_softc *sc = ifp->if_softc;
1704 	struct mii_data *mii = &sc->sc_mii;
1705 	const int Mbps[4] = { 10, 100, 1000, 0 };
1706 	uint32_t miisr, mcr, fcr;
1707 	int spd;
1708 
1709 	/* decode MIISR register value */
1710 	miisr = mac_read(sc, GMACMIISR);
1711 	spd = Mbps[(miisr & MIISR_SPD) >> 1];
1712 #if LINK_DEBUG == 1
1713 	static uint32_t oldmiisr = 0;
1714 	if (miisr != oldmiisr) {
1715 		printf("MII link status (0x%x) %s",
1716 		    miisr, (miisr & MIISR_LUP) ? "up" : "down");
1717 		if (miisr & MIISR_LUP) {
1718 			printf(" spd%d", spd);
1719 			if (miisr & MIISR_FDX)
1720 				printf(",full-duplex");
1721 		}
1722 		printf("\n");
1723 	}
1724 #endif
1725 	/* Get flow control negotiation result. */
1726 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1727 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags)
1728 		sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1729 
1730 	/* Adjust speed 1000/100/10. */
1731 	mcr = mac_read(sc, GMACMCR) &~ (MCR_PS | MCR_FES);
1732 	if (sc->sc_miigmii) {
1733 		if (spd != 1000)
1734 			mcr |= MCR_PS;
1735 	} else {
1736 		if (spd == 100)
1737 			mcr |= MCR_FES;
1738 	}
1739 	mcr |= MCR_CST | MCR_JE;
1740 	if (sc->sc_miigmii == 0)
1741 		mcr |= MCR_IBN;
1742 
1743 	/* Adjust duplexity and PAUSE flow control. */
1744 	mcr &= ~MCR_USEFDX;
1745 	fcr = mac_read(sc, GMACFCR) & ~(FCR_TFE | FCR_RFE);
1746 	if (miisr & MIISR_FDX) {
1747 		if (sc->sc_flowflags & IFM_ETH_TXPAUSE)
1748 			fcr |= FCR_TFE;
1749 		if (sc->sc_flowflags & IFM_ETH_RXPAUSE)
1750 			fcr |= FCR_RFE;
1751 		mcr |= MCR_USEFDX;
1752 	}
1753 	mac_write(sc, GMACMCR, mcr);
1754 	mac_write(sc, GMACFCR, fcr);
1755 #if LINK_DEBUG == 1
1756 	if (miisr != oldmiisr) {
1757 		printf("%ctxfe, %crxfe\n",
1758 		    (fcr & FCR_TFE) ? '+' : '-',
1759 		    (fcr & FCR_RFE) ? '+' : '-');
1760 	}
1761 	oldmiisr = miisr;
1762 #endif
1763 }
1764 
1765 static void
scx_ifmedia_sts(struct ifnet * ifp,struct ifmediareq * ifmr)1766 scx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1767 {
1768 	struct scx_softc *sc = ifp->if_softc;
1769 	struct mii_data *mii = &sc->sc_mii;
1770 
1771 	mii_pollstat(mii);
1772 	ifmr->ifm_status = mii->mii_media_status;
1773 	ifmr->ifm_active = sc->sc_flowflags |
1774 	    (mii->mii_media_active & ~IFM_ETH_FMASK);
1775 }
1776 
1777 static int
mii_readreg(device_t self,int phy,int reg,uint16_t * val)1778 mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1779 {
1780 	struct scx_softc *sc = device_private(self);
1781 	uint32_t miia;
1782 	int ntries;
1783 
1784 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1785 	mac_write(sc, GMACGAR, miia | GAR_BUSY);
1786 	for (ntries = 0; ntries < 1000; ntries++) {
1787 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1788 			goto unbusy;
1789 		DELAY(1);
1790 	}
1791 	return ETIMEDOUT;
1792  unbusy:
1793 	*val = mac_read(sc, GMACGDR);
1794 	return 0;
1795 }
1796 
1797 static int
mii_writereg(device_t self,int phy,int reg,uint16_t val)1798 mii_writereg(device_t self, int phy, int reg, uint16_t val)
1799 {
1800 	struct scx_softc *sc = device_private(self);
1801 	uint32_t miia;
1802 	uint16_t dummy;
1803 	int ntries;
1804 
1805 	miia = (phy << GAR_PHY) | (reg << GAR_REG) | sc->sc_mdclk;
1806 	mac_write(sc, GMACGDR, val);
1807 	mac_write(sc, GMACGAR, miia | GAR_IOWR | GAR_BUSY);
1808 	for (ntries = 0; ntries < 1000; ntries++) {
1809 		if ((mac_read(sc, GMACGAR) & GAR_BUSY) == 0)
1810 			goto unbusy;
1811 		DELAY(1);
1812 	}
1813 	return ETIMEDOUT;
1814   unbusy:
1815 	mii_readreg(self, phy, MII_PHYIDR1, &dummy); /* dummy read cycle */
1816 	return 0;
1817 }
1818 
1819 static void
phy_tick(void * arg)1820 phy_tick(void *arg)
1821 {
1822 	struct scx_softc *sc = arg;
1823 	struct mii_data *mii = &sc->sc_mii;
1824 	int s;
1825 
1826 	s = splnet();
1827 	mii_tick(mii);
1828 	splx(s);
1829 #ifdef GMAC_EVENT_COUNTERS
1830 	/* 80 event counters exist */
1831 #endif
1832 	callout_schedule(&sc->sc_callout, hz);
1833 }
1834 
1835 static void
resetuengine(struct scx_softc * sc)1836 resetuengine(struct scx_softc *sc)
1837 {
1838 
1839 	if (CSR_READ(sc, CORESTAT) == 0) {
1840 		/* make sure to stop */
1841 		CSR_WRITE(sc, DMACTL_H2M, DMACTL_STOP);
1842 		CSR_WRITE(sc, DMACTL_M2H, DMACTL_STOP);
1843 		WAIT_FOR_CLR(sc, DMACTL_H2M, DMACTL_STOP);
1844 		WAIT_FOR_CLR(sc, DMACTL_M2H, DMACTL_STOP);
1845 	}
1846 	CSR_WRITE(sc, SWRESET, 0);		/* reset operation */
1847 	CSR_WRITE(sc, SWRESET, SRST_RUN);	/* manifest run */
1848 	CSR_WRITE(sc, COMINIT, INIT_DB | INIT_CLS);
1849 	WAIT_FOR_CLR(sc, COMINIT, (INIT_DB | INIT_CLS));
1850 }
1851 
1852 #define UCODE_DEBUG 0
1853 
1854 /*
1855  * 3 independent uengines exist to process host2media, media2host and
1856  * packet data flows.
1857  */
1858 static void
loaducode(struct scx_softc * sc)1859 loaducode(struct scx_softc *sc)
1860 {
1861 	uint32_t up, lo, sz;
1862 	uint64_t addr;
1863 
1864 	up = EE_READ(sc, 0x08); /* H->M ucode addr high */
1865 	lo = EE_READ(sc, 0x0c); /* H->M ucode addr low */
1866 	sz = EE_READ(sc, 0x10); /* H->M ucode size */
1867 	sz *= 4;
1868 	addr = ((uint64_t)up << 32) | lo;
1869 	injectucode(sc, UCODE_H2M, (bus_addr_t)addr, (bus_size_t)sz);
1870 #if UCODE_DEBUG == 1
1871 aprint_normal_dev(sc->sc_dev, "0x%x H2M ucode %u\n", lo, sz);
1872 #endif
1873 
1874 	up = EE_READ(sc, 0x14); /* M->H ucode addr high */
1875 	lo = EE_READ(sc, 0x18); /* M->H ucode addr low */
1876 	sz = EE_READ(sc, 0x1c); /* M->H ucode size */
1877 	sz *= 4;
1878 	addr = ((uint64_t)up << 32) | lo;
1879 	injectucode(sc, UCODE_M2H, (bus_addr_t)addr, (bus_size_t)sz);
1880 #if UCODE_DEBUG == 1
1881 aprint_normal_dev(sc->sc_dev, "0x%x M2H ucode %u\n", lo, sz);
1882 #endif
1883 
1884 	lo = EE_READ(sc, 0x20); /* PKT ucode addr */
1885 	sz = EE_READ(sc, 0x24); /* PKT ucode size */
1886 	sz *= 4;
1887 	injectucode(sc, UCODE_PKT, (bus_addr_t)lo, (bus_size_t)sz);
1888 #if UCODE_DEBUG == 1
1889 aprint_normal_dev(sc->sc_dev, "0x%x PKT ucode %u\n", lo, sz);
1890 #endif
1891 }
1892 
1893 static void
injectucode(struct scx_softc * sc,int port,bus_addr_t addr,bus_size_t size)1894 injectucode(struct scx_softc *sc, int port,
1895 	bus_addr_t addr, bus_size_t size)
1896 {
1897 	bus_space_handle_t bsh;
1898 	bus_size_t off;
1899 	uint32_t ucode;
1900 
1901 	if (bus_space_map(sc->sc_st, addr, size, 0, &bsh) != 0) {
1902 		aprint_error_dev(sc->sc_dev,
1903 		    "eeprom map failure for ucode port 0x%x\n", port);
1904 		return;
1905 	}
1906 	for (off = 0; off < size; off += 4) {
1907 		ucode = bus_space_read_4(sc->sc_st, bsh, off);
1908 		CSR_WRITE(sc, port, ucode);
1909 	}
1910 	bus_space_unmap(sc->sc_st, bsh, size);
1911 }
1912 
1913 static void
forcephyloopback(struct scx_softc * sc)1914 forcephyloopback(struct scx_softc *sc)
1915 {
1916 	struct device *d = sc->sc_dev;
1917 	uint16_t val;
1918 	int loop, err;
1919 
1920 	err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1921 	if (err) {
1922 		aprint_error_dev(d, "forcephyloopback() failed\n");
1923 		return;
1924 	}
1925 	if (val & BMCR_PDOWN)
1926 		val &=  ~BMCR_PDOWN;
1927 	val |= BMCR_ISO;
1928 	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val);
1929 	loop = 100;
1930 	do {
1931 		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1932 	} while (loop-- > 0 && (val & (BMCR_PDOWN | BMCR_ISO)) != 0);
1933 	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_LOOP);
1934 	loop = 100;
1935 	do {
1936 		(void)mii_readreg(d, sc->sc_phy_id, MII_BMSR, &val);
1937 	} while (loop-- > 0 && (val & BMSR_LINK) != 0);
1938 }
1939 
1940 static void
resetphytonormal(struct scx_softc * sc)1941 resetphytonormal(struct scx_softc *sc)
1942 {
1943 	struct device *d = sc->sc_dev;
1944 	uint16_t val;
1945 	int loop, err;
1946 
1947 	err = mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1948 	if (err) {
1949 		aprint_error_dev(d, "resetphytonormal() failed\n");
1950 	}
1951 	val &= ~BMCR_LOOP;
1952 	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val);
1953 	loop = 100;
1954 	do {
1955 		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1956 	} while (loop-- > 0 && (val & BMCR_LOOP) != 0);
1957 	(void)mii_writereg(d, sc->sc_phy_id, MII_BMCR, val | BMCR_RESET);
1958 	loop = 100;
1959 	do {
1960 		(void)mii_readreg(d, sc->sc_phy_id, MII_BMCR, &val);
1961 	} while (loop-- > 0 && (val & BMCR_RESET) != 0);
1962 }
1963 
1964 /* GAR 5:2 MDIO frequency selection */
1965 static int
get_mdioclk(uint32_t freq)1966 get_mdioclk(uint32_t freq)
1967 {
1968 
1969 	freq /= 1000 * 1000;
1970 	if (freq < 35)
1971 		return GAR_MDIO_25_35MHZ;
1972 	if (freq < 60)
1973 		return GAR_MDIO_35_60MHZ;
1974 	if (freq < 100)
1975 		return GAR_MDIO_60_100MHZ;
1976 	if (freq < 150)
1977 		return GAR_MDIO_100_150MHZ;
1978 	if (freq < 250)
1979 		return GAR_MDIO_150_250MHZ;
1980 	return GAR_MDIO_250_300MHZ;
1981 }
1982 
1983 #define HWFEA_DEBUG 1
1984 
1985 static void
dump_hwfeature(struct scx_softc * sc)1986 dump_hwfeature(struct scx_softc *sc)
1987 {
1988 #if HWFEA_DEBUG == 1
1989 	struct {
1990 		uint32_t bit;
1991 		const char *des;
1992 	} field[] = {
1993 		{ 27, "SA/VLAN insertion replacement enabled" },
1994 		{ 26, "flexible PPS enabled" },
1995 		{ 25, "time stamping with internal system enabled" },
1996 		{ 24, "alternate/enhanced descriptor enabled" },
1997 		{ 19, "rx FIFO >2048 enabled" },
1998 		{ 18, "type 2 IP checksum offload enabled" },
1999 		{ 17, "type 1 IP checksum offload enabled" },
2000 		{ 16, "Tx checksum offload enabled" },
2001 		{ 15, "AV feature enabled" },
2002 		{ 14, "EEE energy save feature enabled" },
2003 		{ 13, "1588-2008 version 2 advanced feature enabled" },
2004 		{ 12, "only 1588-2002 version 1 feature enabled" },
2005 		{ 11, "RMON event counter enabled" },
2006 		{ 10, "PMT magic packet enabled" },
2007 		{ 9,  "PMT remote wakeup enabled" },
2008 		{ 8,  "MDIO enabled", },
2009 		{ 7,  "L3/L4 filter enabled" },
2010 		{ 6,  "TBI/SGMII/RTBI support enabled" },
2011 		{ 5,  "supplimental MAC address enabled" },
2012 		{ 4,  "receive hash filter enabled" },
2013 		{ 3,  "hash size is expanded" },
2014 		{ 2,  "Half Duplex enabled" },
2015 		{ 1,  "1000 Mbps enabled" },
2016 		{ 0,  "10/100 Mbps enabled" },
2017 	};
2018 	const char *nameofmii[] = {
2019 		"GMII or MII",
2020 		"RGMII",
2021 		"SGMII",
2022 		"TBI",
2023 		"RMII",
2024 		"RTBI",
2025 		"SMII",
2026 		"RevMII"
2027 	};
2028 	uint32_t hwfea, mtype, txchan, rxchan;
2029 
2030 	hwfea = CSR_READ(sc, HWFEA);
2031 	mtype = (hwfea & __BITS(30,28)) >> 28;
2032 	aprint_normal("HWFEA 0x%08x\n", hwfea);
2033 	aprint_normal("%s <30:28>\n", nameofmii[mtype]);
2034 	for (unsigned i = 0; i < __arraycount(field); i++) {
2035 		if ((hwfea & (1U << field[i].bit)) == 0)
2036 			continue;
2037 		aprint_normal("%s <%d>\n", field[i].des, field[i].bit);
2038 	}
2039 	if ((txchan = (hwfea & __BITS(23,22)) >> 22) != 0)
2040 		aprint_normal("+%d tx channel available <23,22>\n", txchan);
2041 	if ((rxchan = (hwfea & __BITS(21,20)) >> 20) != 0)
2042 		aprint_normal("+%d rx channel available <21:20>\n", rxchan);
2043 	return;
2044 #endif
2045 }
2046