xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/CodeGen/CodeGenPrepare.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass munges the code in the input function to better prepare it for
10 // SelectionDAG-based code generation. This works around limitations in it's
11 // basic-block-at-a-time approach. It should eventually be removed.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/MapVector.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/ProfileSummaryInfo.h"
31 #include "llvm/Analysis/TargetLibraryInfo.h"
32 #include "llvm/Analysis/TargetTransformInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/CodeGen/Analysis.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/SelectionDAGNodes.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetPassConfig.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/CodeGen/ValueTypes.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Argument.h"
44 #include "llvm/IR/Attributes.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DebugInfo.h"
50 #include "llvm/IR/DerivedTypes.h"
51 #include "llvm/IR/Dominators.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/IR/GetElementPtrTypeIterator.h"
54 #include "llvm/IR/GlobalValue.h"
55 #include "llvm/IR/GlobalVariable.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InlineAsm.h"
58 #include "llvm/IR/InstrTypes.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/Intrinsics.h"
63 #include "llvm/IR/IntrinsicsAArch64.h"
64 #include "llvm/IR/LLVMContext.h"
65 #include "llvm/IR/MDBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Statepoint.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/ValueMap.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/BlockFrequency.h"
79 #include "llvm/Support/BranchProbability.h"
80 #include "llvm/Support/Casting.h"
81 #include "llvm/Support/CommandLine.h"
82 #include "llvm/Support/Compiler.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/ErrorHandling.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
91 #include "llvm/Transforms/Utils/BypassSlowDivision.h"
92 #include "llvm/Transforms/Utils/Local.h"
93 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
94 #include "llvm/Transforms/Utils/SizeOpts.h"
95 #include <algorithm>
96 #include <cassert>
97 #include <cstdint>
98 #include <iterator>
99 #include <limits>
100 #include <memory>
101 #include <utility>
102 #include <vector>
103 
104 using namespace llvm;
105 using namespace llvm::PatternMatch;
106 
107 #define DEBUG_TYPE "codegenprepare"
108 
109 STATISTIC(NumBlocksElim, "Number of blocks eliminated");
110 STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
111 STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
112 STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
113                       "sunken Cmps");
114 STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
115                        "of sunken Casts");
116 STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
117                           "computations were sunk");
118 STATISTIC(NumMemoryInstsPhiCreated,
119           "Number of phis created when address "
120           "computations were sunk to memory instructions");
121 STATISTIC(NumMemoryInstsSelectCreated,
122           "Number of select created when address "
123           "computations were sunk to memory instructions");
124 STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
125 STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
126 STATISTIC(NumAndsAdded,
127           "Number of and mask instructions added to form ext loads");
128 STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized");
129 STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
130 STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
131 STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
132 STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed");
133 
134 static cl::opt<bool> DisableBranchOpts(
135   "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
136   cl::desc("Disable branch optimizations in CodeGenPrepare"));
137 
138 static cl::opt<bool>
139     DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false),
140                   cl::desc("Disable GC optimizations in CodeGenPrepare"));
141 
142 static cl::opt<bool> DisableSelectToBranch(
143   "disable-cgp-select2branch", cl::Hidden, cl::init(false),
144   cl::desc("Disable select to branch conversion."));
145 
146 static cl::opt<bool> AddrSinkUsingGEPs(
147   "addr-sink-using-gep", cl::Hidden, cl::init(true),
148   cl::desc("Address sinking in CGP using GEPs."));
149 
150 static cl::opt<bool> EnableAndCmpSinking(
151    "enable-andcmp-sinking", cl::Hidden, cl::init(true),
152    cl::desc("Enable sinkinig and/cmp into branches."));
153 
154 static cl::opt<bool> DisableStoreExtract(
155     "disable-cgp-store-extract", cl::Hidden, cl::init(false),
156     cl::desc("Disable store(extract) optimizations in CodeGenPrepare"));
157 
158 static cl::opt<bool> StressStoreExtract(
159     "stress-cgp-store-extract", cl::Hidden, cl::init(false),
160     cl::desc("Stress test store(extract) optimizations in CodeGenPrepare"));
161 
162 static cl::opt<bool> DisableExtLdPromotion(
163     "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
164     cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in "
165              "CodeGenPrepare"));
166 
167 static cl::opt<bool> StressExtLdPromotion(
168     "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false),
169     cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) "
170              "optimization in CodeGenPrepare"));
171 
172 static cl::opt<bool> DisablePreheaderProtect(
173     "disable-preheader-prot", cl::Hidden, cl::init(false),
174     cl::desc("Disable protection against removing loop preheaders"));
175 
176 static cl::opt<bool> ProfileGuidedSectionPrefix(
177     "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore,
178     cl::desc("Use profile info to add section prefix for hot/cold functions"));
179 
180 static cl::opt<bool> ProfileUnknownInSpecialSection(
181     "profile-unknown-in-special-section", cl::Hidden, cl::init(false),
182     cl::ZeroOrMore,
183     cl::desc("In profiling mode like sampleFDO, if a function doesn't have "
184              "profile, we cannot tell the function is cold for sure because "
185              "it may be a function newly added without ever being sampled. "
186              "With the flag enabled, compiler can put such profile unknown "
187              "functions into a special section, so runtime system can choose "
188              "to handle it in a different way than .text section, to save "
189              "RAM for example. "));
190 
191 static cl::opt<unsigned> FreqRatioToSkipMerge(
192     "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2),
193     cl::desc("Skip merging empty blocks if (frequency of empty block) / "
194              "(frequency of destination block) is greater than this ratio"));
195 
196 static cl::opt<bool> ForceSplitStore(
197     "force-split-store", cl::Hidden, cl::init(false),
198     cl::desc("Force store splitting no matter what the target query says."));
199 
200 static cl::opt<bool>
201 EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden,
202     cl::desc("Enable merging of redundant sexts when one is dominating"
203     " the other."), cl::init(true));
204 
205 static cl::opt<bool> DisableComplexAddrModes(
206     "disable-complex-addr-modes", cl::Hidden, cl::init(false),
207     cl::desc("Disables combining addressing modes with different parts "
208              "in optimizeMemoryInst."));
209 
210 static cl::opt<bool>
211 AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false),
212                 cl::desc("Allow creation of Phis in Address sinking."));
213 
214 static cl::opt<bool>
215 AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true),
216                    cl::desc("Allow creation of selects in Address sinking."));
217 
218 static cl::opt<bool> AddrSinkCombineBaseReg(
219     "addr-sink-combine-base-reg", cl::Hidden, cl::init(true),
220     cl::desc("Allow combining of BaseReg field in Address sinking."));
221 
222 static cl::opt<bool> AddrSinkCombineBaseGV(
223     "addr-sink-combine-base-gv", cl::Hidden, cl::init(true),
224     cl::desc("Allow combining of BaseGV field in Address sinking."));
225 
226 static cl::opt<bool> AddrSinkCombineBaseOffs(
227     "addr-sink-combine-base-offs", cl::Hidden, cl::init(true),
228     cl::desc("Allow combining of BaseOffs field in Address sinking."));
229 
230 static cl::opt<bool> AddrSinkCombineScaledReg(
231     "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true),
232     cl::desc("Allow combining of ScaledReg field in Address sinking."));
233 
234 static cl::opt<bool>
235     EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden,
236                          cl::init(true),
237                          cl::desc("Enable splitting large offset of GEP."));
238 
239 static cl::opt<bool> EnableICMP_EQToICMP_ST(
240     "cgp-icmp-eq2icmp-st", cl::Hidden, cl::init(false),
241     cl::desc("Enable ICMP_EQ to ICMP_S(L|G)T conversion."));
242 
243 static cl::opt<bool>
244     VerifyBFIUpdates("cgp-verify-bfi-updates", cl::Hidden, cl::init(false),
245                      cl::desc("Enable BFI update verification for "
246                               "CodeGenPrepare."));
247 
248 static cl::opt<bool> OptimizePhiTypes(
249     "cgp-optimize-phi-types", cl::Hidden, cl::init(false),
250     cl::desc("Enable converting phi types in CodeGenPrepare"));
251 
252 namespace {
253 
254 enum ExtType {
255   ZeroExtension,   // Zero extension has been seen.
256   SignExtension,   // Sign extension has been seen.
257   BothExtension    // This extension type is used if we saw sext after
258                    // ZeroExtension had been set, or if we saw zext after
259                    // SignExtension had been set. It makes the type
260                    // information of a promoted instruction invalid.
261 };
262 
263 using SetOfInstrs = SmallPtrSet<Instruction *, 16>;
264 using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>;
265 using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>;
266 using SExts = SmallVector<Instruction *, 16>;
267 using ValueToSExts = DenseMap<Value *, SExts>;
268 
269 class TypePromotionTransaction;
270 
271   class CodeGenPrepare : public FunctionPass {
272     const TargetMachine *TM = nullptr;
273     const TargetSubtargetInfo *SubtargetInfo;
274     const TargetLowering *TLI = nullptr;
275     const TargetRegisterInfo *TRI;
276     const TargetTransformInfo *TTI = nullptr;
277     const TargetLibraryInfo *TLInfo;
278     const LoopInfo *LI;
279     std::unique_ptr<BlockFrequencyInfo> BFI;
280     std::unique_ptr<BranchProbabilityInfo> BPI;
281     ProfileSummaryInfo *PSI;
282 
283     /// As we scan instructions optimizing them, this is the next instruction
284     /// to optimize. Transforms that can invalidate this should update it.
285     BasicBlock::iterator CurInstIterator;
286 
287     /// Keeps track of non-local addresses that have been sunk into a block.
288     /// This allows us to avoid inserting duplicate code for blocks with
289     /// multiple load/stores of the same address. The usage of WeakTrackingVH
290     /// enables SunkAddrs to be treated as a cache whose entries can be
291     /// invalidated if a sunken address computation has been erased.
292     ValueMap<Value*, WeakTrackingVH> SunkAddrs;
293 
294     /// Keeps track of all instructions inserted for the current function.
295     SetOfInstrs InsertedInsts;
296 
297     /// Keeps track of the type of the related instruction before their
298     /// promotion for the current function.
299     InstrToOrigTy PromotedInsts;
300 
301     /// Keep track of instructions removed during promotion.
302     SetOfInstrs RemovedInsts;
303 
304     /// Keep track of sext chains based on their initial value.
305     DenseMap<Value *, Instruction *> SeenChainsForSExt;
306 
307     /// Keep track of GEPs accessing the same data structures such as structs or
308     /// arrays that are candidates to be split later because of their large
309     /// size.
310     MapVector<
311         AssertingVH<Value>,
312         SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>>
313         LargeOffsetGEPMap;
314 
315     /// Keep track of new GEP base after splitting the GEPs having large offset.
316     SmallSet<AssertingVH<Value>, 2> NewGEPBases;
317 
318     /// Map serial numbers to Large offset GEPs.
319     DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID;
320 
321     /// Keep track of SExt promoted.
322     ValueToSExts ValToSExtendedUses;
323 
324     /// True if the function has the OptSize attribute.
325     bool OptSize;
326 
327     /// DataLayout for the Function being processed.
328     const DataLayout *DL = nullptr;
329 
330     /// Building the dominator tree can be expensive, so we only build it
331     /// lazily and update it when required.
332     std::unique_ptr<DominatorTree> DT;
333 
334   public:
335     static char ID; // Pass identification, replacement for typeid
336 
CodeGenPrepare()337     CodeGenPrepare() : FunctionPass(ID) {
338       initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
339     }
340 
341     bool runOnFunction(Function &F) override;
342 
getPassName() const343     StringRef getPassName() const override { return "CodeGen Prepare"; }
344 
getAnalysisUsage(AnalysisUsage & AU) const345     void getAnalysisUsage(AnalysisUsage &AU) const override {
346       // FIXME: When we can selectively preserve passes, preserve the domtree.
347       AU.addRequired<ProfileSummaryInfoWrapperPass>();
348       AU.addRequired<TargetLibraryInfoWrapperPass>();
349       AU.addRequired<TargetPassConfig>();
350       AU.addRequired<TargetTransformInfoWrapperPass>();
351       AU.addRequired<LoopInfoWrapperPass>();
352     }
353 
354   private:
355     template <typename F>
resetIteratorIfInvalidatedWhileCalling(BasicBlock * BB,F f)356     void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) {
357       // Substituting can cause recursive simplifications, which can invalidate
358       // our iterator.  Use a WeakTrackingVH to hold onto it in case this
359       // happens.
360       Value *CurValue = &*CurInstIterator;
361       WeakTrackingVH IterHandle(CurValue);
362 
363       f();
364 
365       // If the iterator instruction was recursively deleted, start over at the
366       // start of the block.
367       if (IterHandle != CurValue) {
368         CurInstIterator = BB->begin();
369         SunkAddrs.clear();
370       }
371     }
372 
373     // Get the DominatorTree, building if necessary.
getDT(Function & F)374     DominatorTree &getDT(Function &F) {
375       if (!DT)
376         DT = std::make_unique<DominatorTree>(F);
377       return *DT;
378     }
379 
380     void removeAllAssertingVHReferences(Value *V);
381     bool eliminateAssumptions(Function &F);
382     bool eliminateFallThrough(Function &F);
383     bool eliminateMostlyEmptyBlocks(Function &F);
384     BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB);
385     bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
386     void eliminateMostlyEmptyBlock(BasicBlock *BB);
387     bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB,
388                                        bool isPreheader);
389     bool makeBitReverse(Instruction &I);
390     bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT);
391     bool optimizeInst(Instruction *I, bool &ModifiedDT);
392     bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
393                             Type *AccessTy, unsigned AddrSpace);
394     bool optimizeGatherScatterInst(Instruction *MemoryInst, Value *Ptr);
395     bool optimizeInlineAsmInst(CallInst *CS);
396     bool optimizeCallInst(CallInst *CI, bool &ModifiedDT);
397     bool optimizeExt(Instruction *&I);
398     bool optimizeExtUses(Instruction *I);
399     bool optimizeLoadExt(LoadInst *Load);
400     bool optimizeShiftInst(BinaryOperator *BO);
401     bool optimizeFunnelShift(IntrinsicInst *Fsh);
402     bool optimizeSelectInst(SelectInst *SI);
403     bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI);
404     bool optimizeSwitchInst(SwitchInst *SI);
405     bool optimizeExtractElementInst(Instruction *Inst);
406     bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT);
407     bool fixupDbgValue(Instruction *I);
408     bool placeDbgValues(Function &F);
409     bool placePseudoProbes(Function &F);
410     bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts,
411                       LoadInst *&LI, Instruction *&Inst, bool HasPromoted);
412     bool tryToPromoteExts(TypePromotionTransaction &TPT,
413                           const SmallVectorImpl<Instruction *> &Exts,
414                           SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
415                           unsigned CreatedInstsCost = 0);
416     bool mergeSExts(Function &F);
417     bool splitLargeGEPOffsets();
418     bool optimizePhiType(PHINode *Inst, SmallPtrSetImpl<PHINode *> &Visited,
419                          SmallPtrSetImpl<Instruction *> &DeletedInstrs);
420     bool optimizePhiTypes(Function &F);
421     bool performAddressTypePromotion(
422         Instruction *&Inst,
423         bool AllowPromotionWithoutCommonHeader,
424         bool HasPromoted, TypePromotionTransaction &TPT,
425         SmallVectorImpl<Instruction *> &SpeculativelyMovedExts);
426     bool splitBranchCondition(Function &F, bool &ModifiedDT);
427     bool simplifyOffsetableRelocate(GCStatepointInst &I);
428 
429     bool tryToSinkFreeOperands(Instruction *I);
430     bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, Value *Arg0,
431                                      Value *Arg1, CmpInst *Cmp,
432                                      Intrinsic::ID IID);
433     bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT);
434     bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
435     bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT);
436     void verifyBFIUpdates(Function &F);
437   };
438 
439 } // end anonymous namespace
440 
441 char CodeGenPrepare::ID = 0;
442 
443 INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE,
444                       "Optimize for code generation", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)445 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
446 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
447 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
448 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
449 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
450 INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE,
451                     "Optimize for code generation", false, false)
452 
453 FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); }
454 
runOnFunction(Function & F)455 bool CodeGenPrepare::runOnFunction(Function &F) {
456   if (skipFunction(F))
457     return false;
458 
459   DL = &F.getParent()->getDataLayout();
460 
461   bool EverMadeChange = false;
462   // Clear per function information.
463   InsertedInsts.clear();
464   PromotedInsts.clear();
465 
466   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
467   SubtargetInfo = TM->getSubtargetImpl(F);
468   TLI = SubtargetInfo->getTargetLowering();
469   TRI = SubtargetInfo->getRegisterInfo();
470   TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
471   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
472   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
473   BPI.reset(new BranchProbabilityInfo(F, *LI));
474   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
475   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
476   OptSize = F.hasOptSize();
477   if (ProfileGuidedSectionPrefix) {
478     // The hot attribute overwrites profile count based hotness while profile
479     // counts based hotness overwrite the cold attribute.
480     // This is a conservative behabvior.
481     if (F.hasFnAttribute(Attribute::Hot) ||
482         PSI->isFunctionHotInCallGraph(&F, *BFI))
483       F.setSectionPrefix("hot");
484     // If PSI shows this function is not hot, we will placed the function
485     // into unlikely section if (1) PSI shows this is a cold function, or
486     // (2) the function has a attribute of cold.
487     else if (PSI->isFunctionColdInCallGraph(&F, *BFI) ||
488              F.hasFnAttribute(Attribute::Cold))
489       F.setSectionPrefix("unlikely");
490     else if (ProfileUnknownInSpecialSection && PSI->hasPartialSampleProfile() &&
491              PSI->isFunctionHotnessUnknown(F))
492       F.setSectionPrefix("unknown");
493   }
494 
495   /// This optimization identifies DIV instructions that can be
496   /// profitably bypassed and carried out with a shorter, faster divide.
497   if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI->isSlowDivBypassed()) {
498     const DenseMap<unsigned int, unsigned int> &BypassWidths =
499         TLI->getBypassSlowDivWidths();
500     BasicBlock* BB = &*F.begin();
501     while (BB != nullptr) {
502       // bypassSlowDivision may create new BBs, but we don't want to reapply the
503       // optimization to those blocks.
504       BasicBlock* Next = BB->getNextNode();
505       // F.hasOptSize is already checked in the outer if statement.
506       if (!llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
507         EverMadeChange |= bypassSlowDivision(BB, BypassWidths);
508       BB = Next;
509     }
510   }
511 
512   // Get rid of @llvm.assume builtins before attempting to eliminate empty
513   // blocks, since there might be blocks that only contain @llvm.assume calls
514   // (plus arguments that we can get rid of).
515   EverMadeChange |= eliminateAssumptions(F);
516 
517   // Eliminate blocks that contain only PHI nodes and an
518   // unconditional branch.
519   EverMadeChange |= eliminateMostlyEmptyBlocks(F);
520 
521   bool ModifiedDT = false;
522   if (!DisableBranchOpts)
523     EverMadeChange |= splitBranchCondition(F, ModifiedDT);
524 
525   // Split some critical edges where one of the sources is an indirect branch,
526   // to help generate sane code for PHIs involving such edges.
527   EverMadeChange |= SplitIndirectBrCriticalEdges(F);
528 
529   bool MadeChange = true;
530   while (MadeChange) {
531     MadeChange = false;
532     DT.reset();
533     for (Function::iterator I = F.begin(); I != F.end(); ) {
534       BasicBlock *BB = &*I++;
535       bool ModifiedDTOnIteration = false;
536       MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration);
537 
538       // Restart BB iteration if the dominator tree of the Function was changed
539       if (ModifiedDTOnIteration)
540         break;
541     }
542     if (EnableTypePromotionMerge && !ValToSExtendedUses.empty())
543       MadeChange |= mergeSExts(F);
544     if (!LargeOffsetGEPMap.empty())
545       MadeChange |= splitLargeGEPOffsets();
546     MadeChange |= optimizePhiTypes(F);
547 
548     if (MadeChange)
549       eliminateFallThrough(F);
550 
551     // Really free removed instructions during promotion.
552     for (Instruction *I : RemovedInsts)
553       I->deleteValue();
554 
555     EverMadeChange |= MadeChange;
556     SeenChainsForSExt.clear();
557     ValToSExtendedUses.clear();
558     RemovedInsts.clear();
559     LargeOffsetGEPMap.clear();
560     LargeOffsetGEPID.clear();
561   }
562 
563   NewGEPBases.clear();
564   SunkAddrs.clear();
565 
566   if (!DisableBranchOpts) {
567     MadeChange = false;
568     // Use a set vector to get deterministic iteration order. The order the
569     // blocks are removed may affect whether or not PHI nodes in successors
570     // are removed.
571     SmallSetVector<BasicBlock*, 8> WorkList;
572     for (BasicBlock &BB : F) {
573       SmallVector<BasicBlock *, 2> Successors(successors(&BB));
574       MadeChange |= ConstantFoldTerminator(&BB, true);
575       if (!MadeChange) continue;
576 
577       for (BasicBlock *Succ : Successors)
578         if (pred_empty(Succ))
579           WorkList.insert(Succ);
580     }
581 
582     // Delete the dead blocks and any of their dead successors.
583     MadeChange |= !WorkList.empty();
584     while (!WorkList.empty()) {
585       BasicBlock *BB = WorkList.pop_back_val();
586       SmallVector<BasicBlock*, 2> Successors(successors(BB));
587 
588       DeleteDeadBlock(BB);
589 
590       for (BasicBlock *Succ : Successors)
591         if (pred_empty(Succ))
592           WorkList.insert(Succ);
593     }
594 
595     // Merge pairs of basic blocks with unconditional branches, connected by
596     // a single edge.
597     if (EverMadeChange || MadeChange)
598       MadeChange |= eliminateFallThrough(F);
599 
600     EverMadeChange |= MadeChange;
601   }
602 
603   if (!DisableGCOpts) {
604     SmallVector<GCStatepointInst *, 2> Statepoints;
605     for (BasicBlock &BB : F)
606       for (Instruction &I : BB)
607         if (auto *SP = dyn_cast<GCStatepointInst>(&I))
608           Statepoints.push_back(SP);
609     for (auto &I : Statepoints)
610       EverMadeChange |= simplifyOffsetableRelocate(*I);
611   }
612 
613   // Do this last to clean up use-before-def scenarios introduced by other
614   // preparatory transforms.
615   EverMadeChange |= placeDbgValues(F);
616   EverMadeChange |= placePseudoProbes(F);
617 
618 #ifndef NDEBUG
619   if (VerifyBFIUpdates)
620     verifyBFIUpdates(F);
621 #endif
622 
623   return EverMadeChange;
624 }
625 
eliminateAssumptions(Function & F)626 bool CodeGenPrepare::eliminateAssumptions(Function &F) {
627   bool MadeChange = false;
628   for (BasicBlock &BB : F) {
629     CurInstIterator = BB.begin();
630     while (CurInstIterator != BB.end()) {
631       Instruction *I = &*(CurInstIterator++);
632       if (auto *Assume = dyn_cast<AssumeInst>(I)) {
633         MadeChange = true;
634         Value *Operand = Assume->getOperand(0);
635         Assume->eraseFromParent();
636 
637         resetIteratorIfInvalidatedWhileCalling(&BB, [&]() {
638           RecursivelyDeleteTriviallyDeadInstructions(Operand, TLInfo, nullptr);
639         });
640       }
641     }
642   }
643   return MadeChange;
644 }
645 
646 /// An instruction is about to be deleted, so remove all references to it in our
647 /// GEP-tracking data strcutures.
removeAllAssertingVHReferences(Value * V)648 void CodeGenPrepare::removeAllAssertingVHReferences(Value *V) {
649   LargeOffsetGEPMap.erase(V);
650   NewGEPBases.erase(V);
651 
652   auto GEP = dyn_cast<GetElementPtrInst>(V);
653   if (!GEP)
654     return;
655 
656   LargeOffsetGEPID.erase(GEP);
657 
658   auto VecI = LargeOffsetGEPMap.find(GEP->getPointerOperand());
659   if (VecI == LargeOffsetGEPMap.end())
660     return;
661 
662   auto &GEPVector = VecI->second;
663   const auto &I =
664       llvm::find_if(GEPVector, [=](auto &Elt) { return Elt.first == GEP; });
665   if (I == GEPVector.end())
666     return;
667 
668   GEPVector.erase(I);
669   if (GEPVector.empty())
670     LargeOffsetGEPMap.erase(VecI);
671 }
672 
673 // Verify BFI has been updated correctly by recomputing BFI and comparing them.
verifyBFIUpdates(Function & F)674 void LLVM_ATTRIBUTE_UNUSED CodeGenPrepare::verifyBFIUpdates(Function &F) {
675   DominatorTree NewDT(F);
676   LoopInfo NewLI(NewDT);
677   BranchProbabilityInfo NewBPI(F, NewLI, TLInfo);
678   BlockFrequencyInfo NewBFI(F, NewBPI, NewLI);
679   NewBFI.verifyMatch(*BFI);
680 }
681 
682 /// Merge basic blocks which are connected by a single edge, where one of the
683 /// basic blocks has a single successor pointing to the other basic block,
684 /// which has a single predecessor.
eliminateFallThrough(Function & F)685 bool CodeGenPrepare::eliminateFallThrough(Function &F) {
686   bool Changed = false;
687   // Scan all of the blocks in the function, except for the entry block.
688   // Use a temporary array to avoid iterator being invalidated when
689   // deleting blocks.
690   SmallVector<WeakTrackingVH, 16> Blocks;
691   for (auto &Block : llvm::drop_begin(F))
692     Blocks.push_back(&Block);
693 
694   SmallSet<WeakTrackingVH, 16> Preds;
695   for (auto &Block : Blocks) {
696     auto *BB = cast_or_null<BasicBlock>(Block);
697     if (!BB)
698       continue;
699     // If the destination block has a single pred, then this is a trivial
700     // edge, just collapse it.
701     BasicBlock *SinglePred = BB->getSinglePredecessor();
702 
703     // Don't merge if BB's address is taken.
704     if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
705 
706     BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
707     if (Term && !Term->isConditional()) {
708       Changed = true;
709       LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n");
710 
711       // Merge BB into SinglePred and delete it.
712       MergeBlockIntoPredecessor(BB);
713       Preds.insert(SinglePred);
714     }
715   }
716 
717   // (Repeatedly) merging blocks into their predecessors can create redundant
718   // debug intrinsics.
719   for (auto &Pred : Preds)
720     if (auto *BB = cast_or_null<BasicBlock>(Pred))
721       RemoveRedundantDbgInstrs(BB);
722 
723   return Changed;
724 }
725 
726 /// Find a destination block from BB if BB is mergeable empty block.
findDestBlockOfMergeableEmptyBlock(BasicBlock * BB)727 BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) {
728   // If this block doesn't end with an uncond branch, ignore it.
729   BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
730   if (!BI || !BI->isUnconditional())
731     return nullptr;
732 
733   // If the instruction before the branch (skipping debug info) isn't a phi
734   // node, then other stuff is happening here.
735   BasicBlock::iterator BBI = BI->getIterator();
736   if (BBI != BB->begin()) {
737     --BBI;
738     while (isa<DbgInfoIntrinsic>(BBI)) {
739       if (BBI == BB->begin())
740         break;
741       --BBI;
742     }
743     if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
744       return nullptr;
745   }
746 
747   // Do not break infinite loops.
748   BasicBlock *DestBB = BI->getSuccessor(0);
749   if (DestBB == BB)
750     return nullptr;
751 
752   if (!canMergeBlocks(BB, DestBB))
753     DestBB = nullptr;
754 
755   return DestBB;
756 }
757 
758 /// Eliminate blocks that contain only PHI nodes, debug info directives, and an
759 /// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split
760 /// edges in ways that are non-optimal for isel. Start by eliminating these
761 /// blocks so we can split them the way we want them.
eliminateMostlyEmptyBlocks(Function & F)762 bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) {
763   SmallPtrSet<BasicBlock *, 16> Preheaders;
764   SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end());
765   while (!LoopList.empty()) {
766     Loop *L = LoopList.pop_back_val();
767     llvm::append_range(LoopList, *L);
768     if (BasicBlock *Preheader = L->getLoopPreheader())
769       Preheaders.insert(Preheader);
770   }
771 
772   bool MadeChange = false;
773   // Copy blocks into a temporary array to avoid iterator invalidation issues
774   // as we remove them.
775   // Note that this intentionally skips the entry block.
776   SmallVector<WeakTrackingVH, 16> Blocks;
777   for (auto &Block : llvm::drop_begin(F))
778     Blocks.push_back(&Block);
779 
780   for (auto &Block : Blocks) {
781     BasicBlock *BB = cast_or_null<BasicBlock>(Block);
782     if (!BB)
783       continue;
784     BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB);
785     if (!DestBB ||
786         !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB)))
787       continue;
788 
789     eliminateMostlyEmptyBlock(BB);
790     MadeChange = true;
791   }
792   return MadeChange;
793 }
794 
isMergingEmptyBlockProfitable(BasicBlock * BB,BasicBlock * DestBB,bool isPreheader)795 bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB,
796                                                    BasicBlock *DestBB,
797                                                    bool isPreheader) {
798   // Do not delete loop preheaders if doing so would create a critical edge.
799   // Loop preheaders can be good locations to spill registers. If the
800   // preheader is deleted and we create a critical edge, registers may be
801   // spilled in the loop body instead.
802   if (!DisablePreheaderProtect && isPreheader &&
803       !(BB->getSinglePredecessor() &&
804         BB->getSinglePredecessor()->getSingleSuccessor()))
805     return false;
806 
807   // Skip merging if the block's successor is also a successor to any callbr
808   // that leads to this block.
809   // FIXME: Is this really needed? Is this a correctness issue?
810   for (BasicBlock *Pred : predecessors(BB)) {
811     if (auto *CBI = dyn_cast<CallBrInst>((Pred)->getTerminator()))
812       for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i)
813         if (DestBB == CBI->getSuccessor(i))
814           return false;
815   }
816 
817   // Try to skip merging if the unique predecessor of BB is terminated by a
818   // switch or indirect branch instruction, and BB is used as an incoming block
819   // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to
820   // add COPY instructions in the predecessor of BB instead of BB (if it is not
821   // merged). Note that the critical edge created by merging such blocks wont be
822   // split in MachineSink because the jump table is not analyzable. By keeping
823   // such empty block (BB), ISel will place COPY instructions in BB, not in the
824   // predecessor of BB.
825   BasicBlock *Pred = BB->getUniquePredecessor();
826   if (!Pred ||
827       !(isa<SwitchInst>(Pred->getTerminator()) ||
828         isa<IndirectBrInst>(Pred->getTerminator())))
829     return true;
830 
831   if (BB->getTerminator() != BB->getFirstNonPHIOrDbg())
832     return true;
833 
834   // We use a simple cost heuristic which determine skipping merging is
835   // profitable if the cost of skipping merging is less than the cost of
836   // merging : Cost(skipping merging) < Cost(merging BB), where the
837   // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and
838   // the Cost(merging BB) is Freq(Pred) * Cost(Copy).
839   // Assuming Cost(Copy) == Cost(Branch), we could simplify it to :
840   //   Freq(Pred) / Freq(BB) > 2.
841   // Note that if there are multiple empty blocks sharing the same incoming
842   // value for the PHIs in the DestBB, we consider them together. In such
843   // case, Cost(merging BB) will be the sum of their frequencies.
844 
845   if (!isa<PHINode>(DestBB->begin()))
846     return true;
847 
848   SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs;
849 
850   // Find all other incoming blocks from which incoming values of all PHIs in
851   // DestBB are the same as the ones from BB.
852   for (BasicBlock *DestBBPred : predecessors(DestBB)) {
853     if (DestBBPred == BB)
854       continue;
855 
856     if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) {
857           return DestPN.getIncomingValueForBlock(BB) ==
858                  DestPN.getIncomingValueForBlock(DestBBPred);
859         }))
860       SameIncomingValueBBs.insert(DestBBPred);
861   }
862 
863   // See if all BB's incoming values are same as the value from Pred. In this
864   // case, no reason to skip merging because COPYs are expected to be place in
865   // Pred already.
866   if (SameIncomingValueBBs.count(Pred))
867     return true;
868 
869   BlockFrequency PredFreq = BFI->getBlockFreq(Pred);
870   BlockFrequency BBFreq = BFI->getBlockFreq(BB);
871 
872   for (auto *SameValueBB : SameIncomingValueBBs)
873     if (SameValueBB->getUniquePredecessor() == Pred &&
874         DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB))
875       BBFreq += BFI->getBlockFreq(SameValueBB);
876 
877   return PredFreq.getFrequency() <=
878          BBFreq.getFrequency() * FreqRatioToSkipMerge;
879 }
880 
881 /// Return true if we can merge BB into DestBB if there is a single
882 /// unconditional branch between them, and BB contains no other non-phi
883 /// instructions.
canMergeBlocks(const BasicBlock * BB,const BasicBlock * DestBB) const884 bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB,
885                                     const BasicBlock *DestBB) const {
886   // We only want to eliminate blocks whose phi nodes are used by phi nodes in
887   // the successor.  If there are more complex condition (e.g. preheaders),
888   // don't mess around with them.
889   for (const PHINode &PN : BB->phis()) {
890     for (const User *U : PN.users()) {
891       const Instruction *UI = cast<Instruction>(U);
892       if (UI->getParent() != DestBB || !isa<PHINode>(UI))
893         return false;
894       // If User is inside DestBB block and it is a PHINode then check
895       // incoming value. If incoming value is not from BB then this is
896       // a complex condition (e.g. preheaders) we want to avoid here.
897       if (UI->getParent() == DestBB) {
898         if (const PHINode *UPN = dyn_cast<PHINode>(UI))
899           for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
900             Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
901             if (Insn && Insn->getParent() == BB &&
902                 Insn->getParent() != UPN->getIncomingBlock(I))
903               return false;
904           }
905       }
906     }
907   }
908 
909   // If BB and DestBB contain any common predecessors, then the phi nodes in BB
910   // and DestBB may have conflicting incoming values for the block.  If so, we
911   // can't merge the block.
912   const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
913   if (!DestBBPN) return true;  // no conflict.
914 
915   // Collect the preds of BB.
916   SmallPtrSet<const BasicBlock*, 16> BBPreds;
917   if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
918     // It is faster to get preds from a PHI than with pred_iterator.
919     for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
920       BBPreds.insert(BBPN->getIncomingBlock(i));
921   } else {
922     BBPreds.insert(pred_begin(BB), pred_end(BB));
923   }
924 
925   // Walk the preds of DestBB.
926   for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
927     BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
928     if (BBPreds.count(Pred)) {   // Common predecessor?
929       for (const PHINode &PN : DestBB->phis()) {
930         const Value *V1 = PN.getIncomingValueForBlock(Pred);
931         const Value *V2 = PN.getIncomingValueForBlock(BB);
932 
933         // If V2 is a phi node in BB, look up what the mapped value will be.
934         if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
935           if (V2PN->getParent() == BB)
936             V2 = V2PN->getIncomingValueForBlock(Pred);
937 
938         // If there is a conflict, bail out.
939         if (V1 != V2) return false;
940       }
941     }
942   }
943 
944   return true;
945 }
946 
947 /// Eliminate a basic block that has only phi's and an unconditional branch in
948 /// it.
eliminateMostlyEmptyBlock(BasicBlock * BB)949 void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) {
950   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
951   BasicBlock *DestBB = BI->getSuccessor(0);
952 
953   LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n"
954                     << *BB << *DestBB);
955 
956   // If the destination block has a single pred, then this is a trivial edge,
957   // just collapse it.
958   if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
959     if (SinglePred != DestBB) {
960       assert(SinglePred == BB &&
961              "Single predecessor not the same as predecessor");
962       // Merge DestBB into SinglePred/BB and delete it.
963       MergeBlockIntoPredecessor(DestBB);
964       // Note: BB(=SinglePred) will not be deleted on this path.
965       // DestBB(=its single successor) is the one that was deleted.
966       LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n");
967       return;
968     }
969   }
970 
971   // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
972   // to handle the new incoming edges it is about to have.
973   for (PHINode &PN : DestBB->phis()) {
974     // Remove the incoming value for BB, and remember it.
975     Value *InVal = PN.removeIncomingValue(BB, false);
976 
977     // Two options: either the InVal is a phi node defined in BB or it is some
978     // value that dominates BB.
979     PHINode *InValPhi = dyn_cast<PHINode>(InVal);
980     if (InValPhi && InValPhi->getParent() == BB) {
981       // Add all of the input values of the input PHI as inputs of this phi.
982       for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
983         PN.addIncoming(InValPhi->getIncomingValue(i),
984                        InValPhi->getIncomingBlock(i));
985     } else {
986       // Otherwise, add one instance of the dominating value for each edge that
987       // we will be adding.
988       if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
989         for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
990           PN.addIncoming(InVal, BBPN->getIncomingBlock(i));
991       } else {
992         for (BasicBlock *Pred : predecessors(BB))
993           PN.addIncoming(InVal, Pred);
994       }
995     }
996   }
997 
998   // The PHIs are now updated, change everything that refers to BB to use
999   // DestBB and remove BB.
1000   BB->replaceAllUsesWith(DestBB);
1001   BB->eraseFromParent();
1002   ++NumBlocksElim;
1003 
1004   LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
1005 }
1006 
1007 // Computes a map of base pointer relocation instructions to corresponding
1008 // derived pointer relocation instructions given a vector of all relocate calls
computeBaseDerivedRelocateMap(const SmallVectorImpl<GCRelocateInst * > & AllRelocateCalls,DenseMap<GCRelocateInst *,SmallVector<GCRelocateInst *,2>> & RelocateInstMap)1009 static void computeBaseDerivedRelocateMap(
1010     const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls,
1011     DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>>
1012         &RelocateInstMap) {
1013   // Collect information in two maps: one primarily for locating the base object
1014   // while filling the second map; the second map is the final structure holding
1015   // a mapping between Base and corresponding Derived relocate calls
1016   DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap;
1017   for (auto *ThisRelocate : AllRelocateCalls) {
1018     auto K = std::make_pair(ThisRelocate->getBasePtrIndex(),
1019                             ThisRelocate->getDerivedPtrIndex());
1020     RelocateIdxMap.insert(std::make_pair(K, ThisRelocate));
1021   }
1022   for (auto &Item : RelocateIdxMap) {
1023     std::pair<unsigned, unsigned> Key = Item.first;
1024     if (Key.first == Key.second)
1025       // Base relocation: nothing to insert
1026       continue;
1027 
1028     GCRelocateInst *I = Item.second;
1029     auto BaseKey = std::make_pair(Key.first, Key.first);
1030 
1031     // We're iterating over RelocateIdxMap so we cannot modify it.
1032     auto MaybeBase = RelocateIdxMap.find(BaseKey);
1033     if (MaybeBase == RelocateIdxMap.end())
1034       // TODO: We might want to insert a new base object relocate and gep off
1035       // that, if there are enough derived object relocates.
1036       continue;
1037 
1038     RelocateInstMap[MaybeBase->second].push_back(I);
1039   }
1040 }
1041 
1042 // Accepts a GEP and extracts the operands into a vector provided they're all
1043 // small integer constants
getGEPSmallConstantIntOffsetV(GetElementPtrInst * GEP,SmallVectorImpl<Value * > & OffsetV)1044 static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP,
1045                                           SmallVectorImpl<Value *> &OffsetV) {
1046   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
1047     // Only accept small constant integer operands
1048     auto *Op = dyn_cast<ConstantInt>(GEP->getOperand(i));
1049     if (!Op || Op->getZExtValue() > 20)
1050       return false;
1051   }
1052 
1053   for (unsigned i = 1; i < GEP->getNumOperands(); i++)
1054     OffsetV.push_back(GEP->getOperand(i));
1055   return true;
1056 }
1057 
1058 // Takes a RelocatedBase (base pointer relocation instruction) and Targets to
1059 // replace, computes a replacement, and affects it.
1060 static bool
simplifyRelocatesOffABase(GCRelocateInst * RelocatedBase,const SmallVectorImpl<GCRelocateInst * > & Targets)1061 simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase,
1062                           const SmallVectorImpl<GCRelocateInst *> &Targets) {
1063   bool MadeChange = false;
1064   // We must ensure the relocation of derived pointer is defined after
1065   // relocation of base pointer. If we find a relocation corresponding to base
1066   // defined earlier than relocation of base then we move relocation of base
1067   // right before found relocation. We consider only relocation in the same
1068   // basic block as relocation of base. Relocations from other basic block will
1069   // be skipped by optimization and we do not care about them.
1070   for (auto R = RelocatedBase->getParent()->getFirstInsertionPt();
1071        &*R != RelocatedBase; ++R)
1072     if (auto *RI = dyn_cast<GCRelocateInst>(R))
1073       if (RI->getStatepoint() == RelocatedBase->getStatepoint())
1074         if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) {
1075           RelocatedBase->moveBefore(RI);
1076           break;
1077         }
1078 
1079   for (GCRelocateInst *ToReplace : Targets) {
1080     assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() &&
1081            "Not relocating a derived object of the original base object");
1082     if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) {
1083       // A duplicate relocate call. TODO: coalesce duplicates.
1084       continue;
1085     }
1086 
1087     if (RelocatedBase->getParent() != ToReplace->getParent()) {
1088       // Base and derived relocates are in different basic blocks.
1089       // In this case transform is only valid when base dominates derived
1090       // relocate. However it would be too expensive to check dominance
1091       // for each such relocate, so we skip the whole transformation.
1092       continue;
1093     }
1094 
1095     Value *Base = ToReplace->getBasePtr();
1096     auto *Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr());
1097     if (!Derived || Derived->getPointerOperand() != Base)
1098       continue;
1099 
1100     SmallVector<Value *, 2> OffsetV;
1101     if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV))
1102       continue;
1103 
1104     // Create a Builder and replace the target callsite with a gep
1105     assert(RelocatedBase->getNextNode() &&
1106            "Should always have one since it's not a terminator");
1107 
1108     // Insert after RelocatedBase
1109     IRBuilder<> Builder(RelocatedBase->getNextNode());
1110     Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc());
1111 
1112     // If gc_relocate does not match the actual type, cast it to the right type.
1113     // In theory, there must be a bitcast after gc_relocate if the type does not
1114     // match, and we should reuse it to get the derived pointer. But it could be
1115     // cases like this:
1116     // bb1:
1117     //  ...
1118     //  %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1119     //  br label %merge
1120     //
1121     // bb2:
1122     //  ...
1123     //  %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...)
1124     //  br label %merge
1125     //
1126     // merge:
1127     //  %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ]
1128     //  %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)*
1129     //
1130     // In this case, we can not find the bitcast any more. So we insert a new bitcast
1131     // no matter there is already one or not. In this way, we can handle all cases, and
1132     // the extra bitcast should be optimized away in later passes.
1133     Value *ActualRelocatedBase = RelocatedBase;
1134     if (RelocatedBase->getType() != Base->getType()) {
1135       ActualRelocatedBase =
1136           Builder.CreateBitCast(RelocatedBase, Base->getType());
1137     }
1138     Value *Replacement = Builder.CreateGEP(
1139         Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV));
1140     Replacement->takeName(ToReplace);
1141     // If the newly generated derived pointer's type does not match the original derived
1142     // pointer's type, cast the new derived pointer to match it. Same reasoning as above.
1143     Value *ActualReplacement = Replacement;
1144     if (Replacement->getType() != ToReplace->getType()) {
1145       ActualReplacement =
1146           Builder.CreateBitCast(Replacement, ToReplace->getType());
1147     }
1148     ToReplace->replaceAllUsesWith(ActualReplacement);
1149     ToReplace->eraseFromParent();
1150 
1151     MadeChange = true;
1152   }
1153   return MadeChange;
1154 }
1155 
1156 // Turns this:
1157 //
1158 // %base = ...
1159 // %ptr = gep %base + 15
1160 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1161 // %base' = relocate(%tok, i32 4, i32 4)
1162 // %ptr' = relocate(%tok, i32 4, i32 5)
1163 // %val = load %ptr'
1164 //
1165 // into this:
1166 //
1167 // %base = ...
1168 // %ptr = gep %base + 15
1169 // %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr)
1170 // %base' = gc.relocate(%tok, i32 4, i32 4)
1171 // %ptr' = gep %base' + 15
1172 // %val = load %ptr'
simplifyOffsetableRelocate(GCStatepointInst & I)1173 bool CodeGenPrepare::simplifyOffsetableRelocate(GCStatepointInst &I) {
1174   bool MadeChange = false;
1175   SmallVector<GCRelocateInst *, 2> AllRelocateCalls;
1176   for (auto *U : I.users())
1177     if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U))
1178       // Collect all the relocate calls associated with a statepoint
1179       AllRelocateCalls.push_back(Relocate);
1180 
1181   // We need at least one base pointer relocation + one derived pointer
1182   // relocation to mangle
1183   if (AllRelocateCalls.size() < 2)
1184     return false;
1185 
1186   // RelocateInstMap is a mapping from the base relocate instruction to the
1187   // corresponding derived relocate instructions
1188   DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap;
1189   computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap);
1190   if (RelocateInstMap.empty())
1191     return false;
1192 
1193   for (auto &Item : RelocateInstMap)
1194     // Item.first is the RelocatedBase to offset against
1195     // Item.second is the vector of Targets to replace
1196     MadeChange = simplifyRelocatesOffABase(Item.first, Item.second);
1197   return MadeChange;
1198 }
1199 
1200 /// Sink the specified cast instruction into its user blocks.
SinkCast(CastInst * CI)1201 static bool SinkCast(CastInst *CI) {
1202   BasicBlock *DefBB = CI->getParent();
1203 
1204   /// InsertedCasts - Only insert a cast in each block once.
1205   DenseMap<BasicBlock*, CastInst*> InsertedCasts;
1206 
1207   bool MadeChange = false;
1208   for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end();
1209        UI != E; ) {
1210     Use &TheUse = UI.getUse();
1211     Instruction *User = cast<Instruction>(*UI);
1212 
1213     // Figure out which BB this cast is used in.  For PHI's this is the
1214     // appropriate predecessor block.
1215     BasicBlock *UserBB = User->getParent();
1216     if (PHINode *PN = dyn_cast<PHINode>(User)) {
1217       UserBB = PN->getIncomingBlock(TheUse);
1218     }
1219 
1220     // Preincrement use iterator so we don't invalidate it.
1221     ++UI;
1222 
1223     // The first insertion point of a block containing an EH pad is after the
1224     // pad.  If the pad is the user, we cannot sink the cast past the pad.
1225     if (User->isEHPad())
1226       continue;
1227 
1228     // If the block selected to receive the cast is an EH pad that does not
1229     // allow non-PHI instructions before the terminator, we can't sink the
1230     // cast.
1231     if (UserBB->getTerminator()->isEHPad())
1232       continue;
1233 
1234     // If this user is in the same block as the cast, don't change the cast.
1235     if (UserBB == DefBB) continue;
1236 
1237     // If we have already inserted a cast into this block, use it.
1238     CastInst *&InsertedCast = InsertedCasts[UserBB];
1239 
1240     if (!InsertedCast) {
1241       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1242       assert(InsertPt != UserBB->end());
1243       InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0),
1244                                       CI->getType(), "", &*InsertPt);
1245       InsertedCast->setDebugLoc(CI->getDebugLoc());
1246     }
1247 
1248     // Replace a use of the cast with a use of the new cast.
1249     TheUse = InsertedCast;
1250     MadeChange = true;
1251     ++NumCastUses;
1252   }
1253 
1254   // If we removed all uses, nuke the cast.
1255   if (CI->use_empty()) {
1256     salvageDebugInfo(*CI);
1257     CI->eraseFromParent();
1258     MadeChange = true;
1259   }
1260 
1261   return MadeChange;
1262 }
1263 
1264 /// If the specified cast instruction is a noop copy (e.g. it's casting from
1265 /// one pointer type to another, i32->i8 on PPC), sink it into user blocks to
1266 /// reduce the number of virtual registers that must be created and coalesced.
1267 ///
1268 /// Return true if any changes are made.
OptimizeNoopCopyExpression(CastInst * CI,const TargetLowering & TLI,const DataLayout & DL)1269 static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI,
1270                                        const DataLayout &DL) {
1271   // Sink only "cheap" (or nop) address-space casts.  This is a weaker condition
1272   // than sinking only nop casts, but is helpful on some platforms.
1273   if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) {
1274     if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(),
1275                                  ASC->getDestAddressSpace()))
1276       return false;
1277   }
1278 
1279   // If this is a noop copy,
1280   EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType());
1281   EVT DstVT = TLI.getValueType(DL, CI->getType());
1282 
1283   // This is an fp<->int conversion?
1284   if (SrcVT.isInteger() != DstVT.isInteger())
1285     return false;
1286 
1287   // If this is an extension, it will be a zero or sign extension, which
1288   // isn't a noop.
1289   if (SrcVT.bitsLT(DstVT)) return false;
1290 
1291   // If these values will be promoted, find out what they will be promoted
1292   // to.  This helps us consider truncates on PPC as noop copies when they
1293   // are.
1294   if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
1295       TargetLowering::TypePromoteInteger)
1296     SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
1297   if (TLI.getTypeAction(CI->getContext(), DstVT) ==
1298       TargetLowering::TypePromoteInteger)
1299     DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
1300 
1301   // If, after promotion, these are the same types, this is a noop copy.
1302   if (SrcVT != DstVT)
1303     return false;
1304 
1305   return SinkCast(CI);
1306 }
1307 
1308 // Match a simple increment by constant operation.  Note that if a sub is
1309 // matched, the step is negated (as if the step had been canonicalized to
1310 // an add, even though we leave the instruction alone.)
matchIncrement(const Instruction * IVInc,Instruction * & LHS,Constant * & Step)1311 bool matchIncrement(const Instruction* IVInc, Instruction *&LHS,
1312                     Constant *&Step) {
1313   if (match(IVInc, m_Add(m_Instruction(LHS), m_Constant(Step))) ||
1314       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::uadd_with_overflow>(
1315                        m_Instruction(LHS), m_Constant(Step)))))
1316     return true;
1317   if (match(IVInc, m_Sub(m_Instruction(LHS), m_Constant(Step))) ||
1318       match(IVInc, m_ExtractValue<0>(m_Intrinsic<Intrinsic::usub_with_overflow>(
1319                        m_Instruction(LHS), m_Constant(Step))))) {
1320     Step = ConstantExpr::getNeg(Step);
1321     return true;
1322   }
1323   return false;
1324 }
1325 
1326 /// If given \p PN is an inductive variable with value IVInc coming from the
1327 /// backedge, and on each iteration it gets increased by Step, return pair
1328 /// <IVInc, Step>. Otherwise, return None.
1329 static Optional<std::pair<Instruction *, Constant *> >
getIVIncrement(const PHINode * PN,const LoopInfo * LI)1330 getIVIncrement(const PHINode *PN, const LoopInfo *LI) {
1331   const Loop *L = LI->getLoopFor(PN->getParent());
1332   if (!L || L->getHeader() != PN->getParent() || !L->getLoopLatch())
1333     return None;
1334   auto *IVInc =
1335       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
1336   if (!IVInc || LI->getLoopFor(IVInc->getParent()) != L)
1337     return None;
1338   Instruction *LHS = nullptr;
1339   Constant *Step = nullptr;
1340   if (matchIncrement(IVInc, LHS, Step) && LHS == PN)
1341     return std::make_pair(IVInc, Step);
1342   return None;
1343 }
1344 
isIVIncrement(const Value * V,const LoopInfo * LI)1345 static bool isIVIncrement(const Value *V, const LoopInfo *LI) {
1346   auto *I = dyn_cast<Instruction>(V);
1347   if (!I)
1348     return false;
1349   Instruction *LHS = nullptr;
1350   Constant *Step = nullptr;
1351   if (!matchIncrement(I, LHS, Step))
1352     return false;
1353   if (auto *PN = dyn_cast<PHINode>(LHS))
1354     if (auto IVInc = getIVIncrement(PN, LI))
1355       return IVInc->first == I;
1356   return false;
1357 }
1358 
replaceMathCmpWithIntrinsic(BinaryOperator * BO,Value * Arg0,Value * Arg1,CmpInst * Cmp,Intrinsic::ID IID)1359 bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO,
1360                                                  Value *Arg0, Value *Arg1,
1361                                                  CmpInst *Cmp,
1362                                                  Intrinsic::ID IID) {
1363   auto IsReplacableIVIncrement = [this, &Cmp](BinaryOperator *BO) {
1364     if (!isIVIncrement(BO, LI))
1365       return false;
1366     const Loop *L = LI->getLoopFor(BO->getParent());
1367     assert(L && "L should not be null after isIVIncrement()");
1368     // Do not risk on moving increment into a child loop.
1369     if (LI->getLoopFor(Cmp->getParent()) != L)
1370       return false;
1371 
1372     // Finally, we need to ensure that the insert point will dominate all
1373     // existing uses of the increment.
1374 
1375     auto &DT = getDT(*BO->getParent()->getParent());
1376     if (DT.dominates(Cmp->getParent(), BO->getParent()))
1377       // If we're moving up the dom tree, all uses are trivially dominated.
1378       // (This is the common case for code produced by LSR.)
1379       return true;
1380 
1381     // Otherwise, special case the single use in the phi recurrence.
1382     return BO->hasOneUse() && DT.dominates(Cmp->getParent(), L->getLoopLatch());
1383   };
1384   if (BO->getParent() != Cmp->getParent() && !IsReplacableIVIncrement(BO)) {
1385     // We used to use a dominator tree here to allow multi-block optimization.
1386     // But that was problematic because:
1387     // 1. It could cause a perf regression by hoisting the math op into the
1388     //    critical path.
1389     // 2. It could cause a perf regression by creating a value that was live
1390     //    across multiple blocks and increasing register pressure.
1391     // 3. Use of a dominator tree could cause large compile-time regression.
1392     //    This is because we recompute the DT on every change in the main CGP
1393     //    run-loop. The recomputing is probably unnecessary in many cases, so if
1394     //    that was fixed, using a DT here would be ok.
1395     //
1396     // There is one important particular case we still want to handle: if BO is
1397     // the IV increment. Important properties that make it profitable:
1398     // - We can speculate IV increment anywhere in the loop (as long as the
1399     //   indvar Phi is its only user);
1400     // - Upon computing Cmp, we effectively compute something equivalent to the
1401     //   IV increment (despite it loops differently in the IR). So moving it up
1402     //   to the cmp point does not really increase register pressure.
1403     return false;
1404   }
1405 
1406   // We allow matching the canonical IR (add X, C) back to (usubo X, -C).
1407   if (BO->getOpcode() == Instruction::Add &&
1408       IID == Intrinsic::usub_with_overflow) {
1409     assert(isa<Constant>(Arg1) && "Unexpected input for usubo");
1410     Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1));
1411   }
1412 
1413   // Insert at the first instruction of the pair.
1414   Instruction *InsertPt = nullptr;
1415   for (Instruction &Iter : *Cmp->getParent()) {
1416     // If BO is an XOR, it is not guaranteed that it comes after both inputs to
1417     // the overflow intrinsic are defined.
1418     if ((BO->getOpcode() != Instruction::Xor && &Iter == BO) || &Iter == Cmp) {
1419       InsertPt = &Iter;
1420       break;
1421     }
1422   }
1423   assert(InsertPt != nullptr && "Parent block did not contain cmp or binop");
1424 
1425   IRBuilder<> Builder(InsertPt);
1426   Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1);
1427   if (BO->getOpcode() != Instruction::Xor) {
1428     Value *Math = Builder.CreateExtractValue(MathOV, 0, "math");
1429     BO->replaceAllUsesWith(Math);
1430   } else
1431     assert(BO->hasOneUse() &&
1432            "Patterns with XOr should use the BO only in the compare");
1433   Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov");
1434   Cmp->replaceAllUsesWith(OV);
1435   Cmp->eraseFromParent();
1436   BO->eraseFromParent();
1437   return true;
1438 }
1439 
1440 /// Match special-case patterns that check for unsigned add overflow.
matchUAddWithOverflowConstantEdgeCases(CmpInst * Cmp,BinaryOperator * & Add)1441 static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp,
1442                                                    BinaryOperator *&Add) {
1443   // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val)
1444   // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero)
1445   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1446 
1447   // We are not expecting non-canonical/degenerate code. Just bail out.
1448   if (isa<Constant>(A))
1449     return false;
1450 
1451   ICmpInst::Predicate Pred = Cmp->getPredicate();
1452   if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes()))
1453     B = ConstantInt::get(B->getType(), 1);
1454   else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt()))
1455     B = ConstantInt::get(B->getType(), -1);
1456   else
1457     return false;
1458 
1459   // Check the users of the variable operand of the compare looking for an add
1460   // with the adjusted constant.
1461   for (User *U : A->users()) {
1462     if (match(U, m_Add(m_Specific(A), m_Specific(B)))) {
1463       Add = cast<BinaryOperator>(U);
1464       return true;
1465     }
1466   }
1467   return false;
1468 }
1469 
1470 /// Try to combine the compare into a call to the llvm.uadd.with.overflow
1471 /// intrinsic. Return true if any changes were made.
combineToUAddWithOverflow(CmpInst * Cmp,bool & ModifiedDT)1472 bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp,
1473                                                bool &ModifiedDT) {
1474   Value *A, *B;
1475   BinaryOperator *Add;
1476   if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) {
1477     if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add))
1478       return false;
1479     // Set A and B in case we match matchUAddWithOverflowConstantEdgeCases.
1480     A = Add->getOperand(0);
1481     B = Add->getOperand(1);
1482   }
1483 
1484   if (!TLI->shouldFormOverflowOp(ISD::UADDO,
1485                                  TLI->getValueType(*DL, Add->getType()),
1486                                  Add->hasNUsesOrMore(2)))
1487     return false;
1488 
1489   // We don't want to move around uses of condition values this late, so we
1490   // check if it is legal to create the call to the intrinsic in the basic
1491   // block containing the icmp.
1492   if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse())
1493     return false;
1494 
1495   if (!replaceMathCmpWithIntrinsic(Add, A, B, Cmp,
1496                                    Intrinsic::uadd_with_overflow))
1497     return false;
1498 
1499   // Reset callers - do not crash by iterating over a dead instruction.
1500   ModifiedDT = true;
1501   return true;
1502 }
1503 
combineToUSubWithOverflow(CmpInst * Cmp,bool & ModifiedDT)1504 bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp,
1505                                                bool &ModifiedDT) {
1506   // We are not expecting non-canonical/degenerate code. Just bail out.
1507   Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1);
1508   if (isa<Constant>(A) && isa<Constant>(B))
1509     return false;
1510 
1511   // Convert (A u> B) to (A u< B) to simplify pattern matching.
1512   ICmpInst::Predicate Pred = Cmp->getPredicate();
1513   if (Pred == ICmpInst::ICMP_UGT) {
1514     std::swap(A, B);
1515     Pred = ICmpInst::ICMP_ULT;
1516   }
1517   // Convert special-case: (A == 0) is the same as (A u< 1).
1518   if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) {
1519     B = ConstantInt::get(B->getType(), 1);
1520     Pred = ICmpInst::ICMP_ULT;
1521   }
1522   // Convert special-case: (A != 0) is the same as (0 u< A).
1523   if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) {
1524     std::swap(A, B);
1525     Pred = ICmpInst::ICMP_ULT;
1526   }
1527   if (Pred != ICmpInst::ICMP_ULT)
1528     return false;
1529 
1530   // Walk the users of a variable operand of a compare looking for a subtract or
1531   // add with that same operand. Also match the 2nd operand of the compare to
1532   // the add/sub, but that may be a negated constant operand of an add.
1533   Value *CmpVariableOperand = isa<Constant>(A) ? B : A;
1534   BinaryOperator *Sub = nullptr;
1535   for (User *U : CmpVariableOperand->users()) {
1536     // A - B, A u< B --> usubo(A, B)
1537     if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) {
1538       Sub = cast<BinaryOperator>(U);
1539       break;
1540     }
1541 
1542     // A + (-C), A u< C (canonicalized form of (sub A, C))
1543     const APInt *CmpC, *AddC;
1544     if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) &&
1545         match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) {
1546       Sub = cast<BinaryOperator>(U);
1547       break;
1548     }
1549   }
1550   if (!Sub)
1551     return false;
1552 
1553   if (!TLI->shouldFormOverflowOp(ISD::USUBO,
1554                                  TLI->getValueType(*DL, Sub->getType()),
1555                                  Sub->hasNUsesOrMore(2)))
1556     return false;
1557 
1558   if (!replaceMathCmpWithIntrinsic(Sub, Sub->getOperand(0), Sub->getOperand(1),
1559                                    Cmp, Intrinsic::usub_with_overflow))
1560     return false;
1561 
1562   // Reset callers - do not crash by iterating over a dead instruction.
1563   ModifiedDT = true;
1564   return true;
1565 }
1566 
1567 /// Sink the given CmpInst into user blocks to reduce the number of virtual
1568 /// registers that must be created and coalesced. This is a clear win except on
1569 /// targets with multiple condition code registers (PowerPC), where it might
1570 /// lose; some adjustment may be wanted there.
1571 ///
1572 /// Return true if any changes are made.
sinkCmpExpression(CmpInst * Cmp,const TargetLowering & TLI)1573 static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) {
1574   if (TLI.hasMultipleConditionRegisters())
1575     return false;
1576 
1577   // Avoid sinking soft-FP comparisons, since this can move them into a loop.
1578   if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp))
1579     return false;
1580 
1581   // Only insert a cmp in each block once.
1582   DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
1583 
1584   bool MadeChange = false;
1585   for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end();
1586        UI != E; ) {
1587     Use &TheUse = UI.getUse();
1588     Instruction *User = cast<Instruction>(*UI);
1589 
1590     // Preincrement use iterator so we don't invalidate it.
1591     ++UI;
1592 
1593     // Don't bother for PHI nodes.
1594     if (isa<PHINode>(User))
1595       continue;
1596 
1597     // Figure out which BB this cmp is used in.
1598     BasicBlock *UserBB = User->getParent();
1599     BasicBlock *DefBB = Cmp->getParent();
1600 
1601     // If this user is in the same block as the cmp, don't change the cmp.
1602     if (UserBB == DefBB) continue;
1603 
1604     // If we have already inserted a cmp into this block, use it.
1605     CmpInst *&InsertedCmp = InsertedCmps[UserBB];
1606 
1607     if (!InsertedCmp) {
1608       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1609       assert(InsertPt != UserBB->end());
1610       InsertedCmp =
1611           CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(),
1612                           Cmp->getOperand(0), Cmp->getOperand(1), "",
1613                           &*InsertPt);
1614       // Propagate the debug info.
1615       InsertedCmp->setDebugLoc(Cmp->getDebugLoc());
1616     }
1617 
1618     // Replace a use of the cmp with a use of the new cmp.
1619     TheUse = InsertedCmp;
1620     MadeChange = true;
1621     ++NumCmpUses;
1622   }
1623 
1624   // If we removed all uses, nuke the cmp.
1625   if (Cmp->use_empty()) {
1626     Cmp->eraseFromParent();
1627     MadeChange = true;
1628   }
1629 
1630   return MadeChange;
1631 }
1632 
1633 /// For pattern like:
1634 ///
1635 ///   DomCond = icmp sgt/slt CmpOp0, CmpOp1 (might not be in DomBB)
1636 ///   ...
1637 /// DomBB:
1638 ///   ...
1639 ///   br DomCond, TrueBB, CmpBB
1640 /// CmpBB: (with DomBB being the single predecessor)
1641 ///   ...
1642 ///   Cmp = icmp eq CmpOp0, CmpOp1
1643 ///   ...
1644 ///
1645 /// It would use two comparison on targets that lowering of icmp sgt/slt is
1646 /// different from lowering of icmp eq (PowerPC). This function try to convert
1647 /// 'Cmp = icmp eq CmpOp0, CmpOp1' to ' Cmp = icmp slt/sgt CmpOp0, CmpOp1'.
1648 /// After that, DomCond and Cmp can use the same comparison so reduce one
1649 /// comparison.
1650 ///
1651 /// Return true if any changes are made.
foldICmpWithDominatingICmp(CmpInst * Cmp,const TargetLowering & TLI)1652 static bool foldICmpWithDominatingICmp(CmpInst *Cmp,
1653                                        const TargetLowering &TLI) {
1654   if (!EnableICMP_EQToICMP_ST && TLI.isEqualityCmpFoldedWithSignedCmp())
1655     return false;
1656 
1657   ICmpInst::Predicate Pred = Cmp->getPredicate();
1658   if (Pred != ICmpInst::ICMP_EQ)
1659     return false;
1660 
1661   // If icmp eq has users other than BranchInst and SelectInst, converting it to
1662   // icmp slt/sgt would introduce more redundant LLVM IR.
1663   for (User *U : Cmp->users()) {
1664     if (isa<BranchInst>(U))
1665       continue;
1666     if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == Cmp)
1667       continue;
1668     return false;
1669   }
1670 
1671   // This is a cheap/incomplete check for dominance - just match a single
1672   // predecessor with a conditional branch.
1673   BasicBlock *CmpBB = Cmp->getParent();
1674   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1675   if (!DomBB)
1676     return false;
1677 
1678   // We want to ensure that the only way control gets to the comparison of
1679   // interest is that a less/greater than comparison on the same operands is
1680   // false.
1681   Value *DomCond;
1682   BasicBlock *TrueBB, *FalseBB;
1683   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1684     return false;
1685   if (CmpBB != FalseBB)
1686     return false;
1687 
1688   Value *CmpOp0 = Cmp->getOperand(0), *CmpOp1 = Cmp->getOperand(1);
1689   ICmpInst::Predicate DomPred;
1690   if (!match(DomCond, m_ICmp(DomPred, m_Specific(CmpOp0), m_Specific(CmpOp1))))
1691     return false;
1692   if (DomPred != ICmpInst::ICMP_SGT && DomPred != ICmpInst::ICMP_SLT)
1693     return false;
1694 
1695   // Convert the equality comparison to the opposite of the dominating
1696   // comparison and swap the direction for all branch/select users.
1697   // We have conceptually converted:
1698   // Res = (a < b) ? <LT_RES> : (a == b) ? <EQ_RES> : <GT_RES>;
1699   // to
1700   // Res = (a < b) ? <LT_RES> : (a > b)  ? <GT_RES> : <EQ_RES>;
1701   // And similarly for branches.
1702   for (User *U : Cmp->users()) {
1703     if (auto *BI = dyn_cast<BranchInst>(U)) {
1704       assert(BI->isConditional() && "Must be conditional");
1705       BI->swapSuccessors();
1706       continue;
1707     }
1708     if (auto *SI = dyn_cast<SelectInst>(U)) {
1709       // Swap operands
1710       SI->swapValues();
1711       SI->swapProfMetadata();
1712       continue;
1713     }
1714     llvm_unreachable("Must be a branch or a select");
1715   }
1716   Cmp->setPredicate(CmpInst::getSwappedPredicate(DomPred));
1717   return true;
1718 }
1719 
optimizeCmp(CmpInst * Cmp,bool & ModifiedDT)1720 bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) {
1721   if (sinkCmpExpression(Cmp, *TLI))
1722     return true;
1723 
1724   if (combineToUAddWithOverflow(Cmp, ModifiedDT))
1725     return true;
1726 
1727   if (combineToUSubWithOverflow(Cmp, ModifiedDT))
1728     return true;
1729 
1730   if (foldICmpWithDominatingICmp(Cmp, *TLI))
1731     return true;
1732 
1733   return false;
1734 }
1735 
1736 /// Duplicate and sink the given 'and' instruction into user blocks where it is
1737 /// used in a compare to allow isel to generate better code for targets where
1738 /// this operation can be combined.
1739 ///
1740 /// Return true if any changes are made.
sinkAndCmp0Expression(Instruction * AndI,const TargetLowering & TLI,SetOfInstrs & InsertedInsts)1741 static bool sinkAndCmp0Expression(Instruction *AndI,
1742                                   const TargetLowering &TLI,
1743                                   SetOfInstrs &InsertedInsts) {
1744   // Double-check that we're not trying to optimize an instruction that was
1745   // already optimized by some other part of this pass.
1746   assert(!InsertedInsts.count(AndI) &&
1747          "Attempting to optimize already optimized and instruction");
1748   (void) InsertedInsts;
1749 
1750   // Nothing to do for single use in same basic block.
1751   if (AndI->hasOneUse() &&
1752       AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent())
1753     return false;
1754 
1755   // Try to avoid cases where sinking/duplicating is likely to increase register
1756   // pressure.
1757   if (!isa<ConstantInt>(AndI->getOperand(0)) &&
1758       !isa<ConstantInt>(AndI->getOperand(1)) &&
1759       AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse())
1760     return false;
1761 
1762   for (auto *U : AndI->users()) {
1763     Instruction *User = cast<Instruction>(U);
1764 
1765     // Only sink 'and' feeding icmp with 0.
1766     if (!isa<ICmpInst>(User))
1767       return false;
1768 
1769     auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1));
1770     if (!CmpC || !CmpC->isZero())
1771       return false;
1772   }
1773 
1774   if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI))
1775     return false;
1776 
1777   LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n");
1778   LLVM_DEBUG(AndI->getParent()->dump());
1779 
1780   // Push the 'and' into the same block as the icmp 0.  There should only be
1781   // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any
1782   // others, so we don't need to keep track of which BBs we insert into.
1783   for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end();
1784        UI != E; ) {
1785     Use &TheUse = UI.getUse();
1786     Instruction *User = cast<Instruction>(*UI);
1787 
1788     // Preincrement use iterator so we don't invalidate it.
1789     ++UI;
1790 
1791     LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n");
1792 
1793     // Keep the 'and' in the same place if the use is already in the same block.
1794     Instruction *InsertPt =
1795         User->getParent() == AndI->getParent() ? AndI : User;
1796     Instruction *InsertedAnd =
1797         BinaryOperator::Create(Instruction::And, AndI->getOperand(0),
1798                                AndI->getOperand(1), "", InsertPt);
1799     // Propagate the debug info.
1800     InsertedAnd->setDebugLoc(AndI->getDebugLoc());
1801 
1802     // Replace a use of the 'and' with a use of the new 'and'.
1803     TheUse = InsertedAnd;
1804     ++NumAndUses;
1805     LLVM_DEBUG(User->getParent()->dump());
1806   }
1807 
1808   // We removed all uses, nuke the and.
1809   AndI->eraseFromParent();
1810   return true;
1811 }
1812 
1813 /// Check if the candidates could be combined with a shift instruction, which
1814 /// includes:
1815 /// 1. Truncate instruction
1816 /// 2. And instruction and the imm is a mask of the low bits:
1817 /// imm & (imm+1) == 0
isExtractBitsCandidateUse(Instruction * User)1818 static bool isExtractBitsCandidateUse(Instruction *User) {
1819   if (!isa<TruncInst>(User)) {
1820     if (User->getOpcode() != Instruction::And ||
1821         !isa<ConstantInt>(User->getOperand(1)))
1822       return false;
1823 
1824     const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue();
1825 
1826     if ((Cimm & (Cimm + 1)).getBoolValue())
1827       return false;
1828   }
1829   return true;
1830 }
1831 
1832 /// Sink both shift and truncate instruction to the use of truncate's BB.
1833 static bool
SinkShiftAndTruncate(BinaryOperator * ShiftI,Instruction * User,ConstantInt * CI,DenseMap<BasicBlock *,BinaryOperator * > & InsertedShifts,const TargetLowering & TLI,const DataLayout & DL)1834 SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI,
1835                      DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts,
1836                      const TargetLowering &TLI, const DataLayout &DL) {
1837   BasicBlock *UserBB = User->getParent();
1838   DenseMap<BasicBlock *, CastInst *> InsertedTruncs;
1839   auto *TruncI = cast<TruncInst>(User);
1840   bool MadeChange = false;
1841 
1842   for (Value::user_iterator TruncUI = TruncI->user_begin(),
1843                             TruncE = TruncI->user_end();
1844        TruncUI != TruncE;) {
1845 
1846     Use &TruncTheUse = TruncUI.getUse();
1847     Instruction *TruncUser = cast<Instruction>(*TruncUI);
1848     // Preincrement use iterator so we don't invalidate it.
1849 
1850     ++TruncUI;
1851 
1852     int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode());
1853     if (!ISDOpcode)
1854       continue;
1855 
1856     // If the use is actually a legal node, there will not be an
1857     // implicit truncate.
1858     // FIXME: always querying the result type is just an
1859     // approximation; some nodes' legality is determined by the
1860     // operand or other means. There's no good way to find out though.
1861     if (TLI.isOperationLegalOrCustom(
1862             ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true)))
1863       continue;
1864 
1865     // Don't bother for PHI nodes.
1866     if (isa<PHINode>(TruncUser))
1867       continue;
1868 
1869     BasicBlock *TruncUserBB = TruncUser->getParent();
1870 
1871     if (UserBB == TruncUserBB)
1872       continue;
1873 
1874     BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB];
1875     CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB];
1876 
1877     if (!InsertedShift && !InsertedTrunc) {
1878       BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt();
1879       assert(InsertPt != TruncUserBB->end());
1880       // Sink the shift
1881       if (ShiftI->getOpcode() == Instruction::AShr)
1882         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1883                                                    "", &*InsertPt);
1884       else
1885         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1886                                                    "", &*InsertPt);
1887       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1888 
1889       // Sink the trunc
1890       BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt();
1891       TruncInsertPt++;
1892       assert(TruncInsertPt != TruncUserBB->end());
1893 
1894       InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift,
1895                                        TruncI->getType(), "", &*TruncInsertPt);
1896       InsertedTrunc->setDebugLoc(TruncI->getDebugLoc());
1897 
1898       MadeChange = true;
1899 
1900       TruncTheUse = InsertedTrunc;
1901     }
1902   }
1903   return MadeChange;
1904 }
1905 
1906 /// Sink the shift *right* instruction into user blocks if the uses could
1907 /// potentially be combined with this shift instruction and generate BitExtract
1908 /// instruction. It will only be applied if the architecture supports BitExtract
1909 /// instruction. Here is an example:
1910 /// BB1:
1911 ///   %x.extract.shift = lshr i64 %arg1, 32
1912 /// BB2:
1913 ///   %x.extract.trunc = trunc i64 %x.extract.shift to i16
1914 /// ==>
1915 ///
1916 /// BB2:
1917 ///   %x.extract.shift.1 = lshr i64 %arg1, 32
1918 ///   %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16
1919 ///
1920 /// CodeGen will recognize the pattern in BB2 and generate BitExtract
1921 /// instruction.
1922 /// Return true if any changes are made.
OptimizeExtractBits(BinaryOperator * ShiftI,ConstantInt * CI,const TargetLowering & TLI,const DataLayout & DL)1923 static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI,
1924                                 const TargetLowering &TLI,
1925                                 const DataLayout &DL) {
1926   BasicBlock *DefBB = ShiftI->getParent();
1927 
1928   /// Only insert instructions in each block once.
1929   DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts;
1930 
1931   bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType()));
1932 
1933   bool MadeChange = false;
1934   for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end();
1935        UI != E;) {
1936     Use &TheUse = UI.getUse();
1937     Instruction *User = cast<Instruction>(*UI);
1938     // Preincrement use iterator so we don't invalidate it.
1939     ++UI;
1940 
1941     // Don't bother for PHI nodes.
1942     if (isa<PHINode>(User))
1943       continue;
1944 
1945     if (!isExtractBitsCandidateUse(User))
1946       continue;
1947 
1948     BasicBlock *UserBB = User->getParent();
1949 
1950     if (UserBB == DefBB) {
1951       // If the shift and truncate instruction are in the same BB. The use of
1952       // the truncate(TruncUse) may still introduce another truncate if not
1953       // legal. In this case, we would like to sink both shift and truncate
1954       // instruction to the BB of TruncUse.
1955       // for example:
1956       // BB1:
1957       // i64 shift.result = lshr i64 opnd, imm
1958       // trunc.result = trunc shift.result to i16
1959       //
1960       // BB2:
1961       //   ----> We will have an implicit truncate here if the architecture does
1962       //   not have i16 compare.
1963       // cmp i16 trunc.result, opnd2
1964       //
1965       if (isa<TruncInst>(User) && shiftIsLegal
1966           // If the type of the truncate is legal, no truncate will be
1967           // introduced in other basic blocks.
1968           &&
1969           (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType()))))
1970         MadeChange =
1971             SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL);
1972 
1973       continue;
1974     }
1975     // If we have already inserted a shift into this block, use it.
1976     BinaryOperator *&InsertedShift = InsertedShifts[UserBB];
1977 
1978     if (!InsertedShift) {
1979       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
1980       assert(InsertPt != UserBB->end());
1981 
1982       if (ShiftI->getOpcode() == Instruction::AShr)
1983         InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI,
1984                                                    "", &*InsertPt);
1985       else
1986         InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI,
1987                                                    "", &*InsertPt);
1988       InsertedShift->setDebugLoc(ShiftI->getDebugLoc());
1989 
1990       MadeChange = true;
1991     }
1992 
1993     // Replace a use of the shift with a use of the new shift.
1994     TheUse = InsertedShift;
1995   }
1996 
1997   // If we removed all uses, or there are none, nuke the shift.
1998   if (ShiftI->use_empty()) {
1999     salvageDebugInfo(*ShiftI);
2000     ShiftI->eraseFromParent();
2001     MadeChange = true;
2002   }
2003 
2004   return MadeChange;
2005 }
2006 
2007 /// If counting leading or trailing zeros is an expensive operation and a zero
2008 /// input is defined, add a check for zero to avoid calling the intrinsic.
2009 ///
2010 /// We want to transform:
2011 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 false)
2012 ///
2013 /// into:
2014 ///   entry:
2015 ///     %cmpz = icmp eq i64 %A, 0
2016 ///     br i1 %cmpz, label %cond.end, label %cond.false
2017 ///   cond.false:
2018 ///     %z = call i64 @llvm.cttz.i64(i64 %A, i1 true)
2019 ///     br label %cond.end
2020 ///   cond.end:
2021 ///     %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ]
2022 ///
2023 /// If the transform is performed, return true and set ModifiedDT to true.
despeculateCountZeros(IntrinsicInst * CountZeros,const TargetLowering * TLI,const DataLayout * DL,bool & ModifiedDT)2024 static bool despeculateCountZeros(IntrinsicInst *CountZeros,
2025                                   const TargetLowering *TLI,
2026                                   const DataLayout *DL,
2027                                   bool &ModifiedDT) {
2028   // If a zero input is undefined, it doesn't make sense to despeculate that.
2029   if (match(CountZeros->getOperand(1), m_One()))
2030     return false;
2031 
2032   // If it's cheap to speculate, there's nothing to do.
2033   auto IntrinsicID = CountZeros->getIntrinsicID();
2034   if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) ||
2035       (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz()))
2036     return false;
2037 
2038   // Only handle legal scalar cases. Anything else requires too much work.
2039   Type *Ty = CountZeros->getType();
2040   unsigned SizeInBits = Ty->getPrimitiveSizeInBits();
2041   if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits())
2042     return false;
2043 
2044   // The intrinsic will be sunk behind a compare against zero and branch.
2045   BasicBlock *StartBlock = CountZeros->getParent();
2046   BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false");
2047 
2048   // Create another block after the count zero intrinsic. A PHI will be added
2049   // in this block to select the result of the intrinsic or the bit-width
2050   // constant if the input to the intrinsic is zero.
2051   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros));
2052   BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end");
2053 
2054   // Set up a builder to create a compare, conditional branch, and PHI.
2055   IRBuilder<> Builder(CountZeros->getContext());
2056   Builder.SetInsertPoint(StartBlock->getTerminator());
2057   Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc());
2058 
2059   // Replace the unconditional branch that was created by the first split with
2060   // a compare against zero and a conditional branch.
2061   Value *Zero = Constant::getNullValue(Ty);
2062   Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz");
2063   Builder.CreateCondBr(Cmp, EndBlock, CallBlock);
2064   StartBlock->getTerminator()->eraseFromParent();
2065 
2066   // Create a PHI in the end block to select either the output of the intrinsic
2067   // or the bit width of the operand.
2068   Builder.SetInsertPoint(&EndBlock->front());
2069   PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz");
2070   CountZeros->replaceAllUsesWith(PN);
2071   Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits));
2072   PN->addIncoming(BitWidth, StartBlock);
2073   PN->addIncoming(CountZeros, CallBlock);
2074 
2075   // We are explicitly handling the zero case, so we can set the intrinsic's
2076   // undefined zero argument to 'true'. This will also prevent reprocessing the
2077   // intrinsic; we only despeculate when a zero input is defined.
2078   CountZeros->setArgOperand(1, Builder.getTrue());
2079   ModifiedDT = true;
2080   return true;
2081 }
2082 
optimizeCallInst(CallInst * CI,bool & ModifiedDT)2083 bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) {
2084   BasicBlock *BB = CI->getParent();
2085 
2086   // Lower inline assembly if we can.
2087   // If we found an inline asm expession, and if the target knows how to
2088   // lower it to normal LLVM code, do so now.
2089   if (CI->isInlineAsm()) {
2090     if (TLI->ExpandInlineAsm(CI)) {
2091       // Avoid invalidating the iterator.
2092       CurInstIterator = BB->begin();
2093       // Avoid processing instructions out of order, which could cause
2094       // reuse before a value is defined.
2095       SunkAddrs.clear();
2096       return true;
2097     }
2098     // Sink address computing for memory operands into the block.
2099     if (optimizeInlineAsmInst(CI))
2100       return true;
2101   }
2102 
2103   // Align the pointer arguments to this call if the target thinks it's a good
2104   // idea
2105   unsigned MinSize, PrefAlign;
2106   if (TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) {
2107     for (auto &Arg : CI->arg_operands()) {
2108       // We want to align both objects whose address is used directly and
2109       // objects whose address is used in casts and GEPs, though it only makes
2110       // sense for GEPs if the offset is a multiple of the desired alignment and
2111       // if size - offset meets the size threshold.
2112       if (!Arg->getType()->isPointerTy())
2113         continue;
2114       APInt Offset(DL->getIndexSizeInBits(
2115                        cast<PointerType>(Arg->getType())->getAddressSpace()),
2116                    0);
2117       Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset);
2118       uint64_t Offset2 = Offset.getLimitedValue();
2119       if ((Offset2 & (PrefAlign-1)) != 0)
2120         continue;
2121       AllocaInst *AI;
2122       if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign &&
2123           DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2)
2124         AI->setAlignment(Align(PrefAlign));
2125       // Global variables can only be aligned if they are defined in this
2126       // object (i.e. they are uniquely initialized in this object), and
2127       // over-aligning global variables that have an explicit section is
2128       // forbidden.
2129       GlobalVariable *GV;
2130       if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() &&
2131           GV->getPointerAlignment(*DL) < PrefAlign &&
2132           DL->getTypeAllocSize(GV->getValueType()) >=
2133               MinSize + Offset2)
2134         GV->setAlignment(MaybeAlign(PrefAlign));
2135     }
2136     // If this is a memcpy (or similar) then we may be able to improve the
2137     // alignment
2138     if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) {
2139       Align DestAlign = getKnownAlignment(MI->getDest(), *DL);
2140       MaybeAlign MIDestAlign = MI->getDestAlign();
2141       if (!MIDestAlign || DestAlign > *MIDestAlign)
2142         MI->setDestAlignment(DestAlign);
2143       if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
2144         MaybeAlign MTISrcAlign = MTI->getSourceAlign();
2145         Align SrcAlign = getKnownAlignment(MTI->getSource(), *DL);
2146         if (!MTISrcAlign || SrcAlign > *MTISrcAlign)
2147           MTI->setSourceAlignment(SrcAlign);
2148       }
2149     }
2150   }
2151 
2152   // If we have a cold call site, try to sink addressing computation into the
2153   // cold block.  This interacts with our handling for loads and stores to
2154   // ensure that we can fold all uses of a potential addressing computation
2155   // into their uses.  TODO: generalize this to work over profiling data
2156   if (CI->hasFnAttr(Attribute::Cold) &&
2157       !OptSize && !llvm::shouldOptimizeForSize(BB, PSI, BFI.get()))
2158     for (auto &Arg : CI->arg_operands()) {
2159       if (!Arg->getType()->isPointerTy())
2160         continue;
2161       unsigned AS = Arg->getType()->getPointerAddressSpace();
2162       return optimizeMemoryInst(CI, Arg, Arg->getType(), AS);
2163     }
2164 
2165   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
2166   if (II) {
2167     switch (II->getIntrinsicID()) {
2168     default: break;
2169     case Intrinsic::assume:
2170       llvm_unreachable("llvm.assume should have been removed already");
2171     case Intrinsic::experimental_widenable_condition: {
2172       // Give up on future widening oppurtunties so that we can fold away dead
2173       // paths and merge blocks before going into block-local instruction
2174       // selection.
2175       if (II->use_empty()) {
2176         II->eraseFromParent();
2177         return true;
2178       }
2179       Constant *RetVal = ConstantInt::getTrue(II->getContext());
2180       resetIteratorIfInvalidatedWhileCalling(BB, [&]() {
2181         replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr);
2182       });
2183       return true;
2184     }
2185     case Intrinsic::objectsize:
2186       llvm_unreachable("llvm.objectsize.* should have been lowered already");
2187     case Intrinsic::is_constant:
2188       llvm_unreachable("llvm.is.constant.* should have been lowered already");
2189     case Intrinsic::aarch64_stlxr:
2190     case Intrinsic::aarch64_stxr: {
2191       ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0));
2192       if (!ExtVal || !ExtVal->hasOneUse() ||
2193           ExtVal->getParent() == CI->getParent())
2194         return false;
2195       // Sink a zext feeding stlxr/stxr before it, so it can be folded into it.
2196       ExtVal->moveBefore(CI);
2197       // Mark this instruction as "inserted by CGP", so that other
2198       // optimizations don't touch it.
2199       InsertedInsts.insert(ExtVal);
2200       return true;
2201     }
2202 
2203     case Intrinsic::launder_invariant_group:
2204     case Intrinsic::strip_invariant_group: {
2205       Value *ArgVal = II->getArgOperand(0);
2206       auto it = LargeOffsetGEPMap.find(II);
2207       if (it != LargeOffsetGEPMap.end()) {
2208           // Merge entries in LargeOffsetGEPMap to reflect the RAUW.
2209           // Make sure not to have to deal with iterator invalidation
2210           // after possibly adding ArgVal to LargeOffsetGEPMap.
2211           auto GEPs = std::move(it->second);
2212           LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end());
2213           LargeOffsetGEPMap.erase(II);
2214       }
2215 
2216       II->replaceAllUsesWith(ArgVal);
2217       II->eraseFromParent();
2218       return true;
2219     }
2220     case Intrinsic::cttz:
2221     case Intrinsic::ctlz:
2222       // If counting zeros is expensive, try to avoid it.
2223       return despeculateCountZeros(II, TLI, DL, ModifiedDT);
2224     case Intrinsic::fshl:
2225     case Intrinsic::fshr:
2226       return optimizeFunnelShift(II);
2227     case Intrinsic::dbg_value:
2228       return fixupDbgValue(II);
2229     case Intrinsic::vscale: {
2230       // If datalayout has no special restrictions on vector data layout,
2231       // replace `llvm.vscale` by an equivalent constant expression
2232       // to benefit from cheap constant propagation.
2233       Type *ScalableVectorTy =
2234           VectorType::get(Type::getInt8Ty(II->getContext()), 1, true);
2235       if (DL->getTypeAllocSize(ScalableVectorTy).getKnownMinSize() == 8) {
2236         auto *Null = Constant::getNullValue(ScalableVectorTy->getPointerTo());
2237         auto *One = ConstantInt::getSigned(II->getType(), 1);
2238         auto *CGep =
2239             ConstantExpr::getGetElementPtr(ScalableVectorTy, Null, One);
2240         II->replaceAllUsesWith(ConstantExpr::getPtrToInt(CGep, II->getType()));
2241         II->eraseFromParent();
2242         return true;
2243       }
2244       break;
2245     }
2246     case Intrinsic::masked_gather:
2247       return optimizeGatherScatterInst(II, II->getArgOperand(0));
2248     case Intrinsic::masked_scatter:
2249       return optimizeGatherScatterInst(II, II->getArgOperand(1));
2250     }
2251 
2252     SmallVector<Value *, 2> PtrOps;
2253     Type *AccessTy;
2254     if (TLI->getAddrModeArguments(II, PtrOps, AccessTy))
2255       while (!PtrOps.empty()) {
2256         Value *PtrVal = PtrOps.pop_back_val();
2257         unsigned AS = PtrVal->getType()->getPointerAddressSpace();
2258         if (optimizeMemoryInst(II, PtrVal, AccessTy, AS))
2259           return true;
2260       }
2261   }
2262 
2263   // From here on out we're working with named functions.
2264   if (!CI->getCalledFunction()) return false;
2265 
2266   // Lower all default uses of _chk calls.  This is very similar
2267   // to what InstCombineCalls does, but here we are only lowering calls
2268   // to fortified library functions (e.g. __memcpy_chk) that have the default
2269   // "don't know" as the objectsize.  Anything else should be left alone.
2270   FortifiedLibCallSimplifier Simplifier(TLInfo, true);
2271   IRBuilder<> Builder(CI);
2272   if (Value *V = Simplifier.optimizeCall(CI, Builder)) {
2273     CI->replaceAllUsesWith(V);
2274     CI->eraseFromParent();
2275     return true;
2276   }
2277 
2278   return false;
2279 }
2280 
2281 /// Look for opportunities to duplicate return instructions to the predecessor
2282 /// to enable tail call optimizations. The case it is currently looking for is:
2283 /// @code
2284 /// bb0:
2285 ///   %tmp0 = tail call i32 @f0()
2286 ///   br label %return
2287 /// bb1:
2288 ///   %tmp1 = tail call i32 @f1()
2289 ///   br label %return
2290 /// bb2:
2291 ///   %tmp2 = tail call i32 @f2()
2292 ///   br label %return
2293 /// return:
2294 ///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
2295 ///   ret i32 %retval
2296 /// @endcode
2297 ///
2298 /// =>
2299 ///
2300 /// @code
2301 /// bb0:
2302 ///   %tmp0 = tail call i32 @f0()
2303 ///   ret i32 %tmp0
2304 /// bb1:
2305 ///   %tmp1 = tail call i32 @f1()
2306 ///   ret i32 %tmp1
2307 /// bb2:
2308 ///   %tmp2 = tail call i32 @f2()
2309 ///   ret i32 %tmp2
2310 /// @endcode
dupRetToEnableTailCallOpts(BasicBlock * BB,bool & ModifiedDT)2311 bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) {
2312   ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator());
2313   if (!RetI)
2314     return false;
2315 
2316   PHINode *PN = nullptr;
2317   ExtractValueInst *EVI = nullptr;
2318   BitCastInst *BCI = nullptr;
2319   Value *V = RetI->getReturnValue();
2320   if (V) {
2321     BCI = dyn_cast<BitCastInst>(V);
2322     if (BCI)
2323       V = BCI->getOperand(0);
2324 
2325     EVI = dyn_cast<ExtractValueInst>(V);
2326     if (EVI) {
2327       V = EVI->getOperand(0);
2328       if (!llvm::all_of(EVI->indices(), [](unsigned idx) { return idx == 0; }))
2329         return false;
2330     }
2331 
2332     PN = dyn_cast<PHINode>(V);
2333     if (!PN)
2334       return false;
2335   }
2336 
2337   if (PN && PN->getParent() != BB)
2338     return false;
2339 
2340   auto isLifetimeEndOrBitCastFor = [](const Instruction *Inst) {
2341     const BitCastInst *BC = dyn_cast<BitCastInst>(Inst);
2342     if (BC && BC->hasOneUse())
2343       Inst = BC->user_back();
2344 
2345     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
2346       return II->getIntrinsicID() == Intrinsic::lifetime_end;
2347     return false;
2348   };
2349 
2350   // Make sure there are no instructions between the first instruction
2351   // and return.
2352   const Instruction *BI = BB->getFirstNonPHI();
2353   // Skip over debug and the bitcast.
2354   while (isa<DbgInfoIntrinsic>(BI) || BI == BCI || BI == EVI ||
2355          isa<PseudoProbeInst>(BI) || isLifetimeEndOrBitCastFor(BI))
2356     BI = BI->getNextNode();
2357   if (BI != RetI)
2358     return false;
2359 
2360   /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
2361   /// call.
2362   const Function *F = BB->getParent();
2363   SmallVector<BasicBlock*, 4> TailCallBBs;
2364   if (PN) {
2365     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
2366       // Look through bitcasts.
2367       Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts();
2368       CallInst *CI = dyn_cast<CallInst>(IncomingVal);
2369       BasicBlock *PredBB = PN->getIncomingBlock(I);
2370       // Make sure the phi value is indeed produced by the tail call.
2371       if (CI && CI->hasOneUse() && CI->getParent() == PredBB &&
2372           TLI->mayBeEmittedAsTailCall(CI) &&
2373           attributesPermitTailCall(F, CI, RetI, *TLI))
2374         TailCallBBs.push_back(PredBB);
2375     }
2376   } else {
2377     SmallPtrSet<BasicBlock*, 4> VisitedBBs;
2378     for (BasicBlock *Pred : predecessors(BB)) {
2379       if (!VisitedBBs.insert(Pred).second)
2380         continue;
2381       if (Instruction *I = Pred->rbegin()->getPrevNonDebugInstruction(true)) {
2382         CallInst *CI = dyn_cast<CallInst>(I);
2383         if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) &&
2384             attributesPermitTailCall(F, CI, RetI, *TLI))
2385           TailCallBBs.push_back(Pred);
2386       }
2387     }
2388   }
2389 
2390   bool Changed = false;
2391   for (auto const &TailCallBB : TailCallBBs) {
2392     // Make sure the call instruction is followed by an unconditional branch to
2393     // the return block.
2394     BranchInst *BI = dyn_cast<BranchInst>(TailCallBB->getTerminator());
2395     if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
2396       continue;
2397 
2398     // Duplicate the return into TailCallBB.
2399     (void)FoldReturnIntoUncondBranch(RetI, BB, TailCallBB);
2400     assert(!VerifyBFIUpdates ||
2401            BFI->getBlockFreq(BB) >= BFI->getBlockFreq(TailCallBB));
2402     BFI->setBlockFreq(
2403         BB,
2404         (BFI->getBlockFreq(BB) - BFI->getBlockFreq(TailCallBB)).getFrequency());
2405     ModifiedDT = Changed = true;
2406     ++NumRetsDup;
2407   }
2408 
2409   // If we eliminated all predecessors of the block, delete the block now.
2410   if (Changed && !BB->hasAddressTaken() && pred_empty(BB))
2411     BB->eraseFromParent();
2412 
2413   return Changed;
2414 }
2415 
2416 //===----------------------------------------------------------------------===//
2417 // Memory Optimization
2418 //===----------------------------------------------------------------------===//
2419 
2420 namespace {
2421 
2422 /// This is an extended version of TargetLowering::AddrMode
2423 /// which holds actual Value*'s for register values.
2424 struct ExtAddrMode : public TargetLowering::AddrMode {
2425   Value *BaseReg = nullptr;
2426   Value *ScaledReg = nullptr;
2427   Value *OriginalValue = nullptr;
2428   bool InBounds = true;
2429 
2430   enum FieldName {
2431     NoField        = 0x00,
2432     BaseRegField   = 0x01,
2433     BaseGVField    = 0x02,
2434     BaseOffsField  = 0x04,
2435     ScaledRegField = 0x08,
2436     ScaleField     = 0x10,
2437     MultipleFields = 0xff
2438   };
2439 
2440 
2441   ExtAddrMode() = default;
2442 
2443   void print(raw_ostream &OS) const;
2444   void dump() const;
2445 
compare__anon7f6d13e30911::ExtAddrMode2446   FieldName compare(const ExtAddrMode &other) {
2447     // First check that the types are the same on each field, as differing types
2448     // is something we can't cope with later on.
2449     if (BaseReg && other.BaseReg &&
2450         BaseReg->getType() != other.BaseReg->getType())
2451       return MultipleFields;
2452     if (BaseGV && other.BaseGV &&
2453         BaseGV->getType() != other.BaseGV->getType())
2454       return MultipleFields;
2455     if (ScaledReg && other.ScaledReg &&
2456         ScaledReg->getType() != other.ScaledReg->getType())
2457       return MultipleFields;
2458 
2459     // Conservatively reject 'inbounds' mismatches.
2460     if (InBounds != other.InBounds)
2461       return MultipleFields;
2462 
2463     // Check each field to see if it differs.
2464     unsigned Result = NoField;
2465     if (BaseReg != other.BaseReg)
2466       Result |= BaseRegField;
2467     if (BaseGV != other.BaseGV)
2468       Result |= BaseGVField;
2469     if (BaseOffs != other.BaseOffs)
2470       Result |= BaseOffsField;
2471     if (ScaledReg != other.ScaledReg)
2472       Result |= ScaledRegField;
2473     // Don't count 0 as being a different scale, because that actually means
2474     // unscaled (which will already be counted by having no ScaledReg).
2475     if (Scale && other.Scale && Scale != other.Scale)
2476       Result |= ScaleField;
2477 
2478     if (countPopulation(Result) > 1)
2479       return MultipleFields;
2480     else
2481       return static_cast<FieldName>(Result);
2482   }
2483 
2484   // An AddrMode is trivial if it involves no calculation i.e. it is just a base
2485   // with no offset.
isTrivial__anon7f6d13e30911::ExtAddrMode2486   bool isTrivial() {
2487     // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is
2488     // trivial if at most one of these terms is nonzero, except that BaseGV and
2489     // BaseReg both being zero actually means a null pointer value, which we
2490     // consider to be 'non-zero' here.
2491     return !BaseOffs && !Scale && !(BaseGV && BaseReg);
2492   }
2493 
GetFieldAsValue__anon7f6d13e30911::ExtAddrMode2494   Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) {
2495     switch (Field) {
2496     default:
2497       return nullptr;
2498     case BaseRegField:
2499       return BaseReg;
2500     case BaseGVField:
2501       return BaseGV;
2502     case ScaledRegField:
2503       return ScaledReg;
2504     case BaseOffsField:
2505       return ConstantInt::get(IntPtrTy, BaseOffs);
2506     }
2507   }
2508 
SetCombinedField__anon7f6d13e30911::ExtAddrMode2509   void SetCombinedField(FieldName Field, Value *V,
2510                         const SmallVectorImpl<ExtAddrMode> &AddrModes) {
2511     switch (Field) {
2512     default:
2513       llvm_unreachable("Unhandled fields are expected to be rejected earlier");
2514       break;
2515     case ExtAddrMode::BaseRegField:
2516       BaseReg = V;
2517       break;
2518     case ExtAddrMode::BaseGVField:
2519       // A combined BaseGV is an Instruction, not a GlobalValue, so it goes
2520       // in the BaseReg field.
2521       assert(BaseReg == nullptr);
2522       BaseReg = V;
2523       BaseGV = nullptr;
2524       break;
2525     case ExtAddrMode::ScaledRegField:
2526       ScaledReg = V;
2527       // If we have a mix of scaled and unscaled addrmodes then we want scale
2528       // to be the scale and not zero.
2529       if (!Scale)
2530         for (const ExtAddrMode &AM : AddrModes)
2531           if (AM.Scale) {
2532             Scale = AM.Scale;
2533             break;
2534           }
2535       break;
2536     case ExtAddrMode::BaseOffsField:
2537       // The offset is no longer a constant, so it goes in ScaledReg with a
2538       // scale of 1.
2539       assert(ScaledReg == nullptr);
2540       ScaledReg = V;
2541       Scale = 1;
2542       BaseOffs = 0;
2543       break;
2544     }
2545   }
2546 };
2547 
2548 } // end anonymous namespace
2549 
2550 #ifndef NDEBUG
operator <<(raw_ostream & OS,const ExtAddrMode & AM)2551 static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
2552   AM.print(OS);
2553   return OS;
2554 }
2555 #endif
2556 
2557 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
print(raw_ostream & OS) const2558 void ExtAddrMode::print(raw_ostream &OS) const {
2559   bool NeedPlus = false;
2560   OS << "[";
2561   if (InBounds)
2562     OS << "inbounds ";
2563   if (BaseGV) {
2564     OS << (NeedPlus ? " + " : "")
2565        << "GV:";
2566     BaseGV->printAsOperand(OS, /*PrintType=*/false);
2567     NeedPlus = true;
2568   }
2569 
2570   if (BaseOffs) {
2571     OS << (NeedPlus ? " + " : "")
2572        << BaseOffs;
2573     NeedPlus = true;
2574   }
2575 
2576   if (BaseReg) {
2577     OS << (NeedPlus ? " + " : "")
2578        << "Base:";
2579     BaseReg->printAsOperand(OS, /*PrintType=*/false);
2580     NeedPlus = true;
2581   }
2582   if (Scale) {
2583     OS << (NeedPlus ? " + " : "")
2584        << Scale << "*";
2585     ScaledReg->printAsOperand(OS, /*PrintType=*/false);
2586   }
2587 
2588   OS << ']';
2589 }
2590 
dump() const2591 LLVM_DUMP_METHOD void ExtAddrMode::dump() const {
2592   print(dbgs());
2593   dbgs() << '\n';
2594 }
2595 #endif
2596 
2597 namespace {
2598 
2599 /// This class provides transaction based operation on the IR.
2600 /// Every change made through this class is recorded in the internal state and
2601 /// can be undone (rollback) until commit is called.
2602 /// CGP does not check if instructions could be speculatively executed when
2603 /// moved. Preserving the original location would pessimize the debugging
2604 /// experience, as well as negatively impact the quality of sample PGO.
2605 class TypePromotionTransaction {
2606   /// This represents the common interface of the individual transaction.
2607   /// Each class implements the logic for doing one specific modification on
2608   /// the IR via the TypePromotionTransaction.
2609   class TypePromotionAction {
2610   protected:
2611     /// The Instruction modified.
2612     Instruction *Inst;
2613 
2614   public:
2615     /// Constructor of the action.
2616     /// The constructor performs the related action on the IR.
TypePromotionAction(Instruction * Inst)2617     TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
2618 
2619     virtual ~TypePromotionAction() = default;
2620 
2621     /// Undo the modification done by this action.
2622     /// When this method is called, the IR must be in the same state as it was
2623     /// before this action was applied.
2624     /// \pre Undoing the action works if and only if the IR is in the exact same
2625     /// state as it was directly after this action was applied.
2626     virtual void undo() = 0;
2627 
2628     /// Advocate every change made by this action.
2629     /// When the results on the IR of the action are to be kept, it is important
2630     /// to call this function, otherwise hidden information may be kept forever.
commit()2631     virtual void commit() {
2632       // Nothing to be done, this action is not doing anything.
2633     }
2634   };
2635 
2636   /// Utility to remember the position of an instruction.
2637   class InsertionHandler {
2638     /// Position of an instruction.
2639     /// Either an instruction:
2640     /// - Is the first in a basic block: BB is used.
2641     /// - Has a previous instruction: PrevInst is used.
2642     union {
2643       Instruction *PrevInst;
2644       BasicBlock *BB;
2645     } Point;
2646 
2647     /// Remember whether or not the instruction had a previous instruction.
2648     bool HasPrevInstruction;
2649 
2650   public:
2651     /// Record the position of \p Inst.
InsertionHandler(Instruction * Inst)2652     InsertionHandler(Instruction *Inst) {
2653       BasicBlock::iterator It = Inst->getIterator();
2654       HasPrevInstruction = (It != (Inst->getParent()->begin()));
2655       if (HasPrevInstruction)
2656         Point.PrevInst = &*--It;
2657       else
2658         Point.BB = Inst->getParent();
2659     }
2660 
2661     /// Insert \p Inst at the recorded position.
insert(Instruction * Inst)2662     void insert(Instruction *Inst) {
2663       if (HasPrevInstruction) {
2664         if (Inst->getParent())
2665           Inst->removeFromParent();
2666         Inst->insertAfter(Point.PrevInst);
2667       } else {
2668         Instruction *Position = &*Point.BB->getFirstInsertionPt();
2669         if (Inst->getParent())
2670           Inst->moveBefore(Position);
2671         else
2672           Inst->insertBefore(Position);
2673       }
2674     }
2675   };
2676 
2677   /// Move an instruction before another.
2678   class InstructionMoveBefore : public TypePromotionAction {
2679     /// Original position of the instruction.
2680     InsertionHandler Position;
2681 
2682   public:
2683     /// Move \p Inst before \p Before.
InstructionMoveBefore(Instruction * Inst,Instruction * Before)2684     InstructionMoveBefore(Instruction *Inst, Instruction *Before)
2685         : TypePromotionAction(Inst), Position(Inst) {
2686       LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before
2687                         << "\n");
2688       Inst->moveBefore(Before);
2689     }
2690 
2691     /// Move the instruction back to its original position.
undo()2692     void undo() override {
2693       LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
2694       Position.insert(Inst);
2695     }
2696   };
2697 
2698   /// Set the operand of an instruction with a new value.
2699   class OperandSetter : public TypePromotionAction {
2700     /// Original operand of the instruction.
2701     Value *Origin;
2702 
2703     /// Index of the modified instruction.
2704     unsigned Idx;
2705 
2706   public:
2707     /// Set \p Idx operand of \p Inst with \p NewVal.
OperandSetter(Instruction * Inst,unsigned Idx,Value * NewVal)2708     OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
2709         : TypePromotionAction(Inst), Idx(Idx) {
2710       LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
2711                         << "for:" << *Inst << "\n"
2712                         << "with:" << *NewVal << "\n");
2713       Origin = Inst->getOperand(Idx);
2714       Inst->setOperand(Idx, NewVal);
2715     }
2716 
2717     /// Restore the original value of the instruction.
undo()2718     void undo() override {
2719       LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
2720                         << "for: " << *Inst << "\n"
2721                         << "with: " << *Origin << "\n");
2722       Inst->setOperand(Idx, Origin);
2723     }
2724   };
2725 
2726   /// Hide the operands of an instruction.
2727   /// Do as if this instruction was not using any of its operands.
2728   class OperandsHider : public TypePromotionAction {
2729     /// The list of original operands.
2730     SmallVector<Value *, 4> OriginalValues;
2731 
2732   public:
2733     /// Remove \p Inst from the uses of the operands of \p Inst.
OperandsHider(Instruction * Inst)2734     OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
2735       LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
2736       unsigned NumOpnds = Inst->getNumOperands();
2737       OriginalValues.reserve(NumOpnds);
2738       for (unsigned It = 0; It < NumOpnds; ++It) {
2739         // Save the current operand.
2740         Value *Val = Inst->getOperand(It);
2741         OriginalValues.push_back(Val);
2742         // Set a dummy one.
2743         // We could use OperandSetter here, but that would imply an overhead
2744         // that we are not willing to pay.
2745         Inst->setOperand(It, UndefValue::get(Val->getType()));
2746       }
2747     }
2748 
2749     /// Restore the original list of uses.
undo()2750     void undo() override {
2751       LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
2752       for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
2753         Inst->setOperand(It, OriginalValues[It]);
2754     }
2755   };
2756 
2757   /// Build a truncate instruction.
2758   class TruncBuilder : public TypePromotionAction {
2759     Value *Val;
2760 
2761   public:
2762     /// Build a truncate instruction of \p Opnd producing a \p Ty
2763     /// result.
2764     /// trunc Opnd to Ty.
TruncBuilder(Instruction * Opnd,Type * Ty)2765     TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
2766       IRBuilder<> Builder(Opnd);
2767       Builder.SetCurrentDebugLocation(DebugLoc());
2768       Val = Builder.CreateTrunc(Opnd, Ty, "promoted");
2769       LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n");
2770     }
2771 
2772     /// Get the built value.
getBuiltValue()2773     Value *getBuiltValue() { return Val; }
2774 
2775     /// Remove the built instruction.
undo()2776     void undo() override {
2777       LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n");
2778       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2779         IVal->eraseFromParent();
2780     }
2781   };
2782 
2783   /// Build a sign extension instruction.
2784   class SExtBuilder : public TypePromotionAction {
2785     Value *Val;
2786 
2787   public:
2788     /// Build a sign extension instruction of \p Opnd producing a \p Ty
2789     /// result.
2790     /// sext Opnd to Ty.
SExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)2791     SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2792         : TypePromotionAction(InsertPt) {
2793       IRBuilder<> Builder(InsertPt);
2794       Val = Builder.CreateSExt(Opnd, Ty, "promoted");
2795       LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n");
2796     }
2797 
2798     /// Get the built value.
getBuiltValue()2799     Value *getBuiltValue() { return Val; }
2800 
2801     /// Remove the built instruction.
undo()2802     void undo() override {
2803       LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n");
2804       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2805         IVal->eraseFromParent();
2806     }
2807   };
2808 
2809   /// Build a zero extension instruction.
2810   class ZExtBuilder : public TypePromotionAction {
2811     Value *Val;
2812 
2813   public:
2814     /// Build a zero extension instruction of \p Opnd producing a \p Ty
2815     /// result.
2816     /// zext Opnd to Ty.
ZExtBuilder(Instruction * InsertPt,Value * Opnd,Type * Ty)2817     ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
2818         : TypePromotionAction(InsertPt) {
2819       IRBuilder<> Builder(InsertPt);
2820       Builder.SetCurrentDebugLocation(DebugLoc());
2821       Val = Builder.CreateZExt(Opnd, Ty, "promoted");
2822       LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n");
2823     }
2824 
2825     /// Get the built value.
getBuiltValue()2826     Value *getBuiltValue() { return Val; }
2827 
2828     /// Remove the built instruction.
undo()2829     void undo() override {
2830       LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n");
2831       if (Instruction *IVal = dyn_cast<Instruction>(Val))
2832         IVal->eraseFromParent();
2833     }
2834   };
2835 
2836   /// Mutate an instruction to another type.
2837   class TypeMutator : public TypePromotionAction {
2838     /// Record the original type.
2839     Type *OrigTy;
2840 
2841   public:
2842     /// Mutate the type of \p Inst into \p NewTy.
TypeMutator(Instruction * Inst,Type * NewTy)2843     TypeMutator(Instruction *Inst, Type *NewTy)
2844         : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
2845       LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
2846                         << "\n");
2847       Inst->mutateType(NewTy);
2848     }
2849 
2850     /// Mutate the instruction back to its original type.
undo()2851     void undo() override {
2852       LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
2853                         << "\n");
2854       Inst->mutateType(OrigTy);
2855     }
2856   };
2857 
2858   /// Replace the uses of an instruction by another instruction.
2859   class UsesReplacer : public TypePromotionAction {
2860     /// Helper structure to keep track of the replaced uses.
2861     struct InstructionAndIdx {
2862       /// The instruction using the instruction.
2863       Instruction *Inst;
2864 
2865       /// The index where this instruction is used for Inst.
2866       unsigned Idx;
2867 
InstructionAndIdx__anon7f6d13e30a11::TypePromotionTransaction::UsesReplacer::InstructionAndIdx2868       InstructionAndIdx(Instruction *Inst, unsigned Idx)
2869           : Inst(Inst), Idx(Idx) {}
2870     };
2871 
2872     /// Keep track of the original uses (pair Instruction, Index).
2873     SmallVector<InstructionAndIdx, 4> OriginalUses;
2874     /// Keep track of the debug users.
2875     SmallVector<DbgValueInst *, 1> DbgValues;
2876 
2877     /// Keep track of the new value so that we can undo it by replacing
2878     /// instances of the new value with the original value.
2879     Value *New;
2880 
2881     using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator;
2882 
2883   public:
2884     /// Replace all the use of \p Inst by \p New.
UsesReplacer(Instruction * Inst,Value * New)2885     UsesReplacer(Instruction *Inst, Value *New)
2886         : TypePromotionAction(Inst), New(New) {
2887       LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
2888                         << "\n");
2889       // Record the original uses.
2890       for (Use &U : Inst->uses()) {
2891         Instruction *UserI = cast<Instruction>(U.getUser());
2892         OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo()));
2893       }
2894       // Record the debug uses separately. They are not in the instruction's
2895       // use list, but they are replaced by RAUW.
2896       findDbgValues(DbgValues, Inst);
2897 
2898       // Now, we can replace the uses.
2899       Inst->replaceAllUsesWith(New);
2900     }
2901 
2902     /// Reassign the original uses of Inst to Inst.
undo()2903     void undo() override {
2904       LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
2905       for (InstructionAndIdx &Use : OriginalUses)
2906         Use.Inst->setOperand(Use.Idx, Inst);
2907       // RAUW has replaced all original uses with references to the new value,
2908       // including the debug uses. Since we are undoing the replacements,
2909       // the original debug uses must also be reinstated to maintain the
2910       // correctness and utility of debug value instructions.
2911       for (auto *DVI : DbgValues)
2912         DVI->replaceVariableLocationOp(New, Inst);
2913     }
2914   };
2915 
2916   /// Remove an instruction from the IR.
2917   class InstructionRemover : public TypePromotionAction {
2918     /// Original position of the instruction.
2919     InsertionHandler Inserter;
2920 
2921     /// Helper structure to hide all the link to the instruction. In other
2922     /// words, this helps to do as if the instruction was removed.
2923     OperandsHider Hider;
2924 
2925     /// Keep track of the uses replaced, if any.
2926     UsesReplacer *Replacer = nullptr;
2927 
2928     /// Keep track of instructions removed.
2929     SetOfInstrs &RemovedInsts;
2930 
2931   public:
2932     /// Remove all reference of \p Inst and optionally replace all its
2933     /// uses with New.
2934     /// \p RemovedInsts Keep track of the instructions removed by this Action.
2935     /// \pre If !Inst->use_empty(), then New != nullptr
InstructionRemover(Instruction * Inst,SetOfInstrs & RemovedInsts,Value * New=nullptr)2936     InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts,
2937                        Value *New = nullptr)
2938         : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
2939           RemovedInsts(RemovedInsts) {
2940       if (New)
2941         Replacer = new UsesReplacer(Inst, New);
2942       LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
2943       RemovedInsts.insert(Inst);
2944       /// The instructions removed here will be freed after completing
2945       /// optimizeBlock() for all blocks as we need to keep track of the
2946       /// removed instructions during promotion.
2947       Inst->removeFromParent();
2948     }
2949 
~InstructionRemover()2950     ~InstructionRemover() override { delete Replacer; }
2951 
2952     /// Resurrect the instruction and reassign it to the proper uses if
2953     /// new value was provided when build this action.
undo()2954     void undo() override {
2955       LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
2956       Inserter.insert(Inst);
2957       if (Replacer)
2958         Replacer->undo();
2959       Hider.undo();
2960       RemovedInsts.erase(Inst);
2961     }
2962   };
2963 
2964 public:
2965   /// Restoration point.
2966   /// The restoration point is a pointer to an action instead of an iterator
2967   /// because the iterator may be invalidated but not the pointer.
2968   using ConstRestorationPt = const TypePromotionAction *;
2969 
TypePromotionTransaction(SetOfInstrs & RemovedInsts)2970   TypePromotionTransaction(SetOfInstrs &RemovedInsts)
2971       : RemovedInsts(RemovedInsts) {}
2972 
2973   /// Advocate every changes made in that transaction. Return true if any change
2974   /// happen.
2975   bool commit();
2976 
2977   /// Undo all the changes made after the given point.
2978   void rollback(ConstRestorationPt Point);
2979 
2980   /// Get the current restoration point.
2981   ConstRestorationPt getRestorationPoint() const;
2982 
2983   /// \name API for IR modification with state keeping to support rollback.
2984   /// @{
2985   /// Same as Instruction::setOperand.
2986   void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
2987 
2988   /// Same as Instruction::eraseFromParent.
2989   void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr);
2990 
2991   /// Same as Value::replaceAllUsesWith.
2992   void replaceAllUsesWith(Instruction *Inst, Value *New);
2993 
2994   /// Same as Value::mutateType.
2995   void mutateType(Instruction *Inst, Type *NewTy);
2996 
2997   /// Same as IRBuilder::createTrunc.
2998   Value *createTrunc(Instruction *Opnd, Type *Ty);
2999 
3000   /// Same as IRBuilder::createSExt.
3001   Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
3002 
3003   /// Same as IRBuilder::createZExt.
3004   Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty);
3005 
3006   /// Same as Instruction::moveBefore.
3007   void moveBefore(Instruction *Inst, Instruction *Before);
3008   /// @}
3009 
3010 private:
3011   /// The ordered list of actions made so far.
3012   SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions;
3013 
3014   using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator;
3015 
3016   SetOfInstrs &RemovedInsts;
3017 };
3018 
3019 } // end anonymous namespace
3020 
setOperand(Instruction * Inst,unsigned Idx,Value * NewVal)3021 void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
3022                                           Value *NewVal) {
3023   Actions.push_back(std::make_unique<TypePromotionTransaction::OperandSetter>(
3024       Inst, Idx, NewVal));
3025 }
3026 
eraseInstruction(Instruction * Inst,Value * NewVal)3027 void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
3028                                                 Value *NewVal) {
3029   Actions.push_back(
3030       std::make_unique<TypePromotionTransaction::InstructionRemover>(
3031           Inst, RemovedInsts, NewVal));
3032 }
3033 
replaceAllUsesWith(Instruction * Inst,Value * New)3034 void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
3035                                                   Value *New) {
3036   Actions.push_back(
3037       std::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New));
3038 }
3039 
mutateType(Instruction * Inst,Type * NewTy)3040 void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
3041   Actions.push_back(
3042       std::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy));
3043 }
3044 
createTrunc(Instruction * Opnd,Type * Ty)3045 Value *TypePromotionTransaction::createTrunc(Instruction *Opnd,
3046                                              Type *Ty) {
3047   std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty));
3048   Value *Val = Ptr->getBuiltValue();
3049   Actions.push_back(std::move(Ptr));
3050   return Val;
3051 }
3052 
createSExt(Instruction * Inst,Value * Opnd,Type * Ty)3053 Value *TypePromotionTransaction::createSExt(Instruction *Inst,
3054                                             Value *Opnd, Type *Ty) {
3055   std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty));
3056   Value *Val = Ptr->getBuiltValue();
3057   Actions.push_back(std::move(Ptr));
3058   return Val;
3059 }
3060 
createZExt(Instruction * Inst,Value * Opnd,Type * Ty)3061 Value *TypePromotionTransaction::createZExt(Instruction *Inst,
3062                                             Value *Opnd, Type *Ty) {
3063   std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty));
3064   Value *Val = Ptr->getBuiltValue();
3065   Actions.push_back(std::move(Ptr));
3066   return Val;
3067 }
3068 
moveBefore(Instruction * Inst,Instruction * Before)3069 void TypePromotionTransaction::moveBefore(Instruction *Inst,
3070                                           Instruction *Before) {
3071   Actions.push_back(
3072       std::make_unique<TypePromotionTransaction::InstructionMoveBefore>(
3073           Inst, Before));
3074 }
3075 
3076 TypePromotionTransaction::ConstRestorationPt
getRestorationPoint() const3077 TypePromotionTransaction::getRestorationPoint() const {
3078   return !Actions.empty() ? Actions.back().get() : nullptr;
3079 }
3080 
commit()3081 bool TypePromotionTransaction::commit() {
3082   for (std::unique_ptr<TypePromotionAction> &Action : Actions)
3083     Action->commit();
3084   bool Modified = !Actions.empty();
3085   Actions.clear();
3086   return Modified;
3087 }
3088 
rollback(TypePromotionTransaction::ConstRestorationPt Point)3089 void TypePromotionTransaction::rollback(
3090     TypePromotionTransaction::ConstRestorationPt Point) {
3091   while (!Actions.empty() && Point != Actions.back().get()) {
3092     std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val();
3093     Curr->undo();
3094   }
3095 }
3096 
3097 namespace {
3098 
3099 /// A helper class for matching addressing modes.
3100 ///
3101 /// This encapsulates the logic for matching the target-legal addressing modes.
3102 class AddressingModeMatcher {
3103   SmallVectorImpl<Instruction*> &AddrModeInsts;
3104   const TargetLowering &TLI;
3105   const TargetRegisterInfo &TRI;
3106   const DataLayout &DL;
3107   const LoopInfo &LI;
3108   const std::function<const DominatorTree &()> getDTFn;
3109 
3110   /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
3111   /// the memory instruction that we're computing this address for.
3112   Type *AccessTy;
3113   unsigned AddrSpace;
3114   Instruction *MemoryInst;
3115 
3116   /// This is the addressing mode that we're building up. This is
3117   /// part of the return value of this addressing mode matching stuff.
3118   ExtAddrMode &AddrMode;
3119 
3120   /// The instructions inserted by other CodeGenPrepare optimizations.
3121   const SetOfInstrs &InsertedInsts;
3122 
3123   /// A map from the instructions to their type before promotion.
3124   InstrToOrigTy &PromotedInsts;
3125 
3126   /// The ongoing transaction where every action should be registered.
3127   TypePromotionTransaction &TPT;
3128 
3129   // A GEP which has too large offset to be folded into the addressing mode.
3130   std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP;
3131 
3132   /// This is set to true when we should not do profitability checks.
3133   /// When true, IsProfitableToFoldIntoAddressingMode always returns true.
3134   bool IgnoreProfitability;
3135 
3136   /// True if we are optimizing for size.
3137   bool OptSize;
3138 
3139   ProfileSummaryInfo *PSI;
3140   BlockFrequencyInfo *BFI;
3141 
AddressingModeMatcher(SmallVectorImpl<Instruction * > & AMI,const TargetLowering & TLI,const TargetRegisterInfo & TRI,const LoopInfo & LI,const std::function<const DominatorTree & ()> getDTFn,Type * AT,unsigned AS,Instruction * MI,ExtAddrMode & AM,const SetOfInstrs & InsertedInsts,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT,std::pair<AssertingVH<GetElementPtrInst>,int64_t> & LargeOffsetGEP,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)3142   AddressingModeMatcher(
3143       SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI,
3144       const TargetRegisterInfo &TRI, const LoopInfo &LI,
3145       const std::function<const DominatorTree &()> getDTFn,
3146       Type *AT, unsigned AS, Instruction *MI, ExtAddrMode &AM,
3147       const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts,
3148       TypePromotionTransaction &TPT,
3149       std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3150       bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI)
3151       : AddrModeInsts(AMI), TLI(TLI), TRI(TRI),
3152         DL(MI->getModule()->getDataLayout()), LI(LI), getDTFn(getDTFn),
3153         AccessTy(AT), AddrSpace(AS), MemoryInst(MI), AddrMode(AM),
3154         InsertedInsts(InsertedInsts), PromotedInsts(PromotedInsts), TPT(TPT),
3155         LargeOffsetGEP(LargeOffsetGEP), OptSize(OptSize), PSI(PSI), BFI(BFI) {
3156     IgnoreProfitability = false;
3157   }
3158 
3159 public:
3160   /// Find the maximal addressing mode that a load/store of V can fold,
3161   /// give an access type of AccessTy.  This returns a list of involved
3162   /// instructions in AddrModeInsts.
3163   /// \p InsertedInsts The instructions inserted by other CodeGenPrepare
3164   /// optimizations.
3165   /// \p PromotedInsts maps the instructions to their type before promotion.
3166   /// \p The ongoing transaction where every action should be registered.
3167   static ExtAddrMode
Match(Value * V,Type * AccessTy,unsigned AS,Instruction * MemoryInst,SmallVectorImpl<Instruction * > & AddrModeInsts,const TargetLowering & TLI,const LoopInfo & LI,const std::function<const DominatorTree & ()> getDTFn,const TargetRegisterInfo & TRI,const SetOfInstrs & InsertedInsts,InstrToOrigTy & PromotedInsts,TypePromotionTransaction & TPT,std::pair<AssertingVH<GetElementPtrInst>,int64_t> & LargeOffsetGEP,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI)3168   Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst,
3169         SmallVectorImpl<Instruction *> &AddrModeInsts,
3170         const TargetLowering &TLI, const LoopInfo &LI,
3171         const std::function<const DominatorTree &()> getDTFn,
3172         const TargetRegisterInfo &TRI, const SetOfInstrs &InsertedInsts,
3173         InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT,
3174         std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP,
3175         bool OptSize, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) {
3176     ExtAddrMode Result;
3177 
3178     bool Success = AddressingModeMatcher(
3179         AddrModeInsts, TLI, TRI, LI, getDTFn, AccessTy, AS, MemoryInst, Result,
3180         InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
3181         BFI).matchAddr(V, 0);
3182     (void)Success; assert(Success && "Couldn't select *anything*?");
3183     return Result;
3184   }
3185 
3186 private:
3187   bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
3188   bool matchAddr(Value *Addr, unsigned Depth);
3189   bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth,
3190                           bool *MovedAway = nullptr);
3191   bool isProfitableToFoldIntoAddressingMode(Instruction *I,
3192                                             ExtAddrMode &AMBefore,
3193                                             ExtAddrMode &AMAfter);
3194   bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
3195   bool isPromotionProfitable(unsigned NewCost, unsigned OldCost,
3196                              Value *PromotedOperand) const;
3197 };
3198 
3199 class PhiNodeSet;
3200 
3201 /// An iterator for PhiNodeSet.
3202 class PhiNodeSetIterator {
3203   PhiNodeSet * const Set;
3204   size_t CurrentIndex = 0;
3205 
3206 public:
3207   /// The constructor. Start should point to either a valid element, or be equal
3208   /// to the size of the underlying SmallVector of the PhiNodeSet.
3209   PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start);
3210   PHINode * operator*() const;
3211   PhiNodeSetIterator& operator++();
3212   bool operator==(const PhiNodeSetIterator &RHS) const;
3213   bool operator!=(const PhiNodeSetIterator &RHS) const;
3214 };
3215 
3216 /// Keeps a set of PHINodes.
3217 ///
3218 /// This is a minimal set implementation for a specific use case:
3219 /// It is very fast when there are very few elements, but also provides good
3220 /// performance when there are many. It is similar to SmallPtrSet, but also
3221 /// provides iteration by insertion order, which is deterministic and stable
3222 /// across runs. It is also similar to SmallSetVector, but provides removing
3223 /// elements in O(1) time. This is achieved by not actually removing the element
3224 /// from the underlying vector, so comes at the cost of using more memory, but
3225 /// that is fine, since PhiNodeSets are used as short lived objects.
3226 class PhiNodeSet {
3227   friend class PhiNodeSetIterator;
3228 
3229   using MapType = SmallDenseMap<PHINode *, size_t, 32>;
3230   using iterator =  PhiNodeSetIterator;
3231 
3232   /// Keeps the elements in the order of their insertion in the underlying
3233   /// vector. To achieve constant time removal, it never deletes any element.
3234   SmallVector<PHINode *, 32> NodeList;
3235 
3236   /// Keeps the elements in the underlying set implementation. This (and not the
3237   /// NodeList defined above) is the source of truth on whether an element
3238   /// is actually in the collection.
3239   MapType NodeMap;
3240 
3241   /// Points to the first valid (not deleted) element when the set is not empty
3242   /// and the value is not zero. Equals to the size of the underlying vector
3243   /// when the set is empty. When the value is 0, as in the beginning, the
3244   /// first element may or may not be valid.
3245   size_t FirstValidElement = 0;
3246 
3247 public:
3248   /// Inserts a new element to the collection.
3249   /// \returns true if the element is actually added, i.e. was not in the
3250   /// collection before the operation.
insert(PHINode * Ptr)3251   bool insert(PHINode *Ptr) {
3252     if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) {
3253       NodeList.push_back(Ptr);
3254       return true;
3255     }
3256     return false;
3257   }
3258 
3259   /// Removes the element from the collection.
3260   /// \returns whether the element is actually removed, i.e. was in the
3261   /// collection before the operation.
erase(PHINode * Ptr)3262   bool erase(PHINode *Ptr) {
3263     if (NodeMap.erase(Ptr)) {
3264       SkipRemovedElements(FirstValidElement);
3265       return true;
3266     }
3267     return false;
3268   }
3269 
3270   /// Removes all elements and clears the collection.
clear()3271   void clear() {
3272     NodeMap.clear();
3273     NodeList.clear();
3274     FirstValidElement = 0;
3275   }
3276 
3277   /// \returns an iterator that will iterate the elements in the order of
3278   /// insertion.
begin()3279   iterator begin() {
3280     if (FirstValidElement == 0)
3281       SkipRemovedElements(FirstValidElement);
3282     return PhiNodeSetIterator(this, FirstValidElement);
3283   }
3284 
3285   /// \returns an iterator that points to the end of the collection.
end()3286   iterator end() { return PhiNodeSetIterator(this, NodeList.size()); }
3287 
3288   /// Returns the number of elements in the collection.
size() const3289   size_t size() const {
3290     return NodeMap.size();
3291   }
3292 
3293   /// \returns 1 if the given element is in the collection, and 0 if otherwise.
count(PHINode * Ptr) const3294   size_t count(PHINode *Ptr) const {
3295     return NodeMap.count(Ptr);
3296   }
3297 
3298 private:
3299   /// Updates the CurrentIndex so that it will point to a valid element.
3300   ///
3301   /// If the element of NodeList at CurrentIndex is valid, it does not
3302   /// change it. If there are no more valid elements, it updates CurrentIndex
3303   /// to point to the end of the NodeList.
SkipRemovedElements(size_t & CurrentIndex)3304   void SkipRemovedElements(size_t &CurrentIndex) {
3305     while (CurrentIndex < NodeList.size()) {
3306       auto it = NodeMap.find(NodeList[CurrentIndex]);
3307       // If the element has been deleted and added again later, NodeMap will
3308       // point to a different index, so CurrentIndex will still be invalid.
3309       if (it != NodeMap.end() && it->second == CurrentIndex)
3310         break;
3311       ++CurrentIndex;
3312     }
3313   }
3314 };
3315 
PhiNodeSetIterator(PhiNodeSet * const Set,size_t Start)3316 PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start)
3317     : Set(Set), CurrentIndex(Start) {}
3318 
operator *() const3319 PHINode * PhiNodeSetIterator::operator*() const {
3320   assert(CurrentIndex < Set->NodeList.size() &&
3321          "PhiNodeSet access out of range");
3322   return Set->NodeList[CurrentIndex];
3323 }
3324 
operator ++()3325 PhiNodeSetIterator& PhiNodeSetIterator::operator++() {
3326   assert(CurrentIndex < Set->NodeList.size() &&
3327          "PhiNodeSet access out of range");
3328   ++CurrentIndex;
3329   Set->SkipRemovedElements(CurrentIndex);
3330   return *this;
3331 }
3332 
operator ==(const PhiNodeSetIterator & RHS) const3333 bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const {
3334   return CurrentIndex == RHS.CurrentIndex;
3335 }
3336 
operator !=(const PhiNodeSetIterator & RHS) const3337 bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const {
3338   return !((*this) == RHS);
3339 }
3340 
3341 /// Keep track of simplification of Phi nodes.
3342 /// Accept the set of all phi nodes and erase phi node from this set
3343 /// if it is simplified.
3344 class SimplificationTracker {
3345   DenseMap<Value *, Value *> Storage;
3346   const SimplifyQuery &SQ;
3347   // Tracks newly created Phi nodes. The elements are iterated by insertion
3348   // order.
3349   PhiNodeSet AllPhiNodes;
3350   // Tracks newly created Select nodes.
3351   SmallPtrSet<SelectInst *, 32> AllSelectNodes;
3352 
3353 public:
SimplificationTracker(const SimplifyQuery & sq)3354   SimplificationTracker(const SimplifyQuery &sq)
3355       : SQ(sq) {}
3356 
Get(Value * V)3357   Value *Get(Value *V) {
3358     do {
3359       auto SV = Storage.find(V);
3360       if (SV == Storage.end())
3361         return V;
3362       V = SV->second;
3363     } while (true);
3364   }
3365 
Simplify(Value * Val)3366   Value *Simplify(Value *Val) {
3367     SmallVector<Value *, 32> WorkList;
3368     SmallPtrSet<Value *, 32> Visited;
3369     WorkList.push_back(Val);
3370     while (!WorkList.empty()) {
3371       auto *P = WorkList.pop_back_val();
3372       if (!Visited.insert(P).second)
3373         continue;
3374       if (auto *PI = dyn_cast<Instruction>(P))
3375         if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) {
3376           for (auto *U : PI->users())
3377             WorkList.push_back(cast<Value>(U));
3378           Put(PI, V);
3379           PI->replaceAllUsesWith(V);
3380           if (auto *PHI = dyn_cast<PHINode>(PI))
3381             AllPhiNodes.erase(PHI);
3382           if (auto *Select = dyn_cast<SelectInst>(PI))
3383             AllSelectNodes.erase(Select);
3384           PI->eraseFromParent();
3385         }
3386     }
3387     return Get(Val);
3388   }
3389 
Put(Value * From,Value * To)3390   void Put(Value *From, Value *To) {
3391     Storage.insert({ From, To });
3392   }
3393 
ReplacePhi(PHINode * From,PHINode * To)3394   void ReplacePhi(PHINode *From, PHINode *To) {
3395     Value* OldReplacement = Get(From);
3396     while (OldReplacement != From) {
3397       From = To;
3398       To = dyn_cast<PHINode>(OldReplacement);
3399       OldReplacement = Get(From);
3400     }
3401     assert(To && Get(To) == To && "Replacement PHI node is already replaced.");
3402     Put(From, To);
3403     From->replaceAllUsesWith(To);
3404     AllPhiNodes.erase(From);
3405     From->eraseFromParent();
3406   }
3407 
newPhiNodes()3408   PhiNodeSet& newPhiNodes() { return AllPhiNodes; }
3409 
insertNewPhi(PHINode * PN)3410   void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); }
3411 
insertNewSelect(SelectInst * SI)3412   void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); }
3413 
countNewPhiNodes() const3414   unsigned countNewPhiNodes() const { return AllPhiNodes.size(); }
3415 
countNewSelectNodes() const3416   unsigned countNewSelectNodes() const { return AllSelectNodes.size(); }
3417 
destroyNewNodes(Type * CommonType)3418   void destroyNewNodes(Type *CommonType) {
3419     // For safe erasing, replace the uses with dummy value first.
3420     auto *Dummy = UndefValue::get(CommonType);
3421     for (auto *I : AllPhiNodes) {
3422       I->replaceAllUsesWith(Dummy);
3423       I->eraseFromParent();
3424     }
3425     AllPhiNodes.clear();
3426     for (auto *I : AllSelectNodes) {
3427       I->replaceAllUsesWith(Dummy);
3428       I->eraseFromParent();
3429     }
3430     AllSelectNodes.clear();
3431   }
3432 };
3433 
3434 /// A helper class for combining addressing modes.
3435 class AddressingModeCombiner {
3436   typedef DenseMap<Value *, Value *> FoldAddrToValueMapping;
3437   typedef std::pair<PHINode *, PHINode *> PHIPair;
3438 
3439 private:
3440   /// The addressing modes we've collected.
3441   SmallVector<ExtAddrMode, 16> AddrModes;
3442 
3443   /// The field in which the AddrModes differ, when we have more than one.
3444   ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField;
3445 
3446   /// Are the AddrModes that we have all just equal to their original values?
3447   bool AllAddrModesTrivial = true;
3448 
3449   /// Common Type for all different fields in addressing modes.
3450   Type *CommonType;
3451 
3452   /// SimplifyQuery for simplifyInstruction utility.
3453   const SimplifyQuery &SQ;
3454 
3455   /// Original Address.
3456   Value *Original;
3457 
3458 public:
AddressingModeCombiner(const SimplifyQuery & _SQ,Value * OriginalValue)3459   AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue)
3460       : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {}
3461 
3462   /// Get the combined AddrMode
getAddrMode() const3463   const ExtAddrMode &getAddrMode() const {
3464     return AddrModes[0];
3465   }
3466 
3467   /// Add a new AddrMode if it's compatible with the AddrModes we already
3468   /// have.
3469   /// \return True iff we succeeded in doing so.
addNewAddrMode(ExtAddrMode & NewAddrMode)3470   bool addNewAddrMode(ExtAddrMode &NewAddrMode) {
3471     // Take note of if we have any non-trivial AddrModes, as we need to detect
3472     // when all AddrModes are trivial as then we would introduce a phi or select
3473     // which just duplicates what's already there.
3474     AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial();
3475 
3476     // If this is the first addrmode then everything is fine.
3477     if (AddrModes.empty()) {
3478       AddrModes.emplace_back(NewAddrMode);
3479       return true;
3480     }
3481 
3482     // Figure out how different this is from the other address modes, which we
3483     // can do just by comparing against the first one given that we only care
3484     // about the cumulative difference.
3485     ExtAddrMode::FieldName ThisDifferentField =
3486       AddrModes[0].compare(NewAddrMode);
3487     if (DifferentField == ExtAddrMode::NoField)
3488       DifferentField = ThisDifferentField;
3489     else if (DifferentField != ThisDifferentField)
3490       DifferentField = ExtAddrMode::MultipleFields;
3491 
3492     // If NewAddrMode differs in more than one dimension we cannot handle it.
3493     bool CanHandle = DifferentField != ExtAddrMode::MultipleFields;
3494 
3495     // If Scale Field is different then we reject.
3496     CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField;
3497 
3498     // We also must reject the case when base offset is different and
3499     // scale reg is not null, we cannot handle this case due to merge of
3500     // different offsets will be used as ScaleReg.
3501     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField ||
3502                               !NewAddrMode.ScaledReg);
3503 
3504     // We also must reject the case when GV is different and BaseReg installed
3505     // due to we want to use base reg as a merge of GV values.
3506     CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField ||
3507                               !NewAddrMode.HasBaseReg);
3508 
3509     // Even if NewAddMode is the same we still need to collect it due to
3510     // original value is different. And later we will need all original values
3511     // as anchors during finding the common Phi node.
3512     if (CanHandle)
3513       AddrModes.emplace_back(NewAddrMode);
3514     else
3515       AddrModes.clear();
3516 
3517     return CanHandle;
3518   }
3519 
3520   /// Combine the addressing modes we've collected into a single
3521   /// addressing mode.
3522   /// \return True iff we successfully combined them or we only had one so
3523   /// didn't need to combine them anyway.
combineAddrModes()3524   bool combineAddrModes() {
3525     // If we have no AddrModes then they can't be combined.
3526     if (AddrModes.size() == 0)
3527       return false;
3528 
3529     // A single AddrMode can trivially be combined.
3530     if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField)
3531       return true;
3532 
3533     // If the AddrModes we collected are all just equal to the value they are
3534     // derived from then combining them wouldn't do anything useful.
3535     if (AllAddrModesTrivial)
3536       return false;
3537 
3538     if (!addrModeCombiningAllowed())
3539       return false;
3540 
3541     // Build a map between <original value, basic block where we saw it> to
3542     // value of base register.
3543     // Bail out if there is no common type.
3544     FoldAddrToValueMapping Map;
3545     if (!initializeMap(Map))
3546       return false;
3547 
3548     Value *CommonValue = findCommon(Map);
3549     if (CommonValue)
3550       AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes);
3551     return CommonValue != nullptr;
3552   }
3553 
3554 private:
3555   /// Initialize Map with anchor values. For address seen
3556   /// we set the value of different field saw in this address.
3557   /// At the same time we find a common type for different field we will
3558   /// use to create new Phi/Select nodes. Keep it in CommonType field.
3559   /// Return false if there is no common type found.
initializeMap(FoldAddrToValueMapping & Map)3560   bool initializeMap(FoldAddrToValueMapping &Map) {
3561     // Keep track of keys where the value is null. We will need to replace it
3562     // with constant null when we know the common type.
3563     SmallVector<Value *, 2> NullValue;
3564     Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType());
3565     for (auto &AM : AddrModes) {
3566       Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy);
3567       if (DV) {
3568         auto *Type = DV->getType();
3569         if (CommonType && CommonType != Type)
3570           return false;
3571         CommonType = Type;
3572         Map[AM.OriginalValue] = DV;
3573       } else {
3574         NullValue.push_back(AM.OriginalValue);
3575       }
3576     }
3577     assert(CommonType && "At least one non-null value must be!");
3578     for (auto *V : NullValue)
3579       Map[V] = Constant::getNullValue(CommonType);
3580     return true;
3581   }
3582 
3583   /// We have mapping between value A and other value B where B was a field in
3584   /// addressing mode represented by A. Also we have an original value C
3585   /// representing an address we start with. Traversing from C through phi and
3586   /// selects we ended up with A's in a map. This utility function tries to find
3587   /// a value V which is a field in addressing mode C and traversing through phi
3588   /// nodes and selects we will end up in corresponded values B in a map.
3589   /// The utility will create a new Phi/Selects if needed.
3590   // The simple example looks as follows:
3591   // BB1:
3592   //   p1 = b1 + 40
3593   //   br cond BB2, BB3
3594   // BB2:
3595   //   p2 = b2 + 40
3596   //   br BB3
3597   // BB3:
3598   //   p = phi [p1, BB1], [p2, BB2]
3599   //   v = load p
3600   // Map is
3601   //   p1 -> b1
3602   //   p2 -> b2
3603   // Request is
3604   //   p -> ?
3605   // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3.
findCommon(FoldAddrToValueMapping & Map)3606   Value *findCommon(FoldAddrToValueMapping &Map) {
3607     // Tracks the simplification of newly created phi nodes. The reason we use
3608     // this mapping is because we will add new created Phi nodes in AddrToBase.
3609     // Simplification of Phi nodes is recursive, so some Phi node may
3610     // be simplified after we added it to AddrToBase. In reality this
3611     // simplification is possible only if original phi/selects were not
3612     // simplified yet.
3613     // Using this mapping we can find the current value in AddrToBase.
3614     SimplificationTracker ST(SQ);
3615 
3616     // First step, DFS to create PHI nodes for all intermediate blocks.
3617     // Also fill traverse order for the second step.
3618     SmallVector<Value *, 32> TraverseOrder;
3619     InsertPlaceholders(Map, TraverseOrder, ST);
3620 
3621     // Second Step, fill new nodes by merged values and simplify if possible.
3622     FillPlaceholders(Map, TraverseOrder, ST);
3623 
3624     if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) {
3625       ST.destroyNewNodes(CommonType);
3626       return nullptr;
3627     }
3628 
3629     // Now we'd like to match New Phi nodes to existed ones.
3630     unsigned PhiNotMatchedCount = 0;
3631     if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) {
3632       ST.destroyNewNodes(CommonType);
3633       return nullptr;
3634     }
3635 
3636     auto *Result = ST.Get(Map.find(Original)->second);
3637     if (Result) {
3638       NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount;
3639       NumMemoryInstsSelectCreated += ST.countNewSelectNodes();
3640     }
3641     return Result;
3642   }
3643 
3644   /// Try to match PHI node to Candidate.
3645   /// Matcher tracks the matched Phi nodes.
MatchPhiNode(PHINode * PHI,PHINode * Candidate,SmallSetVector<PHIPair,8> & Matcher,PhiNodeSet & PhiNodesToMatch)3646   bool MatchPhiNode(PHINode *PHI, PHINode *Candidate,
3647                     SmallSetVector<PHIPair, 8> &Matcher,
3648                     PhiNodeSet &PhiNodesToMatch) {
3649     SmallVector<PHIPair, 8> WorkList;
3650     Matcher.insert({ PHI, Candidate });
3651     SmallSet<PHINode *, 8> MatchedPHIs;
3652     MatchedPHIs.insert(PHI);
3653     WorkList.push_back({ PHI, Candidate });
3654     SmallSet<PHIPair, 8> Visited;
3655     while (!WorkList.empty()) {
3656       auto Item = WorkList.pop_back_val();
3657       if (!Visited.insert(Item).second)
3658         continue;
3659       // We iterate over all incoming values to Phi to compare them.
3660       // If values are different and both of them Phi and the first one is a
3661       // Phi we added (subject to match) and both of them is in the same basic
3662       // block then we can match our pair if values match. So we state that
3663       // these values match and add it to work list to verify that.
3664       for (auto B : Item.first->blocks()) {
3665         Value *FirstValue = Item.first->getIncomingValueForBlock(B);
3666         Value *SecondValue = Item.second->getIncomingValueForBlock(B);
3667         if (FirstValue == SecondValue)
3668           continue;
3669 
3670         PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue);
3671         PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue);
3672 
3673         // One of them is not Phi or
3674         // The first one is not Phi node from the set we'd like to match or
3675         // Phi nodes from different basic blocks then
3676         // we will not be able to match.
3677         if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) ||
3678             FirstPhi->getParent() != SecondPhi->getParent())
3679           return false;
3680 
3681         // If we already matched them then continue.
3682         if (Matcher.count({ FirstPhi, SecondPhi }))
3683           continue;
3684         // So the values are different and does not match. So we need them to
3685         // match. (But we register no more than one match per PHI node, so that
3686         // we won't later try to replace them twice.)
3687         if (MatchedPHIs.insert(FirstPhi).second)
3688           Matcher.insert({ FirstPhi, SecondPhi });
3689         // But me must check it.
3690         WorkList.push_back({ FirstPhi, SecondPhi });
3691       }
3692     }
3693     return true;
3694   }
3695 
3696   /// For the given set of PHI nodes (in the SimplificationTracker) try
3697   /// to find their equivalents.
3698   /// Returns false if this matching fails and creation of new Phi is disabled.
MatchPhiSet(SimplificationTracker & ST,bool AllowNewPhiNodes,unsigned & PhiNotMatchedCount)3699   bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes,
3700                    unsigned &PhiNotMatchedCount) {
3701     // Matched and PhiNodesToMatch iterate their elements in a deterministic
3702     // order, so the replacements (ReplacePhi) are also done in a deterministic
3703     // order.
3704     SmallSetVector<PHIPair, 8> Matched;
3705     SmallPtrSet<PHINode *, 8> WillNotMatch;
3706     PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes();
3707     while (PhiNodesToMatch.size()) {
3708       PHINode *PHI = *PhiNodesToMatch.begin();
3709 
3710       // Add us, if no Phi nodes in the basic block we do not match.
3711       WillNotMatch.clear();
3712       WillNotMatch.insert(PHI);
3713 
3714       // Traverse all Phis until we found equivalent or fail to do that.
3715       bool IsMatched = false;
3716       for (auto &P : PHI->getParent()->phis()) {
3717         if (&P == PHI)
3718           continue;
3719         if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch)))
3720           break;
3721         // If it does not match, collect all Phi nodes from matcher.
3722         // if we end up with no match, them all these Phi nodes will not match
3723         // later.
3724         for (auto M : Matched)
3725           WillNotMatch.insert(M.first);
3726         Matched.clear();
3727       }
3728       if (IsMatched) {
3729         // Replace all matched values and erase them.
3730         for (auto MV : Matched)
3731           ST.ReplacePhi(MV.first, MV.second);
3732         Matched.clear();
3733         continue;
3734       }
3735       // If we are not allowed to create new nodes then bail out.
3736       if (!AllowNewPhiNodes)
3737         return false;
3738       // Just remove all seen values in matcher. They will not match anything.
3739       PhiNotMatchedCount += WillNotMatch.size();
3740       for (auto *P : WillNotMatch)
3741         PhiNodesToMatch.erase(P);
3742     }
3743     return true;
3744   }
3745   /// Fill the placeholders with values from predecessors and simplify them.
FillPlaceholders(FoldAddrToValueMapping & Map,SmallVectorImpl<Value * > & TraverseOrder,SimplificationTracker & ST)3746   void FillPlaceholders(FoldAddrToValueMapping &Map,
3747                         SmallVectorImpl<Value *> &TraverseOrder,
3748                         SimplificationTracker &ST) {
3749     while (!TraverseOrder.empty()) {
3750       Value *Current = TraverseOrder.pop_back_val();
3751       assert(Map.find(Current) != Map.end() && "No node to fill!!!");
3752       Value *V = Map[Current];
3753 
3754       if (SelectInst *Select = dyn_cast<SelectInst>(V)) {
3755         // CurrentValue also must be Select.
3756         auto *CurrentSelect = cast<SelectInst>(Current);
3757         auto *TrueValue = CurrentSelect->getTrueValue();
3758         assert(Map.find(TrueValue) != Map.end() && "No True Value!");
3759         Select->setTrueValue(ST.Get(Map[TrueValue]));
3760         auto *FalseValue = CurrentSelect->getFalseValue();
3761         assert(Map.find(FalseValue) != Map.end() && "No False Value!");
3762         Select->setFalseValue(ST.Get(Map[FalseValue]));
3763       } else {
3764         // Must be a Phi node then.
3765         auto *PHI = cast<PHINode>(V);
3766         // Fill the Phi node with values from predecessors.
3767         for (auto *B : predecessors(PHI->getParent())) {
3768           Value *PV = cast<PHINode>(Current)->getIncomingValueForBlock(B);
3769           assert(Map.find(PV) != Map.end() && "No predecessor Value!");
3770           PHI->addIncoming(ST.Get(Map[PV]), B);
3771         }
3772       }
3773       Map[Current] = ST.Simplify(V);
3774     }
3775   }
3776 
3777   /// Starting from original value recursively iterates over def-use chain up to
3778   /// known ending values represented in a map. For each traversed phi/select
3779   /// inserts a placeholder Phi or Select.
3780   /// Reports all new created Phi/Select nodes by adding them to set.
3781   /// Also reports and order in what values have been traversed.
InsertPlaceholders(FoldAddrToValueMapping & Map,SmallVectorImpl<Value * > & TraverseOrder,SimplificationTracker & ST)3782   void InsertPlaceholders(FoldAddrToValueMapping &Map,
3783                           SmallVectorImpl<Value *> &TraverseOrder,
3784                           SimplificationTracker &ST) {
3785     SmallVector<Value *, 32> Worklist;
3786     assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) &&
3787            "Address must be a Phi or Select node");
3788     auto *Dummy = UndefValue::get(CommonType);
3789     Worklist.push_back(Original);
3790     while (!Worklist.empty()) {
3791       Value *Current = Worklist.pop_back_val();
3792       // if it is already visited or it is an ending value then skip it.
3793       if (Map.find(Current) != Map.end())
3794         continue;
3795       TraverseOrder.push_back(Current);
3796 
3797       // CurrentValue must be a Phi node or select. All others must be covered
3798       // by anchors.
3799       if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) {
3800         // Is it OK to get metadata from OrigSelect?!
3801         // Create a Select placeholder with dummy value.
3802         SelectInst *Select = SelectInst::Create(
3803             CurrentSelect->getCondition(), Dummy, Dummy,
3804             CurrentSelect->getName(), CurrentSelect, CurrentSelect);
3805         Map[Current] = Select;
3806         ST.insertNewSelect(Select);
3807         // We are interested in True and False values.
3808         Worklist.push_back(CurrentSelect->getTrueValue());
3809         Worklist.push_back(CurrentSelect->getFalseValue());
3810       } else {
3811         // It must be a Phi node then.
3812         PHINode *CurrentPhi = cast<PHINode>(Current);
3813         unsigned PredCount = CurrentPhi->getNumIncomingValues();
3814         PHINode *PHI =
3815             PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi);
3816         Map[Current] = PHI;
3817         ST.insertNewPhi(PHI);
3818         append_range(Worklist, CurrentPhi->incoming_values());
3819       }
3820     }
3821   }
3822 
addrModeCombiningAllowed()3823   bool addrModeCombiningAllowed() {
3824     if (DisableComplexAddrModes)
3825       return false;
3826     switch (DifferentField) {
3827     default:
3828       return false;
3829     case ExtAddrMode::BaseRegField:
3830       return AddrSinkCombineBaseReg;
3831     case ExtAddrMode::BaseGVField:
3832       return AddrSinkCombineBaseGV;
3833     case ExtAddrMode::BaseOffsField:
3834       return AddrSinkCombineBaseOffs;
3835     case ExtAddrMode::ScaledRegField:
3836       return AddrSinkCombineScaledReg;
3837     }
3838   }
3839 };
3840 } // end anonymous namespace
3841 
3842 /// Try adding ScaleReg*Scale to the current addressing mode.
3843 /// Return true and update AddrMode if this addr mode is legal for the target,
3844 /// false if not.
matchScaledValue(Value * ScaleReg,int64_t Scale,unsigned Depth)3845 bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale,
3846                                              unsigned Depth) {
3847   // If Scale is 1, then this is the same as adding ScaleReg to the addressing
3848   // mode.  Just process that directly.
3849   if (Scale == 1)
3850     return matchAddr(ScaleReg, Depth);
3851 
3852   // If the scale is 0, it takes nothing to add this.
3853   if (Scale == 0)
3854     return true;
3855 
3856   // If we already have a scale of this value, we can add to it, otherwise, we
3857   // need an available scale field.
3858   if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
3859     return false;
3860 
3861   ExtAddrMode TestAddrMode = AddrMode;
3862 
3863   // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
3864   // [A+B + A*7] -> [B+A*8].
3865   TestAddrMode.Scale += Scale;
3866   TestAddrMode.ScaledReg = ScaleReg;
3867 
3868   // If the new address isn't legal, bail out.
3869   if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace))
3870     return false;
3871 
3872   // It was legal, so commit it.
3873   AddrMode = TestAddrMode;
3874 
3875   // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
3876   // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
3877   // X*Scale + C*Scale to addr mode. If we found available IV increment, do not
3878   // go any further: we can reuse it and cannot eliminate it.
3879   ConstantInt *CI = nullptr; Value *AddLHS = nullptr;
3880   if (isa<Instruction>(ScaleReg) && // not a constant expr.
3881       match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI))) &&
3882       !isIVIncrement(ScaleReg, &LI) && CI->getValue().isSignedIntN(64)) {
3883     TestAddrMode.InBounds = false;
3884     TestAddrMode.ScaledReg = AddLHS;
3885     TestAddrMode.BaseOffs += CI->getSExtValue() * TestAddrMode.Scale;
3886 
3887     // If this addressing mode is legal, commit it and remember that we folded
3888     // this instruction.
3889     if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) {
3890       AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
3891       AddrMode = TestAddrMode;
3892       return true;
3893     }
3894     // Restore status quo.
3895     TestAddrMode = AddrMode;
3896   }
3897 
3898   // If this is an add recurrence with a constant step, return the increment
3899   // instruction and the canonicalized step.
3900   auto GetConstantStep = [this](const Value * V)
3901       ->Optional<std::pair<Instruction *, APInt> > {
3902     auto *PN = dyn_cast<PHINode>(V);
3903     if (!PN)
3904       return None;
3905     auto IVInc = getIVIncrement(PN, &LI);
3906     if (!IVInc)
3907       return None;
3908     // TODO: The result of the intrinsics above is two-compliment. However when
3909     // IV inc is expressed as add or sub, iv.next is potentially a poison value.
3910     // If it has nuw or nsw flags, we need to make sure that these flags are
3911     // inferrable at the point of memory instruction. Otherwise we are replacing
3912     // well-defined two-compliment computation with poison. Currently, to avoid
3913     // potentially complex analysis needed to prove this, we reject such cases.
3914     if (auto *OIVInc = dyn_cast<OverflowingBinaryOperator>(IVInc->first))
3915       if (OIVInc->hasNoSignedWrap() || OIVInc->hasNoUnsignedWrap())
3916         return None;
3917     if (auto *ConstantStep = dyn_cast<ConstantInt>(IVInc->second))
3918       return std::make_pair(IVInc->first, ConstantStep->getValue());
3919     return None;
3920   };
3921 
3922   // Try to account for the following special case:
3923   // 1. ScaleReg is an inductive variable;
3924   // 2. We use it with non-zero offset;
3925   // 3. IV's increment is available at the point of memory instruction.
3926   //
3927   // In this case, we may reuse the IV increment instead of the IV Phi to
3928   // achieve the following advantages:
3929   // 1. If IV step matches the offset, we will have no need in the offset;
3930   // 2. Even if they don't match, we will reduce the overlap of living IV
3931   //    and IV increment, that will potentially lead to better register
3932   //    assignment.
3933   if (AddrMode.BaseOffs) {
3934     if (auto IVStep = GetConstantStep(ScaleReg)) {
3935       Instruction *IVInc = IVStep->first;
3936       // The following assert is important to ensure a lack of infinite loops.
3937       // This transforms is (intentionally) the inverse of the one just above.
3938       // If they don't agree on the definition of an increment, we'd alternate
3939       // back and forth indefinitely.
3940       assert(isIVIncrement(IVInc, &LI) && "implied by GetConstantStep");
3941       APInt Step = IVStep->second;
3942       APInt Offset = Step * AddrMode.Scale;
3943       if (Offset.isSignedIntN(64)) {
3944         TestAddrMode.InBounds = false;
3945         TestAddrMode.ScaledReg = IVInc;
3946         TestAddrMode.BaseOffs -= Offset.getLimitedValue();
3947         // If this addressing mode is legal, commit it..
3948         // (Note that we defer the (expensive) domtree base legality check
3949         // to the very last possible point.)
3950         if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace) &&
3951             getDTFn().dominates(IVInc, MemoryInst)) {
3952           AddrModeInsts.push_back(cast<Instruction>(IVInc));
3953           AddrMode = TestAddrMode;
3954           return true;
3955         }
3956         // Restore status quo.
3957         TestAddrMode = AddrMode;
3958       }
3959     }
3960   }
3961 
3962   // Otherwise, just return what we have.
3963   return true;
3964 }
3965 
3966 /// This is a little filter, which returns true if an addressing computation
3967 /// involving I might be folded into a load/store accessing it.
3968 /// This doesn't need to be perfect, but needs to accept at least
3969 /// the set of instructions that MatchOperationAddr can.
MightBeFoldableInst(Instruction * I)3970 static bool MightBeFoldableInst(Instruction *I) {
3971   switch (I->getOpcode()) {
3972   case Instruction::BitCast:
3973   case Instruction::AddrSpaceCast:
3974     // Don't touch identity bitcasts.
3975     if (I->getType() == I->getOperand(0)->getType())
3976       return false;
3977     return I->getType()->isIntOrPtrTy();
3978   case Instruction::PtrToInt:
3979     // PtrToInt is always a noop, as we know that the int type is pointer sized.
3980     return true;
3981   case Instruction::IntToPtr:
3982     // We know the input is intptr_t, so this is foldable.
3983     return true;
3984   case Instruction::Add:
3985     return true;
3986   case Instruction::Mul:
3987   case Instruction::Shl:
3988     // Can only handle X*C and X << C.
3989     return isa<ConstantInt>(I->getOperand(1));
3990   case Instruction::GetElementPtr:
3991     return true;
3992   default:
3993     return false;
3994   }
3995 }
3996 
3997 /// Check whether or not \p Val is a legal instruction for \p TLI.
3998 /// \note \p Val is assumed to be the product of some type promotion.
3999 /// Therefore if \p Val has an undefined state in \p TLI, this is assumed
4000 /// to be legal, as the non-promoted value would have had the same state.
isPromotedInstructionLegal(const TargetLowering & TLI,const DataLayout & DL,Value * Val)4001 static bool isPromotedInstructionLegal(const TargetLowering &TLI,
4002                                        const DataLayout &DL, Value *Val) {
4003   Instruction *PromotedInst = dyn_cast<Instruction>(Val);
4004   if (!PromotedInst)
4005     return false;
4006   int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode());
4007   // If the ISDOpcode is undefined, it was undefined before the promotion.
4008   if (!ISDOpcode)
4009     return true;
4010   // Otherwise, check if the promoted instruction is legal or not.
4011   return TLI.isOperationLegalOrCustom(
4012       ISDOpcode, TLI.getValueType(DL, PromotedInst->getType()));
4013 }
4014 
4015 namespace {
4016 
4017 /// Hepler class to perform type promotion.
4018 class TypePromotionHelper {
4019   /// Utility function to add a promoted instruction \p ExtOpnd to
4020   /// \p PromotedInsts and record the type of extension we have seen.
addPromotedInst(InstrToOrigTy & PromotedInsts,Instruction * ExtOpnd,bool IsSExt)4021   static void addPromotedInst(InstrToOrigTy &PromotedInsts,
4022                               Instruction *ExtOpnd,
4023                               bool IsSExt) {
4024     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4025     InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd);
4026     if (It != PromotedInsts.end()) {
4027       // If the new extension is same as original, the information in
4028       // PromotedInsts[ExtOpnd] is still correct.
4029       if (It->second.getInt() == ExtTy)
4030         return;
4031 
4032       // Now the new extension is different from old extension, we make
4033       // the type information invalid by setting extension type to
4034       // BothExtension.
4035       ExtTy = BothExtension;
4036     }
4037     PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy);
4038   }
4039 
4040   /// Utility function to query the original type of instruction \p Opnd
4041   /// with a matched extension type. If the extension doesn't match, we
4042   /// cannot use the information we had on the original type.
4043   /// BothExtension doesn't match any extension type.
getOrigType(const InstrToOrigTy & PromotedInsts,Instruction * Opnd,bool IsSExt)4044   static const Type *getOrigType(const InstrToOrigTy &PromotedInsts,
4045                                  Instruction *Opnd,
4046                                  bool IsSExt) {
4047     ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension;
4048     InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
4049     if (It != PromotedInsts.end() && It->second.getInt() == ExtTy)
4050       return It->second.getPointer();
4051     return nullptr;
4052   }
4053 
4054   /// Utility function to check whether or not a sign or zero extension
4055   /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by
4056   /// either using the operands of \p Inst or promoting \p Inst.
4057   /// The type of the extension is defined by \p IsSExt.
4058   /// In other words, check if:
4059   /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType.
4060   /// #1 Promotion applies:
4061   /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...).
4062   /// #2 Operand reuses:
4063   /// ext opnd1 to ConsideredExtType.
4064   /// \p PromotedInsts maps the instructions to their type before promotion.
4065   static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType,
4066                             const InstrToOrigTy &PromotedInsts, bool IsSExt);
4067 
4068   /// Utility function to determine if \p OpIdx should be promoted when
4069   /// promoting \p Inst.
shouldExtOperand(const Instruction * Inst,int OpIdx)4070   static bool shouldExtOperand(const Instruction *Inst, int OpIdx) {
4071     return !(isa<SelectInst>(Inst) && OpIdx == 0);
4072   }
4073 
4074   /// Utility function to promote the operand of \p Ext when this
4075   /// operand is a promotable trunc or sext or zext.
4076   /// \p PromotedInsts maps the instructions to their type before promotion.
4077   /// \p CreatedInstsCost[out] contains the cost of all instructions
4078   /// created to promote the operand of Ext.
4079   /// Newly added extensions are inserted in \p Exts.
4080   /// Newly added truncates are inserted in \p Truncs.
4081   /// Should never be called directly.
4082   /// \return The promoted value which is used instead of Ext.
4083   static Value *promoteOperandForTruncAndAnyExt(
4084       Instruction *Ext, TypePromotionTransaction &TPT,
4085       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4086       SmallVectorImpl<Instruction *> *Exts,
4087       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI);
4088 
4089   /// Utility function to promote the operand of \p Ext when this
4090   /// operand is promotable and is not a supported trunc or sext.
4091   /// \p PromotedInsts maps the instructions to their type before promotion.
4092   /// \p CreatedInstsCost[out] contains the cost of all the instructions
4093   /// created to promote the operand of Ext.
4094   /// Newly added extensions are inserted in \p Exts.
4095   /// Newly added truncates are inserted in \p Truncs.
4096   /// Should never be called directly.
4097   /// \return The promoted value which is used instead of Ext.
4098   static Value *promoteOperandForOther(Instruction *Ext,
4099                                        TypePromotionTransaction &TPT,
4100                                        InstrToOrigTy &PromotedInsts,
4101                                        unsigned &CreatedInstsCost,
4102                                        SmallVectorImpl<Instruction *> *Exts,
4103                                        SmallVectorImpl<Instruction *> *Truncs,
4104                                        const TargetLowering &TLI, bool IsSExt);
4105 
4106   /// \see promoteOperandForOther.
signExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)4107   static Value *signExtendOperandForOther(
4108       Instruction *Ext, TypePromotionTransaction &TPT,
4109       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4110       SmallVectorImpl<Instruction *> *Exts,
4111       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4112     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4113                                   Exts, Truncs, TLI, true);
4114   }
4115 
4116   /// \see promoteOperandForOther.
zeroExtendOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)4117   static Value *zeroExtendOperandForOther(
4118       Instruction *Ext, TypePromotionTransaction &TPT,
4119       InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4120       SmallVectorImpl<Instruction *> *Exts,
4121       SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4122     return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost,
4123                                   Exts, Truncs, TLI, false);
4124   }
4125 
4126 public:
4127   /// Type for the utility function that promotes the operand of Ext.
4128   using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT,
4129                             InstrToOrigTy &PromotedInsts,
4130                             unsigned &CreatedInstsCost,
4131                             SmallVectorImpl<Instruction *> *Exts,
4132                             SmallVectorImpl<Instruction *> *Truncs,
4133                             const TargetLowering &TLI);
4134 
4135   /// Given a sign/zero extend instruction \p Ext, return the appropriate
4136   /// action to promote the operand of \p Ext instead of using Ext.
4137   /// \return NULL if no promotable action is possible with the current
4138   /// sign extension.
4139   /// \p InsertedInsts keeps track of all the instructions inserted by the
4140   /// other CodeGenPrepare optimizations. This information is important
4141   /// because we do not want to promote these instructions as CodeGenPrepare
4142   /// will reinsert them later. Thus creating an infinite loop: create/remove.
4143   /// \p PromotedInsts maps the instructions to their type before promotion.
4144   static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts,
4145                           const TargetLowering &TLI,
4146                           const InstrToOrigTy &PromotedInsts);
4147 };
4148 
4149 } // end anonymous namespace
4150 
canGetThrough(const Instruction * Inst,Type * ConsideredExtType,const InstrToOrigTy & PromotedInsts,bool IsSExt)4151 bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
4152                                         Type *ConsideredExtType,
4153                                         const InstrToOrigTy &PromotedInsts,
4154                                         bool IsSExt) {
4155   // The promotion helper does not know how to deal with vector types yet.
4156   // To be able to fix that, we would need to fix the places where we
4157   // statically extend, e.g., constants and such.
4158   if (Inst->getType()->isVectorTy())
4159     return false;
4160 
4161   // We can always get through zext.
4162   if (isa<ZExtInst>(Inst))
4163     return true;
4164 
4165   // sext(sext) is ok too.
4166   if (IsSExt && isa<SExtInst>(Inst))
4167     return true;
4168 
4169   // We can get through binary operator, if it is legal. In other words, the
4170   // binary operator must have a nuw or nsw flag.
4171   const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
4172   if (isa_and_nonnull<OverflowingBinaryOperator>(BinOp) &&
4173       ((!IsSExt && BinOp->hasNoUnsignedWrap()) ||
4174        (IsSExt && BinOp->hasNoSignedWrap())))
4175     return true;
4176 
4177   // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst))
4178   if ((Inst->getOpcode() == Instruction::And ||
4179        Inst->getOpcode() == Instruction::Or))
4180     return true;
4181 
4182   // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst))
4183   if (Inst->getOpcode() == Instruction::Xor) {
4184     const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1));
4185     // Make sure it is not a NOT.
4186     if (Cst && !Cst->getValue().isAllOnesValue())
4187       return true;
4188   }
4189 
4190   // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst))
4191   // It may change a poisoned value into a regular value, like
4192   //     zext i32 (shrl i8 %val, 12)  -->  shrl i32 (zext i8 %val), 12
4193   //          poisoned value                    regular value
4194   // It should be OK since undef covers valid value.
4195   if (Inst->getOpcode() == Instruction::LShr && !IsSExt)
4196     return true;
4197 
4198   // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst)
4199   // It may change a poisoned value into a regular value, like
4200   //     zext i32 (shl i8 %val, 12)  -->  shl i32 (zext i8 %val), 12
4201   //          poisoned value                    regular value
4202   // It should be OK since undef covers valid value.
4203   if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) {
4204     const auto *ExtInst = cast<const Instruction>(*Inst->user_begin());
4205     if (ExtInst->hasOneUse()) {
4206       const auto *AndInst = dyn_cast<const Instruction>(*ExtInst->user_begin());
4207       if (AndInst && AndInst->getOpcode() == Instruction::And) {
4208         const auto *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1));
4209         if (Cst &&
4210             Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth()))
4211           return true;
4212       }
4213     }
4214   }
4215 
4216   // Check if we can do the following simplification.
4217   // ext(trunc(opnd)) --> ext(opnd)
4218   if (!isa<TruncInst>(Inst))
4219     return false;
4220 
4221   Value *OpndVal = Inst->getOperand(0);
4222   // Check if we can use this operand in the extension.
4223   // If the type is larger than the result type of the extension, we cannot.
4224   if (!OpndVal->getType()->isIntegerTy() ||
4225       OpndVal->getType()->getIntegerBitWidth() >
4226           ConsideredExtType->getIntegerBitWidth())
4227     return false;
4228 
4229   // If the operand of the truncate is not an instruction, we will not have
4230   // any information on the dropped bits.
4231   // (Actually we could for constant but it is not worth the extra logic).
4232   Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
4233   if (!Opnd)
4234     return false;
4235 
4236   // Check if the source of the type is narrow enough.
4237   // I.e., check that trunc just drops extended bits of the same kind of
4238   // the extension.
4239   // #1 get the type of the operand and check the kind of the extended bits.
4240   const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt);
4241   if (OpndType)
4242     ;
4243   else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd)))
4244     OpndType = Opnd->getOperand(0)->getType();
4245   else
4246     return false;
4247 
4248   // #2 check that the truncate just drops extended bits.
4249   return Inst->getType()->getIntegerBitWidth() >=
4250          OpndType->getIntegerBitWidth();
4251 }
4252 
getAction(Instruction * Ext,const SetOfInstrs & InsertedInsts,const TargetLowering & TLI,const InstrToOrigTy & PromotedInsts)4253 TypePromotionHelper::Action TypePromotionHelper::getAction(
4254     Instruction *Ext, const SetOfInstrs &InsertedInsts,
4255     const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
4256   assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
4257          "Unexpected instruction type");
4258   Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0));
4259   Type *ExtTy = Ext->getType();
4260   bool IsSExt = isa<SExtInst>(Ext);
4261   // If the operand of the extension is not an instruction, we cannot
4262   // get through.
4263   // If it, check we can get through.
4264   if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt))
4265     return nullptr;
4266 
4267   // Do not promote if the operand has been added by codegenprepare.
4268   // Otherwise, it means we are undoing an optimization that is likely to be
4269   // redone, thus causing potential infinite loop.
4270   if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd))
4271     return nullptr;
4272 
4273   // SExt or Trunc instructions.
4274   // Return the related handler.
4275   if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) ||
4276       isa<ZExtInst>(ExtOpnd))
4277     return promoteOperandForTruncAndAnyExt;
4278 
4279   // Regular instruction.
4280   // Abort early if we will have to insert non-free instructions.
4281   if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType()))
4282     return nullptr;
4283   return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther;
4284 }
4285 
promoteOperandForTruncAndAnyExt(Instruction * SExt,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI)4286 Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt(
4287     Instruction *SExt, TypePromotionTransaction &TPT,
4288     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4289     SmallVectorImpl<Instruction *> *Exts,
4290     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) {
4291   // By construction, the operand of SExt is an instruction. Otherwise we cannot
4292   // get through it and this method should not be called.
4293   Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
4294   Value *ExtVal = SExt;
4295   bool HasMergedNonFreeExt = false;
4296   if (isa<ZExtInst>(SExtOpnd)) {
4297     // Replace s|zext(zext(opnd))
4298     // => zext(opnd).
4299     HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd);
4300     Value *ZExt =
4301         TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType());
4302     TPT.replaceAllUsesWith(SExt, ZExt);
4303     TPT.eraseInstruction(SExt);
4304     ExtVal = ZExt;
4305   } else {
4306     // Replace z|sext(trunc(opnd)) or sext(sext(opnd))
4307     // => z|sext(opnd).
4308     TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
4309   }
4310   CreatedInstsCost = 0;
4311 
4312   // Remove dead code.
4313   if (SExtOpnd->use_empty())
4314     TPT.eraseInstruction(SExtOpnd);
4315 
4316   // Check if the extension is still needed.
4317   Instruction *ExtInst = dyn_cast<Instruction>(ExtVal);
4318   if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) {
4319     if (ExtInst) {
4320       if (Exts)
4321         Exts->push_back(ExtInst);
4322       CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt;
4323     }
4324     return ExtVal;
4325   }
4326 
4327   // At this point we have: ext ty opnd to ty.
4328   // Reassign the uses of ExtInst to the opnd and remove ExtInst.
4329   Value *NextVal = ExtInst->getOperand(0);
4330   TPT.eraseInstruction(ExtInst, NextVal);
4331   return NextVal;
4332 }
4333 
promoteOperandForOther(Instruction * Ext,TypePromotionTransaction & TPT,InstrToOrigTy & PromotedInsts,unsigned & CreatedInstsCost,SmallVectorImpl<Instruction * > * Exts,SmallVectorImpl<Instruction * > * Truncs,const TargetLowering & TLI,bool IsSExt)4334 Value *TypePromotionHelper::promoteOperandForOther(
4335     Instruction *Ext, TypePromotionTransaction &TPT,
4336     InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost,
4337     SmallVectorImpl<Instruction *> *Exts,
4338     SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI,
4339     bool IsSExt) {
4340   // By construction, the operand of Ext is an instruction. Otherwise we cannot
4341   // get through it and this method should not be called.
4342   Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0));
4343   CreatedInstsCost = 0;
4344   if (!ExtOpnd->hasOneUse()) {
4345     // ExtOpnd will be promoted.
4346     // All its uses, but Ext, will need to use a truncated value of the
4347     // promoted version.
4348     // Create the truncate now.
4349     Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType());
4350     if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) {
4351       // Insert it just after the definition.
4352       ITrunc->moveAfter(ExtOpnd);
4353       if (Truncs)
4354         Truncs->push_back(ITrunc);
4355     }
4356 
4357     TPT.replaceAllUsesWith(ExtOpnd, Trunc);
4358     // Restore the operand of Ext (which has been replaced by the previous call
4359     // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
4360     TPT.setOperand(Ext, 0, ExtOpnd);
4361   }
4362 
4363   // Get through the Instruction:
4364   // 1. Update its type.
4365   // 2. Replace the uses of Ext by Inst.
4366   // 3. Extend each operand that needs to be extended.
4367 
4368   // Remember the original type of the instruction before promotion.
4369   // This is useful to know that the high bits are sign extended bits.
4370   addPromotedInst(PromotedInsts, ExtOpnd, IsSExt);
4371   // Step #1.
4372   TPT.mutateType(ExtOpnd, Ext->getType());
4373   // Step #2.
4374   TPT.replaceAllUsesWith(Ext, ExtOpnd);
4375   // Step #3.
4376   Instruction *ExtForOpnd = Ext;
4377 
4378   LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n");
4379   for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
4380        ++OpIdx) {
4381     LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n');
4382     if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() ||
4383         !shouldExtOperand(ExtOpnd, OpIdx)) {
4384       LLVM_DEBUG(dbgs() << "No need to propagate\n");
4385       continue;
4386     }
4387     // Check if we can statically extend the operand.
4388     Value *Opnd = ExtOpnd->getOperand(OpIdx);
4389     if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
4390       LLVM_DEBUG(dbgs() << "Statically extend\n");
4391       unsigned BitWidth = Ext->getType()->getIntegerBitWidth();
4392       APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth)
4393                             : Cst->getValue().zext(BitWidth);
4394       TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal));
4395       continue;
4396     }
4397     // UndefValue are typed, so we have to statically sign extend them.
4398     if (isa<UndefValue>(Opnd)) {
4399       LLVM_DEBUG(dbgs() << "Statically extend\n");
4400       TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType()));
4401       continue;
4402     }
4403 
4404     // Otherwise we have to explicitly sign extend the operand.
4405     // Check if Ext was reused to extend an operand.
4406     if (!ExtForOpnd) {
4407       // If yes, create a new one.
4408       LLVM_DEBUG(dbgs() << "More operands to ext\n");
4409       Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType())
4410         : TPT.createZExt(Ext, Opnd, Ext->getType());
4411       if (!isa<Instruction>(ValForExtOpnd)) {
4412         TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd);
4413         continue;
4414       }
4415       ExtForOpnd = cast<Instruction>(ValForExtOpnd);
4416     }
4417     if (Exts)
4418       Exts->push_back(ExtForOpnd);
4419     TPT.setOperand(ExtForOpnd, 0, Opnd);
4420 
4421     // Move the sign extension before the insertion point.
4422     TPT.moveBefore(ExtForOpnd, ExtOpnd);
4423     TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd);
4424     CreatedInstsCost += !TLI.isExtFree(ExtForOpnd);
4425     // If more sext are required, new instructions will have to be created.
4426     ExtForOpnd = nullptr;
4427   }
4428   if (ExtForOpnd == Ext) {
4429     LLVM_DEBUG(dbgs() << "Extension is useless now\n");
4430     TPT.eraseInstruction(Ext);
4431   }
4432   return ExtOpnd;
4433 }
4434 
4435 /// Check whether or not promoting an instruction to a wider type is profitable.
4436 /// \p NewCost gives the cost of extension instructions created by the
4437 /// promotion.
4438 /// \p OldCost gives the cost of extension instructions before the promotion
4439 /// plus the number of instructions that have been
4440 /// matched in the addressing mode the promotion.
4441 /// \p PromotedOperand is the value that has been promoted.
4442 /// \return True if the promotion is profitable, false otherwise.
isPromotionProfitable(unsigned NewCost,unsigned OldCost,Value * PromotedOperand) const4443 bool AddressingModeMatcher::isPromotionProfitable(
4444     unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const {
4445   LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost
4446                     << '\n');
4447   // The cost of the new extensions is greater than the cost of the
4448   // old extension plus what we folded.
4449   // This is not profitable.
4450   if (NewCost > OldCost)
4451     return false;
4452   if (NewCost < OldCost)
4453     return true;
4454   // The promotion is neutral but it may help folding the sign extension in
4455   // loads for instance.
4456   // Check that we did not create an illegal instruction.
4457   return isPromotedInstructionLegal(TLI, DL, PromotedOperand);
4458 }
4459 
4460 /// Given an instruction or constant expr, see if we can fold the operation
4461 /// into the addressing mode. If so, update the addressing mode and return
4462 /// true, otherwise return false without modifying AddrMode.
4463 /// If \p MovedAway is not NULL, it contains the information of whether or
4464 /// not AddrInst has to be folded into the addressing mode on success.
4465 /// If \p MovedAway == true, \p AddrInst will not be part of the addressing
4466 /// because it has been moved away.
4467 /// Thus AddrInst must not be added in the matched instructions.
4468 /// This state can happen when AddrInst is a sext, since it may be moved away.
4469 /// Therefore, AddrInst may not be valid when MovedAway is true and it must
4470 /// not be referenced anymore.
matchOperationAddr(User * AddrInst,unsigned Opcode,unsigned Depth,bool * MovedAway)4471 bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode,
4472                                                unsigned Depth,
4473                                                bool *MovedAway) {
4474   // Avoid exponential behavior on extremely deep expression trees.
4475   if (Depth >= 5) return false;
4476 
4477   // By default, all matched instructions stay in place.
4478   if (MovedAway)
4479     *MovedAway = false;
4480 
4481   switch (Opcode) {
4482   case Instruction::PtrToInt:
4483     // PtrToInt is always a noop, as we know that the int type is pointer sized.
4484     return matchAddr(AddrInst->getOperand(0), Depth);
4485   case Instruction::IntToPtr: {
4486     auto AS = AddrInst->getType()->getPointerAddressSpace();
4487     auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
4488     // This inttoptr is a no-op if the integer type is pointer sized.
4489     if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy)
4490       return matchAddr(AddrInst->getOperand(0), Depth);
4491     return false;
4492   }
4493   case Instruction::BitCast:
4494     // BitCast is always a noop, and we can handle it as long as it is
4495     // int->int or pointer->pointer (we don't want int<->fp or something).
4496     if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() &&
4497         // Don't touch identity bitcasts.  These were probably put here by LSR,
4498         // and we don't want to mess around with them.  Assume it knows what it
4499         // is doing.
4500         AddrInst->getOperand(0)->getType() != AddrInst->getType())
4501       return matchAddr(AddrInst->getOperand(0), Depth);
4502     return false;
4503   case Instruction::AddrSpaceCast: {
4504     unsigned SrcAS
4505       = AddrInst->getOperand(0)->getType()->getPointerAddressSpace();
4506     unsigned DestAS = AddrInst->getType()->getPointerAddressSpace();
4507     if (TLI.getTargetMachine().isNoopAddrSpaceCast(SrcAS, DestAS))
4508       return matchAddr(AddrInst->getOperand(0), Depth);
4509     return false;
4510   }
4511   case Instruction::Add: {
4512     // Check to see if we can merge in the RHS then the LHS.  If so, we win.
4513     ExtAddrMode BackupAddrMode = AddrMode;
4514     unsigned OldSize = AddrModeInsts.size();
4515     // Start a transaction at this point.
4516     // The LHS may match but not the RHS.
4517     // Therefore, we need a higher level restoration point to undo partially
4518     // matched operation.
4519     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4520         TPT.getRestorationPoint();
4521 
4522     AddrMode.InBounds = false;
4523     if (matchAddr(AddrInst->getOperand(1), Depth+1) &&
4524         matchAddr(AddrInst->getOperand(0), Depth+1))
4525       return true;
4526 
4527     // Restore the old addr mode info.
4528     AddrMode = BackupAddrMode;
4529     AddrModeInsts.resize(OldSize);
4530     TPT.rollback(LastKnownGood);
4531 
4532     // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
4533     if (matchAddr(AddrInst->getOperand(0), Depth+1) &&
4534         matchAddr(AddrInst->getOperand(1), Depth+1))
4535       return true;
4536 
4537     // Otherwise we definitely can't merge the ADD in.
4538     AddrMode = BackupAddrMode;
4539     AddrModeInsts.resize(OldSize);
4540     TPT.rollback(LastKnownGood);
4541     break;
4542   }
4543   //case Instruction::Or:
4544   // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
4545   //break;
4546   case Instruction::Mul:
4547   case Instruction::Shl: {
4548     // Can only handle X*C and X << C.
4549     AddrMode.InBounds = false;
4550     ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
4551     if (!RHS || RHS->getBitWidth() > 64)
4552       return false;
4553     int64_t Scale = RHS->getSExtValue();
4554     if (Opcode == Instruction::Shl)
4555       Scale = 1LL << Scale;
4556 
4557     return matchScaledValue(AddrInst->getOperand(0), Scale, Depth);
4558   }
4559   case Instruction::GetElementPtr: {
4560     // Scan the GEP.  We check it if it contains constant offsets and at most
4561     // one variable offset.
4562     int VariableOperand = -1;
4563     unsigned VariableScale = 0;
4564 
4565     int64_t ConstantOffset = 0;
4566     gep_type_iterator GTI = gep_type_begin(AddrInst);
4567     for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
4568       if (StructType *STy = GTI.getStructTypeOrNull()) {
4569         const StructLayout *SL = DL.getStructLayout(STy);
4570         unsigned Idx =
4571           cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
4572         ConstantOffset += SL->getElementOffset(Idx);
4573       } else {
4574         TypeSize TS = DL.getTypeAllocSize(GTI.getIndexedType());
4575         if (TS.isNonZero()) {
4576           // The optimisations below currently only work for fixed offsets.
4577           if (TS.isScalable())
4578             return false;
4579           int64_t TypeSize = TS.getFixedSize();
4580           if (ConstantInt *CI =
4581                   dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
4582             const APInt &CVal = CI->getValue();
4583             if (CVal.getMinSignedBits() <= 64) {
4584               ConstantOffset += CVal.getSExtValue() * TypeSize;
4585               continue;
4586             }
4587           }
4588           // We only allow one variable index at the moment.
4589           if (VariableOperand != -1)
4590             return false;
4591 
4592           // Remember the variable index.
4593           VariableOperand = i;
4594           VariableScale = TypeSize;
4595         }
4596       }
4597     }
4598 
4599     // A common case is for the GEP to only do a constant offset.  In this case,
4600     // just add it to the disp field and check validity.
4601     if (VariableOperand == -1) {
4602       AddrMode.BaseOffs += ConstantOffset;
4603       if (ConstantOffset == 0 ||
4604           TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) {
4605         // Check to see if we can fold the base pointer in too.
4606         if (matchAddr(AddrInst->getOperand(0), Depth+1)) {
4607           if (!cast<GEPOperator>(AddrInst)->isInBounds())
4608             AddrMode.InBounds = false;
4609           return true;
4610         }
4611       } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) &&
4612                  TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 &&
4613                  ConstantOffset > 0) {
4614         // Record GEPs with non-zero offsets as candidates for splitting in the
4615         // event that the offset cannot fit into the r+i addressing mode.
4616         // Simple and common case that only one GEP is used in calculating the
4617         // address for the memory access.
4618         Value *Base = AddrInst->getOperand(0);
4619         auto *BaseI = dyn_cast<Instruction>(Base);
4620         auto *GEP = cast<GetElementPtrInst>(AddrInst);
4621         if (isa<Argument>(Base) || isa<GlobalValue>(Base) ||
4622             (BaseI && !isa<CastInst>(BaseI) &&
4623              !isa<GetElementPtrInst>(BaseI))) {
4624           // Make sure the parent block allows inserting non-PHI instructions
4625           // before the terminator.
4626           BasicBlock *Parent =
4627               BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock();
4628           if (!Parent->getTerminator()->isEHPad())
4629             LargeOffsetGEP = std::make_pair(GEP, ConstantOffset);
4630         }
4631       }
4632       AddrMode.BaseOffs -= ConstantOffset;
4633       return false;
4634     }
4635 
4636     // Save the valid addressing mode in case we can't match.
4637     ExtAddrMode BackupAddrMode = AddrMode;
4638     unsigned OldSize = AddrModeInsts.size();
4639 
4640     // See if the scale and offset amount is valid for this target.
4641     AddrMode.BaseOffs += ConstantOffset;
4642     if (!cast<GEPOperator>(AddrInst)->isInBounds())
4643       AddrMode.InBounds = false;
4644 
4645     // Match the base operand of the GEP.
4646     if (!matchAddr(AddrInst->getOperand(0), Depth+1)) {
4647       // If it couldn't be matched, just stuff the value in a register.
4648       if (AddrMode.HasBaseReg) {
4649         AddrMode = BackupAddrMode;
4650         AddrModeInsts.resize(OldSize);
4651         return false;
4652       }
4653       AddrMode.HasBaseReg = true;
4654       AddrMode.BaseReg = AddrInst->getOperand(0);
4655     }
4656 
4657     // Match the remaining variable portion of the GEP.
4658     if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
4659                           Depth)) {
4660       // If it couldn't be matched, try stuffing the base into a register
4661       // instead of matching it, and retrying the match of the scale.
4662       AddrMode = BackupAddrMode;
4663       AddrModeInsts.resize(OldSize);
4664       if (AddrMode.HasBaseReg)
4665         return false;
4666       AddrMode.HasBaseReg = true;
4667       AddrMode.BaseReg = AddrInst->getOperand(0);
4668       AddrMode.BaseOffs += ConstantOffset;
4669       if (!matchScaledValue(AddrInst->getOperand(VariableOperand),
4670                             VariableScale, Depth)) {
4671         // If even that didn't work, bail.
4672         AddrMode = BackupAddrMode;
4673         AddrModeInsts.resize(OldSize);
4674         return false;
4675       }
4676     }
4677 
4678     return true;
4679   }
4680   case Instruction::SExt:
4681   case Instruction::ZExt: {
4682     Instruction *Ext = dyn_cast<Instruction>(AddrInst);
4683     if (!Ext)
4684       return false;
4685 
4686     // Try to move this ext out of the way of the addressing mode.
4687     // Ask for a method for doing so.
4688     TypePromotionHelper::Action TPH =
4689         TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts);
4690     if (!TPH)
4691       return false;
4692 
4693     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4694         TPT.getRestorationPoint();
4695     unsigned CreatedInstsCost = 0;
4696     unsigned ExtCost = !TLI.isExtFree(Ext);
4697     Value *PromotedOperand =
4698         TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI);
4699     // SExt has been moved away.
4700     // Thus either it will be rematched later in the recursive calls or it is
4701     // gone. Anyway, we must not fold it into the addressing mode at this point.
4702     // E.g.,
4703     // op = add opnd, 1
4704     // idx = ext op
4705     // addr = gep base, idx
4706     // is now:
4707     // promotedOpnd = ext opnd            <- no match here
4708     // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
4709     // addr = gep base, op                <- match
4710     if (MovedAway)
4711       *MovedAway = true;
4712 
4713     assert(PromotedOperand &&
4714            "TypePromotionHelper should have filtered out those cases");
4715 
4716     ExtAddrMode BackupAddrMode = AddrMode;
4717     unsigned OldSize = AddrModeInsts.size();
4718 
4719     if (!matchAddr(PromotedOperand, Depth) ||
4720         // The total of the new cost is equal to the cost of the created
4721         // instructions.
4722         // The total of the old cost is equal to the cost of the extension plus
4723         // what we have saved in the addressing mode.
4724         !isPromotionProfitable(CreatedInstsCost,
4725                                ExtCost + (AddrModeInsts.size() - OldSize),
4726                                PromotedOperand)) {
4727       AddrMode = BackupAddrMode;
4728       AddrModeInsts.resize(OldSize);
4729       LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
4730       TPT.rollback(LastKnownGood);
4731       return false;
4732     }
4733     return true;
4734   }
4735   }
4736   return false;
4737 }
4738 
4739 /// If we can, try to add the value of 'Addr' into the current addressing mode.
4740 /// If Addr can't be added to AddrMode this returns false and leaves AddrMode
4741 /// unmodified. This assumes that Addr is either a pointer type or intptr_t
4742 /// for the target.
4743 ///
matchAddr(Value * Addr,unsigned Depth)4744 bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) {
4745   // Start a transaction at this point that we will rollback if the matching
4746   // fails.
4747   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
4748       TPT.getRestorationPoint();
4749   if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
4750     if (CI->getValue().isSignedIntN(64)) {
4751       // Fold in immediates if legal for the target.
4752       AddrMode.BaseOffs += CI->getSExtValue();
4753       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4754         return true;
4755       AddrMode.BaseOffs -= CI->getSExtValue();
4756     }
4757   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
4758     // If this is a global variable, try to fold it into the addressing mode.
4759     if (!AddrMode.BaseGV) {
4760       AddrMode.BaseGV = GV;
4761       if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4762         return true;
4763       AddrMode.BaseGV = nullptr;
4764     }
4765   } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
4766     ExtAddrMode BackupAddrMode = AddrMode;
4767     unsigned OldSize = AddrModeInsts.size();
4768 
4769     // Check to see if it is possible to fold this operation.
4770     bool MovedAway = false;
4771     if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
4772       // This instruction may have been moved away. If so, there is nothing
4773       // to check here.
4774       if (MovedAway)
4775         return true;
4776       // Okay, it's possible to fold this.  Check to see if it is actually
4777       // *profitable* to do so.  We use a simple cost model to avoid increasing
4778       // register pressure too much.
4779       if (I->hasOneUse() ||
4780           isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
4781         AddrModeInsts.push_back(I);
4782         return true;
4783       }
4784 
4785       // It isn't profitable to do this, roll back.
4786       //cerr << "NOT FOLDING: " << *I;
4787       AddrMode = BackupAddrMode;
4788       AddrModeInsts.resize(OldSize);
4789       TPT.rollback(LastKnownGood);
4790     }
4791   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
4792     if (matchOperationAddr(CE, CE->getOpcode(), Depth))
4793       return true;
4794     TPT.rollback(LastKnownGood);
4795   } else if (isa<ConstantPointerNull>(Addr)) {
4796     // Null pointer gets folded without affecting the addressing mode.
4797     return true;
4798   }
4799 
4800   // Worse case, the target should support [reg] addressing modes. :)
4801   if (!AddrMode.HasBaseReg) {
4802     AddrMode.HasBaseReg = true;
4803     AddrMode.BaseReg = Addr;
4804     // Still check for legality in case the target supports [imm] but not [i+r].
4805     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4806       return true;
4807     AddrMode.HasBaseReg = false;
4808     AddrMode.BaseReg = nullptr;
4809   }
4810 
4811   // If the base register is already taken, see if we can do [r+r].
4812   if (AddrMode.Scale == 0) {
4813     AddrMode.Scale = 1;
4814     AddrMode.ScaledReg = Addr;
4815     if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace))
4816       return true;
4817     AddrMode.Scale = 0;
4818     AddrMode.ScaledReg = nullptr;
4819   }
4820   // Couldn't match.
4821   TPT.rollback(LastKnownGood);
4822   return false;
4823 }
4824 
4825 /// Check to see if all uses of OpVal by the specified inline asm call are due
4826 /// to memory operands. If so, return true, otherwise return false.
IsOperandAMemoryOperand(CallInst * CI,InlineAsm * IA,Value * OpVal,const TargetLowering & TLI,const TargetRegisterInfo & TRI)4827 static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
4828                                     const TargetLowering &TLI,
4829                                     const TargetRegisterInfo &TRI) {
4830   const Function *F = CI->getFunction();
4831   TargetLowering::AsmOperandInfoVector TargetConstraints =
4832       TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, *CI);
4833 
4834   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
4835     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
4836 
4837     // Compute the constraint code and ConstraintType to use.
4838     TLI.ComputeConstraintToUse(OpInfo, SDValue());
4839 
4840     // If this asm operand is our Value*, and if it isn't an indirect memory
4841     // operand, we can't fold it!
4842     if (OpInfo.CallOperandVal == OpVal &&
4843         (OpInfo.ConstraintType != TargetLowering::C_Memory ||
4844          !OpInfo.isIndirect))
4845       return false;
4846   }
4847 
4848   return true;
4849 }
4850 
4851 // Max number of memory uses to look at before aborting the search to conserve
4852 // compile time.
4853 static constexpr int MaxMemoryUsesToScan = 20;
4854 
4855 /// Recursively walk all the uses of I until we find a memory use.
4856 /// If we find an obviously non-foldable instruction, return true.
4857 /// Add the ultimately found memory instructions to MemoryUses.
FindAllMemoryUses(Instruction * I,SmallVectorImpl<std::pair<Instruction *,unsigned>> & MemoryUses,SmallPtrSetImpl<Instruction * > & ConsideredInsts,const TargetLowering & TLI,const TargetRegisterInfo & TRI,bool OptSize,ProfileSummaryInfo * PSI,BlockFrequencyInfo * BFI,int SeenInsts=0)4858 static bool FindAllMemoryUses(
4859     Instruction *I,
4860     SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses,
4861     SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI,
4862     const TargetRegisterInfo &TRI, bool OptSize, ProfileSummaryInfo *PSI,
4863     BlockFrequencyInfo *BFI, int SeenInsts = 0) {
4864   // If we already considered this instruction, we're done.
4865   if (!ConsideredInsts.insert(I).second)
4866     return false;
4867 
4868   // If this is an obviously unfoldable instruction, bail out.
4869   if (!MightBeFoldableInst(I))
4870     return true;
4871 
4872   // Loop over all the uses, recursively processing them.
4873   for (Use &U : I->uses()) {
4874     // Conservatively return true if we're seeing a large number or a deep chain
4875     // of users. This avoids excessive compilation times in pathological cases.
4876     if (SeenInsts++ >= MaxMemoryUsesToScan)
4877       return true;
4878 
4879     Instruction *UserI = cast<Instruction>(U.getUser());
4880     if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) {
4881       MemoryUses.push_back(std::make_pair(LI, U.getOperandNo()));
4882       continue;
4883     }
4884 
4885     if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) {
4886       unsigned opNo = U.getOperandNo();
4887       if (opNo != StoreInst::getPointerOperandIndex())
4888         return true; // Storing addr, not into addr.
4889       MemoryUses.push_back(std::make_pair(SI, opNo));
4890       continue;
4891     }
4892 
4893     if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) {
4894       unsigned opNo = U.getOperandNo();
4895       if (opNo != AtomicRMWInst::getPointerOperandIndex())
4896         return true; // Storing addr, not into addr.
4897       MemoryUses.push_back(std::make_pair(RMW, opNo));
4898       continue;
4899     }
4900 
4901     if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) {
4902       unsigned opNo = U.getOperandNo();
4903       if (opNo != AtomicCmpXchgInst::getPointerOperandIndex())
4904         return true; // Storing addr, not into addr.
4905       MemoryUses.push_back(std::make_pair(CmpX, opNo));
4906       continue;
4907     }
4908 
4909     if (CallInst *CI = dyn_cast<CallInst>(UserI)) {
4910       if (CI->hasFnAttr(Attribute::Cold)) {
4911         // If this is a cold call, we can sink the addressing calculation into
4912         // the cold path.  See optimizeCallInst
4913         bool OptForSize = OptSize ||
4914           llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
4915         if (!OptForSize)
4916           continue;
4917       }
4918 
4919       InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledOperand());
4920       if (!IA) return true;
4921 
4922       // If this is a memory operand, we're cool, otherwise bail out.
4923       if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI))
4924         return true;
4925       continue;
4926     }
4927 
4928     if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
4929                           PSI, BFI, SeenInsts))
4930       return true;
4931   }
4932 
4933   return false;
4934 }
4935 
4936 /// Return true if Val is already known to be live at the use site that we're
4937 /// folding it into. If so, there is no cost to include it in the addressing
4938 /// mode. KnownLive1 and KnownLive2 are two values that we know are live at the
4939 /// instruction already.
valueAlreadyLiveAtInst(Value * Val,Value * KnownLive1,Value * KnownLive2)4940 bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
4941                                                    Value *KnownLive2) {
4942   // If Val is either of the known-live values, we know it is live!
4943   if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2)
4944     return true;
4945 
4946   // All values other than instructions and arguments (e.g. constants) are live.
4947   if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
4948 
4949   // If Val is a constant sized alloca in the entry block, it is live, this is
4950   // true because it is just a reference to the stack/frame pointer, which is
4951   // live for the whole function.
4952   if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
4953     if (AI->isStaticAlloca())
4954       return true;
4955 
4956   // Check to see if this value is already used in the memory instruction's
4957   // block.  If so, it's already live into the block at the very least, so we
4958   // can reasonably fold it.
4959   return Val->isUsedInBasicBlock(MemoryInst->getParent());
4960 }
4961 
4962 /// It is possible for the addressing mode of the machine to fold the specified
4963 /// instruction into a load or store that ultimately uses it.
4964 /// However, the specified instruction has multiple uses.
4965 /// Given this, it may actually increase register pressure to fold it
4966 /// into the load. For example, consider this code:
4967 ///
4968 ///     X = ...
4969 ///     Y = X+1
4970 ///     use(Y)   -> nonload/store
4971 ///     Z = Y+1
4972 ///     load Z
4973 ///
4974 /// In this case, Y has multiple uses, and can be folded into the load of Z
4975 /// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
4976 /// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
4977 /// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
4978 /// number of computations either.
4979 ///
4980 /// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
4981 /// X was live across 'load Z' for other reasons, we actually *would* want to
4982 /// fold the addressing mode in the Z case.  This would make Y die earlier.
4983 bool AddressingModeMatcher::
isProfitableToFoldIntoAddressingMode(Instruction * I,ExtAddrMode & AMBefore,ExtAddrMode & AMAfter)4984 isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
4985                                      ExtAddrMode &AMAfter) {
4986   if (IgnoreProfitability) return true;
4987 
4988   // AMBefore is the addressing mode before this instruction was folded into it,
4989   // and AMAfter is the addressing mode after the instruction was folded.  Get
4990   // the set of registers referenced by AMAfter and subtract out those
4991   // referenced by AMBefore: this is the set of values which folding in this
4992   // address extends the lifetime of.
4993   //
4994   // Note that there are only two potential values being referenced here,
4995   // BaseReg and ScaleReg (global addresses are always available, as are any
4996   // folded immediates).
4997   Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
4998 
4999   // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
5000   // lifetime wasn't extended by adding this instruction.
5001   if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5002     BaseReg = nullptr;
5003   if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
5004     ScaledReg = nullptr;
5005 
5006   // If folding this instruction (and it's subexprs) didn't extend any live
5007   // ranges, we're ok with it.
5008   if (!BaseReg && !ScaledReg)
5009     return true;
5010 
5011   // If all uses of this instruction can have the address mode sunk into them,
5012   // we can remove the addressing mode and effectively trade one live register
5013   // for another (at worst.)  In this context, folding an addressing mode into
5014   // the use is just a particularly nice way of sinking it.
5015   SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
5016   SmallPtrSet<Instruction*, 16> ConsideredInsts;
5017   if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI, OptSize,
5018                         PSI, BFI))
5019     return false;  // Has a non-memory, non-foldable use!
5020 
5021   // Now that we know that all uses of this instruction are part of a chain of
5022   // computation involving only operations that could theoretically be folded
5023   // into a memory use, loop over each of these memory operation uses and see
5024   // if they could  *actually* fold the instruction.  The assumption is that
5025   // addressing modes are cheap and that duplicating the computation involved
5026   // many times is worthwhile, even on a fastpath. For sinking candidates
5027   // (i.e. cold call sites), this serves as a way to prevent excessive code
5028   // growth since most architectures have some reasonable small and fast way to
5029   // compute an effective address.  (i.e LEA on x86)
5030   SmallVector<Instruction*, 32> MatchedAddrModeInsts;
5031   for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
5032     Instruction *User = MemoryUses[i].first;
5033     unsigned OpNo = MemoryUses[i].second;
5034 
5035     // Get the access type of this use.  If the use isn't a pointer, we don't
5036     // know what it accesses.
5037     Value *Address = User->getOperand(OpNo);
5038     PointerType *AddrTy = dyn_cast<PointerType>(Address->getType());
5039     if (!AddrTy)
5040       return false;
5041     Type *AddressAccessTy = AddrTy->getElementType();
5042     unsigned AS = AddrTy->getAddressSpace();
5043 
5044     // Do a match against the root of this address, ignoring profitability. This
5045     // will tell us if the addressing mode for the memory operation will
5046     // *actually* cover the shared instruction.
5047     ExtAddrMode Result;
5048     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5049                                                                       0);
5050     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5051         TPT.getRestorationPoint();
5052     AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, TRI, LI, getDTFn,
5053                                   AddressAccessTy, AS, MemoryInst, Result,
5054                                   InsertedInsts, PromotedInsts, TPT,
5055                                   LargeOffsetGEP, OptSize, PSI, BFI);
5056     Matcher.IgnoreProfitability = true;
5057     bool Success = Matcher.matchAddr(Address, 0);
5058     (void)Success; assert(Success && "Couldn't select *anything*?");
5059 
5060     // The match was to check the profitability, the changes made are not
5061     // part of the original matcher. Therefore, they should be dropped
5062     // otherwise the original matcher will not present the right state.
5063     TPT.rollback(LastKnownGood);
5064 
5065     // If the match didn't cover I, then it won't be shared by it.
5066     if (!is_contained(MatchedAddrModeInsts, I))
5067       return false;
5068 
5069     MatchedAddrModeInsts.clear();
5070   }
5071 
5072   return true;
5073 }
5074 
5075 /// Return true if the specified values are defined in a
5076 /// different basic block than BB.
IsNonLocalValue(Value * V,BasicBlock * BB)5077 static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
5078   if (Instruction *I = dyn_cast<Instruction>(V))
5079     return I->getParent() != BB;
5080   return false;
5081 }
5082 
5083 /// Sink addressing mode computation immediate before MemoryInst if doing so
5084 /// can be done without increasing register pressure.  The need for the
5085 /// register pressure constraint means this can end up being an all or nothing
5086 /// decision for all uses of the same addressing computation.
5087 ///
5088 /// Load and Store Instructions often have addressing modes that can do
5089 /// significant amounts of computation. As such, instruction selection will try
5090 /// to get the load or store to do as much computation as possible for the
5091 /// program. The problem is that isel can only see within a single block. As
5092 /// such, we sink as much legal addressing mode work into the block as possible.
5093 ///
5094 /// This method is used to optimize both load/store and inline asms with memory
5095 /// operands.  It's also used to sink addressing computations feeding into cold
5096 /// call sites into their (cold) basic block.
5097 ///
5098 /// The motivation for handling sinking into cold blocks is that doing so can
5099 /// both enable other address mode sinking (by satisfying the register pressure
5100 /// constraint above), and reduce register pressure globally (by removing the
5101 /// addressing mode computation from the fast path entirely.).
optimizeMemoryInst(Instruction * MemoryInst,Value * Addr,Type * AccessTy,unsigned AddrSpace)5102 bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
5103                                         Type *AccessTy, unsigned AddrSpace) {
5104   Value *Repl = Addr;
5105 
5106   // Try to collapse single-value PHI nodes.  This is necessary to undo
5107   // unprofitable PRE transformations.
5108   SmallVector<Value*, 8> worklist;
5109   SmallPtrSet<Value*, 16> Visited;
5110   worklist.push_back(Addr);
5111 
5112   // Use a worklist to iteratively look through PHI and select nodes, and
5113   // ensure that the addressing mode obtained from the non-PHI/select roots of
5114   // the graph are compatible.
5115   bool PhiOrSelectSeen = false;
5116   SmallVector<Instruction*, 16> AddrModeInsts;
5117   const SimplifyQuery SQ(*DL, TLInfo);
5118   AddressingModeCombiner AddrModes(SQ, Addr);
5119   TypePromotionTransaction TPT(RemovedInsts);
5120   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5121       TPT.getRestorationPoint();
5122   while (!worklist.empty()) {
5123     Value *V = worklist.back();
5124     worklist.pop_back();
5125 
5126     // We allow traversing cyclic Phi nodes.
5127     // In case of success after this loop we ensure that traversing through
5128     // Phi nodes ends up with all cases to compute address of the form
5129     //    BaseGV + Base + Scale * Index + Offset
5130     // where Scale and Offset are constans and BaseGV, Base and Index
5131     // are exactly the same Values in all cases.
5132     // It means that BaseGV, Scale and Offset dominate our memory instruction
5133     // and have the same value as they had in address computation represented
5134     // as Phi. So we can safely sink address computation to memory instruction.
5135     if (!Visited.insert(V).second)
5136       continue;
5137 
5138     // For a PHI node, push all of its incoming values.
5139     if (PHINode *P = dyn_cast<PHINode>(V)) {
5140       append_range(worklist, P->incoming_values());
5141       PhiOrSelectSeen = true;
5142       continue;
5143     }
5144     // Similar for select.
5145     if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
5146       worklist.push_back(SI->getFalseValue());
5147       worklist.push_back(SI->getTrueValue());
5148       PhiOrSelectSeen = true;
5149       continue;
5150     }
5151 
5152     // For non-PHIs, determine the addressing mode being computed.  Note that
5153     // the result may differ depending on what other uses our candidate
5154     // addressing instructions might have.
5155     AddrModeInsts.clear();
5156     std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr,
5157                                                                       0);
5158     // Defer the query (and possible computation of) the dom tree to point of
5159     // actual use.  It's expected that most address matches don't actually need
5160     // the domtree.
5161     auto getDTFn = [MemoryInst, this]() -> const DominatorTree & {
5162       Function *F = MemoryInst->getParent()->getParent();
5163       return this->getDT(*F);
5164     };
5165     ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
5166         V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *LI, getDTFn,
5167         *TRI, InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP, OptSize, PSI,
5168         BFI.get());
5169 
5170     GetElementPtrInst *GEP = LargeOffsetGEP.first;
5171     if (GEP && !NewGEPBases.count(GEP)) {
5172       // If splitting the underlying data structure can reduce the offset of a
5173       // GEP, collect the GEP.  Skip the GEPs that are the new bases of
5174       // previously split data structures.
5175       LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP);
5176       if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end())
5177         LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size();
5178     }
5179 
5180     NewAddrMode.OriginalValue = V;
5181     if (!AddrModes.addNewAddrMode(NewAddrMode))
5182       break;
5183   }
5184 
5185   // Try to combine the AddrModes we've collected. If we couldn't collect any,
5186   // or we have multiple but either couldn't combine them or combining them
5187   // wouldn't do anything useful, bail out now.
5188   if (!AddrModes.combineAddrModes()) {
5189     TPT.rollback(LastKnownGood);
5190     return false;
5191   }
5192   bool Modified = TPT.commit();
5193 
5194   // Get the combined AddrMode (or the only AddrMode, if we only had one).
5195   ExtAddrMode AddrMode = AddrModes.getAddrMode();
5196 
5197   // If all the instructions matched are already in this BB, don't do anything.
5198   // If we saw a Phi node then it is not local definitely, and if we saw a select
5199   // then we want to push the address calculation past it even if it's already
5200   // in this BB.
5201   if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) {
5202         return IsNonLocalValue(V, MemoryInst->getParent());
5203                   })) {
5204     LLVM_DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode
5205                       << "\n");
5206     return Modified;
5207   }
5208 
5209   // Insert this computation right after this user.  Since our caller is
5210   // scanning from the top of the BB to the bottom, reuse of the expr are
5211   // guaranteed to happen later.
5212   IRBuilder<> Builder(MemoryInst);
5213 
5214   // Now that we determined the addressing expression we want to use and know
5215   // that we have to sink it into this block.  Check to see if we have already
5216   // done this for some other load/store instr in this block.  If so, reuse
5217   // the computation.  Before attempting reuse, check if the address is valid
5218   // as it may have been erased.
5219 
5220   WeakTrackingVH SunkAddrVH = SunkAddrs[Addr];
5221 
5222   Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
5223   if (SunkAddr) {
5224     LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode
5225                       << " for " << *MemoryInst << "\n");
5226     if (SunkAddr->getType() != Addr->getType())
5227       SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5228   } else if (AddrSinkUsingGEPs || (!AddrSinkUsingGEPs.getNumOccurrences() &&
5229                                    SubtargetInfo->addrSinkUsingGEPs())) {
5230     // By default, we use the GEP-based method when AA is used later. This
5231     // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities.
5232     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5233                       << " for " << *MemoryInst << "\n");
5234     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5235     Value *ResultPtr = nullptr, *ResultIndex = nullptr;
5236 
5237     // First, find the pointer.
5238     if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) {
5239       ResultPtr = AddrMode.BaseReg;
5240       AddrMode.BaseReg = nullptr;
5241     }
5242 
5243     if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) {
5244       // We can't add more than one pointer together, nor can we scale a
5245       // pointer (both of which seem meaningless).
5246       if (ResultPtr || AddrMode.Scale != 1)
5247         return Modified;
5248 
5249       ResultPtr = AddrMode.ScaledReg;
5250       AddrMode.Scale = 0;
5251     }
5252 
5253     // It is only safe to sign extend the BaseReg if we know that the math
5254     // required to create it did not overflow before we extend it. Since
5255     // the original IR value was tossed in favor of a constant back when
5256     // the AddrMode was created we need to bail out gracefully if widths
5257     // do not match instead of extending it.
5258     //
5259     // (See below for code to add the scale.)
5260     if (AddrMode.Scale) {
5261       Type *ScaledRegTy = AddrMode.ScaledReg->getType();
5262       if (cast<IntegerType>(IntPtrTy)->getBitWidth() >
5263           cast<IntegerType>(ScaledRegTy)->getBitWidth())
5264         return Modified;
5265     }
5266 
5267     if (AddrMode.BaseGV) {
5268       if (ResultPtr)
5269         return Modified;
5270 
5271       ResultPtr = AddrMode.BaseGV;
5272     }
5273 
5274     // If the real base value actually came from an inttoptr, then the matcher
5275     // will look through it and provide only the integer value. In that case,
5276     // use it here.
5277     if (!DL->isNonIntegralPointerType(Addr->getType())) {
5278       if (!ResultPtr && AddrMode.BaseReg) {
5279         ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(),
5280                                            "sunkaddr");
5281         AddrMode.BaseReg = nullptr;
5282       } else if (!ResultPtr && AddrMode.Scale == 1) {
5283         ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(),
5284                                            "sunkaddr");
5285         AddrMode.Scale = 0;
5286       }
5287     }
5288 
5289     if (!ResultPtr &&
5290         !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) {
5291       SunkAddr = Constant::getNullValue(Addr->getType());
5292     } else if (!ResultPtr) {
5293       return Modified;
5294     } else {
5295       Type *I8PtrTy =
5296           Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace());
5297       Type *I8Ty = Builder.getInt8Ty();
5298 
5299       // Start with the base register. Do this first so that subsequent address
5300       // matching finds it last, which will prevent it from trying to match it
5301       // as the scaled value in case it happens to be a mul. That would be
5302       // problematic if we've sunk a different mul for the scale, because then
5303       // we'd end up sinking both muls.
5304       if (AddrMode.BaseReg) {
5305         Value *V = AddrMode.BaseReg;
5306         if (V->getType() != IntPtrTy)
5307           V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5308 
5309         ResultIndex = V;
5310       }
5311 
5312       // Add the scale value.
5313       if (AddrMode.Scale) {
5314         Value *V = AddrMode.ScaledReg;
5315         if (V->getType() == IntPtrTy) {
5316           // done.
5317         } else {
5318           assert(cast<IntegerType>(IntPtrTy)->getBitWidth() <
5319                  cast<IntegerType>(V->getType())->getBitWidth() &&
5320                  "We can't transform if ScaledReg is too narrow");
5321           V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5322         }
5323 
5324         if (AddrMode.Scale != 1)
5325           V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5326                                 "sunkaddr");
5327         if (ResultIndex)
5328           ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr");
5329         else
5330           ResultIndex = V;
5331       }
5332 
5333       // Add in the Base Offset if present.
5334       if (AddrMode.BaseOffs) {
5335         Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5336         if (ResultIndex) {
5337           // We need to add this separately from the scale above to help with
5338           // SDAG consecutive load/store merging.
5339           if (ResultPtr->getType() != I8PtrTy)
5340             ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5341           ResultPtr =
5342               AddrMode.InBounds
5343                   ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5344                                               "sunkaddr")
5345                   : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5346         }
5347 
5348         ResultIndex = V;
5349       }
5350 
5351       if (!ResultIndex) {
5352         SunkAddr = ResultPtr;
5353       } else {
5354         if (ResultPtr->getType() != I8PtrTy)
5355           ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy);
5356         SunkAddr =
5357             AddrMode.InBounds
5358                 ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex,
5359                                             "sunkaddr")
5360                 : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr");
5361       }
5362 
5363       if (SunkAddr->getType() != Addr->getType())
5364         SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType());
5365     }
5366   } else {
5367     // We'd require a ptrtoint/inttoptr down the line, which we can't do for
5368     // non-integral pointers, so in that case bail out now.
5369     Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr;
5370     Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr;
5371     PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy);
5372     PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy);
5373     if (DL->isNonIntegralPointerType(Addr->getType()) ||
5374         (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) ||
5375         (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) ||
5376         (AddrMode.BaseGV &&
5377          DL->isNonIntegralPointerType(AddrMode.BaseGV->getType())))
5378       return Modified;
5379 
5380     LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode
5381                       << " for " << *MemoryInst << "\n");
5382     Type *IntPtrTy = DL->getIntPtrType(Addr->getType());
5383     Value *Result = nullptr;
5384 
5385     // Start with the base register. Do this first so that subsequent address
5386     // matching finds it last, which will prevent it from trying to match it
5387     // as the scaled value in case it happens to be a mul. That would be
5388     // problematic if we've sunk a different mul for the scale, because then
5389     // we'd end up sinking both muls.
5390     if (AddrMode.BaseReg) {
5391       Value *V = AddrMode.BaseReg;
5392       if (V->getType()->isPointerTy())
5393         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5394       if (V->getType() != IntPtrTy)
5395         V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
5396       Result = V;
5397     }
5398 
5399     // Add the scale value.
5400     if (AddrMode.Scale) {
5401       Value *V = AddrMode.ScaledReg;
5402       if (V->getType() == IntPtrTy) {
5403         // done.
5404       } else if (V->getType()->isPointerTy()) {
5405         V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
5406       } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
5407                  cast<IntegerType>(V->getType())->getBitWidth()) {
5408         V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
5409       } else {
5410         // It is only safe to sign extend the BaseReg if we know that the math
5411         // required to create it did not overflow before we extend it. Since
5412         // the original IR value was tossed in favor of a constant back when
5413         // the AddrMode was created we need to bail out gracefully if widths
5414         // do not match instead of extending it.
5415         Instruction *I = dyn_cast_or_null<Instruction>(Result);
5416         if (I && (Result != AddrMode.BaseReg))
5417           I->eraseFromParent();
5418         return Modified;
5419       }
5420       if (AddrMode.Scale != 1)
5421         V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
5422                               "sunkaddr");
5423       if (Result)
5424         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5425       else
5426         Result = V;
5427     }
5428 
5429     // Add in the BaseGV if present.
5430     if (AddrMode.BaseGV) {
5431       Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
5432       if (Result)
5433         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5434       else
5435         Result = V;
5436     }
5437 
5438     // Add in the Base Offset if present.
5439     if (AddrMode.BaseOffs) {
5440       Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
5441       if (Result)
5442         Result = Builder.CreateAdd(Result, V, "sunkaddr");
5443       else
5444         Result = V;
5445     }
5446 
5447     if (!Result)
5448       SunkAddr = Constant::getNullValue(Addr->getType());
5449     else
5450       SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
5451   }
5452 
5453   MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
5454   // Store the newly computed address into the cache. In the case we reused a
5455   // value, this should be idempotent.
5456   SunkAddrs[Addr] = WeakTrackingVH(SunkAddr);
5457 
5458   // If we have no uses, recursively delete the value and all dead instructions
5459   // using it.
5460   if (Repl->use_empty()) {
5461     resetIteratorIfInvalidatedWhileCalling(CurInstIterator->getParent(), [&]() {
5462       RecursivelyDeleteTriviallyDeadInstructions(
5463           Repl, TLInfo, nullptr,
5464           [&](Value *V) { removeAllAssertingVHReferences(V); });
5465     });
5466   }
5467   ++NumMemoryInsts;
5468   return true;
5469 }
5470 
5471 /// Rewrite GEP input to gather/scatter to enable SelectionDAGBuilder to find
5472 /// a uniform base to use for ISD::MGATHER/MSCATTER. SelectionDAGBuilder can
5473 /// only handle a 2 operand GEP in the same basic block or a splat constant
5474 /// vector. The 2 operands to the GEP must have a scalar pointer and a vector
5475 /// index.
5476 ///
5477 /// If the existing GEP has a vector base pointer that is splat, we can look
5478 /// through the splat to find the scalar pointer. If we can't find a scalar
5479 /// pointer there's nothing we can do.
5480 ///
5481 /// If we have a GEP with more than 2 indices where the middle indices are all
5482 /// zeroes, we can replace it with 2 GEPs where the second has 2 operands.
5483 ///
5484 /// If the final index isn't a vector or is a splat, we can emit a scalar GEP
5485 /// followed by a GEP with an all zeroes vector index. This will enable
5486 /// SelectionDAGBuilder to use the scalar GEP as the uniform base and have a
5487 /// zero index.
optimizeGatherScatterInst(Instruction * MemoryInst,Value * Ptr)5488 bool CodeGenPrepare::optimizeGatherScatterInst(Instruction *MemoryInst,
5489                                                Value *Ptr) {
5490   Value *NewAddr;
5491 
5492   if (const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
5493     // Don't optimize GEPs that don't have indices.
5494     if (!GEP->hasIndices())
5495       return false;
5496 
5497     // If the GEP and the gather/scatter aren't in the same BB, don't optimize.
5498     // FIXME: We should support this by sinking the GEP.
5499     if (MemoryInst->getParent() != GEP->getParent())
5500       return false;
5501 
5502     SmallVector<Value *, 2> Ops(GEP->operands());
5503 
5504     bool RewriteGEP = false;
5505 
5506     if (Ops[0]->getType()->isVectorTy()) {
5507       Ops[0] = getSplatValue(Ops[0]);
5508       if (!Ops[0])
5509         return false;
5510       RewriteGEP = true;
5511     }
5512 
5513     unsigned FinalIndex = Ops.size() - 1;
5514 
5515     // Ensure all but the last index is 0.
5516     // FIXME: This isn't strictly required. All that's required is that they are
5517     // all scalars or splats.
5518     for (unsigned i = 1; i < FinalIndex; ++i) {
5519       auto *C = dyn_cast<Constant>(Ops[i]);
5520       if (!C)
5521         return false;
5522       if (isa<VectorType>(C->getType()))
5523         C = C->getSplatValue();
5524       auto *CI = dyn_cast_or_null<ConstantInt>(C);
5525       if (!CI || !CI->isZero())
5526         return false;
5527       // Scalarize the index if needed.
5528       Ops[i] = CI;
5529     }
5530 
5531     // Try to scalarize the final index.
5532     if (Ops[FinalIndex]->getType()->isVectorTy()) {
5533       if (Value *V = getSplatValue(Ops[FinalIndex])) {
5534         auto *C = dyn_cast<ConstantInt>(V);
5535         // Don't scalarize all zeros vector.
5536         if (!C || !C->isZero()) {
5537           Ops[FinalIndex] = V;
5538           RewriteGEP = true;
5539         }
5540       }
5541     }
5542 
5543     // If we made any changes or the we have extra operands, we need to generate
5544     // new instructions.
5545     if (!RewriteGEP && Ops.size() == 2)
5546       return false;
5547 
5548     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5549 
5550     IRBuilder<> Builder(MemoryInst);
5551 
5552     Type *SourceTy = GEP->getSourceElementType();
5553     Type *ScalarIndexTy = DL->getIndexType(Ops[0]->getType()->getScalarType());
5554 
5555     // If the final index isn't a vector, emit a scalar GEP containing all ops
5556     // and a vector GEP with all zeroes final index.
5557     if (!Ops[FinalIndex]->getType()->isVectorTy()) {
5558       NewAddr = Builder.CreateGEP(SourceTy, Ops[0],
5559                                   makeArrayRef(Ops).drop_front());
5560       auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5561       NewAddr = Builder.CreateGEP(NewAddr, Constant::getNullValue(IndexTy));
5562     } else {
5563       Value *Base = Ops[0];
5564       Value *Index = Ops[FinalIndex];
5565 
5566       // Create a scalar GEP if there are more than 2 operands.
5567       if (Ops.size() != 2) {
5568         // Replace the last index with 0.
5569         Ops[FinalIndex] = Constant::getNullValue(ScalarIndexTy);
5570         Base = Builder.CreateGEP(SourceTy, Base,
5571                                  makeArrayRef(Ops).drop_front());
5572       }
5573 
5574       // Now create the GEP with scalar pointer and vector index.
5575       NewAddr = Builder.CreateGEP(Base, Index);
5576     }
5577   } else if (!isa<Constant>(Ptr)) {
5578     // Not a GEP, maybe its a splat and we can create a GEP to enable
5579     // SelectionDAGBuilder to use it as a uniform base.
5580     Value *V = getSplatValue(Ptr);
5581     if (!V)
5582       return false;
5583 
5584     auto NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
5585 
5586     IRBuilder<> Builder(MemoryInst);
5587 
5588     // Emit a vector GEP with a scalar pointer and all 0s vector index.
5589     Type *ScalarIndexTy = DL->getIndexType(V->getType()->getScalarType());
5590     auto *IndexTy = VectorType::get(ScalarIndexTy, NumElts);
5591     NewAddr = Builder.CreateGEP(V, Constant::getNullValue(IndexTy));
5592   } else {
5593     // Constant, SelectionDAGBuilder knows to check if its a splat.
5594     return false;
5595   }
5596 
5597   MemoryInst->replaceUsesOfWith(Ptr, NewAddr);
5598 
5599   // If we have no uses, recursively delete the value and all dead instructions
5600   // using it.
5601   if (Ptr->use_empty())
5602     RecursivelyDeleteTriviallyDeadInstructions(
5603         Ptr, TLInfo, nullptr,
5604         [&](Value *V) { removeAllAssertingVHReferences(V); });
5605 
5606   return true;
5607 }
5608 
5609 /// If there are any memory operands, use OptimizeMemoryInst to sink their
5610 /// address computing into the block when possible / profitable.
optimizeInlineAsmInst(CallInst * CS)5611 bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) {
5612   bool MadeChange = false;
5613 
5614   const TargetRegisterInfo *TRI =
5615       TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo();
5616   TargetLowering::AsmOperandInfoVector TargetConstraints =
5617       TLI->ParseConstraints(*DL, TRI, *CS);
5618   unsigned ArgNo = 0;
5619   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
5620     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
5621 
5622     // Compute the constraint code and ConstraintType to use.
5623     TLI->ComputeConstraintToUse(OpInfo, SDValue());
5624 
5625     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
5626         OpInfo.isIndirect) {
5627       Value *OpVal = CS->getArgOperand(ArgNo++);
5628       MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u);
5629     } else if (OpInfo.Type == InlineAsm::isInput)
5630       ArgNo++;
5631   }
5632 
5633   return MadeChange;
5634 }
5635 
5636 /// Check if all the uses of \p Val are equivalent (or free) zero or
5637 /// sign extensions.
hasSameExtUse(Value * Val,const TargetLowering & TLI)5638 static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) {
5639   assert(!Val->use_empty() && "Input must have at least one use");
5640   const Instruction *FirstUser = cast<Instruction>(*Val->user_begin());
5641   bool IsSExt = isa<SExtInst>(FirstUser);
5642   Type *ExtTy = FirstUser->getType();
5643   for (const User *U : Val->users()) {
5644     const Instruction *UI = cast<Instruction>(U);
5645     if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI)))
5646       return false;
5647     Type *CurTy = UI->getType();
5648     // Same input and output types: Same instruction after CSE.
5649     if (CurTy == ExtTy)
5650       continue;
5651 
5652     // If IsSExt is true, we are in this situation:
5653     // a = Val
5654     // b = sext ty1 a to ty2
5655     // c = sext ty1 a to ty3
5656     // Assuming ty2 is shorter than ty3, this could be turned into:
5657     // a = Val
5658     // b = sext ty1 a to ty2
5659     // c = sext ty2 b to ty3
5660     // However, the last sext is not free.
5661     if (IsSExt)
5662       return false;
5663 
5664     // This is a ZExt, maybe this is free to extend from one type to another.
5665     // In that case, we would not account for a different use.
5666     Type *NarrowTy;
5667     Type *LargeTy;
5668     if (ExtTy->getScalarType()->getIntegerBitWidth() >
5669         CurTy->getScalarType()->getIntegerBitWidth()) {
5670       NarrowTy = CurTy;
5671       LargeTy = ExtTy;
5672     } else {
5673       NarrowTy = ExtTy;
5674       LargeTy = CurTy;
5675     }
5676 
5677     if (!TLI.isZExtFree(NarrowTy, LargeTy))
5678       return false;
5679   }
5680   // All uses are the same or can be derived from one another for free.
5681   return true;
5682 }
5683 
5684 /// Try to speculatively promote extensions in \p Exts and continue
5685 /// promoting through newly promoted operands recursively as far as doing so is
5686 /// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts.
5687 /// When some promotion happened, \p TPT contains the proper state to revert
5688 /// them.
5689 ///
5690 /// \return true if some promotion happened, false otherwise.
tryToPromoteExts(TypePromotionTransaction & TPT,const SmallVectorImpl<Instruction * > & Exts,SmallVectorImpl<Instruction * > & ProfitablyMovedExts,unsigned CreatedInstsCost)5691 bool CodeGenPrepare::tryToPromoteExts(
5692     TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts,
5693     SmallVectorImpl<Instruction *> &ProfitablyMovedExts,
5694     unsigned CreatedInstsCost) {
5695   bool Promoted = false;
5696 
5697   // Iterate over all the extensions to try to promote them.
5698   for (auto *I : Exts) {
5699     // Early check if we directly have ext(load).
5700     if (isa<LoadInst>(I->getOperand(0))) {
5701       ProfitablyMovedExts.push_back(I);
5702       continue;
5703     }
5704 
5705     // Check whether or not we want to do any promotion.  The reason we have
5706     // this check inside the for loop is to catch the case where an extension
5707     // is directly fed by a load because in such case the extension can be moved
5708     // up without any promotion on its operands.
5709     if (!TLI->enableExtLdPromotion() || DisableExtLdPromotion)
5710       return false;
5711 
5712     // Get the action to perform the promotion.
5713     TypePromotionHelper::Action TPH =
5714         TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts);
5715     // Check if we can promote.
5716     if (!TPH) {
5717       // Save the current extension as we cannot move up through its operand.
5718       ProfitablyMovedExts.push_back(I);
5719       continue;
5720     }
5721 
5722     // Save the current state.
5723     TypePromotionTransaction::ConstRestorationPt LastKnownGood =
5724         TPT.getRestorationPoint();
5725     SmallVector<Instruction *, 4> NewExts;
5726     unsigned NewCreatedInstsCost = 0;
5727     unsigned ExtCost = !TLI->isExtFree(I);
5728     // Promote.
5729     Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost,
5730                              &NewExts, nullptr, *TLI);
5731     assert(PromotedVal &&
5732            "TypePromotionHelper should have filtered out those cases");
5733 
5734     // We would be able to merge only one extension in a load.
5735     // Therefore, if we have more than 1 new extension we heuristically
5736     // cut this search path, because it means we degrade the code quality.
5737     // With exactly 2, the transformation is neutral, because we will merge
5738     // one extension but leave one. However, we optimistically keep going,
5739     // because the new extension may be removed too.
5740     long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost;
5741     // FIXME: It would be possible to propagate a negative value instead of
5742     // conservatively ceiling it to 0.
5743     TotalCreatedInstsCost =
5744         std::max((long long)0, (TotalCreatedInstsCost - ExtCost));
5745     if (!StressExtLdPromotion &&
5746         (TotalCreatedInstsCost > 1 ||
5747          !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) {
5748       // This promotion is not profitable, rollback to the previous state, and
5749       // save the current extension in ProfitablyMovedExts as the latest
5750       // speculative promotion turned out to be unprofitable.
5751       TPT.rollback(LastKnownGood);
5752       ProfitablyMovedExts.push_back(I);
5753       continue;
5754     }
5755     // Continue promoting NewExts as far as doing so is profitable.
5756     SmallVector<Instruction *, 2> NewlyMovedExts;
5757     (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost);
5758     bool NewPromoted = false;
5759     for (auto *ExtInst : NewlyMovedExts) {
5760       Instruction *MovedExt = cast<Instruction>(ExtInst);
5761       Value *ExtOperand = MovedExt->getOperand(0);
5762       // If we have reached to a load, we need this extra profitability check
5763       // as it could potentially be merged into an ext(load).
5764       if (isa<LoadInst>(ExtOperand) &&
5765           !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost ||
5766             (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI))))
5767         continue;
5768 
5769       ProfitablyMovedExts.push_back(MovedExt);
5770       NewPromoted = true;
5771     }
5772 
5773     // If none of speculative promotions for NewExts is profitable, rollback
5774     // and save the current extension (I) as the last profitable extension.
5775     if (!NewPromoted) {
5776       TPT.rollback(LastKnownGood);
5777       ProfitablyMovedExts.push_back(I);
5778       continue;
5779     }
5780     // The promotion is profitable.
5781     Promoted = true;
5782   }
5783   return Promoted;
5784 }
5785 
5786 /// Merging redundant sexts when one is dominating the other.
mergeSExts(Function & F)5787 bool CodeGenPrepare::mergeSExts(Function &F) {
5788   bool Changed = false;
5789   for (auto &Entry : ValToSExtendedUses) {
5790     SExts &Insts = Entry.second;
5791     SExts CurPts;
5792     for (Instruction *Inst : Insts) {
5793       if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) ||
5794           Inst->getOperand(0) != Entry.first)
5795         continue;
5796       bool inserted = false;
5797       for (auto &Pt : CurPts) {
5798         if (getDT(F).dominates(Inst, Pt)) {
5799           Pt->replaceAllUsesWith(Inst);
5800           RemovedInsts.insert(Pt);
5801           Pt->removeFromParent();
5802           Pt = Inst;
5803           inserted = true;
5804           Changed = true;
5805           break;
5806         }
5807         if (!getDT(F).dominates(Pt, Inst))
5808           // Give up if we need to merge in a common dominator as the
5809           // experiments show it is not profitable.
5810           continue;
5811         Inst->replaceAllUsesWith(Pt);
5812         RemovedInsts.insert(Inst);
5813         Inst->removeFromParent();
5814         inserted = true;
5815         Changed = true;
5816         break;
5817       }
5818       if (!inserted)
5819         CurPts.push_back(Inst);
5820     }
5821   }
5822   return Changed;
5823 }
5824 
5825 // Splitting large data structures so that the GEPs accessing them can have
5826 // smaller offsets so that they can be sunk to the same blocks as their users.
5827 // For example, a large struct starting from %base is split into two parts
5828 // where the second part starts from %new_base.
5829 //
5830 // Before:
5831 // BB0:
5832 //   %base     =
5833 //
5834 // BB1:
5835 //   %gep0     = gep %base, off0
5836 //   %gep1     = gep %base, off1
5837 //   %gep2     = gep %base, off2
5838 //
5839 // BB2:
5840 //   %load1    = load %gep0
5841 //   %load2    = load %gep1
5842 //   %load3    = load %gep2
5843 //
5844 // After:
5845 // BB0:
5846 //   %base     =
5847 //   %new_base = gep %base, off0
5848 //
5849 // BB1:
5850 //   %new_gep0 = %new_base
5851 //   %new_gep1 = gep %new_base, off1 - off0
5852 //   %new_gep2 = gep %new_base, off2 - off0
5853 //
5854 // BB2:
5855 //   %load1    = load i32, i32* %new_gep0
5856 //   %load2    = load i32, i32* %new_gep1
5857 //   %load3    = load i32, i32* %new_gep2
5858 //
5859 // %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because
5860 // their offsets are smaller enough to fit into the addressing mode.
splitLargeGEPOffsets()5861 bool CodeGenPrepare::splitLargeGEPOffsets() {
5862   bool Changed = false;
5863   for (auto &Entry : LargeOffsetGEPMap) {
5864     Value *OldBase = Entry.first;
5865     SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>>
5866         &LargeOffsetGEPs = Entry.second;
5867     auto compareGEPOffset =
5868         [&](const std::pair<GetElementPtrInst *, int64_t> &LHS,
5869             const std::pair<GetElementPtrInst *, int64_t> &RHS) {
5870           if (LHS.first == RHS.first)
5871             return false;
5872           if (LHS.second != RHS.second)
5873             return LHS.second < RHS.second;
5874           return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first];
5875         };
5876     // Sorting all the GEPs of the same data structures based on the offsets.
5877     llvm::sort(LargeOffsetGEPs, compareGEPOffset);
5878     LargeOffsetGEPs.erase(
5879         std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()),
5880         LargeOffsetGEPs.end());
5881     // Skip if all the GEPs have the same offsets.
5882     if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second)
5883       continue;
5884     GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first;
5885     int64_t BaseOffset = LargeOffsetGEPs.begin()->second;
5886     Value *NewBaseGEP = nullptr;
5887 
5888     auto *LargeOffsetGEP = LargeOffsetGEPs.begin();
5889     while (LargeOffsetGEP != LargeOffsetGEPs.end()) {
5890       GetElementPtrInst *GEP = LargeOffsetGEP->first;
5891       int64_t Offset = LargeOffsetGEP->second;
5892       if (Offset != BaseOffset) {
5893         TargetLowering::AddrMode AddrMode;
5894         AddrMode.BaseOffs = Offset - BaseOffset;
5895         // The result type of the GEP might not be the type of the memory
5896         // access.
5897         if (!TLI->isLegalAddressingMode(*DL, AddrMode,
5898                                         GEP->getResultElementType(),
5899                                         GEP->getAddressSpace())) {
5900           // We need to create a new base if the offset to the current base is
5901           // too large to fit into the addressing mode. So, a very large struct
5902           // may be split into several parts.
5903           BaseGEP = GEP;
5904           BaseOffset = Offset;
5905           NewBaseGEP = nullptr;
5906         }
5907       }
5908 
5909       // Generate a new GEP to replace the current one.
5910       LLVMContext &Ctx = GEP->getContext();
5911       Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
5912       Type *I8PtrTy =
5913           Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace());
5914       Type *I8Ty = Type::getInt8Ty(Ctx);
5915 
5916       if (!NewBaseGEP) {
5917         // Create a new base if we don't have one yet.  Find the insertion
5918         // pointer for the new base first.
5919         BasicBlock::iterator NewBaseInsertPt;
5920         BasicBlock *NewBaseInsertBB;
5921         if (auto *BaseI = dyn_cast<Instruction>(OldBase)) {
5922           // If the base of the struct is an instruction, the new base will be
5923           // inserted close to it.
5924           NewBaseInsertBB = BaseI->getParent();
5925           if (isa<PHINode>(BaseI))
5926             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5927           else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) {
5928             NewBaseInsertBB =
5929                 SplitEdge(NewBaseInsertBB, Invoke->getNormalDest());
5930             NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5931           } else
5932             NewBaseInsertPt = std::next(BaseI->getIterator());
5933         } else {
5934           // If the current base is an argument or global value, the new base
5935           // will be inserted to the entry block.
5936           NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock();
5937           NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt();
5938         }
5939         IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt);
5940         // Create a new base.
5941         Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset);
5942         NewBaseGEP = OldBase;
5943         if (NewBaseGEP->getType() != I8PtrTy)
5944           NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy);
5945         NewBaseGEP =
5946             NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep");
5947         NewGEPBases.insert(NewBaseGEP);
5948       }
5949 
5950       IRBuilder<> Builder(GEP);
5951       Value *NewGEP = NewBaseGEP;
5952       if (Offset == BaseOffset) {
5953         if (GEP->getType() != I8PtrTy)
5954           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5955       } else {
5956         // Calculate the new offset for the new GEP.
5957         Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset);
5958         NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index);
5959 
5960         if (GEP->getType() != I8PtrTy)
5961           NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType());
5962       }
5963       GEP->replaceAllUsesWith(NewGEP);
5964       LargeOffsetGEPID.erase(GEP);
5965       LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP);
5966       GEP->eraseFromParent();
5967       Changed = true;
5968     }
5969   }
5970   return Changed;
5971 }
5972 
optimizePhiType(PHINode * I,SmallPtrSetImpl<PHINode * > & Visited,SmallPtrSetImpl<Instruction * > & DeletedInstrs)5973 bool CodeGenPrepare::optimizePhiType(
5974     PHINode *I, SmallPtrSetImpl<PHINode *> &Visited,
5975     SmallPtrSetImpl<Instruction *> &DeletedInstrs) {
5976   // We are looking for a collection on interconnected phi nodes that together
5977   // only use loads/bitcasts and are used by stores/bitcasts, and the bitcasts
5978   // are of the same type. Convert the whole set of nodes to the type of the
5979   // bitcast.
5980   Type *PhiTy = I->getType();
5981   Type *ConvertTy = nullptr;
5982   if (Visited.count(I) ||
5983       (!I->getType()->isIntegerTy() && !I->getType()->isFloatingPointTy()))
5984     return false;
5985 
5986   SmallVector<Instruction *, 4> Worklist;
5987   Worklist.push_back(cast<Instruction>(I));
5988   SmallPtrSet<PHINode *, 4> PhiNodes;
5989   PhiNodes.insert(I);
5990   Visited.insert(I);
5991   SmallPtrSet<Instruction *, 4> Defs;
5992   SmallPtrSet<Instruction *, 4> Uses;
5993   // This works by adding extra bitcasts between load/stores and removing
5994   // existing bicasts. If we have a phi(bitcast(load)) or a store(bitcast(phi))
5995   // we can get in the situation where we remove a bitcast in one iteration
5996   // just to add it again in the next. We need to ensure that at least one
5997   // bitcast we remove are anchored to something that will not change back.
5998   bool AnyAnchored = false;
5999 
6000   while (!Worklist.empty()) {
6001     Instruction *II = Worklist.pop_back_val();
6002 
6003     if (auto *Phi = dyn_cast<PHINode>(II)) {
6004       // Handle Defs, which might also be PHI's
6005       for (Value *V : Phi->incoming_values()) {
6006         if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6007           if (!PhiNodes.count(OpPhi)) {
6008             if (Visited.count(OpPhi))
6009               return false;
6010             PhiNodes.insert(OpPhi);
6011             Visited.insert(OpPhi);
6012             Worklist.push_back(OpPhi);
6013           }
6014         } else if (auto *OpLoad = dyn_cast<LoadInst>(V)) {
6015           if (!OpLoad->isSimple())
6016             return false;
6017           if (!Defs.count(OpLoad)) {
6018             Defs.insert(OpLoad);
6019             Worklist.push_back(OpLoad);
6020           }
6021         } else if (auto *OpEx = dyn_cast<ExtractElementInst>(V)) {
6022           if (!Defs.count(OpEx)) {
6023             Defs.insert(OpEx);
6024             Worklist.push_back(OpEx);
6025           }
6026         } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6027           if (!ConvertTy)
6028             ConvertTy = OpBC->getOperand(0)->getType();
6029           if (OpBC->getOperand(0)->getType() != ConvertTy)
6030             return false;
6031           if (!Defs.count(OpBC)) {
6032             Defs.insert(OpBC);
6033             Worklist.push_back(OpBC);
6034             AnyAnchored |= !isa<LoadInst>(OpBC->getOperand(0)) &&
6035                            !isa<ExtractElementInst>(OpBC->getOperand(0));
6036           }
6037         } else if (!isa<UndefValue>(V)) {
6038           return false;
6039         }
6040       }
6041     }
6042 
6043     // Handle uses which might also be phi's
6044     for (User *V : II->users()) {
6045       if (auto *OpPhi = dyn_cast<PHINode>(V)) {
6046         if (!PhiNodes.count(OpPhi)) {
6047           if (Visited.count(OpPhi))
6048             return false;
6049           PhiNodes.insert(OpPhi);
6050           Visited.insert(OpPhi);
6051           Worklist.push_back(OpPhi);
6052         }
6053       } else if (auto *OpStore = dyn_cast<StoreInst>(V)) {
6054         if (!OpStore->isSimple() || OpStore->getOperand(0) != II)
6055           return false;
6056         Uses.insert(OpStore);
6057       } else if (auto *OpBC = dyn_cast<BitCastInst>(V)) {
6058         if (!ConvertTy)
6059           ConvertTy = OpBC->getType();
6060         if (OpBC->getType() != ConvertTy)
6061           return false;
6062         Uses.insert(OpBC);
6063         AnyAnchored |=
6064             any_of(OpBC->users(), [](User *U) { return !isa<StoreInst>(U); });
6065       } else {
6066         return false;
6067       }
6068     }
6069   }
6070 
6071   if (!ConvertTy || !AnyAnchored || !TLI->shouldConvertPhiType(PhiTy, ConvertTy))
6072     return false;
6073 
6074   LLVM_DEBUG(dbgs() << "Converting " << *I << "\n  and connected nodes to "
6075                     << *ConvertTy << "\n");
6076 
6077   // Create all the new phi nodes of the new type, and bitcast any loads to the
6078   // correct type.
6079   ValueToValueMap ValMap;
6080   ValMap[UndefValue::get(PhiTy)] = UndefValue::get(ConvertTy);
6081   for (Instruction *D : Defs) {
6082     if (isa<BitCastInst>(D)) {
6083       ValMap[D] = D->getOperand(0);
6084       DeletedInstrs.insert(D);
6085     } else {
6086       ValMap[D] =
6087           new BitCastInst(D, ConvertTy, D->getName() + ".bc", D->getNextNode());
6088     }
6089   }
6090   for (PHINode *Phi : PhiNodes)
6091     ValMap[Phi] = PHINode::Create(ConvertTy, Phi->getNumIncomingValues(),
6092                                   Phi->getName() + ".tc", Phi);
6093   // Pipe together all the PhiNodes.
6094   for (PHINode *Phi : PhiNodes) {
6095     PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
6096     for (int i = 0, e = Phi->getNumIncomingValues(); i < e; i++)
6097       NewPhi->addIncoming(ValMap[Phi->getIncomingValue(i)],
6098                           Phi->getIncomingBlock(i));
6099     Visited.insert(NewPhi);
6100   }
6101   // And finally pipe up the stores and bitcasts
6102   for (Instruction *U : Uses) {
6103     if (isa<BitCastInst>(U)) {
6104       DeletedInstrs.insert(U);
6105       U->replaceAllUsesWith(ValMap[U->getOperand(0)]);
6106     } else {
6107       U->setOperand(0,
6108                     new BitCastInst(ValMap[U->getOperand(0)], PhiTy, "bc", U));
6109     }
6110   }
6111 
6112   // Save the removed phis to be deleted later.
6113   for (PHINode *Phi : PhiNodes)
6114     DeletedInstrs.insert(Phi);
6115   return true;
6116 }
6117 
optimizePhiTypes(Function & F)6118 bool CodeGenPrepare::optimizePhiTypes(Function &F) {
6119   if (!OptimizePhiTypes)
6120     return false;
6121 
6122   bool Changed = false;
6123   SmallPtrSet<PHINode *, 4> Visited;
6124   SmallPtrSet<Instruction *, 4> DeletedInstrs;
6125 
6126   // Attempt to optimize all the phis in the functions to the correct type.
6127   for (auto &BB : F)
6128     for (auto &Phi : BB.phis())
6129       Changed |= optimizePhiType(&Phi, Visited, DeletedInstrs);
6130 
6131   // Remove any old phi's that have been converted.
6132   for (auto *I : DeletedInstrs) {
6133     I->replaceAllUsesWith(UndefValue::get(I->getType()));
6134     I->eraseFromParent();
6135   }
6136 
6137   return Changed;
6138 }
6139 
6140 /// Return true, if an ext(load) can be formed from an extension in
6141 /// \p MovedExts.
canFormExtLd(const SmallVectorImpl<Instruction * > & MovedExts,LoadInst * & LI,Instruction * & Inst,bool HasPromoted)6142 bool CodeGenPrepare::canFormExtLd(
6143     const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI,
6144     Instruction *&Inst, bool HasPromoted) {
6145   for (auto *MovedExtInst : MovedExts) {
6146     if (isa<LoadInst>(MovedExtInst->getOperand(0))) {
6147       LI = cast<LoadInst>(MovedExtInst->getOperand(0));
6148       Inst = MovedExtInst;
6149       break;
6150     }
6151   }
6152   if (!LI)
6153     return false;
6154 
6155   // If they're already in the same block, there's nothing to do.
6156   // Make the cheap checks first if we did not promote.
6157   // If we promoted, we need to check if it is indeed profitable.
6158   if (!HasPromoted && LI->getParent() == Inst->getParent())
6159     return false;
6160 
6161   return TLI->isExtLoad(LI, Inst, *DL);
6162 }
6163 
6164 /// Move a zext or sext fed by a load into the same basic block as the load,
6165 /// unless conditions are unfavorable. This allows SelectionDAG to fold the
6166 /// extend into the load.
6167 ///
6168 /// E.g.,
6169 /// \code
6170 /// %ld = load i32* %addr
6171 /// %add = add nuw i32 %ld, 4
6172 /// %zext = zext i32 %add to i64
6173 // \endcode
6174 /// =>
6175 /// \code
6176 /// %ld = load i32* %addr
6177 /// %zext = zext i32 %ld to i64
6178 /// %add = add nuw i64 %zext, 4
6179 /// \encode
6180 /// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which
6181 /// allow us to match zext(load i32*) to i64.
6182 ///
6183 /// Also, try to promote the computations used to obtain a sign extended
6184 /// value used into memory accesses.
6185 /// E.g.,
6186 /// \code
6187 /// a = add nsw i32 b, 3
6188 /// d = sext i32 a to i64
6189 /// e = getelementptr ..., i64 d
6190 /// \endcode
6191 /// =>
6192 /// \code
6193 /// f = sext i32 b to i64
6194 /// a = add nsw i64 f, 3
6195 /// e = getelementptr ..., i64 a
6196 /// \endcode
6197 ///
6198 /// \p Inst[in/out] the extension may be modified during the process if some
6199 /// promotions apply.
optimizeExt(Instruction * & Inst)6200 bool CodeGenPrepare::optimizeExt(Instruction *&Inst) {
6201   bool AllowPromotionWithoutCommonHeader = false;
6202   /// See if it is an interesting sext operations for the address type
6203   /// promotion before trying to promote it, e.g., the ones with the right
6204   /// type and used in memory accesses.
6205   bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion(
6206       *Inst, AllowPromotionWithoutCommonHeader);
6207   TypePromotionTransaction TPT(RemovedInsts);
6208   TypePromotionTransaction::ConstRestorationPt LastKnownGood =
6209       TPT.getRestorationPoint();
6210   SmallVector<Instruction *, 1> Exts;
6211   SmallVector<Instruction *, 2> SpeculativelyMovedExts;
6212   Exts.push_back(Inst);
6213 
6214   bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts);
6215 
6216   // Look for a load being extended.
6217   LoadInst *LI = nullptr;
6218   Instruction *ExtFedByLoad;
6219 
6220   // Try to promote a chain of computation if it allows to form an extended
6221   // load.
6222   if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) {
6223     assert(LI && ExtFedByLoad && "Expect a valid load and extension");
6224     TPT.commit();
6225     // Move the extend into the same block as the load.
6226     ExtFedByLoad->moveAfter(LI);
6227     ++NumExtsMoved;
6228     Inst = ExtFedByLoad;
6229     return true;
6230   }
6231 
6232   // Continue promoting SExts if known as considerable depending on targets.
6233   if (ATPConsiderable &&
6234       performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader,
6235                                   HasPromoted, TPT, SpeculativelyMovedExts))
6236     return true;
6237 
6238   TPT.rollback(LastKnownGood);
6239   return false;
6240 }
6241 
6242 // Perform address type promotion if doing so is profitable.
6243 // If AllowPromotionWithoutCommonHeader == false, we should find other sext
6244 // instructions that sign extended the same initial value. However, if
6245 // AllowPromotionWithoutCommonHeader == true, we expect promoting the
6246 // extension is just profitable.
performAddressTypePromotion(Instruction * & Inst,bool AllowPromotionWithoutCommonHeader,bool HasPromoted,TypePromotionTransaction & TPT,SmallVectorImpl<Instruction * > & SpeculativelyMovedExts)6247 bool CodeGenPrepare::performAddressTypePromotion(
6248     Instruction *&Inst, bool AllowPromotionWithoutCommonHeader,
6249     bool HasPromoted, TypePromotionTransaction &TPT,
6250     SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) {
6251   bool Promoted = false;
6252   SmallPtrSet<Instruction *, 1> UnhandledExts;
6253   bool AllSeenFirst = true;
6254   for (auto *I : SpeculativelyMovedExts) {
6255     Value *HeadOfChain = I->getOperand(0);
6256     DenseMap<Value *, Instruction *>::iterator AlreadySeen =
6257         SeenChainsForSExt.find(HeadOfChain);
6258     // If there is an unhandled SExt which has the same header, try to promote
6259     // it as well.
6260     if (AlreadySeen != SeenChainsForSExt.end()) {
6261       if (AlreadySeen->second != nullptr)
6262         UnhandledExts.insert(AlreadySeen->second);
6263       AllSeenFirst = false;
6264     }
6265   }
6266 
6267   if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader &&
6268                         SpeculativelyMovedExts.size() == 1)) {
6269     TPT.commit();
6270     if (HasPromoted)
6271       Promoted = true;
6272     for (auto *I : SpeculativelyMovedExts) {
6273       Value *HeadOfChain = I->getOperand(0);
6274       SeenChainsForSExt[HeadOfChain] = nullptr;
6275       ValToSExtendedUses[HeadOfChain].push_back(I);
6276     }
6277     // Update Inst as promotion happen.
6278     Inst = SpeculativelyMovedExts.pop_back_val();
6279   } else {
6280     // This is the first chain visited from the header, keep the current chain
6281     // as unhandled. Defer to promote this until we encounter another SExt
6282     // chain derived from the same header.
6283     for (auto *I : SpeculativelyMovedExts) {
6284       Value *HeadOfChain = I->getOperand(0);
6285       SeenChainsForSExt[HeadOfChain] = Inst;
6286     }
6287     return false;
6288   }
6289 
6290   if (!AllSeenFirst && !UnhandledExts.empty())
6291     for (auto *VisitedSExt : UnhandledExts) {
6292       if (RemovedInsts.count(VisitedSExt))
6293         continue;
6294       TypePromotionTransaction TPT(RemovedInsts);
6295       SmallVector<Instruction *, 1> Exts;
6296       SmallVector<Instruction *, 2> Chains;
6297       Exts.push_back(VisitedSExt);
6298       bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains);
6299       TPT.commit();
6300       if (HasPromoted)
6301         Promoted = true;
6302       for (auto *I : Chains) {
6303         Value *HeadOfChain = I->getOperand(0);
6304         // Mark this as handled.
6305         SeenChainsForSExt[HeadOfChain] = nullptr;
6306         ValToSExtendedUses[HeadOfChain].push_back(I);
6307       }
6308     }
6309   return Promoted;
6310 }
6311 
optimizeExtUses(Instruction * I)6312 bool CodeGenPrepare::optimizeExtUses(Instruction *I) {
6313   BasicBlock *DefBB = I->getParent();
6314 
6315   // If the result of a {s|z}ext and its source are both live out, rewrite all
6316   // other uses of the source with result of extension.
6317   Value *Src = I->getOperand(0);
6318   if (Src->hasOneUse())
6319     return false;
6320 
6321   // Only do this xform if truncating is free.
6322   if (!TLI->isTruncateFree(I->getType(), Src->getType()))
6323     return false;
6324 
6325   // Only safe to perform the optimization if the source is also defined in
6326   // this block.
6327   if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
6328     return false;
6329 
6330   bool DefIsLiveOut = false;
6331   for (User *U : I->users()) {
6332     Instruction *UI = cast<Instruction>(U);
6333 
6334     // Figure out which BB this ext is used in.
6335     BasicBlock *UserBB = UI->getParent();
6336     if (UserBB == DefBB) continue;
6337     DefIsLiveOut = true;
6338     break;
6339   }
6340   if (!DefIsLiveOut)
6341     return false;
6342 
6343   // Make sure none of the uses are PHI nodes.
6344   for (User *U : Src->users()) {
6345     Instruction *UI = cast<Instruction>(U);
6346     BasicBlock *UserBB = UI->getParent();
6347     if (UserBB == DefBB) continue;
6348     // Be conservative. We don't want this xform to end up introducing
6349     // reloads just before load / store instructions.
6350     if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI))
6351       return false;
6352   }
6353 
6354   // InsertedTruncs - Only insert one trunc in each block once.
6355   DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
6356 
6357   bool MadeChange = false;
6358   for (Use &U : Src->uses()) {
6359     Instruction *User = cast<Instruction>(U.getUser());
6360 
6361     // Figure out which BB this ext is used in.
6362     BasicBlock *UserBB = User->getParent();
6363     if (UserBB == DefBB) continue;
6364 
6365     // Both src and def are live in this block. Rewrite the use.
6366     Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
6367 
6368     if (!InsertedTrunc) {
6369       BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
6370       assert(InsertPt != UserBB->end());
6371       InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt);
6372       InsertedInsts.insert(InsertedTrunc);
6373     }
6374 
6375     // Replace a use of the {s|z}ext source with a use of the result.
6376     U = InsertedTrunc;
6377     ++NumExtUses;
6378     MadeChange = true;
6379   }
6380 
6381   return MadeChange;
6382 }
6383 
6384 // Find loads whose uses only use some of the loaded value's bits.  Add an "and"
6385 // just after the load if the target can fold this into one extload instruction,
6386 // with the hope of eliminating some of the other later "and" instructions using
6387 // the loaded value.  "and"s that are made trivially redundant by the insertion
6388 // of the new "and" are removed by this function, while others (e.g. those whose
6389 // path from the load goes through a phi) are left for isel to potentially
6390 // remove.
6391 //
6392 // For example:
6393 //
6394 // b0:
6395 //   x = load i32
6396 //   ...
6397 // b1:
6398 //   y = and x, 0xff
6399 //   z = use y
6400 //
6401 // becomes:
6402 //
6403 // b0:
6404 //   x = load i32
6405 //   x' = and x, 0xff
6406 //   ...
6407 // b1:
6408 //   z = use x'
6409 //
6410 // whereas:
6411 //
6412 // b0:
6413 //   x1 = load i32
6414 //   ...
6415 // b1:
6416 //   x2 = load i32
6417 //   ...
6418 // b2:
6419 //   x = phi x1, x2
6420 //   y = and x, 0xff
6421 //
6422 // becomes (after a call to optimizeLoadExt for each load):
6423 //
6424 // b0:
6425 //   x1 = load i32
6426 //   x1' = and x1, 0xff
6427 //   ...
6428 // b1:
6429 //   x2 = load i32
6430 //   x2' = and x2, 0xff
6431 //   ...
6432 // b2:
6433 //   x = phi x1', x2'
6434 //   y = and x, 0xff
optimizeLoadExt(LoadInst * Load)6435 bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) {
6436   if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy())
6437     return false;
6438 
6439   // Skip loads we've already transformed.
6440   if (Load->hasOneUse() &&
6441       InsertedInsts.count(cast<Instruction>(*Load->user_begin())))
6442     return false;
6443 
6444   // Look at all uses of Load, looking through phis, to determine how many bits
6445   // of the loaded value are needed.
6446   SmallVector<Instruction *, 8> WorkList;
6447   SmallPtrSet<Instruction *, 16> Visited;
6448   SmallVector<Instruction *, 8> AndsToMaybeRemove;
6449   for (auto *U : Load->users())
6450     WorkList.push_back(cast<Instruction>(U));
6451 
6452   EVT LoadResultVT = TLI->getValueType(*DL, Load->getType());
6453   unsigned BitWidth = LoadResultVT.getSizeInBits();
6454   APInt DemandBits(BitWidth, 0);
6455   APInt WidestAndBits(BitWidth, 0);
6456 
6457   while (!WorkList.empty()) {
6458     Instruction *I = WorkList.back();
6459     WorkList.pop_back();
6460 
6461     // Break use-def graph loops.
6462     if (!Visited.insert(I).second)
6463       continue;
6464 
6465     // For a PHI node, push all of its users.
6466     if (auto *Phi = dyn_cast<PHINode>(I)) {
6467       for (auto *U : Phi->users())
6468         WorkList.push_back(cast<Instruction>(U));
6469       continue;
6470     }
6471 
6472     switch (I->getOpcode()) {
6473     case Instruction::And: {
6474       auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1));
6475       if (!AndC)
6476         return false;
6477       APInt AndBits = AndC->getValue();
6478       DemandBits |= AndBits;
6479       // Keep track of the widest and mask we see.
6480       if (AndBits.ugt(WidestAndBits))
6481         WidestAndBits = AndBits;
6482       if (AndBits == WidestAndBits && I->getOperand(0) == Load)
6483         AndsToMaybeRemove.push_back(I);
6484       break;
6485     }
6486 
6487     case Instruction::Shl: {
6488       auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1));
6489       if (!ShlC)
6490         return false;
6491       uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1);
6492       DemandBits.setLowBits(BitWidth - ShiftAmt);
6493       break;
6494     }
6495 
6496     case Instruction::Trunc: {
6497       EVT TruncVT = TLI->getValueType(*DL, I->getType());
6498       unsigned TruncBitWidth = TruncVT.getSizeInBits();
6499       DemandBits.setLowBits(TruncBitWidth);
6500       break;
6501     }
6502 
6503     default:
6504       return false;
6505     }
6506   }
6507 
6508   uint32_t ActiveBits = DemandBits.getActiveBits();
6509   // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the
6510   // target even if isLoadExtLegal says an i1 EXTLOAD is valid.  For example,
6511   // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but
6512   // (and (load x) 1) is not matched as a single instruction, rather as a LDR
6513   // followed by an AND.
6514   // TODO: Look into removing this restriction by fixing backends to either
6515   // return false for isLoadExtLegal for i1 or have them select this pattern to
6516   // a single instruction.
6517   //
6518   // Also avoid hoisting if we didn't see any ands with the exact DemandBits
6519   // mask, since these are the only ands that will be removed by isel.
6520   if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) ||
6521       WidestAndBits != DemandBits)
6522     return false;
6523 
6524   LLVMContext &Ctx = Load->getType()->getContext();
6525   Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits);
6526   EVT TruncVT = TLI->getValueType(*DL, TruncTy);
6527 
6528   // Reject cases that won't be matched as extloads.
6529   if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() ||
6530       !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT))
6531     return false;
6532 
6533   IRBuilder<> Builder(Load->getNextNode());
6534   auto *NewAnd = cast<Instruction>(
6535       Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits)));
6536   // Mark this instruction as "inserted by CGP", so that other
6537   // optimizations don't touch it.
6538   InsertedInsts.insert(NewAnd);
6539 
6540   // Replace all uses of load with new and (except for the use of load in the
6541   // new and itself).
6542   Load->replaceAllUsesWith(NewAnd);
6543   NewAnd->setOperand(0, Load);
6544 
6545   // Remove any and instructions that are now redundant.
6546   for (auto *And : AndsToMaybeRemove)
6547     // Check that the and mask is the same as the one we decided to put on the
6548     // new and.
6549     if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) {
6550       And->replaceAllUsesWith(NewAnd);
6551       if (&*CurInstIterator == And)
6552         CurInstIterator = std::next(And->getIterator());
6553       And->eraseFromParent();
6554       ++NumAndUses;
6555     }
6556 
6557   ++NumAndsAdded;
6558   return true;
6559 }
6560 
6561 /// Check if V (an operand of a select instruction) is an expensive instruction
6562 /// that is only used once.
sinkSelectOperand(const TargetTransformInfo * TTI,Value * V)6563 static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) {
6564   auto *I = dyn_cast<Instruction>(V);
6565   // If it's safe to speculatively execute, then it should not have side
6566   // effects; therefore, it's safe to sink and possibly *not* execute.
6567   return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) &&
6568          TTI->getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency) >=
6569          TargetTransformInfo::TCC_Expensive;
6570 }
6571 
6572 /// Returns true if a SelectInst should be turned into an explicit branch.
isFormingBranchFromSelectProfitable(const TargetTransformInfo * TTI,const TargetLowering * TLI,SelectInst * SI)6573 static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI,
6574                                                 const TargetLowering *TLI,
6575                                                 SelectInst *SI) {
6576   // If even a predictable select is cheap, then a branch can't be cheaper.
6577   if (!TLI->isPredictableSelectExpensive())
6578     return false;
6579 
6580   // FIXME: This should use the same heuristics as IfConversion to determine
6581   // whether a select is better represented as a branch.
6582 
6583   // If metadata tells us that the select condition is obviously predictable,
6584   // then we want to replace the select with a branch.
6585   uint64_t TrueWeight, FalseWeight;
6586   if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
6587     uint64_t Max = std::max(TrueWeight, FalseWeight);
6588     uint64_t Sum = TrueWeight + FalseWeight;
6589     if (Sum != 0) {
6590       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
6591       if (Probability > TTI->getPredictableBranchThreshold())
6592         return true;
6593     }
6594   }
6595 
6596   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
6597 
6598   // If a branch is predictable, an out-of-order CPU can avoid blocking on its
6599   // comparison condition. If the compare has more than one use, there's
6600   // probably another cmov or setcc around, so it's not worth emitting a branch.
6601   if (!Cmp || !Cmp->hasOneUse())
6602     return false;
6603 
6604   // If either operand of the select is expensive and only needed on one side
6605   // of the select, we should form a branch.
6606   if (sinkSelectOperand(TTI, SI->getTrueValue()) ||
6607       sinkSelectOperand(TTI, SI->getFalseValue()))
6608     return true;
6609 
6610   return false;
6611 }
6612 
6613 /// If \p isTrue is true, return the true value of \p SI, otherwise return
6614 /// false value of \p SI. If the true/false value of \p SI is defined by any
6615 /// select instructions in \p Selects, look through the defining select
6616 /// instruction until the true/false value is not defined in \p Selects.
getTrueOrFalseValue(SelectInst * SI,bool isTrue,const SmallPtrSet<const Instruction *,2> & Selects)6617 static Value *getTrueOrFalseValue(
6618     SelectInst *SI, bool isTrue,
6619     const SmallPtrSet<const Instruction *, 2> &Selects) {
6620   Value *V = nullptr;
6621 
6622   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
6623        DefSI = dyn_cast<SelectInst>(V)) {
6624     assert(DefSI->getCondition() == SI->getCondition() &&
6625            "The condition of DefSI does not match with SI");
6626     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
6627   }
6628 
6629   assert(V && "Failed to get select true/false value");
6630   return V;
6631 }
6632 
optimizeShiftInst(BinaryOperator * Shift)6633 bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) {
6634   assert(Shift->isShift() && "Expected a shift");
6635 
6636   // If this is (1) a vector shift, (2) shifts by scalars are cheaper than
6637   // general vector shifts, and (3) the shift amount is a select-of-splatted
6638   // values, hoist the shifts before the select:
6639   //   shift Op0, (select Cond, TVal, FVal) -->
6640   //   select Cond, (shift Op0, TVal), (shift Op0, FVal)
6641   //
6642   // This is inverting a generic IR transform when we know that the cost of a
6643   // general vector shift is more than the cost of 2 shift-by-scalars.
6644   // We can't do this effectively in SDAG because we may not be able to
6645   // determine if the select operands are splats from within a basic block.
6646   Type *Ty = Shift->getType();
6647   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6648     return false;
6649   Value *Cond, *TVal, *FVal;
6650   if (!match(Shift->getOperand(1),
6651              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6652     return false;
6653   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6654     return false;
6655 
6656   IRBuilder<> Builder(Shift);
6657   BinaryOperator::BinaryOps Opcode = Shift->getOpcode();
6658   Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal);
6659   Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal);
6660   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6661   Shift->replaceAllUsesWith(NewSel);
6662   Shift->eraseFromParent();
6663   return true;
6664 }
6665 
optimizeFunnelShift(IntrinsicInst * Fsh)6666 bool CodeGenPrepare::optimizeFunnelShift(IntrinsicInst *Fsh) {
6667   Intrinsic::ID Opcode = Fsh->getIntrinsicID();
6668   assert((Opcode == Intrinsic::fshl || Opcode == Intrinsic::fshr) &&
6669          "Expected a funnel shift");
6670 
6671   // If this is (1) a vector funnel shift, (2) shifts by scalars are cheaper
6672   // than general vector shifts, and (3) the shift amount is select-of-splatted
6673   // values, hoist the funnel shifts before the select:
6674   //   fsh Op0, Op1, (select Cond, TVal, FVal) -->
6675   //   select Cond, (fsh Op0, Op1, TVal), (fsh Op0, Op1, FVal)
6676   //
6677   // This is inverting a generic IR transform when we know that the cost of a
6678   // general vector shift is more than the cost of 2 shift-by-scalars.
6679   // We can't do this effectively in SDAG because we may not be able to
6680   // determine if the select operands are splats from within a basic block.
6681   Type *Ty = Fsh->getType();
6682   if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty))
6683     return false;
6684   Value *Cond, *TVal, *FVal;
6685   if (!match(Fsh->getOperand(2),
6686              m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))))
6687     return false;
6688   if (!isSplatValue(TVal) || !isSplatValue(FVal))
6689     return false;
6690 
6691   IRBuilder<> Builder(Fsh);
6692   Value *X = Fsh->getOperand(0), *Y = Fsh->getOperand(1);
6693   Value *NewTVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, TVal });
6694   Value *NewFVal = Builder.CreateIntrinsic(Opcode, Ty, { X, Y, FVal });
6695   Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal);
6696   Fsh->replaceAllUsesWith(NewSel);
6697   Fsh->eraseFromParent();
6698   return true;
6699 }
6700 
6701 /// If we have a SelectInst that will likely profit from branch prediction,
6702 /// turn it into a branch.
optimizeSelectInst(SelectInst * SI)6703 bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) {
6704   if (DisableSelectToBranch)
6705     return false;
6706 
6707   // Find all consecutive select instructions that share the same condition.
6708   SmallVector<SelectInst *, 2> ASI;
6709   ASI.push_back(SI);
6710   for (BasicBlock::iterator It = ++BasicBlock::iterator(SI);
6711        It != SI->getParent()->end(); ++It) {
6712     SelectInst *I = dyn_cast<SelectInst>(&*It);
6713     if (I && SI->getCondition() == I->getCondition()) {
6714       ASI.push_back(I);
6715     } else {
6716       break;
6717     }
6718   }
6719 
6720   SelectInst *LastSI = ASI.back();
6721   // Increment the current iterator to skip all the rest of select instructions
6722   // because they will be either "not lowered" or "all lowered" to branch.
6723   CurInstIterator = std::next(LastSI->getIterator());
6724 
6725   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
6726 
6727   // Can we convert the 'select' to CF ?
6728   if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable))
6729     return false;
6730 
6731   TargetLowering::SelectSupportKind SelectKind;
6732   if (VectorCond)
6733     SelectKind = TargetLowering::VectorMaskSelect;
6734   else if (SI->getType()->isVectorTy())
6735     SelectKind = TargetLowering::ScalarCondVectorVal;
6736   else
6737     SelectKind = TargetLowering::ScalarValSelect;
6738 
6739   if (TLI->isSelectSupported(SelectKind) &&
6740       (!isFormingBranchFromSelectProfitable(TTI, TLI, SI) || OptSize ||
6741        llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI.get())))
6742     return false;
6743 
6744   // The DominatorTree needs to be rebuilt by any consumers after this
6745   // transformation. We simply reset here rather than setting the ModifiedDT
6746   // flag to avoid restarting the function walk in runOnFunction for each
6747   // select optimized.
6748   DT.reset();
6749 
6750   // Transform a sequence like this:
6751   //    start:
6752   //       %cmp = cmp uge i32 %a, %b
6753   //       %sel = select i1 %cmp, i32 %c, i32 %d
6754   //
6755   // Into:
6756   //    start:
6757   //       %cmp = cmp uge i32 %a, %b
6758   //       %cmp.frozen = freeze %cmp
6759   //       br i1 %cmp.frozen, label %select.true, label %select.false
6760   //    select.true:
6761   //       br label %select.end
6762   //    select.false:
6763   //       br label %select.end
6764   //    select.end:
6765   //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
6766   //
6767   // %cmp should be frozen, otherwise it may introduce undefined behavior.
6768   // In addition, we may sink instructions that produce %c or %d from
6769   // the entry block into the destination(s) of the new branch.
6770   // If the true or false blocks do not contain a sunken instruction, that
6771   // block and its branch may be optimized away. In that case, one side of the
6772   // first branch will point directly to select.end, and the corresponding PHI
6773   // predecessor block will be the start block.
6774 
6775   // First, we split the block containing the select into 2 blocks.
6776   BasicBlock *StartBlock = SI->getParent();
6777   BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
6778   BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
6779   BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
6780 
6781   // Delete the unconditional branch that was just created by the split.
6782   StartBlock->getTerminator()->eraseFromParent();
6783 
6784   // These are the new basic blocks for the conditional branch.
6785   // At least one will become an actual new basic block.
6786   BasicBlock *TrueBlock = nullptr;
6787   BasicBlock *FalseBlock = nullptr;
6788   BranchInst *TrueBranch = nullptr;
6789   BranchInst *FalseBranch = nullptr;
6790 
6791   // Sink expensive instructions into the conditional blocks to avoid executing
6792   // them speculatively.
6793   for (SelectInst *SI : ASI) {
6794     if (sinkSelectOperand(TTI, SI->getTrueValue())) {
6795       if (TrueBlock == nullptr) {
6796         TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink",
6797                                        EndBlock->getParent(), EndBlock);
6798         TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
6799         TrueBranch->setDebugLoc(SI->getDebugLoc());
6800       }
6801       auto *TrueInst = cast<Instruction>(SI->getTrueValue());
6802       TrueInst->moveBefore(TrueBranch);
6803     }
6804     if (sinkSelectOperand(TTI, SI->getFalseValue())) {
6805       if (FalseBlock == nullptr) {
6806         FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink",
6807                                         EndBlock->getParent(), EndBlock);
6808         FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6809         FalseBranch->setDebugLoc(SI->getDebugLoc());
6810       }
6811       auto *FalseInst = cast<Instruction>(SI->getFalseValue());
6812       FalseInst->moveBefore(FalseBranch);
6813     }
6814   }
6815 
6816   // If there was nothing to sink, then arbitrarily choose the 'false' side
6817   // for a new input value to the PHI.
6818   if (TrueBlock == FalseBlock) {
6819     assert(TrueBlock == nullptr &&
6820            "Unexpected basic block transform while optimizing select");
6821 
6822     FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
6823                                     EndBlock->getParent(), EndBlock);
6824     auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
6825     FalseBranch->setDebugLoc(SI->getDebugLoc());
6826   }
6827 
6828   // Insert the real conditional branch based on the original condition.
6829   // If we did not create a new block for one of the 'true' or 'false' paths
6830   // of the condition, it means that side of the branch goes to the end block
6831   // directly and the path originates from the start block from the point of
6832   // view of the new PHI.
6833   BasicBlock *TT, *FT;
6834   if (TrueBlock == nullptr) {
6835     TT = EndBlock;
6836     FT = FalseBlock;
6837     TrueBlock = StartBlock;
6838   } else if (FalseBlock == nullptr) {
6839     TT = TrueBlock;
6840     FT = EndBlock;
6841     FalseBlock = StartBlock;
6842   } else {
6843     TT = TrueBlock;
6844     FT = FalseBlock;
6845   }
6846   IRBuilder<> IB(SI);
6847   auto *CondFr = IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
6848   IB.CreateCondBr(CondFr, TT, FT, SI);
6849 
6850   SmallPtrSet<const Instruction *, 2> INS;
6851   INS.insert(ASI.begin(), ASI.end());
6852   // Use reverse iterator because later select may use the value of the
6853   // earlier select, and we need to propagate value through earlier select
6854   // to get the PHI operand.
6855   for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
6856     SelectInst *SI = *It;
6857     // The select itself is replaced with a PHI Node.
6858     PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
6859     PN->takeName(SI);
6860     PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
6861     PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
6862     PN->setDebugLoc(SI->getDebugLoc());
6863 
6864     SI->replaceAllUsesWith(PN);
6865     SI->eraseFromParent();
6866     INS.erase(SI);
6867     ++NumSelectsExpanded;
6868   }
6869 
6870   // Instruct OptimizeBlock to skip to the next block.
6871   CurInstIterator = StartBlock->end();
6872   return true;
6873 }
6874 
6875 /// Some targets only accept certain types for splat inputs. For example a VDUP
6876 /// in MVE takes a GPR (integer) register, and the instruction that incorporate
6877 /// a VDUP (such as a VADD qd, qm, rm) also require a gpr register.
optimizeShuffleVectorInst(ShuffleVectorInst * SVI)6878 bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
6879   // Accept shuf(insertelem(undef/poison, val, 0), undef/poison, <0,0,..>) only
6880   if (!match(SVI, m_Shuffle(m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
6881                             m_Undef(), m_ZeroMask())))
6882     return false;
6883   Type *NewType = TLI->shouldConvertSplatType(SVI);
6884   if (!NewType)
6885     return false;
6886 
6887   auto *SVIVecType = cast<FixedVectorType>(SVI->getType());
6888   assert(!NewType->isVectorTy() && "Expected a scalar type!");
6889   assert(NewType->getScalarSizeInBits() == SVIVecType->getScalarSizeInBits() &&
6890          "Expected a type of the same size!");
6891   auto *NewVecType =
6892       FixedVectorType::get(NewType, SVIVecType->getNumElements());
6893 
6894   // Create a bitcast (shuffle (insert (bitcast(..))))
6895   IRBuilder<> Builder(SVI->getContext());
6896   Builder.SetInsertPoint(SVI);
6897   Value *BC1 = Builder.CreateBitCast(
6898       cast<Instruction>(SVI->getOperand(0))->getOperand(1), NewType);
6899   Value *Shuffle = Builder.CreateVectorSplat(NewVecType->getNumElements(), BC1);
6900   Value *BC2 = Builder.CreateBitCast(Shuffle, SVIVecType);
6901 
6902   SVI->replaceAllUsesWith(BC2);
6903   RecursivelyDeleteTriviallyDeadInstructions(
6904       SVI, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
6905 
6906   // Also hoist the bitcast up to its operand if it they are not in the same
6907   // block.
6908   if (auto *BCI = dyn_cast<Instruction>(BC1))
6909     if (auto *Op = dyn_cast<Instruction>(BCI->getOperand(0)))
6910       if (BCI->getParent() != Op->getParent() && !isa<PHINode>(Op) &&
6911           !Op->isTerminator() && !Op->isEHPad())
6912         BCI->moveAfter(Op);
6913 
6914   return true;
6915 }
6916 
tryToSinkFreeOperands(Instruction * I)6917 bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) {
6918   // If the operands of I can be folded into a target instruction together with
6919   // I, duplicate and sink them.
6920   SmallVector<Use *, 4> OpsToSink;
6921   if (!TLI->shouldSinkOperands(I, OpsToSink))
6922     return false;
6923 
6924   // OpsToSink can contain multiple uses in a use chain (e.g.
6925   // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating
6926   // uses must come first, so we process the ops in reverse order so as to not
6927   // create invalid IR.
6928   BasicBlock *TargetBB = I->getParent();
6929   bool Changed = false;
6930   SmallVector<Use *, 4> ToReplace;
6931   for (Use *U : reverse(OpsToSink)) {
6932     auto *UI = cast<Instruction>(U->get());
6933     if (UI->getParent() == TargetBB || isa<PHINode>(UI))
6934       continue;
6935     ToReplace.push_back(U);
6936   }
6937 
6938   SetVector<Instruction *> MaybeDead;
6939   DenseMap<Instruction *, Instruction *> NewInstructions;
6940   Instruction *InsertPoint = I;
6941   for (Use *U : ToReplace) {
6942     auto *UI = cast<Instruction>(U->get());
6943     Instruction *NI = UI->clone();
6944     NewInstructions[UI] = NI;
6945     MaybeDead.insert(UI);
6946     LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n");
6947     NI->insertBefore(InsertPoint);
6948     InsertPoint = NI;
6949     InsertedInsts.insert(NI);
6950 
6951     // Update the use for the new instruction, making sure that we update the
6952     // sunk instruction uses, if it is part of a chain that has already been
6953     // sunk.
6954     Instruction *OldI = cast<Instruction>(U->getUser());
6955     if (NewInstructions.count(OldI))
6956       NewInstructions[OldI]->setOperand(U->getOperandNo(), NI);
6957     else
6958       U->set(NI);
6959     Changed = true;
6960   }
6961 
6962   // Remove instructions that are dead after sinking.
6963   for (auto *I : MaybeDead) {
6964     if (!I->hasNUsesOrMore(1)) {
6965       LLVM_DEBUG(dbgs() << "Removing dead instruction: " << *I << "\n");
6966       I->eraseFromParent();
6967     }
6968   }
6969 
6970   return Changed;
6971 }
6972 
optimizeSwitchInst(SwitchInst * SI)6973 bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) {
6974   Value *Cond = SI->getCondition();
6975   Type *OldType = Cond->getType();
6976   LLVMContext &Context = Cond->getContext();
6977   MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType));
6978   unsigned RegWidth = RegType.getSizeInBits();
6979 
6980   if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth())
6981     return false;
6982 
6983   // If the register width is greater than the type width, expand the condition
6984   // of the switch instruction and each case constant to the width of the
6985   // register. By widening the type of the switch condition, subsequent
6986   // comparisons (for case comparisons) will not need to be extended to the
6987   // preferred register width, so we will potentially eliminate N-1 extends,
6988   // where N is the number of cases in the switch.
6989   auto *NewType = Type::getIntNTy(Context, RegWidth);
6990 
6991   // Zero-extend the switch condition and case constants unless the switch
6992   // condition is a function argument that is already being sign-extended.
6993   // In that case, we can avoid an unnecessary mask/extension by sign-extending
6994   // everything instead.
6995   Instruction::CastOps ExtType = Instruction::ZExt;
6996   if (auto *Arg = dyn_cast<Argument>(Cond))
6997     if (Arg->hasSExtAttr())
6998       ExtType = Instruction::SExt;
6999 
7000   auto *ExtInst = CastInst::Create(ExtType, Cond, NewType);
7001   ExtInst->insertBefore(SI);
7002   ExtInst->setDebugLoc(SI->getDebugLoc());
7003   SI->setCondition(ExtInst);
7004   for (auto Case : SI->cases()) {
7005     APInt NarrowConst = Case.getCaseValue()->getValue();
7006     APInt WideConst = (ExtType == Instruction::ZExt) ?
7007                       NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth);
7008     Case.setValue(ConstantInt::get(Context, WideConst));
7009   }
7010 
7011   return true;
7012 }
7013 
7014 
7015 namespace {
7016 
7017 /// Helper class to promote a scalar operation to a vector one.
7018 /// This class is used to move downward extractelement transition.
7019 /// E.g.,
7020 /// a = vector_op <2 x i32>
7021 /// b = extractelement <2 x i32> a, i32 0
7022 /// c = scalar_op b
7023 /// store c
7024 ///
7025 /// =>
7026 /// a = vector_op <2 x i32>
7027 /// c = vector_op a (equivalent to scalar_op on the related lane)
7028 /// * d = extractelement <2 x i32> c, i32 0
7029 /// * store d
7030 /// Assuming both extractelement and store can be combine, we get rid of the
7031 /// transition.
7032 class VectorPromoteHelper {
7033   /// DataLayout associated with the current module.
7034   const DataLayout &DL;
7035 
7036   /// Used to perform some checks on the legality of vector operations.
7037   const TargetLowering &TLI;
7038 
7039   /// Used to estimated the cost of the promoted chain.
7040   const TargetTransformInfo &TTI;
7041 
7042   /// The transition being moved downwards.
7043   Instruction *Transition;
7044 
7045   /// The sequence of instructions to be promoted.
7046   SmallVector<Instruction *, 4> InstsToBePromoted;
7047 
7048   /// Cost of combining a store and an extract.
7049   unsigned StoreExtractCombineCost;
7050 
7051   /// Instruction that will be combined with the transition.
7052   Instruction *CombineInst = nullptr;
7053 
7054   /// The instruction that represents the current end of the transition.
7055   /// Since we are faking the promotion until we reach the end of the chain
7056   /// of computation, we need a way to get the current end of the transition.
getEndOfTransition() const7057   Instruction *getEndOfTransition() const {
7058     if (InstsToBePromoted.empty())
7059       return Transition;
7060     return InstsToBePromoted.back();
7061   }
7062 
7063   /// Return the index of the original value in the transition.
7064   /// E.g., for "extractelement <2 x i32> c, i32 1" the original value,
7065   /// c, is at index 0.
getTransitionOriginalValueIdx() const7066   unsigned getTransitionOriginalValueIdx() const {
7067     assert(isa<ExtractElementInst>(Transition) &&
7068            "Other kind of transitions are not supported yet");
7069     return 0;
7070   }
7071 
7072   /// Return the index of the index in the transition.
7073   /// E.g., for "extractelement <2 x i32> c, i32 0" the index
7074   /// is at index 1.
getTransitionIdx() const7075   unsigned getTransitionIdx() const {
7076     assert(isa<ExtractElementInst>(Transition) &&
7077            "Other kind of transitions are not supported yet");
7078     return 1;
7079   }
7080 
7081   /// Get the type of the transition.
7082   /// This is the type of the original value.
7083   /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the
7084   /// transition is <2 x i32>.
getTransitionType() const7085   Type *getTransitionType() const {
7086     return Transition->getOperand(getTransitionOriginalValueIdx())->getType();
7087   }
7088 
7089   /// Promote \p ToBePromoted by moving \p Def downward through.
7090   /// I.e., we have the following sequence:
7091   /// Def = Transition <ty1> a to <ty2>
7092   /// b = ToBePromoted <ty2> Def, ...
7093   /// =>
7094   /// b = ToBePromoted <ty1> a, ...
7095   /// Def = Transition <ty1> ToBePromoted to <ty2>
7096   void promoteImpl(Instruction *ToBePromoted);
7097 
7098   /// Check whether or not it is profitable to promote all the
7099   /// instructions enqueued to be promoted.
isProfitableToPromote()7100   bool isProfitableToPromote() {
7101     Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx());
7102     unsigned Index = isa<ConstantInt>(ValIdx)
7103                          ? cast<ConstantInt>(ValIdx)->getZExtValue()
7104                          : -1;
7105     Type *PromotedType = getTransitionType();
7106 
7107     StoreInst *ST = cast<StoreInst>(CombineInst);
7108     unsigned AS = ST->getPointerAddressSpace();
7109     // Check if this store is supported.
7110     if (!TLI.allowsMisalignedMemoryAccesses(
7111             TLI.getValueType(DL, ST->getValueOperand()->getType()), AS,
7112             ST->getAlign())) {
7113       // If this is not supported, there is no way we can combine
7114       // the extract with the store.
7115       return false;
7116     }
7117 
7118     // The scalar chain of computation has to pay for the transition
7119     // scalar to vector.
7120     // The vector chain has to account for the combining cost.
7121     InstructionCost ScalarCost =
7122         TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index);
7123     InstructionCost VectorCost = StoreExtractCombineCost;
7124     enum TargetTransformInfo::TargetCostKind CostKind =
7125       TargetTransformInfo::TCK_RecipThroughput;
7126     for (const auto &Inst : InstsToBePromoted) {
7127       // Compute the cost.
7128       // By construction, all instructions being promoted are arithmetic ones.
7129       // Moreover, one argument is a constant that can be viewed as a splat
7130       // constant.
7131       Value *Arg0 = Inst->getOperand(0);
7132       bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) ||
7133                             isa<ConstantFP>(Arg0);
7134       TargetTransformInfo::OperandValueKind Arg0OVK =
7135           IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7136                          : TargetTransformInfo::OK_AnyValue;
7137       TargetTransformInfo::OperandValueKind Arg1OVK =
7138           !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue
7139                           : TargetTransformInfo::OK_AnyValue;
7140       ScalarCost += TTI.getArithmeticInstrCost(
7141           Inst->getOpcode(), Inst->getType(), CostKind, Arg0OVK, Arg1OVK);
7142       VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType,
7143                                                CostKind,
7144                                                Arg0OVK, Arg1OVK);
7145     }
7146     LLVM_DEBUG(
7147         dbgs() << "Estimated cost of computation to be promoted:\nScalar: "
7148                << ScalarCost << "\nVector: " << VectorCost << '\n');
7149     return ScalarCost > VectorCost;
7150   }
7151 
7152   /// Generate a constant vector with \p Val with the same
7153   /// number of elements as the transition.
7154   /// \p UseSplat defines whether or not \p Val should be replicated
7155   /// across the whole vector.
7156   /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>,
7157   /// otherwise we generate a vector with as many undef as possible:
7158   /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only
7159   /// used at the index of the extract.
getConstantVector(Constant * Val,bool UseSplat) const7160   Value *getConstantVector(Constant *Val, bool UseSplat) const {
7161     unsigned ExtractIdx = std::numeric_limits<unsigned>::max();
7162     if (!UseSplat) {
7163       // If we cannot determine where the constant must be, we have to
7164       // use a splat constant.
7165       Value *ValExtractIdx = Transition->getOperand(getTransitionIdx());
7166       if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx))
7167         ExtractIdx = CstVal->getSExtValue();
7168       else
7169         UseSplat = true;
7170     }
7171 
7172     ElementCount EC = cast<VectorType>(getTransitionType())->getElementCount();
7173     if (UseSplat)
7174       return ConstantVector::getSplat(EC, Val);
7175 
7176     if (!EC.isScalable()) {
7177       SmallVector<Constant *, 4> ConstVec;
7178       UndefValue *UndefVal = UndefValue::get(Val->getType());
7179       for (unsigned Idx = 0; Idx != EC.getKnownMinValue(); ++Idx) {
7180         if (Idx == ExtractIdx)
7181           ConstVec.push_back(Val);
7182         else
7183           ConstVec.push_back(UndefVal);
7184       }
7185       return ConstantVector::get(ConstVec);
7186     } else
7187       llvm_unreachable(
7188           "Generate scalable vector for non-splat is unimplemented");
7189   }
7190 
7191   /// Check if promoting to a vector type an operand at \p OperandIdx
7192   /// in \p Use can trigger undefined behavior.
canCauseUndefinedBehavior(const Instruction * Use,unsigned OperandIdx)7193   static bool canCauseUndefinedBehavior(const Instruction *Use,
7194                                         unsigned OperandIdx) {
7195     // This is not safe to introduce undef when the operand is on
7196     // the right hand side of a division-like instruction.
7197     if (OperandIdx != 1)
7198       return false;
7199     switch (Use->getOpcode()) {
7200     default:
7201       return false;
7202     case Instruction::SDiv:
7203     case Instruction::UDiv:
7204     case Instruction::SRem:
7205     case Instruction::URem:
7206       return true;
7207     case Instruction::FDiv:
7208     case Instruction::FRem:
7209       return !Use->hasNoNaNs();
7210     }
7211     llvm_unreachable(nullptr);
7212   }
7213 
7214 public:
VectorPromoteHelper(const DataLayout & DL,const TargetLowering & TLI,const TargetTransformInfo & TTI,Instruction * Transition,unsigned CombineCost)7215   VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI,
7216                       const TargetTransformInfo &TTI, Instruction *Transition,
7217                       unsigned CombineCost)
7218       : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition),
7219         StoreExtractCombineCost(CombineCost) {
7220     assert(Transition && "Do not know how to promote null");
7221   }
7222 
7223   /// Check if we can promote \p ToBePromoted to \p Type.
canPromote(const Instruction * ToBePromoted) const7224   bool canPromote(const Instruction *ToBePromoted) const {
7225     // We could support CastInst too.
7226     return isa<BinaryOperator>(ToBePromoted);
7227   }
7228 
7229   /// Check if it is profitable to promote \p ToBePromoted
7230   /// by moving downward the transition through.
shouldPromote(const Instruction * ToBePromoted) const7231   bool shouldPromote(const Instruction *ToBePromoted) const {
7232     // Promote only if all the operands can be statically expanded.
7233     // Indeed, we do not want to introduce any new kind of transitions.
7234     for (const Use &U : ToBePromoted->operands()) {
7235       const Value *Val = U.get();
7236       if (Val == getEndOfTransition()) {
7237         // If the use is a division and the transition is on the rhs,
7238         // we cannot promote the operation, otherwise we may create a
7239         // division by zero.
7240         if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()))
7241           return false;
7242         continue;
7243       }
7244       if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) &&
7245           !isa<ConstantFP>(Val))
7246         return false;
7247     }
7248     // Check that the resulting operation is legal.
7249     int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode());
7250     if (!ISDOpcode)
7251       return false;
7252     return StressStoreExtract ||
7253            TLI.isOperationLegalOrCustom(
7254                ISDOpcode, TLI.getValueType(DL, getTransitionType(), true));
7255   }
7256 
7257   /// Check whether or not \p Use can be combined
7258   /// with the transition.
7259   /// I.e., is it possible to do Use(Transition) => AnotherUse?
canCombine(const Instruction * Use)7260   bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); }
7261 
7262   /// Record \p ToBePromoted as part of the chain to be promoted.
enqueueForPromotion(Instruction * ToBePromoted)7263   void enqueueForPromotion(Instruction *ToBePromoted) {
7264     InstsToBePromoted.push_back(ToBePromoted);
7265   }
7266 
7267   /// Set the instruction that will be combined with the transition.
recordCombineInstruction(Instruction * ToBeCombined)7268   void recordCombineInstruction(Instruction *ToBeCombined) {
7269     assert(canCombine(ToBeCombined) && "Unsupported instruction to combine");
7270     CombineInst = ToBeCombined;
7271   }
7272 
7273   /// Promote all the instructions enqueued for promotion if it is
7274   /// is profitable.
7275   /// \return True if the promotion happened, false otherwise.
promote()7276   bool promote() {
7277     // Check if there is something to promote.
7278     // Right now, if we do not have anything to combine with,
7279     // we assume the promotion is not profitable.
7280     if (InstsToBePromoted.empty() || !CombineInst)
7281       return false;
7282 
7283     // Check cost.
7284     if (!StressStoreExtract && !isProfitableToPromote())
7285       return false;
7286 
7287     // Promote.
7288     for (auto &ToBePromoted : InstsToBePromoted)
7289       promoteImpl(ToBePromoted);
7290     InstsToBePromoted.clear();
7291     return true;
7292   }
7293 };
7294 
7295 } // end anonymous namespace
7296 
promoteImpl(Instruction * ToBePromoted)7297 void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) {
7298   // At this point, we know that all the operands of ToBePromoted but Def
7299   // can be statically promoted.
7300   // For Def, we need to use its parameter in ToBePromoted:
7301   // b = ToBePromoted ty1 a
7302   // Def = Transition ty1 b to ty2
7303   // Move the transition down.
7304   // 1. Replace all uses of the promoted operation by the transition.
7305   // = ... b => = ... Def.
7306   assert(ToBePromoted->getType() == Transition->getType() &&
7307          "The type of the result of the transition does not match "
7308          "the final type");
7309   ToBePromoted->replaceAllUsesWith(Transition);
7310   // 2. Update the type of the uses.
7311   // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def.
7312   Type *TransitionTy = getTransitionType();
7313   ToBePromoted->mutateType(TransitionTy);
7314   // 3. Update all the operands of the promoted operation with promoted
7315   // operands.
7316   // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a.
7317   for (Use &U : ToBePromoted->operands()) {
7318     Value *Val = U.get();
7319     Value *NewVal = nullptr;
7320     if (Val == Transition)
7321       NewVal = Transition->getOperand(getTransitionOriginalValueIdx());
7322     else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) ||
7323              isa<ConstantFP>(Val)) {
7324       // Use a splat constant if it is not safe to use undef.
7325       NewVal = getConstantVector(
7326           cast<Constant>(Val),
7327           isa<UndefValue>(Val) ||
7328               canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo()));
7329     } else
7330       llvm_unreachable("Did you modified shouldPromote and forgot to update "
7331                        "this?");
7332     ToBePromoted->setOperand(U.getOperandNo(), NewVal);
7333   }
7334   Transition->moveAfter(ToBePromoted);
7335   Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted);
7336 }
7337 
7338 /// Some targets can do store(extractelement) with one instruction.
7339 /// Try to push the extractelement towards the stores when the target
7340 /// has this feature and this is profitable.
optimizeExtractElementInst(Instruction * Inst)7341 bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) {
7342   unsigned CombineCost = std::numeric_limits<unsigned>::max();
7343   if (DisableStoreExtract ||
7344       (!StressStoreExtract &&
7345        !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(),
7346                                        Inst->getOperand(1), CombineCost)))
7347     return false;
7348 
7349   // At this point we know that Inst is a vector to scalar transition.
7350   // Try to move it down the def-use chain, until:
7351   // - We can combine the transition with its single use
7352   //   => we got rid of the transition.
7353   // - We escape the current basic block
7354   //   => we would need to check that we are moving it at a cheaper place and
7355   //      we do not do that for now.
7356   BasicBlock *Parent = Inst->getParent();
7357   LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n');
7358   VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost);
7359   // If the transition has more than one use, assume this is not going to be
7360   // beneficial.
7361   while (Inst->hasOneUse()) {
7362     Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin());
7363     LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n');
7364 
7365     if (ToBePromoted->getParent() != Parent) {
7366       LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block ("
7367                         << ToBePromoted->getParent()->getName()
7368                         << ") than the transition (" << Parent->getName()
7369                         << ").\n");
7370       return false;
7371     }
7372 
7373     if (VPH.canCombine(ToBePromoted)) {
7374       LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n'
7375                         << "will be combined with: " << *ToBePromoted << '\n');
7376       VPH.recordCombineInstruction(ToBePromoted);
7377       bool Changed = VPH.promote();
7378       NumStoreExtractExposed += Changed;
7379       return Changed;
7380     }
7381 
7382     LLVM_DEBUG(dbgs() << "Try promoting.\n");
7383     if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted))
7384       return false;
7385 
7386     LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n");
7387 
7388     VPH.enqueueForPromotion(ToBePromoted);
7389     Inst = ToBePromoted;
7390   }
7391   return false;
7392 }
7393 
7394 /// For the instruction sequence of store below, F and I values
7395 /// are bundled together as an i64 value before being stored into memory.
7396 /// Sometimes it is more efficient to generate separate stores for F and I,
7397 /// which can remove the bitwise instructions or sink them to colder places.
7398 ///
7399 ///   (store (or (zext (bitcast F to i32) to i64),
7400 ///              (shl (zext I to i64), 32)), addr)  -->
7401 ///   (store F, addr) and (store I, addr+4)
7402 ///
7403 /// Similarly, splitting for other merged store can also be beneficial, like:
7404 /// For pair of {i32, i32}, i64 store --> two i32 stores.
7405 /// For pair of {i32, i16}, i64 store --> two i32 stores.
7406 /// For pair of {i16, i16}, i32 store --> two i16 stores.
7407 /// For pair of {i16, i8},  i32 store --> two i16 stores.
7408 /// For pair of {i8, i8},   i16 store --> two i8 stores.
7409 ///
7410 /// We allow each target to determine specifically which kind of splitting is
7411 /// supported.
7412 ///
7413 /// The store patterns are commonly seen from the simple code snippet below
7414 /// if only std::make_pair(...) is sroa transformed before inlined into hoo.
7415 ///   void goo(const std::pair<int, float> &);
7416 ///   hoo() {
7417 ///     ...
7418 ///     goo(std::make_pair(tmp, ftmp));
7419 ///     ...
7420 ///   }
7421 ///
7422 /// Although we already have similar splitting in DAG Combine, we duplicate
7423 /// it in CodeGenPrepare to catch the case in which pattern is across
7424 /// multiple BBs. The logic in DAG Combine is kept to catch case generated
7425 /// during code expansion.
splitMergedValStore(StoreInst & SI,const DataLayout & DL,const TargetLowering & TLI)7426 static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL,
7427                                 const TargetLowering &TLI) {
7428   // Handle simple but common cases only.
7429   Type *StoreType = SI.getValueOperand()->getType();
7430 
7431   // The code below assumes shifting a value by <number of bits>,
7432   // whereas scalable vectors would have to be shifted by
7433   // <2log(vscale) + number of bits> in order to store the
7434   // low/high parts. Bailing out for now.
7435   if (isa<ScalableVectorType>(StoreType))
7436     return false;
7437 
7438   if (!DL.typeSizeEqualsStoreSize(StoreType) ||
7439       DL.getTypeSizeInBits(StoreType) == 0)
7440     return false;
7441 
7442   unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2;
7443   Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize);
7444   if (!DL.typeSizeEqualsStoreSize(SplitStoreType))
7445     return false;
7446 
7447   // Don't split the store if it is volatile.
7448   if (SI.isVolatile())
7449     return false;
7450 
7451   // Match the following patterns:
7452   // (store (or (zext LValue to i64),
7453   //            (shl (zext HValue to i64), 32)), HalfValBitSize)
7454   //  or
7455   // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize)
7456   //            (zext LValue to i64),
7457   // Expect both operands of OR and the first operand of SHL have only
7458   // one use.
7459   Value *LValue, *HValue;
7460   if (!match(SI.getValueOperand(),
7461              m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))),
7462                     m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))),
7463                                    m_SpecificInt(HalfValBitSize))))))
7464     return false;
7465 
7466   // Check LValue and HValue are int with size less or equal than 32.
7467   if (!LValue->getType()->isIntegerTy() ||
7468       DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize ||
7469       !HValue->getType()->isIntegerTy() ||
7470       DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize)
7471     return false;
7472 
7473   // If LValue/HValue is a bitcast instruction, use the EVT before bitcast
7474   // as the input of target query.
7475   auto *LBC = dyn_cast<BitCastInst>(LValue);
7476   auto *HBC = dyn_cast<BitCastInst>(HValue);
7477   EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType())
7478                   : EVT::getEVT(LValue->getType());
7479   EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType())
7480                    : EVT::getEVT(HValue->getType());
7481   if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
7482     return false;
7483 
7484   // Start to split store.
7485   IRBuilder<> Builder(SI.getContext());
7486   Builder.SetInsertPoint(&SI);
7487 
7488   // If LValue/HValue is a bitcast in another BB, create a new one in current
7489   // BB so it may be merged with the splitted stores by dag combiner.
7490   if (LBC && LBC->getParent() != SI.getParent())
7491     LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType());
7492   if (HBC && HBC->getParent() != SI.getParent())
7493     HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType());
7494 
7495   bool IsLE = SI.getModule()->getDataLayout().isLittleEndian();
7496   auto CreateSplitStore = [&](Value *V, bool Upper) {
7497     V = Builder.CreateZExtOrBitCast(V, SplitStoreType);
7498     Value *Addr = Builder.CreateBitCast(
7499         SI.getOperand(1),
7500         SplitStoreType->getPointerTo(SI.getPointerAddressSpace()));
7501     Align Alignment = SI.getAlign();
7502     const bool IsOffsetStore = (IsLE && Upper) || (!IsLE && !Upper);
7503     if (IsOffsetStore) {
7504       Addr = Builder.CreateGEP(
7505           SplitStoreType, Addr,
7506           ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1));
7507 
7508       // When splitting the store in half, naturally one half will retain the
7509       // alignment of the original wider store, regardless of whether it was
7510       // over-aligned or not, while the other will require adjustment.
7511       Alignment = commonAlignment(Alignment, HalfValBitSize / 8);
7512     }
7513     Builder.CreateAlignedStore(V, Addr, Alignment);
7514   };
7515 
7516   CreateSplitStore(LValue, false);
7517   CreateSplitStore(HValue, true);
7518 
7519   // Delete the old store.
7520   SI.eraseFromParent();
7521   return true;
7522 }
7523 
7524 // Return true if the GEP has two operands, the first operand is of a sequential
7525 // type, and the second operand is a constant.
GEPSequentialConstIndexed(GetElementPtrInst * GEP)7526 static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) {
7527   gep_type_iterator I = gep_type_begin(*GEP);
7528   return GEP->getNumOperands() == 2 &&
7529       I.isSequential() &&
7530       isa<ConstantInt>(GEP->getOperand(1));
7531 }
7532 
7533 // Try unmerging GEPs to reduce liveness interference (register pressure) across
7534 // IndirectBr edges. Since IndirectBr edges tend to touch on many blocks,
7535 // reducing liveness interference across those edges benefits global register
7536 // allocation. Currently handles only certain cases.
7537 //
7538 // For example, unmerge %GEPI and %UGEPI as below.
7539 //
7540 // ---------- BEFORE ----------
7541 // SrcBlock:
7542 //   ...
7543 //   %GEPIOp = ...
7544 //   ...
7545 //   %GEPI = gep %GEPIOp, Idx
7546 //   ...
7547 //   indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ]
7548 //   (* %GEPI is alive on the indirectbr edges due to other uses ahead)
7549 //   (* %GEPIOp is alive on the indirectbr edges only because of it's used by
7550 //   %UGEPI)
7551 //
7552 // DstB0: ... (there may be a gep similar to %UGEPI to be unmerged)
7553 // DstB1: ... (there may be a gep similar to %UGEPI to be unmerged)
7554 // ...
7555 //
7556 // DstBi:
7557 //   ...
7558 //   %UGEPI = gep %GEPIOp, UIdx
7559 // ...
7560 // ---------------------------
7561 //
7562 // ---------- AFTER ----------
7563 // SrcBlock:
7564 //   ... (same as above)
7565 //    (* %GEPI is still alive on the indirectbr edges)
7566 //    (* %GEPIOp is no longer alive on the indirectbr edges as a result of the
7567 //    unmerging)
7568 // ...
7569 //
7570 // DstBi:
7571 //   ...
7572 //   %UGEPI = gep %GEPI, (UIdx-Idx)
7573 //   ...
7574 // ---------------------------
7575 //
7576 // The register pressure on the IndirectBr edges is reduced because %GEPIOp is
7577 // no longer alive on them.
7578 //
7579 // We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging
7580 // of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as
7581 // not to disable further simplications and optimizations as a result of GEP
7582 // merging.
7583 //
7584 // Note this unmerging may increase the length of the data flow critical path
7585 // (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff
7586 // between the register pressure and the length of data-flow critical
7587 // path. Restricting this to the uncommon IndirectBr case would minimize the
7588 // impact of potentially longer critical path, if any, and the impact on compile
7589 // time.
tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst * GEPI,const TargetTransformInfo * TTI)7590 static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI,
7591                                              const TargetTransformInfo *TTI) {
7592   BasicBlock *SrcBlock = GEPI->getParent();
7593   // Check that SrcBlock ends with an IndirectBr. If not, give up. The common
7594   // (non-IndirectBr) cases exit early here.
7595   if (!isa<IndirectBrInst>(SrcBlock->getTerminator()))
7596     return false;
7597   // Check that GEPI is a simple gep with a single constant index.
7598   if (!GEPSequentialConstIndexed(GEPI))
7599     return false;
7600   ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1));
7601   // Check that GEPI is a cheap one.
7602   if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType(),
7603                          TargetTransformInfo::TCK_SizeAndLatency)
7604       > TargetTransformInfo::TCC_Basic)
7605     return false;
7606   Value *GEPIOp = GEPI->getOperand(0);
7607   // Check that GEPIOp is an instruction that's also defined in SrcBlock.
7608   if (!isa<Instruction>(GEPIOp))
7609     return false;
7610   auto *GEPIOpI = cast<Instruction>(GEPIOp);
7611   if (GEPIOpI->getParent() != SrcBlock)
7612     return false;
7613   // Check that GEP is used outside the block, meaning it's alive on the
7614   // IndirectBr edge(s).
7615   if (find_if(GEPI->users(), [&](User *Usr) {
7616         if (auto *I = dyn_cast<Instruction>(Usr)) {
7617           if (I->getParent() != SrcBlock) {
7618             return true;
7619           }
7620         }
7621         return false;
7622       }) == GEPI->users().end())
7623     return false;
7624   // The second elements of the GEP chains to be unmerged.
7625   std::vector<GetElementPtrInst *> UGEPIs;
7626   // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive
7627   // on IndirectBr edges.
7628   for (User *Usr : GEPIOp->users()) {
7629     if (Usr == GEPI) continue;
7630     // Check if Usr is an Instruction. If not, give up.
7631     if (!isa<Instruction>(Usr))
7632       return false;
7633     auto *UI = cast<Instruction>(Usr);
7634     // Check if Usr in the same block as GEPIOp, which is fine, skip.
7635     if (UI->getParent() == SrcBlock)
7636       continue;
7637     // Check if Usr is a GEP. If not, give up.
7638     if (!isa<GetElementPtrInst>(Usr))
7639       return false;
7640     auto *UGEPI = cast<GetElementPtrInst>(Usr);
7641     // Check if UGEPI is a simple gep with a single constant index and GEPIOp is
7642     // the pointer operand to it. If so, record it in the vector. If not, give
7643     // up.
7644     if (!GEPSequentialConstIndexed(UGEPI))
7645       return false;
7646     if (UGEPI->getOperand(0) != GEPIOp)
7647       return false;
7648     if (GEPIIdx->getType() !=
7649         cast<ConstantInt>(UGEPI->getOperand(1))->getType())
7650       return false;
7651     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7652     if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType(),
7653                            TargetTransformInfo::TCK_SizeAndLatency)
7654         > TargetTransformInfo::TCC_Basic)
7655       return false;
7656     UGEPIs.push_back(UGEPI);
7657   }
7658   if (UGEPIs.size() == 0)
7659     return false;
7660   // Check the materializing cost of (Uidx-Idx).
7661   for (GetElementPtrInst *UGEPI : UGEPIs) {
7662     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7663     APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue();
7664     InstructionCost ImmCost = TTI->getIntImmCost(
7665         NewIdx, GEPIIdx->getType(), TargetTransformInfo::TCK_SizeAndLatency);
7666     if (ImmCost > TargetTransformInfo::TCC_Basic)
7667       return false;
7668   }
7669   // Now unmerge between GEPI and UGEPIs.
7670   for (GetElementPtrInst *UGEPI : UGEPIs) {
7671     UGEPI->setOperand(0, GEPI);
7672     ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1));
7673     Constant *NewUGEPIIdx =
7674         ConstantInt::get(GEPIIdx->getType(),
7675                          UGEPIIdx->getValue() - GEPIIdx->getValue());
7676     UGEPI->setOperand(1, NewUGEPIIdx);
7677     // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not
7678     // inbounds to avoid UB.
7679     if (!GEPI->isInBounds()) {
7680       UGEPI->setIsInBounds(false);
7681     }
7682   }
7683   // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not
7684   // alive on IndirectBr edges).
7685   assert(find_if(GEPIOp->users(), [&](User *Usr) {
7686         return cast<Instruction>(Usr)->getParent() != SrcBlock;
7687       }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock");
7688   return true;
7689 }
7690 
optimizeBranch(BranchInst * Branch,const TargetLowering & TLI)7691 static bool optimizeBranch(BranchInst *Branch, const TargetLowering &TLI) {
7692   // Try and convert
7693   //  %c = icmp ult %x, 8
7694   //  br %c, bla, blb
7695   //  %tc = lshr %x, 3
7696   // to
7697   //  %tc = lshr %x, 3
7698   //  %c = icmp eq %tc, 0
7699   //  br %c, bla, blb
7700   // Creating the cmp to zero can be better for the backend, especially if the
7701   // lshr produces flags that can be used automatically.
7702   if (!TLI.preferZeroCompareBranch() || !Branch->isConditional())
7703     return false;
7704 
7705   ICmpInst *Cmp = dyn_cast<ICmpInst>(Branch->getCondition());
7706   if (!Cmp || !isa<ConstantInt>(Cmp->getOperand(1)) || !Cmp->hasOneUse())
7707     return false;
7708 
7709   Value *X = Cmp->getOperand(0);
7710   APInt CmpC = cast<ConstantInt>(Cmp->getOperand(1))->getValue();
7711 
7712   for (auto *U : X->users()) {
7713     Instruction *UI = dyn_cast<Instruction>(U);
7714     // A quick dominance check
7715     if (!UI ||
7716         (UI->getParent() != Branch->getParent() &&
7717          UI->getParent() != Branch->getSuccessor(0) &&
7718          UI->getParent() != Branch->getSuccessor(1)) ||
7719         (UI->getParent() != Branch->getParent() &&
7720          !UI->getParent()->getSinglePredecessor()))
7721       continue;
7722 
7723     if (CmpC.isPowerOf2() && Cmp->getPredicate() == ICmpInst::ICMP_ULT &&
7724         match(UI, m_Shr(m_Specific(X), m_SpecificInt(CmpC.logBase2())))) {
7725       IRBuilder<> Builder(Branch);
7726       if (UI->getParent() != Branch->getParent())
7727         UI->moveBefore(Branch);
7728       Value *NewCmp = Builder.CreateCmp(ICmpInst::ICMP_EQ, UI,
7729                                         ConstantInt::get(UI->getType(), 0));
7730       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7731       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7732       Cmp->replaceAllUsesWith(NewCmp);
7733       return true;
7734     }
7735     if (Cmp->isEquality() &&
7736         (match(UI, m_Add(m_Specific(X), m_SpecificInt(-CmpC))) ||
7737          match(UI, m_Sub(m_Specific(X), m_SpecificInt(CmpC))))) {
7738       IRBuilder<> Builder(Branch);
7739       if (UI->getParent() != Branch->getParent())
7740         UI->moveBefore(Branch);
7741       Value *NewCmp = Builder.CreateCmp(Cmp->getPredicate(), UI,
7742                                         ConstantInt::get(UI->getType(), 0));
7743       LLVM_DEBUG(dbgs() << "Converting " << *Cmp << "\n");
7744       LLVM_DEBUG(dbgs() << " to compare on zero: " << *NewCmp << "\n");
7745       Cmp->replaceAllUsesWith(NewCmp);
7746       return true;
7747     }
7748   }
7749   return false;
7750 }
7751 
optimizeInst(Instruction * I,bool & ModifiedDT)7752 bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) {
7753   // Bail out if we inserted the instruction to prevent optimizations from
7754   // stepping on each other's toes.
7755   if (InsertedInsts.count(I))
7756     return false;
7757 
7758   // TODO: Move into the switch on opcode below here.
7759   if (PHINode *P = dyn_cast<PHINode>(I)) {
7760     // It is possible for very late stage optimizations (such as SimplifyCFG)
7761     // to introduce PHI nodes too late to be cleaned up.  If we detect such a
7762     // trivial PHI, go ahead and zap it here.
7763     if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) {
7764       LargeOffsetGEPMap.erase(P);
7765       P->replaceAllUsesWith(V);
7766       P->eraseFromParent();
7767       ++NumPHIsElim;
7768       return true;
7769     }
7770     return false;
7771   }
7772 
7773   if (CastInst *CI = dyn_cast<CastInst>(I)) {
7774     // If the source of the cast is a constant, then this should have
7775     // already been constant folded.  The only reason NOT to constant fold
7776     // it is if something (e.g. LSR) was careful to place the constant
7777     // evaluation in a block other than then one that uses it (e.g. to hoist
7778     // the address of globals out of a loop).  If this is the case, we don't
7779     // want to forward-subst the cast.
7780     if (isa<Constant>(CI->getOperand(0)))
7781       return false;
7782 
7783     if (OptimizeNoopCopyExpression(CI, *TLI, *DL))
7784       return true;
7785 
7786     if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
7787       /// Sink a zext or sext into its user blocks if the target type doesn't
7788       /// fit in one register
7789       if (TLI->getTypeAction(CI->getContext(),
7790                              TLI->getValueType(*DL, CI->getType())) ==
7791           TargetLowering::TypeExpandInteger) {
7792         return SinkCast(CI);
7793       } else {
7794         bool MadeChange = optimizeExt(I);
7795         return MadeChange | optimizeExtUses(I);
7796       }
7797     }
7798     return false;
7799   }
7800 
7801   if (auto *Cmp = dyn_cast<CmpInst>(I))
7802     if (optimizeCmp(Cmp, ModifiedDT))
7803       return true;
7804 
7805   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7806     LI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7807     bool Modified = optimizeLoadExt(LI);
7808     unsigned AS = LI->getPointerAddressSpace();
7809     Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS);
7810     return Modified;
7811   }
7812 
7813   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
7814     if (splitMergedValStore(*SI, *DL, *TLI))
7815       return true;
7816     SI->setMetadata(LLVMContext::MD_invariant_group, nullptr);
7817     unsigned AS = SI->getPointerAddressSpace();
7818     return optimizeMemoryInst(I, SI->getOperand(1),
7819                               SI->getOperand(0)->getType(), AS);
7820   }
7821 
7822   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
7823       unsigned AS = RMW->getPointerAddressSpace();
7824       return optimizeMemoryInst(I, RMW->getPointerOperand(),
7825                                 RMW->getType(), AS);
7826   }
7827 
7828   if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) {
7829       unsigned AS = CmpX->getPointerAddressSpace();
7830       return optimizeMemoryInst(I, CmpX->getPointerOperand(),
7831                                 CmpX->getCompareOperand()->getType(), AS);
7832   }
7833 
7834   BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I);
7835 
7836   if (BinOp && (BinOp->getOpcode() == Instruction::And) && EnableAndCmpSinking)
7837     return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts);
7838 
7839   // TODO: Move this into the switch on opcode - it handles shifts already.
7840   if (BinOp && (BinOp->getOpcode() == Instruction::AShr ||
7841                 BinOp->getOpcode() == Instruction::LShr)) {
7842     ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1));
7843     if (CI && TLI->hasExtractBitsInsn())
7844       if (OptimizeExtractBits(BinOp, CI, *TLI, *DL))
7845         return true;
7846   }
7847 
7848   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
7849     if (GEPI->hasAllZeroIndices()) {
7850       /// The GEP operand must be a pointer, so must its result -> BitCast
7851       Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
7852                                         GEPI->getName(), GEPI);
7853       NC->setDebugLoc(GEPI->getDebugLoc());
7854       GEPI->replaceAllUsesWith(NC);
7855       GEPI->eraseFromParent();
7856       ++NumGEPsElim;
7857       optimizeInst(NC, ModifiedDT);
7858       return true;
7859     }
7860     if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) {
7861       return true;
7862     }
7863     return false;
7864   }
7865 
7866   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
7867     // freeze(icmp a, const)) -> icmp (freeze a), const
7868     // This helps generate efficient conditional jumps.
7869     Instruction *CmpI = nullptr;
7870     if (ICmpInst *II = dyn_cast<ICmpInst>(FI->getOperand(0)))
7871       CmpI = II;
7872     else if (FCmpInst *F = dyn_cast<FCmpInst>(FI->getOperand(0)))
7873       CmpI = F->getFastMathFlags().none() ? F : nullptr;
7874 
7875     if (CmpI && CmpI->hasOneUse()) {
7876       auto Op0 = CmpI->getOperand(0), Op1 = CmpI->getOperand(1);
7877       bool Const0 = isa<ConstantInt>(Op0) || isa<ConstantFP>(Op0) ||
7878                     isa<ConstantPointerNull>(Op0);
7879       bool Const1 = isa<ConstantInt>(Op1) || isa<ConstantFP>(Op1) ||
7880                     isa<ConstantPointerNull>(Op1);
7881       if (Const0 || Const1) {
7882         if (!Const0 || !Const1) {
7883           auto *F = new FreezeInst(Const0 ? Op1 : Op0, "", CmpI);
7884           F->takeName(FI);
7885           CmpI->setOperand(Const0 ? 1 : 0, F);
7886         }
7887         FI->replaceAllUsesWith(CmpI);
7888         FI->eraseFromParent();
7889         return true;
7890       }
7891     }
7892     return false;
7893   }
7894 
7895   if (tryToSinkFreeOperands(I))
7896     return true;
7897 
7898   switch (I->getOpcode()) {
7899   case Instruction::Shl:
7900   case Instruction::LShr:
7901   case Instruction::AShr:
7902     return optimizeShiftInst(cast<BinaryOperator>(I));
7903   case Instruction::Call:
7904     return optimizeCallInst(cast<CallInst>(I), ModifiedDT);
7905   case Instruction::Select:
7906     return optimizeSelectInst(cast<SelectInst>(I));
7907   case Instruction::ShuffleVector:
7908     return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I));
7909   case Instruction::Switch:
7910     return optimizeSwitchInst(cast<SwitchInst>(I));
7911   case Instruction::ExtractElement:
7912     return optimizeExtractElementInst(cast<ExtractElementInst>(I));
7913   case Instruction::Br:
7914     return optimizeBranch(cast<BranchInst>(I), *TLI);
7915   }
7916 
7917   return false;
7918 }
7919 
7920 /// Given an OR instruction, check to see if this is a bitreverse
7921 /// idiom. If so, insert the new intrinsic and return true.
makeBitReverse(Instruction & I)7922 bool CodeGenPrepare::makeBitReverse(Instruction &I) {
7923   if (!I.getType()->isIntegerTy() ||
7924       !TLI->isOperationLegalOrCustom(ISD::BITREVERSE,
7925                                      TLI->getValueType(*DL, I.getType(), true)))
7926     return false;
7927 
7928   SmallVector<Instruction*, 4> Insts;
7929   if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts))
7930     return false;
7931   Instruction *LastInst = Insts.back();
7932   I.replaceAllUsesWith(LastInst);
7933   RecursivelyDeleteTriviallyDeadInstructions(
7934       &I, TLInfo, nullptr, [&](Value *V) { removeAllAssertingVHReferences(V); });
7935   return true;
7936 }
7937 
7938 // In this pass we look for GEP and cast instructions that are used
7939 // across basic blocks and rewrite them to improve basic-block-at-a-time
7940 // selection.
optimizeBlock(BasicBlock & BB,bool & ModifiedDT)7941 bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) {
7942   SunkAddrs.clear();
7943   bool MadeChange = false;
7944 
7945   CurInstIterator = BB.begin();
7946   while (CurInstIterator != BB.end()) {
7947     MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT);
7948     if (ModifiedDT)
7949       return true;
7950   }
7951 
7952   bool MadeBitReverse = true;
7953   while (MadeBitReverse) {
7954     MadeBitReverse = false;
7955     for (auto &I : reverse(BB)) {
7956       if (makeBitReverse(I)) {
7957         MadeBitReverse = MadeChange = true;
7958         break;
7959       }
7960     }
7961   }
7962   MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT);
7963 
7964   return MadeChange;
7965 }
7966 
7967 // Some CGP optimizations may move or alter what's computed in a block. Check
7968 // whether a dbg.value intrinsic could be pointed at a more appropriate operand.
fixupDbgValue(Instruction * I)7969 bool CodeGenPrepare::fixupDbgValue(Instruction *I) {
7970   assert(isa<DbgValueInst>(I));
7971   DbgValueInst &DVI = *cast<DbgValueInst>(I);
7972 
7973   // Does this dbg.value refer to a sunk address calculation?
7974   bool AnyChange = false;
7975   for (Value *Location : DVI.getValues()) {
7976     WeakTrackingVH SunkAddrVH = SunkAddrs[Location];
7977     Value *SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr;
7978     if (SunkAddr) {
7979       // Point dbg.value at locally computed address, which should give the best
7980       // opportunity to be accurately lowered. This update may change the type
7981       // of pointer being referred to; however this makes no difference to
7982       // debugging information, and we can't generate bitcasts that may affect
7983       // codegen.
7984       DVI.replaceVariableLocationOp(Location, SunkAddr);
7985       AnyChange = true;
7986     }
7987   }
7988   return AnyChange;
7989 }
7990 
7991 // A llvm.dbg.value may be using a value before its definition, due to
7992 // optimizations in this pass and others. Scan for such dbg.values, and rescue
7993 // them by moving the dbg.value to immediately after the value definition.
7994 // FIXME: Ideally this should never be necessary, and this has the potential
7995 // to re-order dbg.value intrinsics.
placeDbgValues(Function & F)7996 bool CodeGenPrepare::placeDbgValues(Function &F) {
7997   bool MadeChange = false;
7998   DominatorTree DT(F);
7999 
8000   for (BasicBlock &BB : F) {
8001     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
8002       Instruction *Insn = &*BI++;
8003       DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
8004       if (!DVI)
8005         continue;
8006 
8007       SmallVector<Instruction *, 4> VIs;
8008       for (Value *V : DVI->getValues())
8009         if (Instruction *VI = dyn_cast_or_null<Instruction>(V))
8010           VIs.push_back(VI);
8011 
8012       // This DVI may depend on multiple instructions, complicating any
8013       // potential sink. This block takes the defensive approach, opting to
8014       // "undef" the DVI if it has more than one instruction and any of them do
8015       // not dominate DVI.
8016       for (Instruction *VI : VIs) {
8017         if (VI->isTerminator())
8018           continue;
8019 
8020         // If VI is a phi in a block with an EHPad terminator, we can't insert
8021         // after it.
8022         if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad())
8023           continue;
8024 
8025         // If the defining instruction dominates the dbg.value, we do not need
8026         // to move the dbg.value.
8027         if (DT.dominates(VI, DVI))
8028           continue;
8029 
8030         // If we depend on multiple instructions and any of them doesn't
8031         // dominate this DVI, we probably can't salvage it: moving it to
8032         // after any of the instructions could cause us to lose the others.
8033         if (VIs.size() > 1) {
8034           LLVM_DEBUG(
8035               dbgs()
8036               << "Unable to find valid location for Debug Value, undefing:\n"
8037               << *DVI);
8038           DVI->setUndef();
8039           break;
8040         }
8041 
8042         LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n"
8043                           << *DVI << ' ' << *VI);
8044         DVI->removeFromParent();
8045         if (isa<PHINode>(VI))
8046           DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt());
8047         else
8048           DVI->insertAfter(VI);
8049         MadeChange = true;
8050         ++NumDbgValueMoved;
8051       }
8052     }
8053   }
8054   return MadeChange;
8055 }
8056 
8057 // Group scattered pseudo probes in a block to favor SelectionDAG. Scattered
8058 // probes can be chained dependencies of other regular DAG nodes and block DAG
8059 // combine optimizations.
placePseudoProbes(Function & F)8060 bool CodeGenPrepare::placePseudoProbes(Function &F) {
8061   bool MadeChange = false;
8062   for (auto &Block : F) {
8063     // Move the rest probes to the beginning of the block.
8064     auto FirstInst = Block.getFirstInsertionPt();
8065     while (FirstInst != Block.end() && FirstInst->isDebugOrPseudoInst())
8066       ++FirstInst;
8067     BasicBlock::iterator I(FirstInst);
8068     I++;
8069     while (I != Block.end()) {
8070       if (auto *II = dyn_cast<PseudoProbeInst>(I++)) {
8071         II->moveBefore(&*FirstInst);
8072         MadeChange = true;
8073       }
8074     }
8075   }
8076   return MadeChange;
8077 }
8078 
8079 /// Scale down both weights to fit into uint32_t.
scaleWeights(uint64_t & NewTrue,uint64_t & NewFalse)8080 static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
8081   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
8082   uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1;
8083   NewTrue = NewTrue / Scale;
8084   NewFalse = NewFalse / Scale;
8085 }
8086 
8087 /// Some targets prefer to split a conditional branch like:
8088 /// \code
8089 ///   %0 = icmp ne i32 %a, 0
8090 ///   %1 = icmp ne i32 %b, 0
8091 ///   %or.cond = or i1 %0, %1
8092 ///   br i1 %or.cond, label %TrueBB, label %FalseBB
8093 /// \endcode
8094 /// into multiple branch instructions like:
8095 /// \code
8096 ///   bb1:
8097 ///     %0 = icmp ne i32 %a, 0
8098 ///     br i1 %0, label %TrueBB, label %bb2
8099 ///   bb2:
8100 ///     %1 = icmp ne i32 %b, 0
8101 ///     br i1 %1, label %TrueBB, label %FalseBB
8102 /// \endcode
8103 /// This usually allows instruction selection to do even further optimizations
8104 /// and combine the compare with the branch instruction. Currently this is
8105 /// applied for targets which have "cheap" jump instructions.
8106 ///
8107 /// FIXME: Remove the (equivalent?) implementation in SelectionDAG.
8108 ///
splitBranchCondition(Function & F,bool & ModifiedDT)8109 bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) {
8110   if (!TM->Options.EnableFastISel || TLI->isJumpExpensive())
8111     return false;
8112 
8113   bool MadeChange = false;
8114   for (auto &BB : F) {
8115     // Does this BB end with the following?
8116     //   %cond1 = icmp|fcmp|binary instruction ...
8117     //   %cond2 = icmp|fcmp|binary instruction ...
8118     //   %cond.or = or|and i1 %cond1, cond2
8119     //   br i1 %cond.or label %dest1, label %dest2"
8120     Instruction *LogicOp;
8121     BasicBlock *TBB, *FBB;
8122     if (!match(BB.getTerminator(),
8123                m_Br(m_OneUse(m_Instruction(LogicOp)), TBB, FBB)))
8124       continue;
8125 
8126     auto *Br1 = cast<BranchInst>(BB.getTerminator());
8127     if (Br1->getMetadata(LLVMContext::MD_unpredictable))
8128       continue;
8129 
8130     // The merging of mostly empty BB can cause a degenerate branch.
8131     if (TBB == FBB)
8132       continue;
8133 
8134     unsigned Opc;
8135     Value *Cond1, *Cond2;
8136     if (match(LogicOp,
8137               m_LogicalAnd(m_OneUse(m_Value(Cond1)), m_OneUse(m_Value(Cond2)))))
8138       Opc = Instruction::And;
8139     else if (match(LogicOp, m_LogicalOr(m_OneUse(m_Value(Cond1)),
8140                                         m_OneUse(m_Value(Cond2)))))
8141       Opc = Instruction::Or;
8142     else
8143       continue;
8144 
8145     auto IsGoodCond = [](Value *Cond) {
8146       return match(
8147           Cond,
8148           m_CombineOr(m_Cmp(), m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
8149                                            m_LogicalOr(m_Value(), m_Value()))));
8150     };
8151     if (!IsGoodCond(Cond1) || !IsGoodCond(Cond2))
8152       continue;
8153 
8154     LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump());
8155 
8156     // Create a new BB.
8157     auto *TmpBB =
8158         BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split",
8159                            BB.getParent(), BB.getNextNode());
8160 
8161     // Update original basic block by using the first condition directly by the
8162     // branch instruction and removing the no longer needed and/or instruction.
8163     Br1->setCondition(Cond1);
8164     LogicOp->eraseFromParent();
8165 
8166     // Depending on the condition we have to either replace the true or the
8167     // false successor of the original branch instruction.
8168     if (Opc == Instruction::And)
8169       Br1->setSuccessor(0, TmpBB);
8170     else
8171       Br1->setSuccessor(1, TmpBB);
8172 
8173     // Fill in the new basic block.
8174     auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB);
8175     if (auto *I = dyn_cast<Instruction>(Cond2)) {
8176       I->removeFromParent();
8177       I->insertBefore(Br2);
8178     }
8179 
8180     // Update PHI nodes in both successors. The original BB needs to be
8181     // replaced in one successor's PHI nodes, because the branch comes now from
8182     // the newly generated BB (NewBB). In the other successor we need to add one
8183     // incoming edge to the PHI nodes, because both branch instructions target
8184     // now the same successor. Depending on the original branch condition
8185     // (and/or) we have to swap the successors (TrueDest, FalseDest), so that
8186     // we perform the correct update for the PHI nodes.
8187     // This doesn't change the successor order of the just created branch
8188     // instruction (or any other instruction).
8189     if (Opc == Instruction::Or)
8190       std::swap(TBB, FBB);
8191 
8192     // Replace the old BB with the new BB.
8193     TBB->replacePhiUsesWith(&BB, TmpBB);
8194 
8195     // Add another incoming edge form the new BB.
8196     for (PHINode &PN : FBB->phis()) {
8197       auto *Val = PN.getIncomingValueForBlock(&BB);
8198       PN.addIncoming(Val, TmpBB);
8199     }
8200 
8201     // Update the branch weights (from SelectionDAGBuilder::
8202     // FindMergedConditions).
8203     if (Opc == Instruction::Or) {
8204       // Codegen X | Y as:
8205       // BB1:
8206       //   jmp_if_X TBB
8207       //   jmp TmpBB
8208       // TmpBB:
8209       //   jmp_if_Y TBB
8210       //   jmp FBB
8211       //
8212 
8213       // We have flexibility in setting Prob for BB1 and Prob for NewBB.
8214       // The requirement is that
8215       //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
8216       //     = TrueProb for original BB.
8217       // Assuming the original weights are A and B, one choice is to set BB1's
8218       // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
8219       // assumes that
8220       //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
8221       // Another choice is to assume TrueProb for BB1 equals to TrueProb for
8222       // TmpBB, but the math is more complicated.
8223       uint64_t TrueWeight, FalseWeight;
8224       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8225         uint64_t NewTrueWeight = TrueWeight;
8226         uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight;
8227         scaleWeights(NewTrueWeight, NewFalseWeight);
8228         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8229                          .createBranchWeights(TrueWeight, FalseWeight));
8230 
8231         NewTrueWeight = TrueWeight;
8232         NewFalseWeight = 2 * FalseWeight;
8233         scaleWeights(NewTrueWeight, NewFalseWeight);
8234         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8235                          .createBranchWeights(TrueWeight, FalseWeight));
8236       }
8237     } else {
8238       // Codegen X & Y as:
8239       // BB1:
8240       //   jmp_if_X TmpBB
8241       //   jmp FBB
8242       // TmpBB:
8243       //   jmp_if_Y TBB
8244       //   jmp FBB
8245       //
8246       //  This requires creation of TmpBB after CurBB.
8247 
8248       // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
8249       // The requirement is that
8250       //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
8251       //     = FalseProb for original BB.
8252       // Assuming the original weights are A and B, one choice is to set BB1's
8253       // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
8254       // assumes that
8255       //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
8256       uint64_t TrueWeight, FalseWeight;
8257       if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) {
8258         uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight;
8259         uint64_t NewFalseWeight = FalseWeight;
8260         scaleWeights(NewTrueWeight, NewFalseWeight);
8261         Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext())
8262                          .createBranchWeights(TrueWeight, FalseWeight));
8263 
8264         NewTrueWeight = 2 * TrueWeight;
8265         NewFalseWeight = FalseWeight;
8266         scaleWeights(NewTrueWeight, NewFalseWeight);
8267         Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext())
8268                          .createBranchWeights(TrueWeight, FalseWeight));
8269       }
8270     }
8271 
8272     ModifiedDT = true;
8273     MadeChange = true;
8274 
8275     LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump();
8276                TmpBB->dump());
8277   }
8278   return MadeChange;
8279 }
8280