xref: /netbsd-src/sys/net/zlib.c (revision bd9fddde532365252597098e44411fab4535e00b)
1 /*	$NetBSD: zlib.c,v 1.39 2024/07/04 01:10:17 rin Exp $	*/
2 /*
3  * This file is derived from various .h and .c files from the zlib-1.0.4
4  * distribution by Jean-loup Gailly and Mark Adler, with some additions
5  * by Paul Mackerras to aid in implementing Deflate compression and
6  * decompression for PPP packets.  See zlib.h for conditions of
7  * distribution and use.
8  *
9  * Changes that have been made include:
10  * - added Z_PACKET_FLUSH (see zlib.h for details)
11  * - added inflateIncomp and deflateOutputPending
12  * - allow strm->next_out to be NULL, meaning discard the output
13  *
14  * $Id: zlib.c,v 1.39 2024/07/04 01:10:17 rin Exp $
15  */
16 
17 /*
18  *  ==FILEVERSION 020312==
19  *
20  * This marker is used by the Linux installation script to determine
21  * whether an up-to-date version of this file is already installed.
22  */
23 
24 #include <sys/cdefs.h>
25 __KERNEL_RCSID(0, "$NetBSD: zlib.c,v 1.39 2024/07/04 01:10:17 rin Exp $");
26 
27 #define NO_DUMMY_DECL
28 #define NO_ZCFUNCS
29 #define MY_ZCALLOC
30 
31 #if defined(__FreeBSD__) && (defined(KERNEL) || defined(_KERNEL))
32 #define inflate	inflate_ppp	/* FreeBSD already has an inflate :-( */
33 #endif
34 
35 
36 /* +++ zutil.h */
37 
38 /* zutil.h -- internal interface and configuration of the compression library
39  * Copyright (C) 1995-2002 Jean-loup Gailly.
40  * For conditions of distribution and use, see copyright notice in zlib.h
41  */
42 
43 /* WARNING: this file should *not* be used by applications. It is
44    part of the implementation of the compression library and is
45    subject to change. Applications should only use zlib.h.
46  */
47 
48 /* @(#) $Id: zlib.c,v 1.39 2024/07/04 01:10:17 rin Exp $ */
49 
50 #ifndef _Z_UTIL_H
51 #define _Z_UTIL_H
52 
53 #include "zlib.h"
54 
55 #if defined(KERNEL) || defined(_KERNEL)
56 /* Assume this is a *BSD or SVR4 kernel */
57 #include <sys/param.h>
58 #include <sys/time.h>
59 #include <sys/systm.h>
60 #  define HAVE_MEMCPY
61 #else
62 #if defined(__KERNEL__)
63 /* Assume this is a Linux kernel */
64 #include <linux/string.h>
65 #define HAVE_MEMCPY
66 
67 #else /* not kernel */
68 
69 #if defined(__NetBSD__) && (defined(_KERNEL) || defined(_STANDALONE))
70 
71 /* XXX doesn't seem to need anything at all, but this is for consistency. */
72 #  include <lib/libkern/libkern.h>
73 
74 #else
75 #  include <sys/types.h>
76 #  include <sys/param.h>
77 #ifdef STDC
78 #  include <stddef.h>
79 #  include <string.h>
80 #  include <stdlib.h>
81 #endif
82 #ifdef NO_ERRNO_H
83     extern int errno;
84 #else
85 #   include <errno.h>
86 #endif
87 #endif /* __NetBSD__ && _STANDALONE */
88 #endif /* __KERNEL__ */
89 #endif /* _KERNEL || KERNEL */
90 
91 #ifndef local
92 #  define local static
93 #endif
94 /* compile with -Dlocal if your debugger can't find static symbols */
95 
96 typedef unsigned char  uch;
97 typedef uch FAR uchf;
98 typedef unsigned short ush;
99 typedef ush FAR ushf;
100 typedef unsigned long  ulg;
101 
102 extern const char *z_errmsg[10]; /* indexed by 2-zlib_error */
103 /* (size given to avoid silly warnings with Visual C++) */
104 
105 #define ERR_MSG(err) z_errmsg[Z_NEED_DICT-(err)]
106 
107 #define ERR_RETURN(strm,err) \
108   return (strm->msg = ERR_MSG(err), (err))
109 /* To be used only when the state is known to be valid */
110 
111         /* common constants */
112 
113 #ifndef DEF_WBITS
114 #  define DEF_WBITS MAX_WBITS
115 #endif
116 /* default windowBits for decompression. MAX_WBITS is for compression only */
117 
118 #if MAX_MEM_LEVEL >= 8
119 #  define DEF_MEM_LEVEL 8
120 #else
121 #  define DEF_MEM_LEVEL  MAX_MEM_LEVEL
122 #endif
123 /* default memLevel */
124 
125 #define STORED_BLOCK 0
126 #define STATIC_TREES 1
127 #define DYN_TREES    2
128 /* The three kinds of block type */
129 
130 #define MIN_MATCH  3
131 #define MAX_MATCH  258
132 /* The minimum and maximum match lengths */
133 
134 #define PRESET_DICT 0x20 /* preset dictionary flag in zlib header */
135 
136         /* target dependencies */
137 
138 #ifdef MSDOS
139 #  define OS_CODE  0x00
140 #  if defined(__TURBOC__) || defined(__BORLANDC__)
141 #    if(__STDC__ == 1) && (defined(__LARGE__) || defined(__COMPACT__))
142        /* Allow compilation with ANSI keywords only enabled */
143        void _Cdecl farfree( void *block );
144        void *_Cdecl farmalloc( unsigned long nbytes );
145 #    else
146 #     include <alloc.h>
147 #    endif
148 #  else /* MSC or DJGPP */
149 #    include <malloc.h>
150 #  endif
151 #endif
152 
153 #ifdef OS2
154 #  define OS_CODE  0x06
155 #endif
156 
157 #ifdef WIN32 /* Window 95 & Windows NT */
158 #  define OS_CODE  0x0b
159 #endif
160 
161 #if defined(VAXC) || defined(VMS)
162 #  define OS_CODE  0x02
163 #  define F_OPEN(name, mode) \
164      fopen((name), (mode), "mbc=60", "ctx=stm", "rfm=fix", "mrs=512")
165 #endif
166 
167 #ifdef AMIGA
168 #  define OS_CODE  0x01
169 #endif
170 
171 #if defined(ATARI) || defined(atarist)
172 #  define OS_CODE  0x05
173 #endif
174 
175 #if defined(MACOS) || defined(TARGET_OS_MAC)
176 #  define OS_CODE  0x07
177 #  if defined(__MWERKS__) && __dest_os != __be_os && __dest_os != __win32_os
178 #    include <unix.h> /* for fdopen */
179 #  else
180 #    ifndef fdopen
181 #      define fdopen(fd,mode) NULL /* No fdopen() */
182 #    endif
183 #  endif
184 #endif
185 
186 #ifdef __50SERIES /* Prime/PRIMOS */
187 #  define OS_CODE  0x0F
188 #endif
189 
190 #ifdef TOPS20
191 #  define OS_CODE  0x0a
192 #endif
193 
194 #if defined(_BEOS_) || defined(RISCOS)
195 #  define fdopen(fd,mode) NULL /* No fdopen() */
196 #endif
197 
198 #if (defined(_MSC_VER) && (_MSC_VER > 600))
199 #  define fdopen(fd,type)  _fdopen(fd,type)
200 #endif
201 
202 
203         /* Common defaults */
204 
205 #ifndef OS_CODE
206 #  define OS_CODE  0x03  /* assume Unix */
207 #endif
208 
209 #ifndef F_OPEN
210 #  define F_OPEN(name, mode) fopen((name), (mode))
211 #endif
212 
213          /* functions */
214 
215 #ifdef HAVE_STRERROR
216    extern char *strerror(int);
217 #  define zstrerror(errnum) strerror(errnum)
218 #else
219 #  define zstrerror(errnum) ""
220 #endif
221 
222 #if defined(pyr)
223 #  define NO_MEMCPY
224 #endif
225 #if defined(SMALL_MEDIUM) && !defined(_MSC_VER) && !defined(__SC__)
226  /* Use our own functions for small and medium model with MSC <= 5.0.
227   * You may have to use the same strategy for Borland C (untested).
228   * The __SC__ check is for Symantec.
229   */
230 #  define NO_MEMCPY
231 #endif
232 #if defined(STDC) && !defined(HAVE_MEMCPY) && !defined(NO_MEMCPY)
233 #  define HAVE_MEMCPY
234 #endif
235 #ifdef HAVE_MEMCPY
236 #  ifdef SMALL_MEDIUM /* MSDOS small or medium model */
237 #    define zmemcpy _fmemcpy
238 #    define zmemcmp _fmemcmp
239 #    define zmemzero(dest, len) _fmemset(dest, 0, len)
240 #  else
241 #    define zmemcpy memcpy
242 #    define zmemcmp memcmp
243 #    define zmemzero(dest, len) memset(dest, 0, len)
244 #  endif
245 #else
246    extern void zmemcpy(Bytef* dest, const Bytef* source, uInt len);
247    extern int  zmemcmp(const Bytef* s1, const Bytef* s2, uInt len);
248    extern void zmemzero(Bytef* dest, uInt len);
249 #endif
250 
251 /* Diagnostic functions */
252 #if defined(DEBUG_ZLIB) && !defined(_KERNEL) && !defined(_STANDALONE)
253 #  include <stdio.h>
254    extern int z_verbose;
255    extern void z_error(char *m);
256 #  define Assert(cond,msg) {if(!(cond)) z_error(msg);}
257 #  define Trace(x) {if (z_verbose>=0) fprintf x ;}
258 #  define Tracev(x) {if (z_verbose>0) fprintf x ;}
259 #  define Tracevv(x) {if (z_verbose>1) fprintf x ;}
260 #  define Tracec(c,x) {if (z_verbose>0 && (c)) fprintf x ;}
261 #  define Tracecv(c,x) {if (z_verbose>1 && (c)) fprintf x ;}
262 #else
263 #  define Assert(cond,msg)
264 #  define Trace(x)
265 #  define Tracev(x)
266 #  define Tracevv(x)
267 #  define Tracec(c,x)
268 #  define Tracecv(c,x)
269 #endif
270 
271 
272 typedef uLong (ZEXPORT *check_func)(uLong check, const Bytef *buf,
273 				       uInt len);
274 voidpf zcalloc(voidpf opaque, unsigned items, unsigned size);
275 void   zcfree(voidpf opaque, voidpf ptr);
276 
277 #define ZALLOC(strm, items, size) \
278            (*((strm)->zalloc))((strm)->opaque, (items), (size))
279 #define ZFREE(strm, addr)  (*((strm)->zfree))((strm)->opaque, (voidpf)(addr))
280 #define TRY_FREE(s, p) {if (p) ZFREE(s, p);}
281 
282 #endif /* _Z_UTIL_H */
283 /* --- zutil.h */
284 
285 /* +++ deflate.h */
286 
287 /* deflate.h -- internal compression state
288  * Copyright (C) 1995-2002 Jean-loup Gailly
289  * For conditions of distribution and use, see copyright notice in zlib.h
290  */
291 
292 /* WARNING: this file should *not* be used by applications. It is
293    part of the implementation of the compression library and is
294    subject to change. Applications should only use zlib.h.
295  */
296 
297 /* @(#) $Id: zlib.c,v 1.39 2024/07/04 01:10:17 rin Exp $ */
298 
299 #ifndef _DEFLATE_H
300 #define _DEFLATE_H
301 
302 /* #include "zutil.h" */
303 
304 /* ===========================================================================
305  * Internal compression state.
306  */
307 
308 #define LENGTH_CODES 29
309 /* number of length codes, not counting the special END_BLOCK code */
310 
311 #define LITERALS  256
312 /* number of literal bytes 0..255 */
313 
314 #define L_CODES (LITERALS+1+LENGTH_CODES)
315 /* number of Literal or Length codes, including the END_BLOCK code */
316 
317 #define D_CODES   30
318 /* number of distance codes */
319 
320 #define BL_CODES  19
321 /* number of codes used to transfer the bit lengths */
322 
323 #define HEAP_SIZE (2*L_CODES+1)
324 /* maximum heap size */
325 
326 #define MAX_BITS 15
327 /* All codes must not exceed MAX_BITS bits */
328 
329 #define INIT_STATE    42
330 #define BUSY_STATE   113
331 #define FINISH_STATE 666
332 /* Stream status */
333 
334 
335 /* Data structure describing a single value and its code string. */
336 typedef struct ct_data_s {
337     union {
338         ush  freq;       /* frequency count */
339         ush  code;       /* bit string */
340     } fc;
341     union {
342         ush  dad;        /* father node in Huffman tree */
343         ush  len;        /* length of bit string */
344     } dl;
345 } FAR ct_data;
346 
347 #define Freq fc.freq
348 #define Code fc.code
349 #define Dad  dl.dad
350 #define Len  dl.len
351 
352 typedef struct static_tree_desc_s  static_tree_desc;
353 
354 typedef struct tree_desc_s {
355     ct_data *dyn_tree;           /* the dynamic tree */
356     int     max_code;            /* largest code with non zero frequency */
357     static_tree_desc *stat_desc; /* the corresponding static tree */
358 } FAR tree_desc;
359 
360 typedef ush Pos;
361 typedef Pos FAR Posf;
362 typedef unsigned IPos;
363 
364 /* A Pos is an index in the character window. We use short instead of int to
365  * save space in the various tables. IPos is used only for parameter passing.
366  */
367 
368 typedef struct deflate_state {
369     z_streamp strm;      /* pointer back to this zlib stream */
370     int   status;        /* as the name implies */
371     Bytef *pending_buf;  /* output still pending */
372     ulg   pending_buf_size; /* size of pending_buf */
373     Bytef *pending_out;  /* next pending byte to output to the stream */
374     int   pending;       /* nb of bytes in the pending buffer */
375     int   noheader;      /* suppress zlib header and adler32 */
376     Byte  data_type;     /* UNKNOWN, BINARY or ASCII */
377     Byte  method;        /* STORED (for zip only) or DEFLATED */
378     int   last_flush;    /* value of flush param for previous deflate call */
379 
380                 /* used by deflate.c: */
381 
382     uInt  w_size;        /* LZ77 window size (32K by default) */
383     uInt  w_bits;        /* log2(w_size)  (8..16) */
384     uInt  w_mask;        /* w_size - 1 */
385 
386     Bytef *window;
387     /* Sliding window. Input bytes are read into the second half of the window,
388      * and move to the first half later to keep a dictionary of at least wSize
389      * bytes. With this organization, matches are limited to a distance of
390      * wSize-MAX_MATCH bytes, but this ensures that IO is always
391      * performed with a length multiple of the block size. Also, it limits
392      * the window size to 64K, which is quite useful on MSDOS.
393      * To do: use the user input buffer as sliding window.
394      */
395 
396     ulg window_size;
397     /* Actual size of window: 2*wSize, except when the user input buffer
398      * is directly used as sliding window.
399      */
400 
401     Posf *prev;
402     /* Link to older string with same hash index. To limit the size of this
403      * array to 64K, this link is maintained only for the last 32K strings.
404      * An index in this array is thus a window index modulo 32K.
405      */
406 
407     Posf *head; /* Heads of the hash chains or NIL. */
408 
409     uInt  ins_h;          /* hash index of string to be inserted */
410     uInt  hash_size;      /* number of elements in hash table */
411     uInt  hash_bits;      /* log2(hash_size) */
412     uInt  hash_mask;      /* hash_size-1 */
413 
414     uInt  hash_shift;
415     /* Number of bits by which ins_h must be shifted at each input
416      * step. It must be such that after MIN_MATCH steps, the oldest
417      * byte no longer takes part in the hash key, that is:
418      *   hash_shift * MIN_MATCH >= hash_bits
419      */
420 
421     long block_start;
422     /* Window position at the beginning of the current output block. Gets
423      * negative when the window is moved backwards.
424      */
425 
426     uInt match_length;           /* length of best match */
427     IPos prev_match;             /* previous match */
428     int match_available;         /* set if previous match exists */
429     uInt strstart;               /* start of string to insert */
430     uInt match_start;            /* start of matching string */
431     uInt lookahead;              /* number of valid bytes ahead in window */
432 
433     uInt prev_length;
434     /* Length of the best match at previous step. Matches not greater than this
435      * are discarded. This is used in the lazy match evaluation.
436      */
437 
438     uInt max_chain_length;
439     /* To speed up deflation, hash chains are never searched beyond this
440      * length.  A higher limit improves compression ratio but degrades the
441      * speed.
442      */
443 
444     uInt max_lazy_match;
445     /* Attempt to find a better match only when the current match is strictly
446      * smaller than this value. This mechanism is used only for compression
447      * levels >= 4.
448      */
449 #   define max_insert_length  max_lazy_match
450     /* Insert new strings in the hash table only if the match length is not
451      * greater than this length. This saves time but degrades compression.
452      * max_insert_length is used only for compression levels <= 3.
453      */
454 
455     int level;    /* compression level (1..9) */
456     int strategy; /* favor or force Huffman coding*/
457 
458     uInt good_match;
459     /* Use a faster search when the previous match is longer than this */
460 
461     int nice_match; /* Stop searching when current match exceeds this */
462 
463                 /* used by trees.c: */
464     /* Didn't use ct_data typedef below to suppress compiler warning */
465     struct ct_data_s dyn_ltree[HEAP_SIZE];   /* literal and length tree */
466     struct ct_data_s dyn_dtree[2*D_CODES+1]; /* distance tree */
467     struct ct_data_s bl_tree[2*BL_CODES+1];  /* Huffman tree for bit lengths */
468 
469     struct tree_desc_s l_desc;               /* desc. for literal tree */
470     struct tree_desc_s d_desc;               /* desc. for distance tree */
471     struct tree_desc_s bl_desc;              /* desc. for bit length tree */
472 
473     ush bl_count[MAX_BITS+1];
474     /* number of codes at each bit length for an optimal tree */
475 
476     int heap[2*L_CODES+1];      /* heap used to build the Huffman trees */
477     int heap_len;               /* number of elements in the heap */
478     int heap_max;               /* element of largest frequency */
479     /* The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
480      * The same heap array is used to build all trees.
481      */
482 
483     uch depth[2*L_CODES+1];
484     /* Depth of each subtree used as tie breaker for trees of equal frequency
485      */
486 
487     uchf *l_buf;          /* buffer for literals or lengths */
488 
489     uInt  lit_bufsize;
490     /* Size of match buffer for literals/lengths.  There are 4 reasons for
491      * limiting lit_bufsize to 64K:
492      *   - frequencies can be kept in 16 bit counters
493      *   - if compression is not successful for the first block, all input
494      *     data is still in the window so we can still emit a stored block even
495      *     when input comes from standard input.  (This can also be done for
496      *     all blocks if lit_bufsize is not greater than 32K.)
497      *   - if compression is not successful for a file smaller than 64K, we can
498      *     even emit a stored file instead of a stored block (saving 5 bytes).
499      *     This is applicable only for zip (not gzip or zlib).
500      *   - creating new Huffman trees less frequently may not provide fast
501      *     adaptation to changes in the input data statistics. (Take for
502      *     example a binary file with poorly compressible code followed by
503      *     a highly compressible string table.) Smaller buffer sizes give
504      *     fast adaptation but have of course the overhead of transmitting
505      *     trees more frequently.
506      *   - I can't count above 4
507      */
508 
509     uInt last_lit;      /* running index in l_buf */
510 
511     ushf *d_buf;
512     /* Buffer for distances. To simplify the code, d_buf and l_buf have
513      * the same number of elements. To use different lengths, an extra flag
514      * array would be necessary.
515      */
516 
517     ulg opt_len;        /* bit length of current block with optimal trees */
518     ulg static_len;     /* bit length of current block with static trees */
519     uInt matches;       /* number of string matches in current block */
520     int last_eob_len;   /* bit length of EOB code for last block */
521 
522 #ifdef DEBUG_ZLIB
523     ulg compressed_len; /* total bit length of compressed file mod 2^32 */
524     ulg bits_sent;      /* bit length of compressed data sent mod 2^32 */
525 #endif
526 
527     ush bi_buf;
528     /* Output buffer. bits are inserted starting at the bottom (least
529      * significant bits).
530      */
531     int bi_valid;
532     /* Number of valid bits in bi_buf.  All bits above the last valid bit
533      * are always zero.
534      */
535 
536 } FAR deflate_state;
537 
538 /* Output a byte on the stream.
539  * IN assertion: there is enough room in pending_buf.
540  */
541 #define put_byte(s, c) {s->pending_buf[s->pending++] = (c);}
542 
543 
544 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
545 /* Minimum amount of lookahead, except at the end of the input file.
546  * See deflate.c for comments about the MIN_MATCH+1.
547  */
548 
549 #define MAX_DIST(s)  ((s)->w_size-MIN_LOOKAHEAD)
550 /* In order to simplify the code, particularly on 16 bit machines, match
551  * distances are limited to MAX_DIST instead of WSIZE.
552  */
553 
554         /* in trees.c */
555 void _tr_init(deflate_state *s);
556 int  _tr_tally(deflate_state *s, unsigned dist, unsigned lc);
557 void _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len,
558 			  int eof);
559 void _tr_align(deflate_state *s);
560 void _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len,
561                           int eof);
562 void _tr_stored_type_only(deflate_state *);
563 
564 #define d_code(dist) \
565    ((dist) < 256 ? _dist_code[dist] : _dist_code[256+((dist)>>7)])
566 /* Mapping from a distance to a distance code. dist is the distance - 1 and
567  * must not have side effects. _dist_code[256] and _dist_code[257] are never
568  * used.
569  */
570 
571 #ifndef DEBUG_ZLIB
572 /* Inline versions of _tr_tally for speed: */
573 
574 #if defined(GEN_TREES_H) || !defined(STDC)
575   extern uch _length_code[];
576   extern uch _dist_code[];
577 #else
578   extern const uch _length_code[];
579   extern const uch _dist_code[];
580 #endif
581 
582 # define _tr_tally_lit(s, c, flush) \
583   { uch cc = (c); \
584     s->d_buf[s->last_lit] = 0; \
585     s->l_buf[s->last_lit++] = cc; \
586     s->dyn_ltree[cc].Freq++; \
587     flush = (s->last_lit == s->lit_bufsize-1); \
588    }
589 # define _tr_tally_dist(s, distance, length, flush) \
590   { uch len = (length); \
591     ush dist = (distance); \
592     s->d_buf[s->last_lit] = dist; \
593     s->l_buf[s->last_lit++] = len; \
594     dist--; \
595     s->dyn_ltree[_length_code[len]+LITERALS+1].Freq++; \
596     s->dyn_dtree[d_code(dist)].Freq++; \
597     flush = (s->last_lit == s->lit_bufsize-1); \
598   }
599 #else
600 # define _tr_tally_lit(s, c, flush) flush = _tr_tally(s, 0, c)
601 # define _tr_tally_dist(s, distance, length, flush) \
602               flush = _tr_tally(s, distance, length)
603 #endif
604 
605 #endif
606 /* --- deflate.h */
607 
608 /* +++ deflate.c */
609 
610 /* deflate.c -- compress data using the deflation algorithm
611  * Copyright (C) 1995-2002 Jean-loup Gailly.
612  * For conditions of distribution and use, see copyright notice in zlib.h
613  */
614 
615 /*
616  *  ALGORITHM
617  *
618  *      The "deflation" process depends on being able to identify portions
619  *      of the input text which are identical to earlier input (within a
620  *      sliding window trailing behind the input currently being processed).
621  *
622  *      The most straightforward technique turns out to be the fastest for
623  *      most input files: try all possible matches and select the longest.
624  *      The key feature of this algorithm is that insertions into the string
625  *      dictionary are very simple and thus fast, and deletions are avoided
626  *      completely. Insertions are performed at each input character, whereas
627  *      string matches are performed only when the previous match ends. So it
628  *      is preferable to spend more time in matches to allow very fast string
629  *      insertions and avoid deletions. The matching algorithm for small
630  *      strings is inspired from that of Rabin & Karp. A brute force approach
631  *      is used to find longer strings when a small match has been found.
632  *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
633  *      (by Leonid Broukhis).
634  *         A previous version of this file used a more sophisticated algorithm
635  *      (by Fiala and Greene) which is guaranteed to run in linear amortized
636  *      time, but has a larger average cost, uses more memory and is patented.
637  *      However the F&G algorithm may be faster for some highly redundant
638  *      files if the parameter max_chain_length (described below) is too large.
639  *
640  *  ACKNOWLEDGEMENTS
641  *
642  *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
643  *      I found it in 'freeze' written by Leonid Broukhis.
644  *      Thanks to many people for bug reports and testing.
645  *
646  *  REFERENCES
647  *
648  *      Deutsch, L.P.,"DEFLATE Compressed Data Format Specification".
649  *      Available in ftp://ds.internic.net/rfc/rfc1951.txt
650  *
651  *      A description of the Rabin and Karp algorithm is given in the book
652  *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
653  *
654  *      Fiala,E.R., and Greene,D.H.
655  *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
656  *
657  */
658 
659 /* @(#) $Id: zlib.c,v 1.39 2024/07/04 01:10:17 rin Exp $ */
660 
661 /* #include "deflate.h" */
662 
663 const char deflate_copyright[] =
664    " deflate 1.1.4 Copyright 1995-2002 Jean-loup Gailly ";
665 /*
666   If you use the zlib library in a product, an acknowledgment is welcome
667   in the documentation of your product. If for some reason you cannot
668   include such an acknowledgment, I would appreciate that you keep this
669   copyright string in the executable of your product.
670  */
671 
672 /* ===========================================================================
673  *  Function prototypes.
674  */
675 typedef enum {
676     need_more,      /* block not completed, need more input or more output */
677     block_done,     /* block flush performed */
678     finish_started, /* finish started, need only more output at next deflate */
679     finish_done     /* finish done, accept no more input or output */
680 } block_state;
681 
682 typedef block_state (*compress_func)(deflate_state *s, int flush);
683 /* Compression function. Returns the block state after the call. */
684 
685 local void fill_window(deflate_state *s);
686 local block_state deflate_stored(deflate_state *s, int flush);
687 local block_state deflate_fast(deflate_state *s, int flush);
688 local block_state deflate_slow(deflate_state *s, int flush);
689 local void lm_init(deflate_state *s);
690 local void putShortMSB(deflate_state *s, uInt b);
691 local void flush_pending(z_streamp strm);
692 local int read_buf(z_streamp strm, Bytef *buf, unsigned size);
693 #ifdef ASMV
694       void match_init(void); /* asm code initialization */
695       uInt longest_match(deflate_state *s, IPos cur_match);
696 #else
697 local uInt longest_match(deflate_state *s, IPos cur_match);
698 #endif
699 
700 #ifdef DEBUG_ZLIB
701 local  void check_match(deflate_state *s, IPos start, IPos match,
702                             int length);
703 #endif
704 
705 /* ===========================================================================
706  * Local data
707  */
708 
709 #define NIL 0
710 /* Tail of hash chains */
711 
712 #ifndef TOO_FAR
713 #  define TOO_FAR 4096
714 #endif
715 /* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
716 
717 #define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
718 /* Minimum amount of lookahead, except at the end of the input file.
719  * See deflate.c for comments about the MIN_MATCH+1.
720  */
721 
722 /* Values for max_lazy_match, good_match and max_chain_length, depending on
723  * the desired pack level (0..9). The values given below have been tuned to
724  * exclude worst case performance for pathological files. Better values may be
725  * found for specific files.
726  */
727 typedef struct config_s {
728    ush good_length; /* reduce lazy search above this match length */
729    ush max_lazy;    /* do not perform lazy search above this match length */
730    ush nice_length; /* quit search above this match length */
731    ush max_chain;
732    compress_func func;
733 } config;
734 
735 local const config configuration_table[10] = {
736 /*      good lazy nice chain */
737 /* 0 */ {0,    0,  0,    0, deflate_stored},  /* store only */
738 /* 1 */ {4,    4,  8,    4, deflate_fast}, /* maximum speed, no lazy matches */
739 /* 2 */ {4,    5, 16,    8, deflate_fast},
740 /* 3 */ {4,    6, 32,   32, deflate_fast},
741 
742 /* 4 */ {4,    4, 16,   16, deflate_slow},  /* lazy matches */
743 /* 5 */ {8,   16, 32,   32, deflate_slow},
744 /* 6 */ {8,   16, 128, 128, deflate_slow},
745 /* 7 */ {8,   32, 128, 256, deflate_slow},
746 /* 8 */ {32, 128, 258, 1024, deflate_slow},
747 /* 9 */ {32, 258, 258, 4096, deflate_slow}}; /* maximum compression */
748 
749 /* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
750  * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
751  * meaning.
752  */
753 
754 #define EQUAL 0
755 /* result of memcmp for equal strings */
756 
757 #ifndef NO_DUMMY_DECL
758 struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
759 #endif
760 
761 /* ===========================================================================
762  * Update a hash value with the given input byte
763  * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
764  *    input characters, so that a running hash key can be computed from the
765  *    previous key instead of complete recalculation each time.
766  */
767 #define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
768 
769 
770 /* ===========================================================================
771  * Insert string str in the dictionary and set match_head to the previous head
772  * of the hash chain (the most recent string with same hash key). Return
773  * the previous length of the hash chain.
774  * If this file is compiled with -DFASTEST, the compression level is forced
775  * to 1, and no hash chains are maintained.
776  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
777  *    input characters and the first MIN_MATCH bytes of str are valid
778  *    (except for the last MIN_MATCH-1 bytes of the input file).
779  */
780 #ifdef FASTEST
781 #define INSERT_STRING(s, str, match_head) \
782    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
783     match_head = s->head[s->ins_h], \
784     s->head[s->ins_h] = (Pos)(str))
785 #else
786 #define INSERT_STRING(s, str, match_head) \
787    (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \
788     s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
789     s->head[s->ins_h] = (Pos)(str))
790 #endif
791 
792 /* ===========================================================================
793  * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
794  * prev[] will be initialized on the fly.
795  */
796 #define CLEAR_HASH(s) \
797     s->head[s->hash_size-1] = NIL; \
798     zmemzero((Bytef *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
799 
800 /* ========================================================================= */
801 #if 0
802 int ZEXPORT deflateInit_(z_streamp strm,
803 	int level, const char *version, int stream_size)
804 {
805     return deflateInit2_(strm, level, Z_DEFLATED, MAX_WBITS, DEF_MEM_LEVEL,
806 			 Z_DEFAULT_STRATEGY, version, stream_size);
807     /* To do: ignore strm->next_in if we use it as window */
808 }
809 #endif
810 
811 /* ========================================================================= */
deflateInit2_(z_streamp strm,int level,int method,int windowBits,int memLevel,int strategy,const char * vers,int stream_size)812 int ZEXPORT deflateInit2_(z_streamp strm,
813 	int level, int method, int windowBits, int memLevel, int strategy,
814 	const char *vers, int stream_size)
815 {
816     deflate_state *s;
817     int noheader = 0;
818     static const char* my_version = ZLIB_VERSION;
819 
820     ushf *overlay;
821     /* We overlay pending_buf and d_buf+l_buf. This works since the average
822      * output size for (length,distance) codes is <= 24 bits.
823      */
824 
825     if (vers == Z_NULL || vers[0] != my_version[0] ||
826         stream_size != sizeof(z_stream)) {
827 	return Z_VERSION_ERROR;
828     }
829     if (strm == Z_NULL) return Z_STREAM_ERROR;
830 
831     strm->msg = Z_NULL;
832 #ifndef NO_ZCFUNCS
833     if (strm->zalloc == Z_NULL) {
834 	strm->zalloc = zcalloc;
835 	strm->opaque = (voidpf)0;
836     }
837     if (strm->zfree == Z_NULL) strm->zfree = zcfree;
838 #endif
839 
840     if (level == Z_DEFAULT_COMPRESSION) level = 6;
841 #ifdef FASTEST
842     level = 1;
843 #endif
844 
845     if (windowBits < 0) { /* undocumented feature: suppress zlib header */
846         noheader = 1;
847         windowBits = -windowBits;
848     }
849     if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != Z_DEFLATED ||
850         windowBits < 9 || windowBits > 15 || level < 0 || level > 9 ||
851 	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
852         return Z_STREAM_ERROR;
853     }
854     s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
855     if (s == Z_NULL) return Z_MEM_ERROR;
856     strm->state = (struct internal_state FAR *)s;
857     s->strm = strm;
858 
859     s->noheader = noheader;
860     s->w_bits = windowBits;
861     s->w_size = 1 << s->w_bits;
862     s->w_mask = s->w_size - 1;
863 
864     s->hash_bits = memLevel + 7;
865     s->hash_size = 1 << s->hash_bits;
866     s->hash_mask = s->hash_size - 1;
867     s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
868 
869     s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
870     s->prev   = (Posf *)  ZALLOC(strm, s->w_size, sizeof(Pos));
871     s->head   = (Posf *)  ZALLOC(strm, s->hash_size, sizeof(Pos));
872 
873     s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
874 
875     overlay = (ushf *) ZALLOC(strm, s->lit_bufsize, sizeof(ush)+2);
876     s->pending_buf = (uchf *) overlay;
877     s->pending_buf_size = (ulg)s->lit_bufsize * (sizeof(ush)+2L);
878 
879     if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
880         s->pending_buf == Z_NULL) {
881         strm->msg = ERR_MSG(Z_MEM_ERROR);
882 	s->status = INIT_STATE;
883         deflateEnd (strm);
884         return Z_MEM_ERROR;
885     }
886     s->d_buf = overlay + s->lit_bufsize/sizeof(ush);
887     s->l_buf = s->pending_buf + (1+sizeof(ush))*s->lit_bufsize;
888 
889     s->level = level;
890     s->strategy = strategy;
891     s->method = (Byte)method;
892 
893     return deflateReset(strm);
894 }
895 
896 /* ========================================================================= */
897 #if 0
898 int ZEXPORT deflateSetDictionary (z_streamp strm,
899 	const Bytef *dictionary,
900 	uInt dictLength)
901 {
902     deflate_state *s;
903     uInt length = dictLength;
904     uInt n;
905     IPos hash_head = 0;
906 
907     if (strm == Z_NULL || strm->state == Z_NULL || dictionary == Z_NULL)
908         return Z_STREAM_ERROR;
909 
910     s = (deflate_state *)strm->state;
911     if (s->status != INIT_STATE) return Z_STREAM_ERROR;
912 
913     strm->adler = adler32(strm->adler, dictionary, dictLength);
914 
915     if (length < MIN_MATCH) return Z_OK;
916     if (length > MAX_DIST(s)) {
917 	length = MAX_DIST(s);
918 #ifndef USE_DICT_HEAD
919 	dictionary += dictLength - length; /* use the tail of the dictionary */
920 #endif
921     }
922     zmemcpy(s->window, dictionary, length);
923     s->strstart = length;
924     s->block_start = (long)length;
925 
926     /* Insert all strings in the hash table (except for the last two bytes).
927      * s->lookahead stays null, so s->ins_h will be recomputed at the next
928      * call of fill_window.
929      */
930     s->ins_h = s->window[0];
931     UPDATE_HASH(s, s->ins_h, s->window[1]);
932     for (n = 0; n <= length - MIN_MATCH; n++) {
933 	INSERT_STRING(s, n, hash_head);
934     }
935     if (hash_head) hash_head = 0;  /* to make compiler happy */
936     return Z_OK;
937 }
938 #endif
939 
940 /* ========================================================================= */
deflateReset(z_streamp strm)941 int ZEXPORT deflateReset (z_streamp strm)
942 {
943     deflate_state *s;
944 
945     if (strm == Z_NULL || strm->state == Z_NULL ||
946         strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
947 
948     strm->total_in = strm->total_out = 0;
949     strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
950     strm->data_type = Z_UNKNOWN;
951 
952     s = (deflate_state *)strm->state;
953     s->pending = 0;
954     s->pending_out = s->pending_buf;
955 
956     if (s->noheader < 0) {
957         s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */
958     }
959     s->status = s->noheader ? BUSY_STATE : INIT_STATE;
960     strm->adler = 1;
961     s->last_flush = Z_NO_FLUSH;
962 
963     _tr_init(s);
964     lm_init(s);
965 
966     return Z_OK;
967 }
968 
969 /* ========================================================================= */
970 #if 0
971 int ZEXPORT deflateParams(strm, level, strategy)
972     z_streamp strm;
973     int level;
974     int strategy;
975 {
976     deflate_state *s;
977     compress_func func;
978     int err = Z_OK;
979 
980     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
981     s = (deflate_state *)strm->state;
982 
983     if (level == Z_DEFAULT_COMPRESSION) {
984 	level = 6;
985     }
986     if (level < 0 || level > 9 || strategy < 0 || strategy > Z_HUFFMAN_ONLY) {
987 	return Z_STREAM_ERROR;
988     }
989     func = configuration_table[s->level].func;
990 
991     if (func != configuration_table[level].func && strm->total_in != 0) {
992 	/* Flush the last buffer: */
993 	err = deflate(strm, Z_PARTIAL_FLUSH);
994     }
995     if (s->level != level) {
996 	s->level = level;
997 	s->max_lazy_match   = configuration_table[level].max_lazy;
998 	s->good_match       = configuration_table[level].good_length;
999 	s->nice_match       = configuration_table[level].nice_length;
1000 	s->max_chain_length = configuration_table[level].max_chain;
1001     }
1002     s->strategy = strategy;
1003     return err;
1004 }
1005 #endif
1006 
1007 /* =========================================================================
1008  * Put a short in the pending buffer. The 16-bit value is put in MSB order.
1009  * IN assertion: the stream state is correct and there is enough room in
1010  * pending_buf.
1011  */
putShortMSB(deflate_state * s,uInt b)1012 local void putShortMSB (deflate_state *s, uInt b)
1013 {
1014     put_byte(s, (Byte)(b >> 8));
1015     put_byte(s, (Byte)(b & 0xff));
1016 }
1017 
1018 /* =========================================================================
1019  * Flush as much pending output as possible. All deflate() output goes
1020  * through this function so some applications may wish to modify it
1021  * to avoid allocating a large strm->next_out buffer and copying into it.
1022  * (See also read_buf()).
1023  */
flush_pending(z_streamp strm)1024 local void flush_pending(z_streamp strm)
1025 {
1026     deflate_state *s = (deflate_state *) strm->state;
1027     unsigned len = s->pending;
1028 
1029     if (len > strm->avail_out) len = strm->avail_out;
1030     if (len == 0) return;
1031 
1032     if (strm->next_out != Z_NULL) {
1033       zmemcpy(strm->next_out, s->pending_out, len);
1034       strm->next_out  += len;
1035     }
1036     s->pending_out  += len;
1037     strm->total_out += len;
1038     strm->avail_out  -= len;
1039     s->pending -= len;
1040     if (s->pending == 0) {
1041         s->pending_out = s->pending_buf;
1042     }
1043 }
1044 
1045 /* ========================================================================= */
deflate(z_streamp strm,int flush)1046 int ZEXPORT deflate (z_streamp strm, int flush)
1047 {
1048     int old_flush; /* value of flush param for previous deflate call */
1049     deflate_state *s;
1050 
1051     if (strm == Z_NULL || strm->state == Z_NULL ||
1052 	flush > Z_FINISH || flush < 0) {
1053         return Z_STREAM_ERROR;
1054     }
1055     s = (deflate_state *)strm->state;
1056 
1057     if ((strm->next_in == Z_NULL && strm->avail_in != 0) ||
1058 	(s->status == FINISH_STATE && flush != Z_FINISH)) {
1059         ERR_RETURN(strm, Z_STREAM_ERROR);
1060     }
1061     if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
1062 
1063     s->strm = strm; /* just in case */
1064     old_flush = s->last_flush;
1065     s->last_flush = flush;
1066 
1067     /* Write the zlib header */
1068     if (s->status == INIT_STATE) {
1069 
1070         uInt header = (Z_DEFLATED + ((s->w_bits-8)<<4)) << 8;
1071         uInt level_flags = (s->level-1) >> 1;
1072 
1073         if (level_flags > 3) level_flags = 3;
1074         header |= (level_flags << 6);
1075 	if (s->strstart != 0) header |= PRESET_DICT;
1076         header += 31 - (header % 31);
1077 
1078         s->status = BUSY_STATE;
1079         putShortMSB(s, header);
1080 
1081 	/* Save the adler32 of the preset dictionary: */
1082 	if (s->strstart != 0) {
1083 	    putShortMSB(s, (uInt)(strm->adler >> 16));
1084 	    putShortMSB(s, (uInt)(strm->adler & 0xffff));
1085 	}
1086 	strm->adler = 1L;
1087     }
1088 
1089     /* Flush as much pending output as possible */
1090     if (s->pending != 0) {
1091         flush_pending(strm);
1092         if (strm->avail_out == 0) {
1093 	    /* Since avail_out is 0, deflate will be called again with
1094 	     * more output space, but possibly with both pending and
1095 	     * avail_in equal to zero. There won't be anything to do,
1096 	     * but this is not an error situation so make sure we
1097 	     * return OK instead of BUF_ERROR at next call of deflate:
1098              */
1099 	    s->last_flush = -1;
1100 	    return Z_OK;
1101 	}
1102 
1103     /* Make sure there is something to do and avoid duplicate consecutive
1104      * flushes. For repeated and useless calls with Z_FINISH, we keep
1105      * returning Z_STREAM_END instead of Z_BUFF_ERROR.
1106      */
1107     } else if (strm->avail_in == 0 && flush <= old_flush &&
1108 	       flush != Z_FINISH) {
1109         ERR_RETURN(strm, Z_BUF_ERROR);
1110     }
1111 
1112     /* User must not provide more input after the first FINISH: */
1113     if (s->status == FINISH_STATE && strm->avail_in != 0) {
1114         ERR_RETURN(strm, Z_BUF_ERROR);
1115     }
1116 
1117     /* Start a new block or continue the current one.
1118      */
1119     if (strm->avail_in != 0 || s->lookahead != 0 ||
1120         (flush != Z_NO_FLUSH && s->status != FINISH_STATE)) {
1121         block_state bstate;
1122 
1123 	bstate = (*(configuration_table[s->level].func))(s, flush);
1124 
1125         if (bstate == finish_started || bstate == finish_done) {
1126             s->status = FINISH_STATE;
1127         }
1128         if (bstate == need_more || bstate == finish_started) {
1129 	    if (strm->avail_out == 0) {
1130 	        s->last_flush = -1; /* avoid BUF_ERROR next call, see above */
1131 	    }
1132 	    return Z_OK;
1133 	    /* If flush != Z_NO_FLUSH && avail_out == 0, the next call
1134 	     * of deflate should use the same flush parameter to make sure
1135 	     * that the flush is complete. So we don't have to output an
1136 	     * empty block here, this will be done at next call. This also
1137 	     * ensures that for a very small output buffer, we emit at most
1138 	     * one empty block.
1139 	     */
1140 	}
1141         if (bstate == block_done) {
1142             if (flush == Z_PARTIAL_FLUSH) {
1143                 _tr_align(s);
1144 	    } else if (flush == Z_PACKET_FLUSH) {
1145 		/* Output just the 3-bit `stored' block type value,
1146 		   but not a zero length. */
1147 		_tr_stored_type_only(s);
1148             } else { /* FULL_FLUSH or SYNC_FLUSH */
1149                 _tr_stored_block(s, (char*)0, 0L, 0);
1150                 /* For a full flush, this empty block will be recognized
1151                  * as a special marker by inflate_sync().
1152                  */
1153                 if (flush == Z_FULL_FLUSH) {
1154                     CLEAR_HASH(s);             /* forget history */
1155                 }
1156             }
1157             flush_pending(strm);
1158 	    if (strm->avail_out == 0) {
1159 	      s->last_flush = -1; /* avoid BUF_ERROR at next call, see above */
1160 	      return Z_OK;
1161 	    }
1162         }
1163     }
1164     Assert(strm->avail_out > 0, "bug2");
1165 
1166     if (flush != Z_FINISH) return Z_OK;
1167     if (s->noheader) return Z_STREAM_END;
1168 
1169     /* Write the zlib trailer (adler32) */
1170     putShortMSB(s, (uInt)(strm->adler >> 16));
1171     putShortMSB(s, (uInt)(strm->adler & 0xffff));
1172     flush_pending(strm);
1173     /* If avail_out is zero, the application will call deflate again
1174      * to flush the rest.
1175      */
1176     s->noheader = -1; /* write the trailer only once! */
1177     return s->pending != 0 ? Z_OK : Z_STREAM_END;
1178 }
1179 
1180 /* ========================================================================= */
deflateEnd(z_streamp strm)1181 int ZEXPORT deflateEnd (z_streamp strm)
1182 {
1183     int status;
1184     deflate_state *s;
1185 
1186     if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
1187     s = (deflate_state *) strm->state;
1188 
1189     status = s->status;
1190     if (status != INIT_STATE && status != BUSY_STATE &&
1191 	status != FINISH_STATE) {
1192       return Z_STREAM_ERROR;
1193     }
1194 
1195     /* Deallocate in reverse order of allocations: */
1196     TRY_FREE(strm, s->pending_buf);
1197     TRY_FREE(strm, s->head);
1198     TRY_FREE(strm, s->prev);
1199     TRY_FREE(strm, s->window);
1200 
1201     ZFREE(strm, s);
1202     strm->state = Z_NULL;
1203 
1204     return status == BUSY_STATE ? Z_DATA_ERROR : Z_OK;
1205 }
1206 
1207 /* =========================================================================
1208  * Copy the source state to the destination state.
1209  * To simplify the source, this is not supported for 16-bit MSDOS (which
1210  * doesn't have enough memory anyway to duplicate compression states).
1211  */
1212 #if 0
1213 int ZEXPORT deflateCopy (z_streamp dest, z_streamp source)
1214 {
1215 #ifdef MAXSEG_64K
1216     return Z_STREAM_ERROR;
1217 #else
1218     deflate_state *ds;
1219     deflate_state *ss;
1220     ushf *overlay;
1221 
1222 
1223     if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
1224         return Z_STREAM_ERROR;
1225     }
1226 
1227     ss = (deflate_state *)source->state;
1228 
1229     *dest = *source;
1230 
1231     ds = (deflate_state *) ZALLOC(dest, 1, sizeof(deflate_state));
1232     if (ds == Z_NULL) return Z_MEM_ERROR;
1233     dest->state = (void *) ds;
1234     *ds = *ss;
1235     ds->strm = dest;
1236 
1237     ds->window = (Bytef *) ZALLOC(dest, ds->w_size, 2*sizeof(Byte));
1238     ds->prev   = (Posf *)  ZALLOC(dest, ds->w_size, sizeof(Pos));
1239     ds->head   = (Posf *)  ZALLOC(dest, ds->hash_size, sizeof(Pos));
1240     overlay = (ushf *) ZALLOC(dest, ds->lit_bufsize, sizeof(ush)+2);
1241     ds->pending_buf = (uchf *) overlay;
1242 
1243     if (ds->window == Z_NULL || ds->prev == Z_NULL || ds->head == Z_NULL ||
1244         ds->pending_buf == Z_NULL) {
1245 	ds->status = INIT_STATE;
1246         deflateEnd (dest);
1247         return Z_MEM_ERROR;
1248     }
1249     /* following zmemcpy do not work for 16-bit MSDOS */
1250     zmemcpy(ds->window, ss->window, ds->w_size * 2 * sizeof(Byte));
1251     zmemcpy(ds->prev, ss->prev, ds->w_size * sizeof(Pos));
1252     zmemcpy(ds->head, ss->head, ds->hash_size * sizeof(Pos));
1253     zmemcpy(ds->pending_buf, ss->pending_buf, (uInt)ds->pending_buf_size);
1254 
1255     ds->pending_out = ds->pending_buf + (ss->pending_out - ss->pending_buf);
1256     ds->d_buf = overlay + ds->lit_bufsize/sizeof(ush);
1257     ds->l_buf = ds->pending_buf + (1+sizeof(ush))*ds->lit_bufsize;
1258 
1259     ds->l_desc.dyn_tree = ds->dyn_ltree;
1260     ds->d_desc.dyn_tree = ds->dyn_dtree;
1261     ds->bl_desc.dyn_tree = ds->bl_tree;
1262 
1263     return Z_OK;
1264 #endif
1265 }
1266 #endif
1267 
1268 /* ===========================================================================
1269  * Return the number of bytes of output which are immediately available
1270  * for output from the decompressor.
1271  */
1272 #if 0
1273 int deflateOutputPending (z_streamp strm)
1274 {
1275     if (strm == Z_NULL || strm->state == Z_NULL) return 0;
1276 
1277     return ((deflate_state *)(strm->state))->pending;
1278 }
1279 #endif
1280 
1281 /* ===========================================================================
1282  * Read a new buffer from the current input stream, update the adler32
1283  * and total number of bytes read.  All deflate() input goes through
1284  * this function so some applications may wish to modify it to avoid
1285  * allocating a large strm->next_in buffer and copying from it.
1286  * (See also flush_pending()).
1287  */
read_buf(z_streamp strm,Bytef * buf,unsigned size)1288 local int read_buf(z_streamp strm,
1289 	Bytef *buf,
1290 	unsigned size)
1291 {
1292     unsigned len = strm->avail_in;
1293 
1294     if (len > size) len = size;
1295     if (len == 0) return 0;
1296 
1297     strm->avail_in  -= len;
1298 
1299     if (!((deflate_state *)(strm->state))->noheader) {
1300         strm->adler = adler32(strm->adler, strm->next_in, len);
1301     }
1302     zmemcpy(buf, strm->next_in, len);
1303     strm->next_in  += len;
1304     strm->total_in += len;
1305 
1306     return (int)len;
1307 }
1308 
1309 /* ===========================================================================
1310  * Initialize the "longest match" routines for a new zlib stream
1311  */
lm_init(deflate_state * s)1312 local void lm_init (deflate_state *s)
1313 {
1314     s->window_size = (ulg)2L*s->w_size;
1315 
1316     CLEAR_HASH(s);
1317 
1318     /* Set the default configuration parameters:
1319      */
1320     s->max_lazy_match   = configuration_table[s->level].max_lazy;
1321     s->good_match       = configuration_table[s->level].good_length;
1322     s->nice_match       = configuration_table[s->level].nice_length;
1323     s->max_chain_length = configuration_table[s->level].max_chain;
1324 
1325     s->strstart = 0;
1326     s->block_start = 0L;
1327     s->lookahead = 0;
1328     s->match_length = s->prev_length = MIN_MATCH-1;
1329     s->match_available = 0;
1330     s->ins_h = 0;
1331 #ifdef ASMV
1332     match_init(); /* initialize the asm code */
1333 #endif
1334 }
1335 
1336 /* ===========================================================================
1337  * Set match_start to the longest match starting at the given string and
1338  * return its length. Matches shorter or equal to prev_length are discarded,
1339  * in which case the result is equal to prev_length and match_start is
1340  * garbage.
1341  * IN assertions: cur_match is the head of the hash chain for the current
1342  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
1343  * OUT assertion: the match length is not greater than s->lookahead.
1344  */
1345 #ifndef ASMV
1346 /* For 80x86 and 680x0, an optimized version will be provided in match.asm or
1347  * match.S. The code will be functionally equivalent.
1348  */
1349 #ifndef FASTEST
longest_match(deflate_state * s,IPos cur_match)1350 local uInt longest_match(deflate_state *s,
1351 	IPos cur_match)	/* current match */
1352 {
1353     unsigned chain_length = s->max_chain_length;/* max hash chain length */
1354     Bytef *scan = s->window + s->strstart; /* current string */
1355     Bytef *match;                       /* matched string */
1356     int len;                           /* length of current match */
1357     int best_len = s->prev_length;              /* best match length so far */
1358     int nice_match = s->nice_match;             /* stop if match long enough */
1359     IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
1360         s->strstart - (IPos)MAX_DIST(s) : NIL;
1361     /* Stop when cur_match becomes <= limit. To simplify the code,
1362      * we prevent matches with the string of window index 0.
1363      */
1364     Posf *prev = s->prev;
1365     uInt wmask = s->w_mask;
1366 
1367 #ifdef UNALIGNED_OK
1368     /* Compare two bytes at a time. Note: this is not always beneficial.
1369      * Try with and without -DUNALIGNED_OK to check.
1370      */
1371     Bytef *strend = s->window + s->strstart + MAX_MATCH - 1;
1372     ush scan_start = *(ushf*)scan;
1373     ush scan_end   = *(ushf*)(scan+best_len-1);
1374 #else
1375     Bytef *strend = s->window + s->strstart + MAX_MATCH;
1376     Byte scan_end1  = scan[best_len-1];
1377     Byte scan_end   = scan[best_len];
1378 #endif
1379 
1380     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1381      * It is easy to get rid of this optimization if necessary.
1382      */
1383     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1384 
1385     /* Do not waste too much time if we already have a good match: */
1386     if (s->prev_length >= s->good_match) {
1387         chain_length >>= 2;
1388     }
1389     /* Do not look for matches beyond the end of the input. This is necessary
1390      * to make deflate deterministic.
1391      */
1392     if ((uInt)nice_match > s->lookahead) nice_match = s->lookahead;
1393 
1394     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1395 
1396     do {
1397         Assert(cur_match < s->strstart, "no future");
1398         match = s->window + cur_match;
1399 
1400         /* Skip to next match if the match length cannot increase
1401          * or if the match length is less than 2:
1402          */
1403 #if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
1404         /* This code assumes sizeof(unsigned short) == 2. Do not use
1405          * UNALIGNED_OK if your compiler uses a different size.
1406          */
1407         if (*(ushf*)(match+best_len-1) != scan_end ||
1408             *(ushf*)match != scan_start) continue;
1409 
1410         /* It is not necessary to compare scan[2] and match[2] since they are
1411          * always equal when the other bytes match, given that the hash keys
1412          * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
1413          * strstart+3, +5, ... up to strstart+257. We check for insufficient
1414          * lookahead only every 4th comparison; the 128th check will be made
1415          * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
1416          * necessary to put more guard bytes at the end of the window, or
1417          * to check more often for insufficient lookahead.
1418          */
1419         Assert(scan[2] == match[2], "scan[2]?");
1420         scan++, match++;
1421         do {
1422         } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1423                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1424                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1425                  *(ushf*)(scan+=2) == *(ushf*)(match+=2) &&
1426                  scan < strend);
1427         /* The funny "do {}" generates better code on most compilers */
1428 
1429         /* Here, scan <= window+strstart+257 */
1430         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1431         if (*scan == *match) scan++;
1432 
1433         len = (MAX_MATCH - 1) - (int)(strend-scan);
1434         scan = strend - (MAX_MATCH-1);
1435 
1436 #else /* UNALIGNED_OK */
1437 
1438         if (match[best_len]   != scan_end  ||
1439             match[best_len-1] != scan_end1 ||
1440             *match            != *scan     ||
1441             *++match          != scan[1])      continue;
1442 
1443         /* The check at best_len-1 can be removed because it will be made
1444          * again later. (This heuristic is not always a win.)
1445          * It is not necessary to compare scan[2] and match[2] since they
1446          * are always equal when the other bytes match, given that
1447          * the hash keys are equal and that HASH_BITS >= 8.
1448          */
1449         scan += 2, match++;
1450         Assert(*scan == *match, "match[2]?");
1451 
1452         /* We check for insufficient lookahead only every 8th comparison;
1453          * the 256th check will be made at strstart+258.
1454          */
1455         do {
1456         } while (*++scan == *++match && *++scan == *++match &&
1457                  *++scan == *++match && *++scan == *++match &&
1458                  *++scan == *++match && *++scan == *++match &&
1459                  *++scan == *++match && *++scan == *++match &&
1460                  scan < strend);
1461 
1462         Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1463 
1464         len = MAX_MATCH - (int)(strend - scan);
1465         scan = strend - MAX_MATCH;
1466 
1467 #endif /* UNALIGNED_OK */
1468 
1469         if (len > best_len) {
1470             s->match_start = cur_match;
1471             best_len = len;
1472             if (len >= nice_match) break;
1473 #ifdef UNALIGNED_OK
1474             scan_end = *(ushf*)(scan+best_len-1);
1475 #else
1476             scan_end1  = scan[best_len-1];
1477             scan_end   = scan[best_len];
1478 #endif
1479         }
1480     } while ((cur_match = prev[cur_match & wmask]) > limit
1481              && --chain_length != 0);
1482 
1483     if ((uInt)best_len <= s->lookahead) return (uInt)best_len;
1484     return s->lookahead;
1485 }
1486 
1487 #else /* FASTEST */
1488 /* ---------------------------------------------------------------------------
1489  * Optimized version for level == 1 only
1490  */
longest_match(s,cur_match)1491 local uInt longest_match(s, cur_match)
1492     deflate_state *s;
1493     IPos cur_match;                             /* current match */
1494 {
1495     register Bytef *scan = s->window + s->strstart; /* current string */
1496     register Bytef *match;                       /* matched string */
1497     register int len;                           /* length of current match */
1498     register Bytef *strend = s->window + s->strstart + MAX_MATCH;
1499 
1500     /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
1501      * It is easy to get rid of this optimization if necessary.
1502      */
1503     Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
1504 
1505     Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
1506 
1507     Assert(cur_match < s->strstart, "no future");
1508 
1509     match = s->window + cur_match;
1510 
1511     /* Return failure if the match length is less than 2:
1512      */
1513     if (match[0] != scan[0] || match[1] != scan[1]) return MIN_MATCH-1;
1514 
1515     /* The check at best_len-1 can be removed because it will be made
1516      * again later. (This heuristic is not always a win.)
1517      * It is not necessary to compare scan[2] and match[2] since they
1518      * are always equal when the other bytes match, given that
1519      * the hash keys are equal and that HASH_BITS >= 8.
1520      */
1521     scan += 2, match += 2;
1522     Assert(*scan == *match, "match[2]?");
1523 
1524     /* We check for insufficient lookahead only every 8th comparison;
1525      * the 256th check will be made at strstart+258.
1526      */
1527     do {
1528     } while (*++scan == *++match && *++scan == *++match &&
1529 	     *++scan == *++match && *++scan == *++match &&
1530 	     *++scan == *++match && *++scan == *++match &&
1531 	     *++scan == *++match && *++scan == *++match &&
1532 	     scan < strend);
1533 
1534     Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
1535 
1536     len = MAX_MATCH - (int)(strend - scan);
1537 
1538     if (len < MIN_MATCH) return MIN_MATCH - 1;
1539 
1540     s->match_start = cur_match;
1541     return len <= s->lookahead ? len : s->lookahead;
1542 }
1543 #endif /* FASTEST */
1544 #endif /* ASMV */
1545 
1546 #ifdef DEBUG_ZLIB
1547 /* ===========================================================================
1548  * Check that the match at match_start is indeed a match.
1549  */
check_match(s,start,match,length)1550 local void check_match(s, start, match, length)
1551     deflate_state *s;
1552     IPos start, match;
1553     int length;
1554 {
1555     /* check that the match is indeed a match */
1556     if (zmemcmp(s->window + match,
1557                 s->window + start, length) != EQUAL) {
1558         fprintf(stderr, " start %u, match %u, length %d\n",
1559 		start, match, length);
1560         do {
1561 	    fprintf(stderr, "%c%c", s->window[match++], s->window[start++]);
1562 	} while (--length != 0);
1563         z_error("invalid match");
1564     }
1565     if (z_verbose > 1) {
1566         fprintf(stderr,"\\[%d,%d]", start-match, length);
1567         do { putc(s->window[start++], stderr); } while (--length != 0);
1568     }
1569 }
1570 #else
1571 #  define check_match(s, start, match, length)
1572 #endif
1573 
1574 /* ===========================================================================
1575  * Fill the window when the lookahead becomes insufficient.
1576  * Updates strstart and lookahead.
1577  *
1578  * IN assertion: lookahead < MIN_LOOKAHEAD
1579  * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
1580  *    At least one byte has been read, or avail_in == 0; reads are
1581  *    performed for at least two bytes (required for the zip translate_eol
1582  *    option -- not supported here).
1583  */
fill_window(deflate_state * s)1584 local void fill_window(deflate_state *s)
1585 {
1586     unsigned n, m;
1587     Posf *p;
1588     unsigned more;    /* Amount of free space at the end of the window. */
1589     uInt wsize = s->w_size;
1590 
1591     do {
1592         more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
1593 
1594         /* Deal with !@#$% 64K limit: */
1595         if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
1596             more = wsize;
1597 
1598         } else if (more == (unsigned)(-1)) {
1599             /* Very unlikely, but possible on 16 bit machine if strstart == 0
1600              * and lookahead == 1 (input done one byte at time)
1601              */
1602             more--;
1603 
1604         /* If the window is almost full and there is insufficient lookahead,
1605          * move the upper half to the lower one to make room in the upper half.
1606          */
1607         } else if (s->strstart >= wsize+MAX_DIST(s)) {
1608 
1609             zmemcpy(s->window, s->window+wsize, (unsigned)wsize);
1610             s->match_start -= wsize;
1611             s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
1612             s->block_start -= (long) wsize;
1613 
1614             /* Slide the hash table (could be avoided with 32 bit values
1615                at the expense of memory usage). We slide even when level == 0
1616                to keep the hash table consistent if we switch back to level > 0
1617                later. (Using level 0 permanently is not an optimal usage of
1618                zlib, so we don't care about this pathological case.)
1619              */
1620 	    n = s->hash_size;
1621 	    p = &s->head[n];
1622 	    do {
1623 		m = *--p;
1624 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
1625 	    } while (--n);
1626 
1627 	    n = wsize;
1628 #ifndef FASTEST
1629 	    p = &s->prev[n];
1630 	    do {
1631 		m = *--p;
1632 		*p = (Pos)(m >= wsize ? m-wsize : NIL);
1633 		/* If n is not on any hash chain, prev[n] is garbage but
1634 		 * its value will never be used.
1635 		 */
1636 	    } while (--n);
1637 #endif
1638             more += wsize;
1639         }
1640         if (s->strm->avail_in == 0) return;
1641 
1642         /* If there was no sliding:
1643          *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
1644          *    more == window_size - lookahead - strstart
1645          * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
1646          * => more >= window_size - 2*WSIZE + 2
1647          * In the BIG_MEM or MMAP case (not yet supported),
1648          *   window_size == input_size + MIN_LOOKAHEAD  &&
1649          *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
1650          * Otherwise, window_size == 2*WSIZE so more >= 2.
1651          * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
1652          */
1653         Assert(more >= 2, "more < 2");
1654 
1655         n = read_buf(s->strm, s->window + s->strstart + s->lookahead, more);
1656         s->lookahead += n;
1657 
1658         /* Initialize the hash value now that we have some input: */
1659         if (s->lookahead >= MIN_MATCH) {
1660             s->ins_h = s->window[s->strstart];
1661             UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1662 #if MIN_MATCH != 3
1663             Call UPDATE_HASH() MIN_MATCH-3 more times
1664 #endif
1665         }
1666         /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
1667          * but this is not important since only literal bytes will be emitted.
1668          */
1669 
1670     } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
1671 }
1672 
1673 /* ===========================================================================
1674  * Flush the current block, with given end-of-file flag.
1675  * IN assertion: strstart is set to the end of the current match.
1676  */
1677 #define FLUSH_BLOCK_ONLY(s, eof) { \
1678    _tr_flush_block(s, (s->block_start >= 0L ? \
1679                    (charf *)&s->window[(unsigned)s->block_start] : \
1680                    (charf *)Z_NULL), \
1681 		(ulg)((long)s->strstart - s->block_start), \
1682 		(eof)); \
1683    s->block_start = s->strstart; \
1684    flush_pending(s->strm); \
1685    Tracev((stderr,"[FLUSH]")); \
1686 }
1687 
1688 /* Same but force premature exit if necessary. */
1689 #define FLUSH_BLOCK(s, eof) { \
1690    FLUSH_BLOCK_ONLY(s, eof); \
1691    if (s->strm->avail_out == 0) return (eof) ? finish_started : need_more; \
1692 }
1693 
1694 /* ===========================================================================
1695  * Copy without compression as much as possible from the input stream, return
1696  * the current block state.
1697  * This function does not insert new strings in the dictionary since
1698  * uncompressible data is probably not useful. This function is used
1699  * only for the level=0 compression option.
1700  * NOTE: this function should be optimized to avoid extra copying from
1701  * window to pending_buf.
1702  */
deflate_stored(deflate_state * s,int flush)1703 local block_state deflate_stored(deflate_state *s, int flush)
1704 {
1705     /* Stored blocks are limited to 0xffff bytes, pending_buf is limited
1706      * to pending_buf_size, and each stored block has a 5 byte header:
1707      */
1708     ulg max_block_size = 0xffff;
1709     ulg max_start;
1710 
1711     if (max_block_size > s->pending_buf_size - 5) {
1712         max_block_size = s->pending_buf_size - 5;
1713     }
1714 
1715     /* Copy as much as possible from input to output: */
1716     for (;;) {
1717         /* Fill the window as much as possible: */
1718         if (s->lookahead <= 1) {
1719 
1720             Assert(s->strstart < s->w_size+MAX_DIST(s) ||
1721 		   s->block_start >= (long)s->w_size, "slide too late");
1722 
1723             fill_window(s);
1724             if (s->lookahead == 0 && flush == Z_NO_FLUSH) return need_more;
1725 
1726             if (s->lookahead == 0) break; /* flush the current block */
1727         }
1728 	Assert(s->block_start >= 0L, "block gone");
1729 
1730 	s->strstart += s->lookahead;
1731 	s->lookahead = 0;
1732 
1733 	/* Emit a stored block if pending_buf will be full: */
1734  	max_start = s->block_start + max_block_size;
1735         if (s->strstart == 0 || (ulg)s->strstart >= max_start) {
1736 	    /* strstart == 0 is possible when wraparound on 16-bit machine */
1737 	    s->lookahead = (uInt)(s->strstart - max_start);
1738 	    s->strstart = (uInt)max_start;
1739             FLUSH_BLOCK(s, 0);
1740 	}
1741 	/* Flush if we may have to slide, otherwise block_start may become
1742          * negative and the data will be gone:
1743          */
1744         if (s->strstart - (uInt)s->block_start >= MAX_DIST(s)) {
1745             FLUSH_BLOCK(s, 0);
1746 	}
1747     }
1748     FLUSH_BLOCK(s, flush == Z_FINISH);
1749     return flush == Z_FINISH ? finish_done : block_done;
1750 }
1751 
1752 /* ===========================================================================
1753  * Compress as much as possible from the input stream, return the current
1754  * block state.
1755  * This function does not perform lazy evaluation of matches and inserts
1756  * new strings in the dictionary only for unmatched strings or for short
1757  * matches. It is used only for the fast compression options.
1758  */
deflate_fast(deflate_state * s,int flush)1759 local block_state deflate_fast(deflate_state *s, int flush)
1760 {
1761     IPos hash_head = NIL; /* head of the hash chain */
1762     int bflush;           /* set if current block must be flushed */
1763 
1764     for (;;) {
1765         /* Make sure that we always have enough lookahead, except
1766          * at the end of the input file. We need MAX_MATCH bytes
1767          * for the next match, plus MIN_MATCH bytes to insert the
1768          * string following the next match.
1769          */
1770         if (s->lookahead < MIN_LOOKAHEAD) {
1771             fill_window(s);
1772             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1773 	        return need_more;
1774 	    }
1775             if (s->lookahead == 0) break; /* flush the current block */
1776         }
1777 
1778         /* Insert the string window[strstart .. strstart+2] in the
1779          * dictionary, and set hash_head to the head of the hash chain:
1780          */
1781         if (s->lookahead >= MIN_MATCH) {
1782             INSERT_STRING(s, s->strstart, hash_head);
1783         }
1784 
1785         /* Find the longest match, discarding those <= prev_length.
1786          * At this point we have always match_length < MIN_MATCH
1787          */
1788         if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
1789             /* To simplify the code, we prevent matches with the string
1790              * of window index 0 (in particular we have to avoid a match
1791              * of the string with itself at the start of the input file).
1792              */
1793             if (s->strategy != Z_HUFFMAN_ONLY) {
1794                 s->match_length = longest_match (s, hash_head);
1795             }
1796             /* longest_match() sets match_start */
1797         }
1798         if (s->match_length >= MIN_MATCH) {
1799             check_match(s, s->strstart, s->match_start, s->match_length);
1800 
1801             _tr_tally_dist(s, s->strstart - s->match_start,
1802                            s->match_length - MIN_MATCH, bflush);
1803 
1804             s->lookahead -= s->match_length;
1805 
1806             /* Insert new strings in the hash table only if the match length
1807              * is not too large. This saves time but degrades compression.
1808              */
1809 #ifndef FASTEST
1810             if (s->match_length <= s->max_insert_length &&
1811                 s->lookahead >= MIN_MATCH) {
1812                 s->match_length--; /* string at strstart already in hash table */
1813                 do {
1814                     s->strstart++;
1815                     INSERT_STRING(s, s->strstart, hash_head);
1816                     /* strstart never exceeds WSIZE-MAX_MATCH, so there are
1817                      * always MIN_MATCH bytes ahead.
1818                      */
1819                 } while (--s->match_length != 0);
1820                 s->strstart++;
1821             } else
1822 #endif
1823 	    {
1824                 s->strstart += s->match_length;
1825                 s->match_length = 0;
1826                 s->ins_h = s->window[s->strstart];
1827                 UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
1828 #if MIN_MATCH != 3
1829                 Call UPDATE_HASH() MIN_MATCH-3 more times
1830 #endif
1831                 /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not
1832                  * matter since it will be recomputed at next deflate call.
1833                  */
1834             }
1835         } else {
1836             /* No match, output a literal byte */
1837             Tracevv((stderr,"%c", s->window[s->strstart]));
1838             _tr_tally_lit (s, s->window[s->strstart], bflush);
1839             s->lookahead--;
1840             s->strstart++;
1841         }
1842         if (bflush) FLUSH_BLOCK(s, 0);
1843     }
1844     FLUSH_BLOCK(s, flush == Z_FINISH);
1845     return flush == Z_FINISH ? finish_done : block_done;
1846 }
1847 
1848 /* ===========================================================================
1849  * Same as above, but achieves better compression. We use a lazy
1850  * evaluation for matches: a match is finally adopted only if there is
1851  * no better match at the next window position.
1852  */
deflate_slow(deflate_state * s,int flush)1853 local block_state deflate_slow(deflate_state *s, int flush)
1854 {
1855     IPos hash_head = NIL;    /* head of hash chain */
1856     int bflush;              /* set if current block must be flushed */
1857 
1858     /* Process the input block. */
1859     for (;;) {
1860         /* Make sure that we always have enough lookahead, except
1861          * at the end of the input file. We need MAX_MATCH bytes
1862          * for the next match, plus MIN_MATCH bytes to insert the
1863          * string following the next match.
1864          */
1865         if (s->lookahead < MIN_LOOKAHEAD) {
1866             fill_window(s);
1867             if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) {
1868 	        return need_more;
1869 	    }
1870             if (s->lookahead == 0) break; /* flush the current block */
1871         }
1872 
1873         /* Insert the string window[strstart .. strstart+2] in the
1874          * dictionary, and set hash_head to the head of the hash chain:
1875          */
1876         if (s->lookahead >= MIN_MATCH) {
1877             INSERT_STRING(s, s->strstart, hash_head);
1878         }
1879 
1880         /* Find the longest match, discarding those <= prev_length.
1881          */
1882         s->prev_length = s->match_length, s->prev_match = s->match_start;
1883         s->match_length = MIN_MATCH-1;
1884 
1885         if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
1886             s->strstart - hash_head <= MAX_DIST(s)) {
1887             /* To simplify the code, we prevent matches with the string
1888              * of window index 0 (in particular we have to avoid a match
1889              * of the string with itself at the start of the input file).
1890              */
1891             if (s->strategy != Z_HUFFMAN_ONLY) {
1892                 s->match_length = longest_match (s, hash_head);
1893             }
1894             /* longest_match() sets match_start */
1895 
1896             if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
1897                  (s->match_length == MIN_MATCH &&
1898                   s->strstart - s->match_start > TOO_FAR))) {
1899 
1900                 /* If prev_match is also MIN_MATCH, match_start is garbage
1901                  * but we will ignore the current match anyway.
1902                  */
1903                 s->match_length = MIN_MATCH-1;
1904             }
1905         }
1906         /* If there was a match at the previous step and the current
1907          * match is not better, output the previous match:
1908          */
1909         if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
1910             uInt max_insert = s->strstart + s->lookahead - MIN_MATCH;
1911             /* Do not insert strings in hash table beyond this. */
1912 
1913             check_match(s, s->strstart-1, s->prev_match, s->prev_length);
1914 
1915             _tr_tally_dist(s, s->strstart -1 - s->prev_match,
1916 			   s->prev_length - MIN_MATCH, bflush);
1917 
1918             /* Insert in hash table all strings up to the end of the match.
1919              * strstart-1 and strstart are already inserted. If there is not
1920              * enough lookahead, the last two strings are not inserted in
1921              * the hash table.
1922              */
1923             s->lookahead -= s->prev_length-1;
1924             s->prev_length -= 2;
1925             do {
1926                 if (++s->strstart <= max_insert) {
1927                     INSERT_STRING(s, s->strstart, hash_head);
1928                 }
1929             } while (--s->prev_length != 0);
1930             s->match_available = 0;
1931             s->match_length = MIN_MATCH-1;
1932             s->strstart++;
1933 
1934             if (bflush) FLUSH_BLOCK(s, 0);
1935 
1936         } else if (s->match_available) {
1937             /* If there was no match at the previous position, output a
1938              * single literal. If there was a match but the current match
1939              * is longer, truncate the previous match to a single literal.
1940              */
1941             Tracevv((stderr,"%c", s->window[s->strstart-1]));
1942 	    _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1943 	    if (bflush) {
1944                 FLUSH_BLOCK_ONLY(s, 0);
1945             }
1946             s->strstart++;
1947             s->lookahead--;
1948             if (s->strm->avail_out == 0) return need_more;
1949         } else {
1950             /* There is no previous match to compare with, wait for
1951              * the next step to decide.
1952              */
1953             s->match_available = 1;
1954             s->strstart++;
1955             s->lookahead--;
1956         }
1957     }
1958     Assert (flush != Z_NO_FLUSH, "no flush?");
1959     if (s->match_available) {
1960         Tracevv((stderr,"%c", s->window[s->strstart-1]));
1961         _tr_tally_lit(s, s->window[s->strstart-1], bflush);
1962         s->match_available = 0;
1963     }
1964     FLUSH_BLOCK(s, flush == Z_FINISH);
1965     return flush == Z_FINISH ? finish_done : block_done;
1966 }
1967 /* --- deflate.c */
1968 
1969 /* +++ trees.c */
1970 
1971 /* trees.c -- output deflated data using Huffman coding
1972  * Copyright (C) 1995-2002 Jean-loup Gailly
1973  * For conditions of distribution and use, see copyright notice in zlib.h
1974  */
1975 
1976 /*
1977  *  ALGORITHM
1978  *
1979  *      The "deflation" process uses several Huffman trees. The more
1980  *      common source values are represented by shorter bit sequences.
1981  *
1982  *      Each code tree is stored in a compressed form which is itself
1983  * a Huffman encoding of the lengths of all the code strings (in
1984  * ascending order by source values).  The actual code strings are
1985  * reconstructed from the lengths in the inflate process, as described
1986  * in the deflate specification.
1987  *
1988  *  REFERENCES
1989  *
1990  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
1991  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
1992  *
1993  *      Storer, James A.
1994  *          Data Compression:  Methods and Theory, pp. 49-50.
1995  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
1996  *
1997  *      Sedgewick, R.
1998  *          Algorithms, p290.
1999  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
2000  */
2001 
2002 /* @(#) $Id: zlib.c,v 1.39 2024/07/04 01:10:17 rin Exp $ */
2003 
2004 /* #define GEN_TREES_H */
2005 
2006 /* #include "deflate.h" */
2007 
2008 #ifdef DEBUG_ZLIB
2009 #  include <ctype.h>
2010 #endif
2011 
2012 /* ===========================================================================
2013  * Constants
2014  */
2015 
2016 #define MAX_BL_BITS 7
2017 /* Bit length codes must not exceed MAX_BL_BITS bits */
2018 
2019 #define END_BLOCK 256
2020 /* end of block literal code */
2021 
2022 #define REP_3_6      16
2023 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
2024 
2025 #define REPZ_3_10    17
2026 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
2027 
2028 #define REPZ_11_138  18
2029 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
2030 
2031 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
2032    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
2033 
2034 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
2035    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
2036 
2037 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
2038    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
2039 
2040 local const uch bl_order[BL_CODES]
2041    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
2042 /* The lengths of the bit length codes are sent in order of decreasing
2043  * probability, to avoid transmitting the lengths for unused bit length codes.
2044  */
2045 
2046 #define Buf_size (8 * 2*sizeof(char))
2047 /* Number of bits used within bi_buf. (bi_buf might be implemented on
2048  * more than 16 bits on some systems.)
2049  */
2050 
2051 /* ===========================================================================
2052  * Local data. These are initialized only once.
2053  */
2054 
2055 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
2056 
2057 #if defined(GEN_TREES_H) || !defined(STDC)
2058 /* non ANSI compilers may not accept trees.h */
2059 
2060 local ct_data static_ltree[L_CODES+2];
2061 /* The static literal tree. Since the bit lengths are imposed, there is no
2062  * need for the L_CODES extra codes used during heap construction. However
2063  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
2064  * below).
2065  */
2066 
2067 local ct_data static_dtree[D_CODES];
2068 /* The static distance tree. (Actually a trivial tree since all codes use
2069  * 5 bits.)
2070  */
2071 
2072 uch _dist_code[DIST_CODE_LEN];
2073 /* Distance codes. The first 256 values correspond to the distances
2074  * 3 .. 258, the last 256 values correspond to the top 8 bits of
2075  * the 15 bit distances.
2076  */
2077 
2078 uch _length_code[MAX_MATCH-MIN_MATCH+1];
2079 /* length code for each normalized match length (0 == MIN_MATCH) */
2080 
2081 local int base_length[LENGTH_CODES];
2082 /* First normalized length for each code (0 = MIN_MATCH) */
2083 
2084 local int base_dist[D_CODES];
2085 /* First normalized distance for each code (0 = distance of 1) */
2086 
2087 #else
2088 /* +++ trees.h */
2089 
2090 /* header created automatically with -DGEN_TREES_H */
2091 
2092 local const ct_data static_ltree[L_CODES+2] = {
2093 {{ 12},{  8}}, {{140},{  8}}, {{ 76},{  8}}, {{204},{  8}}, {{ 44},{  8}},
2094 {{172},{  8}}, {{108},{  8}}, {{236},{  8}}, {{ 28},{  8}}, {{156},{  8}},
2095 {{ 92},{  8}}, {{220},{  8}}, {{ 60},{  8}}, {{188},{  8}}, {{124},{  8}},
2096 {{252},{  8}}, {{  2},{  8}}, {{130},{  8}}, {{ 66},{  8}}, {{194},{  8}},
2097 {{ 34},{  8}}, {{162},{  8}}, {{ 98},{  8}}, {{226},{  8}}, {{ 18},{  8}},
2098 {{146},{  8}}, {{ 82},{  8}}, {{210},{  8}}, {{ 50},{  8}}, {{178},{  8}},
2099 {{114},{  8}}, {{242},{  8}}, {{ 10},{  8}}, {{138},{  8}}, {{ 74},{  8}},
2100 {{202},{  8}}, {{ 42},{  8}}, {{170},{  8}}, {{106},{  8}}, {{234},{  8}},
2101 {{ 26},{  8}}, {{154},{  8}}, {{ 90},{  8}}, {{218},{  8}}, {{ 58},{  8}},
2102 {{186},{  8}}, {{122},{  8}}, {{250},{  8}}, {{  6},{  8}}, {{134},{  8}},
2103 {{ 70},{  8}}, {{198},{  8}}, {{ 38},{  8}}, {{166},{  8}}, {{102},{  8}},
2104 {{230},{  8}}, {{ 22},{  8}}, {{150},{  8}}, {{ 86},{  8}}, {{214},{  8}},
2105 {{ 54},{  8}}, {{182},{  8}}, {{118},{  8}}, {{246},{  8}}, {{ 14},{  8}},
2106 {{142},{  8}}, {{ 78},{  8}}, {{206},{  8}}, {{ 46},{  8}}, {{174},{  8}},
2107 {{110},{  8}}, {{238},{  8}}, {{ 30},{  8}}, {{158},{  8}}, {{ 94},{  8}},
2108 {{222},{  8}}, {{ 62},{  8}}, {{190},{  8}}, {{126},{  8}}, {{254},{  8}},
2109 {{  1},{  8}}, {{129},{  8}}, {{ 65},{  8}}, {{193},{  8}}, {{ 33},{  8}},
2110 {{161},{  8}}, {{ 97},{  8}}, {{225},{  8}}, {{ 17},{  8}}, {{145},{  8}},
2111 {{ 81},{  8}}, {{209},{  8}}, {{ 49},{  8}}, {{177},{  8}}, {{113},{  8}},
2112 {{241},{  8}}, {{  9},{  8}}, {{137},{  8}}, {{ 73},{  8}}, {{201},{  8}},
2113 {{ 41},{  8}}, {{169},{  8}}, {{105},{  8}}, {{233},{  8}}, {{ 25},{  8}},
2114 {{153},{  8}}, {{ 89},{  8}}, {{217},{  8}}, {{ 57},{  8}}, {{185},{  8}},
2115 {{121},{  8}}, {{249},{  8}}, {{  5},{  8}}, {{133},{  8}}, {{ 69},{  8}},
2116 {{197},{  8}}, {{ 37},{  8}}, {{165},{  8}}, {{101},{  8}}, {{229},{  8}},
2117 {{ 21},{  8}}, {{149},{  8}}, {{ 85},{  8}}, {{213},{  8}}, {{ 53},{  8}},
2118 {{181},{  8}}, {{117},{  8}}, {{245},{  8}}, {{ 13},{  8}}, {{141},{  8}},
2119 {{ 77},{  8}}, {{205},{  8}}, {{ 45},{  8}}, {{173},{  8}}, {{109},{  8}},
2120 {{237},{  8}}, {{ 29},{  8}}, {{157},{  8}}, {{ 93},{  8}}, {{221},{  8}},
2121 {{ 61},{  8}}, {{189},{  8}}, {{125},{  8}}, {{253},{  8}}, {{ 19},{  9}},
2122 {{275},{  9}}, {{147},{  9}}, {{403},{  9}}, {{ 83},{  9}}, {{339},{  9}},
2123 {{211},{  9}}, {{467},{  9}}, {{ 51},{  9}}, {{307},{  9}}, {{179},{  9}},
2124 {{435},{  9}}, {{115},{  9}}, {{371},{  9}}, {{243},{  9}}, {{499},{  9}},
2125 {{ 11},{  9}}, {{267},{  9}}, {{139},{  9}}, {{395},{  9}}, {{ 75},{  9}},
2126 {{331},{  9}}, {{203},{  9}}, {{459},{  9}}, {{ 43},{  9}}, {{299},{  9}},
2127 {{171},{  9}}, {{427},{  9}}, {{107},{  9}}, {{363},{  9}}, {{235},{  9}},
2128 {{491},{  9}}, {{ 27},{  9}}, {{283},{  9}}, {{155},{  9}}, {{411},{  9}},
2129 {{ 91},{  9}}, {{347},{  9}}, {{219},{  9}}, {{475},{  9}}, {{ 59},{  9}},
2130 {{315},{  9}}, {{187},{  9}}, {{443},{  9}}, {{123},{  9}}, {{379},{  9}},
2131 {{251},{  9}}, {{507},{  9}}, {{  7},{  9}}, {{263},{  9}}, {{135},{  9}},
2132 {{391},{  9}}, {{ 71},{  9}}, {{327},{  9}}, {{199},{  9}}, {{455},{  9}},
2133 {{ 39},{  9}}, {{295},{  9}}, {{167},{  9}}, {{423},{  9}}, {{103},{  9}},
2134 {{359},{  9}}, {{231},{  9}}, {{487},{  9}}, {{ 23},{  9}}, {{279},{  9}},
2135 {{151},{  9}}, {{407},{  9}}, {{ 87},{  9}}, {{343},{  9}}, {{215},{  9}},
2136 {{471},{  9}}, {{ 55},{  9}}, {{311},{  9}}, {{183},{  9}}, {{439},{  9}},
2137 {{119},{  9}}, {{375},{  9}}, {{247},{  9}}, {{503},{  9}}, {{ 15},{  9}},
2138 {{271},{  9}}, {{143},{  9}}, {{399},{  9}}, {{ 79},{  9}}, {{335},{  9}},
2139 {{207},{  9}}, {{463},{  9}}, {{ 47},{  9}}, {{303},{  9}}, {{175},{  9}},
2140 {{431},{  9}}, {{111},{  9}}, {{367},{  9}}, {{239},{  9}}, {{495},{  9}},
2141 {{ 31},{  9}}, {{287},{  9}}, {{159},{  9}}, {{415},{  9}}, {{ 95},{  9}},
2142 {{351},{  9}}, {{223},{  9}}, {{479},{  9}}, {{ 63},{  9}}, {{319},{  9}},
2143 {{191},{  9}}, {{447},{  9}}, {{127},{  9}}, {{383},{  9}}, {{255},{  9}},
2144 {{511},{  9}}, {{  0},{  7}}, {{ 64},{  7}}, {{ 32},{  7}}, {{ 96},{  7}},
2145 {{ 16},{  7}}, {{ 80},{  7}}, {{ 48},{  7}}, {{112},{  7}}, {{  8},{  7}},
2146 {{ 72},{  7}}, {{ 40},{  7}}, {{104},{  7}}, {{ 24},{  7}}, {{ 88},{  7}},
2147 {{ 56},{  7}}, {{120},{  7}}, {{  4},{  7}}, {{ 68},{  7}}, {{ 36},{  7}},
2148 {{100},{  7}}, {{ 20},{  7}}, {{ 84},{  7}}, {{ 52},{  7}}, {{116},{  7}},
2149 {{  3},{  8}}, {{131},{  8}}, {{ 67},{  8}}, {{195},{  8}}, {{ 35},{  8}},
2150 {{163},{  8}}, {{ 99},{  8}}, {{227},{  8}}
2151 };
2152 
2153 local const ct_data static_dtree[D_CODES] = {
2154 {{ 0},{ 5}}, {{16},{ 5}}, {{ 8},{ 5}}, {{24},{ 5}}, {{ 4},{ 5}},
2155 {{20},{ 5}}, {{12},{ 5}}, {{28},{ 5}}, {{ 2},{ 5}}, {{18},{ 5}},
2156 {{10},{ 5}}, {{26},{ 5}}, {{ 6},{ 5}}, {{22},{ 5}}, {{14},{ 5}},
2157 {{30},{ 5}}, {{ 1},{ 5}}, {{17},{ 5}}, {{ 9},{ 5}}, {{25},{ 5}},
2158 {{ 5},{ 5}}, {{21},{ 5}}, {{13},{ 5}}, {{29},{ 5}}, {{ 3},{ 5}},
2159 {{19},{ 5}}, {{11},{ 5}}, {{27},{ 5}}, {{ 7},{ 5}}, {{23},{ 5}}
2160 };
2161 
2162 const uch _dist_code[DIST_CODE_LEN] = {
2163  0,  1,  2,  3,  4,  4,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,
2164  8,  8,  8,  8,  9,  9,  9,  9,  9,  9,  9,  9, 10, 10, 10, 10, 10, 10, 10, 10,
2165 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
2166 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
2167 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13,
2168 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
2169 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2170 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2171 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
2172 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15,
2173 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2174 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
2175 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,  0,  0, 16, 17,
2176 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 22, 22,
2177 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2178 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2179 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2180 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27,
2181 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2182 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2183 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2184 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
2185 28, 28, 28, 28, 28, 28, 28, 28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2186 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2187 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
2188 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29
2189 };
2190 
2191 const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {
2192  0,  1,  2,  3,  4,  5,  6,  7,  8,  8,  9,  9, 10, 10, 11, 11, 12, 12, 12, 12,
2193 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16,
2194 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19,
2195 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
2196 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22,
2197 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 23, 23, 23,
2198 23, 23, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2199 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
2200 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25,
2201 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 26, 26,
2202 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26,
2203 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
2204 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 28
2205 };
2206 
2207 local const int base_length[LENGTH_CODES] = {
2208 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56,
2209 64, 80, 96, 112, 128, 160, 192, 224, 0
2210 };
2211 
2212 local const int base_dist[D_CODES] = {
2213     0,     1,     2,     3,     4,     6,     8,    12,    16,    24,
2214    32,    48,    64,    96,   128,   192,   256,   384,   512,   768,
2215  1024,  1536,  2048,  3072,  4096,  6144,  8192, 12288, 16384, 24576
2216 };
2217 /* --- trees.h */
2218 
2219 #endif /* GEN_TREES_H */
2220 
2221 struct static_tree_desc_s {
2222     const ct_data *static_tree;  /* static tree or NULL */
2223     const intf *extra_bits;      /* extra bits for each code or NULL */
2224     int     extra_base;          /* base index for extra_bits */
2225     int     elems;               /* max number of elements in the tree */
2226     int     max_length;          /* max bit length for the codes */
2227 };
2228 
2229 local static_tree_desc  static_l_desc =
2230 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
2231 
2232 local static_tree_desc  static_d_desc =
2233 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
2234 
2235 local static_tree_desc  static_bl_desc =
2236 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
2237 
2238 /* ===========================================================================
2239  * Local (static) routines in this file.
2240  */
2241 
2242 local void tr_static_init(void);
2243 local void init_block(deflate_state *s);
2244 local void pqdownheap(deflate_state *s, ct_data *tree, int k);
2245 local void gen_bitlen(deflate_state *s, tree_desc *desc);
2246 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count);
2247 local void build_tree(deflate_state *s, tree_desc *desc);
2248 local void scan_tree(deflate_state *s, ct_data *tree, int max_code);
2249 local void send_tree(deflate_state *s, ct_data *tree, int max_code);
2250 local int  build_bl_tree(deflate_state *s);
2251 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
2252                               int blcodes);
2253 local void compress_block(deflate_state *s, const ct_data *ltree,
2254                               const ct_data *dtree);
2255 local void set_data_type(deflate_state *s);
2256 local unsigned bi_reverse(unsigned value, int length);
2257 local void bi_windup(deflate_state *s);
2258 local void bi_flush(deflate_state *s);
2259 local void copy_block(deflate_state *s, charf *buf, unsigned len,
2260                               int header);
2261 
2262 #ifdef GEN_TREES_H
2263 local void gen_trees_header(void);
2264 #endif
2265 
2266 #ifndef DEBUG_ZLIB
2267 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
2268    /* Send a code of the given tree. c and tree must not have side effects */
2269 
2270 #else /* DEBUG_ZLIB */
2271 #  define send_code(s, c, tree) \
2272      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
2273        send_bits(s, tree[c].Code, tree[c].Len); }
2274 #endif
2275 
2276 /* ===========================================================================
2277  * Output a short LSB first on the stream.
2278  * IN assertion: there is enough room in pendingBuf.
2279  */
2280 #define put_short(s, w) { \
2281     put_byte(s, (uch)((w) & 0xff)); \
2282     put_byte(s, (uch)((ush)(w) >> 8)); \
2283 }
2284 
2285 /* ===========================================================================
2286  * Send a value on a given number of bits.
2287  * IN assertion: length <= 16 and value fits in length bits.
2288  */
2289 #ifdef DEBUG_ZLIB
2290 local void send_bits(deflate_state *s, int value, int length);
2291 
send_bits(s,value,length)2292 local void send_bits(s, value, length)
2293     deflate_state *s;
2294     int value;  /* value to send */
2295     int length; /* number of bits */
2296 {
2297     Tracevv((stderr," l %2d v %4x ", length, value));
2298     Assert(length > 0 && length <= 15, "invalid length");
2299     s->bits_sent += (ulg)length;
2300 
2301     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
2302      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
2303      * unused bits in value.
2304      */
2305     if (s->bi_valid > (int)Buf_size - length) {
2306         s->bi_buf |= (value << s->bi_valid);
2307         put_short(s, s->bi_buf);
2308         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
2309         s->bi_valid += length - Buf_size;
2310     } else {
2311         s->bi_buf |= value << s->bi_valid;
2312         s->bi_valid += length;
2313     }
2314 }
2315 #else /* !DEBUG_ZLIB */
2316 
2317 #define send_bits(s, value, length) \
2318 { int len = length;\
2319   if (s->bi_valid > (int)Buf_size - len) {\
2320     int val = value;\
2321     s->bi_buf |= (val << s->bi_valid);\
2322     put_short(s, s->bi_buf);\
2323     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
2324     s->bi_valid += len - Buf_size;\
2325   } else {\
2326     s->bi_buf |= (value) << s->bi_valid;\
2327     s->bi_valid += len;\
2328   }\
2329 }
2330 #endif /* DEBUG_ZLIB */
2331 
2332 
2333 /* ===========================================================================
2334  * Initialize the various 'constant' tables.
2335  */
tr_static_init(void)2336 local void tr_static_init(void)
2337 {
2338 #if defined(GEN_TREES_H) || !defined(STDC)
2339     static int static_init_done = 0;
2340     int n;        /* iterates over tree elements */
2341     int bits;     /* bit counter */
2342     int length;   /* length value */
2343     int code;     /* code value */
2344     int dist;     /* distance index */
2345     ush bl_count[MAX_BITS+1];
2346     /* number of codes at each bit length for an optimal tree */
2347 
2348     if (static_init_done) return;
2349 
2350     /* For some embedded targets, global variables are not initialized: */
2351     static_l_desc.static_tree = static_ltree;
2352     static_l_desc.extra_bits = extra_lbits;
2353     static_d_desc.static_tree = static_dtree;
2354     static_d_desc.extra_bits = extra_dbits;
2355     static_bl_desc.extra_bits = extra_blbits;
2356 
2357     /* Initialize the mapping length (0..255) -> length code (0..28) */
2358     length = 0;
2359     for (code = 0; code < LENGTH_CODES-1; code++) {
2360         base_length[code] = length;
2361         for (n = 0; n < (1<<extra_lbits[code]); n++) {
2362             _length_code[length++] = (uch)code;
2363         }
2364     }
2365     Assert (length == 256, "tr_static_init: length != 256");
2366     /* Note that the length 255 (match length 258) can be represented
2367      * in two different ways: code 284 + 5 bits or code 285, so we
2368      * overwrite length_code[255] to use the best encoding:
2369      */
2370     _length_code[length-1] = (uch)code;
2371 
2372     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
2373     dist = 0;
2374     for (code = 0 ; code < 16; code++) {
2375         base_dist[code] = dist;
2376         for (n = 0; n < (1<<extra_dbits[code]); n++) {
2377             _dist_code[dist++] = (uch)code;
2378         }
2379     }
2380     Assert (dist == 256, "tr_static_init: dist != 256");
2381     dist >>= 7; /* from now on, all distances are divided by 128 */
2382     for ( ; code < D_CODES; code++) {
2383         base_dist[code] = dist << 7;
2384         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
2385             _dist_code[256 + dist++] = (uch)code;
2386         }
2387     }
2388     Assert (dist == 256, "tr_static_init: 256+dist != 512");
2389 
2390     /* Construct the codes of the static literal tree */
2391     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
2392     n = 0;
2393     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
2394     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
2395     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
2396     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
2397     /* Codes 286 and 287 do not exist, but we must include them in the
2398      * tree construction to get a canonical Huffman tree (longest code
2399      * all ones)
2400      */
2401     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
2402 
2403     /* The static distance tree is trivial: */
2404     for (n = 0; n < D_CODES; n++) {
2405         static_dtree[n].Len = 5;
2406         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
2407     }
2408     static_init_done = 1;
2409 
2410 #  ifdef GEN_TREES_H
2411     gen_trees_header();
2412 #  endif
2413 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
2414 }
2415 
2416 /* ===========================================================================
2417  * Genererate the file trees.h describing the static trees.
2418  */
2419 #ifdef GEN_TREES_H
2420 #  ifndef DEBUG_ZLIB
2421 #    include <stdio.h>
2422 #  endif
2423 
2424 #  define SEPARATOR(i, last, width) \
2425       ((i) == (last)? "\n};\n\n" :    \
2426        ((i) % (width) == (width)-1 ? ",\n" : ", "))
2427 
gen_trees_header(void)2428 void gen_trees_header(void)
2429 {
2430     FILE *header = fopen("trees.h", "w");
2431     int i;
2432 
2433     Assert (header != NULL, "Can't open trees.h");
2434     fprintf(header,
2435 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
2436 
2437     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
2438     for (i = 0; i < L_CODES+2; i++) {
2439 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
2440 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
2441     }
2442 
2443     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
2444     for (i = 0; i < D_CODES; i++) {
2445 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
2446 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
2447     }
2448 
2449     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
2450     for (i = 0; i < DIST_CODE_LEN; i++) {
2451 	fprintf(header, "%2u%s", _dist_code[i],
2452 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
2453     }
2454 
2455     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
2456     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
2457 	fprintf(header, "%2u%s", _length_code[i],
2458 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
2459     }
2460 
2461     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
2462     for (i = 0; i < LENGTH_CODES; i++) {
2463 	fprintf(header, "%1u%s", base_length[i],
2464 		SEPARATOR(i, LENGTH_CODES-1, 20));
2465     }
2466 
2467     fprintf(header, "local const int base_dist[D_CODES] = {\n");
2468     for (i = 0; i < D_CODES; i++) {
2469 	fprintf(header, "%5u%s", base_dist[i],
2470 		SEPARATOR(i, D_CODES-1, 10));
2471     }
2472 
2473     fclose(header);
2474 }
2475 #endif /* GEN_TREES_H */
2476 
2477 /* ===========================================================================
2478  * Initialize the tree data structures for a new zlib stream.
2479  */
_tr_init(deflate_state * s)2480 void _tr_init(deflate_state *s)
2481 {
2482     tr_static_init();
2483 
2484     s->l_desc.dyn_tree = s->dyn_ltree;
2485     s->l_desc.stat_desc = &static_l_desc;
2486 
2487     s->d_desc.dyn_tree = s->dyn_dtree;
2488     s->d_desc.stat_desc = &static_d_desc;
2489 
2490     s->bl_desc.dyn_tree = s->bl_tree;
2491     s->bl_desc.stat_desc = &static_bl_desc;
2492 
2493     s->bi_buf = 0;
2494     s->bi_valid = 0;
2495     s->last_eob_len = 8; /* enough lookahead for inflate */
2496 #ifdef DEBUG_ZLIB
2497     s->compressed_len = 0L;
2498     s->bits_sent = 0L;
2499 #endif
2500 
2501     /* Initialize the first block of the first file: */
2502     init_block(s);
2503 }
2504 
2505 /* ===========================================================================
2506  * Initialize a new block.
2507  */
init_block(deflate_state * s)2508 local void init_block(deflate_state *s)
2509 {
2510     int n; /* iterates over tree elements */
2511 
2512     /* Initialize the trees. */
2513     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
2514     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
2515     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
2516 
2517     s->dyn_ltree[END_BLOCK].Freq = 1;
2518     s->opt_len = s->static_len = 0L;
2519     s->last_lit = s->matches = 0;
2520 }
2521 
2522 #define SMALLEST 1
2523 /* Index within the heap array of least frequent node in the Huffman tree */
2524 
2525 
2526 /* ===========================================================================
2527  * Remove the smallest element from the heap and recreate the heap with
2528  * one less element. Updates heap and heap_len.
2529  */
2530 #define pqremove(s, tree, top) \
2531 {\
2532     top = s->heap[SMALLEST]; \
2533     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
2534     pqdownheap(s, tree, SMALLEST); \
2535 }
2536 
2537 /* ===========================================================================
2538  * Compares to subtrees, using the tree depth as tie breaker when
2539  * the subtrees have equal frequency. This minimizes the worst case length.
2540  */
2541 #define smaller(tree, n, m, depth) \
2542    (tree[n].Freq < tree[m].Freq || \
2543    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
2544 
2545 /* ===========================================================================
2546  * Restore the heap property by moving down the tree starting at node k,
2547  * exchanging a node with the smallest of its two sons if necessary, stopping
2548  * when the heap property is re-established (each father smaller than its
2549  * two sons).
2550  */
pqdownheap(deflate_state * s,ct_data * tree,int k)2551 local void pqdownheap(deflate_state *s,
2552 	ct_data *tree,	/* the tree to restore */
2553 	int k)		/* node to move down */
2554 {
2555     int v = s->heap[k];
2556     int j = k << 1;  /* left son of k */
2557     while (j <= s->heap_len) {
2558         /* Set j to the smallest of the two sons: */
2559         if (j < s->heap_len &&
2560             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
2561             j++;
2562         }
2563         /* Exit if v is smaller than both sons */
2564         if (smaller(tree, v, s->heap[j], s->depth)) break;
2565 
2566         /* Exchange v with the smallest son */
2567         s->heap[k] = s->heap[j];  k = j;
2568 
2569         /* And continue down the tree, setting j to the left son of k */
2570         j <<= 1;
2571     }
2572     s->heap[k] = v;
2573 }
2574 
2575 /* ===========================================================================
2576  * Compute the optimal bit lengths for a tree and update the total bit length
2577  * for the current block.
2578  * IN assertion: the fields freq and dad are set, heap[heap_max] and
2579  *    above are the tree nodes sorted by increasing frequency.
2580  * OUT assertions: the field len is set to the optimal bit length, the
2581  *     array bl_count contains the frequencies for each bit length.
2582  *     The length opt_len is updated; static_len is also updated if stree is
2583  *     not null.
2584  */
gen_bitlen(deflate_state * s,tree_desc * desc)2585 local void gen_bitlen(deflate_state *s,
2586 	tree_desc *desc)	/* the tree descriptor */
2587 {
2588     ct_data *tree        = desc->dyn_tree;
2589     int max_code         = desc->max_code;
2590     const ct_data *stree = desc->stat_desc->static_tree;
2591     const intf *extra    = desc->stat_desc->extra_bits;
2592     int base             = desc->stat_desc->extra_base;
2593     int max_length       = desc->stat_desc->max_length;
2594     int h;              /* heap index */
2595     int n, m;           /* iterate over the tree elements */
2596     int bits;           /* bit length */
2597     int xbits;          /* extra bits */
2598     ush f;              /* frequency */
2599     int overflow = 0;   /* number of elements with bit length too large */
2600 
2601     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
2602 
2603     /* In a first pass, compute the optimal bit lengths (which may
2604      * overflow in the case of the bit length tree).
2605      */
2606     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
2607 
2608     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
2609         n = s->heap[h];
2610         bits = tree[tree[n].Dad].Len + 1;
2611         if (bits > max_length) bits = max_length, overflow++;
2612         tree[n].Len = (ush)bits;
2613         /* We overwrite tree[n].Dad which is no longer needed */
2614 
2615         if (n > max_code) continue; /* not a leaf node */
2616 
2617         s->bl_count[bits]++;
2618         xbits = 0;
2619         if (n >= base) xbits = extra[n-base];
2620         f = tree[n].Freq;
2621         s->opt_len += (ulg)f * (bits + xbits);
2622         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
2623     }
2624     if (overflow == 0) return;
2625 
2626     Trace((stderr,"\nbit length overflow\n"));
2627     /* This happens for example on obj2 and pic of the Calgary corpus */
2628 
2629     /* Find the first bit length which could increase: */
2630     do {
2631         bits = max_length-1;
2632         while (s->bl_count[bits] == 0) bits--;
2633         s->bl_count[bits]--;      /* move one leaf down the tree */
2634         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
2635         s->bl_count[max_length]--;
2636         /* The brother of the overflow item also moves one step up,
2637          * but this does not affect bl_count[max_length]
2638          */
2639         overflow -= 2;
2640     } while (overflow > 0);
2641 
2642     /* Now recompute all bit lengths, scanning in increasing frequency.
2643      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
2644      * lengths instead of fixing only the wrong ones. This idea is taken
2645      * from 'ar' written by Haruhiko Okumura.)
2646      */
2647     for (bits = max_length; bits != 0; bits--) {
2648         n = s->bl_count[bits];
2649         while (n != 0) {
2650             m = s->heap[--h];
2651             if (m > max_code) continue;
2652             if (tree[m].Len != (unsigned) bits) {
2653                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
2654                 s->opt_len += ((long)bits - (long)tree[m].Len)
2655                               *(long)tree[m].Freq;
2656                 tree[m].Len = (ush)bits;
2657             }
2658             n--;
2659         }
2660     }
2661 }
2662 
2663 /* ===========================================================================
2664  * Generate the codes for a given tree and bit counts (which need not be
2665  * optimal).
2666  * IN assertion: the array bl_count contains the bit length statistics for
2667  * the given tree and the field len is set for all tree elements.
2668  * OUT assertion: the field code is set for all tree elements of non
2669  *     zero code length.
2670  */
gen_codes(ct_data * tree,int max_code,ushf * bl_count)2671 local void gen_codes (ct_data *tree,	/* the tree to decorate */
2672 	int max_code,			/* largest code with non zero frequency */
2673 	ushf *bl_count)			/* number of codes at each bit length */
2674 {
2675     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
2676     ush code = 0;              /* running code value */
2677     int bits;                  /* bit index */
2678     int n;                     /* code index */
2679 
2680     /* The distribution counts are first used to generate the code values
2681      * without bit reversal.
2682      */
2683     for (bits = 1; bits <= MAX_BITS; bits++) {
2684         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
2685     }
2686     /* Check that the bit counts in bl_count are consistent. The last code
2687      * must be all ones.
2688      */
2689     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
2690             "inconsistent bit counts");
2691     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
2692 
2693     for (n = 0;  n <= max_code; n++) {
2694         int len = tree[n].Len;
2695         if (len == 0) continue;
2696         /* Now reverse the bits */
2697         tree[n].Code = bi_reverse(next_code[len]++, len);
2698 
2699         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
2700              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
2701     }
2702 }
2703 
2704 /* ===========================================================================
2705  * Construct one Huffman tree and assigns the code bit strings and lengths.
2706  * Update the total bit length for the current block.
2707  * IN assertion: the field freq is set for all tree elements.
2708  * OUT assertions: the fields len and code are set to the optimal bit length
2709  *     and corresponding code. The length opt_len is updated; static_len is
2710  *     also updated if stree is not null. The field max_code is set.
2711  */
build_tree(deflate_state * s,tree_desc * desc)2712 local void build_tree(deflate_state *s,
2713 	tree_desc *desc)	/* the tree descriptor */
2714 {
2715     ct_data *tree         = desc->dyn_tree;
2716     const ct_data *stree  = desc->stat_desc->static_tree;
2717     int elems             = desc->stat_desc->elems;
2718     int n, m;          /* iterate over heap elements */
2719     int max_code = -1; /* largest code with non zero frequency */
2720     int node;          /* new node being created */
2721 
2722     /* Construct the initial heap, with least frequent element in
2723      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
2724      * heap[0] is not used.
2725      */
2726     s->heap_len = 0, s->heap_max = HEAP_SIZE;
2727 
2728     for (n = 0; n < elems; n++) {
2729         if (tree[n].Freq != 0) {
2730             s->heap[++(s->heap_len)] = max_code = n;
2731             s->depth[n] = 0;
2732         } else {
2733             tree[n].Len = 0;
2734         }
2735     }
2736 
2737     /* The pkzip format requires that at least one distance code exists,
2738      * and that at least one bit should be sent even if there is only one
2739      * possible code. So to avoid special checks later on we force at least
2740      * two codes of non zero frequency.
2741      */
2742     while (s->heap_len < 2) {
2743         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
2744         tree[node].Freq = 1;
2745         s->depth[node] = 0;
2746         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
2747         /* node is 0 or 1 so it does not have extra bits */
2748     }
2749     desc->max_code = max_code;
2750 
2751     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
2752      * establish sub-heaps of increasing lengths:
2753      */
2754     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
2755 
2756     /* Construct the Huffman tree by repeatedly combining the least two
2757      * frequent nodes.
2758      */
2759     node = elems;              /* next internal node of the tree */
2760     do {
2761         pqremove(s, tree, n);  /* n = node of least frequency */
2762         m = s->heap[SMALLEST]; /* m = node of next least frequency */
2763 
2764         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
2765         s->heap[--(s->heap_max)] = m;
2766 
2767         /* Create a new node father of n and m */
2768         tree[node].Freq = tree[n].Freq + tree[m].Freq;
2769         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
2770         tree[n].Dad = tree[m].Dad = (ush)node;
2771 #ifdef DUMP_BL_TREE
2772         if (tree == s->bl_tree) {
2773             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
2774                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
2775         }
2776 #endif
2777         /* and insert the new node in the heap */
2778         s->heap[SMALLEST] = node++;
2779         pqdownheap(s, tree, SMALLEST);
2780 
2781     } while (s->heap_len >= 2);
2782 
2783     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
2784 
2785     /* At this point, the fields freq and dad are set. We can now
2786      * generate the bit lengths.
2787      */
2788     gen_bitlen(s, (tree_desc *)desc);
2789 
2790     /* The field len is now set, we can generate the bit codes */
2791     gen_codes ((ct_data *)tree, max_code, s->bl_count);
2792 }
2793 
2794 /* ===========================================================================
2795  * Scan a literal or distance tree to determine the frequencies of the codes
2796  * in the bit length tree.
2797  */
scan_tree(deflate_state * s,ct_data * tree,int max_code)2798 local void scan_tree (deflate_state *s,
2799 	ct_data *tree,	/* the tree to be scanned */
2800 	int max_code)	/* and its largest code of non zero frequency */
2801 {
2802     int n;                     /* iterates over all tree elements */
2803     int prevlen = -1;          /* last emitted length */
2804     int curlen;                /* length of current code */
2805     int nextlen = tree[0].Len; /* length of next code */
2806     int count = 0;             /* repeat count of the current code */
2807     int max_count = 7;         /* max repeat count */
2808     int min_count = 4;         /* min repeat count */
2809 
2810     if (nextlen == 0) max_count = 138, min_count = 3;
2811     tree[max_code+1].Len = (ush)0xffff; /* guard */
2812 
2813     for (n = 0; n <= max_code; n++) {
2814         curlen = nextlen; nextlen = tree[n+1].Len;
2815         if (++count < max_count && curlen == nextlen) {
2816             continue;
2817         } else if (count < min_count) {
2818             s->bl_tree[curlen].Freq += count;
2819         } else if (curlen != 0) {
2820             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
2821             s->bl_tree[REP_3_6].Freq++;
2822         } else if (count <= 10) {
2823             s->bl_tree[REPZ_3_10].Freq++;
2824         } else {
2825             s->bl_tree[REPZ_11_138].Freq++;
2826         }
2827         count = 0; prevlen = curlen;
2828         if (nextlen == 0) {
2829             max_count = 138, min_count = 3;
2830         } else if (curlen == nextlen) {
2831             max_count = 6, min_count = 3;
2832         } else {
2833             max_count = 7, min_count = 4;
2834         }
2835     }
2836 }
2837 
2838 /* ===========================================================================
2839  * Send a literal or distance tree in compressed form, using the codes in
2840  * bl_tree.
2841  */
send_tree(deflate_state * s,ct_data * tree,int max_code)2842 local void send_tree (deflate_state *s,
2843 	ct_data *tree,	/* the tree to be scanned */
2844 	int max_code)	/* and its largest code of non zero frequency */
2845 {
2846     int n;                     /* iterates over all tree elements */
2847     int prevlen = -1;          /* last emitted length */
2848     int curlen;                /* length of current code */
2849     int nextlen = tree[0].Len; /* length of next code */
2850     int count = 0;             /* repeat count of the current code */
2851     int max_count = 7;         /* max repeat count */
2852     int min_count = 4;         /* min repeat count */
2853 
2854     /* tree[max_code+1].Len = -1; */  /* guard already set */
2855     if (nextlen == 0) max_count = 138, min_count = 3;
2856 
2857     for (n = 0; n <= max_code; n++) {
2858         curlen = nextlen; nextlen = tree[n+1].Len;
2859         if (++count < max_count && curlen == nextlen) {
2860             continue;
2861         } else if (count < min_count) {
2862             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
2863 
2864         } else if (curlen != 0) {
2865             if (curlen != prevlen) {
2866                 send_code(s, curlen, s->bl_tree); count--;
2867             }
2868             Assert(count >= 3 && count <= 6, " 3_6?");
2869             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
2870 
2871         } else if (count <= 10) {
2872             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
2873 
2874         } else {
2875             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
2876         }
2877         count = 0; prevlen = curlen;
2878         if (nextlen == 0) {
2879             max_count = 138, min_count = 3;
2880         } else if (curlen == nextlen) {
2881             max_count = 6, min_count = 3;
2882         } else {
2883             max_count = 7, min_count = 4;
2884         }
2885     }
2886 }
2887 
2888 /* ===========================================================================
2889  * Construct the Huffman tree for the bit lengths and return the index in
2890  * bl_order of the last bit length code to send.
2891  */
build_bl_tree(deflate_state * s)2892 local int build_bl_tree(deflate_state *s)
2893 {
2894     int max_blindex;  /* index of last bit length code of non zero freq */
2895 
2896     /* Determine the bit length frequencies for literal and distance trees */
2897     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
2898     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
2899 
2900     /* Build the bit length tree: */
2901     build_tree(s, (tree_desc *)(&(s->bl_desc)));
2902     /* opt_len now includes the length of the tree representations, except
2903      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
2904      */
2905 
2906     /* Determine the number of bit length codes to send. The pkzip format
2907      * requires that at least 4 bit length codes be sent. (appnote.txt says
2908      * 3 but the actual value used is 4.)
2909      */
2910     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
2911         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
2912     }
2913     /* Update opt_len to include the bit length tree and counts */
2914     s->opt_len += 3*(max_blindex+1) + 5+5+4;
2915     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
2916             s->opt_len, s->static_len));
2917 
2918     return max_blindex;
2919 }
2920 
2921 /* ===========================================================================
2922  * Send the header for a block using dynamic Huffman trees: the counts, the
2923  * lengths of the bit length codes, the literal tree and the distance tree.
2924  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
2925  */
send_all_trees(deflate_state * s,int lcodes,int dcodes,int blcodes)2926 local void send_all_trees(deflate_state *s,
2927 	int lcodes, int dcodes, int blcodes) /* number of codes for each tree */
2928 {
2929     int rank;                    /* index in bl_order */
2930 
2931     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
2932     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
2933             "too many codes");
2934     Tracev((stderr, "\nbl counts: "));
2935     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
2936     send_bits(s, dcodes-1,   5);
2937     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
2938     for (rank = 0; rank < blcodes; rank++) {
2939         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
2940         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
2941     }
2942     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
2943 
2944     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
2945     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
2946 
2947     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
2948     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
2949 }
2950 
2951 /* ===========================================================================
2952  * Send a stored block
2953  */
_tr_stored_block(deflate_state * s,charf * buf,ulg stored_len,int eof)2954 void _tr_stored_block(deflate_state *s,
2955 	charf *buf,	/* input block */
2956 	ulg stored_len,	/* length of input block */
2957 	int eof)	/* true if this is the last block for a file */
2958 {
2959     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
2960 #ifdef DEBUG_ZLIB
2961     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
2962     s->compressed_len += (stored_len + 4) << 3;
2963 #endif
2964     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
2965 }
2966 
2967 /* Send just the `stored block' type code without any length bytes or data.
2968  */
_tr_stored_type_only(deflate_state * s)2969 void _tr_stored_type_only(deflate_state *s)
2970 {
2971     send_bits(s, (STORED_BLOCK << 1), 3);
2972     bi_windup(s);
2973 #ifdef DEBUG_ZLIB
2974     s->compressed_len = (s->compressed_len + 3) & ~7L;
2975 #endif
2976 }
2977 
2978 /* ===========================================================================
2979  * Send one empty static block to give enough lookahead for inflate.
2980  * This takes 10 bits, of which 7 may remain in the bit buffer.
2981  * The current inflate code requires 9 bits of lookahead. If the
2982  * last two codes for the previous block (real code plus EOB) were coded
2983  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
2984  * the last real code. In this case we send two empty static blocks instead
2985  * of one. (There are no problems if the previous block is stored or fixed.)
2986  * To simplify the code, we assume the worst case of last real code encoded
2987  * on one bit only.
2988  */
_tr_align(deflate_state * s)2989 void _tr_align(deflate_state *s)
2990 {
2991     send_bits(s, STATIC_TREES<<1, 3);
2992     send_code(s, END_BLOCK, static_ltree);
2993 #ifdef DEBUG_ZLIB
2994     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
2995 #endif
2996     bi_flush(s);
2997     /* Of the 10 bits for the empty block, we have already sent
2998      * (10 - bi_valid) bits. The lookahead for the last real code (before
2999      * the EOB of the previous block) was thus at least one plus the length
3000      * of the EOB plus what we have just sent of the empty static block.
3001      */
3002     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
3003         send_bits(s, STATIC_TREES<<1, 3);
3004         send_code(s, END_BLOCK, static_ltree);
3005 #ifdef DEBUG_ZLIB
3006         s->compressed_len += 10L;
3007 #endif
3008         bi_flush(s);
3009     }
3010     s->last_eob_len = 7;
3011 }
3012 
3013 /* ===========================================================================
3014  * Determine the best encoding for the current block: dynamic trees, static
3015  * trees or store, and output the encoded block to the zip file.
3016  */
_tr_flush_block(deflate_state * s,charf * buf,ulg stored_len,int eof)3017 void _tr_flush_block(deflate_state *s,
3018 	charf *buf,	/* input block, or NULL if too old */
3019 	ulg stored_len,	/* length of input block */
3020 	int eof)		/* true if this is the last block for a file */
3021 {
3022     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
3023     int max_blindex = 0;  /* index of last bit length code of non zero freq */
3024 
3025     /* Build the Huffman trees unless a stored block is forced */
3026     if (s->level > 0) {
3027 
3028 	 /* Check if the file is ascii or binary */
3029 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
3030 
3031 	/* Construct the literal and distance trees */
3032 	build_tree(s, (tree_desc *)(&(s->l_desc)));
3033 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
3034 		s->static_len));
3035 
3036 	build_tree(s, (tree_desc *)(&(s->d_desc)));
3037 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
3038 		s->static_len));
3039 	/* At this point, opt_len and static_len are the total bit lengths of
3040 	 * the compressed block data, excluding the tree representations.
3041 	 */
3042 
3043 	/* Build the bit length tree for the above two trees, and get the index
3044 	 * in bl_order of the last bit length code to send.
3045 	 */
3046 	max_blindex = build_bl_tree(s);
3047 
3048 	/* Determine the best encoding. Compute first the block length in bytes*/
3049 	opt_lenb = (s->opt_len+3+7)>>3;
3050 	static_lenb = (s->static_len+3+7)>>3;
3051 
3052 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
3053 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
3054 		s->last_lit));
3055 
3056 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
3057 
3058     } else {
3059         Assert(buf != (char*)0, "lost buf");
3060 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
3061     }
3062 
3063 #ifdef FORCE_STORED
3064     if (buf != (char*)0) { /* force stored block */
3065 #else
3066     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
3067                        /* 4: two words for the lengths */
3068 #endif
3069         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
3070          * Otherwise we can't have processed more than WSIZE input bytes since
3071          * the last block flush, because compression would have been
3072          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
3073          * transform a block into a stored block.
3074          */
3075         _tr_stored_block(s, buf, stored_len, eof);
3076 
3077 #ifdef FORCE_STATIC
3078     } else if (static_lenb >= 0) { /* force static trees */
3079 #else
3080     } else if (static_lenb == opt_lenb) {
3081 #endif
3082         send_bits(s, (STATIC_TREES<<1)+eof, 3);
3083         compress_block(s, (const ct_data *)static_ltree, (const ct_data *)static_dtree);
3084 #ifdef DEBUG_ZLIB
3085         s->compressed_len += 3 + s->static_len;
3086 #endif
3087     } else {
3088         send_bits(s, (DYN_TREES<<1)+eof, 3);
3089         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
3090                        max_blindex+1);
3091         compress_block(s, (const ct_data *)s->dyn_ltree, (const ct_data *)s->dyn_dtree);
3092 #ifdef DEBUG_ZLIB
3093         s->compressed_len += 3 + s->opt_len;
3094 #endif
3095     }
3096     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
3097     /* The above check is made mod 2^32, for files larger than 512 MB
3098      * and uLong implemented on 32 bits.
3099      */
3100     init_block(s);
3101 
3102     if (eof) {
3103         bi_windup(s);
3104 #ifdef DEBUG_ZLIB
3105         s->compressed_len += 7;  /* align on byte boundary */
3106 #endif
3107     }
3108     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
3109            s->compressed_len-7*eof));
3110 }
3111 
3112 /* ===========================================================================
3113  * Save the match info and tally the frequency counts. Return true if
3114  * the current block must be flushed.
3115  */
3116 #if 0
3117 int _tr_tally (deflate_state *s,
3118 	unsigned dist,	/* distance of matched string */
3119 	unsigned lc)	/* match length-MIN_MATCH or unmatched char (if dist==0) */
3120 {
3121     s->d_buf[s->last_lit] = (ush)dist;
3122     s->l_buf[s->last_lit++] = (uch)lc;
3123     if (dist == 0) {
3124         /* lc is the unmatched char */
3125         s->dyn_ltree[lc].Freq++;
3126     } else {
3127         s->matches++;
3128         /* Here, lc is the match length - MIN_MATCH */
3129         dist--;             /* dist = match distance - 1 */
3130         Assert((ush)dist < (ush)MAX_DIST(s) &&
3131                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
3132                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
3133 
3134         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
3135         s->dyn_dtree[d_code(dist)].Freq++;
3136     }
3137 
3138 #ifdef TRUNCATE_BLOCK
3139     /* Try to guess if it is profitable to stop the current block here */
3140     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
3141         /* Compute an upper bound for the compressed length */
3142         ulg out_length = (ulg)s->last_lit*8L;
3143         ulg in_length = (ulg)((long)s->strstart - s->block_start);
3144         int dcode;
3145         for (dcode = 0; dcode < D_CODES; dcode++) {
3146             out_length += (ulg)s->dyn_dtree[dcode].Freq *
3147                 (5L+extra_dbits[dcode]);
3148         }
3149         out_length >>= 3;
3150         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
3151                s->last_lit, in_length, out_length,
3152                100L - out_length*100L/in_length));
3153         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
3154     }
3155 #endif
3156     return (s->last_lit == s->lit_bufsize-1);
3157     /* We avoid equality with lit_bufsize because of wraparound at 64K
3158      * on 16 bit machines and because stored blocks are restricted to
3159      * 64K-1 bytes.
3160      */
3161 }
3162 #endif
3163 
3164 /* ===========================================================================
3165  * Send the block data compressed using the given Huffman trees
3166  */
3167 local void compress_block(deflate_state *s,
3168 	const ct_data *ltree,	/* literal tree */
3169 	const ct_data *dtree)	/* distance tree */
3170 {
3171     unsigned dist;      /* distance of matched string */
3172     int lc;             /* match length or unmatched char (if dist == 0) */
3173     unsigned lx = 0;    /* running index in l_buf */
3174     unsigned code;      /* the code to send */
3175     int extra;          /* number of extra bits to send */
3176 
3177     if (s->last_lit != 0) do {
3178         dist = s->d_buf[lx];
3179         lc = s->l_buf[lx++];
3180         if (dist == 0) {
3181             send_code(s, lc, ltree); /* send a literal byte */
3182             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
3183         } else {
3184             /* Here, lc is the match length - MIN_MATCH */
3185             code = _length_code[lc];
3186             send_code(s, code+LITERALS+1, ltree); /* send the length code */
3187             extra = extra_lbits[code];
3188             if (extra != 0) {
3189                 lc -= base_length[code];
3190                 send_bits(s, lc, extra);       /* send the extra length bits */
3191             }
3192             dist--; /* dist is now the match distance - 1 */
3193             code = d_code(dist);
3194             Assert (code < D_CODES, "bad d_code");
3195 
3196             send_code(s, code, dtree);       /* send the distance code */
3197             extra = extra_dbits[code];
3198             if (extra != 0) {
3199                 dist -= base_dist[code];
3200                 send_bits(s, dist, extra);   /* send the extra distance bits */
3201             }
3202         } /* literal or match pair ? */
3203 
3204         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
3205         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
3206 
3207     } while (lx < s->last_lit);
3208 
3209     send_code(s, END_BLOCK, ltree);
3210     s->last_eob_len = ltree[END_BLOCK].Len;
3211 }
3212 
3213 /* ===========================================================================
3214  * Set the data type to ASCII or BINARY, using a crude approximation:
3215  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
3216  * IN assertion: the fields freq of dyn_ltree are set and the total of all
3217  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
3218  */
3219 local void set_data_type(deflate_state *s)
3220 {
3221     int n = 0;
3222     unsigned ascii_freq = 0;
3223     unsigned bin_freq = 0;
3224     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
3225     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
3226     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
3227     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
3228 }
3229 
3230 /* ===========================================================================
3231  * Reverse the first len bits of a code, using straightforward code (a faster
3232  * method would use a table)
3233  * IN assertion: 1 <= len <= 15
3234  */
3235 local unsigned bi_reverse(unsigned code, /* the value to invert */
3236 			int len)	/* its bit length */
3237 {
3238     unsigned res = 0;
3239     do {
3240         res |= code & 1;
3241         code >>= 1, res <<= 1;
3242     } while (--len > 0);
3243     return res >> 1;
3244 }
3245 
3246 /* ===========================================================================
3247  * Flush the bit buffer, keeping at most 7 bits in it.
3248  */
3249 local void bi_flush(deflate_state *s)
3250 {
3251     if (s->bi_valid == 16) {
3252         put_short(s, s->bi_buf);
3253         s->bi_buf = 0;
3254         s->bi_valid = 0;
3255     } else if (s->bi_valid >= 8) {
3256         put_byte(s, (Byte)s->bi_buf);
3257         s->bi_buf >>= 8;
3258         s->bi_valid -= 8;
3259     }
3260 }
3261 
3262 /* ===========================================================================
3263  * Flush the bit buffer and align the output on a byte boundary
3264  */
3265 local void bi_windup(deflate_state *s)
3266 {
3267     if (s->bi_valid > 8) {
3268         put_short(s, s->bi_buf);
3269     } else if (s->bi_valid > 0) {
3270         put_byte(s, (Byte)s->bi_buf);
3271     }
3272     s->bi_buf = 0;
3273     s->bi_valid = 0;
3274 #ifdef DEBUG_ZLIB
3275     s->bits_sent = (s->bits_sent+7) & ~7;
3276 #endif
3277 }
3278 
3279 /* ===========================================================================
3280  * Copy a stored block, storing first the length and its
3281  * one's complement if requested.
3282  */
3283 local void copy_block(deflate_state *s,
3284 	charf *buf,	/* the input data */
3285 	unsigned len,	/* its length */
3286 	int header)	/* true if block header must be written */
3287 {
3288     bi_windup(s);        /* align on byte boundary */
3289     s->last_eob_len = 8; /* enough lookahead for inflate */
3290 
3291     if (header) {
3292         put_short(s, (ush)len);
3293         put_short(s, (ush)~len);
3294 #ifdef DEBUG_ZLIB
3295         s->bits_sent += 2*16;
3296 #endif
3297     }
3298 #ifdef DEBUG_ZLIB
3299     s->bits_sent += (ulg)len<<3;
3300 #endif
3301     /* bundle up the put_byte(s, *buf++) calls */
3302     zmemcpy(&s->pending_buf[s->pending], buf, len);
3303     s->pending += len;
3304 }
3305 /* --- trees.c */
3306 
3307 /* +++ inflate.c */
3308 
3309 /* inflate.c -- zlib interface to inflate modules
3310  * Copyright (C) 1995-2002 Mark Adler
3311  * For conditions of distribution and use, see copyright notice in zlib.h
3312  */
3313 
3314 /* #include "zutil.h" */
3315 
3316 /* +++ infblock.h */
3317 
3318 /* infblock.h -- header to use infblock.c
3319  * Copyright (C) 1995-2002 Mark Adler
3320  * For conditions of distribution and use, see copyright notice in zlib.h
3321  */
3322 
3323 /* WARNING: this file should *not* be used by applications. It is
3324    part of the implementation of the compression library and is
3325    subject to change. Applications should only use zlib.h.
3326  */
3327 
3328 struct inflate_blocks_state;
3329 typedef struct inflate_blocks_state FAR inflate_blocks_statef;
3330 
3331 extern inflate_blocks_statef * inflate_blocks_new(
3332     z_streamp z,
3333     check_func c,               /* check function */
3334     uInt w);                   /* window size */
3335 
3336 extern int inflate_blocks(
3337     inflate_blocks_statef *,
3338     z_streamp ,
3339     int);                      /* initial return code */
3340 
3341 extern void inflate_blocks_reset(
3342     inflate_blocks_statef *,
3343     z_streamp ,
3344     uLongf *);                  /* check value on output */
3345 
3346 extern int inflate_blocks_free(
3347     inflate_blocks_statef *,
3348     z_streamp);
3349 
3350 extern void inflate_set_dictionary(
3351     inflate_blocks_statef *s,
3352     const Bytef *d,  /* dictionary */
3353     uInt  n);       /* dictionary length */
3354 
3355 extern int inflate_blocks_sync_point(
3356     inflate_blocks_statef *s);
3357 extern int inflate_addhistory(
3358     inflate_blocks_statef *,
3359     z_streamp);
3360 
3361 extern int inflate_packet_flush(
3362     inflate_blocks_statef *);
3363 
3364 /* --- infblock.h */
3365 
3366 #ifndef NO_DUMMY_DECL
3367 struct inflate_blocks_state {int dummy;}; /* for buggy compilers */
3368 #endif
3369 
3370 typedef enum {
3371       METHOD,   /* waiting for method byte */
3372       FLAG,     /* waiting for flag byte */
3373       DICT4,    /* four dictionary check bytes to go */
3374       DICT3,    /* three dictionary check bytes to go */
3375       DICT2,    /* two dictionary check bytes to go */
3376       DICT1,    /* one dictionary check byte to go */
3377       DICT0,    /* waiting for inflateSetDictionary */
3378       BLOCKS,   /* decompressing blocks */
3379       CHECK4,   /* four check bytes to go */
3380       CHECK3,   /* three check bytes to go */
3381       CHECK2,   /* two check bytes to go */
3382       CHECK1,   /* one check byte to go */
3383       DONE,     /* finished check, done */
3384       BAD}      /* got an error--stay here */
3385 inflate_mode;
3386 
3387 /* inflate private state */
3388 struct internal_state {
3389 
3390   /* mode */
3391   inflate_mode  mode;   /* current inflate mode */
3392 
3393   /* mode dependent information */
3394   union {
3395     uInt method;        /* if FLAGS, method byte */
3396     struct {
3397       uLong was;                /* computed check value */
3398       uLong need;               /* stream check value */
3399     } check;            /* if CHECK, check values to compare */
3400     uInt marker;        /* if BAD, inflateSync's marker bytes count */
3401   } sub;        /* submode */
3402 
3403   /* mode independent information */
3404   int  nowrap;          /* flag for no wrapper */
3405   uInt wbits;           /* log2(window size)  (8..15, defaults to 15) */
3406   inflate_blocks_statef
3407     *blocks;            /* current inflate_blocks state */
3408 
3409 };
3410 
3411 
3412 int ZEXPORT inflateReset(z_streamp z)
3413 {
3414   if (z == Z_NULL || z->state == Z_NULL)
3415     return Z_STREAM_ERROR;
3416   z->total_in = z->total_out = 0;
3417   z->msg = Z_NULL;
3418   z->state->mode = z->state->nowrap ? BLOCKS : METHOD;
3419   inflate_blocks_reset(z->state->blocks, z, Z_NULL);
3420   Tracev((stderr, "inflate: reset\n"));
3421   return Z_OK;
3422 }
3423 
3424 
3425 int ZEXPORT inflateEnd(z_streamp z)
3426 {
3427   if (z == Z_NULL || z->state == Z_NULL || z->zfree == Z_NULL)
3428     return Z_STREAM_ERROR;
3429   if (z->state->blocks != Z_NULL)
3430     inflate_blocks_free(z->state->blocks, z);
3431   ZFREE(z, z->state);
3432   z->state = Z_NULL;
3433   Tracev((stderr, "inflate: end\n"));
3434   return Z_OK;
3435 }
3436 
3437 
3438 int ZEXPORT inflateInit2_(z_streamp z, int w, const char *vers, int stream_size)
3439 {
3440   if (vers == Z_NULL || vers[0] != ZLIB_VERSION[0] ||
3441       stream_size != sizeof(z_stream))
3442       return Z_VERSION_ERROR;
3443 
3444   /* initialize state */
3445   if (z == Z_NULL)
3446     return Z_STREAM_ERROR;
3447   z->msg = Z_NULL;
3448 #ifndef NO_ZCFUNCS
3449   if (z->zalloc == Z_NULL)
3450   {
3451     z->zalloc = zcalloc;
3452     z->opaque = (voidpf)0;
3453   }
3454   if (z->zfree == Z_NULL) z->zfree = zcfree;
3455 #endif
3456   if ((z->state = (struct internal_state FAR *)
3457        ZALLOC(z,1,sizeof(struct internal_state))) == Z_NULL)
3458     return Z_MEM_ERROR;
3459   z->state->blocks = Z_NULL;
3460 
3461   /* handle undocumented nowrap option (no zlib header or check) */
3462   z->state->nowrap = 0;
3463   if (w < 0)
3464   {
3465     w = - w;
3466     z->state->nowrap = 1;
3467   }
3468 
3469   /* set window size */
3470   if (w < 8 || w > 15)
3471   {
3472     inflateEnd(z);
3473     return Z_STREAM_ERROR;
3474   }
3475   z->state->wbits = (uInt)w;
3476 
3477   /* create inflate_blocks state */
3478   if ((z->state->blocks =
3479       inflate_blocks_new(z, z->state->nowrap ? Z_NULL : adler32, (uInt)1 << w))
3480       == Z_NULL)
3481   {
3482     inflateEnd(z);
3483     return Z_MEM_ERROR;
3484   }
3485   Tracev((stderr, "inflate: allocated\n"));
3486 
3487   /* reset state */
3488   inflateReset(z);
3489   return Z_OK;
3490 }
3491 
3492 
3493 #if 0
3494 int ZEXPORT inflateInit_(z_streamp z, const char *vers, int stream_size)
3495 {
3496   return inflateInit2_(z, DEF_WBITS, vers, stream_size);
3497 }
3498 #endif
3499 
3500 
3501 #define NEEDBYTE {if(z->avail_in==0)goto empty;r=Z_OK;}
3502 #define NEXTBYTE (z->avail_in--,z->total_in++,*z->next_in++)
3503 
3504 int ZEXPORT inflate(z_streamp z, int f)
3505 {
3506   int r, r2;
3507   uInt b;
3508 
3509   if (z == Z_NULL || z->state == Z_NULL || z->next_in == Z_NULL)
3510     return Z_STREAM_ERROR;
3511   r2 = f == Z_FINISH ? Z_BUF_ERROR : Z_OK;
3512   r = Z_BUF_ERROR;
3513   while (1) switch (z->state->mode)
3514   {
3515     case METHOD:
3516       NEEDBYTE
3517       if (((z->state->sub.method = NEXTBYTE) & 0xf) != Z_DEFLATED)
3518       {
3519         z->state->mode = BAD;
3520         z->msg = "unknown compression method";
3521         z->state->sub.marker = 5;       /* can't try inflateSync */
3522         break;
3523       }
3524       if ((z->state->sub.method >> 4) + 8 > z->state->wbits)
3525       {
3526         z->state->mode = BAD;
3527         z->msg = "invalid window size";
3528         z->state->sub.marker = 5;       /* can't try inflateSync */
3529         break;
3530       }
3531       z->state->mode = FLAG;
3532       /* FALLTHROUGH */
3533     case FLAG:
3534       NEEDBYTE
3535       b = NEXTBYTE;
3536       if (((z->state->sub.method << 8) + b) % 31)
3537       {
3538         z->state->mode = BAD;
3539         z->msg = "incorrect header check";
3540         z->state->sub.marker = 5;       /* can't try inflateSync */
3541         break;
3542       }
3543       Tracev((stderr, "inflate: zlib header ok\n"));
3544       if (!(b & PRESET_DICT))
3545       {
3546         z->state->mode = BLOCKS;
3547         break;
3548       }
3549       z->state->mode = DICT4;
3550       /* FALLTHROUGH */
3551     case DICT4:
3552       NEEDBYTE
3553       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3554       z->state->mode = DICT3;
3555       /* FALLTHROUGH */
3556     case DICT3:
3557       NEEDBYTE
3558       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3559       z->state->mode = DICT2;
3560       /* FALLTHROUGH */
3561     case DICT2:
3562       NEEDBYTE
3563       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3564       z->state->mode = DICT1;
3565       /* FALLTHROUGH */
3566     case DICT1:
3567       NEEDBYTE
3568       z->state->sub.check.need += (uLong)NEXTBYTE;
3569       z->adler = z->state->sub.check.need;
3570       z->state->mode = DICT0;
3571       return Z_NEED_DICT;
3572     case DICT0:
3573       z->state->mode = BAD;
3574       z->msg = "need dictionary";
3575       z->state->sub.marker = 0;       /* can try inflateSync */
3576       return Z_STREAM_ERROR;
3577     case BLOCKS:
3578       r = inflate_blocks(z->state->blocks, z, r);
3579       if (f == Z_PACKET_FLUSH && z->avail_in == 0 && z->avail_out != 0)
3580          r = inflate_packet_flush(z->state->blocks);
3581       if (r == Z_DATA_ERROR)
3582       {
3583         z->state->mode = BAD;
3584         z->state->sub.marker = 0;       /* can try inflateSync */
3585         break;
3586       }
3587       if (r == Z_OK)
3588         r = r2;
3589       if (r != Z_STREAM_END)
3590         return r;
3591       r = r2;
3592       inflate_blocks_reset(z->state->blocks, z, &z->state->sub.check.was);
3593       if (z->state->nowrap)
3594       {
3595         z->state->mode = DONE;
3596         break;
3597       }
3598       z->state->mode = CHECK4;
3599       /* FALLTHROUGH */
3600     case CHECK4:
3601       NEEDBYTE
3602       z->state->sub.check.need = (uLong)NEXTBYTE << 24;
3603       z->state->mode = CHECK3;
3604       /* FALLTHROUGH */
3605     case CHECK3:
3606       NEEDBYTE
3607       z->state->sub.check.need += (uLong)NEXTBYTE << 16;
3608       z->state->mode = CHECK2;
3609       /* FALLTHROUGH */
3610     case CHECK2:
3611       NEEDBYTE
3612       z->state->sub.check.need += (uLong)NEXTBYTE << 8;
3613       z->state->mode = CHECK1;
3614       /* FALLTHROUGH */
3615     case CHECK1:
3616       NEEDBYTE
3617       z->state->sub.check.need += (uLong)NEXTBYTE;
3618 
3619       if (z->state->sub.check.was != z->state->sub.check.need)
3620       {
3621         z->state->mode = BAD;
3622         z->msg = "incorrect data check";
3623         z->state->sub.marker = 5;       /* can't try inflateSync */
3624         break;
3625       }
3626       Tracev((stderr, "inflate: zlib check ok\n"));
3627       z->state->mode = DONE;
3628       /* FALLTHROUGH */
3629     case DONE:
3630       return Z_STREAM_END;
3631     case BAD:
3632       return Z_DATA_ERROR;
3633     default:
3634       return Z_STREAM_ERROR;
3635   }
3636  empty:
3637   if (f != Z_PACKET_FLUSH)
3638     return r;
3639   z->state->mode = BAD;
3640   z->msg = "need more for packet flush";
3641   z->state->sub.marker = 0;
3642   return Z_DATA_ERROR;
3643 }
3644 
3645 
3646 #if 0
3647 int ZEXPORT inflateSetDictionary(z_streamp z,
3648 	const Bytef *dictionary,
3649 	uInt dictLength)
3650 {
3651   uInt length = dictLength;
3652 
3653   if (z == Z_NULL || z->state == Z_NULL || z->state->mode != DICT0)
3654     return Z_STREAM_ERROR;
3655 
3656   if (adler32(1L, dictionary, dictLength) != z->adler) return Z_DATA_ERROR;
3657   z->adler = 1L;
3658 
3659   if (length >= ((uInt)1<<z->state->wbits))
3660   {
3661     length = (1<<z->state->wbits)-1;
3662     dictionary += dictLength - length;
3663   }
3664   inflate_set_dictionary(z->state->blocks, dictionary, length);
3665   z->state->mode = BLOCKS;
3666   return Z_OK;
3667 }
3668 #endif
3669 
3670 /*
3671  * This subroutine adds the data at next_in/avail_in to the output history
3672  * without performing any output.  The output buffer must be "caught up";
3673  * i.e. no pending output (hence s->read equals s->write), and the state must
3674  * be BLOCKS (i.e. we should be willing to see the start of a series of
3675  * BLOCKS).  On exit, the output will also be caught up, and the checksum
3676  * will have been updated if need be.
3677  */
3678 
3679 int inflateIncomp(z_stream *z)
3680 {
3681     if (z->state->mode != BLOCKS)
3682 	return Z_DATA_ERROR;
3683     return inflate_addhistory(z->state->blocks, z);
3684 }
3685 
3686 #if 0
3687 int ZEXPORT inflateSync(z)
3688 z_streamp z;
3689 {
3690   uInt n;       /* number of bytes to look at */
3691   Bytef *p;     /* pointer to bytes */
3692   uInt m;       /* number of marker bytes found in a row */
3693   uLong r, w;   /* temporaries to save total_in and total_out */
3694 
3695   /* set up */
3696   if (z == Z_NULL || z->state == Z_NULL)
3697     return Z_STREAM_ERROR;
3698   if (z->state->mode != BAD)
3699   {
3700     z->state->mode = BAD;
3701     z->state->sub.marker = 0;
3702   }
3703   if ((n = z->avail_in) == 0)
3704     return Z_BUF_ERROR;
3705   p = z->next_in;
3706   m = z->state->sub.marker;
3707 
3708   /* search */
3709   while (n && m < 4)
3710   {
3711     static const Byte mark[4] = {0, 0, 0xff, 0xff};
3712     if (*p == mark[m])
3713       m++;
3714     else if (*p)
3715       m = 0;
3716     else
3717       m = 4 - m;
3718     p++, n--;
3719   }
3720 
3721   /* restore */
3722   z->total_in += p - z->next_in;
3723   z->next_in = p;
3724   z->avail_in = n;
3725   z->state->sub.marker = m;
3726 
3727   /* return no joy or set up to restart on a new block */
3728   if (m != 4)
3729     return Z_DATA_ERROR;
3730   r = z->total_in;  w = z->total_out;
3731   inflateReset(z);
3732   z->total_in = r;  z->total_out = w;
3733   z->state->mode = BLOCKS;
3734   return Z_OK;
3735 }
3736 #endif
3737 
3738 
3739 /* Returns true if inflate is currently at the end of a block generated
3740  * by Z_SYNC_FLUSH or Z_FULL_FLUSH. This function is used by one PPP
3741  * implementation to provide an additional safety check. PPP uses Z_SYNC_FLUSH
3742  * but removes the length bytes of the resulting empty stored block. When
3743  * decompressing, PPP checks that at the end of input packet, inflate is
3744  * waiting for these length bytes.
3745  */
3746 #if 0
3747 int ZEXPORT inflateSyncPoint(z)
3748 z_streamp z;
3749 {
3750   if (z == Z_NULL || z->state == Z_NULL || z->state->blocks == Z_NULL)
3751     return Z_STREAM_ERROR;
3752   return inflate_blocks_sync_point(z->state->blocks);
3753 }
3754 #endif
3755 #undef NEEDBYTE
3756 #undef NEXTBYTE
3757 /* --- inflate.c */
3758 
3759 /* +++ infblock.c */
3760 
3761 /* infblock.c -- interpret and process block types to last block
3762  * Copyright (C) 1995-2002 Mark Adler
3763  * For conditions of distribution and use, see copyright notice in zlib.h
3764  */
3765 
3766 /* #include "zutil.h" */
3767 /* #include "infblock.h" */
3768 
3769 /* +++ inftrees.h */
3770 
3771 /* inftrees.h -- header to use inftrees.c
3772  * Copyright (C) 1995-2002 Mark Adler
3773  * For conditions of distribution and use, see copyright notice in zlib.h
3774  */
3775 
3776 /* WARNING: this file should *not* be used by applications. It is
3777    part of the implementation of the compression library and is
3778    subject to change. Applications should only use zlib.h.
3779  */
3780 
3781 /* Huffman code lookup table entry--this entry is four bytes for machines
3782    that have 16-bit pointers (e.g. PC's in the small or medium model). */
3783 
3784 typedef struct inflate_huft_s FAR inflate_huft;
3785 
3786 struct inflate_huft_s {
3787   union {
3788     struct {
3789       Byte Exop;        /* number of extra bits or operation */
3790       Byte Bits;        /* number of bits in this code or subcode */
3791     } what;
3792     uInt pad;           /* pad structure to a power of 2 (4 bytes for */
3793   } word;               /*  16-bit, 8 bytes for 32-bit int's) */
3794   uInt base;            /* literal, length base, distance base,
3795                            or table offset */
3796 };
3797 
3798 /* Maximum size of dynamic tree.  The maximum found in a long but non-
3799    exhaustive search was 1004 huft structures (850 for length/literals
3800    and 154 for distances, the latter actually the result of an
3801    exhaustive search).  The actual maximum is not known, but the
3802    value below is more than safe. */
3803 #define MANY 1440
3804 
3805 extern int inflate_trees_bits(
3806     uIntf *,                    /* 19 code lengths */
3807     uIntf *,                    /* bits tree desired/actual depth */
3808     inflate_huft * FAR *,       /* bits tree result */
3809     inflate_huft *,             /* space for trees */
3810     z_streamp);                /* for messages */
3811 
3812 extern int inflate_trees_dynamic(
3813     uInt,                       /* number of literal/length codes */
3814     uInt,                       /* number of distance codes */
3815     uIntf *,                    /* that many (total) code lengths */
3816     uIntf *,                    /* literal desired/actual bit depth */
3817     uIntf *,                    /* distance desired/actual bit depth */
3818     inflate_huft * FAR *,       /* literal/length tree result */
3819     inflate_huft * FAR *,       /* distance tree result */
3820     inflate_huft *,             /* space for trees */
3821     z_streamp);                /* for messages */
3822 
3823 extern int inflate_trees_fixed(
3824     uIntf *,                    /* literal desired/actual bit depth */
3825     uIntf *,                    /* distance desired/actual bit depth */
3826     inflate_huft * FAR *,       /* literal/length tree result */
3827     inflate_huft * FAR *,       /* distance tree result */
3828     z_streamp);                /* for memory allocation */
3829 /* --- inftrees.h */
3830 
3831 /* +++ infcodes.h */
3832 
3833 /* infcodes.h -- header to use infcodes.c
3834  * Copyright (C) 1995-2002 Mark Adler
3835  * For conditions of distribution and use, see copyright notice in zlib.h
3836  */
3837 
3838 /* WARNING: this file should *not* be used by applications. It is
3839    part of the implementation of the compression library and is
3840    subject to change. Applications should only use zlib.h.
3841  */
3842 
3843 struct inflate_codes_state;
3844 typedef struct inflate_codes_state FAR inflate_codes_statef;
3845 
3846 extern inflate_codes_statef *inflate_codes_new(
3847     uInt, uInt,
3848     inflate_huft *, inflate_huft *,
3849     z_streamp );
3850 
3851 extern int inflate_codes(
3852     inflate_blocks_statef *,
3853     z_streamp ,
3854     int);
3855 
3856 extern void inflate_codes_free(
3857     inflate_codes_statef *,
3858     z_streamp );
3859 
3860 /* --- infcodes.h */
3861 
3862 /* +++ infutil.h */
3863 
3864 /* infutil.h -- types and macros common to blocks and codes
3865  * Copyright (C) 1995-2002 Mark Adler
3866  * For conditions of distribution and use, see copyright notice in zlib.h
3867  */
3868 
3869 /* WARNING: this file should *not* be used by applications. It is
3870    part of the implementation of the compression library and is
3871    subject to change. Applications should only use zlib.h.
3872  */
3873 
3874 #ifndef _INFUTIL_H
3875 #define _INFUTIL_H
3876 
3877 typedef enum {
3878       TYPE,     /* get type bits (3, including end bit) */
3879       LENS,     /* get lengths for stored */
3880       STORED,   /* processing stored block */
3881       TABLE,    /* get table lengths */
3882       BTREE,    /* get bit lengths tree for a dynamic block */
3883       DTREE,    /* get length, distance trees for a dynamic block */
3884       CODES,    /* processing fixed or dynamic block */
3885       DRY,      /* output remaining window bytes */
3886       DONEB,    /* finished last block, done */
3887       BADB}     /* got a data error--stuck here */
3888 inflate_block_mode;
3889 
3890 /* inflate blocks semi-private state */
3891 struct inflate_blocks_state {
3892 
3893   /* mode */
3894   inflate_block_mode  mode;     /* current inflate_block mode */
3895 
3896   /* mode dependent information */
3897   union {
3898     uInt left;          /* if STORED, bytes left to copy */
3899     struct {
3900       uInt table;               /* table lengths (14 bits) */
3901       uInt index;               /* index into blens (or border) */
3902       uIntf *blens;             /* bit lengths of codes */
3903       uInt bb;                  /* bit length tree depth */
3904       inflate_huft *tb;         /* bit length decoding tree */
3905     } trees;            /* if DTREE, decoding info for trees */
3906     struct {
3907       inflate_codes_statef
3908          *codes;
3909     } decode;           /* if CODES, current state */
3910   } sub;                /* submode */
3911   uInt last;            /* true if this block is the last block */
3912 
3913   /* mode independent information */
3914   uInt bitk;            /* bits in bit buffer */
3915   uLong bitb;           /* bit buffer */
3916   inflate_huft *hufts;  /* single malloc for tree space */
3917   Bytef *window;        /* sliding window */
3918   Bytef *end;           /* one byte after sliding window */
3919   Bytef *read;          /* window read pointer */
3920   Bytef *write;         /* window write pointer */
3921   check_func checkfn;   /* check function */
3922   uLong check;          /* check on output */
3923 
3924 };
3925 
3926 
3927 /* defines for inflate input/output */
3928 /*   update pointers and return */
3929 #define UPDBITS {s->bitb=b;s->bitk=k;}
3930 #define UPDIN {z->avail_in=n;z->total_in+=p-z->next_in;z->next_in=p;}
3931 #define UPDOUT {s->write=q;}
3932 #define UPDATE {UPDBITS UPDIN UPDOUT}
3933 #define LEAVE {UPDATE return inflate_flush(s,z,r);}
3934 /*   get bytes and bits */
3935 #define LOADIN {p=z->next_in;n=z->avail_in;b=s->bitb;k=s->bitk;}
3936 #define NEEDBYTE {if(n)r=Z_OK;else LEAVE}
3937 #define NEXTBYTE (n--,*p++)
3938 #define NEEDBITS(j) {while(k<(j)){NEEDBYTE;b|=((uLong)NEXTBYTE)<<k;k+=8;}}
3939 #define DUMPBITS(j) {b>>=(j);k-=(j);}
3940 /*   output bytes */
3941 #define WAVAIL (uInt)(q<s->read?s->read-q-1:s->end-q)
3942 #define LOADOUT {q=s->write;m=(uInt)WAVAIL;}
3943 #define WRAP {if(q==s->end&&s->read!=s->window){q=s->window;m=(uInt)WAVAIL;}}
3944 #define FLUSH {UPDOUT r=inflate_flush(s,z,r); LOADOUT}
3945 #define NEEDOUT {if(m==0){WRAP if(m==0){FLUSH WRAP if(m==0) LEAVE}}r=Z_OK;}
3946 #define OUTBYTE(a) {*q++=(Byte)(a);m--;}
3947 /*   load local pointers */
3948 #define LOAD {LOADIN LOADOUT}
3949 
3950 /* masks for lower bits (size given to avoid silly warnings with Visual C++) */
3951 extern uInt inflate_mask[17];
3952 
3953 /* copy as much as possible from the sliding window to the output area */
3954 extern int inflate_flush(
3955     inflate_blocks_statef *,
3956     z_streamp ,
3957     int);
3958 
3959 #ifndef NO_DUMMY_DECL
3960 struct internal_state      {int dummy;}; /* for buggy compilers */
3961 #endif
3962 
3963 #endif
3964 /* --- infutil.h */
3965 
3966 #ifndef NO_DUMMY_DECL
3967 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
3968 #endif
3969 
3970 /* simplify the use of the inflate_huft type with some defines */
3971 #define exop word.what.Exop
3972 #define bits word.what.Bits
3973 
3974 /* Table for deflate from PKZIP's appnote.txt. */
3975 local const uInt border[] = { /* Order of the bit length code lengths */
3976         16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
3977 
3978 /*
3979    Notes beyond the 1.93a appnote.txt:
3980 
3981    1. Distance pointers never point before the beginning of the output
3982       stream.
3983    2. Distance pointers can point back across blocks, up to 32k away.
3984    3. There is an implied maximum of 7 bits for the bit length table and
3985       15 bits for the actual data.
3986    4. If only one code exists, then it is encoded using one bit.  (Zero
3987       would be more efficient, but perhaps a little confusing.)  If two
3988       codes exist, they are coded using one bit each (0 and 1).
3989    5. There is no way of sending zero distance codes--a dummy must be
3990       sent if there are none.  (History: a pre 2.0 version of PKZIP would
3991       store blocks with no distance codes, but this was discovered to be
3992       too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
3993       zero distance codes, which is sent as one code of zero bits in
3994       length.
3995    6. There are up to 286 literal/length codes.  Code 256 represents the
3996       end-of-block.  Note however that the static length tree defines
3997       288 codes just to fill out the Huffman codes.  Codes 286 and 287
3998       cannot be used though, since there is no length base or extra bits
3999       defined for them.  Similarly, there are up to 30 distance codes.
4000       However, static trees define 32 codes (all 5 bits) to fill out the
4001       Huffman codes, but the last two had better not show up in the data.
4002    7. Unzip can check dynamic Huffman blocks for complete code sets.
4003       The exception is that a single code would not be complete (see #4).
4004    8. The five bits following the block type is really the number of
4005       literal codes sent minus 257.
4006    9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
4007       (1+6+6).  Therefore, to output three times the length, you output
4008       three codes (1+1+1), whereas to output four times the same length,
4009       you only need two codes (1+3).  Hmm.
4010   10. In the tree reconstruction algorithm, Code = Code + Increment
4011       only if BitLength(i) is not zero.  (Pretty obvious.)
4012   11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
4013   12. Note: length code 284 can represent 227-258, but length code 285
4014       really is 258.  The last length deserves its own, short code
4015       since it gets used a lot in very redundant files.  The length
4016       258 is special since 258 - 3 (the min match length) is 255.
4017   13. The literal/length and distance code bit lengths are read as a
4018       single stream of lengths.  It is possible (and advantageous) for
4019       a repeat code (16, 17, or 18) to go across the boundary between
4020       the two sets of lengths.
4021  */
4022 
4023 
4024 void inflate_blocks_reset(inflate_blocks_statef *s, z_streamp z, uLongf *c)
4025 {
4026   if (c != Z_NULL)
4027     *c = s->check;
4028   if (s->mode == BTREE || s->mode == DTREE)
4029     ZFREE(z, s->sub.trees.blens);
4030   if (s->mode == CODES)
4031     inflate_codes_free(s->sub.decode.codes, z);
4032   s->mode = TYPE;
4033   s->bitk = 0;
4034   s->bitb = 0;
4035   s->read = s->write = s->window;
4036   if (s->checkfn != Z_NULL)
4037     z->adler = s->check = (*s->checkfn)(0L, (const Bytef *)Z_NULL, 0);
4038   Tracev((stderr, "inflate:   blocks reset\n"));
4039 }
4040 
4041 
4042 inflate_blocks_statef *inflate_blocks_new(z_streamp z, check_func c, uInt w)
4043 {
4044   inflate_blocks_statef *s;
4045 
4046   if ((s = (inflate_blocks_statef *)ZALLOC
4047        (z,1,sizeof(struct inflate_blocks_state))) == Z_NULL)
4048     return s;
4049   if ((s->hufts =
4050        (inflate_huft *)ZALLOC(z, sizeof(inflate_huft), MANY)) == Z_NULL)
4051   {
4052     ZFREE(z, s);
4053     return Z_NULL;
4054   }
4055   if ((s->window = (Bytef *)ZALLOC(z, 1, w)) == Z_NULL)
4056   {
4057     ZFREE(z, s->hufts);
4058     ZFREE(z, s);
4059     return Z_NULL;
4060   }
4061   s->end = s->window + w;
4062   s->checkfn = c;
4063   s->mode = TYPE;
4064   Tracev((stderr, "inflate:   blocks allocated\n"));
4065   inflate_blocks_reset(s, z, Z_NULL);
4066   return s;
4067 }
4068 
4069 
4070 int inflate_blocks(inflate_blocks_statef *s, z_streamp z, int r)
4071 {
4072   uInt t;               /* temporary storage */
4073   uLong b;              /* bit buffer */
4074   uInt k;               /* bits in bit buffer */
4075   Bytef *p;             /* input data pointer */
4076   uInt n;               /* bytes available there */
4077   Bytef *q;             /* output window write pointer */
4078   uInt m;               /* bytes to end of window or read pointer */
4079 
4080   /* copy input/output information to locals (UPDATE macro restores) */
4081   LOAD
4082 
4083   /* process input based on current state */
4084   while (1) switch (s->mode)
4085   {
4086     case TYPE:
4087       NEEDBITS(3)
4088       t = (uInt)b & 7;
4089       s->last = t & 1;
4090       switch (t >> 1)
4091       {
4092         case 0:                         /* stored */
4093           Tracev((stderr, "inflate:     stored block%s\n",
4094                  s->last ? " (last)" : ""));
4095           DUMPBITS(3)
4096           t = k & 7;                    /* go to byte boundary */
4097           DUMPBITS(t)
4098           s->mode = LENS;               /* get length of stored block */
4099           break;
4100         case 1:                         /* fixed */
4101           Tracev((stderr, "inflate:     fixed codes block%s\n",
4102                  s->last ? " (last)" : ""));
4103           {
4104             uInt bl, bd;
4105             inflate_huft *tl, *td;
4106 
4107             inflate_trees_fixed(&bl, &bd, &tl, &td, z);
4108             s->sub.decode.codes = inflate_codes_new(bl, bd, tl, td, z);
4109             if (s->sub.decode.codes == Z_NULL)
4110             {
4111               r = Z_MEM_ERROR;
4112               LEAVE
4113             }
4114           }
4115           DUMPBITS(3)
4116           s->mode = CODES;
4117           break;
4118         case 2:                         /* dynamic */
4119           Tracev((stderr, "inflate:     dynamic codes block%s\n",
4120                  s->last ? " (last)" : ""));
4121           DUMPBITS(3)
4122           s->mode = TABLE;
4123           break;
4124         case 3:                         /* illegal */
4125           DUMPBITS(3)
4126           s->mode = BADB;
4127           z->msg = "invalid block type";
4128           r = Z_DATA_ERROR;
4129           LEAVE
4130       }
4131       break;
4132     case LENS:
4133       NEEDBITS(32)
4134       if ((((~b) >> 16) & 0xffff) != (b & 0xffff))
4135       {
4136         s->mode = BADB;
4137         z->msg = "invalid stored block lengths";
4138         r = Z_DATA_ERROR;
4139         LEAVE
4140       }
4141       s->sub.left = (uInt)b & 0xffff;
4142       b = k = 0;                      /* dump bits */
4143       Tracev((stderr, "inflate:       stored length %u\n", s->sub.left));
4144       s->mode = s->sub.left ? STORED : (s->last ? DRY : TYPE);
4145       break;
4146     case STORED:
4147       if (n == 0)
4148         LEAVE
4149       NEEDOUT
4150       t = s->sub.left;
4151       if (t > n) t = n;
4152       if (t > m) t = m;
4153       zmemcpy(q, p, t);
4154       p += t;  n -= t;
4155       q += t;  m -= t;
4156       if ((s->sub.left -= t) != 0)
4157         break;
4158       Tracev((stderr, "inflate:       stored end, %lu total out\n",
4159               z->total_out + (q >= s->read ? q - s->read :
4160               (s->end - s->read) + (q - s->window))));
4161       s->mode = s->last ? DRY : TYPE;
4162       break;
4163     case TABLE:
4164       NEEDBITS(14)
4165       s->sub.trees.table = t = (uInt)b & 0x3fff;
4166 #ifndef PKZIP_BUG_WORKAROUND
4167       if ((t & 0x1f) > 29 || ((t >> 5) & 0x1f) > 29)
4168       {
4169         s->mode = BADB;
4170         z->msg = "too many length or distance symbols";
4171         r = Z_DATA_ERROR;
4172         LEAVE
4173       }
4174 #endif
4175       t = 258 + (t & 0x1f) + ((t >> 5) & 0x1f);
4176       if ((s->sub.trees.blens = (uIntf*)ZALLOC(z, t, sizeof(uInt))) == Z_NULL)
4177       {
4178         r = Z_MEM_ERROR;
4179         LEAVE
4180       }
4181       DUMPBITS(14)
4182       s->sub.trees.index = 0;
4183       Tracev((stderr, "inflate:       table sizes ok\n"));
4184       s->mode = BTREE;
4185     case BTREE:
4186       while (s->sub.trees.index < 4 + (s->sub.trees.table >> 10))
4187       {
4188         NEEDBITS(3)
4189         s->sub.trees.blens[border[s->sub.trees.index++]] = (uInt)b & 7;
4190         DUMPBITS(3)
4191       }
4192       while (s->sub.trees.index < 19)
4193         s->sub.trees.blens[border[s->sub.trees.index++]] = 0;
4194       s->sub.trees.bb = 7;
4195       t = inflate_trees_bits(s->sub.trees.blens, &s->sub.trees.bb,
4196                              &s->sub.trees.tb, s->hufts, z);
4197       if (t != Z_OK)
4198       {
4199         r = t;
4200         if (r == Z_DATA_ERROR)
4201         {
4202           ZFREE(z, s->sub.trees.blens);
4203           s->mode = BADB;
4204         }
4205         LEAVE
4206       }
4207       s->sub.trees.index = 0;
4208       Tracev((stderr, "inflate:       bits tree ok\n"));
4209       s->mode = DTREE;
4210     case DTREE:
4211       while (t = s->sub.trees.table,
4212              s->sub.trees.index < 258 + (t & 0x1f) + ((t >> 5) & 0x1f))
4213       {
4214         inflate_huft *h;
4215         uInt i, j, c;
4216 
4217         t = s->sub.trees.bb;
4218         NEEDBITS(t)
4219         h = s->sub.trees.tb + ((uInt)b & inflate_mask[t]);
4220         t = h->bits;
4221         c = h->base;
4222         if (c < 16)
4223         {
4224           DUMPBITS(t)
4225           s->sub.trees.blens[s->sub.trees.index++] = c;
4226         }
4227         else /* c == 16..18 */
4228         {
4229           i = c == 18 ? 7 : c - 14;
4230           j = c == 18 ? 11 : 3;
4231           NEEDBITS(t + i)
4232           DUMPBITS(t)
4233           j += (uInt)b & inflate_mask[i];
4234           DUMPBITS(i)
4235           i = s->sub.trees.index;
4236           t = s->sub.trees.table;
4237           if (i + j > 258 + (t & 0x1f) + ((t >> 5) & 0x1f) ||
4238               (c == 16 && i < 1))
4239           {
4240             ZFREE(z, s->sub.trees.blens);
4241             s->mode = BADB;
4242             z->msg = "invalid bit length repeat";
4243             r = Z_DATA_ERROR;
4244             LEAVE
4245           }
4246           c = c == 16 ? s->sub.trees.blens[i - 1] : 0;
4247           do {
4248             s->sub.trees.blens[i++] = c;
4249           } while (--j);
4250           s->sub.trees.index = i;
4251         }
4252       }
4253       s->sub.trees.tb = Z_NULL;
4254       {
4255         uInt bl, bd;
4256         inflate_huft *tl, *td;
4257         inflate_codes_statef *c;
4258 
4259         bl = 9;         /* must be <= 9 for lookahead assumptions */
4260         bd = 6;         /* must be <= 9 for lookahead assumptions */
4261         t = s->sub.trees.table;
4262         t = inflate_trees_dynamic(257 + (t & 0x1f), 1 + ((t >> 5) & 0x1f),
4263                                   s->sub.trees.blens, &bl, &bd, &tl, &td,
4264                                   s->hufts, z);
4265         if (t != Z_OK)
4266         {
4267           if (t == (uInt)Z_DATA_ERROR)
4268           {
4269             ZFREE(z, s->sub.trees.blens);
4270             s->mode = BADB;
4271           }
4272           r = t;
4273           LEAVE
4274         }
4275         Tracev((stderr, "inflate:       trees ok\n"));
4276         if ((c = inflate_codes_new(bl, bd, tl, td, z)) == Z_NULL)
4277         {
4278           r = Z_MEM_ERROR;
4279           LEAVE
4280         }
4281         s->sub.decode.codes = c;
4282       }
4283       ZFREE(z, s->sub.trees.blens);
4284       s->mode = CODES;
4285       /* FALLTHROUGH */
4286     case CODES:
4287       UPDATE
4288       if ((r = inflate_codes(s, z, r)) != Z_STREAM_END)
4289         return inflate_flush(s, z, r);
4290       r = Z_OK;
4291       inflate_codes_free(s->sub.decode.codes, z);
4292       LOAD
4293       Tracev((stderr, "inflate:       codes end, %lu total out\n",
4294               z->total_out + (q >= s->read ? q - s->read :
4295               (s->end - s->read) + (q - s->window))));
4296       if (!s->last)
4297       {
4298         s->mode = TYPE;
4299         break;
4300       }
4301       s->mode = DRY;
4302       /* FALLTHROUGH */
4303     case DRY:
4304       FLUSH
4305       if (s->read != s->write)
4306         LEAVE
4307       s->mode = DONEB;
4308       /* FALLTHROUGH */
4309     case DONEB:
4310       r = Z_STREAM_END;
4311       LEAVE
4312     case BADB:
4313       r = Z_DATA_ERROR;
4314       LEAVE
4315     default:
4316       r = Z_STREAM_ERROR;
4317       LEAVE
4318   }
4319 }
4320 
4321 
4322 int inflate_blocks_free(inflate_blocks_statef *s, z_streamp z)
4323 {
4324   inflate_blocks_reset(s, z, Z_NULL);
4325   ZFREE(z, s->window);
4326   ZFREE(z, s->hufts);
4327   ZFREE(z, s);
4328   Tracev((stderr, "inflate:   blocks freed\n"));
4329   return Z_OK;
4330 }
4331 
4332 
4333 #if 0
4334 void inflate_set_dictionary(inflate_blocks_statef *s, const Bytef *d, uInt n)
4335 {
4336   zmemcpy(s->window, d, n);
4337   s->read = s->write = s->window + n;
4338 }
4339 #endif
4340 
4341 /*
4342  * This subroutine adds the data at next_in/avail_in to the output history
4343  * without performing any output.  The output buffer must be "caught up";
4344  * i.e. no pending output (hence s->read equals s->write), and the state must
4345  * be BLOCKS (i.e. we should be willing to see the start of a series of
4346  * BLOCKS).  On exit, the output will also be caught up, and the checksum
4347  * will have been updated if need be.
4348  */
4349 int inflate_addhistory(inflate_blocks_statef *s, z_stream *z)
4350 {
4351     uLong b;              /* bit buffer */  /* NOT USED HERE */
4352     uInt k;               /* bits in bit buffer */ /* NOT USED HERE */
4353     uInt t;               /* temporary storage */
4354     Bytef *p;             /* input data pointer */
4355     uInt n;               /* bytes available there */
4356     Bytef *q;             /* output window write pointer */
4357     uInt m;               /* bytes to end of window or read pointer */
4358 
4359     if (s->read != s->write)
4360 	return Z_STREAM_ERROR;
4361     if (s->mode != TYPE)
4362 	return Z_DATA_ERROR;
4363 
4364     /* we're ready to rock */
4365     LOAD
4366     /* while there is input ready, copy to output buffer, moving
4367      * pointers as needed.
4368      */
4369     while (n) {
4370 	t = n;  /* how many to do */
4371 	/* is there room until end of buffer? */
4372 	if (t > m) t = m;
4373 	/* update check information */
4374 	if (s->checkfn != Z_NULL)
4375 	    s->check = (*s->checkfn)(s->check, q, t);
4376 	zmemcpy(q, p, t);
4377 	q += t;
4378 	p += t;
4379 	n -= t;
4380 	z->total_out += t;
4381 	s->read = q;    /* drag read pointer forward */
4382 /*      WWRAP  */ 	/* expand WWRAP macro by hand to handle s->read */
4383 	if (q == s->end) {
4384 	    s->read = q = s->window;
4385 	    m = WAVAIL;
4386 	}
4387     }
4388     UPDATE
4389     return Z_OK;
4390 }
4391 
4392 
4393 /*
4394  * At the end of a Deflate-compressed PPP packet, we expect to have seen
4395  * a `stored' block type value but not the (zero) length bytes.
4396  */
4397 int inflate_packet_flush(inflate_blocks_statef *s)
4398 {
4399     if (s->mode != LENS)
4400 	return Z_DATA_ERROR;
4401     s->mode = TYPE;
4402     return Z_OK;
4403 }
4404 
4405 /* Returns true if inflate is currently at the end of a block generated
4406  * by Z_SYNC_FLUSH or Z_FULL_FLUSH.
4407  * IN assertion: s != Z_NULL
4408  */
4409 #if 0
4410 int inflate_blocks_sync_point(s)
4411 inflate_blocks_statef *s;
4412 {
4413   return s->mode == LENS;
4414 }
4415 #endif
4416 /* --- infblock.c */
4417 
4418 
4419 /* +++ inftrees.c */
4420 
4421 /* inftrees.c -- generate Huffman trees for efficient decoding
4422  * Copyright (C) 1995-2002 Mark Adler
4423  * For conditions of distribution and use, see copyright notice in zlib.h
4424  */
4425 
4426 /* #include "zutil.h" */
4427 /* #include "inftrees.h" */
4428 
4429 #if !defined(BUILDFIXED) && !defined(STDC)
4430 #  define BUILDFIXED   /* non ANSI compilers may not accept inffixed.h */
4431 #endif
4432 
4433 const char inflate_copyright[] =
4434    " inflate 1.1.4 Copyright 1995-2002 Mark Adler ";
4435 /*
4436   If you use the zlib library in a product, an acknowledgment is welcome
4437   in the documentation of your product. If for some reason you cannot
4438   include such an acknowledgment, I would appreciate that you keep this
4439   copyright string in the executable of your product.
4440  */
4441 
4442 #ifndef NO_DUMMY_DECL
4443 struct internal_state  {int dummy;}; /* for buggy compilers */
4444 #endif
4445 
4446 /* simplify the use of the inflate_huft type with some defines */
4447 #define exop word.what.Exop
4448 #define bits word.what.Bits
4449 
4450 
4451 local int huft_build(
4452     uIntf *,            /* code lengths in bits */
4453     uInt,               /* number of codes */
4454     uInt,               /* number of "simple" codes */
4455     const uIntf *,      /* list of base values for non-simple codes */
4456     const uIntf *,      /* list of extra bits for non-simple codes */
4457     inflate_huft * FAR*,/* result: starting table */
4458     uIntf *,            /* maximum lookup bits (returns actual) */
4459     inflate_huft *,     /* space for trees */
4460     uInt *,             /* hufts used in space */
4461     uIntf * );         /* space for values */
4462 
4463 /* Tables for deflate from PKZIP's appnote.txt. */
4464 local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */
4465         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
4466         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
4467         /* see note #13 above about 258 */
4468 local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */
4469         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
4470         3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */
4471 local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */
4472         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
4473         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
4474         8193, 12289, 16385, 24577};
4475 local const uInt cpdext[30] = { /* Extra bits for distance codes */
4476         0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
4477         7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
4478         12, 12, 13, 13};
4479 
4480 /*
4481    Huffman code decoding is performed using a multi-level table lookup.
4482    The fastest way to decode is to simply build a lookup table whose
4483    size is determined by the longest code.  However, the time it takes
4484    to build this table can also be a factor if the data being decoded
4485    is not very long.  The most common codes are necessarily the
4486    shortest codes, so those codes dominate the decoding time, and hence
4487    the speed.  The idea is you can have a shorter table that decodes the
4488    shorter, more probable codes, and then point to subsidiary tables for
4489    the longer codes.  The time it costs to decode the longer codes is
4490    then traded against the time it takes to make longer tables.
4491 
4492    This results of this trade are in the variables lbits and dbits
4493    below.  lbits is the number of bits the first level table for literal/
4494    length codes can decode in one step, and dbits is the same thing for
4495    the distance codes.  Subsequent tables are also less than or equal to
4496    those sizes.  These values may be adjusted either when all of the
4497    codes are shorter than that, in which case the longest code length in
4498    bits is used, or when the shortest code is *longer* than the requested
4499    table size, in which case the length of the shortest code in bits is
4500    used.
4501 
4502    There are two different values for the two tables, since they code a
4503    different number of possibilities each.  The literal/length table
4504    codes 286 possible values, or in a flat code, a little over eight
4505    bits.  The distance table codes 30 possible values, or a little less
4506    than five bits, flat.  The optimum values for speed end up being
4507    about one bit more than those, so lbits is 8+1 and dbits is 5+1.
4508    The optimum values may differ though from machine to machine, and
4509    possibly even between compilers.  Your mileage may vary.
4510  */
4511 
4512 
4513 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */
4514 #define BMAX 15         /* maximum bit length of any code */
4515 
4516 local int huft_build(uIntf *b,	/* code lengths in bits (all assumed <= BMAX) */
4517 	uInt n,			/* number of codes (assumed <= 288) */
4518 	uInt s,			/* number of simple-valued codes (0..s-1) */
4519 	const uIntf *d,		/* list of base values for non-simple codes */
4520 	const uIntf *e,		/* list of extra bits for non-simple codes */
4521 	inflate_huft * FAR *t,	/* result: starting table */
4522 	uIntf *m,		/* maximum lookup bits, returns actual */
4523 	inflate_huft *hp,	/* space for trees */
4524 	uInt *hn,		/* hufts used in space */
4525 	uIntf *v)		/* working area: values in order of bit length */
4526 
4527 /* Given a list of code lengths and a maximum table size, make a set of
4528    tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
4529    if the given code set is incomplete (the tables are still built in this
4530    case), or Z_DATA_ERROR if the input is invalid. */
4531 {
4532 
4533   uInt a;                       /* counter for codes of length k */
4534   uInt c[BMAX+1];               /* bit length count table */
4535   uInt f;                       /* i repeats in table every f entries */
4536   int g;                        /* maximum code length */
4537   int h;                        /* table level */
4538   uInt i;                       /* counter, current code */
4539   uInt j;                       /* counter */
4540   int k;                        /* number of bits in current code */
4541   int l;                        /* bits per table (returned in m) */
4542   uInt mask;                    /* (1 << w) - 1, to avoid cc -O bug on HP */
4543   uIntf *p;                      /* pointer into c[], b[], or v[] */
4544   inflate_huft *q;              /* points to current table */
4545   struct inflate_huft_s r;      /* table entry for structure assignment */
4546   inflate_huft *u[BMAX];        /* table stack */
4547   int w;               /* bits before this table == (l * h) */
4548   uInt x[BMAX+1];               /* bit offsets, then code stack */
4549   uIntf *xp;                    /* pointer into x */
4550   int y;                        /* number of dummy codes added */
4551   uInt z;                       /* number of entries in current table */
4552 
4553   r.base = 0;	/* XXX gcc */
4554 
4555   /* Generate counts for each bit length */
4556   p = c;
4557 #define C0 *p++ = 0;
4558 #define C2 C0 C0 C0 C0
4559 #define C4 C2 C2 C2 C2
4560   C4                            /* clear c[]--assume BMAX+1 is 16 */
4561   p = b;  i = n;
4562   do {
4563     c[*p++]++;                  /* assume all entries <= BMAX */
4564   } while (--i);
4565   if (c[0] == n)                /* null input--all zero length codes */
4566   {
4567     *t = (inflate_huft *)Z_NULL;
4568     *m = 0;
4569     return Z_OK;
4570   }
4571 
4572 
4573   /* Find minimum and maximum length, bound *m by those */
4574   l = *m;
4575   for (j = 1; j <= BMAX; j++)
4576     if (c[j])
4577       break;
4578   k = j;                        /* minimum code length */
4579   if ((uInt)l < j)
4580     l = j;
4581   for (i = BMAX; i; i--)
4582     if (c[i])
4583       break;
4584   g = i;                        /* maximum code length */
4585   if ((uInt)l > i)
4586     l = i;
4587   *m = l;
4588 
4589 
4590   /* Adjust last length count to fill out codes, if needed */
4591   for (y = 1 << j; j < i; j++, y <<= 1)
4592     if ((y -= c[j]) < 0)
4593       return Z_DATA_ERROR;
4594   if ((y -= c[i]) < 0)
4595     return Z_DATA_ERROR;
4596   c[i] += y;
4597 
4598 
4599   /* Generate starting offsets into the value table for each length */
4600   x[1] = j = 0;
4601   p = c + 1;  xp = x + 2;
4602   while (--i) {                 /* note that i == g from above */
4603     *xp++ = (j += *p++);
4604   }
4605 
4606 
4607   /* Make a table of values in order of bit lengths */
4608   p = b;  i = 0;
4609   do {
4610     if ((j = *p++) != 0)
4611       v[x[j]++] = i;
4612   } while (++i < n);
4613   n = x[g];                     /* set n to length of v */
4614 
4615 
4616   /* Generate the Huffman codes and for each, make the table entries */
4617   x[0] = i = 0;                 /* first Huffman code is zero */
4618   p = v;                        /* grab values in bit order */
4619   h = -1;                       /* no tables yet--level -1 */
4620   w = -l;                       /* bits decoded == (l * h) */
4621   u[0] = (inflate_huft *)Z_NULL;        /* just to keep compilers happy */
4622   q = (inflate_huft *)Z_NULL;   /* ditto */
4623   z = 0;                        /* ditto */
4624 
4625   /* go through the bit lengths (k already is bits in shortest code) */
4626   for (; k <= g; k++)
4627   {
4628     a = c[k];
4629     while (a--)
4630     {
4631       /* here i is the Huffman code of length k bits for value *p */
4632       /* make tables up to required level */
4633       while (k > w + l)
4634       {
4635         h++;
4636         w += l;                 /* previous table always l bits */
4637 
4638         /* compute minimum size table less than or equal to l bits */
4639         z = g - w;
4640         z = z > (uInt)l ? l : z;        /* table size upper limit */
4641         if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */
4642         {                       /* too few codes for k-w bit table */
4643           f -= a + 1;           /* deduct codes from patterns left */
4644           xp = c + k;
4645           if (j < z)
4646             while (++j < z)     /* try smaller tables up to z bits */
4647             {
4648               if ((f <<= 1) <= *++xp)
4649                 break;          /* enough codes to use up j bits */
4650               f -= *xp;         /* else deduct codes from patterns */
4651             }
4652         }
4653         z = 1 << j;             /* table entries for j-bit table */
4654 
4655         /* allocate new table */
4656         if (*hn + z > MANY)     /* (note: doesn't matter for fixed) */
4657           return Z_DATA_ERROR;  /* overflow of MANY */
4658         u[h] = q = hp + *hn;
4659         *hn += z;
4660 
4661         /* connect to last table, if there is one */
4662         if (h)
4663         {
4664           x[h] = i;             /* save pattern for backing up */
4665           r.bits = (Byte)l;     /* bits to dump before this table */
4666           r.exop = (Byte)j;     /* bits in this table */
4667           j = i >> (w - l);
4668           r.base = (uInt)(q - u[h-1] - j);   /* offset to this table */
4669           u[h-1][j] = r;        /* connect to last table */
4670         }
4671         else
4672           *t = q;               /* first table is returned result */
4673       }
4674 
4675       /* set up table entry in r */
4676       r.bits = (Byte)(k - w);
4677       if (p >= v + n)
4678         r.exop = 128 + 64;      /* out of values--invalid code */
4679       else if (*p < s)
4680       {
4681         r.exop = (Byte)(*p < 256 ? 0 : 32 + 64);     /* 256 is end-of-block */
4682         r.base = *p++;          /* simple code is just the value */
4683       }
4684       else
4685       {
4686         r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */
4687         r.base = d[*p++ - s];
4688       }
4689 
4690       /* fill code-like entries with r */
4691       f = 1 << (k - w);
4692       for (j = i >> w; j < z; j += f)
4693         q[j] = r;
4694 
4695       /* backwards increment the k-bit code i */
4696       for (j = 1 << (k - 1); i & j; j >>= 1)
4697         i ^= j;
4698       i ^= j;
4699 
4700       /* backup over finished tables */
4701       mask = (1 << w) - 1;      /* needed on HP, cc -O bug */
4702       if (h == -1)
4703 	return Z_BUF_ERROR;
4704       while ((i & mask) != x[h])
4705       {
4706         h--;                    /* don't need to update q */
4707         w -= l;
4708         mask = (1 << w) - 1;
4709       }
4710     }
4711   }
4712 
4713 
4714   /* Return Z_BUF_ERROR if we were given an incomplete table */
4715   return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK;
4716 }
4717 
4718 
4719 int inflate_trees_bits(uIntf *c, /* 19 code lengths */
4720 	uIntf *bb, /* bits tree desired/actual depth */
4721 	inflate_huft * FAR *tb, /* bits tree result */
4722 	inflate_huft *hp, /* space for trees */
4723 	z_streamp z) /* for message */
4724 {
4725   int r;
4726   uInt hn = 0;          /* hufts used in space */
4727   uIntf *v;             /* work area for huft_build */
4728 
4729   if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL)
4730     return Z_MEM_ERROR;
4731   r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL,
4732                  tb, bb, hp, &hn, v);
4733   if (r == Z_DATA_ERROR)
4734     z->msg = "oversubscribed dynamic bit lengths tree";
4735   else if (r == Z_BUF_ERROR || *bb == 0)
4736   {
4737     z->msg = "incomplete dynamic bit lengths tree";
4738     r = Z_DATA_ERROR;
4739   }
4740   ZFREE(z, v);
4741   return r;
4742 }
4743 
4744 
4745 int inflate_trees_dynamic(uInt nl,
4746 	uInt nd, /* number of literal/length codes */
4747 	uIntf *c, /* number of distance codes */
4748 	uIntf *bl, /* that many (total) code lengths */
4749 	uIntf *bd, /* literal desired/actual bit depth */
4750 	inflate_huft * FAR *tl, /* literal/length tree result */
4751 	inflate_huft * FAR *td, /* distance tree result */
4752 	inflate_huft *hp, /* space for trees */
4753 	z_streamp z) /* for message */
4754 {
4755   int r;
4756   uInt hn = 0;          /* hufts used in space */
4757   uIntf *v;             /* work area for huft_build */
4758 
4759   /* allocate work area */
4760   if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
4761     return Z_MEM_ERROR;
4762 
4763   /* build literal/length tree */
4764   r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v);
4765   if (r != Z_OK || *bl == 0)
4766   {
4767     if (r == Z_DATA_ERROR)
4768       z->msg = "oversubscribed literal/length tree";
4769     else if (r != Z_MEM_ERROR)
4770     {
4771       z->msg = "incomplete literal/length tree";
4772       r = Z_DATA_ERROR;
4773     }
4774     ZFREE(z, v);
4775     return r;
4776   }
4777 
4778   /* build distance tree */
4779   r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v);
4780   if (r != Z_OK || (*bd == 0 && nl > 257))
4781   {
4782     if (r == Z_DATA_ERROR)
4783       z->msg = "oversubscribed distance tree";
4784     else if (r == Z_BUF_ERROR) {
4785 #ifdef PKZIP_BUG_WORKAROUND
4786       r = Z_OK;
4787     }
4788 #else
4789       z->msg = "incomplete distance tree";
4790       r = Z_DATA_ERROR;
4791     }
4792     else if (r != Z_MEM_ERROR)
4793     {
4794       z->msg = "empty distance tree with lengths";
4795       r = Z_DATA_ERROR;
4796     }
4797     ZFREE(z, v);
4798     return r;
4799 #endif
4800   }
4801 
4802   /* done */
4803   ZFREE(z, v);
4804   return Z_OK;
4805 }
4806 
4807 
4808 /* build fixed tables only once--keep them here */
4809 #ifdef BUILDFIXED
4810 local int fixed_built = 0;
4811 #define FIXEDH 544      /* number of hufts used by fixed tables */
4812 local inflate_huft fixed_mem[FIXEDH];
4813 local uInt fixed_bl;
4814 local uInt fixed_bd;
4815 local inflate_huft *fixed_tl;
4816 local inflate_huft *fixed_td;
4817 #else
4818 
4819 /* +++ inffixed.h */
4820 /* inffixed.h -- table for decoding fixed codes
4821  * Generated automatically by the maketree.c program
4822  */
4823 
4824 /* WARNING: this file should *not* be used by applications. It is
4825    part of the implementation of the compression library and is
4826    subject to change. Applications should only use zlib.h.
4827  */
4828 
4829 local uInt fixed_bl = 9;
4830 local uInt fixed_bd = 5;
4831 local inflate_huft fixed_tl[] = {
4832     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4833     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},192},
4834     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},160},
4835     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},224},
4836     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},144},
4837     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},208},
4838     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},176},
4839     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},240},
4840     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4841     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},200},
4842     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},168},
4843     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},232},
4844     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},152},
4845     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},216},
4846     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},184},
4847     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},248},
4848     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4849     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},196},
4850     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},164},
4851     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},228},
4852     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},148},
4853     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},212},
4854     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},180},
4855     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},244},
4856     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4857     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},204},
4858     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},172},
4859     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},236},
4860     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},156},
4861     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},220},
4862     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},188},
4863     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},252},
4864     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4865     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},194},
4866     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},162},
4867     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},226},
4868     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},146},
4869     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},210},
4870     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},178},
4871     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},242},
4872     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
4873     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},202},
4874     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},170},
4875     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},234},
4876     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},154},
4877     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},218},
4878     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},186},
4879     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},250},
4880     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
4881     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},198},
4882     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},166},
4883     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},230},
4884     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},150},
4885     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},214},
4886     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},182},
4887     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},246},
4888     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
4889     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},206},
4890     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},174},
4891     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},238},
4892     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},158},
4893     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},222},
4894     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},190},
4895     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},254},
4896     {{{96,7}},256}, {{{0,8}},80}, {{{0,8}},16}, {{{84,8}},115},
4897     {{{82,7}},31}, {{{0,8}},112}, {{{0,8}},48}, {{{0,9}},193},
4898     {{{80,7}},10}, {{{0,8}},96}, {{{0,8}},32}, {{{0,9}},161},
4899     {{{0,8}},0}, {{{0,8}},128}, {{{0,8}},64}, {{{0,9}},225},
4900     {{{80,7}},6}, {{{0,8}},88}, {{{0,8}},24}, {{{0,9}},145},
4901     {{{83,7}},59}, {{{0,8}},120}, {{{0,8}},56}, {{{0,9}},209},
4902     {{{81,7}},17}, {{{0,8}},104}, {{{0,8}},40}, {{{0,9}},177},
4903     {{{0,8}},8}, {{{0,8}},136}, {{{0,8}},72}, {{{0,9}},241},
4904     {{{80,7}},4}, {{{0,8}},84}, {{{0,8}},20}, {{{85,8}},227},
4905     {{{83,7}},43}, {{{0,8}},116}, {{{0,8}},52}, {{{0,9}},201},
4906     {{{81,7}},13}, {{{0,8}},100}, {{{0,8}},36}, {{{0,9}},169},
4907     {{{0,8}},4}, {{{0,8}},132}, {{{0,8}},68}, {{{0,9}},233},
4908     {{{80,7}},8}, {{{0,8}},92}, {{{0,8}},28}, {{{0,9}},153},
4909     {{{84,7}},83}, {{{0,8}},124}, {{{0,8}},60}, {{{0,9}},217},
4910     {{{82,7}},23}, {{{0,8}},108}, {{{0,8}},44}, {{{0,9}},185},
4911     {{{0,8}},12}, {{{0,8}},140}, {{{0,8}},76}, {{{0,9}},249},
4912     {{{80,7}},3}, {{{0,8}},82}, {{{0,8}},18}, {{{85,8}},163},
4913     {{{83,7}},35}, {{{0,8}},114}, {{{0,8}},50}, {{{0,9}},197},
4914     {{{81,7}},11}, {{{0,8}},98}, {{{0,8}},34}, {{{0,9}},165},
4915     {{{0,8}},2}, {{{0,8}},130}, {{{0,8}},66}, {{{0,9}},229},
4916     {{{80,7}},7}, {{{0,8}},90}, {{{0,8}},26}, {{{0,9}},149},
4917     {{{84,7}},67}, {{{0,8}},122}, {{{0,8}},58}, {{{0,9}},213},
4918     {{{82,7}},19}, {{{0,8}},106}, {{{0,8}},42}, {{{0,9}},181},
4919     {{{0,8}},10}, {{{0,8}},138}, {{{0,8}},74}, {{{0,9}},245},
4920     {{{80,7}},5}, {{{0,8}},86}, {{{0,8}},22}, {{{192,8}},0},
4921     {{{83,7}},51}, {{{0,8}},118}, {{{0,8}},54}, {{{0,9}},205},
4922     {{{81,7}},15}, {{{0,8}},102}, {{{0,8}},38}, {{{0,9}},173},
4923     {{{0,8}},6}, {{{0,8}},134}, {{{0,8}},70}, {{{0,9}},237},
4924     {{{80,7}},9}, {{{0,8}},94}, {{{0,8}},30}, {{{0,9}},157},
4925     {{{84,7}},99}, {{{0,8}},126}, {{{0,8}},62}, {{{0,9}},221},
4926     {{{82,7}},27}, {{{0,8}},110}, {{{0,8}},46}, {{{0,9}},189},
4927     {{{0,8}},14}, {{{0,8}},142}, {{{0,8}},78}, {{{0,9}},253},
4928     {{{96,7}},256}, {{{0,8}},81}, {{{0,8}},17}, {{{85,8}},131},
4929     {{{82,7}},31}, {{{0,8}},113}, {{{0,8}},49}, {{{0,9}},195},
4930     {{{80,7}},10}, {{{0,8}},97}, {{{0,8}},33}, {{{0,9}},163},
4931     {{{0,8}},1}, {{{0,8}},129}, {{{0,8}},65}, {{{0,9}},227},
4932     {{{80,7}},6}, {{{0,8}},89}, {{{0,8}},25}, {{{0,9}},147},
4933     {{{83,7}},59}, {{{0,8}},121}, {{{0,8}},57}, {{{0,9}},211},
4934     {{{81,7}},17}, {{{0,8}},105}, {{{0,8}},41}, {{{0,9}},179},
4935     {{{0,8}},9}, {{{0,8}},137}, {{{0,8}},73}, {{{0,9}},243},
4936     {{{80,7}},4}, {{{0,8}},85}, {{{0,8}},21}, {{{80,8}},258},
4937     {{{83,7}},43}, {{{0,8}},117}, {{{0,8}},53}, {{{0,9}},203},
4938     {{{81,7}},13}, {{{0,8}},101}, {{{0,8}},37}, {{{0,9}},171},
4939     {{{0,8}},5}, {{{0,8}},133}, {{{0,8}},69}, {{{0,9}},235},
4940     {{{80,7}},8}, {{{0,8}},93}, {{{0,8}},29}, {{{0,9}},155},
4941     {{{84,7}},83}, {{{0,8}},125}, {{{0,8}},61}, {{{0,9}},219},
4942     {{{82,7}},23}, {{{0,8}},109}, {{{0,8}},45}, {{{0,9}},187},
4943     {{{0,8}},13}, {{{0,8}},141}, {{{0,8}},77}, {{{0,9}},251},
4944     {{{80,7}},3}, {{{0,8}},83}, {{{0,8}},19}, {{{85,8}},195},
4945     {{{83,7}},35}, {{{0,8}},115}, {{{0,8}},51}, {{{0,9}},199},
4946     {{{81,7}},11}, {{{0,8}},99}, {{{0,8}},35}, {{{0,9}},167},
4947     {{{0,8}},3}, {{{0,8}},131}, {{{0,8}},67}, {{{0,9}},231},
4948     {{{80,7}},7}, {{{0,8}},91}, {{{0,8}},27}, {{{0,9}},151},
4949     {{{84,7}},67}, {{{0,8}},123}, {{{0,8}},59}, {{{0,9}},215},
4950     {{{82,7}},19}, {{{0,8}},107}, {{{0,8}},43}, {{{0,9}},183},
4951     {{{0,8}},11}, {{{0,8}},139}, {{{0,8}},75}, {{{0,9}},247},
4952     {{{80,7}},5}, {{{0,8}},87}, {{{0,8}},23}, {{{192,8}},0},
4953     {{{83,7}},51}, {{{0,8}},119}, {{{0,8}},55}, {{{0,9}},207},
4954     {{{81,7}},15}, {{{0,8}},103}, {{{0,8}},39}, {{{0,9}},175},
4955     {{{0,8}},7}, {{{0,8}},135}, {{{0,8}},71}, {{{0,9}},239},
4956     {{{80,7}},9}, {{{0,8}},95}, {{{0,8}},31}, {{{0,9}},159},
4957     {{{84,7}},99}, {{{0,8}},127}, {{{0,8}},63}, {{{0,9}},223},
4958     {{{82,7}},27}, {{{0,8}},111}, {{{0,8}},47}, {{{0,9}},191},
4959     {{{0,8}},15}, {{{0,8}},143}, {{{0,8}},79}, {{{0,9}},255}
4960   };
4961 local inflate_huft fixed_td[] = {
4962     {{{80,5}},1}, {{{87,5}},257}, {{{83,5}},17}, {{{91,5}},4097},
4963     {{{81,5}},5}, {{{89,5}},1025}, {{{85,5}},65}, {{{93,5}},16385},
4964     {{{80,5}},3}, {{{88,5}},513}, {{{84,5}},33}, {{{92,5}},8193},
4965     {{{82,5}},9}, {{{90,5}},2049}, {{{86,5}},129}, {{{192,5}},24577},
4966     {{{80,5}},2}, {{{87,5}},385}, {{{83,5}},25}, {{{91,5}},6145},
4967     {{{81,5}},7}, {{{89,5}},1537}, {{{85,5}},97}, {{{93,5}},24577},
4968     {{{80,5}},4}, {{{88,5}},769}, {{{84,5}},49}, {{{92,5}},12289},
4969     {{{82,5}},13}, {{{90,5}},3073}, {{{86,5}},193}, {{{192,5}},24577}
4970   };
4971 /* --- inffixed.h */
4972 
4973 #endif
4974 
4975 
inflate_trees_fixed(uIntf * bl,uIntf * bd,inflate_huft * FAR * tl,inflate_huft * FAR * td,z_streamp z)4976 int inflate_trees_fixed(
4977 uIntf *bl,               /* literal desired/actual bit depth */
4978 uIntf *bd,               /* distance desired/actual bit depth */
4979 inflate_huft * FAR *tl,  /* literal/length tree result */
4980 inflate_huft * FAR *td,  /* distance tree result */
4981 z_streamp z)    /* for memory allocation */
4982 {
4983 #ifdef BUILDFIXED
4984   /* build fixed tables if not already */
4985   if (!fixed_built)
4986   {
4987     int k;              /* temporary variable */
4988     uInt f = 0;         /* number of hufts used in fixed_mem */
4989     uIntf *c;           /* length list for huft_build */
4990     uIntf *v;           /* work area for huft_build */
4991 
4992     /* allocate memory */
4993     if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
4994       return Z_MEM_ERROR;
4995     if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL)
4996     {
4997       ZFREE(z, c);
4998       return Z_MEM_ERROR;
4999     }
5000 
5001     /* literal table */
5002     for (k = 0; k < 144; k++)
5003       c[k] = 8;
5004     for (; k < 256; k++)
5005       c[k] = 9;
5006     for (; k < 280; k++)
5007       c[k] = 7;
5008     for (; k < 288; k++)
5009       c[k] = 8;
5010     fixed_bl = 9;
5011     huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl,
5012                fixed_mem, &f, v);
5013 
5014     /* distance table */
5015     for (k = 0; k < 30; k++)
5016       c[k] = 5;
5017     fixed_bd = 5;
5018     huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd,
5019                fixed_mem, &f, v);
5020 
5021     /* done */
5022     ZFREE(z, v);
5023     ZFREE(z, c);
5024     fixed_built = 1;
5025   }
5026 #endif
5027   *bl = fixed_bl;
5028   *bd = fixed_bd;
5029   *tl = fixed_tl;
5030   *td = fixed_td;
5031   return Z_OK;
5032 }
5033 /* --- inftrees.c */
5034 
5035 /* +++ infcodes.c */
5036 
5037 /* infcodes.c -- process literals and length/distance pairs
5038  * Copyright (C) 1995-2002 Mark Adler
5039  * For conditions of distribution and use, see copyright notice in zlib.h
5040  */
5041 
5042 /* #include "zutil.h" */
5043 /* #include "inftrees.h" */
5044 /* #include "infblock.h" */
5045 /* #include "infcodes.h" */
5046 /* #include "infutil.h" */
5047 
5048 /* +++ inffast.h */
5049 
5050 /* inffast.h -- header to use inffast.c
5051  * Copyright (C) 1995-2002 Mark Adler
5052  * For conditions of distribution and use, see copyright notice in zlib.h
5053  */
5054 
5055 /* WARNING: this file should *not* be used by applications. It is
5056    part of the implementation of the compression library and is
5057    subject to change. Applications should only use zlib.h.
5058  */
5059 
5060 extern int inflate_fast(
5061     uInt,
5062     uInt,
5063     inflate_huft *,
5064     inflate_huft *,
5065     inflate_blocks_statef *,
5066     z_streamp );
5067 /* --- inffast.h */
5068 
5069 /* simplify the use of the inflate_huft type with some defines */
5070 #define exop word.what.Exop
5071 #define bits word.what.Bits
5072 
5073 typedef enum {        /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5074       START,    /* x: set up for LEN */
5075       LEN,      /* i: get length/literal/eob next */
5076       LENEXT,   /* i: getting length extra (have base) */
5077       DIST,     /* i: get distance next */
5078       DISTEXT,  /* i: getting distance extra */
5079       COPY,     /* o: copying bytes in window, waiting for space */
5080       LIT,      /* o: got literal, waiting for output space */
5081       WASH,     /* o: got eob, possibly still output waiting */
5082       END,      /* x: got eob and all data flushed */
5083       BADCODE}  /* x: got error */
5084 inflate_codes_mode;
5085 
5086 /* inflate codes private state */
5087 struct inflate_codes_state {
5088 
5089   /* mode */
5090   inflate_codes_mode mode;      /* current inflate_codes mode */
5091 
5092   /* mode dependent information */
5093   uInt len;
5094   union {
5095     struct {
5096       inflate_huft *tree;       /* pointer into tree */
5097       uInt need;                /* bits needed */
5098     } code;             /* if LEN or DIST, where in tree */
5099     uInt lit;           /* if LIT, literal */
5100     struct {
5101       uInt get;                 /* bits to get for extra */
5102       uInt dist;                /* distance back to copy from */
5103     } copy;             /* if EXT or COPY, where and how much */
5104   } sub;                /* submode */
5105 
5106   /* mode independent information */
5107   Byte lbits;           /* ltree bits decoded per branch */
5108   Byte dbits;           /* dtree bits decoder per branch */
5109   inflate_huft *ltree;          /* literal/length/eob tree */
5110   inflate_huft *dtree;          /* distance tree */
5111 
5112 };
5113 
5114 
inflate_codes_new(uInt bl,uInt bd,inflate_huft * tl,inflate_huft * td,z_streamp z)5115 inflate_codes_statef *inflate_codes_new(uInt bl, uInt bd,
5116 	inflate_huft *tl, inflate_huft *td, z_streamp z)
5117 {
5118   inflate_codes_statef *c;
5119 
5120   if ((c = (inflate_codes_statef *)
5121        ZALLOC(z,1,sizeof(struct inflate_codes_state))) != Z_NULL)
5122   {
5123     c->mode = START;
5124     c->lbits = (Byte)bl;
5125     c->dbits = (Byte)bd;
5126     c->ltree = tl;
5127     c->dtree = td;
5128     Tracev((stderr, "inflate:       codes new\n"));
5129   }
5130   return c;
5131 }
5132 
5133 
inflate_codes(inflate_blocks_statef * s,z_streamp z,int r)5134 int inflate_codes(inflate_blocks_statef *s, z_streamp z, int r)
5135 {
5136   uInt j;               /* temporary storage */
5137   inflate_huft *t;      /* temporary pointer */
5138   uInt e;               /* extra bits or operation */
5139   uLong b;              /* bit buffer */
5140   uInt k;               /* bits in bit buffer */
5141   Bytef *p;             /* input data pointer */
5142   uInt n;               /* bytes available there */
5143   Bytef *q;             /* output window write pointer */
5144   uInt m;               /* bytes to end of window or read pointer */
5145   Bytef *f;             /* pointer to copy strings from */
5146   inflate_codes_statef *c = s->sub.decode.codes;  /* codes state */
5147 
5148   /* copy input/output information to locals (UPDATE macro restores) */
5149   LOAD
5150 
5151   /* process input and output based on current state */
5152   while (1) switch (c->mode)
5153   {             /* waiting for "i:"=input, "o:"=output, "x:"=nothing */
5154     case START:         /* x: set up for LEN */
5155 #ifndef SLOW
5156       if (m >= 258 && n >= 10)
5157       {
5158         UPDATE
5159         r = inflate_fast(c->lbits, c->dbits, c->ltree, c->dtree, s, z);
5160         LOAD
5161         if (r != Z_OK)
5162         {
5163           c->mode = r == Z_STREAM_END ? WASH : BADCODE;
5164           break;
5165         }
5166       }
5167 #endif /* !SLOW */
5168       c->sub.code.need = c->lbits;
5169       c->sub.code.tree = c->ltree;
5170       c->mode = LEN;
5171       /* FALLTHROUGH */
5172     case LEN:           /* i: get length/literal/eob next */
5173       j = c->sub.code.need;
5174       NEEDBITS(j)
5175       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5176       DUMPBITS(t->bits)
5177       e = (uInt)(t->exop);
5178       if (e == 0)               /* literal */
5179       {
5180         c->sub.lit = t->base;
5181         Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5182                  "inflate:         literal '%c'\n" :
5183                  "inflate:         literal 0x%02x\n", t->base));
5184         c->mode = LIT;
5185         break;
5186       }
5187       if (e & 16)               /* length */
5188       {
5189         c->sub.copy.get = e & 15;
5190         c->len = t->base;
5191         c->mode = LENEXT;
5192         break;
5193       }
5194       if ((e & 64) == 0)        /* next table */
5195       {
5196         c->sub.code.need = e;
5197         c->sub.code.tree = t + t->base;
5198         break;
5199       }
5200       if (e & 32)               /* end of block */
5201       {
5202         Tracevv((stderr, "inflate:         end of block\n"));
5203         c->mode = WASH;
5204         break;
5205       }
5206       c->mode = BADCODE;        /* invalid code */
5207       z->msg = "invalid literal/length code";
5208       r = Z_DATA_ERROR;
5209       LEAVE
5210     case LENEXT:        /* i: getting length extra (have base) */
5211       j = c->sub.copy.get;
5212       NEEDBITS(j)
5213       c->len += (uInt)b & inflate_mask[j];
5214       DUMPBITS(j)
5215       c->sub.code.need = c->dbits;
5216       c->sub.code.tree = c->dtree;
5217       Tracevv((stderr, "inflate:         length %u\n", c->len));
5218       c->mode = DIST;
5219       /* FALLTHROUGH */
5220     case DIST:          /* i: get distance next */
5221       j = c->sub.code.need;
5222       NEEDBITS(j)
5223       t = c->sub.code.tree + ((uInt)b & inflate_mask[j]);
5224       DUMPBITS(t->bits)
5225       e = (uInt)(t->exop);
5226       if (e & 16)               /* distance */
5227       {
5228         c->sub.copy.get = e & 15;
5229         c->sub.copy.dist = t->base;
5230         c->mode = DISTEXT;
5231         break;
5232       }
5233       if ((e & 64) == 0)        /* next table */
5234       {
5235         c->sub.code.need = e;
5236         c->sub.code.tree = t + t->base;
5237         break;
5238       }
5239       c->mode = BADCODE;        /* invalid code */
5240       z->msg = "invalid distance code";
5241       r = Z_DATA_ERROR;
5242       LEAVE
5243     case DISTEXT:       /* i: getting distance extra */
5244       j = c->sub.copy.get;
5245       NEEDBITS(j)
5246       c->sub.copy.dist += (uInt)b & inflate_mask[j];
5247       DUMPBITS(j)
5248       Tracevv((stderr, "inflate:         distance %u\n", c->sub.copy.dist));
5249       c->mode = COPY;
5250       /* FALLTHROUGH */
5251     case COPY:          /* o: copying bytes in window, waiting for space */
5252       f = q - c->sub.copy.dist;
5253       while (f < s->window)             /* modulo window size-"while" instead */
5254         f += s->end - s->window;        /* of "if" handles invalid distances */
5255       while (c->len)
5256       {
5257         NEEDOUT
5258         OUTBYTE(*f++)
5259         if (f == s->end)
5260           f = s->window;
5261         c->len--;
5262       }
5263       c->mode = START;
5264       break;
5265     case LIT:           /* o: got literal, waiting for output space */
5266       NEEDOUT
5267       OUTBYTE(c->sub.lit)
5268       c->mode = START;
5269       break;
5270     case WASH:          /* o: got eob, possibly more output */
5271       if (k > 7)        /* return unused byte, if any */
5272       {
5273         Assert(k < 16, "inflate_codes grabbed too many bytes")
5274         k -= 8;
5275         n++;
5276         p--;            /* can always return one */
5277       }
5278       FLUSH
5279       if (s->read != s->write)
5280         LEAVE
5281       c->mode = END;
5282       /* FALLTHROUGH */
5283     case END:
5284       r = Z_STREAM_END;
5285       LEAVE
5286     case BADCODE:       /* x: got error */
5287       r = Z_DATA_ERROR;
5288       LEAVE
5289     default:
5290       r = Z_STREAM_ERROR;
5291       LEAVE
5292   }
5293 #ifdef NEED_DUMMY_RETURN
5294   return Z_STREAM_ERROR;  /* Some dumb compilers complain without this */
5295 #endif
5296 }
5297 
5298 
inflate_codes_free(inflate_codes_statef * c,z_streamp z)5299 void inflate_codes_free(inflate_codes_statef *c, z_streamp z)
5300 {
5301   ZFREE(z, c);
5302   Tracev((stderr, "inflate:       codes free\n"));
5303 }
5304 /* --- infcodes.c */
5305 
5306 /* +++ infutil.c */
5307 
5308 /* inflate_util.c -- data and routines common to blocks and codes
5309  * Copyright (C) 1995-2002 Mark Adler
5310  * For conditions of distribution and use, see copyright notice in zlib.h
5311  */
5312 
5313 /* #include "zutil.h" */
5314 /* #include "infblock.h" */
5315 /* #include "inftrees.h" */
5316 /* #include "infcodes.h" */
5317 /* #include "infutil.h" */
5318 
5319 #ifndef NO_DUMMY_DECL
5320 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5321 #endif
5322 
5323 /* And'ing with mask[n] masks the lower n bits */
5324 uInt inflate_mask[17] = {
5325     0x0000,
5326     0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
5327     0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
5328 };
5329 
5330 
5331 /* copy as much as possible from the sliding window to the output area */
inflate_flush(inflate_blocks_statef * s,z_streamp z,int r)5332 int inflate_flush(inflate_blocks_statef *s, z_streamp z, int r)
5333 {
5334   uInt n;
5335   Bytef *p;
5336   Bytef *q;
5337 
5338   /* local copies of source and destination pointers */
5339   p = z->next_out;
5340   q = s->read;
5341 
5342   /* compute number of bytes to copy as far as end of window */
5343   n = (uInt)((q <= s->write ? s->write : s->end) - q);
5344   if (n > z->avail_out) n = z->avail_out;
5345   if (n && r == Z_BUF_ERROR) r = Z_OK;
5346 
5347   /* update counters */
5348   z->avail_out -= n;
5349   z->total_out += n;
5350 
5351   /* update check information */
5352   if (s->checkfn != Z_NULL)
5353     z->adler = s->check = (*s->checkfn)(s->check, q, n);
5354 
5355   /* copy as far as end of window */
5356   if (p != Z_NULL) {
5357     zmemcpy(p, q, n);
5358     p += n;
5359   }
5360   q += n;
5361 
5362   /* see if more to copy at beginning of window */
5363   if (q == s->end)
5364   {
5365     /* wrap pointers */
5366     q = s->window;
5367     if (s->write == s->end)
5368       s->write = s->window;
5369 
5370     /* compute bytes to copy */
5371     n = (uInt)(s->write - q);
5372     if (n > z->avail_out) n = z->avail_out;
5373     if (n && r == Z_BUF_ERROR) r = Z_OK;
5374 
5375     /* update counters */
5376     z->avail_out -= n;
5377     z->total_out += n;
5378 
5379     /* update check information */
5380     if (s->checkfn != Z_NULL)
5381       z->adler = s->check = (*s->checkfn)(s->check, q, n);
5382 
5383     /* copy */
5384     if (p != NULL) {
5385       zmemcpy(p, q, n);
5386       p += n;
5387     }
5388     q += n;
5389   }
5390 
5391   /* update pointers */
5392   z->next_out = p;
5393   s->read = q;
5394 
5395   /* done */
5396   return r;
5397 }
5398 /* --- infutil.c */
5399 
5400 /* +++ inffast.c */
5401 
5402 /* inffast.c -- process literals and length/distance pairs fast
5403  * Copyright (C) 1995-2002 Mark Adler
5404  * For conditions of distribution and use, see copyright notice in zlib.h
5405  */
5406 
5407 /* #include "zutil.h" */
5408 /* #include "inftrees.h" */
5409 /* #include "infblock.h" */
5410 /* #include "infcodes.h" */
5411 /* #include "infutil.h" */
5412 /* #include "inffast.h" */
5413 
5414 #ifndef NO_DUMMY_DECL
5415 struct inflate_codes_state {int dummy;}; /* for buggy compilers */
5416 #endif
5417 
5418 /* simplify the use of the inflate_huft type with some defines */
5419 #define exop word.what.Exop
5420 #define bits word.what.Bits
5421 
5422 /* macros for bit input with no checking and for returning unused bytes */
5423 #define GRABBITS(j) {while(k<(j)){b|=((uLong)NEXTBYTE)<<k;k+=8;}}
5424 #define UNGRAB {c=z->avail_in-n;c=(k>>3)<c?k>>3:c;n+=c;p-=c;k-=c<<3;}
5425 
5426 /* Called with number of bytes left to write in window at least 258
5427    (the maximum string length) and number of input bytes available
5428    at least ten.  The ten bytes are six bytes for the longest length/
5429    distance pair plus four bytes for overloading the bit buffer. */
5430 
inflate_fast(uInt bl,uInt bd,inflate_huft * tl,inflate_huft * td,inflate_blocks_statef * s,z_streamp z)5431 int inflate_fast(uInt bl, uInt bd,
5432 	inflate_huft *tl,
5433 	inflate_huft *td,
5434 	inflate_blocks_statef *s,
5435 	z_streamp z)
5436 {
5437   inflate_huft *t;      /* temporary pointer */
5438   uInt e;               /* extra bits or operation */
5439   uLong b;              /* bit buffer */
5440   uInt k;               /* bits in bit buffer */
5441   Bytef *p;             /* input data pointer */
5442   uInt n;               /* bytes available there */
5443   Bytef *q;             /* output window write pointer */
5444   uInt m;               /* bytes to end of window or read pointer */
5445   uInt ml;              /* mask for literal/length tree */
5446   uInt md;              /* mask for distance tree */
5447   uInt c;               /* bytes to copy */
5448   uInt d;               /* distance back to copy from */
5449   Bytef *r;             /* copy source pointer */
5450 
5451   /* load input, output, bit values */
5452   LOAD
5453 
5454   /* initialize masks */
5455   ml = inflate_mask[bl];
5456   md = inflate_mask[bd];
5457 
5458   /* do until not enough input or output space for fast loop */
5459   do {                          /* assume called with m >= 258 && n >= 10 */
5460     /* get literal/length code */
5461     GRABBITS(20)                /* max bits for literal/length code */
5462     if ((e = (t = tl + ((uInt)b & ml))->exop) == 0)
5463     {
5464       DUMPBITS(t->bits)
5465       Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5466                 "inflate:         * literal '%c'\n" :
5467                 "inflate:         * literal 0x%02x\n", t->base));
5468       *q++ = (Byte)t->base;
5469       m--;
5470       continue;
5471     }
5472     do {
5473       DUMPBITS(t->bits)
5474       if (e & 16)
5475       {
5476         /* get extra bits for length */
5477         e &= 15;
5478         c = t->base + ((uInt)b & inflate_mask[e]);
5479         DUMPBITS(e)
5480         Tracevv((stderr, "inflate:         * length %u\n", c));
5481 
5482         /* decode distance base of block to copy */
5483         GRABBITS(15);           /* max bits for distance code */
5484         e = (t = td + ((uInt)b & md))->exop;
5485         do {
5486           DUMPBITS(t->bits)
5487           if (e & 16)
5488           {
5489             /* get extra bits to add to distance base */
5490             e &= 15;
5491             GRABBITS(e)         /* get extra bits (up to 13) */
5492             d = t->base + ((uInt)b & inflate_mask[e]);
5493             DUMPBITS(e)
5494             Tracevv((stderr, "inflate:         * distance %u\n", d));
5495 
5496             /* do the copy */
5497             m -= c;
5498             r = q - d;
5499             if (r < s->window)                  /* wrap if needed */
5500             {
5501               do {
5502                 r += s->end - s->window;        /* force pointer in window */
5503               } while (r < s->window);          /* covers invalid distances */
5504               e = s->end - r;
5505               if (c > e)
5506               {
5507                 c -= e;                         /* wrapped copy */
5508                 do {
5509                     *q++ = *r++;
5510                 } while (--e);
5511                 r = s->window;
5512                 do {
5513                     *q++ = *r++;
5514                 } while (--c);
5515               }
5516               else                              /* normal copy */
5517               {
5518                 *q++ = *r++;  c--;
5519                 *q++ = *r++;  c--;
5520                 do {
5521                     *q++ = *r++;
5522                 } while (--c);
5523               }
5524             }
5525             else                                /* normal copy */
5526             {
5527               *q++ = *r++;  c--;
5528               *q++ = *r++;  c--;
5529               do {
5530                 *q++ = *r++;
5531               } while (--c);
5532             }
5533             break;
5534           }
5535           else if ((e & 64) == 0)
5536           {
5537             t += t->base;
5538             e = (t += ((uInt)b & inflate_mask[e]))->exop;
5539           }
5540           else
5541           {
5542             z->msg = "invalid distance code";
5543             UNGRAB
5544             UPDATE
5545             return Z_DATA_ERROR;
5546           }
5547         } while (1);
5548         break;
5549       }
5550       if ((e & 64) == 0)
5551       {
5552         t += t->base;
5553         if ((e = (t += ((uInt)b & inflate_mask[e]))->exop) == 0)
5554         {
5555           DUMPBITS(t->bits)
5556           Tracevv((stderr, t->base >= 0x20 && t->base < 0x7f ?
5557                     "inflate:         * literal '%c'\n" :
5558                     "inflate:         * literal 0x%02x\n", t->base));
5559           *q++ = (Byte)t->base;
5560           m--;
5561           break;
5562         }
5563       }
5564       else if (e & 32)
5565       {
5566         Tracevv((stderr, "inflate:         * end of block\n"));
5567         UNGRAB
5568         UPDATE
5569         return Z_STREAM_END;
5570       }
5571       else
5572       {
5573         z->msg = "invalid literal/length code";
5574         UNGRAB
5575         UPDATE
5576         return Z_DATA_ERROR;
5577       }
5578     } while (1);
5579   } while (m >= 258 && n >= 10);
5580 
5581   /* not enough input or output--restore pointers and return */
5582   UNGRAB
5583   UPDATE
5584   return Z_OK;
5585 }
5586 /* --- inffast.c */
5587 
5588 /* +++ zutil.c */
5589 
5590 /* zutil.c -- target dependent utility functions for the compression library
5591  * Copyright (C) 1995-2002 Jean-loup Gailly.
5592  * For conditions of distribution and use, see copyright notice in zlib.h
5593  */
5594 
5595 /* @(#) Id */
5596 
5597 #ifdef DEBUG_ZLIB
5598 #include <stdio.h>
5599 #endif
5600 
5601 /* #include "zutil.h" */
5602 
5603 #ifndef NO_DUMMY_DECL
5604 struct internal_state      {int dummy;}; /* for buggy compilers */
5605 #endif
5606 
5607 #ifndef STDC
5608 extern void exit(int);
5609 #endif
5610 
5611 const char *z_errmsg[10] = {
5612 "need dictionary",     /* Z_NEED_DICT       2  */
5613 "stream end",          /* Z_STREAM_END      1  */
5614 "",                    /* Z_OK              0  */
5615 "file error",          /* Z_ERRNO         (-1) */
5616 "stream error",        /* Z_STREAM_ERROR  (-2) */
5617 "data error",          /* Z_DATA_ERROR    (-3) */
5618 "insufficient memory", /* Z_MEM_ERROR     (-4) */
5619 "buffer error",        /* Z_BUF_ERROR     (-5) */
5620 "incompatible version",/* Z_VERSION_ERROR (-6) */
5621 ""};
5622 
5623 
5624 #if 0
5625 const char * ZEXPORT zlibVersion()
5626 {
5627     return ZLIB_VERSION;
5628 }
5629 #endif
5630 
5631 #ifdef DEBUG_ZLIB
5632 
5633 #  ifndef verbose
5634 #    define verbose 0
5635 #  endif
5636 int z_verbose = verbose;
5637 
z_error(m)5638 void z_error (m)
5639     char *m;
5640 {
5641     fprintf(stderr, "%s\n", m);
5642     exit(1);
5643 }
5644 #endif
5645 
5646 /* exported to allow conversion of error code to string for compress() and
5647  * uncompress()
5648  */
5649 #if 0
5650 const char * ZEXPORT zError(err)
5651     int err;
5652 {
5653     return ERR_MSG(err);
5654 }
5655 #endif
5656 
5657 
5658 #ifndef HAVE_MEMCPY
5659 
zmemcpy(dest,source,len)5660 void zmemcpy(dest, source, len)
5661     Bytef* dest;
5662     const Bytef* source;
5663     uInt  len;
5664 {
5665     if (len == 0) return;
5666     do {
5667         *dest++ = *source++; /* ??? to be unrolled */
5668     } while (--len != 0);
5669 }
5670 
zmemcmp(s1,s2,len)5671 int zmemcmp(s1, s2, len)
5672     const Bytef* s1;
5673     const Bytef* s2;
5674     uInt  len;
5675 {
5676     uInt j;
5677 
5678     for (j = 0; j < len; j++) {
5679         if (s1[j] != s2[j]) return 2*(s1[j] > s2[j])-1;
5680     }
5681     return 0;
5682 }
5683 
zmemzero(dest,len)5684 void zmemzero(dest, len)
5685     Bytef* dest;
5686     uInt  len;
5687 {
5688     if (len == 0) return;
5689     do {
5690         *dest++ = 0;  /* ??? to be unrolled */
5691     } while (--len != 0);
5692 }
5693 #endif
5694 
5695 #ifdef __TURBOC__
5696 #if (defined( __BORLANDC__) || !defined(SMALL_MEDIUM)) && !defined(__32BIT__)
5697 /* Small and medium model in Turbo C are for now limited to near allocation
5698  * with reduced MAX_WBITS and MAX_MEM_LEVEL
5699  */
5700 #  define MY_ZCALLOC
5701 
5702 /* Turbo C malloc() does not allow dynamic allocation of 64K bytes
5703  * and farmalloc(64K) returns a pointer with an offset of 8, so we
5704  * must fix the pointer. Warning: the pointer must be put back to its
5705  * original form in order to free it, use zcfree().
5706  */
5707 
5708 #define MAX_PTR 10
5709 /* 10*64K = 640K */
5710 
5711 local int next_ptr = 0;
5712 
5713 typedef struct ptr_table_s {
5714     voidpf org_ptr;
5715     voidpf new_ptr;
5716 } ptr_table;
5717 
5718 local ptr_table table[MAX_PTR];
5719 /* This table is used to remember the original form of pointers
5720  * to large buffers (64K). Such pointers are normalized with a zero offset.
5721  * Since MSDOS is not a preemptive multitasking OS, this table is not
5722  * protected from concurrent access. This hack doesn't work anyway on
5723  * a protected system like OS/2. Use Microsoft C instead.
5724  */
5725 
zcalloc(voidpf opaque,unsigned items,unsigned size)5726 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5727 {
5728     voidpf buf = opaque; /* just to make some compilers happy */
5729     ulg bsize = (ulg)items*size;
5730 
5731     /* If we allocate less than 65520 bytes, we assume that farmalloc
5732      * will return a usable pointer which doesn't have to be normalized.
5733      */
5734     if (bsize < 65520L) {
5735         buf = farmalloc(bsize);
5736         if (*(ush*)&buf != 0) return buf;
5737     } else {
5738         buf = farmalloc(bsize + 16L);
5739     }
5740     if (buf == NULL || next_ptr >= MAX_PTR) return NULL;
5741     table[next_ptr].org_ptr = buf;
5742 
5743     /* Normalize the pointer to seg:0 */
5744     *((ush*)&buf+1) += ((ush)((uch*)buf-0) + 15) >> 4;
5745     *(ush*)&buf = 0;
5746     table[next_ptr++].new_ptr = buf;
5747     return buf;
5748 }
5749 
zcfree(voidpf opaque,voidpf ptr)5750 void  zcfree (voidpf opaque, voidpf ptr)
5751 {
5752     int n;
5753     if (*(ush*)&ptr != 0) { /* object < 64K */
5754         farfree(ptr);
5755         return;
5756     }
5757     /* Find the original pointer */
5758     for (n = 0; n < next_ptr; n++) {
5759         if (ptr != table[n].new_ptr) continue;
5760 
5761         farfree(table[n].org_ptr);
5762         while (++n < next_ptr) {
5763             table[n-1] = table[n];
5764         }
5765         next_ptr--;
5766         return;
5767     }
5768     ptr = opaque; /* just to make some compilers happy */
5769     Assert(0, "zcfree: ptr not found");
5770 }
5771 #endif
5772 #endif /* __TURBOC__ */
5773 
5774 
5775 #if defined(M_I86) && !defined(__32BIT__)
5776 /* Microsoft C in 16-bit mode */
5777 
5778 #  define MY_ZCALLOC
5779 
5780 #if (!defined(_MSC_VER) || (_MSC_VER <= 600))
5781 #  define _halloc  halloc
5782 #  define _hfree   hfree
5783 #endif
5784 
zcalloc(voidpf opaque,unsigned items,unsigned size)5785 voidpf zcalloc (voidpf opaque, unsigned items, unsigned size)
5786 {
5787     if (opaque) opaque = 0; /* to make compiler happy */
5788     return _halloc((long)items, size);
5789 }
5790 
zcfree(voidpf opaque,voidpf ptr)5791 void  zcfree (voidpf opaque, voidpf ptr)
5792 {
5793     if (opaque) opaque = 0; /* to make compiler happy */
5794     _hfree(ptr);
5795 }
5796 
5797 #endif /* MSC */
5798 
5799 
5800 #ifndef MY_ZCALLOC /* Any system without a special alloc function */
5801 
5802 #ifndef STDC
5803 extern voidp  calloc(uInt items, uInt size);
5804 extern void   free(voidpf ptr);
5805 #endif
5806 
zcalloc(opaque,items,size)5807 voidpf zcalloc (opaque, items, size)
5808     voidpf opaque;
5809     unsigned items;
5810     unsigned size;
5811 {
5812     if (opaque) items += size - size; /* make compiler happy */
5813     return (voidpf)calloc(items, size);
5814 }
5815 
zcfree(opaque,ptr)5816 void  zcfree (opaque, ptr)
5817     voidpf opaque;
5818     voidpf ptr;
5819 {
5820     free(ptr);
5821     if (opaque) return; /* make compiler happy */
5822 }
5823 
5824 #endif /* MY_ZCALLOC */
5825 /* --- zutil.c */
5826 
5827 /* +++ adler32.c */
5828 /* adler32.c -- compute the Adler-32 checksum of a data stream
5829  * Copyright (C) 1995-2002 Mark Adler
5830  * For conditions of distribution and use, see copyright notice in zlib.h
5831  */
5832 
5833 /* @(#) $Id: zlib.c,v 1.39 2024/07/04 01:10:17 rin Exp $ */
5834 
5835 /* #include "zlib.h" */
5836 
5837 #define BASE 65521L /* largest prime smaller than 65536 */
5838 #define NMAX 5552
5839 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
5840 
5841 #define DO1(buf,i)  {s1 += buf[i]; s2 += s1;}
5842 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
5843 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
5844 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
5845 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
5846 
5847 /* ========================================================================= */
adler32(uLong adler,const Bytef * buf,uInt len)5848 uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len)
5849 {
5850     unsigned long s1 = adler & 0xffff;
5851     unsigned long s2 = (adler >> 16) & 0xffff;
5852     int k;
5853 
5854     if (buf == Z_NULL) return 1L;
5855 
5856     while (len > 0) {
5857         k = len < NMAX ? len : NMAX;
5858         len -= k;
5859         while (k >= 16) {
5860             DO16(buf);
5861 	    buf += 16;
5862             k -= 16;
5863         }
5864         if (k != 0) do {
5865             s1 += *buf++;
5866 	    s2 += s1;
5867         } while (--k);
5868         s1 %= BASE;
5869         s2 %= BASE;
5870     }
5871     return (s2 << 16) | s1;
5872 }
5873 /* --- adler32.c */
5874 
5875 #if defined(_KERNEL)
5876 
5877 /*
5878  * NetBSD module glue - this code is required for the vnd and swcrypto
5879  * pseudo-devices.
5880  */
5881 #include <sys/module.h>
5882 
5883 static int zlib_modcmd(modcmd_t, void *);
5884 
5885 MODULE(MODULE_CLASS_MISC, zlib, NULL);
5886 
5887 static int
zlib_modcmd(modcmd_t cmd,void * arg)5888 zlib_modcmd(modcmd_t cmd, void *arg)
5889 {
5890 
5891 	switch (cmd) {
5892 	case MODULE_CMD_INIT:
5893 	case MODULE_CMD_FINI:
5894 		return 0;
5895 	case MODULE_CMD_STAT:
5896 	case MODULE_CMD_AUTOUNLOAD:
5897 	default:
5898 		return ENOTTY;
5899 	}
5900 }
5901 
5902 #endif	/* defined(_KERNEL) */
5903