xref: /llvm-project/lld/ELF/Relocations.h (revision 9178708c3bf926fe0d7767e26344f3f98b1e92ec)
1 //===- Relocations.h -------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #ifndef LLD_ELF_RELOCATIONS_H
10 #define LLD_ELF_RELOCATIONS_H
11 
12 #include "lld/Common/LLVM.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/Object/ELFTypes.h"
16 #include <vector>
17 
18 namespace lld::elf {
19 struct Ctx;
20 class Defined;
21 class Symbol;
22 class InputSection;
23 class InputSectionBase;
24 class OutputSection;
25 class RelocationBaseSection;
26 class SectionBase;
27 
28 // Represents a relocation type, such as R_X86_64_PC32 or R_ARM_THM_CALL.
29 struct RelType {
30   uint32_t v = 0;
31   /*implicit*/ constexpr RelType(uint32_t v = 0) : v(v) {}
32   /*implicit*/ operator uint32_t() const { return v; }
33 };
34 
35 using JumpModType = uint32_t;
36 
37 // List of target-independent relocation types. Relocations read
38 // from files are converted to these types so that the main code
39 // doesn't have to know about architecture-specific details.
40 enum RelExpr {
41   R_ABS,
42   R_ADDEND,
43   R_DTPREL,
44   R_GOT,
45   R_GOT_OFF,
46   R_GOT_PC,
47   R_GOTONLY_PC,
48   R_GOTPLTONLY_PC,
49   R_GOTPLT,
50   R_GOTPLTREL,
51   R_GOTREL,
52   R_GOTPLT_GOTREL,
53   R_GOTPLT_PC,
54   R_NONE,
55   R_PC,
56   R_PLT,
57   R_PLT_PC,
58   R_PLT_GOTPLT,
59   R_PLT_GOTREL,
60   R_RELAX_HINT,
61   R_RELAX_GOT_PC,
62   R_RELAX_GOT_PC_NOPIC,
63   R_RELAX_TLS_GD_TO_IE,
64   R_RELAX_TLS_GD_TO_IE_ABS,
65   R_RELAX_TLS_GD_TO_IE_GOT_OFF,
66   R_RELAX_TLS_GD_TO_IE_GOTPLT,
67   R_RELAX_TLS_GD_TO_LE,
68   R_RELAX_TLS_GD_TO_LE_NEG,
69   R_RELAX_TLS_IE_TO_LE,
70   R_RELAX_TLS_LD_TO_LE,
71   R_RELAX_TLS_LD_TO_LE_ABS,
72   R_SIZE,
73   R_TPREL,
74   R_TPREL_NEG,
75   R_TLSDESC,
76   R_TLSDESC_CALL,
77   R_TLSDESC_PC,
78   R_TLSDESC_GOTPLT,
79   R_TLSGD_GOT,
80   R_TLSGD_GOTPLT,
81   R_TLSGD_PC,
82   R_TLSIE_HINT,
83   R_TLSLD_GOT,
84   R_TLSLD_GOTPLT,
85   R_TLSLD_GOT_OFF,
86   R_TLSLD_HINT,
87   R_TLSLD_PC,
88 
89   // The following is abstract relocation types used for only one target.
90   //
91   // Even though RelExpr is intended to be a target-neutral representation
92   // of a relocation type, there are some relocations whose semantics are
93   // unique to a target. Such relocation are marked with RE_<TARGET_NAME>.
94   RE_AARCH64_GOT_PAGE_PC,
95   RE_AARCH64_AUTH_GOT_PAGE_PC,
96   RE_AARCH64_GOT_PAGE,
97   RE_AARCH64_AUTH_GOT,
98   RE_AARCH64_AUTH_GOT_PC,
99   RE_AARCH64_PAGE_PC,
100   RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC,
101   RE_AARCH64_TLSDESC_PAGE,
102   RE_AARCH64_AUTH_TLSDESC_PAGE,
103   RE_AARCH64_AUTH_TLSDESC,
104   RE_AARCH64_AUTH,
105   RE_ARM_PCA,
106   RE_ARM_SBREL,
107   RE_MIPS_GOTREL,
108   RE_MIPS_GOT_GP,
109   RE_MIPS_GOT_GP_PC,
110   RE_MIPS_GOT_LOCAL_PAGE,
111   RE_MIPS_GOT_OFF,
112   RE_MIPS_GOT_OFF32,
113   RE_MIPS_TLSGD,
114   RE_MIPS_TLSLD,
115   RE_PPC32_PLTREL,
116   RE_PPC64_CALL,
117   RE_PPC64_CALL_PLT,
118   RE_PPC64_RELAX_TOC,
119   RE_PPC64_TOCBASE,
120   RE_PPC64_RELAX_GOT_PC,
121   RE_RISCV_ADD,
122   RE_RISCV_LEB128,
123   RE_RISCV_PC_INDIRECT,
124   // Same as R_PC but with page-aligned semantics.
125   RE_LOONGARCH_PAGE_PC,
126   // Same as R_PLT_PC but with page-aligned semantics.
127   RE_LOONGARCH_PLT_PAGE_PC,
128   // In addition to having page-aligned semantics, LoongArch GOT relocs are
129   // also reused for TLS, making the semantics differ from other architectures.
130   RE_LOONGARCH_GOT,
131   RE_LOONGARCH_GOT_PAGE_PC,
132   RE_LOONGARCH_TLSGD_PAGE_PC,
133   RE_LOONGARCH_TLSDESC_PAGE_PC,
134 };
135 
136 // Architecture-neutral representation of relocation.
137 struct Relocation {
138   RelExpr expr;
139   RelType type;
140   uint64_t offset;
141   int64_t addend;
142   Symbol *sym;
143 };
144 
145 // Manipulate jump instructions with these modifiers.  These are used to relax
146 // jump instruction opcodes at basic block boundaries and are particularly
147 // useful when basic block sections are enabled.
148 struct JumpInstrMod {
149   uint64_t offset;
150   JumpModType original;
151   unsigned size;
152 };
153 
154 // This function writes undefined symbol diagnostics to an internal buffer.
155 // Call reportUndefinedSymbols() after calling scanRelocations() to emit
156 // the diagnostics.
157 template <class ELFT> void scanRelocations(Ctx &ctx);
158 template <class ELFT> void checkNoCrossRefs(Ctx &ctx);
159 void reportUndefinedSymbols(Ctx &);
160 void postScanRelocations(Ctx &ctx);
161 void addGotEntry(Ctx &ctx, Symbol &sym);
162 
163 void hexagonTLSSymbolUpdate(Ctx &ctx);
164 bool hexagonNeedsTLSSymbol(ArrayRef<OutputSection *> outputSections);
165 
166 class ThunkSection;
167 class Thunk;
168 class InputSectionDescription;
169 
170 class ThunkCreator {
171 public:
172   // Thunk may be incomplete. Avoid inline ctor/dtor.
173   ThunkCreator(Ctx &ctx);
174   ~ThunkCreator();
175   // Return true if Thunks have been added to OutputSections
176   bool createThunks(uint32_t pass, ArrayRef<OutputSection *> outputSections);
177 
178 private:
179   void mergeThunks(ArrayRef<OutputSection *> outputSections);
180 
181   ThunkSection *getISDThunkSec(OutputSection *os, InputSection *isec,
182                                InputSectionDescription *isd,
183                                const Relocation &rel, uint64_t src);
184 
185   ThunkSection *getISThunkSec(InputSection *isec);
186 
187   void createInitialThunkSections(ArrayRef<OutputSection *> outputSections);
188 
189   std::pair<Thunk *, bool> getThunk(InputSection *isec, Relocation &rel,
190                                     uint64_t src);
191 
192   std::pair<Thunk *, bool> getSyntheticLandingPad(Defined &d, int64_t a);
193 
194   ThunkSection *addThunkSection(OutputSection *os, InputSectionDescription *,
195                                 uint64_t off);
196 
197   bool normalizeExistingThunk(Relocation &rel, uint64_t src);
198 
199   bool addSyntheticLandingPads();
200 
201   Ctx &ctx;
202 
203   // Record all the available Thunks for a (Symbol, addend) pair, where Symbol
204   // is represented as a (section, offset) pair. There may be multiple
205   // relocations sharing the same (section, offset + addend) pair. We may revert
206   // a relocation back to its original non-Thunk target, and restore the
207   // original addend, so we cannot fold offset + addend. A nested pair is used
208   // because DenseMapInfo is not specialized for std::tuple.
209   llvm::DenseMap<std::pair<std::pair<SectionBase *, uint64_t>, int64_t>,
210                  SmallVector<std::unique_ptr<Thunk>, 0>>
211       thunkedSymbolsBySectionAndAddend;
212   llvm::DenseMap<std::pair<Symbol *, int64_t>,
213                  SmallVector<std::unique_ptr<Thunk>, 0>>
214       thunkedSymbols;
215 
216   // Find a Thunk from the Thunks symbol definition, we can use this to find
217   // the Thunk from a relocation to the Thunks symbol definition.
218   llvm::DenseMap<Symbol *, Thunk *> thunks;
219 
220   // Track InputSections that have an inline ThunkSection placed in front
221   // an inline ThunkSection may have control fall through to the section below
222   // so we need to make sure that there is only one of them.
223   // The Mips LA25 Thunk is an example of an inline ThunkSection, as is
224   // the AArch64BTLandingPadThunk.
225   llvm::DenseMap<InputSection *, ThunkSection *> thunkedSections;
226 
227   // Record landing pads, generated for a section + offset destination.
228   // Landling pads are alternative entry points for destinations that need
229   // to be reached via thunks that use indirect branches. A destination
230   // needs at most one landing pad as that can be reused by all callers.
231   llvm::DenseMap<std::pair<std::pair<SectionBase *, uint64_t>, int64_t>,
232                  std::unique_ptr<Thunk>>
233       landingPadsBySectionAndAddend;
234 
235   // All the nonLandingPad thunks that have been created, in order of creation.
236   std::vector<Thunk *> allThunks;
237 
238   // The number of completed passes of createThunks this permits us
239   // to do one time initialization on Pass 0 and put a limit on the
240   // number of times it can be called to prevent infinite loops.
241   uint32_t pass = 0;
242 };
243 
244 // Decode LEB128 without error checking. Only used by performance critical code
245 // like RelocsCrel.
246 inline uint64_t readLEB128(const uint8_t *&p, uint64_t leb) {
247   uint64_t acc = 0, shift = 0, byte;
248   do {
249     byte = *p++;
250     acc |= (byte - 128 * (byte >= leb)) << shift;
251     shift += 7;
252   } while (byte >= 128);
253   return acc;
254 }
255 inline uint64_t readULEB128(const uint8_t *&p) { return readLEB128(p, 128); }
256 inline int64_t readSLEB128(const uint8_t *&p) { return readLEB128(p, 64); }
257 
258 // This class implements a CREL iterator that does not allocate extra memory.
259 template <bool is64> struct RelocsCrel {
260   using uint = std::conditional_t<is64, uint64_t, uint32_t>;
261   struct const_iterator {
262     using iterator_category = std::forward_iterator_tag;
263     using value_type = llvm::object::Elf_Crel_Impl<is64>;
264     using difference_type = ptrdiff_t;
265     using pointer = value_type *;
266     using reference = const value_type &;
267     uint32_t count;
268     uint8_t flagBits, shift;
269     const uint8_t *p;
270     llvm::object::Elf_Crel_Impl<is64> crel{};
271     const_iterator(size_t hdr, const uint8_t *p)
272         : count(hdr / 8), flagBits(hdr & 4 ? 3 : 2), shift(hdr % 4), p(p) {
273       if (count)
274         step();
275     }
276     void step() {
277       // See object::decodeCrel.
278       const uint8_t b = *p++;
279       crel.r_offset += b >> flagBits << shift;
280       if (b >= 0x80)
281         crel.r_offset +=
282             ((readULEB128(p) << (7 - flagBits)) - (0x80 >> flagBits)) << shift;
283       if (b & 1)
284         crel.r_symidx += readSLEB128(p);
285       if (b & 2)
286         crel.r_type += readSLEB128(p);
287       if (b & 4 && flagBits == 3)
288         crel.r_addend += static_cast<uint>(readSLEB128(p));
289     }
290     llvm::object::Elf_Crel_Impl<is64> operator*() const { return crel; };
291     const llvm::object::Elf_Crel_Impl<is64> *operator->() const {
292       return &crel;
293     }
294     // For llvm::enumerate.
295     bool operator==(const const_iterator &r) const { return count == r.count; }
296     bool operator!=(const const_iterator &r) const { return count != r.count; }
297     const_iterator &operator++() {
298       if (--count)
299         step();
300       return *this;
301     }
302     // For RelocationScanner::scanOne.
303     void operator+=(size_t n) {
304       for (; n; --n)
305         operator++();
306     }
307   };
308 
309   size_t hdr = 0;
310   const uint8_t *p = nullptr;
311 
312   constexpr RelocsCrel() = default;
313   RelocsCrel(const uint8_t *p) : hdr(readULEB128(p)) { this->p = p; }
314   size_t size() const { return hdr / 8; }
315   const_iterator begin() const { return {hdr, p}; }
316   const_iterator end() const { return {0, nullptr}; }
317 };
318 
319 template <class RelTy> struct Relocs : ArrayRef<RelTy> {
320   Relocs() = default;
321   Relocs(ArrayRef<RelTy> a) : ArrayRef<RelTy>(a) {}
322 };
323 
324 template <bool is64>
325 struct Relocs<llvm::object::Elf_Crel_Impl<is64>> : RelocsCrel<is64> {
326   using RelocsCrel<is64>::RelocsCrel;
327 };
328 
329 // Return a int64_t to make sure we get the sign extension out of the way as
330 // early as possible.
331 template <class ELFT>
332 static inline int64_t getAddend(const typename ELFT::Rel &rel) {
333   return 0;
334 }
335 template <class ELFT>
336 static inline int64_t getAddend(const typename ELFT::Rela &rel) {
337   return rel.r_addend;
338 }
339 template <class ELFT>
340 static inline int64_t getAddend(const typename ELFT::Crel &rel) {
341   return rel.r_addend;
342 }
343 
344 template <typename RelTy>
345 inline Relocs<RelTy> sortRels(Relocs<RelTy> rels,
346                               SmallVector<RelTy, 0> &storage) {
347   auto cmp = [](const RelTy &a, const RelTy &b) {
348     return a.r_offset < b.r_offset;
349   };
350   if (!llvm::is_sorted(rels, cmp)) {
351     storage.assign(rels.begin(), rels.end());
352     llvm::stable_sort(storage, cmp);
353     rels = Relocs<RelTy>(storage);
354   }
355   return rels;
356 }
357 
358 template <bool is64>
359 inline Relocs<llvm::object::Elf_Crel_Impl<is64>>
360 sortRels(Relocs<llvm::object::Elf_Crel_Impl<is64>> rels,
361          SmallVector<llvm::object::Elf_Crel_Impl<is64>, 0> &storage) {
362   return {};
363 }
364 
365 RelocationBaseSection &getIRelativeSection(Ctx &ctx);
366 
367 // Returns true if Expr refers a GOT entry. Note that this function returns
368 // false for TLS variables even though they need GOT, because TLS variables uses
369 // GOT differently than the regular variables.
370 bool needsGot(RelExpr expr);
371 } // namespace lld::elf
372 
373 #endif
374