1 //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains support for clang's and llvm's instrumentation based 10 // code coverage. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/ProfileData/Coverage/CoverageMapping.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallBitVector.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/Object/BuildID.h" 23 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" 24 #include "llvm/ProfileData/InstrProfReader.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/Errc.h" 27 #include "llvm/Support/Error.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/VirtualFileSystem.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cmath> 35 #include <cstdint> 36 #include <iterator> 37 #include <map> 38 #include <memory> 39 #include <optional> 40 #include <stack> 41 #include <string> 42 #include <system_error> 43 #include <utility> 44 #include <vector> 45 46 using namespace llvm; 47 using namespace coverage; 48 49 #define DEBUG_TYPE "coverage-mapping" 50 51 Counter CounterExpressionBuilder::get(const CounterExpression &E) { 52 auto [It, Inserted] = ExpressionIndices.try_emplace(E, Expressions.size()); 53 if (Inserted) 54 Expressions.push_back(E); 55 return Counter::getExpression(It->second); 56 } 57 58 void CounterExpressionBuilder::extractTerms(Counter C, int Factor, 59 SmallVectorImpl<Term> &Terms) { 60 switch (C.getKind()) { 61 case Counter::Zero: 62 break; 63 case Counter::CounterValueReference: 64 Terms.emplace_back(C.getCounterID(), Factor); 65 break; 66 case Counter::Expression: 67 const auto &E = Expressions[C.getExpressionID()]; 68 extractTerms(E.LHS, Factor, Terms); 69 extractTerms( 70 E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); 71 break; 72 } 73 } 74 75 Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { 76 // Gather constant terms. 77 SmallVector<Term, 32> Terms; 78 extractTerms(ExpressionTree, +1, Terms); 79 80 // If there are no terms, this is just a zero. The algorithm below assumes at 81 // least one term. 82 if (Terms.size() == 0) 83 return Counter::getZero(); 84 85 // Group the terms by counter ID. 86 llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { 87 return LHS.CounterID < RHS.CounterID; 88 }); 89 90 // Combine terms by counter ID to eliminate counters that sum to zero. 91 auto Prev = Terms.begin(); 92 for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { 93 if (I->CounterID == Prev->CounterID) { 94 Prev->Factor += I->Factor; 95 continue; 96 } 97 ++Prev; 98 *Prev = *I; 99 } 100 Terms.erase(++Prev, Terms.end()); 101 102 Counter C; 103 // Create additions. We do this before subtractions to avoid constructs like 104 // ((0 - X) + Y), as opposed to (Y - X). 105 for (auto T : Terms) { 106 if (T.Factor <= 0) 107 continue; 108 for (int I = 0; I < T.Factor; ++I) 109 if (C.isZero()) 110 C = Counter::getCounter(T.CounterID); 111 else 112 C = get(CounterExpression(CounterExpression::Add, C, 113 Counter::getCounter(T.CounterID))); 114 } 115 116 // Create subtractions. 117 for (auto T : Terms) { 118 if (T.Factor >= 0) 119 continue; 120 for (int I = 0; I < -T.Factor; ++I) 121 C = get(CounterExpression(CounterExpression::Subtract, C, 122 Counter::getCounter(T.CounterID))); 123 } 124 return C; 125 } 126 127 Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { 128 auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); 129 return Simplify ? simplify(Cnt) : Cnt; 130 } 131 132 Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, 133 bool Simplify) { 134 auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); 135 return Simplify ? simplify(Cnt) : Cnt; 136 } 137 138 Counter CounterExpressionBuilder::subst(Counter C, const SubstMap &Map) { 139 // Replace C with the value found in Map even if C is Expression. 140 if (auto I = Map.find(C); I != Map.end()) 141 return I->second; 142 143 if (!C.isExpression()) 144 return C; 145 146 auto CE = Expressions[C.getExpressionID()]; 147 auto NewLHS = subst(CE.LHS, Map); 148 auto NewRHS = subst(CE.RHS, Map); 149 150 // Reconstruct Expression with induced subexpressions. 151 switch (CE.Kind) { 152 case CounterExpression::Add: 153 C = add(NewLHS, NewRHS); 154 break; 155 case CounterExpression::Subtract: 156 C = subtract(NewLHS, NewRHS); 157 break; 158 } 159 160 return C; 161 } 162 163 void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { 164 switch (C.getKind()) { 165 case Counter::Zero: 166 OS << '0'; 167 return; 168 case Counter::CounterValueReference: 169 OS << '#' << C.getCounterID(); 170 break; 171 case Counter::Expression: { 172 if (C.getExpressionID() >= Expressions.size()) 173 return; 174 const auto &E = Expressions[C.getExpressionID()]; 175 OS << '('; 176 dump(E.LHS, OS); 177 OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); 178 dump(E.RHS, OS); 179 OS << ')'; 180 break; 181 } 182 } 183 if (CounterValues.empty()) 184 return; 185 Expected<int64_t> Value = evaluate(C); 186 if (auto E = Value.takeError()) { 187 consumeError(std::move(E)); 188 return; 189 } 190 OS << '[' << *Value << ']'; 191 } 192 193 Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { 194 struct StackElem { 195 Counter ICounter; 196 int64_t LHS = 0; 197 enum { 198 KNeverVisited = 0, 199 KVisitedOnce = 1, 200 KVisitedTwice = 2, 201 } VisitCount = KNeverVisited; 202 }; 203 204 std::stack<StackElem> CounterStack; 205 CounterStack.push({C}); 206 207 int64_t LastPoppedValue; 208 209 while (!CounterStack.empty()) { 210 StackElem &Current = CounterStack.top(); 211 212 switch (Current.ICounter.getKind()) { 213 case Counter::Zero: 214 LastPoppedValue = 0; 215 CounterStack.pop(); 216 break; 217 case Counter::CounterValueReference: 218 if (Current.ICounter.getCounterID() >= CounterValues.size()) 219 return errorCodeToError(errc::argument_out_of_domain); 220 LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; 221 CounterStack.pop(); 222 break; 223 case Counter::Expression: { 224 if (Current.ICounter.getExpressionID() >= Expressions.size()) 225 return errorCodeToError(errc::argument_out_of_domain); 226 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 227 if (Current.VisitCount == StackElem::KNeverVisited) { 228 CounterStack.push(StackElem{E.LHS}); 229 Current.VisitCount = StackElem::KVisitedOnce; 230 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 231 Current.LHS = LastPoppedValue; 232 CounterStack.push(StackElem{E.RHS}); 233 Current.VisitCount = StackElem::KVisitedTwice; 234 } else { 235 int64_t LHS = Current.LHS; 236 int64_t RHS = LastPoppedValue; 237 LastPoppedValue = 238 E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; 239 CounterStack.pop(); 240 } 241 break; 242 } 243 } 244 } 245 246 return LastPoppedValue; 247 } 248 249 // Find an independence pair for each condition: 250 // - The condition is true in one test and false in the other. 251 // - The decision outcome is true one test and false in the other. 252 // - All other conditions' values must be equal or marked as "don't care". 253 void MCDCRecord::findIndependencePairs() { 254 if (IndependencePairs) 255 return; 256 257 IndependencePairs.emplace(); 258 259 unsigned NumTVs = TV.size(); 260 // Will be replaced to shorter expr. 261 unsigned TVTrueIdx = std::distance( 262 TV.begin(), 263 std::find_if(TV.begin(), TV.end(), 264 [&](auto I) { return (I.second == MCDCRecord::MCDC_True); }) 265 266 ); 267 for (unsigned I = TVTrueIdx; I < NumTVs; ++I) { 268 const auto &[A, ACond] = TV[I]; 269 assert(ACond == MCDCRecord::MCDC_True); 270 for (unsigned J = 0; J < TVTrueIdx; ++J) { 271 const auto &[B, BCond] = TV[J]; 272 assert(BCond == MCDCRecord::MCDC_False); 273 // If the two vectors differ in exactly one condition, ignoring DontCare 274 // conditions, we have found an independence pair. 275 auto AB = A.getDifferences(B); 276 if (AB.count() == 1) 277 IndependencePairs->insert( 278 {AB.find_first(), std::make_pair(J + 1, I + 1)}); 279 } 280 } 281 } 282 283 mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, 284 int Offset) 285 : Indices(NextIDs.size()) { 286 // Construct Nodes and set up each InCount 287 auto N = NextIDs.size(); 288 SmallVector<MCDCNode> Nodes(N); 289 for (unsigned ID = 0; ID < N; ++ID) { 290 for (unsigned C = 0; C < 2; ++C) { 291 #ifndef NDEBUG 292 Indices[ID][C] = INT_MIN; 293 #endif 294 auto NextID = NextIDs[ID][C]; 295 Nodes[ID].NextIDs[C] = NextID; 296 if (NextID >= 0) 297 ++Nodes[NextID].InCount; 298 } 299 } 300 301 // Sort key ordered by <-Width, Ord> 302 SmallVector<std::tuple<int, /// -Width 303 unsigned, /// Ord 304 int, /// ID 305 unsigned /// Cond (0 or 1) 306 >> 307 Decisions; 308 309 // Traverse Nodes to assign Idx 310 SmallVector<int> Q; 311 assert(Nodes[0].InCount == 0); 312 Nodes[0].Width = 1; 313 Q.push_back(0); 314 315 unsigned Ord = 0; 316 while (!Q.empty()) { 317 auto IID = Q.begin(); 318 int ID = *IID; 319 Q.erase(IID); 320 auto &Node = Nodes[ID]; 321 assert(Node.Width > 0); 322 323 for (unsigned I = 0; I < 2; ++I) { 324 auto NextID = Node.NextIDs[I]; 325 assert(NextID != 0 && "NextID should not point to the top"); 326 if (NextID < 0) { 327 // Decision 328 Decisions.emplace_back(-Node.Width, Ord++, ID, I); 329 assert(Ord == Decisions.size()); 330 continue; 331 } 332 333 // Inter Node 334 auto &NextNode = Nodes[NextID]; 335 assert(NextNode.InCount > 0); 336 337 // Assign Idx 338 assert(Indices[ID][I] == INT_MIN); 339 Indices[ID][I] = NextNode.Width; 340 auto NextWidth = int64_t(NextNode.Width) + Node.Width; 341 if (NextWidth > HardMaxTVs) { 342 NumTestVectors = HardMaxTVs; // Overflow 343 return; 344 } 345 NextNode.Width = NextWidth; 346 347 // Ready if all incomings are processed. 348 // Or NextNode.Width hasn't been confirmed yet. 349 if (--NextNode.InCount == 0) 350 Q.push_back(NextID); 351 } 352 } 353 354 llvm::sort(Decisions); 355 356 // Assign TestVector Indices in Decision Nodes 357 int64_t CurIdx = 0; 358 for (auto [NegWidth, Ord, ID, C] : Decisions) { 359 int Width = -NegWidth; 360 assert(Nodes[ID].Width == Width); 361 assert(Nodes[ID].NextIDs[C] < 0); 362 assert(Indices[ID][C] == INT_MIN); 363 Indices[ID][C] = Offset + CurIdx; 364 CurIdx += Width; 365 if (CurIdx > HardMaxTVs) { 366 NumTestVectors = HardMaxTVs; // Overflow 367 return; 368 } 369 } 370 371 assert(CurIdx < HardMaxTVs); 372 NumTestVectors = CurIdx; 373 374 #ifndef NDEBUG 375 for (const auto &Idxs : Indices) 376 for (auto Idx : Idxs) 377 assert(Idx != INT_MIN); 378 SavedNodes = std::move(Nodes); 379 #endif 380 } 381 382 namespace { 383 384 /// Construct this->NextIDs with Branches for TVIdxBuilder to use it 385 /// before MCDCRecordProcessor(). 386 class NextIDsBuilder { 387 protected: 388 SmallVector<mcdc::ConditionIDs> NextIDs; 389 390 public: 391 NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) 392 : NextIDs(Branches.size()) { 393 #ifndef NDEBUG 394 DenseSet<mcdc::ConditionID> SeenIDs; 395 #endif 396 for (const auto *Branch : Branches) { 397 const auto &BranchParams = Branch->getBranchParams(); 398 assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID"); 399 NextIDs[BranchParams.ID] = BranchParams.Conds; 400 } 401 assert(SeenIDs.size() == Branches.size()); 402 } 403 }; 404 405 class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { 406 /// A bitmap representing the executed test vectors for a boolean expression. 407 /// Each index of the bitmap corresponds to a possible test vector. An index 408 /// with a bit value of '1' indicates that the corresponding Test Vector 409 /// identified by that index was executed. 410 const BitVector &Bitmap; 411 412 /// Decision Region to which the ExecutedTestVectorBitmap applies. 413 const CounterMappingRegion &Region; 414 const mcdc::DecisionParameters &DecisionParams; 415 416 /// Array of branch regions corresponding each conditions in the boolean 417 /// expression. 418 ArrayRef<const CounterMappingRegion *> Branches; 419 420 /// Total number of conditions in the boolean expression. 421 unsigned NumConditions; 422 423 /// Vector used to track whether a condition is constant folded. 424 MCDCRecord::BoolVector Folded; 425 426 /// Mapping of calculated MC/DC Independence Pairs for each condition. 427 MCDCRecord::TVPairMap IndependencePairs; 428 429 /// Storage for ExecVectors 430 /// ExecVectors is the alias of its 0th element. 431 std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond; 432 433 /// Actual executed Test Vectors for the boolean expression, based on 434 /// ExecutedTestVectorBitmap. 435 MCDCRecord::TestVectors &ExecVectors; 436 437 #ifndef NDEBUG 438 DenseSet<unsigned> TVIdxs; 439 #endif 440 441 bool IsVersion11; 442 443 public: 444 MCDCRecordProcessor(const BitVector &Bitmap, 445 const CounterMappingRegion &Region, 446 ArrayRef<const CounterMappingRegion *> Branches, 447 bool IsVersion11) 448 : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), 449 Region(Region), DecisionParams(Region.getDecisionParams()), 450 Branches(Branches), NumConditions(DecisionParams.NumConditions), 451 Folded{{BitVector(NumConditions), BitVector(NumConditions)}}, 452 IndependencePairs(NumConditions), ExecVectors(ExecVectorsByCond[false]), 453 IsVersion11(IsVersion11) {} 454 455 private: 456 // Walk the binary decision diagram and try assigning both false and true to 457 // each node. When a terminal node (ID == 0) is reached, fill in the value in 458 // the truth table. 459 void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, 460 int TVIdx) { 461 for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { 462 static_assert(MCDCRecord::MCDC_False == 0); 463 static_assert(MCDCRecord::MCDC_True == 1); 464 TV.set(ID, MCDCCond); 465 auto NextID = NextIDs[ID][MCDCCond]; 466 auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; 467 assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); 468 if (NextID >= 0) { 469 buildTestVector(TV, NextID, NextTVIdx); 470 continue; 471 } 472 473 assert(TVIdx < SavedNodes[ID].Width); 474 assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx"); 475 476 if (!Bitmap[IsVersion11 477 ? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex() 478 : DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx]) 479 continue; 480 481 // Copy the completed test vector to the vector of testvectors. 482 // The final value (T,F) is equal to the last non-dontcare state on the 483 // path (in a short-circuiting system). 484 ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond}); 485 } 486 487 // Reset back to DontCare. 488 TV.set(ID, MCDCRecord::MCDC_DontCare); 489 } 490 491 /// Walk the bits in the bitmap. A bit set to '1' indicates that the test 492 /// vector at the corresponding index was executed during a test run. 493 void findExecutedTestVectors() { 494 // Walk the binary decision diagram to enumerate all possible test vectors. 495 // We start at the root node (ID == 0) with all values being DontCare. 496 // `TVIdx` starts with 0 and is in the traversal. 497 // `Index` encodes the bitmask of true values and is initially 0. 498 MCDCRecord::TestVector TV(NumConditions); 499 buildTestVector(TV, 0, 0); 500 assert(TVIdxs.size() == unsigned(NumTestVectors) && 501 "TVIdxs wasn't fulfilled"); 502 503 // Fill ExecVectors order by False items and True items. 504 // ExecVectors is the alias of ExecVectorsByCond[false], so 505 // Append ExecVectorsByCond[true] on it. 506 auto &ExecVectorsT = ExecVectorsByCond[true]; 507 ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()), 508 std::make_move_iterator(ExecVectorsT.end())); 509 } 510 511 public: 512 /// Process the MC/DC Record in order to produce a result for a boolean 513 /// expression. This process includes tracking the conditions that comprise 514 /// the decision region, calculating the list of all possible test vectors, 515 /// marking the executed test vectors, and then finding an Independence Pair 516 /// out of the executed test vectors for each condition in the boolean 517 /// expression. A condition is tracked to ensure that its ID can be mapped to 518 /// its ordinal position in the boolean expression. The condition's source 519 /// location is also tracked, as well as whether it is constant folded (in 520 /// which case it is excuded from the metric). 521 MCDCRecord processMCDCRecord() { 522 MCDCRecord::CondIDMap PosToID; 523 MCDCRecord::LineColPairMap CondLoc; 524 525 // Walk the Record's BranchRegions (representing Conditions) in order to: 526 // - Hash the condition based on its corresponding ID. This will be used to 527 // calculate the test vectors. 528 // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its 529 // actual ID. This will be used to visualize the conditions in the 530 // correct order. 531 // - Keep track of the condition source location. This will be used to 532 // visualize where the condition is. 533 // - Record whether the condition is constant folded so that we exclude it 534 // from being measured. 535 for (auto [I, B] : enumerate(Branches)) { 536 const auto &BranchParams = B->getBranchParams(); 537 PosToID[I] = BranchParams.ID; 538 CondLoc[I] = B->startLoc(); 539 Folded[false][I] = B->FalseCount.isZero(); 540 Folded[true][I] = B->Count.isZero(); 541 } 542 543 // Using Profile Bitmap from runtime, mark the executed test vectors. 544 findExecutedTestVectors(); 545 546 // Record Test vectors, executed vectors, and independence pairs. 547 return MCDCRecord(Region, std::move(ExecVectors), std::move(Folded), 548 std::move(PosToID), std::move(CondLoc)); 549 } 550 }; 551 552 } // namespace 553 554 Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( 555 const CounterMappingRegion &Region, 556 ArrayRef<const CounterMappingRegion *> Branches, bool IsVersion11) { 557 558 MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11); 559 return MCDCProcessor.processMCDCRecord(); 560 } 561 562 unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { 563 struct StackElem { 564 Counter ICounter; 565 int64_t LHS = 0; 566 enum { 567 KNeverVisited = 0, 568 KVisitedOnce = 1, 569 KVisitedTwice = 2, 570 } VisitCount = KNeverVisited; 571 }; 572 573 std::stack<StackElem> CounterStack; 574 CounterStack.push({C}); 575 576 int64_t LastPoppedValue; 577 578 while (!CounterStack.empty()) { 579 StackElem &Current = CounterStack.top(); 580 581 switch (Current.ICounter.getKind()) { 582 case Counter::Zero: 583 LastPoppedValue = 0; 584 CounterStack.pop(); 585 break; 586 case Counter::CounterValueReference: 587 LastPoppedValue = Current.ICounter.getCounterID(); 588 CounterStack.pop(); 589 break; 590 case Counter::Expression: { 591 if (Current.ICounter.getExpressionID() >= Expressions.size()) { 592 LastPoppedValue = 0; 593 CounterStack.pop(); 594 } else { 595 const auto &E = Expressions[Current.ICounter.getExpressionID()]; 596 if (Current.VisitCount == StackElem::KNeverVisited) { 597 CounterStack.push(StackElem{E.LHS}); 598 Current.VisitCount = StackElem::KVisitedOnce; 599 } else if (Current.VisitCount == StackElem::KVisitedOnce) { 600 Current.LHS = LastPoppedValue; 601 CounterStack.push(StackElem{E.RHS}); 602 Current.VisitCount = StackElem::KVisitedTwice; 603 } else { 604 int64_t LHS = Current.LHS; 605 int64_t RHS = LastPoppedValue; 606 LastPoppedValue = std::max(LHS, RHS); 607 CounterStack.pop(); 608 } 609 } 610 break; 611 } 612 } 613 } 614 615 return LastPoppedValue; 616 } 617 618 void FunctionRecordIterator::skipOtherFiles() { 619 while (Current != Records.end() && !Filename.empty() && 620 Filename != Current->Filenames[0]) 621 advanceOne(); 622 if (Current == Records.end()) 623 *this = FunctionRecordIterator(); 624 } 625 626 ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( 627 StringRef Filename) const { 628 size_t FilenameHash = hash_value(Filename); 629 auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); 630 if (RecordIt == FilenameHash2RecordIndices.end()) 631 return {}; 632 return RecordIt->second; 633 } 634 635 static unsigned getMaxCounterID(const CounterMappingContext &Ctx, 636 const CoverageMappingRecord &Record) { 637 unsigned MaxCounterID = 0; 638 for (const auto &Region : Record.MappingRegions) { 639 MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); 640 } 641 return MaxCounterID; 642 } 643 644 /// Returns the bit count 645 static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record, 646 bool IsVersion11) { 647 unsigned MaxBitmapIdx = 0; 648 unsigned NumConditions = 0; 649 // Scan max(BitmapIdx). 650 // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid 651 // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. 652 for (const auto &Region : reverse(Record.MappingRegions)) { 653 if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) 654 continue; 655 const auto &DecisionParams = Region.getDecisionParams(); 656 if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { 657 MaxBitmapIdx = DecisionParams.BitmapIdx; 658 NumConditions = DecisionParams.NumConditions; 659 } 660 } 661 662 if (IsVersion11) 663 MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT + 664 llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); 665 666 return MaxBitmapIdx; 667 } 668 669 namespace { 670 671 /// Collect Decisions, Branchs, and Expansions and associate them. 672 class MCDCDecisionRecorder { 673 private: 674 /// This holds the DecisionRegion and MCDCBranches under it. 675 /// Also traverses Expansion(s). 676 /// The Decision has the number of MCDCBranches and will complete 677 /// when it is filled with unique ConditionID of MCDCBranches. 678 struct DecisionRecord { 679 const CounterMappingRegion *DecisionRegion; 680 681 /// They are reflected from DecisionRegion for convenience. 682 mcdc::DecisionParameters DecisionParams; 683 LineColPair DecisionStartLoc; 684 LineColPair DecisionEndLoc; 685 686 /// This is passed to `MCDCRecordProcessor`, so this should be compatible 687 /// to`ArrayRef<const CounterMappingRegion *>`. 688 SmallVector<const CounterMappingRegion *> MCDCBranches; 689 690 /// IDs that are stored in MCDCBranches 691 /// Complete when all IDs (1 to NumConditions) are met. 692 DenseSet<mcdc::ConditionID> ConditionIDs; 693 694 /// Set of IDs of Expansion(s) that are relevant to DecisionRegion 695 /// and its children (via expansions). 696 /// FileID pointed by ExpandedFileID is dedicated to the expansion, so 697 /// the location in the expansion doesn't matter. 698 DenseSet<unsigned> ExpandedFileIDs; 699 700 DecisionRecord(const CounterMappingRegion &Decision) 701 : DecisionRegion(&Decision), 702 DecisionParams(Decision.getDecisionParams()), 703 DecisionStartLoc(Decision.startLoc()), 704 DecisionEndLoc(Decision.endLoc()) { 705 assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); 706 } 707 708 /// Determine whether DecisionRecord dominates `R`. 709 bool dominates(const CounterMappingRegion &R) const { 710 // Determine whether `R` is included in `DecisionRegion`. 711 if (R.FileID == DecisionRegion->FileID && 712 R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) 713 return true; 714 715 // Determine whether `R` is pointed by any of Expansions. 716 return ExpandedFileIDs.contains(R.FileID); 717 } 718 719 enum Result { 720 NotProcessed = 0, /// Irrelevant to this Decision 721 Processed, /// Added to this Decision 722 Completed, /// Added and filled this Decision 723 }; 724 725 /// Add Branch into the Decision 726 /// \param Branch expects MCDCBranchRegion 727 /// \returns NotProcessed/Processed/Completed 728 Result addBranch(const CounterMappingRegion &Branch) { 729 assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); 730 731 auto ConditionID = Branch.getBranchParams().ID; 732 733 if (ConditionIDs.contains(ConditionID) || 734 ConditionID >= DecisionParams.NumConditions) 735 return NotProcessed; 736 737 if (!this->dominates(Branch)) 738 return NotProcessed; 739 740 assert(MCDCBranches.size() < DecisionParams.NumConditions); 741 742 // Put `ID=0` in front of `MCDCBranches` for convenience 743 // even if `MCDCBranches` is not topological. 744 if (ConditionID == 0) 745 MCDCBranches.insert(MCDCBranches.begin(), &Branch); 746 else 747 MCDCBranches.push_back(&Branch); 748 749 // Mark `ID` as `assigned`. 750 ConditionIDs.insert(ConditionID); 751 752 // `Completed` when `MCDCBranches` is full 753 return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed 754 : Processed); 755 } 756 757 /// Record Expansion if it is relevant to this Decision. 758 /// Each `Expansion` may nest. 759 /// \returns true if recorded. 760 bool recordExpansion(const CounterMappingRegion &Expansion) { 761 if (!this->dominates(Expansion)) 762 return false; 763 764 ExpandedFileIDs.insert(Expansion.ExpandedFileID); 765 return true; 766 } 767 }; 768 769 private: 770 /// Decisions in progress 771 /// DecisionRecord is added for each MCDCDecisionRegion. 772 /// DecisionRecord is removed when Decision is completed. 773 SmallVector<DecisionRecord> Decisions; 774 775 public: 776 ~MCDCDecisionRecorder() { 777 assert(Decisions.empty() && "All Decisions have not been resolved"); 778 } 779 780 /// Register Region and start recording. 781 void registerDecision(const CounterMappingRegion &Decision) { 782 Decisions.emplace_back(Decision); 783 } 784 785 void recordExpansion(const CounterMappingRegion &Expansion) { 786 any_of(Decisions, [&Expansion](auto &Decision) { 787 return Decision.recordExpansion(Expansion); 788 }); 789 } 790 791 using DecisionAndBranches = 792 std::pair<const CounterMappingRegion *, /// Decision 793 SmallVector<const CounterMappingRegion *> /// Branches 794 >; 795 796 /// Add MCDCBranchRegion to DecisionRecord. 797 /// \param Branch to be processed 798 /// \returns DecisionsAndBranches if DecisionRecord completed. 799 /// Or returns nullopt. 800 std::optional<DecisionAndBranches> 801 processBranch(const CounterMappingRegion &Branch) { 802 // Seek each Decision and apply Region to it. 803 for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); 804 DecisionIter != DecisionEnd; ++DecisionIter) 805 switch (DecisionIter->addBranch(Branch)) { 806 case DecisionRecord::NotProcessed: 807 continue; 808 case DecisionRecord::Processed: 809 return std::nullopt; 810 case DecisionRecord::Completed: 811 DecisionAndBranches Result = 812 std::make_pair(DecisionIter->DecisionRegion, 813 std::move(DecisionIter->MCDCBranches)); 814 Decisions.erase(DecisionIter); // No longer used. 815 return Result; 816 } 817 818 llvm_unreachable("Branch not found in Decisions"); 819 } 820 }; 821 822 } // namespace 823 824 Error CoverageMapping::loadFunctionRecord( 825 const CoverageMappingRecord &Record, 826 IndexedInstrProfReader &ProfileReader) { 827 StringRef OrigFuncName = Record.FunctionName; 828 if (OrigFuncName.empty()) 829 return make_error<CoverageMapError>(coveragemap_error::malformed, 830 "record function name is empty"); 831 832 if (Record.Filenames.empty()) 833 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); 834 else 835 OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); 836 837 CounterMappingContext Ctx(Record.Expressions); 838 839 std::vector<uint64_t> Counts; 840 if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, 841 Record.FunctionHash, Counts)) { 842 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 843 if (IPE == instrprof_error::hash_mismatch) { 844 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 845 Record.FunctionHash); 846 return Error::success(); 847 } 848 if (IPE != instrprof_error::unknown_function) 849 return make_error<InstrProfError>(IPE); 850 Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); 851 } 852 Ctx.setCounts(Counts); 853 854 bool IsVersion11 = 855 ProfileReader.getVersion() < IndexedInstrProf::ProfVersion::Version12; 856 857 BitVector Bitmap; 858 if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, 859 Record.FunctionHash, Bitmap)) { 860 instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); 861 if (IPE == instrprof_error::hash_mismatch) { 862 FuncHashMismatches.emplace_back(std::string(Record.FunctionName), 863 Record.FunctionHash); 864 return Error::success(); 865 } 866 if (IPE != instrprof_error::unknown_function) 867 return make_error<InstrProfError>(IPE); 868 Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11)); 869 } 870 Ctx.setBitmap(std::move(Bitmap)); 871 872 assert(!Record.MappingRegions.empty() && "Function has no regions"); 873 874 // This coverage record is a zero region for a function that's unused in 875 // some TU, but used in a different TU. Ignore it. The coverage maps from the 876 // the other TU will either be loaded (providing full region counts) or they 877 // won't (in which case we don't unintuitively report functions as uncovered 878 // when they have non-zero counts in the profile). 879 if (Record.MappingRegions.size() == 1 && 880 Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) 881 return Error::success(); 882 883 MCDCDecisionRecorder MCDCDecisions; 884 FunctionRecord Function(OrigFuncName, Record.Filenames); 885 for (const auto &Region : Record.MappingRegions) { 886 // MCDCDecisionRegion should be handled first since it overlaps with 887 // others inside. 888 if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { 889 MCDCDecisions.registerDecision(Region); 890 continue; 891 } 892 Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count); 893 if (auto E = ExecutionCount.takeError()) { 894 consumeError(std::move(E)); 895 return Error::success(); 896 } 897 Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount); 898 if (auto E = AltExecutionCount.takeError()) { 899 consumeError(std::move(E)); 900 return Error::success(); 901 } 902 Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount); 903 904 // Record ExpansionRegion. 905 if (Region.Kind == CounterMappingRegion::ExpansionRegion) { 906 MCDCDecisions.recordExpansion(Region); 907 continue; 908 } 909 910 // Do nothing unless MCDCBranchRegion. 911 if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) 912 continue; 913 914 auto Result = MCDCDecisions.processBranch(Region); 915 if (!Result) // Any Decision doesn't complete. 916 continue; 917 918 auto MCDCDecision = Result->first; 919 auto &MCDCBranches = Result->second; 920 921 // Since the bitmap identifies the executed test vectors for an MC/DC 922 // DecisionRegion, all of the information is now available to process. 923 // This is where the bulk of the MC/DC progressing takes place. 924 Expected<MCDCRecord> Record = 925 Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches, IsVersion11); 926 if (auto E = Record.takeError()) { 927 consumeError(std::move(E)); 928 return Error::success(); 929 } 930 931 // Save the MC/DC Record so that it can be visualized later. 932 Function.pushMCDCRecord(std::move(*Record)); 933 } 934 935 // Don't create records for (filenames, function) pairs we've already seen. 936 auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), 937 Record.Filenames.end()); 938 if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) 939 return Error::success(); 940 941 Functions.push_back(std::move(Function)); 942 943 // Performance optimization: keep track of the indices of the function records 944 // which correspond to each filename. This can be used to substantially speed 945 // up queries for coverage info in a file. 946 unsigned RecordIndex = Functions.size() - 1; 947 for (StringRef Filename : Record.Filenames) { 948 auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; 949 // Note that there may be duplicates in the filename set for a function 950 // record, because of e.g. macro expansions in the function in which both 951 // the macro and the function are defined in the same file. 952 if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) 953 RecordIndices.push_back(RecordIndex); 954 } 955 956 return Error::success(); 957 } 958 959 // This function is for memory optimization by shortening the lifetimes 960 // of CoverageMappingReader instances. 961 Error CoverageMapping::loadFromReaders( 962 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 963 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { 964 assert(!Coverage.SingleByteCoverage || 965 *Coverage.SingleByteCoverage == ProfileReader.hasSingleByteCoverage()); 966 Coverage.SingleByteCoverage = ProfileReader.hasSingleByteCoverage(); 967 for (const auto &CoverageReader : CoverageReaders) { 968 for (auto RecordOrErr : *CoverageReader) { 969 if (Error E = RecordOrErr.takeError()) 970 return E; 971 const auto &Record = *RecordOrErr; 972 if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) 973 return E; 974 } 975 } 976 return Error::success(); 977 } 978 979 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 980 ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, 981 IndexedInstrProfReader &ProfileReader) { 982 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 983 if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) 984 return std::move(E); 985 return std::move(Coverage); 986 } 987 988 // If E is a no_data_found error, returns success. Otherwise returns E. 989 static Error handleMaybeNoDataFoundError(Error E) { 990 return handleErrors( 991 std::move(E), [](const CoverageMapError &CME) { 992 if (CME.get() == coveragemap_error::no_data_found) 993 return static_cast<Error>(Error::success()); 994 return make_error<CoverageMapError>(CME.get(), CME.getMessage()); 995 }); 996 } 997 998 Error CoverageMapping::loadFromFile( 999 StringRef Filename, StringRef Arch, StringRef CompilationDir, 1000 IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, 1001 bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { 1002 auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( 1003 Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); 1004 if (std::error_code EC = CovMappingBufOrErr.getError()) 1005 return createFileError(Filename, errorCodeToError(EC)); 1006 MemoryBufferRef CovMappingBufRef = 1007 CovMappingBufOrErr.get()->getMemBufferRef(); 1008 SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; 1009 1010 SmallVector<object::BuildIDRef> BinaryIDs; 1011 auto CoverageReadersOrErr = BinaryCoverageReader::create( 1012 CovMappingBufRef, Arch, Buffers, CompilationDir, 1013 FoundBinaryIDs ? &BinaryIDs : nullptr); 1014 if (Error E = CoverageReadersOrErr.takeError()) { 1015 E = handleMaybeNoDataFoundError(std::move(E)); 1016 if (E) 1017 return createFileError(Filename, std::move(E)); 1018 return E; 1019 } 1020 1021 SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; 1022 for (auto &Reader : CoverageReadersOrErr.get()) 1023 Readers.push_back(std::move(Reader)); 1024 if (FoundBinaryIDs && !Readers.empty()) { 1025 llvm::append_range(*FoundBinaryIDs, 1026 llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { 1027 return object::BuildID(BID); 1028 })); 1029 } 1030 DataFound |= !Readers.empty(); 1031 if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) 1032 return createFileError(Filename, std::move(E)); 1033 return Error::success(); 1034 } 1035 1036 Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( 1037 ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, 1038 vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, 1039 const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { 1040 auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); 1041 if (Error E = ProfileReaderOrErr.takeError()) 1042 return createFileError(ProfileFilename, std::move(E)); 1043 auto ProfileReader = std::move(ProfileReaderOrErr.get()); 1044 auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); 1045 bool DataFound = false; 1046 1047 auto GetArch = [&](size_t Idx) { 1048 if (Arches.empty()) 1049 return StringRef(); 1050 if (Arches.size() == 1) 1051 return Arches.front(); 1052 return Arches[Idx]; 1053 }; 1054 1055 SmallVector<object::BuildID> FoundBinaryIDs; 1056 for (const auto &File : llvm::enumerate(ObjectFilenames)) { 1057 if (Error E = 1058 loadFromFile(File.value(), GetArch(File.index()), CompilationDir, 1059 *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) 1060 return std::move(E); 1061 } 1062 1063 if (BIDFetcher) { 1064 std::vector<object::BuildID> ProfileBinaryIDs; 1065 if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) 1066 return createFileError(ProfileFilename, std::move(E)); 1067 1068 SmallVector<object::BuildIDRef> BinaryIDsToFetch; 1069 if (!ProfileBinaryIDs.empty()) { 1070 const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { 1071 return std::lexicographical_compare(A.begin(), A.end(), B.begin(), 1072 B.end()); 1073 }; 1074 llvm::sort(FoundBinaryIDs, Compare); 1075 std::set_difference( 1076 ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), 1077 FoundBinaryIDs.begin(), FoundBinaryIDs.end(), 1078 std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); 1079 } 1080 1081 for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { 1082 std::optional<std::string> PathOpt = BIDFetcher->fetch(BinaryID); 1083 if (PathOpt) { 1084 std::string Path = std::move(*PathOpt); 1085 StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); 1086 if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, 1087 *Coverage, DataFound)) 1088 return std::move(E); 1089 } else if (CheckBinaryIDs) { 1090 return createFileError( 1091 ProfileFilename, 1092 createStringError(errc::no_such_file_or_directory, 1093 "Missing binary ID: " + 1094 llvm::toHex(BinaryID, /*LowerCase=*/true))); 1095 } 1096 } 1097 } 1098 1099 if (!DataFound) 1100 return createFileError( 1101 join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), 1102 make_error<CoverageMapError>(coveragemap_error::no_data_found)); 1103 return std::move(Coverage); 1104 } 1105 1106 namespace { 1107 1108 /// Distributes functions into instantiation sets. 1109 /// 1110 /// An instantiation set is a collection of functions that have the same source 1111 /// code, ie, template functions specializations. 1112 class FunctionInstantiationSetCollector { 1113 using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; 1114 MapT InstantiatedFunctions; 1115 1116 public: 1117 void insert(const FunctionRecord &Function, unsigned FileID) { 1118 auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); 1119 while (I != E && I->FileID != FileID) 1120 ++I; 1121 assert(I != E && "function does not cover the given file"); 1122 auto &Functions = InstantiatedFunctions[I->startLoc()]; 1123 Functions.push_back(&Function); 1124 } 1125 1126 MapT::iterator begin() { return InstantiatedFunctions.begin(); } 1127 MapT::iterator end() { return InstantiatedFunctions.end(); } 1128 }; 1129 1130 class SegmentBuilder { 1131 std::vector<CoverageSegment> &Segments; 1132 SmallVector<const CountedRegion *, 8> ActiveRegions; 1133 1134 SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} 1135 1136 /// Emit a segment with the count from \p Region starting at \p StartLoc. 1137 // 1138 /// \p IsRegionEntry: The segment is at the start of a new non-gap region. 1139 /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. 1140 void startSegment(const CountedRegion &Region, LineColPair StartLoc, 1141 bool IsRegionEntry, bool EmitSkippedRegion = false) { 1142 bool HasCount = !EmitSkippedRegion && 1143 (Region.Kind != CounterMappingRegion::SkippedRegion); 1144 1145 // If the new segment wouldn't affect coverage rendering, skip it. 1146 if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { 1147 const auto &Last = Segments.back(); 1148 if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && 1149 !Last.IsRegionEntry) 1150 return; 1151 } 1152 1153 if (HasCount) 1154 Segments.emplace_back(StartLoc.first, StartLoc.second, 1155 Region.ExecutionCount, IsRegionEntry, 1156 Region.Kind == CounterMappingRegion::GapRegion); 1157 else 1158 Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); 1159 1160 LLVM_DEBUG({ 1161 const auto &Last = Segments.back(); 1162 dbgs() << "Segment at " << Last.Line << ":" << Last.Col 1163 << " (count = " << Last.Count << ")" 1164 << (Last.IsRegionEntry ? ", RegionEntry" : "") 1165 << (!Last.HasCount ? ", Skipped" : "") 1166 << (Last.IsGapRegion ? ", Gap" : "") << "\n"; 1167 }); 1168 } 1169 1170 /// Emit segments for active regions which end before \p Loc. 1171 /// 1172 /// \p Loc: The start location of the next region. If std::nullopt, all active 1173 /// regions are completed. 1174 /// \p FirstCompletedRegion: Index of the first completed region. 1175 void completeRegionsUntil(std::optional<LineColPair> Loc, 1176 unsigned FirstCompletedRegion) { 1177 // Sort the completed regions by end location. This makes it simple to 1178 // emit closing segments in sorted order. 1179 auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; 1180 std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), 1181 [](const CountedRegion *L, const CountedRegion *R) { 1182 return L->endLoc() < R->endLoc(); 1183 }); 1184 1185 // Emit segments for all completed regions. 1186 for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; 1187 ++I) { 1188 const auto *CompletedRegion = ActiveRegions[I]; 1189 assert((!Loc || CompletedRegion->endLoc() <= *Loc) && 1190 "Completed region ends after start of new region"); 1191 1192 const auto *PrevCompletedRegion = ActiveRegions[I - 1]; 1193 auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); 1194 1195 // Don't emit any more segments if they start where the new region begins. 1196 if (Loc && CompletedSegmentLoc == *Loc) 1197 break; 1198 1199 // Don't emit a segment if the next completed region ends at the same 1200 // location as this one. 1201 if (CompletedSegmentLoc == CompletedRegion->endLoc()) 1202 continue; 1203 1204 // Use the count from the last completed region which ends at this loc. 1205 for (unsigned J = I + 1; J < E; ++J) 1206 if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) 1207 CompletedRegion = ActiveRegions[J]; 1208 1209 startSegment(*CompletedRegion, CompletedSegmentLoc, false); 1210 } 1211 1212 auto Last = ActiveRegions.back(); 1213 if (FirstCompletedRegion && Last->endLoc() != *Loc) { 1214 // If there's a gap after the end of the last completed region and the 1215 // start of the new region, use the last active region to fill the gap. 1216 startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), 1217 false); 1218 } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { 1219 // Emit a skipped segment if there are no more active regions. This 1220 // ensures that gaps between functions are marked correctly. 1221 startSegment(*Last, Last->endLoc(), false, true); 1222 } 1223 1224 // Pop the completed regions. 1225 ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); 1226 } 1227 1228 void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { 1229 for (const auto &CR : enumerate(Regions)) { 1230 auto CurStartLoc = CR.value().startLoc(); 1231 1232 // Active regions which end before the current region need to be popped. 1233 auto CompletedRegions = 1234 std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), 1235 [&](const CountedRegion *Region) { 1236 return !(Region->endLoc() <= CurStartLoc); 1237 }); 1238 if (CompletedRegions != ActiveRegions.end()) { 1239 unsigned FirstCompletedRegion = 1240 std::distance(ActiveRegions.begin(), CompletedRegions); 1241 completeRegionsUntil(CurStartLoc, FirstCompletedRegion); 1242 } 1243 1244 bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; 1245 1246 // Try to emit a segment for the current region. 1247 if (CurStartLoc == CR.value().endLoc()) { 1248 // Avoid making zero-length regions active. If it's the last region, 1249 // emit a skipped segment. Otherwise use its predecessor's count. 1250 const bool Skipped = 1251 (CR.index() + 1) == Regions.size() || 1252 CR.value().Kind == CounterMappingRegion::SkippedRegion; 1253 startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), 1254 CurStartLoc, !GapRegion, Skipped); 1255 // If it is skipped segment, create a segment with last pushed 1256 // regions's count at CurStartLoc. 1257 if (Skipped && !ActiveRegions.empty()) 1258 startSegment(*ActiveRegions.back(), CurStartLoc, false); 1259 continue; 1260 } 1261 if (CR.index() + 1 == Regions.size() || 1262 CurStartLoc != Regions[CR.index() + 1].startLoc()) { 1263 // Emit a segment if the next region doesn't start at the same location 1264 // as this one. 1265 startSegment(CR.value(), CurStartLoc, !GapRegion); 1266 } 1267 1268 // This region is active (i.e not completed). 1269 ActiveRegions.push_back(&CR.value()); 1270 } 1271 1272 // Complete any remaining active regions. 1273 if (!ActiveRegions.empty()) 1274 completeRegionsUntil(std::nullopt, 0); 1275 } 1276 1277 /// Sort a nested sequence of regions from a single file. 1278 static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { 1279 llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { 1280 if (LHS.startLoc() != RHS.startLoc()) 1281 return LHS.startLoc() < RHS.startLoc(); 1282 if (LHS.endLoc() != RHS.endLoc()) 1283 // When LHS completely contains RHS, we sort LHS first. 1284 return RHS.endLoc() < LHS.endLoc(); 1285 // If LHS and RHS cover the same area, we need to sort them according 1286 // to their kinds so that the most suitable region will become "active" 1287 // in combineRegions(). Because we accumulate counter values only from 1288 // regions of the same kind as the first region of the area, prefer 1289 // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. 1290 static_assert(CounterMappingRegion::CodeRegion < 1291 CounterMappingRegion::ExpansionRegion && 1292 CounterMappingRegion::ExpansionRegion < 1293 CounterMappingRegion::SkippedRegion, 1294 "Unexpected order of region kind values"); 1295 return LHS.Kind < RHS.Kind; 1296 }); 1297 } 1298 1299 /// Combine counts of regions which cover the same area. 1300 static ArrayRef<CountedRegion> 1301 combineRegions(MutableArrayRef<CountedRegion> Regions) { 1302 if (Regions.empty()) 1303 return Regions; 1304 auto Active = Regions.begin(); 1305 auto End = Regions.end(); 1306 for (auto I = Regions.begin() + 1; I != End; ++I) { 1307 if (Active->startLoc() != I->startLoc() || 1308 Active->endLoc() != I->endLoc()) { 1309 // Shift to the next region. 1310 ++Active; 1311 if (Active != I) 1312 *Active = *I; 1313 continue; 1314 } 1315 // Merge duplicate region. 1316 // If CodeRegions and ExpansionRegions cover the same area, it's probably 1317 // a macro which is fully expanded to another macro. In that case, we need 1318 // to accumulate counts only from CodeRegions, or else the area will be 1319 // counted twice. 1320 // On the other hand, a macro may have a nested macro in its body. If the 1321 // outer macro is used several times, the ExpansionRegion for the nested 1322 // macro will also be added several times. These ExpansionRegions cover 1323 // the same source locations and have to be combined to reach the correct 1324 // value for that area. 1325 // We add counts of the regions of the same kind as the active region 1326 // to handle the both situations. 1327 if (I->Kind == Active->Kind) 1328 Active->ExecutionCount += I->ExecutionCount; 1329 } 1330 return Regions.drop_back(std::distance(++Active, End)); 1331 } 1332 1333 public: 1334 /// Build a sorted list of CoverageSegments from a list of Regions. 1335 static std::vector<CoverageSegment> 1336 buildSegments(MutableArrayRef<CountedRegion> Regions) { 1337 std::vector<CoverageSegment> Segments; 1338 SegmentBuilder Builder(Segments); 1339 1340 sortNestedRegions(Regions); 1341 ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); 1342 1343 LLVM_DEBUG({ 1344 dbgs() << "Combined regions:\n"; 1345 for (const auto &CR : CombinedRegions) 1346 dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " 1347 << CR.LineEnd << ":" << CR.ColumnEnd 1348 << " (count=" << CR.ExecutionCount << ")\n"; 1349 }); 1350 1351 Builder.buildSegmentsImpl(CombinedRegions); 1352 1353 #ifndef NDEBUG 1354 for (unsigned I = 1, E = Segments.size(); I < E; ++I) { 1355 const auto &L = Segments[I - 1]; 1356 const auto &R = Segments[I]; 1357 if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { 1358 if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) 1359 continue; 1360 LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col 1361 << " followed by " << R.Line << ":" << R.Col << "\n"); 1362 assert(false && "Coverage segments not unique or sorted"); 1363 } 1364 } 1365 #endif 1366 1367 return Segments; 1368 } 1369 }; 1370 1371 } // end anonymous namespace 1372 1373 std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { 1374 std::vector<StringRef> Filenames; 1375 for (const auto &Function : getCoveredFunctions()) 1376 llvm::append_range(Filenames, Function.Filenames); 1377 llvm::sort(Filenames); 1378 auto Last = llvm::unique(Filenames); 1379 Filenames.erase(Last, Filenames.end()); 1380 return Filenames; 1381 } 1382 1383 static SmallBitVector gatherFileIDs(StringRef SourceFile, 1384 const FunctionRecord &Function) { 1385 SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); 1386 for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) 1387 if (SourceFile == Function.Filenames[I]) 1388 FilenameEquivalence[I] = true; 1389 return FilenameEquivalence; 1390 } 1391 1392 /// Return the ID of the file where the definition of the function is located. 1393 static std::optional<unsigned> 1394 findMainViewFileID(const FunctionRecord &Function) { 1395 SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); 1396 for (const auto &CR : Function.CountedRegions) 1397 if (CR.Kind == CounterMappingRegion::ExpansionRegion) 1398 IsNotExpandedFile[CR.ExpandedFileID] = false; 1399 int I = IsNotExpandedFile.find_first(); 1400 if (I == -1) 1401 return std::nullopt; 1402 return I; 1403 } 1404 1405 /// Check if SourceFile is the file that contains the definition of 1406 /// the Function. Return the ID of the file in that case or std::nullopt 1407 /// otherwise. 1408 static std::optional<unsigned> 1409 findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { 1410 std::optional<unsigned> I = findMainViewFileID(Function); 1411 if (I && SourceFile == Function.Filenames[*I]) 1412 return I; 1413 return std::nullopt; 1414 } 1415 1416 static bool isExpansion(const CountedRegion &R, unsigned FileID) { 1417 return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; 1418 } 1419 1420 CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { 1421 assert(SingleByteCoverage); 1422 CoverageData FileCoverage(*SingleByteCoverage, Filename); 1423 std::vector<CountedRegion> Regions; 1424 1425 // Look up the function records in the given file. Due to hash collisions on 1426 // the filename, we may get back some records that are not in the file. 1427 ArrayRef<unsigned> RecordIndices = 1428 getImpreciseRecordIndicesForFilename(Filename); 1429 for (unsigned RecordIndex : RecordIndices) { 1430 const FunctionRecord &Function = Functions[RecordIndex]; 1431 auto MainFileID = findMainViewFileID(Filename, Function); 1432 auto FileIDs = gatherFileIDs(Filename, Function); 1433 for (const auto &CR : Function.CountedRegions) 1434 if (FileIDs.test(CR.FileID)) { 1435 Regions.push_back(CR); 1436 if (MainFileID && isExpansion(CR, *MainFileID)) 1437 FileCoverage.Expansions.emplace_back(CR, Function); 1438 } 1439 // Capture branch regions specific to the function (excluding expansions). 1440 for (const auto &CR : Function.CountedBranchRegions) 1441 if (FileIDs.test(CR.FileID)) 1442 FileCoverage.BranchRegions.push_back(CR); 1443 // Capture MCDC records specific to the function. 1444 for (const auto &MR : Function.MCDCRecords) 1445 if (FileIDs.test(MR.getDecisionRegion().FileID)) 1446 FileCoverage.MCDCRecords.push_back(MR); 1447 } 1448 1449 LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); 1450 FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1451 1452 return FileCoverage; 1453 } 1454 1455 std::vector<InstantiationGroup> 1456 CoverageMapping::getInstantiationGroups(StringRef Filename) const { 1457 FunctionInstantiationSetCollector InstantiationSetCollector; 1458 // Look up the function records in the given file. Due to hash collisions on 1459 // the filename, we may get back some records that are not in the file. 1460 ArrayRef<unsigned> RecordIndices = 1461 getImpreciseRecordIndicesForFilename(Filename); 1462 for (unsigned RecordIndex : RecordIndices) { 1463 const FunctionRecord &Function = Functions[RecordIndex]; 1464 auto MainFileID = findMainViewFileID(Filename, Function); 1465 if (!MainFileID) 1466 continue; 1467 InstantiationSetCollector.insert(Function, *MainFileID); 1468 } 1469 1470 std::vector<InstantiationGroup> Result; 1471 for (auto &InstantiationSet : InstantiationSetCollector) { 1472 InstantiationGroup IG{InstantiationSet.first.first, 1473 InstantiationSet.first.second, 1474 std::move(InstantiationSet.second)}; 1475 Result.emplace_back(std::move(IG)); 1476 } 1477 return Result; 1478 } 1479 1480 CoverageData 1481 CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { 1482 auto MainFileID = findMainViewFileID(Function); 1483 if (!MainFileID) 1484 return CoverageData(); 1485 1486 assert(SingleByteCoverage); 1487 CoverageData FunctionCoverage(*SingleByteCoverage, 1488 Function.Filenames[*MainFileID]); 1489 std::vector<CountedRegion> Regions; 1490 for (const auto &CR : Function.CountedRegions) 1491 if (CR.FileID == *MainFileID) { 1492 Regions.push_back(CR); 1493 if (isExpansion(CR, *MainFileID)) 1494 FunctionCoverage.Expansions.emplace_back(CR, Function); 1495 } 1496 // Capture branch regions specific to the function (excluding expansions). 1497 for (const auto &CR : Function.CountedBranchRegions) 1498 if (CR.FileID == *MainFileID) 1499 FunctionCoverage.BranchRegions.push_back(CR); 1500 1501 // Capture MCDC records specific to the function. 1502 for (const auto &MR : Function.MCDCRecords) 1503 if (MR.getDecisionRegion().FileID == *MainFileID) 1504 FunctionCoverage.MCDCRecords.push_back(MR); 1505 1506 LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name 1507 << "\n"); 1508 FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1509 1510 return FunctionCoverage; 1511 } 1512 1513 CoverageData CoverageMapping::getCoverageForExpansion( 1514 const ExpansionRecord &Expansion) const { 1515 assert(SingleByteCoverage); 1516 CoverageData ExpansionCoverage( 1517 *SingleByteCoverage, Expansion.Function.Filenames[Expansion.FileID]); 1518 std::vector<CountedRegion> Regions; 1519 for (const auto &CR : Expansion.Function.CountedRegions) 1520 if (CR.FileID == Expansion.FileID) { 1521 Regions.push_back(CR); 1522 if (isExpansion(CR, Expansion.FileID)) 1523 ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); 1524 } 1525 for (const auto &CR : Expansion.Function.CountedBranchRegions) 1526 // Capture branch regions that only pertain to the corresponding expansion. 1527 if (CR.FileID == Expansion.FileID) 1528 ExpansionCoverage.BranchRegions.push_back(CR); 1529 1530 LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " 1531 << Expansion.FileID << "\n"); 1532 ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); 1533 1534 return ExpansionCoverage; 1535 } 1536 1537 LineCoverageStats::LineCoverageStats( 1538 ArrayRef<const CoverageSegment *> LineSegments, 1539 const CoverageSegment *WrappedSegment, unsigned Line) 1540 : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), 1541 LineSegments(LineSegments), WrappedSegment(WrappedSegment) { 1542 // Find the minimum number of regions which start in this line. 1543 unsigned MinRegionCount = 0; 1544 auto isStartOfRegion = [](const CoverageSegment *S) { 1545 return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; 1546 }; 1547 for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) 1548 if (isStartOfRegion(LineSegments[I])) 1549 ++MinRegionCount; 1550 1551 bool StartOfSkippedRegion = !LineSegments.empty() && 1552 !LineSegments.front()->HasCount && 1553 LineSegments.front()->IsRegionEntry; 1554 1555 HasMultipleRegions = MinRegionCount > 1; 1556 Mapped = 1557 !StartOfSkippedRegion && 1558 ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); 1559 1560 // if there is any starting segment at this line with a counter, it must be 1561 // mapped 1562 Mapped |= any_of(LineSegments, [](const auto *Seq) { 1563 return Seq->IsRegionEntry && Seq->HasCount; 1564 }); 1565 1566 if (!Mapped) { 1567 return; 1568 } 1569 1570 // Pick the max count from the non-gap, region entry segments and the 1571 // wrapped count. 1572 if (WrappedSegment) 1573 ExecutionCount = WrappedSegment->Count; 1574 if (!MinRegionCount) 1575 return; 1576 for (const auto *LS : LineSegments) 1577 if (isStartOfRegion(LS)) 1578 ExecutionCount = std::max(ExecutionCount, LS->Count); 1579 } 1580 1581 LineCoverageIterator &LineCoverageIterator::operator++() { 1582 if (Next == CD.end()) { 1583 Stats = LineCoverageStats(); 1584 Ended = true; 1585 return *this; 1586 } 1587 if (Segments.size()) 1588 WrappedSegment = Segments.back(); 1589 Segments.clear(); 1590 while (Next != CD.end() && Next->Line == Line) 1591 Segments.push_back(&*Next++); 1592 Stats = LineCoverageStats(Segments, WrappedSegment, Line); 1593 ++Line; 1594 return *this; 1595 } 1596 1597 static std::string getCoverageMapErrString(coveragemap_error Err, 1598 const std::string &ErrMsg = "") { 1599 std::string Msg; 1600 raw_string_ostream OS(Msg); 1601 1602 switch (Err) { 1603 case coveragemap_error::success: 1604 OS << "success"; 1605 break; 1606 case coveragemap_error::eof: 1607 OS << "end of File"; 1608 break; 1609 case coveragemap_error::no_data_found: 1610 OS << "no coverage data found"; 1611 break; 1612 case coveragemap_error::unsupported_version: 1613 OS << "unsupported coverage format version"; 1614 break; 1615 case coveragemap_error::truncated: 1616 OS << "truncated coverage data"; 1617 break; 1618 case coveragemap_error::malformed: 1619 OS << "malformed coverage data"; 1620 break; 1621 case coveragemap_error::decompression_failed: 1622 OS << "failed to decompress coverage data (zlib)"; 1623 break; 1624 case coveragemap_error::invalid_or_missing_arch_specifier: 1625 OS << "`-arch` specifier is invalid or missing for universal binary"; 1626 break; 1627 } 1628 1629 // If optional error message is not empty, append it to the message. 1630 if (!ErrMsg.empty()) 1631 OS << ": " << ErrMsg; 1632 1633 return Msg; 1634 } 1635 1636 namespace { 1637 1638 // FIXME: This class is only here to support the transition to llvm::Error. It 1639 // will be removed once this transition is complete. Clients should prefer to 1640 // deal with the Error value directly, rather than converting to error_code. 1641 class CoverageMappingErrorCategoryType : public std::error_category { 1642 const char *name() const noexcept override { return "llvm.coveragemap"; } 1643 std::string message(int IE) const override { 1644 return getCoverageMapErrString(static_cast<coveragemap_error>(IE)); 1645 } 1646 }; 1647 1648 } // end anonymous namespace 1649 1650 std::string CoverageMapError::message() const { 1651 return getCoverageMapErrString(Err, Msg); 1652 } 1653 1654 const std::error_category &llvm::coverage::coveragemap_category() { 1655 static CoverageMappingErrorCategoryType ErrorCategory; 1656 return ErrorCategory; 1657 } 1658 1659 char CoverageMapError::ID = 0; 1660