1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This pass exposes codegen information to IR-level passes. Every 10 /// transformation that uses codegen information is broken into three parts: 11 /// 1. The IR-level analysis pass. 12 /// 2. The IR-level transformation interface which provides the needed 13 /// information. 14 /// 3. Codegen-level implementation which uses target-specific hooks. 15 /// 16 /// This file defines #2, which is the interface that IR-level transformations 17 /// use for querying the codegen. 18 /// 19 //===----------------------------------------------------------------------===// 20 21 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H 22 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H 23 24 #include "llvm/ADT/APInt.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/IR/FMF.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/PassManager.h" 29 #include "llvm/Pass.h" 30 #include "llvm/Support/AtomicOrdering.h" 31 #include "llvm/Support/BranchProbability.h" 32 #include "llvm/Support/InstructionCost.h" 33 #include <functional> 34 #include <optional> 35 #include <utility> 36 37 namespace llvm { 38 39 namespace Intrinsic { 40 typedef unsigned ID; 41 } 42 43 class AllocaInst; 44 class AssumptionCache; 45 class BlockFrequencyInfo; 46 class DominatorTree; 47 class BranchInst; 48 class CallBase; 49 class Function; 50 class GlobalValue; 51 class InstCombiner; 52 class OptimizationRemarkEmitter; 53 class InterleavedAccessInfo; 54 class IntrinsicInst; 55 class LoadInst; 56 class Loop; 57 class LoopInfo; 58 class LoopVectorizationLegality; 59 class ProfileSummaryInfo; 60 class RecurrenceDescriptor; 61 class SCEV; 62 class ScalarEvolution; 63 class StoreInst; 64 class SwitchInst; 65 class TargetLibraryInfo; 66 class Type; 67 class User; 68 class Value; 69 class VPIntrinsic; 70 struct KnownBits; 71 72 /// Information about a load/store intrinsic defined by the target. 73 struct MemIntrinsicInfo { 74 /// This is the pointer that the intrinsic is loading from or storing to. 75 /// If this is non-null, then analysis/optimization passes can assume that 76 /// this intrinsic is functionally equivalent to a load/store from this 77 /// pointer. 78 Value *PtrVal = nullptr; 79 80 // Ordering for atomic operations. 81 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 82 83 // Same Id is set by the target for corresponding load/store intrinsics. 84 unsigned short MatchingId = 0; 85 86 bool ReadMem = false; 87 bool WriteMem = false; 88 bool IsVolatile = false; 89 90 bool isUnordered() const { 91 return (Ordering == AtomicOrdering::NotAtomic || 92 Ordering == AtomicOrdering::Unordered) && 93 !IsVolatile; 94 } 95 }; 96 97 /// Attributes of a target dependent hardware loop. 98 struct HardwareLoopInfo { 99 HardwareLoopInfo() = delete; 100 HardwareLoopInfo(Loop *L); 101 Loop *L = nullptr; 102 BasicBlock *ExitBlock = nullptr; 103 BranchInst *ExitBranch = nullptr; 104 const SCEV *ExitCount = nullptr; 105 IntegerType *CountType = nullptr; 106 Value *LoopDecrement = nullptr; // Decrement the loop counter by this 107 // value in every iteration. 108 bool IsNestingLegal = false; // Can a hardware loop be a parent to 109 // another hardware loop? 110 bool CounterInReg = false; // Should loop counter be updated in 111 // the loop via a phi? 112 bool PerformEntryTest = false; // Generate the intrinsic which also performs 113 // icmp ne zero on the loop counter value and 114 // produces an i1 to guard the loop entry. 115 bool isHardwareLoopCandidate(ScalarEvolution &SE, LoopInfo &LI, 116 DominatorTree &DT, bool ForceNestedLoop = false, 117 bool ForceHardwareLoopPHI = false); 118 bool canAnalyze(LoopInfo &LI); 119 }; 120 121 class IntrinsicCostAttributes { 122 const IntrinsicInst *II = nullptr; 123 Type *RetTy = nullptr; 124 Intrinsic::ID IID; 125 SmallVector<Type *, 4> ParamTys; 126 SmallVector<const Value *, 4> Arguments; 127 FastMathFlags FMF; 128 // If ScalarizationCost is UINT_MAX, the cost of scalarizing the 129 // arguments and the return value will be computed based on types. 130 InstructionCost ScalarizationCost = InstructionCost::getInvalid(); 131 132 public: 133 IntrinsicCostAttributes( 134 Intrinsic::ID Id, const CallBase &CI, 135 InstructionCost ScalarCost = InstructionCost::getInvalid(), 136 bool TypeBasedOnly = false); 137 138 IntrinsicCostAttributes( 139 Intrinsic::ID Id, Type *RTy, ArrayRef<Type *> Tys, 140 FastMathFlags Flags = FastMathFlags(), const IntrinsicInst *I = nullptr, 141 InstructionCost ScalarCost = InstructionCost::getInvalid()); 142 143 IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy, 144 ArrayRef<const Value *> Args); 145 146 IntrinsicCostAttributes( 147 Intrinsic::ID Id, Type *RTy, ArrayRef<const Value *> Args, 148 ArrayRef<Type *> Tys, FastMathFlags Flags = FastMathFlags(), 149 const IntrinsicInst *I = nullptr, 150 InstructionCost ScalarCost = InstructionCost::getInvalid()); 151 152 Intrinsic::ID getID() const { return IID; } 153 const IntrinsicInst *getInst() const { return II; } 154 Type *getReturnType() const { return RetTy; } 155 FastMathFlags getFlags() const { return FMF; } 156 InstructionCost getScalarizationCost() const { return ScalarizationCost; } 157 const SmallVectorImpl<const Value *> &getArgs() const { return Arguments; } 158 const SmallVectorImpl<Type *> &getArgTypes() const { return ParamTys; } 159 160 bool isTypeBasedOnly() const { 161 return Arguments.empty(); 162 } 163 164 bool skipScalarizationCost() const { return ScalarizationCost.isValid(); } 165 }; 166 167 enum class TailFoldingStyle { 168 /// Don't use tail folding 169 None, 170 /// Use predicate only to mask operations on data in the loop. 171 /// When the VL is not known to be a power-of-2, this method requires a 172 /// runtime overflow check for the i + VL in the loop because it compares the 173 /// scalar induction variable against the tripcount rounded up by VL which may 174 /// overflow. When the VL is a power-of-2, both the increment and uprounded 175 /// tripcount will overflow to 0, which does not require a runtime check 176 /// since the loop is exited when the loop induction variable equals the 177 /// uprounded trip-count, which are both 0. 178 Data, 179 /// Same as Data, but avoids using the get.active.lane.mask intrinsic to 180 /// calculate the mask and instead implements this with a 181 /// splat/stepvector/cmp. 182 /// FIXME: Can this kind be removed now that SelectionDAGBuilder expands the 183 /// active.lane.mask intrinsic when it is not natively supported? 184 DataWithoutLaneMask, 185 /// Use predicate to control both data and control flow. 186 /// This method always requires a runtime overflow check for the i + VL 187 /// increment inside the loop, because it uses the result direclty in the 188 /// active.lane.mask to calculate the mask for the next iteration. If the 189 /// increment overflows, the mask is no longer correct. 190 DataAndControlFlow, 191 /// Use predicate to control both data and control flow, but modify 192 /// the trip count so that a runtime overflow check can be avoided 193 /// and such that the scalar epilogue loop can always be removed. 194 DataAndControlFlowWithoutRuntimeCheck, 195 /// Use predicated EVL instructions for tail-folding. 196 /// Indicates that VP intrinsics should be used. 197 DataWithEVL, 198 }; 199 200 struct TailFoldingInfo { 201 TargetLibraryInfo *TLI; 202 LoopVectorizationLegality *LVL; 203 InterleavedAccessInfo *IAI; 204 TailFoldingInfo(TargetLibraryInfo *TLI, LoopVectorizationLegality *LVL, 205 InterleavedAccessInfo *IAI) 206 : TLI(TLI), LVL(LVL), IAI(IAI) {} 207 }; 208 209 class TargetTransformInfo; 210 typedef TargetTransformInfo TTI; 211 212 /// This pass provides access to the codegen interfaces that are needed 213 /// for IR-level transformations. 214 class TargetTransformInfo { 215 public: 216 /// Construct a TTI object using a type implementing the \c Concept 217 /// API below. 218 /// 219 /// This is used by targets to construct a TTI wrapping their target-specific 220 /// implementation that encodes appropriate costs for their target. 221 template <typename T> TargetTransformInfo(T Impl); 222 223 /// Construct a baseline TTI object using a minimal implementation of 224 /// the \c Concept API below. 225 /// 226 /// The TTI implementation will reflect the information in the DataLayout 227 /// provided if non-null. 228 explicit TargetTransformInfo(const DataLayout &DL); 229 230 // Provide move semantics. 231 TargetTransformInfo(TargetTransformInfo &&Arg); 232 TargetTransformInfo &operator=(TargetTransformInfo &&RHS); 233 234 // We need to define the destructor out-of-line to define our sub-classes 235 // out-of-line. 236 ~TargetTransformInfo(); 237 238 /// Handle the invalidation of this information. 239 /// 240 /// When used as a result of \c TargetIRAnalysis this method will be called 241 /// when the function this was computed for changes. When it returns false, 242 /// the information is preserved across those changes. 243 bool invalidate(Function &, const PreservedAnalyses &, 244 FunctionAnalysisManager::Invalidator &) { 245 // FIXME: We should probably in some way ensure that the subtarget 246 // information for a function hasn't changed. 247 return false; 248 } 249 250 /// \name Generic Target Information 251 /// @{ 252 253 /// The kind of cost model. 254 /// 255 /// There are several different cost models that can be customized by the 256 /// target. The normalization of each cost model may be target specific. 257 /// e.g. TCK_SizeAndLatency should be comparable to target thresholds such as 258 /// those derived from MCSchedModel::LoopMicroOpBufferSize etc. 259 enum TargetCostKind { 260 TCK_RecipThroughput, ///< Reciprocal throughput. 261 TCK_Latency, ///< The latency of instruction. 262 TCK_CodeSize, ///< Instruction code size. 263 TCK_SizeAndLatency ///< The weighted sum of size and latency. 264 }; 265 266 /// Underlying constants for 'cost' values in this interface. 267 /// 268 /// Many APIs in this interface return a cost. This enum defines the 269 /// fundamental values that should be used to interpret (and produce) those 270 /// costs. The costs are returned as an int rather than a member of this 271 /// enumeration because it is expected that the cost of one IR instruction 272 /// may have a multiplicative factor to it or otherwise won't fit directly 273 /// into the enum. Moreover, it is common to sum or average costs which works 274 /// better as simple integral values. Thus this enum only provides constants. 275 /// Also note that the returned costs are signed integers to make it natural 276 /// to add, subtract, and test with zero (a common boundary condition). It is 277 /// not expected that 2^32 is a realistic cost to be modeling at any point. 278 /// 279 /// Note that these costs should usually reflect the intersection of code-size 280 /// cost and execution cost. A free instruction is typically one that folds 281 /// into another instruction. For example, reg-to-reg moves can often be 282 /// skipped by renaming the registers in the CPU, but they still are encoded 283 /// and thus wouldn't be considered 'free' here. 284 enum TargetCostConstants { 285 TCC_Free = 0, ///< Expected to fold away in lowering. 286 TCC_Basic = 1, ///< The cost of a typical 'add' instruction. 287 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86. 288 }; 289 290 /// Estimate the cost of a GEP operation when lowered. 291 /// 292 /// \p PointeeType is the source element type of the GEP. 293 /// \p Ptr is the base pointer operand. 294 /// \p Operands is the list of indices following the base pointer. 295 /// 296 /// \p AccessType is a hint as to what type of memory might be accessed by 297 /// users of the GEP. getGEPCost will use it to determine if the GEP can be 298 /// folded into the addressing mode of a load/store. If AccessType is null, 299 /// then the resulting target type based off of PointeeType will be used as an 300 /// approximation. 301 InstructionCost 302 getGEPCost(Type *PointeeType, const Value *Ptr, 303 ArrayRef<const Value *> Operands, Type *AccessType = nullptr, 304 TargetCostKind CostKind = TCK_SizeAndLatency) const; 305 306 /// Describe known properties for a set of pointers. 307 struct PointersChainInfo { 308 /// All the GEPs in a set have same base address. 309 unsigned IsSameBaseAddress : 1; 310 /// These properties only valid if SameBaseAddress is set. 311 /// True if all pointers are separated by a unit stride. 312 unsigned IsUnitStride : 1; 313 /// True if distance between any two neigbouring pointers is a known value. 314 unsigned IsKnownStride : 1; 315 unsigned Reserved : 29; 316 317 bool isSameBase() const { return IsSameBaseAddress; } 318 bool isUnitStride() const { return IsSameBaseAddress && IsUnitStride; } 319 bool isKnownStride() const { return IsSameBaseAddress && IsKnownStride; } 320 321 static PointersChainInfo getUnitStride() { 322 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/1, 323 /*IsKnownStride=*/1, 0}; 324 } 325 static PointersChainInfo getKnownStride() { 326 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0, 327 /*IsKnownStride=*/1, 0}; 328 } 329 static PointersChainInfo getUnknownStride() { 330 return {/*IsSameBaseAddress=*/1, /*IsUnitStride=*/0, 331 /*IsKnownStride=*/0, 0}; 332 } 333 }; 334 static_assert(sizeof(PointersChainInfo) == 4, "Was size increase justified?"); 335 336 /// Estimate the cost of a chain of pointers (typically pointer operands of a 337 /// chain of loads or stores within same block) operations set when lowered. 338 /// \p AccessTy is the type of the loads/stores that will ultimately use the 339 /// \p Ptrs. 340 InstructionCost 341 getPointersChainCost(ArrayRef<const Value *> Ptrs, const Value *Base, 342 const PointersChainInfo &Info, Type *AccessTy, 343 TargetCostKind CostKind = TTI::TCK_RecipThroughput 344 345 ) const; 346 347 /// \returns A value by which our inlining threshold should be multiplied. 348 /// This is primarily used to bump up the inlining threshold wholesale on 349 /// targets where calls are unusually expensive. 350 /// 351 /// TODO: This is a rather blunt instrument. Perhaps altering the costs of 352 /// individual classes of instructions would be better. 353 unsigned getInliningThresholdMultiplier() const; 354 355 unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const; 356 unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const; 357 358 /// \returns A value to be added to the inlining threshold. 359 unsigned adjustInliningThreshold(const CallBase *CB) const; 360 361 /// \returns The cost of having an Alloca in the caller if not inlined, to be 362 /// added to the threshold 363 unsigned getCallerAllocaCost(const CallBase *CB, const AllocaInst *AI) const; 364 365 /// \returns Vector bonus in percent. 366 /// 367 /// Vector bonuses: We want to more aggressively inline vector-dense kernels 368 /// and apply this bonus based on the percentage of vector instructions. A 369 /// bonus is applied if the vector instructions exceed 50% and half that 370 /// amount is applied if it exceeds 10%. Note that these bonuses are some what 371 /// arbitrary and evolved over time by accident as much as because they are 372 /// principled bonuses. 373 /// FIXME: It would be nice to base the bonus values on something more 374 /// scientific. A target may has no bonus on vector instructions. 375 int getInlinerVectorBonusPercent() const; 376 377 /// \return the expected cost of a memcpy, which could e.g. depend on the 378 /// source/destination type and alignment and the number of bytes copied. 379 InstructionCost getMemcpyCost(const Instruction *I) const; 380 381 /// Returns the maximum memset / memcpy size in bytes that still makes it 382 /// profitable to inline the call. 383 uint64_t getMaxMemIntrinsicInlineSizeThreshold() const; 384 385 /// \return The estimated number of case clusters when lowering \p 'SI'. 386 /// \p JTSize Set a jump table size only when \p SI is suitable for a jump 387 /// table. 388 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 389 unsigned &JTSize, 390 ProfileSummaryInfo *PSI, 391 BlockFrequencyInfo *BFI) const; 392 393 /// Estimate the cost of a given IR user when lowered. 394 /// 395 /// This can estimate the cost of either a ConstantExpr or Instruction when 396 /// lowered. 397 /// 398 /// \p Operands is a list of operands which can be a result of transformations 399 /// of the current operands. The number of the operands on the list must equal 400 /// to the number of the current operands the IR user has. Their order on the 401 /// list must be the same as the order of the current operands the IR user 402 /// has. 403 /// 404 /// The returned cost is defined in terms of \c TargetCostConstants, see its 405 /// comments for a detailed explanation of the cost values. 406 InstructionCost getInstructionCost(const User *U, 407 ArrayRef<const Value *> Operands, 408 TargetCostKind CostKind) const; 409 410 /// This is a helper function which calls the three-argument 411 /// getInstructionCost with \p Operands which are the current operands U has. 412 InstructionCost getInstructionCost(const User *U, 413 TargetCostKind CostKind) const { 414 SmallVector<const Value *, 4> Operands(U->operand_values()); 415 return getInstructionCost(U, Operands, CostKind); 416 } 417 418 /// If a branch or a select condition is skewed in one direction by more than 419 /// this factor, it is very likely to be predicted correctly. 420 BranchProbability getPredictableBranchThreshold() const; 421 422 /// Returns estimated penalty of a branch misprediction in latency. Indicates 423 /// how aggressive the target wants for eliminating unpredictable branches. A 424 /// zero return value means extra optimization applied to them should be 425 /// minimal. 426 InstructionCost getBranchMispredictPenalty() const; 427 428 /// Return true if branch divergence exists. 429 /// 430 /// Branch divergence has a significantly negative impact on GPU performance 431 /// when threads in the same wavefront take different paths due to conditional 432 /// branches. 433 /// 434 /// If \p F is passed, provides a context function. If \p F is known to only 435 /// execute in a single threaded environment, the target may choose to skip 436 /// uniformity analysis and assume all values are uniform. 437 bool hasBranchDivergence(const Function *F = nullptr) const; 438 439 /// Returns whether V is a source of divergence. 440 /// 441 /// This function provides the target-dependent information for 442 /// the target-independent UniformityAnalysis. 443 bool isSourceOfDivergence(const Value *V) const; 444 445 // Returns true for the target specific 446 // set of operations which produce uniform result 447 // even taking non-uniform arguments 448 bool isAlwaysUniform(const Value *V) const; 449 450 /// Query the target whether the specified address space cast from FromAS to 451 /// ToAS is valid. 452 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const; 453 454 /// Return false if a \p AS0 address cannot possibly alias a \p AS1 address. 455 bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const; 456 457 /// Returns the address space ID for a target's 'flat' address space. Note 458 /// this is not necessarily the same as addrspace(0), which LLVM sometimes 459 /// refers to as the generic address space. The flat address space is a 460 /// generic address space that can be used access multiple segments of memory 461 /// with different address spaces. Access of a memory location through a 462 /// pointer with this address space is expected to be legal but slower 463 /// compared to the same memory location accessed through a pointer with a 464 /// different address space. 465 // 466 /// This is for targets with different pointer representations which can 467 /// be converted with the addrspacecast instruction. If a pointer is converted 468 /// to this address space, optimizations should attempt to replace the access 469 /// with the source address space. 470 /// 471 /// \returns ~0u if the target does not have such a flat address space to 472 /// optimize away. 473 unsigned getFlatAddressSpace() const; 474 475 /// Return any intrinsic address operand indexes which may be rewritten if 476 /// they use a flat address space pointer. 477 /// 478 /// \returns true if the intrinsic was handled. 479 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 480 Intrinsic::ID IID) const; 481 482 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const; 483 484 /// Return true if globals in this address space can have initializers other 485 /// than `undef`. 486 bool canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const; 487 488 unsigned getAssumedAddrSpace(const Value *V) const; 489 490 bool isSingleThreaded() const; 491 492 std::pair<const Value *, unsigned> 493 getPredicatedAddrSpace(const Value *V) const; 494 495 /// Rewrite intrinsic call \p II such that \p OldV will be replaced with \p 496 /// NewV, which has a different address space. This should happen for every 497 /// operand index that collectFlatAddressOperands returned for the intrinsic. 498 /// \returns nullptr if the intrinsic was not handled. Otherwise, returns the 499 /// new value (which may be the original \p II with modified operands). 500 Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, 501 Value *NewV) const; 502 503 /// Test whether calls to a function lower to actual program function 504 /// calls. 505 /// 506 /// The idea is to test whether the program is likely to require a 'call' 507 /// instruction or equivalent in order to call the given function. 508 /// 509 /// FIXME: It's not clear that this is a good or useful query API. Client's 510 /// should probably move to simpler cost metrics using the above. 511 /// Alternatively, we could split the cost interface into distinct code-size 512 /// and execution-speed costs. This would allow modelling the core of this 513 /// query more accurately as a call is a single small instruction, but 514 /// incurs significant execution cost. 515 bool isLoweredToCall(const Function *F) const; 516 517 struct LSRCost { 518 /// TODO: Some of these could be merged. Also, a lexical ordering 519 /// isn't always optimal. 520 unsigned Insns; 521 unsigned NumRegs; 522 unsigned AddRecCost; 523 unsigned NumIVMuls; 524 unsigned NumBaseAdds; 525 unsigned ImmCost; 526 unsigned SetupCost; 527 unsigned ScaleCost; 528 }; 529 530 /// Parameters that control the generic loop unrolling transformation. 531 struct UnrollingPreferences { 532 /// The cost threshold for the unrolled loop. Should be relative to the 533 /// getInstructionCost values returned by this API, and the expectation is 534 /// that the unrolled loop's instructions when run through that interface 535 /// should not exceed this cost. However, this is only an estimate. Also, 536 /// specific loops may be unrolled even with a cost above this threshold if 537 /// deemed profitable. Set this to UINT_MAX to disable the loop body cost 538 /// restriction. 539 unsigned Threshold; 540 /// If complete unrolling will reduce the cost of the loop, we will boost 541 /// the Threshold by a certain percent to allow more aggressive complete 542 /// unrolling. This value provides the maximum boost percentage that we 543 /// can apply to Threshold (The value should be no less than 100). 544 /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost, 545 /// MaxPercentThresholdBoost / 100) 546 /// E.g. if complete unrolling reduces the loop execution time by 50% 547 /// then we boost the threshold by the factor of 2x. If unrolling is not 548 /// expected to reduce the running time, then we do not increase the 549 /// threshold. 550 unsigned MaxPercentThresholdBoost; 551 /// The cost threshold for the unrolled loop when optimizing for size (set 552 /// to UINT_MAX to disable). 553 unsigned OptSizeThreshold; 554 /// The cost threshold for the unrolled loop, like Threshold, but used 555 /// for partial/runtime unrolling (set to UINT_MAX to disable). 556 unsigned PartialThreshold; 557 /// The cost threshold for the unrolled loop when optimizing for size, like 558 /// OptSizeThreshold, but used for partial/runtime unrolling (set to 559 /// UINT_MAX to disable). 560 unsigned PartialOptSizeThreshold; 561 /// A forced unrolling factor (the number of concatenated bodies of the 562 /// original loop in the unrolled loop body). When set to 0, the unrolling 563 /// transformation will select an unrolling factor based on the current cost 564 /// threshold and other factors. 565 unsigned Count; 566 /// Default unroll count for loops with run-time trip count. 567 unsigned DefaultUnrollRuntimeCount; 568 // Set the maximum unrolling factor. The unrolling factor may be selected 569 // using the appropriate cost threshold, but may not exceed this number 570 // (set to UINT_MAX to disable). This does not apply in cases where the 571 // loop is being fully unrolled. 572 unsigned MaxCount; 573 /// Set the maximum upper bound of trip count. Allowing the MaxUpperBound 574 /// to be overrided by a target gives more flexiblity on certain cases. 575 /// By default, MaxUpperBound uses UnrollMaxUpperBound which value is 8. 576 unsigned MaxUpperBound; 577 /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but 578 /// applies even if full unrolling is selected. This allows a target to fall 579 /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount. 580 unsigned FullUnrollMaxCount; 581 // Represents number of instructions optimized when "back edge" 582 // becomes "fall through" in unrolled loop. 583 // For now we count a conditional branch on a backedge and a comparison 584 // feeding it. 585 unsigned BEInsns; 586 /// Allow partial unrolling (unrolling of loops to expand the size of the 587 /// loop body, not only to eliminate small constant-trip-count loops). 588 bool Partial; 589 /// Allow runtime unrolling (unrolling of loops to expand the size of the 590 /// loop body even when the number of loop iterations is not known at 591 /// compile time). 592 bool Runtime; 593 /// Allow generation of a loop remainder (extra iterations after unroll). 594 bool AllowRemainder; 595 /// Allow emitting expensive instructions (such as divisions) when computing 596 /// the trip count of a loop for runtime unrolling. 597 bool AllowExpensiveTripCount; 598 /// Apply loop unroll on any kind of loop 599 /// (mainly to loops that fail runtime unrolling). 600 bool Force; 601 /// Allow using trip count upper bound to unroll loops. 602 bool UpperBound; 603 /// Allow unrolling of all the iterations of the runtime loop remainder. 604 bool UnrollRemainder; 605 /// Allow unroll and jam. Used to enable unroll and jam for the target. 606 bool UnrollAndJam; 607 /// Threshold for unroll and jam, for inner loop size. The 'Threshold' 608 /// value above is used during unroll and jam for the outer loop size. 609 /// This value is used in the same manner to limit the size of the inner 610 /// loop. 611 unsigned UnrollAndJamInnerLoopThreshold; 612 /// Don't allow loop unrolling to simulate more than this number of 613 /// iterations when checking full unroll profitability 614 unsigned MaxIterationsCountToAnalyze; 615 /// Don't disable runtime unroll for the loops which were vectorized. 616 bool UnrollVectorizedLoop = false; 617 }; 618 619 /// Get target-customized preferences for the generic loop unrolling 620 /// transformation. The caller will initialize UP with the current 621 /// target-independent defaults. 622 void getUnrollingPreferences(Loop *L, ScalarEvolution &, 623 UnrollingPreferences &UP, 624 OptimizationRemarkEmitter *ORE) const; 625 626 /// Query the target whether it would be profitable to convert the given loop 627 /// into a hardware loop. 628 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 629 AssumptionCache &AC, TargetLibraryInfo *LibInfo, 630 HardwareLoopInfo &HWLoopInfo) const; 631 632 /// Query the target whether it would be prefered to create a predicated 633 /// vector loop, which can avoid the need to emit a scalar epilogue loop. 634 bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) const; 635 636 /// Query the target what the preferred style of tail folding is. 637 /// \param IVUpdateMayOverflow Tells whether it is known if the IV update 638 /// may (or will never) overflow for the suggested VF/UF in the given loop. 639 /// Targets can use this information to select a more optimal tail folding 640 /// style. The value conservatively defaults to true, such that no assumptions 641 /// are made on overflow. 642 TailFoldingStyle 643 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) const; 644 645 // Parameters that control the loop peeling transformation 646 struct PeelingPreferences { 647 /// A forced peeling factor (the number of bodied of the original loop 648 /// that should be peeled off before the loop body). When set to 0, the 649 /// a peeling factor based on profile information and other factors. 650 unsigned PeelCount; 651 /// Allow peeling off loop iterations. 652 bool AllowPeeling; 653 /// Allow peeling off loop iterations for loop nests. 654 bool AllowLoopNestsPeeling; 655 /// Allow peeling basing on profile. Uses to enable peeling off all 656 /// iterations basing on provided profile. 657 /// If the value is true the peeling cost model can decide to peel only 658 /// some iterations and in this case it will set this to false. 659 bool PeelProfiledIterations; 660 }; 661 662 /// Get target-customized preferences for the generic loop peeling 663 /// transformation. The caller will initialize \p PP with the current 664 /// target-independent defaults with information from \p L and \p SE. 665 void getPeelingPreferences(Loop *L, ScalarEvolution &SE, 666 PeelingPreferences &PP) const; 667 668 /// Targets can implement their own combinations for target-specific 669 /// intrinsics. This function will be called from the InstCombine pass every 670 /// time a target-specific intrinsic is encountered. 671 /// 672 /// \returns std::nullopt to not do anything target specific or a value that 673 /// will be returned from the InstCombiner. It is possible to return null and 674 /// stop further processing of the intrinsic by returning nullptr. 675 std::optional<Instruction *> instCombineIntrinsic(InstCombiner & IC, 676 IntrinsicInst & II) const; 677 /// Can be used to implement target-specific instruction combining. 678 /// \see instCombineIntrinsic 679 std::optional<Value *> simplifyDemandedUseBitsIntrinsic( 680 InstCombiner & IC, IntrinsicInst & II, APInt DemandedMask, 681 KnownBits & Known, bool &KnownBitsComputed) const; 682 /// Can be used to implement target-specific instruction combining. 683 /// \see instCombineIntrinsic 684 std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( 685 InstCombiner & IC, IntrinsicInst & II, APInt DemandedElts, 686 APInt & UndefElts, APInt & UndefElts2, APInt & UndefElts3, 687 std::function<void(Instruction *, unsigned, APInt, APInt &)> 688 SimplifyAndSetOp) const; 689 /// @} 690 691 /// \name Scalar Target Information 692 /// @{ 693 694 /// Flags indicating the kind of support for population count. 695 /// 696 /// Compared to the SW implementation, HW support is supposed to 697 /// significantly boost the performance when the population is dense, and it 698 /// may or may not degrade performance if the population is sparse. A HW 699 /// support is considered as "Fast" if it can outperform, or is on a par 700 /// with, SW implementation when the population is sparse; otherwise, it is 701 /// considered as "Slow". 702 enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; 703 704 /// Return true if the specified immediate is legal add immediate, that 705 /// is the target has add instructions which can add a register with the 706 /// immediate without having to materialize the immediate into a register. 707 bool isLegalAddImmediate(int64_t Imm) const; 708 709 /// Return true if adding the specified scalable immediate is legal, that is 710 /// the target has add instructions which can add a register with the 711 /// immediate (multiplied by vscale) without having to materialize the 712 /// immediate into a register. 713 bool isLegalAddScalableImmediate(int64_t Imm) const; 714 715 /// Return true if the specified immediate is legal icmp immediate, 716 /// that is the target has icmp instructions which can compare a register 717 /// against the immediate without having to materialize the immediate into a 718 /// register. 719 bool isLegalICmpImmediate(int64_t Imm) const; 720 721 /// Return true if the addressing mode represented by AM is legal for 722 /// this target, for a load/store of the specified type. 723 /// The type may be VoidTy, in which case only return true if the addressing 724 /// mode is legal for a load/store of any legal type. 725 /// If target returns true in LSRWithInstrQueries(), I may be valid. 726 /// \param ScalableOffset represents a quantity of bytes multiplied by vscale, 727 /// an invariant value known only at runtime. Most targets should not accept 728 /// a scalable offset. 729 /// 730 /// TODO: Handle pre/postinc as well. 731 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 732 bool HasBaseReg, int64_t Scale, 733 unsigned AddrSpace = 0, Instruction *I = nullptr, 734 int64_t ScalableOffset = 0) const; 735 736 /// Return true if LSR cost of C1 is lower than C2. 737 bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, 738 const TargetTransformInfo::LSRCost &C2) const; 739 740 /// Return true if LSR major cost is number of registers. Targets which 741 /// implement their own isLSRCostLess and unset number of registers as major 742 /// cost should return false, otherwise return true. 743 bool isNumRegsMajorCostOfLSR() const; 744 745 /// Return true if LSR should attempts to replace a use of an otherwise dead 746 /// primary IV in the latch condition with another IV available in the loop. 747 /// When successful, makes the primary IV dead. 748 bool shouldFoldTerminatingConditionAfterLSR() const; 749 750 /// Return true if LSR should drop a found solution if it's calculated to be 751 /// less profitable than the baseline. 752 bool shouldDropLSRSolutionIfLessProfitable() const; 753 754 /// \returns true if LSR should not optimize a chain that includes \p I. 755 bool isProfitableLSRChainElement(Instruction *I) const; 756 757 /// Return true if the target can fuse a compare and branch. 758 /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost 759 /// calculation for the instructions in a loop. 760 bool canMacroFuseCmp() const; 761 762 /// Return true if the target can save a compare for loop count, for example 763 /// hardware loop saves a compare. 764 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, 765 DominatorTree *DT, AssumptionCache *AC, 766 TargetLibraryInfo *LibInfo) const; 767 768 enum AddressingModeKind { 769 AMK_PreIndexed, 770 AMK_PostIndexed, 771 AMK_None 772 }; 773 774 /// Return the preferred addressing mode LSR should make efforts to generate. 775 AddressingModeKind getPreferredAddressingMode(const Loop *L, 776 ScalarEvolution *SE) const; 777 778 /// Return true if the target supports masked store. 779 bool isLegalMaskedStore(Type *DataType, Align Alignment) const; 780 /// Return true if the target supports masked load. 781 bool isLegalMaskedLoad(Type *DataType, Align Alignment) const; 782 783 /// Return true if the target supports nontemporal store. 784 bool isLegalNTStore(Type *DataType, Align Alignment) const; 785 /// Return true if the target supports nontemporal load. 786 bool isLegalNTLoad(Type *DataType, Align Alignment) const; 787 788 /// \Returns true if the target supports broadcasting a load to a vector of 789 /// type <NumElements x ElementTy>. 790 bool isLegalBroadcastLoad(Type *ElementTy, ElementCount NumElements) const; 791 792 /// Return true if the target supports masked scatter. 793 bool isLegalMaskedScatter(Type *DataType, Align Alignment) const; 794 /// Return true if the target supports masked gather. 795 bool isLegalMaskedGather(Type *DataType, Align Alignment) const; 796 /// Return true if the target forces scalarizing of llvm.masked.gather 797 /// intrinsics. 798 bool forceScalarizeMaskedGather(VectorType *Type, Align Alignment) const; 799 /// Return true if the target forces scalarizing of llvm.masked.scatter 800 /// intrinsics. 801 bool forceScalarizeMaskedScatter(VectorType *Type, Align Alignment) const; 802 803 /// Return true if the target supports masked compress store. 804 bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) const; 805 /// Return true if the target supports masked expand load. 806 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) const; 807 808 /// Return true if the target supports strided load. 809 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) const; 810 811 // Return true if the target supports masked vector histograms. 812 bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) const; 813 814 /// Return true if this is an alternating opcode pattern that can be lowered 815 /// to a single instruction on the target. In X86 this is for the addsub 816 /// instruction which corrsponds to a Shuffle + Fadd + FSub pattern in IR. 817 /// This function expectes two opcodes: \p Opcode1 and \p Opcode2 being 818 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0` 819 /// when \p Opcode0 is selected and `1` when Opcode1 is selected. 820 /// \p VecTy is the vector type of the instruction to be generated. 821 bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, 822 const SmallBitVector &OpcodeMask) const; 823 824 /// Return true if we should be enabling ordered reductions for the target. 825 bool enableOrderedReductions() const; 826 827 /// Return true if the target has a unified operation to calculate division 828 /// and remainder. If so, the additional implicit multiplication and 829 /// subtraction required to calculate a remainder from division are free. This 830 /// can enable more aggressive transformations for division and remainder than 831 /// would typically be allowed using throughput or size cost models. 832 bool hasDivRemOp(Type *DataType, bool IsSigned) const; 833 834 /// Return true if the given instruction (assumed to be a memory access 835 /// instruction) has a volatile variant. If that's the case then we can avoid 836 /// addrspacecast to generic AS for volatile loads/stores. Default 837 /// implementation returns false, which prevents address space inference for 838 /// volatile loads/stores. 839 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const; 840 841 /// Return true if target doesn't mind addresses in vectors. 842 bool prefersVectorizedAddressing() const; 843 844 /// Return the cost of the scaling factor used in the addressing 845 /// mode represented by AM for this target, for a load/store 846 /// of the specified type. 847 /// If the AM is supported, the return value must be >= 0. 848 /// If the AM is not supported, it returns a negative value. 849 /// TODO: Handle pre/postinc as well. 850 InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 851 StackOffset BaseOffset, bool HasBaseReg, 852 int64_t Scale, 853 unsigned AddrSpace = 0) const; 854 855 /// Return true if the loop strength reduce pass should make 856 /// Instruction* based TTI queries to isLegalAddressingMode(). This is 857 /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned 858 /// immediate offset and no index register. 859 bool LSRWithInstrQueries() const; 860 861 /// Return true if it's free to truncate a value of type Ty1 to type 862 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 863 /// by referencing its sub-register AX. 864 bool isTruncateFree(Type *Ty1, Type *Ty2) const; 865 866 /// Return true if it is profitable to hoist instruction in the 867 /// then/else to before if. 868 bool isProfitableToHoist(Instruction *I) const; 869 870 bool useAA() const; 871 872 /// Return true if this type is legal. 873 bool isTypeLegal(Type *Ty) const; 874 875 /// Returns the estimated number of registers required to represent \p Ty. 876 unsigned getRegUsageForType(Type *Ty) const; 877 878 /// Return true if switches should be turned into lookup tables for the 879 /// target. 880 bool shouldBuildLookupTables() const; 881 882 /// Return true if switches should be turned into lookup tables 883 /// containing this constant value for the target. 884 bool shouldBuildLookupTablesForConstant(Constant *C) const; 885 886 /// Return true if lookup tables should be turned into relative lookup tables. 887 bool shouldBuildRelLookupTables() const; 888 889 /// Return true if the input function which is cold at all call sites, 890 /// should use coldcc calling convention. 891 bool useColdCCForColdCall(Function &F) const; 892 893 /// Estimate the overhead of scalarizing an instruction. Insert and Extract 894 /// are set if the demanded result elements need to be inserted and/or 895 /// extracted from vectors. 896 InstructionCost getScalarizationOverhead(VectorType *Ty, 897 const APInt &DemandedElts, 898 bool Insert, bool Extract, 899 TTI::TargetCostKind CostKind) const; 900 901 /// Estimate the overhead of scalarizing an instructions unique 902 /// non-constant operands. The (potentially vector) types to use for each of 903 /// argument are passes via Tys. 904 InstructionCost 905 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 906 ArrayRef<Type *> Tys, 907 TTI::TargetCostKind CostKind) const; 908 909 /// If target has efficient vector element load/store instructions, it can 910 /// return true here so that insertion/extraction costs are not added to 911 /// the scalarization cost of a load/store. 912 bool supportsEfficientVectorElementLoadStore() const; 913 914 /// If the target supports tail calls. 915 bool supportsTailCalls() const; 916 917 /// If target supports tail call on \p CB 918 bool supportsTailCallFor(const CallBase *CB) const; 919 920 /// Don't restrict interleaved unrolling to small loops. 921 bool enableAggressiveInterleaving(bool LoopHasReductions) const; 922 923 /// Returns options for expansion of memcmp. IsZeroCmp is 924 // true if this is the expansion of memcmp(p1, p2, s) == 0. 925 struct MemCmpExpansionOptions { 926 // Return true if memcmp expansion is enabled. 927 operator bool() const { return MaxNumLoads > 0; } 928 929 // Maximum number of load operations. 930 unsigned MaxNumLoads = 0; 931 932 // The list of available load sizes (in bytes), sorted in decreasing order. 933 SmallVector<unsigned, 8> LoadSizes; 934 935 // For memcmp expansion when the memcmp result is only compared equal or 936 // not-equal to 0, allow up to this number of load pairs per block. As an 937 // example, this may allow 'memcmp(a, b, 3) == 0' in a single block: 938 // a0 = load2bytes &a[0] 939 // b0 = load2bytes &b[0] 940 // a2 = load1byte &a[2] 941 // b2 = load1byte &b[2] 942 // r = cmp eq (a0 ^ b0 | a2 ^ b2), 0 943 unsigned NumLoadsPerBlock = 1; 944 945 // Set to true to allow overlapping loads. For example, 7-byte compares can 946 // be done with two 4-byte compares instead of 4+2+1-byte compares. This 947 // requires all loads in LoadSizes to be doable in an unaligned way. 948 bool AllowOverlappingLoads = false; 949 950 // Sometimes, the amount of data that needs to be compared is smaller than 951 // the standard register size, but it cannot be loaded with just one load 952 // instruction. For example, if the size of the memory comparison is 6 953 // bytes, we can handle it more efficiently by loading all 6 bytes in a 954 // single block and generating an 8-byte number, instead of generating two 955 // separate blocks with conditional jumps for 4 and 2 byte loads. This 956 // approach simplifies the process and produces the comparison result as 957 // normal. This array lists the allowed sizes of memcmp tails that can be 958 // merged into one block 959 SmallVector<unsigned, 4> AllowedTailExpansions; 960 }; 961 MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, 962 bool IsZeroCmp) const; 963 964 /// Should the Select Optimization pass be enabled and ran. 965 bool enableSelectOptimize() const; 966 967 /// Should the Select Optimization pass treat the given instruction like a 968 /// select, potentially converting it to a conditional branch. This can 969 /// include select-like instructions like or(zext(c), x) that can be converted 970 /// to selects. 971 bool shouldTreatInstructionLikeSelect(const Instruction *I) const; 972 973 /// Enable matching of interleaved access groups. 974 bool enableInterleavedAccessVectorization() const; 975 976 /// Enable matching of interleaved access groups that contain predicated 977 /// accesses or gaps and therefore vectorized using masked 978 /// vector loads/stores. 979 bool enableMaskedInterleavedAccessVectorization() const; 980 981 /// Indicate that it is potentially unsafe to automatically vectorize 982 /// floating-point operations because the semantics of vector and scalar 983 /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math 984 /// does not support IEEE-754 denormal numbers, while depending on the 985 /// platform, scalar floating-point math does. 986 /// This applies to floating-point math operations and calls, not memory 987 /// operations, shuffles, or casts. 988 bool isFPVectorizationPotentiallyUnsafe() const; 989 990 /// Determine if the target supports unaligned memory accesses. 991 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, 992 unsigned AddressSpace = 0, 993 Align Alignment = Align(1), 994 unsigned *Fast = nullptr) const; 995 996 /// Return hardware support for population count. 997 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; 998 999 /// Return true if the hardware has a fast square-root instruction. 1000 bool haveFastSqrt(Type *Ty) const; 1001 1002 /// Return true if the cost of the instruction is too high to speculatively 1003 /// execute and should be kept behind a branch. 1004 /// This normally just wraps around a getInstructionCost() call, but some 1005 /// targets might report a low TCK_SizeAndLatency value that is incompatible 1006 /// with the fixed TCC_Expensive value. 1007 /// NOTE: This assumes the instruction passes isSafeToSpeculativelyExecute(). 1008 bool isExpensiveToSpeculativelyExecute(const Instruction *I) const; 1009 1010 /// Return true if it is faster to check if a floating-point value is NaN 1011 /// (or not-NaN) versus a comparison against a constant FP zero value. 1012 /// Targets should override this if materializing a 0.0 for comparison is 1013 /// generally as cheap as checking for ordered/unordered. 1014 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const; 1015 1016 /// Return the expected cost of supporting the floating point operation 1017 /// of the specified type. 1018 InstructionCost getFPOpCost(Type *Ty) const; 1019 1020 /// Return the expected cost of materializing for the given integer 1021 /// immediate of the specified type. 1022 InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, 1023 TargetCostKind CostKind) const; 1024 1025 /// Return the expected cost of materialization for the given integer 1026 /// immediate of the specified type for a given instruction. The cost can be 1027 /// zero if the immediate can be folded into the specified instruction. 1028 InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, 1029 const APInt &Imm, Type *Ty, 1030 TargetCostKind CostKind, 1031 Instruction *Inst = nullptr) const; 1032 InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 1033 const APInt &Imm, Type *Ty, 1034 TargetCostKind CostKind) const; 1035 1036 /// Return the expected cost for the given integer when optimising 1037 /// for size. This is different than the other integer immediate cost 1038 /// functions in that it is subtarget agnostic. This is useful when you e.g. 1039 /// target one ISA such as Aarch32 but smaller encodings could be possible 1040 /// with another such as Thumb. This return value is used as a penalty when 1041 /// the total costs for a constant is calculated (the bigger the cost, the 1042 /// more beneficial constant hoisting is). 1043 InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, 1044 const APInt &Imm, Type *Ty) const; 1045 1046 /// It can be advantageous to detach complex constants from their uses to make 1047 /// their generation cheaper. This hook allows targets to report when such 1048 /// transformations might negatively effect the code generation of the 1049 /// underlying operation. The motivating example is divides whereby hoisting 1050 /// constants prevents the code generator's ability to transform them into 1051 /// combinations of simpler operations. 1052 bool preferToKeepConstantsAttached(const Instruction &Inst, 1053 const Function &Fn) const; 1054 1055 /// @} 1056 1057 /// \name Vector Target Information 1058 /// @{ 1059 1060 /// The various kinds of shuffle patterns for vector queries. 1061 enum ShuffleKind { 1062 SK_Broadcast, ///< Broadcast element 0 to all other elements. 1063 SK_Reverse, ///< Reverse the order of the vector. 1064 SK_Select, ///< Selects elements from the corresponding lane of 1065 ///< either source operand. This is equivalent to a 1066 ///< vector select with a constant condition operand. 1067 SK_Transpose, ///< Transpose two vectors. 1068 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. 1069 SK_ExtractSubvector, ///< ExtractSubvector Index indicates start offset. 1070 SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one 1071 ///< with any shuffle mask. 1072 SK_PermuteSingleSrc, ///< Shuffle elements of single source vector with any 1073 ///< shuffle mask. 1074 SK_Splice ///< Concatenates elements from the first input vector 1075 ///< with elements of the second input vector. Returning 1076 ///< a vector of the same type as the input vectors. 1077 ///< Index indicates start offset in first input vector. 1078 }; 1079 1080 /// Additional information about an operand's possible values. 1081 enum OperandValueKind { 1082 OK_AnyValue, // Operand can have any value. 1083 OK_UniformValue, // Operand is uniform (splat of a value). 1084 OK_UniformConstantValue, // Operand is uniform constant. 1085 OK_NonUniformConstantValue // Operand is a non uniform constant value. 1086 }; 1087 1088 /// Additional properties of an operand's values. 1089 enum OperandValueProperties { 1090 OP_None = 0, 1091 OP_PowerOf2 = 1, 1092 OP_NegatedPowerOf2 = 2, 1093 }; 1094 1095 // Describe the values an operand can take. We're in the process 1096 // of migrating uses of OperandValueKind and OperandValueProperties 1097 // to use this class, and then will change the internal representation. 1098 struct OperandValueInfo { 1099 OperandValueKind Kind = OK_AnyValue; 1100 OperandValueProperties Properties = OP_None; 1101 1102 bool isConstant() const { 1103 return Kind == OK_UniformConstantValue || Kind == OK_NonUniformConstantValue; 1104 } 1105 bool isUniform() const { 1106 return Kind == OK_UniformConstantValue || Kind == OK_UniformValue; 1107 } 1108 bool isPowerOf2() const { 1109 return Properties == OP_PowerOf2; 1110 } 1111 bool isNegatedPowerOf2() const { 1112 return Properties == OP_NegatedPowerOf2; 1113 } 1114 1115 OperandValueInfo getNoProps() const { 1116 return {Kind, OP_None}; 1117 } 1118 }; 1119 1120 /// \return the number of registers in the target-provided register class. 1121 unsigned getNumberOfRegisters(unsigned ClassID) const; 1122 1123 /// \return true if the target supports load/store that enables fault 1124 /// suppression of memory operands when the source condition is false. 1125 bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const; 1126 1127 /// \return the target-provided register class ID for the provided type, 1128 /// accounting for type promotion and other type-legalization techniques that 1129 /// the target might apply. However, it specifically does not account for the 1130 /// scalarization or splitting of vector types. Should a vector type require 1131 /// scalarization or splitting into multiple underlying vector registers, that 1132 /// type should be mapped to a register class containing no registers. 1133 /// Specifically, this is designed to provide a simple, high-level view of the 1134 /// register allocation later performed by the backend. These register classes 1135 /// don't necessarily map onto the register classes used by the backend. 1136 /// FIXME: It's not currently possible to determine how many registers 1137 /// are used by the provided type. 1138 unsigned getRegisterClassForType(bool Vector, Type *Ty = nullptr) const; 1139 1140 /// \return the target-provided register class name 1141 const char *getRegisterClassName(unsigned ClassID) const; 1142 1143 enum RegisterKind { RGK_Scalar, RGK_FixedWidthVector, RGK_ScalableVector }; 1144 1145 /// \return The width of the largest scalar or vector register type. 1146 TypeSize getRegisterBitWidth(RegisterKind K) const; 1147 1148 /// \return The width of the smallest vector register type. 1149 unsigned getMinVectorRegisterBitWidth() const; 1150 1151 /// \return The maximum value of vscale if the target specifies an 1152 /// architectural maximum vector length, and std::nullopt otherwise. 1153 std::optional<unsigned> getMaxVScale() const; 1154 1155 /// \return the value of vscale to tune the cost model for. 1156 std::optional<unsigned> getVScaleForTuning() const; 1157 1158 /// \return true if vscale is known to be a power of 2 1159 bool isVScaleKnownToBeAPowerOfTwo() const; 1160 1161 /// \return True if the vectorization factor should be chosen to 1162 /// make the vector of the smallest element type match the size of a 1163 /// vector register. For wider element types, this could result in 1164 /// creating vectors that span multiple vector registers. 1165 /// If false, the vectorization factor will be chosen based on the 1166 /// size of the widest element type. 1167 /// \p K Register Kind for vectorization. 1168 bool shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const; 1169 1170 /// \return The minimum vectorization factor for types of given element 1171 /// bit width, or 0 if there is no minimum VF. The returned value only 1172 /// applies when shouldMaximizeVectorBandwidth returns true. 1173 /// If IsScalable is true, the returned ElementCount must be a scalable VF. 1174 ElementCount getMinimumVF(unsigned ElemWidth, bool IsScalable) const; 1175 1176 /// \return The maximum vectorization factor for types of given element 1177 /// bit width and opcode, or 0 if there is no maximum VF. 1178 /// Currently only used by the SLP vectorizer. 1179 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const; 1180 1181 /// \return The minimum vectorization factor for the store instruction. Given 1182 /// the initial estimation of the minimum vector factor and store value type, 1183 /// it tries to find possible lowest VF, which still might be profitable for 1184 /// the vectorization. 1185 /// \param VF Initial estimation of the minimum vector factor. 1186 /// \param ScalarMemTy Scalar memory type of the store operation. 1187 /// \param ScalarValTy Scalar type of the stored value. 1188 /// Currently only used by the SLP vectorizer. 1189 unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, 1190 Type *ScalarValTy) const; 1191 1192 /// \return True if it should be considered for address type promotion. 1193 /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is 1194 /// profitable without finding other extensions fed by the same input. 1195 bool shouldConsiderAddressTypePromotion( 1196 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const; 1197 1198 /// \return The size of a cache line in bytes. 1199 unsigned getCacheLineSize() const; 1200 1201 /// The possible cache levels 1202 enum class CacheLevel { 1203 L1D, // The L1 data cache 1204 L2D, // The L2 data cache 1205 1206 // We currently do not model L3 caches, as their sizes differ widely between 1207 // microarchitectures. Also, we currently do not have a use for L3 cache 1208 // size modeling yet. 1209 }; 1210 1211 /// \return The size of the cache level in bytes, if available. 1212 std::optional<unsigned> getCacheSize(CacheLevel Level) const; 1213 1214 /// \return The associativity of the cache level, if available. 1215 std::optional<unsigned> getCacheAssociativity(CacheLevel Level) const; 1216 1217 /// \return The minimum architectural page size for the target. 1218 std::optional<unsigned> getMinPageSize() const; 1219 1220 /// \return How much before a load we should place the prefetch 1221 /// instruction. This is currently measured in number of 1222 /// instructions. 1223 unsigned getPrefetchDistance() const; 1224 1225 /// Some HW prefetchers can handle accesses up to a certain constant stride. 1226 /// Sometimes prefetching is beneficial even below the HW prefetcher limit, 1227 /// and the arguments provided are meant to serve as a basis for deciding this 1228 /// for a particular loop. 1229 /// 1230 /// \param NumMemAccesses Number of memory accesses in the loop. 1231 /// \param NumStridedMemAccesses Number of the memory accesses that 1232 /// ScalarEvolution could find a known stride 1233 /// for. 1234 /// \param NumPrefetches Number of software prefetches that will be 1235 /// emitted as determined by the addresses 1236 /// involved and the cache line size. 1237 /// \param HasCall True if the loop contains a call. 1238 /// 1239 /// \return This is the minimum stride in bytes where it makes sense to start 1240 /// adding SW prefetches. The default is 1, i.e. prefetch with any 1241 /// stride. 1242 unsigned getMinPrefetchStride(unsigned NumMemAccesses, 1243 unsigned NumStridedMemAccesses, 1244 unsigned NumPrefetches, bool HasCall) const; 1245 1246 /// \return The maximum number of iterations to prefetch ahead. If 1247 /// the required number of iterations is more than this number, no 1248 /// prefetching is performed. 1249 unsigned getMaxPrefetchIterationsAhead() const; 1250 1251 /// \return True if prefetching should also be done for writes. 1252 bool enableWritePrefetching() const; 1253 1254 /// \return if target want to issue a prefetch in address space \p AS. 1255 bool shouldPrefetchAddressSpace(unsigned AS) const; 1256 1257 /// \return The maximum interleave factor that any transform should try to 1258 /// perform for this target. This number depends on the level of parallelism 1259 /// and the number of execution units in the CPU. 1260 unsigned getMaxInterleaveFactor(ElementCount VF) const; 1261 1262 /// Collect properties of V used in cost analysis, e.g. OP_PowerOf2. 1263 static OperandValueInfo getOperandInfo(const Value *V); 1264 1265 /// This is an approximation of reciprocal throughput of a math/logic op. 1266 /// A higher cost indicates less expected throughput. 1267 /// From Agner Fog's guides, reciprocal throughput is "the average number of 1268 /// clock cycles per instruction when the instructions are not part of a 1269 /// limiting dependency chain." 1270 /// Therefore, costs should be scaled to account for multiple execution units 1271 /// on the target that can process this type of instruction. For example, if 1272 /// there are 5 scalar integer units and 2 vector integer units that can 1273 /// calculate an 'add' in a single cycle, this model should indicate that the 1274 /// cost of the vector add instruction is 2.5 times the cost of the scalar 1275 /// add instruction. 1276 /// \p Args is an optional argument which holds the instruction operands 1277 /// values so the TTI can analyze those values searching for special 1278 /// cases or optimizations based on those values. 1279 /// \p CxtI is the optional original context instruction, if one exists, to 1280 /// provide even more information. 1281 /// \p TLibInfo is used to search for platform specific vector library 1282 /// functions for instructions that might be converted to calls (e.g. frem). 1283 InstructionCost getArithmeticInstrCost( 1284 unsigned Opcode, Type *Ty, 1285 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, 1286 TTI::OperandValueInfo Opd1Info = {TTI::OK_AnyValue, TTI::OP_None}, 1287 TTI::OperandValueInfo Opd2Info = {TTI::OK_AnyValue, TTI::OP_None}, 1288 ArrayRef<const Value *> Args = std::nullopt, 1289 const Instruction *CxtI = nullptr, 1290 const TargetLibraryInfo *TLibInfo = nullptr) const; 1291 1292 /// Returns the cost estimation for alternating opcode pattern that can be 1293 /// lowered to a single instruction on the target. In X86 this is for the 1294 /// addsub instruction which corrsponds to a Shuffle + Fadd + FSub pattern in 1295 /// IR. This function expects two opcodes: \p Opcode1 and \p Opcode2 being 1296 /// selected by \p OpcodeMask. The mask contains one bit per lane and is a `0` 1297 /// when \p Opcode0 is selected and `1` when Opcode1 is selected. 1298 /// \p VecTy is the vector type of the instruction to be generated. 1299 InstructionCost getAltInstrCost( 1300 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, 1301 const SmallBitVector &OpcodeMask, 1302 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; 1303 1304 /// \return The cost of a shuffle instruction of kind Kind and of type Tp. 1305 /// The exact mask may be passed as Mask, or else the array will be empty. 1306 /// The index and subtype parameters are used by the subvector insertion and 1307 /// extraction shuffle kinds to show the insert/extract point and the type of 1308 /// the subvector being inserted/extracted. The operands of the shuffle can be 1309 /// passed through \p Args, which helps improve the cost estimation in some 1310 /// cases, like in broadcast loads. 1311 /// NOTE: For subvector extractions Tp represents the source type. 1312 InstructionCost getShuffleCost( 1313 ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask = std::nullopt, 1314 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, int Index = 0, 1315 VectorType *SubTp = nullptr, ArrayRef<const Value *> Args = std::nullopt, 1316 const Instruction *CxtI = nullptr) const; 1317 1318 /// Represents a hint about the context in which a cast is used. 1319 /// 1320 /// For zext/sext, the context of the cast is the operand, which must be a 1321 /// load of some kind. For trunc, the context is of the cast is the single 1322 /// user of the instruction, which must be a store of some kind. 1323 /// 1324 /// This enum allows the vectorizer to give getCastInstrCost an idea of the 1325 /// type of cast it's dealing with, as not every cast is equal. For instance, 1326 /// the zext of a load may be free, but the zext of an interleaving load can 1327 //// be (very) expensive! 1328 /// 1329 /// See \c getCastContextHint to compute a CastContextHint from a cast 1330 /// Instruction*. Callers can use it if they don't need to override the 1331 /// context and just want it to be calculated from the instruction. 1332 /// 1333 /// FIXME: This handles the types of load/store that the vectorizer can 1334 /// produce, which are the cases where the context instruction is most 1335 /// likely to be incorrect. There are other situations where that can happen 1336 /// too, which might be handled here but in the long run a more general 1337 /// solution of costing multiple instructions at the same times may be better. 1338 enum class CastContextHint : uint8_t { 1339 None, ///< The cast is not used with a load/store of any kind. 1340 Normal, ///< The cast is used with a normal load/store. 1341 Masked, ///< The cast is used with a masked load/store. 1342 GatherScatter, ///< The cast is used with a gather/scatter. 1343 Interleave, ///< The cast is used with an interleaved load/store. 1344 Reversed, ///< The cast is used with a reversed load/store. 1345 }; 1346 1347 /// Calculates a CastContextHint from \p I. 1348 /// This should be used by callers of getCastInstrCost if they wish to 1349 /// determine the context from some instruction. 1350 /// \returns the CastContextHint for ZExt/SExt/Trunc, None if \p I is nullptr, 1351 /// or if it's another type of cast. 1352 static CastContextHint getCastContextHint(const Instruction *I); 1353 1354 /// \return The expected cost of cast instructions, such as bitcast, trunc, 1355 /// zext, etc. If there is an existing instruction that holds Opcode, it 1356 /// may be passed in the 'I' parameter. 1357 InstructionCost 1358 getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 1359 TTI::CastContextHint CCH, 1360 TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, 1361 const Instruction *I = nullptr) const; 1362 1363 /// \return The expected cost of a sign- or zero-extended vector extract. Use 1364 /// Index = -1 to indicate that there is no information about the index value. 1365 InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, 1366 VectorType *VecTy, 1367 unsigned Index) const; 1368 1369 /// \return The expected cost of control-flow related instructions such as 1370 /// Phi, Ret, Br, Switch. 1371 InstructionCost 1372 getCFInstrCost(unsigned Opcode, 1373 TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency, 1374 const Instruction *I = nullptr) const; 1375 1376 /// \returns The expected cost of compare and select instructions. If there 1377 /// is an existing instruction that holds Opcode, it may be passed in the 1378 /// 'I' parameter. The \p VecPred parameter can be used to indicate the select 1379 /// is using a compare with the specified predicate as condition. When vector 1380 /// types are passed, \p VecPred must be used for all lanes. 1381 InstructionCost 1382 getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 1383 CmpInst::Predicate VecPred, 1384 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, 1385 const Instruction *I = nullptr) const; 1386 1387 /// \return The expected cost of vector Insert and Extract. 1388 /// Use -1 to indicate that there is no information on the index value. 1389 /// This is used when the instruction is not available; a typical use 1390 /// case is to provision the cost of vectorization/scalarization in 1391 /// vectorizer passes. 1392 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, 1393 TTI::TargetCostKind CostKind, 1394 unsigned Index = -1, Value *Op0 = nullptr, 1395 Value *Op1 = nullptr) const; 1396 1397 /// \return The expected cost of vector Insert and Extract. 1398 /// This is used when instruction is available, and implementation 1399 /// asserts 'I' is not nullptr. 1400 /// 1401 /// A typical suitable use case is cost estimation when vector instruction 1402 /// exists (e.g., from basic blocks during transformation). 1403 InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, 1404 TTI::TargetCostKind CostKind, 1405 unsigned Index = -1) const; 1406 1407 /// \return The cost of replication shuffle of \p VF elements typed \p EltTy 1408 /// \p ReplicationFactor times. 1409 /// 1410 /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: 1411 /// <0,0,0,1,1,1,2,2,2,3,3,3> 1412 InstructionCost getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, 1413 int VF, 1414 const APInt &DemandedDstElts, 1415 TTI::TargetCostKind CostKind) const; 1416 1417 /// \return The cost of Load and Store instructions. 1418 InstructionCost 1419 getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1420 unsigned AddressSpace, 1421 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, 1422 OperandValueInfo OpdInfo = {OK_AnyValue, OP_None}, 1423 const Instruction *I = nullptr) const; 1424 1425 /// \return The cost of VP Load and Store instructions. 1426 InstructionCost 1427 getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 1428 unsigned AddressSpace, 1429 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, 1430 const Instruction *I = nullptr) const; 1431 1432 /// \return The cost of masked Load and Store instructions. 1433 InstructionCost getMaskedMemoryOpCost( 1434 unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace, 1435 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; 1436 1437 /// \return The cost of Gather or Scatter operation 1438 /// \p Opcode - is a type of memory access Load or Store 1439 /// \p DataTy - a vector type of the data to be loaded or stored 1440 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory 1441 /// \p VariableMask - true when the memory access is predicated with a mask 1442 /// that is not a compile-time constant 1443 /// \p Alignment - alignment of single element 1444 /// \p I - the optional original context instruction, if one exists, e.g. the 1445 /// load/store to transform or the call to the gather/scatter intrinsic 1446 InstructionCost getGatherScatterOpCost( 1447 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1448 Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, 1449 const Instruction *I = nullptr) const; 1450 1451 /// \return The cost of strided memory operations. 1452 /// \p Opcode - is a type of memory access Load or Store 1453 /// \p DataTy - a vector type of the data to be loaded or stored 1454 /// \p Ptr - pointer [or vector of pointers] - address[es] in memory 1455 /// \p VariableMask - true when the memory access is predicated with a mask 1456 /// that is not a compile-time constant 1457 /// \p Alignment - alignment of single element 1458 /// \p I - the optional original context instruction, if one exists, e.g. the 1459 /// load/store to transform or the call to the gather/scatter intrinsic 1460 InstructionCost getStridedMemoryOpCost( 1461 unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask, 1462 Align Alignment, TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, 1463 const Instruction *I = nullptr) const; 1464 1465 /// \return The cost of the interleaved memory operation. 1466 /// \p Opcode is the memory operation code 1467 /// \p VecTy is the vector type of the interleaved access. 1468 /// \p Factor is the interleave factor 1469 /// \p Indices is the indices for interleaved load members (as interleaved 1470 /// load allows gaps) 1471 /// \p Alignment is the alignment of the memory operation 1472 /// \p AddressSpace is address space of the pointer. 1473 /// \p UseMaskForCond indicates if the memory access is predicated. 1474 /// \p UseMaskForGaps indicates if gaps should be masked. 1475 InstructionCost getInterleavedMemoryOpCost( 1476 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 1477 Align Alignment, unsigned AddressSpace, 1478 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput, 1479 bool UseMaskForCond = false, bool UseMaskForGaps = false) const; 1480 1481 /// A helper function to determine the type of reduction algorithm used 1482 /// for a given \p Opcode and set of FastMathFlags \p FMF. 1483 static bool requiresOrderedReduction(std::optional<FastMathFlags> FMF) { 1484 return FMF && !(*FMF).allowReassoc(); 1485 } 1486 1487 /// Calculate the cost of vector reduction intrinsics. 1488 /// 1489 /// This is the cost of reducing the vector value of type \p Ty to a scalar 1490 /// value using the operation denoted by \p Opcode. The FastMathFlags 1491 /// parameter \p FMF indicates what type of reduction we are performing: 1492 /// 1. Tree-wise. This is the typical 'fast' reduction performed that 1493 /// involves successively splitting a vector into half and doing the 1494 /// operation on the pair of halves until you have a scalar value. For 1495 /// example: 1496 /// (v0, v1, v2, v3) 1497 /// ((v0+v2), (v1+v3), undef, undef) 1498 /// ((v0+v2+v1+v3), undef, undef, undef) 1499 /// This is the default behaviour for integer operations, whereas for 1500 /// floating point we only do this if \p FMF indicates that 1501 /// reassociation is allowed. 1502 /// 2. Ordered. For a vector with N elements this involves performing N 1503 /// operations in lane order, starting with an initial scalar value, i.e. 1504 /// result = InitVal + v0 1505 /// result = result + v1 1506 /// result = result + v2 1507 /// result = result + v3 1508 /// This is only the case for FP operations and when reassociation is not 1509 /// allowed. 1510 /// 1511 InstructionCost getArithmeticReductionCost( 1512 unsigned Opcode, VectorType *Ty, std::optional<FastMathFlags> FMF, 1513 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; 1514 1515 InstructionCost getMinMaxReductionCost( 1516 Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF = FastMathFlags(), 1517 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; 1518 1519 /// Calculate the cost of an extended reduction pattern, similar to 1520 /// getArithmeticReductionCost of an Add reduction with multiply and optional 1521 /// extensions. This is the cost of as: 1522 /// ResTy vecreduce.add(mul (A, B)). 1523 /// ResTy vecreduce.add(mul(ext(Ty A), ext(Ty B)). 1524 InstructionCost getMulAccReductionCost( 1525 bool IsUnsigned, Type *ResTy, VectorType *Ty, 1526 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; 1527 1528 /// Calculate the cost of an extended reduction pattern, similar to 1529 /// getArithmeticReductionCost of a reduction with an extension. 1530 /// This is the cost of as: 1531 /// ResTy vecreduce.opcode(ext(Ty A)). 1532 InstructionCost getExtendedReductionCost( 1533 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, 1534 FastMathFlags FMF, 1535 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const; 1536 1537 /// \returns The cost of Intrinsic instructions. Analyses the real arguments. 1538 /// Three cases are handled: 1. scalar instruction 2. vector instruction 1539 /// 3. scalar instruction which is to be vectorized. 1540 InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 1541 TTI::TargetCostKind CostKind) const; 1542 1543 /// \returns The cost of Call instructions. 1544 InstructionCost getCallInstrCost( 1545 Function *F, Type *RetTy, ArrayRef<Type *> Tys, 1546 TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) const; 1547 1548 /// \returns The number of pieces into which the provided type must be 1549 /// split during legalization. Zero is returned when the answer is unknown. 1550 unsigned getNumberOfParts(Type *Tp) const; 1551 1552 /// \returns The cost of the address computation. For most targets this can be 1553 /// merged into the instruction indexing mode. Some targets might want to 1554 /// distinguish between address computation for memory operations on vector 1555 /// types and scalar types. Such targets should override this function. 1556 /// The 'SE' parameter holds pointer for the scalar evolution object which 1557 /// is used in order to get the Ptr step value in case of constant stride. 1558 /// The 'Ptr' parameter holds SCEV of the access pointer. 1559 InstructionCost getAddressComputationCost(Type *Ty, 1560 ScalarEvolution *SE = nullptr, 1561 const SCEV *Ptr = nullptr) const; 1562 1563 /// \returns The cost, if any, of keeping values of the given types alive 1564 /// over a callsite. 1565 /// 1566 /// Some types may require the use of register classes that do not have 1567 /// any callee-saved registers, so would require a spill and fill. 1568 InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const; 1569 1570 /// \returns True if the intrinsic is a supported memory intrinsic. Info 1571 /// will contain additional information - whether the intrinsic may write 1572 /// or read to memory, volatility and the pointer. Info is undefined 1573 /// if false is returned. 1574 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const; 1575 1576 /// \returns The maximum element size, in bytes, for an element 1577 /// unordered-atomic memory intrinsic. 1578 unsigned getAtomicMemIntrinsicMaxElementSize() const; 1579 1580 /// \returns A value which is the result of the given memory intrinsic. New 1581 /// instructions may be created to extract the result from the given intrinsic 1582 /// memory operation. Returns nullptr if the target cannot create a result 1583 /// from the given intrinsic. 1584 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 1585 Type *ExpectedType) const; 1586 1587 /// \returns The type to use in a loop expansion of a memcpy call. 1588 Type *getMemcpyLoopLoweringType( 1589 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 1590 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, 1591 std::optional<uint32_t> AtomicElementSize = std::nullopt) const; 1592 1593 /// \param[out] OpsOut The operand types to copy RemainingBytes of memory. 1594 /// \param RemainingBytes The number of bytes to copy. 1595 /// 1596 /// Calculates the operand types to use when copying \p RemainingBytes of 1597 /// memory, where source and destination alignments are \p SrcAlign and 1598 /// \p DestAlign respectively. 1599 void getMemcpyLoopResidualLoweringType( 1600 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 1601 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 1602 unsigned SrcAlign, unsigned DestAlign, 1603 std::optional<uint32_t> AtomicCpySize = std::nullopt) const; 1604 1605 /// \returns True if the two functions have compatible attributes for inlining 1606 /// purposes. 1607 bool areInlineCompatible(const Function *Caller, 1608 const Function *Callee) const; 1609 1610 /// Returns a penalty for invoking call \p Call in \p F. 1611 /// For example, if a function F calls a function G, which in turn calls 1612 /// function H, then getInlineCallPenalty(F, H()) would return the 1613 /// penalty of calling H from F, e.g. after inlining G into F. 1614 /// \p DefaultCallPenalty is passed to give a default penalty that 1615 /// the target can amend or override. 1616 unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, 1617 unsigned DefaultCallPenalty) const; 1618 1619 /// \returns True if the caller and callee agree on how \p Types will be 1620 /// passed to or returned from the callee. 1621 /// to the callee. 1622 /// \param Types List of types to check. 1623 bool areTypesABICompatible(const Function *Caller, const Function *Callee, 1624 const ArrayRef<Type *> &Types) const; 1625 1626 /// The type of load/store indexing. 1627 enum MemIndexedMode { 1628 MIM_Unindexed, ///< No indexing. 1629 MIM_PreInc, ///< Pre-incrementing. 1630 MIM_PreDec, ///< Pre-decrementing. 1631 MIM_PostInc, ///< Post-incrementing. 1632 MIM_PostDec ///< Post-decrementing. 1633 }; 1634 1635 /// \returns True if the specified indexed load for the given type is legal. 1636 bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const; 1637 1638 /// \returns True if the specified indexed store for the given type is legal. 1639 bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const; 1640 1641 /// \returns The bitwidth of the largest vector type that should be used to 1642 /// load/store in the given address space. 1643 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const; 1644 1645 /// \returns True if the load instruction is legal to vectorize. 1646 bool isLegalToVectorizeLoad(LoadInst *LI) const; 1647 1648 /// \returns True if the store instruction is legal to vectorize. 1649 bool isLegalToVectorizeStore(StoreInst *SI) const; 1650 1651 /// \returns True if it is legal to vectorize the given load chain. 1652 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, 1653 unsigned AddrSpace) const; 1654 1655 /// \returns True if it is legal to vectorize the given store chain. 1656 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, 1657 unsigned AddrSpace) const; 1658 1659 /// \returns True if it is legal to vectorize the given reduction kind. 1660 bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, 1661 ElementCount VF) const; 1662 1663 /// \returns True if the given type is supported for scalable vectors 1664 bool isElementTypeLegalForScalableVector(Type *Ty) const; 1665 1666 /// \returns The new vector factor value if the target doesn't support \p 1667 /// SizeInBytes loads or has a better vector factor. 1668 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, 1669 unsigned ChainSizeInBytes, 1670 VectorType *VecTy) const; 1671 1672 /// \returns The new vector factor value if the target doesn't support \p 1673 /// SizeInBytes stores or has a better vector factor. 1674 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, 1675 unsigned ChainSizeInBytes, 1676 VectorType *VecTy) const; 1677 1678 /// Flags describing the kind of vector reduction. 1679 struct ReductionFlags { 1680 ReductionFlags() = default; 1681 bool IsMaxOp = 1682 false; ///< If the op a min/max kind, true if it's a max operation. 1683 bool IsSigned = false; ///< Whether the operation is a signed int reduction. 1684 bool NoNaN = 1685 false; ///< If op is an fp min/max, whether NaNs may be present. 1686 }; 1687 1688 /// \returns True if the targets prefers fixed width vectorization if the 1689 /// loop vectorizer's cost-model assigns an equal cost to the fixed and 1690 /// scalable version of the vectorized loop. 1691 bool preferFixedOverScalableIfEqualCost() const; 1692 1693 /// \returns True if the target prefers reductions in loop. 1694 bool preferInLoopReduction(unsigned Opcode, Type *Ty, 1695 ReductionFlags Flags) const; 1696 1697 /// \returns True if the target prefers reductions select kept in the loop 1698 /// when tail folding. i.e. 1699 /// loop: 1700 /// p = phi (0, s) 1701 /// a = add (p, x) 1702 /// s = select (mask, a, p) 1703 /// vecreduce.add(s) 1704 /// 1705 /// As opposed to the normal scheme of p = phi (0, a) which allows the select 1706 /// to be pulled out of the loop. If the select(.., add, ..) can be predicated 1707 /// by the target, this can lead to cleaner code generation. 1708 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, 1709 ReductionFlags Flags) const; 1710 1711 /// Return true if the loop vectorizer should consider vectorizing an 1712 /// otherwise scalar epilogue loop. 1713 bool preferEpilogueVectorization() const; 1714 1715 /// \returns True if the target wants to expand the given reduction intrinsic 1716 /// into a shuffle sequence. 1717 bool shouldExpandReduction(const IntrinsicInst *II) const; 1718 1719 enum struct ReductionShuffle { SplitHalf, Pairwise }; 1720 1721 /// \returns The shuffle sequence pattern used to expand the given reduction 1722 /// intrinsic. 1723 ReductionShuffle 1724 getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const; 1725 1726 /// \returns the size cost of rematerializing a GlobalValue address relative 1727 /// to a stack reload. 1728 unsigned getGISelRematGlobalCost() const; 1729 1730 /// \returns the lower bound of a trip count to decide on vectorization 1731 /// while tail-folding. 1732 unsigned getMinTripCountTailFoldingThreshold() const; 1733 1734 /// \returns True if the target supports scalable vectors. 1735 bool supportsScalableVectors() const; 1736 1737 /// \return true when scalable vectorization is preferred. 1738 bool enableScalableVectorization() const; 1739 1740 /// \name Vector Predication Information 1741 /// @{ 1742 /// Whether the target supports the %evl parameter of VP intrinsic efficiently 1743 /// in hardware, for the given opcode and type/alignment. (see LLVM Language 1744 /// Reference - "Vector Predication Intrinsics"). 1745 /// Use of %evl is discouraged when that is not the case. 1746 bool hasActiveVectorLength(unsigned Opcode, Type *DataType, 1747 Align Alignment) const; 1748 1749 struct VPLegalization { 1750 enum VPTransform { 1751 // keep the predicating parameter 1752 Legal = 0, 1753 // where legal, discard the predicate parameter 1754 Discard = 1, 1755 // transform into something else that is also predicating 1756 Convert = 2 1757 }; 1758 1759 // How to transform the EVL parameter. 1760 // Legal: keep the EVL parameter as it is. 1761 // Discard: Ignore the EVL parameter where it is safe to do so. 1762 // Convert: Fold the EVL into the mask parameter. 1763 VPTransform EVLParamStrategy; 1764 1765 // How to transform the operator. 1766 // Legal: The target supports this operator. 1767 // Convert: Convert this to a non-VP operation. 1768 // The 'Discard' strategy is invalid. 1769 VPTransform OpStrategy; 1770 1771 bool shouldDoNothing() const { 1772 return (EVLParamStrategy == Legal) && (OpStrategy == Legal); 1773 } 1774 VPLegalization(VPTransform EVLParamStrategy, VPTransform OpStrategy) 1775 : EVLParamStrategy(EVLParamStrategy), OpStrategy(OpStrategy) {} 1776 }; 1777 1778 /// \returns How the target needs this vector-predicated operation to be 1779 /// transformed. 1780 VPLegalization getVPLegalizationStrategy(const VPIntrinsic &PI) const; 1781 /// @} 1782 1783 /// \returns Whether a 32-bit branch instruction is available in Arm or Thumb 1784 /// state. 1785 /// 1786 /// Used by the LowerTypeTests pass, which constructs an IR inline assembler 1787 /// node containing a jump table in a format suitable for the target, so it 1788 /// needs to know what format of jump table it can legally use. 1789 /// 1790 /// For non-Arm targets, this function isn't used. It defaults to returning 1791 /// false, but it shouldn't matter what it returns anyway. 1792 bool hasArmWideBranch(bool Thumb) const; 1793 1794 /// \return The maximum number of function arguments the target supports. 1795 unsigned getMaxNumArgs() const; 1796 1797 /// @} 1798 1799 private: 1800 /// The abstract base class used to type erase specific TTI 1801 /// implementations. 1802 class Concept; 1803 1804 /// The template model for the base class which wraps a concrete 1805 /// implementation in a type erased interface. 1806 template <typename T> class Model; 1807 1808 std::unique_ptr<Concept> TTIImpl; 1809 }; 1810 1811 class TargetTransformInfo::Concept { 1812 public: 1813 virtual ~Concept() = 0; 1814 virtual const DataLayout &getDataLayout() const = 0; 1815 virtual InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr, 1816 ArrayRef<const Value *> Operands, 1817 Type *AccessType, 1818 TTI::TargetCostKind CostKind) = 0; 1819 virtual InstructionCost 1820 getPointersChainCost(ArrayRef<const Value *> Ptrs, const Value *Base, 1821 const TTI::PointersChainInfo &Info, Type *AccessTy, 1822 TTI::TargetCostKind CostKind) = 0; 1823 virtual unsigned getInliningThresholdMultiplier() const = 0; 1824 virtual unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const = 0; 1825 virtual unsigned 1826 getInliningCostBenefitAnalysisProfitableMultiplier() const = 0; 1827 virtual unsigned adjustInliningThreshold(const CallBase *CB) = 0; 1828 virtual int getInlinerVectorBonusPercent() const = 0; 1829 virtual unsigned getCallerAllocaCost(const CallBase *CB, 1830 const AllocaInst *AI) const = 0; 1831 virtual InstructionCost getMemcpyCost(const Instruction *I) = 0; 1832 virtual uint64_t getMaxMemIntrinsicInlineSizeThreshold() const = 0; 1833 virtual unsigned 1834 getEstimatedNumberOfCaseClusters(const SwitchInst &SI, unsigned &JTSize, 1835 ProfileSummaryInfo *PSI, 1836 BlockFrequencyInfo *BFI) = 0; 1837 virtual InstructionCost getInstructionCost(const User *U, 1838 ArrayRef<const Value *> Operands, 1839 TargetCostKind CostKind) = 0; 1840 virtual BranchProbability getPredictableBranchThreshold() = 0; 1841 virtual InstructionCost getBranchMispredictPenalty() = 0; 1842 virtual bool hasBranchDivergence(const Function *F = nullptr) = 0; 1843 virtual bool isSourceOfDivergence(const Value *V) = 0; 1844 virtual bool isAlwaysUniform(const Value *V) = 0; 1845 virtual bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0; 1846 virtual bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const = 0; 1847 virtual unsigned getFlatAddressSpace() = 0; 1848 virtual bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 1849 Intrinsic::ID IID) const = 0; 1850 virtual bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const = 0; 1851 virtual bool 1852 canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const = 0; 1853 virtual unsigned getAssumedAddrSpace(const Value *V) const = 0; 1854 virtual bool isSingleThreaded() const = 0; 1855 virtual std::pair<const Value *, unsigned> 1856 getPredicatedAddrSpace(const Value *V) const = 0; 1857 virtual Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, 1858 Value *OldV, 1859 Value *NewV) const = 0; 1860 virtual bool isLoweredToCall(const Function *F) = 0; 1861 virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, 1862 UnrollingPreferences &UP, 1863 OptimizationRemarkEmitter *ORE) = 0; 1864 virtual void getPeelingPreferences(Loop *L, ScalarEvolution &SE, 1865 PeelingPreferences &PP) = 0; 1866 virtual bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 1867 AssumptionCache &AC, 1868 TargetLibraryInfo *LibInfo, 1869 HardwareLoopInfo &HWLoopInfo) = 0; 1870 virtual bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) = 0; 1871 virtual TailFoldingStyle 1872 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) = 0; 1873 virtual std::optional<Instruction *> instCombineIntrinsic( 1874 InstCombiner &IC, IntrinsicInst &II) = 0; 1875 virtual std::optional<Value *> simplifyDemandedUseBitsIntrinsic( 1876 InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, 1877 KnownBits & Known, bool &KnownBitsComputed) = 0; 1878 virtual std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( 1879 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, 1880 APInt &UndefElts, APInt &UndefElts2, APInt &UndefElts3, 1881 std::function<void(Instruction *, unsigned, APInt, APInt &)> 1882 SimplifyAndSetOp) = 0; 1883 virtual bool isLegalAddImmediate(int64_t Imm) = 0; 1884 virtual bool isLegalAddScalableImmediate(int64_t Imm) = 0; 1885 virtual bool isLegalICmpImmediate(int64_t Imm) = 0; 1886 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 1887 int64_t BaseOffset, bool HasBaseReg, 1888 int64_t Scale, unsigned AddrSpace, 1889 Instruction *I, 1890 int64_t ScalableOffset) = 0; 1891 virtual bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, 1892 const TargetTransformInfo::LSRCost &C2) = 0; 1893 virtual bool isNumRegsMajorCostOfLSR() = 0; 1894 virtual bool shouldFoldTerminatingConditionAfterLSR() const = 0; 1895 virtual bool shouldDropLSRSolutionIfLessProfitable() const = 0; 1896 virtual bool isProfitableLSRChainElement(Instruction *I) = 0; 1897 virtual bool canMacroFuseCmp() = 0; 1898 virtual bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, 1899 LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, 1900 TargetLibraryInfo *LibInfo) = 0; 1901 virtual AddressingModeKind 1902 getPreferredAddressingMode(const Loop *L, ScalarEvolution *SE) const = 0; 1903 virtual bool isLegalMaskedStore(Type *DataType, Align Alignment) = 0; 1904 virtual bool isLegalMaskedLoad(Type *DataType, Align Alignment) = 0; 1905 virtual bool isLegalNTStore(Type *DataType, Align Alignment) = 0; 1906 virtual bool isLegalNTLoad(Type *DataType, Align Alignment) = 0; 1907 virtual bool isLegalBroadcastLoad(Type *ElementTy, 1908 ElementCount NumElements) const = 0; 1909 virtual bool isLegalMaskedScatter(Type *DataType, Align Alignment) = 0; 1910 virtual bool isLegalMaskedGather(Type *DataType, Align Alignment) = 0; 1911 virtual bool forceScalarizeMaskedGather(VectorType *DataType, 1912 Align Alignment) = 0; 1913 virtual bool forceScalarizeMaskedScatter(VectorType *DataType, 1914 Align Alignment) = 0; 1915 virtual bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) = 0; 1916 virtual bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) = 0; 1917 virtual bool isLegalStridedLoadStore(Type *DataType, Align Alignment) = 0; 1918 virtual bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) = 0; 1919 virtual bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, 1920 unsigned Opcode1, 1921 const SmallBitVector &OpcodeMask) const = 0; 1922 virtual bool enableOrderedReductions() = 0; 1923 virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0; 1924 virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0; 1925 virtual bool prefersVectorizedAddressing() = 0; 1926 virtual InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 1927 StackOffset BaseOffset, 1928 bool HasBaseReg, int64_t Scale, 1929 unsigned AddrSpace) = 0; 1930 virtual bool LSRWithInstrQueries() = 0; 1931 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0; 1932 virtual bool isProfitableToHoist(Instruction *I) = 0; 1933 virtual bool useAA() = 0; 1934 virtual bool isTypeLegal(Type *Ty) = 0; 1935 virtual unsigned getRegUsageForType(Type *Ty) = 0; 1936 virtual bool shouldBuildLookupTables() = 0; 1937 virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0; 1938 virtual bool shouldBuildRelLookupTables() = 0; 1939 virtual bool useColdCCForColdCall(Function &F) = 0; 1940 virtual InstructionCost getScalarizationOverhead(VectorType *Ty, 1941 const APInt &DemandedElts, 1942 bool Insert, bool Extract, 1943 TargetCostKind CostKind) = 0; 1944 virtual InstructionCost 1945 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 1946 ArrayRef<Type *> Tys, 1947 TargetCostKind CostKind) = 0; 1948 virtual bool supportsEfficientVectorElementLoadStore() = 0; 1949 virtual bool supportsTailCalls() = 0; 1950 virtual bool supportsTailCallFor(const CallBase *CB) = 0; 1951 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0; 1952 virtual MemCmpExpansionOptions 1953 enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const = 0; 1954 virtual bool enableSelectOptimize() = 0; 1955 virtual bool shouldTreatInstructionLikeSelect(const Instruction *I) = 0; 1956 virtual bool enableInterleavedAccessVectorization() = 0; 1957 virtual bool enableMaskedInterleavedAccessVectorization() = 0; 1958 virtual bool isFPVectorizationPotentiallyUnsafe() = 0; 1959 virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, 1960 unsigned BitWidth, 1961 unsigned AddressSpace, 1962 Align Alignment, 1963 unsigned *Fast) = 0; 1964 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0; 1965 virtual bool haveFastSqrt(Type *Ty) = 0; 1966 virtual bool isExpensiveToSpeculativelyExecute(const Instruction *I) = 0; 1967 virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0; 1968 virtual InstructionCost getFPOpCost(Type *Ty) = 0; 1969 virtual InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, 1970 const APInt &Imm, Type *Ty) = 0; 1971 virtual InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, 1972 TargetCostKind CostKind) = 0; 1973 virtual InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, 1974 const APInt &Imm, Type *Ty, 1975 TargetCostKind CostKind, 1976 Instruction *Inst = nullptr) = 0; 1977 virtual InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 1978 const APInt &Imm, Type *Ty, 1979 TargetCostKind CostKind) = 0; 1980 virtual bool preferToKeepConstantsAttached(const Instruction &Inst, 1981 const Function &Fn) const = 0; 1982 virtual unsigned getNumberOfRegisters(unsigned ClassID) const = 0; 1983 virtual bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const = 0; 1984 virtual unsigned getRegisterClassForType(bool Vector, 1985 Type *Ty = nullptr) const = 0; 1986 virtual const char *getRegisterClassName(unsigned ClassID) const = 0; 1987 virtual TypeSize getRegisterBitWidth(RegisterKind K) const = 0; 1988 virtual unsigned getMinVectorRegisterBitWidth() const = 0; 1989 virtual std::optional<unsigned> getMaxVScale() const = 0; 1990 virtual std::optional<unsigned> getVScaleForTuning() const = 0; 1991 virtual bool isVScaleKnownToBeAPowerOfTwo() const = 0; 1992 virtual bool 1993 shouldMaximizeVectorBandwidth(TargetTransformInfo::RegisterKind K) const = 0; 1994 virtual ElementCount getMinimumVF(unsigned ElemWidth, 1995 bool IsScalable) const = 0; 1996 virtual unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const = 0; 1997 virtual unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, 1998 Type *ScalarValTy) const = 0; 1999 virtual bool shouldConsiderAddressTypePromotion( 2000 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0; 2001 virtual unsigned getCacheLineSize() const = 0; 2002 virtual std::optional<unsigned> getCacheSize(CacheLevel Level) const = 0; 2003 virtual std::optional<unsigned> getCacheAssociativity(CacheLevel Level) 2004 const = 0; 2005 virtual std::optional<unsigned> getMinPageSize() const = 0; 2006 2007 /// \return How much before a load we should place the prefetch 2008 /// instruction. This is currently measured in number of 2009 /// instructions. 2010 virtual unsigned getPrefetchDistance() const = 0; 2011 2012 /// \return Some HW prefetchers can handle accesses up to a certain 2013 /// constant stride. This is the minimum stride in bytes where it 2014 /// makes sense to start adding SW prefetches. The default is 1, 2015 /// i.e. prefetch with any stride. Sometimes prefetching is beneficial 2016 /// even below the HW prefetcher limit, and the arguments provided are 2017 /// meant to serve as a basis for deciding this for a particular loop. 2018 virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses, 2019 unsigned NumStridedMemAccesses, 2020 unsigned NumPrefetches, 2021 bool HasCall) const = 0; 2022 2023 /// \return The maximum number of iterations to prefetch ahead. If 2024 /// the required number of iterations is more than this number, no 2025 /// prefetching is performed. 2026 virtual unsigned getMaxPrefetchIterationsAhead() const = 0; 2027 2028 /// \return True if prefetching should also be done for writes. 2029 virtual bool enableWritePrefetching() const = 0; 2030 2031 /// \return if target want to issue a prefetch in address space \p AS. 2032 virtual bool shouldPrefetchAddressSpace(unsigned AS) const = 0; 2033 2034 virtual unsigned getMaxInterleaveFactor(ElementCount VF) = 0; 2035 virtual InstructionCost getArithmeticInstrCost( 2036 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 2037 OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, 2038 ArrayRef<const Value *> Args, const Instruction *CxtI = nullptr) = 0; 2039 virtual InstructionCost getAltInstrCost( 2040 VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, 2041 const SmallBitVector &OpcodeMask, 2042 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) const = 0; 2043 2044 virtual InstructionCost 2045 getShuffleCost(ShuffleKind Kind, VectorType *Tp, ArrayRef<int> Mask, 2046 TTI::TargetCostKind CostKind, int Index, VectorType *SubTp, 2047 ArrayRef<const Value *> Args, const Instruction *CxtI) = 0; 2048 virtual InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, 2049 Type *Src, CastContextHint CCH, 2050 TTI::TargetCostKind CostKind, 2051 const Instruction *I) = 0; 2052 virtual InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, 2053 VectorType *VecTy, 2054 unsigned Index) = 0; 2055 virtual InstructionCost getCFInstrCost(unsigned Opcode, 2056 TTI::TargetCostKind CostKind, 2057 const Instruction *I = nullptr) = 0; 2058 virtual InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 2059 Type *CondTy, 2060 CmpInst::Predicate VecPred, 2061 TTI::TargetCostKind CostKind, 2062 const Instruction *I) = 0; 2063 virtual InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, 2064 TTI::TargetCostKind CostKind, 2065 unsigned Index, Value *Op0, 2066 Value *Op1) = 0; 2067 virtual InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, 2068 TTI::TargetCostKind CostKind, 2069 unsigned Index) = 0; 2070 2071 virtual InstructionCost 2072 getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, 2073 const APInt &DemandedDstElts, 2074 TTI::TargetCostKind CostKind) = 0; 2075 2076 virtual InstructionCost 2077 getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 2078 unsigned AddressSpace, TTI::TargetCostKind CostKind, 2079 OperandValueInfo OpInfo, const Instruction *I) = 0; 2080 virtual InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, 2081 Align Alignment, 2082 unsigned AddressSpace, 2083 TTI::TargetCostKind CostKind, 2084 const Instruction *I) = 0; 2085 virtual InstructionCost 2086 getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 2087 unsigned AddressSpace, 2088 TTI::TargetCostKind CostKind) = 0; 2089 virtual InstructionCost 2090 getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, 2091 bool VariableMask, Align Alignment, 2092 TTI::TargetCostKind CostKind, 2093 const Instruction *I = nullptr) = 0; 2094 virtual InstructionCost 2095 getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, 2096 bool VariableMask, Align Alignment, 2097 TTI::TargetCostKind CostKind, 2098 const Instruction *I = nullptr) = 0; 2099 2100 virtual InstructionCost getInterleavedMemoryOpCost( 2101 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 2102 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 2103 bool UseMaskForCond = false, bool UseMaskForGaps = false) = 0; 2104 virtual InstructionCost 2105 getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 2106 std::optional<FastMathFlags> FMF, 2107 TTI::TargetCostKind CostKind) = 0; 2108 virtual InstructionCost 2109 getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, 2110 TTI::TargetCostKind CostKind) = 0; 2111 virtual InstructionCost getExtendedReductionCost( 2112 unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *Ty, 2113 FastMathFlags FMF, 2114 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; 2115 virtual InstructionCost getMulAccReductionCost( 2116 bool IsUnsigned, Type *ResTy, VectorType *Ty, 2117 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput) = 0; 2118 virtual InstructionCost 2119 getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 2120 TTI::TargetCostKind CostKind) = 0; 2121 virtual InstructionCost getCallInstrCost(Function *F, Type *RetTy, 2122 ArrayRef<Type *> Tys, 2123 TTI::TargetCostKind CostKind) = 0; 2124 virtual unsigned getNumberOfParts(Type *Tp) = 0; 2125 virtual InstructionCost 2126 getAddressComputationCost(Type *Ty, ScalarEvolution *SE, const SCEV *Ptr) = 0; 2127 virtual InstructionCost 2128 getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0; 2129 virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, 2130 MemIntrinsicInfo &Info) = 0; 2131 virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0; 2132 virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 2133 Type *ExpectedType) = 0; 2134 virtual Type *getMemcpyLoopLoweringType( 2135 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 2136 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, 2137 std::optional<uint32_t> AtomicElementSize) const = 0; 2138 2139 virtual void getMemcpyLoopResidualLoweringType( 2140 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 2141 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 2142 unsigned SrcAlign, unsigned DestAlign, 2143 std::optional<uint32_t> AtomicCpySize) const = 0; 2144 virtual bool areInlineCompatible(const Function *Caller, 2145 const Function *Callee) const = 0; 2146 virtual unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, 2147 unsigned DefaultCallPenalty) const = 0; 2148 virtual bool areTypesABICompatible(const Function *Caller, 2149 const Function *Callee, 2150 const ArrayRef<Type *> &Types) const = 0; 2151 virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0; 2152 virtual bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const = 0; 2153 virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0; 2154 virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0; 2155 virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0; 2156 virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, 2157 Align Alignment, 2158 unsigned AddrSpace) const = 0; 2159 virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, 2160 Align Alignment, 2161 unsigned AddrSpace) const = 0; 2162 virtual bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, 2163 ElementCount VF) const = 0; 2164 virtual bool isElementTypeLegalForScalableVector(Type *Ty) const = 0; 2165 virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, 2166 unsigned ChainSizeInBytes, 2167 VectorType *VecTy) const = 0; 2168 virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, 2169 unsigned ChainSizeInBytes, 2170 VectorType *VecTy) const = 0; 2171 virtual bool preferFixedOverScalableIfEqualCost() const = 0; 2172 virtual bool preferInLoopReduction(unsigned Opcode, Type *Ty, 2173 ReductionFlags) const = 0; 2174 virtual bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, 2175 ReductionFlags) const = 0; 2176 virtual bool preferEpilogueVectorization() const = 0; 2177 2178 virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0; 2179 virtual ReductionShuffle 2180 getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const = 0; 2181 virtual unsigned getGISelRematGlobalCost() const = 0; 2182 virtual unsigned getMinTripCountTailFoldingThreshold() const = 0; 2183 virtual bool enableScalableVectorization() const = 0; 2184 virtual bool supportsScalableVectors() const = 0; 2185 virtual bool hasActiveVectorLength(unsigned Opcode, Type *DataType, 2186 Align Alignment) const = 0; 2187 virtual VPLegalization 2188 getVPLegalizationStrategy(const VPIntrinsic &PI) const = 0; 2189 virtual bool hasArmWideBranch(bool Thumb) const = 0; 2190 virtual unsigned getMaxNumArgs() const = 0; 2191 }; 2192 2193 template <typename T> 2194 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept { 2195 T Impl; 2196 2197 public: 2198 Model(T Impl) : Impl(std::move(Impl)) {} 2199 ~Model() override = default; 2200 2201 const DataLayout &getDataLayout() const override { 2202 return Impl.getDataLayout(); 2203 } 2204 2205 InstructionCost 2206 getGEPCost(Type *PointeeType, const Value *Ptr, 2207 ArrayRef<const Value *> Operands, Type *AccessType, 2208 TargetTransformInfo::TargetCostKind CostKind) override { 2209 return Impl.getGEPCost(PointeeType, Ptr, Operands, AccessType, CostKind); 2210 } 2211 InstructionCost getPointersChainCost(ArrayRef<const Value *> Ptrs, 2212 const Value *Base, 2213 const PointersChainInfo &Info, 2214 Type *AccessTy, 2215 TargetCostKind CostKind) override { 2216 return Impl.getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind); 2217 } 2218 unsigned getInliningThresholdMultiplier() const override { 2219 return Impl.getInliningThresholdMultiplier(); 2220 } 2221 unsigned adjustInliningThreshold(const CallBase *CB) override { 2222 return Impl.adjustInliningThreshold(CB); 2223 } 2224 unsigned getInliningCostBenefitAnalysisSavingsMultiplier() const override { 2225 return Impl.getInliningCostBenefitAnalysisSavingsMultiplier(); 2226 } 2227 unsigned getInliningCostBenefitAnalysisProfitableMultiplier() const override { 2228 return Impl.getInliningCostBenefitAnalysisProfitableMultiplier(); 2229 } 2230 int getInlinerVectorBonusPercent() const override { 2231 return Impl.getInlinerVectorBonusPercent(); 2232 } 2233 unsigned getCallerAllocaCost(const CallBase *CB, 2234 const AllocaInst *AI) const override { 2235 return Impl.getCallerAllocaCost(CB, AI); 2236 } 2237 InstructionCost getMemcpyCost(const Instruction *I) override { 2238 return Impl.getMemcpyCost(I); 2239 } 2240 2241 uint64_t getMaxMemIntrinsicInlineSizeThreshold() const override { 2242 return Impl.getMaxMemIntrinsicInlineSizeThreshold(); 2243 } 2244 2245 InstructionCost getInstructionCost(const User *U, 2246 ArrayRef<const Value *> Operands, 2247 TargetCostKind CostKind) override { 2248 return Impl.getInstructionCost(U, Operands, CostKind); 2249 } 2250 BranchProbability getPredictableBranchThreshold() override { 2251 return Impl.getPredictableBranchThreshold(); 2252 } 2253 InstructionCost getBranchMispredictPenalty() override { 2254 return Impl.getBranchMispredictPenalty(); 2255 } 2256 bool hasBranchDivergence(const Function *F = nullptr) override { 2257 return Impl.hasBranchDivergence(F); 2258 } 2259 bool isSourceOfDivergence(const Value *V) override { 2260 return Impl.isSourceOfDivergence(V); 2261 } 2262 2263 bool isAlwaysUniform(const Value *V) override { 2264 return Impl.isAlwaysUniform(V); 2265 } 2266 2267 bool isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override { 2268 return Impl.isValidAddrSpaceCast(FromAS, ToAS); 2269 } 2270 2271 bool addrspacesMayAlias(unsigned AS0, unsigned AS1) const override { 2272 return Impl.addrspacesMayAlias(AS0, AS1); 2273 } 2274 2275 unsigned getFlatAddressSpace() override { return Impl.getFlatAddressSpace(); } 2276 2277 bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes, 2278 Intrinsic::ID IID) const override { 2279 return Impl.collectFlatAddressOperands(OpIndexes, IID); 2280 } 2281 2282 bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const override { 2283 return Impl.isNoopAddrSpaceCast(FromAS, ToAS); 2284 } 2285 2286 bool 2287 canHaveNonUndefGlobalInitializerInAddressSpace(unsigned AS) const override { 2288 return Impl.canHaveNonUndefGlobalInitializerInAddressSpace(AS); 2289 } 2290 2291 unsigned getAssumedAddrSpace(const Value *V) const override { 2292 return Impl.getAssumedAddrSpace(V); 2293 } 2294 2295 bool isSingleThreaded() const override { return Impl.isSingleThreaded(); } 2296 2297 std::pair<const Value *, unsigned> 2298 getPredicatedAddrSpace(const Value *V) const override { 2299 return Impl.getPredicatedAddrSpace(V); 2300 } 2301 2302 Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV, 2303 Value *NewV) const override { 2304 return Impl.rewriteIntrinsicWithAddressSpace(II, OldV, NewV); 2305 } 2306 2307 bool isLoweredToCall(const Function *F) override { 2308 return Impl.isLoweredToCall(F); 2309 } 2310 void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, 2311 UnrollingPreferences &UP, 2312 OptimizationRemarkEmitter *ORE) override { 2313 return Impl.getUnrollingPreferences(L, SE, UP, ORE); 2314 } 2315 void getPeelingPreferences(Loop *L, ScalarEvolution &SE, 2316 PeelingPreferences &PP) override { 2317 return Impl.getPeelingPreferences(L, SE, PP); 2318 } 2319 bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE, 2320 AssumptionCache &AC, TargetLibraryInfo *LibInfo, 2321 HardwareLoopInfo &HWLoopInfo) override { 2322 return Impl.isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo); 2323 } 2324 bool preferPredicateOverEpilogue(TailFoldingInfo *TFI) override { 2325 return Impl.preferPredicateOverEpilogue(TFI); 2326 } 2327 TailFoldingStyle 2328 getPreferredTailFoldingStyle(bool IVUpdateMayOverflow = true) override { 2329 return Impl.getPreferredTailFoldingStyle(IVUpdateMayOverflow); 2330 } 2331 std::optional<Instruction *> 2332 instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) override { 2333 return Impl.instCombineIntrinsic(IC, II); 2334 } 2335 std::optional<Value *> 2336 simplifyDemandedUseBitsIntrinsic(InstCombiner &IC, IntrinsicInst &II, 2337 APInt DemandedMask, KnownBits &Known, 2338 bool &KnownBitsComputed) override { 2339 return Impl.simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known, 2340 KnownBitsComputed); 2341 } 2342 std::optional<Value *> simplifyDemandedVectorEltsIntrinsic( 2343 InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, 2344 APInt &UndefElts2, APInt &UndefElts3, 2345 std::function<void(Instruction *, unsigned, APInt, APInt &)> 2346 SimplifyAndSetOp) override { 2347 return Impl.simplifyDemandedVectorEltsIntrinsic( 2348 IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3, 2349 SimplifyAndSetOp); 2350 } 2351 bool isLegalAddImmediate(int64_t Imm) override { 2352 return Impl.isLegalAddImmediate(Imm); 2353 } 2354 bool isLegalAddScalableImmediate(int64_t Imm) override { 2355 return Impl.isLegalAddScalableImmediate(Imm); 2356 } 2357 bool isLegalICmpImmediate(int64_t Imm) override { 2358 return Impl.isLegalICmpImmediate(Imm); 2359 } 2360 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 2361 bool HasBaseReg, int64_t Scale, unsigned AddrSpace, 2362 Instruction *I, int64_t ScalableOffset) override { 2363 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, 2364 AddrSpace, I, ScalableOffset); 2365 } 2366 bool isLSRCostLess(const TargetTransformInfo::LSRCost &C1, 2367 const TargetTransformInfo::LSRCost &C2) override { 2368 return Impl.isLSRCostLess(C1, C2); 2369 } 2370 bool isNumRegsMajorCostOfLSR() override { 2371 return Impl.isNumRegsMajorCostOfLSR(); 2372 } 2373 bool shouldFoldTerminatingConditionAfterLSR() const override { 2374 return Impl.shouldFoldTerminatingConditionAfterLSR(); 2375 } 2376 bool shouldDropLSRSolutionIfLessProfitable() const override { 2377 return Impl.shouldDropLSRSolutionIfLessProfitable(); 2378 } 2379 bool isProfitableLSRChainElement(Instruction *I) override { 2380 return Impl.isProfitableLSRChainElement(I); 2381 } 2382 bool canMacroFuseCmp() override { return Impl.canMacroFuseCmp(); } 2383 bool canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE, LoopInfo *LI, 2384 DominatorTree *DT, AssumptionCache *AC, 2385 TargetLibraryInfo *LibInfo) override { 2386 return Impl.canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo); 2387 } 2388 AddressingModeKind 2389 getPreferredAddressingMode(const Loop *L, 2390 ScalarEvolution *SE) const override { 2391 return Impl.getPreferredAddressingMode(L, SE); 2392 } 2393 bool isLegalMaskedStore(Type *DataType, Align Alignment) override { 2394 return Impl.isLegalMaskedStore(DataType, Alignment); 2395 } 2396 bool isLegalMaskedLoad(Type *DataType, Align Alignment) override { 2397 return Impl.isLegalMaskedLoad(DataType, Alignment); 2398 } 2399 bool isLegalNTStore(Type *DataType, Align Alignment) override { 2400 return Impl.isLegalNTStore(DataType, Alignment); 2401 } 2402 bool isLegalNTLoad(Type *DataType, Align Alignment) override { 2403 return Impl.isLegalNTLoad(DataType, Alignment); 2404 } 2405 bool isLegalBroadcastLoad(Type *ElementTy, 2406 ElementCount NumElements) const override { 2407 return Impl.isLegalBroadcastLoad(ElementTy, NumElements); 2408 } 2409 bool isLegalMaskedScatter(Type *DataType, Align Alignment) override { 2410 return Impl.isLegalMaskedScatter(DataType, Alignment); 2411 } 2412 bool isLegalMaskedGather(Type *DataType, Align Alignment) override { 2413 return Impl.isLegalMaskedGather(DataType, Alignment); 2414 } 2415 bool forceScalarizeMaskedGather(VectorType *DataType, 2416 Align Alignment) override { 2417 return Impl.forceScalarizeMaskedGather(DataType, Alignment); 2418 } 2419 bool forceScalarizeMaskedScatter(VectorType *DataType, 2420 Align Alignment) override { 2421 return Impl.forceScalarizeMaskedScatter(DataType, Alignment); 2422 } 2423 bool isLegalMaskedCompressStore(Type *DataType, Align Alignment) override { 2424 return Impl.isLegalMaskedCompressStore(DataType, Alignment); 2425 } 2426 bool isLegalMaskedExpandLoad(Type *DataType, Align Alignment) override { 2427 return Impl.isLegalMaskedExpandLoad(DataType, Alignment); 2428 } 2429 bool isLegalStridedLoadStore(Type *DataType, Align Alignment) override { 2430 return Impl.isLegalStridedLoadStore(DataType, Alignment); 2431 } 2432 bool isLegalMaskedVectorHistogram(Type *AddrType, Type *DataType) override { 2433 return Impl.isLegalMaskedVectorHistogram(AddrType, DataType); 2434 } 2435 bool isLegalAltInstr(VectorType *VecTy, unsigned Opcode0, unsigned Opcode1, 2436 const SmallBitVector &OpcodeMask) const override { 2437 return Impl.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask); 2438 } 2439 bool enableOrderedReductions() override { 2440 return Impl.enableOrderedReductions(); 2441 } 2442 bool hasDivRemOp(Type *DataType, bool IsSigned) override { 2443 return Impl.hasDivRemOp(DataType, IsSigned); 2444 } 2445 bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override { 2446 return Impl.hasVolatileVariant(I, AddrSpace); 2447 } 2448 bool prefersVectorizedAddressing() override { 2449 return Impl.prefersVectorizedAddressing(); 2450 } 2451 InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 2452 StackOffset BaseOffset, bool HasBaseReg, 2453 int64_t Scale, 2454 unsigned AddrSpace) override { 2455 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, Scale, 2456 AddrSpace); 2457 } 2458 bool LSRWithInstrQueries() override { return Impl.LSRWithInstrQueries(); } 2459 bool isTruncateFree(Type *Ty1, Type *Ty2) override { 2460 return Impl.isTruncateFree(Ty1, Ty2); 2461 } 2462 bool isProfitableToHoist(Instruction *I) override { 2463 return Impl.isProfitableToHoist(I); 2464 } 2465 bool useAA() override { return Impl.useAA(); } 2466 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); } 2467 unsigned getRegUsageForType(Type *Ty) override { 2468 return Impl.getRegUsageForType(Ty); 2469 } 2470 bool shouldBuildLookupTables() override { 2471 return Impl.shouldBuildLookupTables(); 2472 } 2473 bool shouldBuildLookupTablesForConstant(Constant *C) override { 2474 return Impl.shouldBuildLookupTablesForConstant(C); 2475 } 2476 bool shouldBuildRelLookupTables() override { 2477 return Impl.shouldBuildRelLookupTables(); 2478 } 2479 bool useColdCCForColdCall(Function &F) override { 2480 return Impl.useColdCCForColdCall(F); 2481 } 2482 2483 InstructionCost getScalarizationOverhead(VectorType *Ty, 2484 const APInt &DemandedElts, 2485 bool Insert, bool Extract, 2486 TargetCostKind CostKind) override { 2487 return Impl.getScalarizationOverhead(Ty, DemandedElts, Insert, Extract, 2488 CostKind); 2489 } 2490 InstructionCost 2491 getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, 2492 ArrayRef<Type *> Tys, 2493 TargetCostKind CostKind) override { 2494 return Impl.getOperandsScalarizationOverhead(Args, Tys, CostKind); 2495 } 2496 2497 bool supportsEfficientVectorElementLoadStore() override { 2498 return Impl.supportsEfficientVectorElementLoadStore(); 2499 } 2500 2501 bool supportsTailCalls() override { return Impl.supportsTailCalls(); } 2502 bool supportsTailCallFor(const CallBase *CB) override { 2503 return Impl.supportsTailCallFor(CB); 2504 } 2505 2506 bool enableAggressiveInterleaving(bool LoopHasReductions) override { 2507 return Impl.enableAggressiveInterleaving(LoopHasReductions); 2508 } 2509 MemCmpExpansionOptions enableMemCmpExpansion(bool OptSize, 2510 bool IsZeroCmp) const override { 2511 return Impl.enableMemCmpExpansion(OptSize, IsZeroCmp); 2512 } 2513 bool enableSelectOptimize() override { 2514 return Impl.enableSelectOptimize(); 2515 } 2516 bool shouldTreatInstructionLikeSelect(const Instruction *I) override { 2517 return Impl.shouldTreatInstructionLikeSelect(I); 2518 } 2519 bool enableInterleavedAccessVectorization() override { 2520 return Impl.enableInterleavedAccessVectorization(); 2521 } 2522 bool enableMaskedInterleavedAccessVectorization() override { 2523 return Impl.enableMaskedInterleavedAccessVectorization(); 2524 } 2525 bool isFPVectorizationPotentiallyUnsafe() override { 2526 return Impl.isFPVectorizationPotentiallyUnsafe(); 2527 } 2528 bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth, 2529 unsigned AddressSpace, Align Alignment, 2530 unsigned *Fast) override { 2531 return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, 2532 Alignment, Fast); 2533 } 2534 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override { 2535 return Impl.getPopcntSupport(IntTyWidthInBit); 2536 } 2537 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); } 2538 2539 bool isExpensiveToSpeculativelyExecute(const Instruction* I) override { 2540 return Impl.isExpensiveToSpeculativelyExecute(I); 2541 } 2542 2543 bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override { 2544 return Impl.isFCmpOrdCheaperThanFCmpZero(Ty); 2545 } 2546 2547 InstructionCost getFPOpCost(Type *Ty) override { 2548 return Impl.getFPOpCost(Ty); 2549 } 2550 2551 InstructionCost getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, 2552 const APInt &Imm, Type *Ty) override { 2553 return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty); 2554 } 2555 InstructionCost getIntImmCost(const APInt &Imm, Type *Ty, 2556 TargetCostKind CostKind) override { 2557 return Impl.getIntImmCost(Imm, Ty, CostKind); 2558 } 2559 InstructionCost getIntImmCostInst(unsigned Opc, unsigned Idx, 2560 const APInt &Imm, Type *Ty, 2561 TargetCostKind CostKind, 2562 Instruction *Inst = nullptr) override { 2563 return Impl.getIntImmCostInst(Opc, Idx, Imm, Ty, CostKind, Inst); 2564 } 2565 InstructionCost getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx, 2566 const APInt &Imm, Type *Ty, 2567 TargetCostKind CostKind) override { 2568 return Impl.getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind); 2569 } 2570 bool preferToKeepConstantsAttached(const Instruction &Inst, 2571 const Function &Fn) const override { 2572 return Impl.preferToKeepConstantsAttached(Inst, Fn); 2573 } 2574 unsigned getNumberOfRegisters(unsigned ClassID) const override { 2575 return Impl.getNumberOfRegisters(ClassID); 2576 } 2577 bool hasConditionalLoadStoreForType(Type *Ty = nullptr) const override { 2578 return Impl.hasConditionalLoadStoreForType(Ty); 2579 } 2580 unsigned getRegisterClassForType(bool Vector, 2581 Type *Ty = nullptr) const override { 2582 return Impl.getRegisterClassForType(Vector, Ty); 2583 } 2584 const char *getRegisterClassName(unsigned ClassID) const override { 2585 return Impl.getRegisterClassName(ClassID); 2586 } 2587 TypeSize getRegisterBitWidth(RegisterKind K) const override { 2588 return Impl.getRegisterBitWidth(K); 2589 } 2590 unsigned getMinVectorRegisterBitWidth() const override { 2591 return Impl.getMinVectorRegisterBitWidth(); 2592 } 2593 std::optional<unsigned> getMaxVScale() const override { 2594 return Impl.getMaxVScale(); 2595 } 2596 std::optional<unsigned> getVScaleForTuning() const override { 2597 return Impl.getVScaleForTuning(); 2598 } 2599 bool isVScaleKnownToBeAPowerOfTwo() const override { 2600 return Impl.isVScaleKnownToBeAPowerOfTwo(); 2601 } 2602 bool shouldMaximizeVectorBandwidth( 2603 TargetTransformInfo::RegisterKind K) const override { 2604 return Impl.shouldMaximizeVectorBandwidth(K); 2605 } 2606 ElementCount getMinimumVF(unsigned ElemWidth, 2607 bool IsScalable) const override { 2608 return Impl.getMinimumVF(ElemWidth, IsScalable); 2609 } 2610 unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const override { 2611 return Impl.getMaximumVF(ElemWidth, Opcode); 2612 } 2613 unsigned getStoreMinimumVF(unsigned VF, Type *ScalarMemTy, 2614 Type *ScalarValTy) const override { 2615 return Impl.getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy); 2616 } 2617 bool shouldConsiderAddressTypePromotion( 2618 const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override { 2619 return Impl.shouldConsiderAddressTypePromotion( 2620 I, AllowPromotionWithoutCommonHeader); 2621 } 2622 unsigned getCacheLineSize() const override { return Impl.getCacheLineSize(); } 2623 std::optional<unsigned> getCacheSize(CacheLevel Level) const override { 2624 return Impl.getCacheSize(Level); 2625 } 2626 std::optional<unsigned> 2627 getCacheAssociativity(CacheLevel Level) const override { 2628 return Impl.getCacheAssociativity(Level); 2629 } 2630 2631 std::optional<unsigned> getMinPageSize() const override { 2632 return Impl.getMinPageSize(); 2633 } 2634 2635 /// Return the preferred prefetch distance in terms of instructions. 2636 /// 2637 unsigned getPrefetchDistance() const override { 2638 return Impl.getPrefetchDistance(); 2639 } 2640 2641 /// Return the minimum stride necessary to trigger software 2642 /// prefetching. 2643 /// 2644 unsigned getMinPrefetchStride(unsigned NumMemAccesses, 2645 unsigned NumStridedMemAccesses, 2646 unsigned NumPrefetches, 2647 bool HasCall) const override { 2648 return Impl.getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses, 2649 NumPrefetches, HasCall); 2650 } 2651 2652 /// Return the maximum prefetch distance in terms of loop 2653 /// iterations. 2654 /// 2655 unsigned getMaxPrefetchIterationsAhead() const override { 2656 return Impl.getMaxPrefetchIterationsAhead(); 2657 } 2658 2659 /// \return True if prefetching should also be done for writes. 2660 bool enableWritePrefetching() const override { 2661 return Impl.enableWritePrefetching(); 2662 } 2663 2664 /// \return if target want to issue a prefetch in address space \p AS. 2665 bool shouldPrefetchAddressSpace(unsigned AS) const override { 2666 return Impl.shouldPrefetchAddressSpace(AS); 2667 } 2668 2669 unsigned getMaxInterleaveFactor(ElementCount VF) override { 2670 return Impl.getMaxInterleaveFactor(VF); 2671 } 2672 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, 2673 unsigned &JTSize, 2674 ProfileSummaryInfo *PSI, 2675 BlockFrequencyInfo *BFI) override { 2676 return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI); 2677 } 2678 InstructionCost getArithmeticInstrCost( 2679 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind, 2680 OperandValueInfo Opd1Info, OperandValueInfo Opd2Info, 2681 ArrayRef<const Value *> Args, 2682 const Instruction *CxtI = nullptr) override { 2683 return Impl.getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info, 2684 Args, CxtI); 2685 } 2686 InstructionCost getAltInstrCost(VectorType *VecTy, unsigned Opcode0, 2687 unsigned Opcode1, 2688 const SmallBitVector &OpcodeMask, 2689 TTI::TargetCostKind CostKind) const override { 2690 return Impl.getAltInstrCost(VecTy, Opcode0, Opcode1, OpcodeMask, CostKind); 2691 } 2692 2693 InstructionCost getShuffleCost(ShuffleKind Kind, VectorType *Tp, 2694 ArrayRef<int> Mask, 2695 TTI::TargetCostKind CostKind, int Index, 2696 VectorType *SubTp, 2697 ArrayRef<const Value *> Args, 2698 const Instruction *CxtI) override { 2699 return Impl.getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp, Args, 2700 CxtI); 2701 } 2702 InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, 2703 CastContextHint CCH, 2704 TTI::TargetCostKind CostKind, 2705 const Instruction *I) override { 2706 return Impl.getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I); 2707 } 2708 InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst, 2709 VectorType *VecTy, 2710 unsigned Index) override { 2711 return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index); 2712 } 2713 InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind, 2714 const Instruction *I = nullptr) override { 2715 return Impl.getCFInstrCost(Opcode, CostKind, I); 2716 } 2717 InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, 2718 CmpInst::Predicate VecPred, 2719 TTI::TargetCostKind CostKind, 2720 const Instruction *I) override { 2721 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I); 2722 } 2723 InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val, 2724 TTI::TargetCostKind CostKind, 2725 unsigned Index, Value *Op0, 2726 Value *Op1) override { 2727 return Impl.getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1); 2728 } 2729 InstructionCost getVectorInstrCost(const Instruction &I, Type *Val, 2730 TTI::TargetCostKind CostKind, 2731 unsigned Index) override { 2732 return Impl.getVectorInstrCost(I, Val, CostKind, Index); 2733 } 2734 InstructionCost 2735 getReplicationShuffleCost(Type *EltTy, int ReplicationFactor, int VF, 2736 const APInt &DemandedDstElts, 2737 TTI::TargetCostKind CostKind) override { 2738 return Impl.getReplicationShuffleCost(EltTy, ReplicationFactor, VF, 2739 DemandedDstElts, CostKind); 2740 } 2741 InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 2742 unsigned AddressSpace, 2743 TTI::TargetCostKind CostKind, 2744 OperandValueInfo OpInfo, 2745 const Instruction *I) override { 2746 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind, 2747 OpInfo, I); 2748 } 2749 InstructionCost getVPMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment, 2750 unsigned AddressSpace, 2751 TTI::TargetCostKind CostKind, 2752 const Instruction *I) override { 2753 return Impl.getVPMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 2754 CostKind, I); 2755 } 2756 InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 2757 Align Alignment, unsigned AddressSpace, 2758 TTI::TargetCostKind CostKind) override { 2759 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, 2760 CostKind); 2761 } 2762 InstructionCost 2763 getGatherScatterOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, 2764 bool VariableMask, Align Alignment, 2765 TTI::TargetCostKind CostKind, 2766 const Instruction *I = nullptr) override { 2767 return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, 2768 Alignment, CostKind, I); 2769 } 2770 InstructionCost 2771 getStridedMemoryOpCost(unsigned Opcode, Type *DataTy, const Value *Ptr, 2772 bool VariableMask, Align Alignment, 2773 TTI::TargetCostKind CostKind, 2774 const Instruction *I = nullptr) override { 2775 return Impl.getStridedMemoryOpCost(Opcode, DataTy, Ptr, VariableMask, 2776 Alignment, CostKind, I); 2777 } 2778 InstructionCost getInterleavedMemoryOpCost( 2779 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices, 2780 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind, 2781 bool UseMaskForCond, bool UseMaskForGaps) override { 2782 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 2783 Alignment, AddressSpace, CostKind, 2784 UseMaskForCond, UseMaskForGaps); 2785 } 2786 InstructionCost 2787 getArithmeticReductionCost(unsigned Opcode, VectorType *Ty, 2788 std::optional<FastMathFlags> FMF, 2789 TTI::TargetCostKind CostKind) override { 2790 return Impl.getArithmeticReductionCost(Opcode, Ty, FMF, CostKind); 2791 } 2792 InstructionCost 2793 getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty, FastMathFlags FMF, 2794 TTI::TargetCostKind CostKind) override { 2795 return Impl.getMinMaxReductionCost(IID, Ty, FMF, CostKind); 2796 } 2797 InstructionCost 2798 getExtendedReductionCost(unsigned Opcode, bool IsUnsigned, Type *ResTy, 2799 VectorType *Ty, FastMathFlags FMF, 2800 TTI::TargetCostKind CostKind) override { 2801 return Impl.getExtendedReductionCost(Opcode, IsUnsigned, ResTy, Ty, FMF, 2802 CostKind); 2803 } 2804 InstructionCost 2805 getMulAccReductionCost(bool IsUnsigned, Type *ResTy, VectorType *Ty, 2806 TTI::TargetCostKind CostKind) override { 2807 return Impl.getMulAccReductionCost(IsUnsigned, ResTy, Ty, CostKind); 2808 } 2809 InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA, 2810 TTI::TargetCostKind CostKind) override { 2811 return Impl.getIntrinsicInstrCost(ICA, CostKind); 2812 } 2813 InstructionCost getCallInstrCost(Function *F, Type *RetTy, 2814 ArrayRef<Type *> Tys, 2815 TTI::TargetCostKind CostKind) override { 2816 return Impl.getCallInstrCost(F, RetTy, Tys, CostKind); 2817 } 2818 unsigned getNumberOfParts(Type *Tp) override { 2819 return Impl.getNumberOfParts(Tp); 2820 } 2821 InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *SE, 2822 const SCEV *Ptr) override { 2823 return Impl.getAddressComputationCost(Ty, SE, Ptr); 2824 } 2825 InstructionCost getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override { 2826 return Impl.getCostOfKeepingLiveOverCall(Tys); 2827 } 2828 bool getTgtMemIntrinsic(IntrinsicInst *Inst, 2829 MemIntrinsicInfo &Info) override { 2830 return Impl.getTgtMemIntrinsic(Inst, Info); 2831 } 2832 unsigned getAtomicMemIntrinsicMaxElementSize() const override { 2833 return Impl.getAtomicMemIntrinsicMaxElementSize(); 2834 } 2835 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 2836 Type *ExpectedType) override { 2837 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 2838 } 2839 Type *getMemcpyLoopLoweringType( 2840 LLVMContext &Context, Value *Length, unsigned SrcAddrSpace, 2841 unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign, 2842 std::optional<uint32_t> AtomicElementSize) const override { 2843 return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace, 2844 DestAddrSpace, SrcAlign, DestAlign, 2845 AtomicElementSize); 2846 } 2847 void getMemcpyLoopResidualLoweringType( 2848 SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, 2849 unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace, 2850 unsigned SrcAlign, unsigned DestAlign, 2851 std::optional<uint32_t> AtomicCpySize) const override { 2852 Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, 2853 SrcAddrSpace, DestAddrSpace, 2854 SrcAlign, DestAlign, AtomicCpySize); 2855 } 2856 bool areInlineCompatible(const Function *Caller, 2857 const Function *Callee) const override { 2858 return Impl.areInlineCompatible(Caller, Callee); 2859 } 2860 unsigned getInlineCallPenalty(const Function *F, const CallBase &Call, 2861 unsigned DefaultCallPenalty) const override { 2862 return Impl.getInlineCallPenalty(F, Call, DefaultCallPenalty); 2863 } 2864 bool areTypesABICompatible(const Function *Caller, const Function *Callee, 2865 const ArrayRef<Type *> &Types) const override { 2866 return Impl.areTypesABICompatible(Caller, Callee, Types); 2867 } 2868 bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override { 2869 return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout()); 2870 } 2871 bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override { 2872 return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout()); 2873 } 2874 unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override { 2875 return Impl.getLoadStoreVecRegBitWidth(AddrSpace); 2876 } 2877 bool isLegalToVectorizeLoad(LoadInst *LI) const override { 2878 return Impl.isLegalToVectorizeLoad(LI); 2879 } 2880 bool isLegalToVectorizeStore(StoreInst *SI) const override { 2881 return Impl.isLegalToVectorizeStore(SI); 2882 } 2883 bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, Align Alignment, 2884 unsigned AddrSpace) const override { 2885 return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, 2886 AddrSpace); 2887 } 2888 bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, Align Alignment, 2889 unsigned AddrSpace) const override { 2890 return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, 2891 AddrSpace); 2892 } 2893 bool isLegalToVectorizeReduction(const RecurrenceDescriptor &RdxDesc, 2894 ElementCount VF) const override { 2895 return Impl.isLegalToVectorizeReduction(RdxDesc, VF); 2896 } 2897 bool isElementTypeLegalForScalableVector(Type *Ty) const override { 2898 return Impl.isElementTypeLegalForScalableVector(Ty); 2899 } 2900 unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, 2901 unsigned ChainSizeInBytes, 2902 VectorType *VecTy) const override { 2903 return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); 2904 } 2905 unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, 2906 unsigned ChainSizeInBytes, 2907 VectorType *VecTy) const override { 2908 return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); 2909 } 2910 bool preferFixedOverScalableIfEqualCost() const override { 2911 return Impl.preferFixedOverScalableIfEqualCost(); 2912 } 2913 bool preferInLoopReduction(unsigned Opcode, Type *Ty, 2914 ReductionFlags Flags) const override { 2915 return Impl.preferInLoopReduction(Opcode, Ty, Flags); 2916 } 2917 bool preferPredicatedReductionSelect(unsigned Opcode, Type *Ty, 2918 ReductionFlags Flags) const override { 2919 return Impl.preferPredicatedReductionSelect(Opcode, Ty, Flags); 2920 } 2921 bool preferEpilogueVectorization() const override { 2922 return Impl.preferEpilogueVectorization(); 2923 } 2924 2925 bool shouldExpandReduction(const IntrinsicInst *II) const override { 2926 return Impl.shouldExpandReduction(II); 2927 } 2928 2929 ReductionShuffle 2930 getPreferredExpandedReductionShuffle(const IntrinsicInst *II) const override { 2931 return Impl.getPreferredExpandedReductionShuffle(II); 2932 } 2933 2934 unsigned getGISelRematGlobalCost() const override { 2935 return Impl.getGISelRematGlobalCost(); 2936 } 2937 2938 unsigned getMinTripCountTailFoldingThreshold() const override { 2939 return Impl.getMinTripCountTailFoldingThreshold(); 2940 } 2941 2942 bool supportsScalableVectors() const override { 2943 return Impl.supportsScalableVectors(); 2944 } 2945 2946 bool enableScalableVectorization() const override { 2947 return Impl.enableScalableVectorization(); 2948 } 2949 2950 bool hasActiveVectorLength(unsigned Opcode, Type *DataType, 2951 Align Alignment) const override { 2952 return Impl.hasActiveVectorLength(Opcode, DataType, Alignment); 2953 } 2954 2955 VPLegalization 2956 getVPLegalizationStrategy(const VPIntrinsic &PI) const override { 2957 return Impl.getVPLegalizationStrategy(PI); 2958 } 2959 2960 bool hasArmWideBranch(bool Thumb) const override { 2961 return Impl.hasArmWideBranch(Thumb); 2962 } 2963 2964 unsigned getMaxNumArgs() const override { 2965 return Impl.getMaxNumArgs(); 2966 } 2967 }; 2968 2969 template <typename T> 2970 TargetTransformInfo::TargetTransformInfo(T Impl) 2971 : TTIImpl(new Model<T>(Impl)) {} 2972 2973 /// Analysis pass providing the \c TargetTransformInfo. 2974 /// 2975 /// The core idea of the TargetIRAnalysis is to expose an interface through 2976 /// which LLVM targets can analyze and provide information about the middle 2977 /// end's target-independent IR. This supports use cases such as target-aware 2978 /// cost modeling of IR constructs. 2979 /// 2980 /// This is a function analysis because much of the cost modeling for targets 2981 /// is done in a subtarget specific way and LLVM supports compiling different 2982 /// functions targeting different subtargets in order to support runtime 2983 /// dispatch according to the observed subtarget. 2984 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> { 2985 public: 2986 typedef TargetTransformInfo Result; 2987 2988 /// Default construct a target IR analysis. 2989 /// 2990 /// This will use the module's datalayout to construct a baseline 2991 /// conservative TTI result. 2992 TargetIRAnalysis(); 2993 2994 /// Construct an IR analysis pass around a target-provide callback. 2995 /// 2996 /// The callback will be called with a particular function for which the TTI 2997 /// is needed and must return a TTI object for that function. 2998 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback); 2999 3000 // Value semantics. We spell out the constructors for MSVC. 3001 TargetIRAnalysis(const TargetIRAnalysis &Arg) 3002 : TTICallback(Arg.TTICallback) {} 3003 TargetIRAnalysis(TargetIRAnalysis &&Arg) 3004 : TTICallback(std::move(Arg.TTICallback)) {} 3005 TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) { 3006 TTICallback = RHS.TTICallback; 3007 return *this; 3008 } 3009 TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) { 3010 TTICallback = std::move(RHS.TTICallback); 3011 return *this; 3012 } 3013 3014 Result run(const Function &F, FunctionAnalysisManager &); 3015 3016 private: 3017 friend AnalysisInfoMixin<TargetIRAnalysis>; 3018 static AnalysisKey Key; 3019 3020 /// The callback used to produce a result. 3021 /// 3022 /// We use a completely opaque callback so that targets can provide whatever 3023 /// mechanism they desire for constructing the TTI for a given function. 3024 /// 3025 /// FIXME: Should we really use std::function? It's relatively inefficient. 3026 /// It might be possible to arrange for even stateful callbacks to outlive 3027 /// the analysis and thus use a function_ref which would be lighter weight. 3028 /// This may also be less error prone as the callback is likely to reference 3029 /// the external TargetMachine, and that reference needs to never dangle. 3030 std::function<Result(const Function &)> TTICallback; 3031 3032 /// Helper function used as the callback in the default constructor. 3033 static Result getDefaultTTI(const Function &F); 3034 }; 3035 3036 /// Wrapper pass for TargetTransformInfo. 3037 /// 3038 /// This pass can be constructed from a TTI object which it stores internally 3039 /// and is queried by passes. 3040 class TargetTransformInfoWrapperPass : public ImmutablePass { 3041 TargetIRAnalysis TIRA; 3042 std::optional<TargetTransformInfo> TTI; 3043 3044 virtual void anchor(); 3045 3046 public: 3047 static char ID; 3048 3049 /// We must provide a default constructor for the pass but it should 3050 /// never be used. 3051 /// 3052 /// Use the constructor below or call one of the creation routines. 3053 TargetTransformInfoWrapperPass(); 3054 3055 explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); 3056 3057 TargetTransformInfo &getTTI(const Function &F); 3058 }; 3059 3060 /// Create an analysis pass wrapper around a TTI object. 3061 /// 3062 /// This analysis pass just holds the TTI instance and makes it available to 3063 /// clients. 3064 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); 3065 3066 } // namespace llvm 3067 3068 #endif 3069