1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "PatternInit.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/OSLog.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "llvm/ADT/APFloat.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/IntrinsicsAArch64.h"
39 #include "llvm/IR/IntrinsicsAMDGPU.h"
40 #include "llvm/IR/IntrinsicsARM.h"
41 #include "llvm/IR/IntrinsicsBPF.h"
42 #include "llvm/IR/IntrinsicsHexagon.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/MatrixBuilder.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ScopedPrinter.h"
54 #include "llvm/Support/X86TargetParser.h"
55 #include <sstream>
56
57 using namespace clang;
58 using namespace CodeGen;
59 using namespace llvm;
60
61 static
clamp(int64_t Value,int64_t Low,int64_t High)62 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
63 return std::min(High, std::max(Low, Value));
64 }
65
initializeAlloca(CodeGenFunction & CGF,AllocaInst * AI,Value * Size,Align AlignmentInBytes)66 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
67 Align AlignmentInBytes) {
68 ConstantInt *Byte;
69 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
70 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
71 // Nothing to initialize.
72 return;
73 case LangOptions::TrivialAutoVarInitKind::Zero:
74 Byte = CGF.Builder.getInt8(0x00);
75 break;
76 case LangOptions::TrivialAutoVarInitKind::Pattern: {
77 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
78 Byte = llvm::dyn_cast<llvm::ConstantInt>(
79 initializationPatternFor(CGF.CGM, Int8));
80 break;
81 }
82 }
83 if (CGF.CGM.stopAutoInit())
84 return;
85 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
86 I->addAnnotationMetadata("auto-init");
87 }
88
89 /// getBuiltinLibFunction - Given a builtin id for a function like
90 /// "__builtin_fabsf", return a Function* for "fabsf".
getBuiltinLibFunction(const FunctionDecl * FD,unsigned BuiltinID)91 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
92 unsigned BuiltinID) {
93 assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
94
95 // Get the name, skip over the __builtin_ prefix (if necessary).
96 StringRef Name;
97 GlobalDecl D(FD);
98
99 // If the builtin has been declared explicitly with an assembler label,
100 // use the mangled name. This differs from the plain label on platforms
101 // that prefix labels.
102 if (FD->hasAttr<AsmLabelAttr>())
103 Name = getMangledName(D);
104 else
105 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
106
107 llvm::FunctionType *Ty =
108 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
109
110 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
111 }
112
113 /// Emit the conversions required to turn the given value into an
114 /// integer of the given size.
EmitToInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::IntegerType * IntType)115 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
116 QualType T, llvm::IntegerType *IntType) {
117 V = CGF.EmitToMemory(V, T);
118
119 if (V->getType()->isPointerTy())
120 return CGF.Builder.CreatePtrToInt(V, IntType);
121
122 assert(V->getType() == IntType);
123 return V;
124 }
125
EmitFromInt(CodeGenFunction & CGF,llvm::Value * V,QualType T,llvm::Type * ResultType)126 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
127 QualType T, llvm::Type *ResultType) {
128 V = CGF.EmitFromMemory(V, T);
129
130 if (ResultType->isPointerTy())
131 return CGF.Builder.CreateIntToPtr(V, ResultType);
132
133 assert(V->getType() == ResultType);
134 return V;
135 }
136
137 /// Utility to insert an atomic instruction based on Intrinsic::ID
138 /// and the expression node.
MakeBinaryAtomicValue(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)139 static Value *MakeBinaryAtomicValue(
140 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
141 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
142 QualType T = E->getType();
143 assert(E->getArg(0)->getType()->isPointerType());
144 assert(CGF.getContext().hasSameUnqualifiedType(T,
145 E->getArg(0)->getType()->getPointeeType()));
146 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
147
148 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
149 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
150
151 llvm::IntegerType *IntType =
152 llvm::IntegerType::get(CGF.getLLVMContext(),
153 CGF.getContext().getTypeSize(T));
154 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
155
156 llvm::Value *Args[2];
157 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
158 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
159 llvm::Type *ValueType = Args[1]->getType();
160 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
161
162 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
163 Kind, Args[0], Args[1], Ordering);
164 return EmitFromInt(CGF, Result, T, ValueType);
165 }
166
EmitNontemporalStore(CodeGenFunction & CGF,const CallExpr * E)167 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
168 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
169 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
170
171 // Convert the type of the pointer to a pointer to the stored type.
172 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
173 Value *BC = CGF.Builder.CreateBitCast(
174 Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
175 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
176 LV.setNontemporal(true);
177 CGF.EmitStoreOfScalar(Val, LV, false);
178 return nullptr;
179 }
180
EmitNontemporalLoad(CodeGenFunction & CGF,const CallExpr * E)181 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
182 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
183
184 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
185 LV.setNontemporal(true);
186 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
187 }
188
EmitBinaryAtomic(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E)189 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
190 llvm::AtomicRMWInst::BinOp Kind,
191 const CallExpr *E) {
192 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
193 }
194
195 /// Utility to insert an atomic instruction based Intrinsic::ID and
196 /// the expression node, where the return value is the result of the
197 /// operation.
EmitBinaryAtomicPost(CodeGenFunction & CGF,llvm::AtomicRMWInst::BinOp Kind,const CallExpr * E,Instruction::BinaryOps Op,bool Invert=false)198 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
199 llvm::AtomicRMWInst::BinOp Kind,
200 const CallExpr *E,
201 Instruction::BinaryOps Op,
202 bool Invert = false) {
203 QualType T = E->getType();
204 assert(E->getArg(0)->getType()->isPointerType());
205 assert(CGF.getContext().hasSameUnqualifiedType(T,
206 E->getArg(0)->getType()->getPointeeType()));
207 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
208
209 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
210 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
211
212 llvm::IntegerType *IntType =
213 llvm::IntegerType::get(CGF.getLLVMContext(),
214 CGF.getContext().getTypeSize(T));
215 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
216
217 llvm::Value *Args[2];
218 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
219 llvm::Type *ValueType = Args[1]->getType();
220 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
221 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
222
223 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
224 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
225 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
226 if (Invert)
227 Result =
228 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
229 llvm::ConstantInt::getAllOnesValue(IntType));
230 Result = EmitFromInt(CGF, Result, T, ValueType);
231 return RValue::get(Result);
232 }
233
234 /// Utility to insert an atomic cmpxchg instruction.
235 ///
236 /// @param CGF The current codegen function.
237 /// @param E Builtin call expression to convert to cmpxchg.
238 /// arg0 - address to operate on
239 /// arg1 - value to compare with
240 /// arg2 - new value
241 /// @param ReturnBool Specifies whether to return success flag of
242 /// cmpxchg result or the old value.
243 ///
244 /// @returns result of cmpxchg, according to ReturnBool
245 ///
246 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
247 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
MakeAtomicCmpXchgValue(CodeGenFunction & CGF,const CallExpr * E,bool ReturnBool)248 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
249 bool ReturnBool) {
250 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
251 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
252 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
253
254 llvm::IntegerType *IntType = llvm::IntegerType::get(
255 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
256 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
257
258 Value *Args[3];
259 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
260 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
261 llvm::Type *ValueType = Args[1]->getType();
262 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
263 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
264
265 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
266 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
267 llvm::AtomicOrdering::SequentiallyConsistent);
268 if (ReturnBool)
269 // Extract boolean success flag and zext it to int.
270 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
271 CGF.ConvertType(E->getType()));
272 else
273 // Extract old value and emit it using the same type as compare value.
274 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
275 ValueType);
276 }
277
278 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
279 /// _InterlockedCompareExchange* intrinsics which have the following signature:
280 /// T _InterlockedCompareExchange(T volatile *Destination,
281 /// T Exchange,
282 /// T Comparand);
283 ///
284 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
285 /// cmpxchg *Destination, Comparand, Exchange.
286 /// So we need to swap Comparand and Exchange when invoking
287 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
288 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
289 /// already swapped.
290
291 static
EmitAtomicCmpXchgForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering=AtomicOrdering::SequentiallyConsistent)292 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
293 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
294 assert(E->getArg(0)->getType()->isPointerType());
295 assert(CGF.getContext().hasSameUnqualifiedType(
296 E->getType(), E->getArg(0)->getType()->getPointeeType()));
297 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
298 E->getArg(1)->getType()));
299 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
300 E->getArg(2)->getType()));
301
302 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
303 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
304 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
305
306 // For Release ordering, the failure ordering should be Monotonic.
307 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
308 AtomicOrdering::Monotonic :
309 SuccessOrdering;
310
311 // The atomic instruction is marked volatile for consistency with MSVC. This
312 // blocks the few atomics optimizations that LLVM has. If we want to optimize
313 // _Interlocked* operations in the future, we will have to remove the volatile
314 // marker.
315 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
316 Destination, Comparand, Exchange,
317 SuccessOrdering, FailureOrdering);
318 Result->setVolatile(true);
319 return CGF.Builder.CreateExtractValue(Result, 0);
320 }
321
322 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
323 // prototyped like this:
324 //
325 // unsigned char _InterlockedCompareExchange128...(
326 // __int64 volatile * _Destination,
327 // __int64 _ExchangeHigh,
328 // __int64 _ExchangeLow,
329 // __int64 * _ComparandResult);
EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering SuccessOrdering)330 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
331 const CallExpr *E,
332 AtomicOrdering SuccessOrdering) {
333 assert(E->getNumArgs() == 4);
334 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
335 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
336 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
337 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
338
339 assert(Destination->getType()->isPointerTy());
340 assert(!ExchangeHigh->getType()->isPointerTy());
341 assert(!ExchangeLow->getType()->isPointerTy());
342 assert(ComparandPtr->getType()->isPointerTy());
343
344 // For Release ordering, the failure ordering should be Monotonic.
345 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
346 ? AtomicOrdering::Monotonic
347 : SuccessOrdering;
348
349 // Convert to i128 pointers and values.
350 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
351 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
352 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
353 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
354 CGF.getContext().toCharUnitsFromBits(128));
355
356 // (((i128)hi) << 64) | ((i128)lo)
357 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
358 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
359 ExchangeHigh =
360 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
361 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
362
363 // Load the comparand for the instruction.
364 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
365
366 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
367 SuccessOrdering, FailureOrdering);
368
369 // The atomic instruction is marked volatile for consistency with MSVC. This
370 // blocks the few atomics optimizations that LLVM has. If we want to optimize
371 // _Interlocked* operations in the future, we will have to remove the volatile
372 // marker.
373 CXI->setVolatile(true);
374
375 // Store the result as an outparameter.
376 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
377 ComparandResult);
378
379 // Get the success boolean and zero extend it to i8.
380 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
381 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
382 }
383
EmitAtomicIncrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)384 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
385 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
386 assert(E->getArg(0)->getType()->isPointerType());
387
388 auto *IntTy = CGF.ConvertType(E->getType());
389 auto *Result = CGF.Builder.CreateAtomicRMW(
390 AtomicRMWInst::Add,
391 CGF.EmitScalarExpr(E->getArg(0)),
392 ConstantInt::get(IntTy, 1),
393 Ordering);
394 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
395 }
396
EmitAtomicDecrementValue(CodeGenFunction & CGF,const CallExpr * E,AtomicOrdering Ordering=AtomicOrdering::SequentiallyConsistent)397 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
398 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
399 assert(E->getArg(0)->getType()->isPointerType());
400
401 auto *IntTy = CGF.ConvertType(E->getType());
402 auto *Result = CGF.Builder.CreateAtomicRMW(
403 AtomicRMWInst::Sub,
404 CGF.EmitScalarExpr(E->getArg(0)),
405 ConstantInt::get(IntTy, 1),
406 Ordering);
407 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
408 }
409
410 // Build a plain volatile load.
EmitISOVolatileLoad(CodeGenFunction & CGF,const CallExpr * E)411 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
412 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
413 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
414 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
415 llvm::Type *ITy =
416 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
417 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
418 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
419 Load->setVolatile(true);
420 return Load;
421 }
422
423 // Build a plain volatile store.
EmitISOVolatileStore(CodeGenFunction & CGF,const CallExpr * E)424 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
425 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
426 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
427 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
428 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
429 llvm::Type *ITy =
430 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
431 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
432 llvm::StoreInst *Store =
433 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
434 Store->setVolatile(true);
435 return Store;
436 }
437
438 // Emit a simple mangled intrinsic that has 1 argument and a return type
439 // matching the argument type. Depending on mode, this may be a constrained
440 // floating-point intrinsic.
emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)441 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
442 const CallExpr *E, unsigned IntrinsicID,
443 unsigned ConstrainedIntrinsicID) {
444 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
445
446 if (CGF.Builder.getIsFPConstrained()) {
447 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
448 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
449 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
450 } else {
451 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
452 return CGF.Builder.CreateCall(F, Src0);
453 }
454 }
455
456 // Emit an intrinsic that has 2 operands of the same type as its result.
457 // Depending on mode, this may be a constrained floating-point intrinsic.
emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)458 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
459 const CallExpr *E, unsigned IntrinsicID,
460 unsigned ConstrainedIntrinsicID) {
461 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
462 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
463
464 if (CGF.Builder.getIsFPConstrained()) {
465 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
466 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
467 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
468 } else {
469 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
470 return CGF.Builder.CreateCall(F, { Src0, Src1 });
471 }
472 }
473
474 // Emit an intrinsic that has 3 operands of the same type as its result.
475 // Depending on mode, this may be a constrained floating-point intrinsic.
emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)476 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
477 const CallExpr *E, unsigned IntrinsicID,
478 unsigned ConstrainedIntrinsicID) {
479 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
480 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
481 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
482
483 if (CGF.Builder.getIsFPConstrained()) {
484 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
485 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
486 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
487 } else {
488 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
489 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
490 }
491 }
492
493 // Emit an intrinsic where all operands are of the same type as the result.
494 // Depending on mode, this may be a constrained floating-point intrinsic.
emitCallMaybeConstrainedFPBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID,llvm::Type * Ty,ArrayRef<Value * > Args)495 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
496 unsigned IntrinsicID,
497 unsigned ConstrainedIntrinsicID,
498 llvm::Type *Ty,
499 ArrayRef<Value *> Args) {
500 Function *F;
501 if (CGF.Builder.getIsFPConstrained())
502 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
503 else
504 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
505
506 if (CGF.Builder.getIsFPConstrained())
507 return CGF.Builder.CreateConstrainedFPCall(F, Args);
508 else
509 return CGF.Builder.CreateCall(F, Args);
510 }
511
512 // Emit a simple mangled intrinsic that has 1 argument and a return type
513 // matching the argument type.
emitUnaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)514 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
515 const CallExpr *E,
516 unsigned IntrinsicID) {
517 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
518
519 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
520 return CGF.Builder.CreateCall(F, Src0);
521 }
522
523 // Emit an intrinsic that has 2 operands of the same type as its result.
emitBinaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)524 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
525 const CallExpr *E,
526 unsigned IntrinsicID) {
527 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
528 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
529
530 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
531 return CGF.Builder.CreateCall(F, { Src0, Src1 });
532 }
533
534 // Emit an intrinsic that has 3 operands of the same type as its result.
emitTernaryBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)535 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
536 const CallExpr *E,
537 unsigned IntrinsicID) {
538 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
539 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
540 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
541
542 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
544 }
545
546 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
emitFPIntBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID)547 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
548 const CallExpr *E,
549 unsigned IntrinsicID) {
550 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
551 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
552
553 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
554 return CGF.Builder.CreateCall(F, {Src0, Src1});
555 }
556
557 // Emit an intrinsic that has overloaded integer result and fp operand.
558 static Value *
emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction & CGF,const CallExpr * E,unsigned IntrinsicID,unsigned ConstrainedIntrinsicID)559 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
560 unsigned IntrinsicID,
561 unsigned ConstrainedIntrinsicID) {
562 llvm::Type *ResultType = CGF.ConvertType(E->getType());
563 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
564
565 if (CGF.Builder.getIsFPConstrained()) {
566 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
567 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
568 {ResultType, Src0->getType()});
569 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
570 } else {
571 Function *F =
572 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
573 return CGF.Builder.CreateCall(F, Src0);
574 }
575 }
576
577 /// EmitFAbs - Emit a call to @llvm.fabs().
EmitFAbs(CodeGenFunction & CGF,Value * V)578 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
579 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
580 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
581 Call->setDoesNotAccessMemory();
582 return Call;
583 }
584
585 /// Emit the computation of the sign bit for a floating point value. Returns
586 /// the i1 sign bit value.
EmitSignBit(CodeGenFunction & CGF,Value * V)587 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
588 LLVMContext &C = CGF.CGM.getLLVMContext();
589
590 llvm::Type *Ty = V->getType();
591 int Width = Ty->getPrimitiveSizeInBits();
592 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
593 V = CGF.Builder.CreateBitCast(V, IntTy);
594 if (Ty->isPPC_FP128Ty()) {
595 // We want the sign bit of the higher-order double. The bitcast we just
596 // did works as if the double-double was stored to memory and then
597 // read as an i128. The "store" will put the higher-order double in the
598 // lower address in both little- and big-Endian modes, but the "load"
599 // will treat those bits as a different part of the i128: the low bits in
600 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
601 // we need to shift the high bits down to the low before truncating.
602 Width >>= 1;
603 if (CGF.getTarget().isBigEndian()) {
604 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
605 V = CGF.Builder.CreateLShr(V, ShiftCst);
606 }
607 // We are truncating value in order to extract the higher-order
608 // double, which we will be using to extract the sign from.
609 IntTy = llvm::IntegerType::get(C, Width);
610 V = CGF.Builder.CreateTrunc(V, IntTy);
611 }
612 Value *Zero = llvm::Constant::getNullValue(IntTy);
613 return CGF.Builder.CreateICmpSLT(V, Zero);
614 }
615
emitLibraryCall(CodeGenFunction & CGF,const FunctionDecl * FD,const CallExpr * E,llvm::Constant * calleeValue)616 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
617 const CallExpr *E, llvm::Constant *calleeValue) {
618 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
619 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
620 }
621
622 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
623 /// depending on IntrinsicID.
624 ///
625 /// \arg CGF The current codegen function.
626 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
627 /// \arg X The first argument to the llvm.*.with.overflow.*.
628 /// \arg Y The second argument to the llvm.*.with.overflow.*.
629 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
630 /// \returns The result (i.e. sum/product) returned by the intrinsic.
EmitOverflowIntrinsic(CodeGenFunction & CGF,const llvm::Intrinsic::ID IntrinsicID,llvm::Value * X,llvm::Value * Y,llvm::Value * & Carry)631 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
632 const llvm::Intrinsic::ID IntrinsicID,
633 llvm::Value *X, llvm::Value *Y,
634 llvm::Value *&Carry) {
635 // Make sure we have integers of the same width.
636 assert(X->getType() == Y->getType() &&
637 "Arguments must be the same type. (Did you forget to make sure both "
638 "arguments have the same integer width?)");
639
640 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
641 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
642 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
643 return CGF.Builder.CreateExtractValue(Tmp, 0);
644 }
645
emitRangedBuiltin(CodeGenFunction & CGF,unsigned IntrinsicID,int low,int high)646 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
647 unsigned IntrinsicID,
648 int low, int high) {
649 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
650 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
651 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
652 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
653 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
654 return Call;
655 }
656
657 namespace {
658 struct WidthAndSignedness {
659 unsigned Width;
660 bool Signed;
661 };
662 }
663
664 static WidthAndSignedness
getIntegerWidthAndSignedness(const clang::ASTContext & context,const clang::QualType Type)665 getIntegerWidthAndSignedness(const clang::ASTContext &context,
666 const clang::QualType Type) {
667 assert(Type->isIntegerType() && "Given type is not an integer.");
668 unsigned Width = Type->isBooleanType() ? 1
669 : Type->isExtIntType() ? context.getIntWidth(Type)
670 : context.getTypeInfo(Type).Width;
671 bool Signed = Type->isSignedIntegerType();
672 return {Width, Signed};
673 }
674
675 // Given one or more integer types, this function produces an integer type that
676 // encompasses them: any value in one of the given types could be expressed in
677 // the encompassing type.
678 static struct WidthAndSignedness
EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types)679 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
680 assert(Types.size() > 0 && "Empty list of types.");
681
682 // If any of the given types is signed, we must return a signed type.
683 bool Signed = false;
684 for (const auto &Type : Types) {
685 Signed |= Type.Signed;
686 }
687
688 // The encompassing type must have a width greater than or equal to the width
689 // of the specified types. Additionally, if the encompassing type is signed,
690 // its width must be strictly greater than the width of any unsigned types
691 // given.
692 unsigned Width = 0;
693 for (const auto &Type : Types) {
694 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
695 if (Width < MinWidth) {
696 Width = MinWidth;
697 }
698 }
699
700 return {Width, Signed};
701 }
702
EmitVAStartEnd(Value * ArgValue,bool IsStart)703 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
704 llvm::Type *DestType = Int8PtrTy;
705 if (ArgValue->getType() != DestType)
706 ArgValue =
707 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
708
709 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
710 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
711 }
712
713 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
714 /// __builtin_object_size(p, @p To) is correct
areBOSTypesCompatible(int From,int To)715 static bool areBOSTypesCompatible(int From, int To) {
716 // Note: Our __builtin_object_size implementation currently treats Type=0 and
717 // Type=2 identically. Encoding this implementation detail here may make
718 // improving __builtin_object_size difficult in the future, so it's omitted.
719 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
720 }
721
722 static llvm::Value *
getDefaultBuiltinObjectSizeResult(unsigned Type,llvm::IntegerType * ResType)723 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
724 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
725 }
726
727 llvm::Value *
evaluateOrEmitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)728 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
729 llvm::IntegerType *ResType,
730 llvm::Value *EmittedE,
731 bool IsDynamic) {
732 uint64_t ObjectSize;
733 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
734 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
735 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
736 }
737
738 /// Returns a Value corresponding to the size of the given expression.
739 /// This Value may be either of the following:
740 /// - A llvm::Argument (if E is a param with the pass_object_size attribute on
741 /// it)
742 /// - A call to the @llvm.objectsize intrinsic
743 ///
744 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
745 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
746 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
747 llvm::Value *
emitBuiltinObjectSize(const Expr * E,unsigned Type,llvm::IntegerType * ResType,llvm::Value * EmittedE,bool IsDynamic)748 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
749 llvm::IntegerType *ResType,
750 llvm::Value *EmittedE, bool IsDynamic) {
751 // We need to reference an argument if the pointer is a parameter with the
752 // pass_object_size attribute.
753 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
754 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
755 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
756 if (Param != nullptr && PS != nullptr &&
757 areBOSTypesCompatible(PS->getType(), Type)) {
758 auto Iter = SizeArguments.find(Param);
759 assert(Iter != SizeArguments.end());
760
761 const ImplicitParamDecl *D = Iter->second;
762 auto DIter = LocalDeclMap.find(D);
763 assert(DIter != LocalDeclMap.end());
764
765 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
766 getContext().getSizeType(), E->getBeginLoc());
767 }
768 }
769
770 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
771 // evaluate E for side-effects. In either case, we shouldn't lower to
772 // @llvm.objectsize.
773 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
774 return getDefaultBuiltinObjectSizeResult(Type, ResType);
775
776 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
777 assert(Ptr->getType()->isPointerTy() &&
778 "Non-pointer passed to __builtin_object_size?");
779
780 Function *F =
781 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
782
783 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
784 Value *Min = Builder.getInt1((Type & 2) != 0);
785 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
786 Value *NullIsUnknown = Builder.getTrue();
787 Value *Dynamic = Builder.getInt1(IsDynamic);
788 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
789 }
790
791 namespace {
792 /// A struct to generically describe a bit test intrinsic.
793 struct BitTest {
794 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
795 enum InterlockingKind : uint8_t {
796 Unlocked,
797 Sequential,
798 Acquire,
799 Release,
800 NoFence
801 };
802
803 ActionKind Action;
804 InterlockingKind Interlocking;
805 bool Is64Bit;
806
807 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
808 };
809 } // namespace
810
decodeBitTestBuiltin(unsigned BuiltinID)811 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
812 switch (BuiltinID) {
813 // Main portable variants.
814 case Builtin::BI_bittest:
815 return {TestOnly, Unlocked, false};
816 case Builtin::BI_bittestandcomplement:
817 return {Complement, Unlocked, false};
818 case Builtin::BI_bittestandreset:
819 return {Reset, Unlocked, false};
820 case Builtin::BI_bittestandset:
821 return {Set, Unlocked, false};
822 case Builtin::BI_interlockedbittestandreset:
823 return {Reset, Sequential, false};
824 case Builtin::BI_interlockedbittestandset:
825 return {Set, Sequential, false};
826
827 // X86-specific 64-bit variants.
828 case Builtin::BI_bittest64:
829 return {TestOnly, Unlocked, true};
830 case Builtin::BI_bittestandcomplement64:
831 return {Complement, Unlocked, true};
832 case Builtin::BI_bittestandreset64:
833 return {Reset, Unlocked, true};
834 case Builtin::BI_bittestandset64:
835 return {Set, Unlocked, true};
836 case Builtin::BI_interlockedbittestandreset64:
837 return {Reset, Sequential, true};
838 case Builtin::BI_interlockedbittestandset64:
839 return {Set, Sequential, true};
840
841 // ARM/AArch64-specific ordering variants.
842 case Builtin::BI_interlockedbittestandset_acq:
843 return {Set, Acquire, false};
844 case Builtin::BI_interlockedbittestandset_rel:
845 return {Set, Release, false};
846 case Builtin::BI_interlockedbittestandset_nf:
847 return {Set, NoFence, false};
848 case Builtin::BI_interlockedbittestandreset_acq:
849 return {Reset, Acquire, false};
850 case Builtin::BI_interlockedbittestandreset_rel:
851 return {Reset, Release, false};
852 case Builtin::BI_interlockedbittestandreset_nf:
853 return {Reset, NoFence, false};
854 }
855 llvm_unreachable("expected only bittest intrinsics");
856 }
857
bitActionToX86BTCode(BitTest::ActionKind A)858 static char bitActionToX86BTCode(BitTest::ActionKind A) {
859 switch (A) {
860 case BitTest::TestOnly: return '\0';
861 case BitTest::Complement: return 'c';
862 case BitTest::Reset: return 'r';
863 case BitTest::Set: return 's';
864 }
865 llvm_unreachable("invalid action");
866 }
867
EmitX86BitTestIntrinsic(CodeGenFunction & CGF,BitTest BT,const CallExpr * E,Value * BitBase,Value * BitPos)868 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
869 BitTest BT,
870 const CallExpr *E, Value *BitBase,
871 Value *BitPos) {
872 char Action = bitActionToX86BTCode(BT.Action);
873 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
874
875 // Build the assembly.
876 SmallString<64> Asm;
877 raw_svector_ostream AsmOS(Asm);
878 if (BT.Interlocking != BitTest::Unlocked)
879 AsmOS << "lock ";
880 AsmOS << "bt";
881 if (Action)
882 AsmOS << Action;
883 AsmOS << SizeSuffix << " $2, ($1)";
884
885 // Build the constraints. FIXME: We should support immediates when possible.
886 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
887 std::string MachineClobbers = CGF.getTarget().getClobbers();
888 if (!MachineClobbers.empty()) {
889 Constraints += ',';
890 Constraints += MachineClobbers;
891 }
892 llvm::IntegerType *IntType = llvm::IntegerType::get(
893 CGF.getLLVMContext(),
894 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
895 llvm::Type *IntPtrType = IntType->getPointerTo();
896 llvm::FunctionType *FTy =
897 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
898
899 llvm::InlineAsm *IA =
900 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
901 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
902 }
903
904 static llvm::AtomicOrdering
getBitTestAtomicOrdering(BitTest::InterlockingKind I)905 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
906 switch (I) {
907 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
908 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
909 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
910 case BitTest::Release: return llvm::AtomicOrdering::Release;
911 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
912 }
913 llvm_unreachable("invalid interlocking");
914 }
915
916 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
917 /// bits and a bit position and read and optionally modify the bit at that
918 /// position. The position index can be arbitrarily large, i.e. it can be larger
919 /// than 31 or 63, so we need an indexed load in the general case.
EmitBitTestIntrinsic(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E)920 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
921 unsigned BuiltinID,
922 const CallExpr *E) {
923 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
924 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
925
926 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
927
928 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
929 // indexing operation internally. Use them if possible.
930 if (CGF.getTarget().getTriple().isX86())
931 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
932
933 // Otherwise, use generic code to load one byte and test the bit. Use all but
934 // the bottom three bits as the array index, and the bottom three bits to form
935 // a mask.
936 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
937 Value *ByteIndex = CGF.Builder.CreateAShr(
938 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
939 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
940 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
941 ByteIndex, "bittest.byteaddr"),
942 CharUnits::One());
943 Value *PosLow =
944 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
945 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
946
947 // The updating instructions will need a mask.
948 Value *Mask = nullptr;
949 if (BT.Action != BitTest::TestOnly) {
950 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
951 "bittest.mask");
952 }
953
954 // Check the action and ordering of the interlocked intrinsics.
955 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
956
957 Value *OldByte = nullptr;
958 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
959 // Emit a combined atomicrmw load/store operation for the interlocked
960 // intrinsics.
961 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
962 if (BT.Action == BitTest::Reset) {
963 Mask = CGF.Builder.CreateNot(Mask);
964 RMWOp = llvm::AtomicRMWInst::And;
965 }
966 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
967 Ordering);
968 } else {
969 // Emit a plain load for the non-interlocked intrinsics.
970 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
971 Value *NewByte = nullptr;
972 switch (BT.Action) {
973 case BitTest::TestOnly:
974 // Don't store anything.
975 break;
976 case BitTest::Complement:
977 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
978 break;
979 case BitTest::Reset:
980 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
981 break;
982 case BitTest::Set:
983 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
984 break;
985 }
986 if (NewByte)
987 CGF.Builder.CreateStore(NewByte, ByteAddr);
988 }
989
990 // However we loaded the old byte, either by plain load or atomicrmw, shift
991 // the bit into the low position and mask it to 0 or 1.
992 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
993 return CGF.Builder.CreateAnd(
994 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
995 }
996
997 namespace {
998 enum class MSVCSetJmpKind {
999 _setjmpex,
1000 _setjmp3,
1001 _setjmp
1002 };
1003 }
1004
1005 /// MSVC handles setjmp a bit differently on different platforms. On every
1006 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1007 /// parameters can be passed as variadic arguments, but we always pass none.
EmitMSVCRTSetJmp(CodeGenFunction & CGF,MSVCSetJmpKind SJKind,const CallExpr * E)1008 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1009 const CallExpr *E) {
1010 llvm::Value *Arg1 = nullptr;
1011 llvm::Type *Arg1Ty = nullptr;
1012 StringRef Name;
1013 bool IsVarArg = false;
1014 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1015 Name = "_setjmp3";
1016 Arg1Ty = CGF.Int32Ty;
1017 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1018 IsVarArg = true;
1019 } else {
1020 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1021 Arg1Ty = CGF.Int8PtrTy;
1022 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1023 Arg1 = CGF.Builder.CreateCall(
1024 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1025 } else
1026 Arg1 = CGF.Builder.CreateCall(
1027 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1028 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1029 }
1030
1031 // Mark the call site and declaration with ReturnsTwice.
1032 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1033 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1034 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1035 llvm::Attribute::ReturnsTwice);
1036 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1037 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1038 ReturnsTwiceAttr, /*Local=*/true);
1039
1040 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1041 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1042 llvm::Value *Args[] = {Buf, Arg1};
1043 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1044 CB->setAttributes(ReturnsTwiceAttr);
1045 return RValue::get(CB);
1046 }
1047
1048 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1049 // we handle them here.
1050 enum class CodeGenFunction::MSVCIntrin {
1051 _BitScanForward,
1052 _BitScanReverse,
1053 _InterlockedAnd,
1054 _InterlockedDecrement,
1055 _InterlockedExchange,
1056 _InterlockedExchangeAdd,
1057 _InterlockedExchangeSub,
1058 _InterlockedIncrement,
1059 _InterlockedOr,
1060 _InterlockedXor,
1061 _InterlockedExchangeAdd_acq,
1062 _InterlockedExchangeAdd_rel,
1063 _InterlockedExchangeAdd_nf,
1064 _InterlockedExchange_acq,
1065 _InterlockedExchange_rel,
1066 _InterlockedExchange_nf,
1067 _InterlockedCompareExchange_acq,
1068 _InterlockedCompareExchange_rel,
1069 _InterlockedCompareExchange_nf,
1070 _InterlockedCompareExchange128,
1071 _InterlockedCompareExchange128_acq,
1072 _InterlockedCompareExchange128_rel,
1073 _InterlockedCompareExchange128_nf,
1074 _InterlockedOr_acq,
1075 _InterlockedOr_rel,
1076 _InterlockedOr_nf,
1077 _InterlockedXor_acq,
1078 _InterlockedXor_rel,
1079 _InterlockedXor_nf,
1080 _InterlockedAnd_acq,
1081 _InterlockedAnd_rel,
1082 _InterlockedAnd_nf,
1083 _InterlockedIncrement_acq,
1084 _InterlockedIncrement_rel,
1085 _InterlockedIncrement_nf,
1086 _InterlockedDecrement_acq,
1087 _InterlockedDecrement_rel,
1088 _InterlockedDecrement_nf,
1089 __fastfail,
1090 };
1091
1092 static Optional<CodeGenFunction::MSVCIntrin>
translateArmToMsvcIntrin(unsigned BuiltinID)1093 translateArmToMsvcIntrin(unsigned BuiltinID) {
1094 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1095 switch (BuiltinID) {
1096 default:
1097 return None;
1098 case ARM::BI_BitScanForward:
1099 case ARM::BI_BitScanForward64:
1100 return MSVCIntrin::_BitScanForward;
1101 case ARM::BI_BitScanReverse:
1102 case ARM::BI_BitScanReverse64:
1103 return MSVCIntrin::_BitScanReverse;
1104 case ARM::BI_InterlockedAnd64:
1105 return MSVCIntrin::_InterlockedAnd;
1106 case ARM::BI_InterlockedExchange64:
1107 return MSVCIntrin::_InterlockedExchange;
1108 case ARM::BI_InterlockedExchangeAdd64:
1109 return MSVCIntrin::_InterlockedExchangeAdd;
1110 case ARM::BI_InterlockedExchangeSub64:
1111 return MSVCIntrin::_InterlockedExchangeSub;
1112 case ARM::BI_InterlockedOr64:
1113 return MSVCIntrin::_InterlockedOr;
1114 case ARM::BI_InterlockedXor64:
1115 return MSVCIntrin::_InterlockedXor;
1116 case ARM::BI_InterlockedDecrement64:
1117 return MSVCIntrin::_InterlockedDecrement;
1118 case ARM::BI_InterlockedIncrement64:
1119 return MSVCIntrin::_InterlockedIncrement;
1120 case ARM::BI_InterlockedExchangeAdd8_acq:
1121 case ARM::BI_InterlockedExchangeAdd16_acq:
1122 case ARM::BI_InterlockedExchangeAdd_acq:
1123 case ARM::BI_InterlockedExchangeAdd64_acq:
1124 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1125 case ARM::BI_InterlockedExchangeAdd8_rel:
1126 case ARM::BI_InterlockedExchangeAdd16_rel:
1127 case ARM::BI_InterlockedExchangeAdd_rel:
1128 case ARM::BI_InterlockedExchangeAdd64_rel:
1129 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1130 case ARM::BI_InterlockedExchangeAdd8_nf:
1131 case ARM::BI_InterlockedExchangeAdd16_nf:
1132 case ARM::BI_InterlockedExchangeAdd_nf:
1133 case ARM::BI_InterlockedExchangeAdd64_nf:
1134 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1135 case ARM::BI_InterlockedExchange8_acq:
1136 case ARM::BI_InterlockedExchange16_acq:
1137 case ARM::BI_InterlockedExchange_acq:
1138 case ARM::BI_InterlockedExchange64_acq:
1139 return MSVCIntrin::_InterlockedExchange_acq;
1140 case ARM::BI_InterlockedExchange8_rel:
1141 case ARM::BI_InterlockedExchange16_rel:
1142 case ARM::BI_InterlockedExchange_rel:
1143 case ARM::BI_InterlockedExchange64_rel:
1144 return MSVCIntrin::_InterlockedExchange_rel;
1145 case ARM::BI_InterlockedExchange8_nf:
1146 case ARM::BI_InterlockedExchange16_nf:
1147 case ARM::BI_InterlockedExchange_nf:
1148 case ARM::BI_InterlockedExchange64_nf:
1149 return MSVCIntrin::_InterlockedExchange_nf;
1150 case ARM::BI_InterlockedCompareExchange8_acq:
1151 case ARM::BI_InterlockedCompareExchange16_acq:
1152 case ARM::BI_InterlockedCompareExchange_acq:
1153 case ARM::BI_InterlockedCompareExchange64_acq:
1154 return MSVCIntrin::_InterlockedCompareExchange_acq;
1155 case ARM::BI_InterlockedCompareExchange8_rel:
1156 case ARM::BI_InterlockedCompareExchange16_rel:
1157 case ARM::BI_InterlockedCompareExchange_rel:
1158 case ARM::BI_InterlockedCompareExchange64_rel:
1159 return MSVCIntrin::_InterlockedCompareExchange_rel;
1160 case ARM::BI_InterlockedCompareExchange8_nf:
1161 case ARM::BI_InterlockedCompareExchange16_nf:
1162 case ARM::BI_InterlockedCompareExchange_nf:
1163 case ARM::BI_InterlockedCompareExchange64_nf:
1164 return MSVCIntrin::_InterlockedCompareExchange_nf;
1165 case ARM::BI_InterlockedOr8_acq:
1166 case ARM::BI_InterlockedOr16_acq:
1167 case ARM::BI_InterlockedOr_acq:
1168 case ARM::BI_InterlockedOr64_acq:
1169 return MSVCIntrin::_InterlockedOr_acq;
1170 case ARM::BI_InterlockedOr8_rel:
1171 case ARM::BI_InterlockedOr16_rel:
1172 case ARM::BI_InterlockedOr_rel:
1173 case ARM::BI_InterlockedOr64_rel:
1174 return MSVCIntrin::_InterlockedOr_rel;
1175 case ARM::BI_InterlockedOr8_nf:
1176 case ARM::BI_InterlockedOr16_nf:
1177 case ARM::BI_InterlockedOr_nf:
1178 case ARM::BI_InterlockedOr64_nf:
1179 return MSVCIntrin::_InterlockedOr_nf;
1180 case ARM::BI_InterlockedXor8_acq:
1181 case ARM::BI_InterlockedXor16_acq:
1182 case ARM::BI_InterlockedXor_acq:
1183 case ARM::BI_InterlockedXor64_acq:
1184 return MSVCIntrin::_InterlockedXor_acq;
1185 case ARM::BI_InterlockedXor8_rel:
1186 case ARM::BI_InterlockedXor16_rel:
1187 case ARM::BI_InterlockedXor_rel:
1188 case ARM::BI_InterlockedXor64_rel:
1189 return MSVCIntrin::_InterlockedXor_rel;
1190 case ARM::BI_InterlockedXor8_nf:
1191 case ARM::BI_InterlockedXor16_nf:
1192 case ARM::BI_InterlockedXor_nf:
1193 case ARM::BI_InterlockedXor64_nf:
1194 return MSVCIntrin::_InterlockedXor_nf;
1195 case ARM::BI_InterlockedAnd8_acq:
1196 case ARM::BI_InterlockedAnd16_acq:
1197 case ARM::BI_InterlockedAnd_acq:
1198 case ARM::BI_InterlockedAnd64_acq:
1199 return MSVCIntrin::_InterlockedAnd_acq;
1200 case ARM::BI_InterlockedAnd8_rel:
1201 case ARM::BI_InterlockedAnd16_rel:
1202 case ARM::BI_InterlockedAnd_rel:
1203 case ARM::BI_InterlockedAnd64_rel:
1204 return MSVCIntrin::_InterlockedAnd_rel;
1205 case ARM::BI_InterlockedAnd8_nf:
1206 case ARM::BI_InterlockedAnd16_nf:
1207 case ARM::BI_InterlockedAnd_nf:
1208 case ARM::BI_InterlockedAnd64_nf:
1209 return MSVCIntrin::_InterlockedAnd_nf;
1210 case ARM::BI_InterlockedIncrement16_acq:
1211 case ARM::BI_InterlockedIncrement_acq:
1212 case ARM::BI_InterlockedIncrement64_acq:
1213 return MSVCIntrin::_InterlockedIncrement_acq;
1214 case ARM::BI_InterlockedIncrement16_rel:
1215 case ARM::BI_InterlockedIncrement_rel:
1216 case ARM::BI_InterlockedIncrement64_rel:
1217 return MSVCIntrin::_InterlockedIncrement_rel;
1218 case ARM::BI_InterlockedIncrement16_nf:
1219 case ARM::BI_InterlockedIncrement_nf:
1220 case ARM::BI_InterlockedIncrement64_nf:
1221 return MSVCIntrin::_InterlockedIncrement_nf;
1222 case ARM::BI_InterlockedDecrement16_acq:
1223 case ARM::BI_InterlockedDecrement_acq:
1224 case ARM::BI_InterlockedDecrement64_acq:
1225 return MSVCIntrin::_InterlockedDecrement_acq;
1226 case ARM::BI_InterlockedDecrement16_rel:
1227 case ARM::BI_InterlockedDecrement_rel:
1228 case ARM::BI_InterlockedDecrement64_rel:
1229 return MSVCIntrin::_InterlockedDecrement_rel;
1230 case ARM::BI_InterlockedDecrement16_nf:
1231 case ARM::BI_InterlockedDecrement_nf:
1232 case ARM::BI_InterlockedDecrement64_nf:
1233 return MSVCIntrin::_InterlockedDecrement_nf;
1234 }
1235 llvm_unreachable("must return from switch");
1236 }
1237
1238 static Optional<CodeGenFunction::MSVCIntrin>
translateAarch64ToMsvcIntrin(unsigned BuiltinID)1239 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1240 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1241 switch (BuiltinID) {
1242 default:
1243 return None;
1244 case AArch64::BI_BitScanForward:
1245 case AArch64::BI_BitScanForward64:
1246 return MSVCIntrin::_BitScanForward;
1247 case AArch64::BI_BitScanReverse:
1248 case AArch64::BI_BitScanReverse64:
1249 return MSVCIntrin::_BitScanReverse;
1250 case AArch64::BI_InterlockedAnd64:
1251 return MSVCIntrin::_InterlockedAnd;
1252 case AArch64::BI_InterlockedExchange64:
1253 return MSVCIntrin::_InterlockedExchange;
1254 case AArch64::BI_InterlockedExchangeAdd64:
1255 return MSVCIntrin::_InterlockedExchangeAdd;
1256 case AArch64::BI_InterlockedExchangeSub64:
1257 return MSVCIntrin::_InterlockedExchangeSub;
1258 case AArch64::BI_InterlockedOr64:
1259 return MSVCIntrin::_InterlockedOr;
1260 case AArch64::BI_InterlockedXor64:
1261 return MSVCIntrin::_InterlockedXor;
1262 case AArch64::BI_InterlockedDecrement64:
1263 return MSVCIntrin::_InterlockedDecrement;
1264 case AArch64::BI_InterlockedIncrement64:
1265 return MSVCIntrin::_InterlockedIncrement;
1266 case AArch64::BI_InterlockedExchangeAdd8_acq:
1267 case AArch64::BI_InterlockedExchangeAdd16_acq:
1268 case AArch64::BI_InterlockedExchangeAdd_acq:
1269 case AArch64::BI_InterlockedExchangeAdd64_acq:
1270 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1271 case AArch64::BI_InterlockedExchangeAdd8_rel:
1272 case AArch64::BI_InterlockedExchangeAdd16_rel:
1273 case AArch64::BI_InterlockedExchangeAdd_rel:
1274 case AArch64::BI_InterlockedExchangeAdd64_rel:
1275 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1276 case AArch64::BI_InterlockedExchangeAdd8_nf:
1277 case AArch64::BI_InterlockedExchangeAdd16_nf:
1278 case AArch64::BI_InterlockedExchangeAdd_nf:
1279 case AArch64::BI_InterlockedExchangeAdd64_nf:
1280 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1281 case AArch64::BI_InterlockedExchange8_acq:
1282 case AArch64::BI_InterlockedExchange16_acq:
1283 case AArch64::BI_InterlockedExchange_acq:
1284 case AArch64::BI_InterlockedExchange64_acq:
1285 return MSVCIntrin::_InterlockedExchange_acq;
1286 case AArch64::BI_InterlockedExchange8_rel:
1287 case AArch64::BI_InterlockedExchange16_rel:
1288 case AArch64::BI_InterlockedExchange_rel:
1289 case AArch64::BI_InterlockedExchange64_rel:
1290 return MSVCIntrin::_InterlockedExchange_rel;
1291 case AArch64::BI_InterlockedExchange8_nf:
1292 case AArch64::BI_InterlockedExchange16_nf:
1293 case AArch64::BI_InterlockedExchange_nf:
1294 case AArch64::BI_InterlockedExchange64_nf:
1295 return MSVCIntrin::_InterlockedExchange_nf;
1296 case AArch64::BI_InterlockedCompareExchange8_acq:
1297 case AArch64::BI_InterlockedCompareExchange16_acq:
1298 case AArch64::BI_InterlockedCompareExchange_acq:
1299 case AArch64::BI_InterlockedCompareExchange64_acq:
1300 return MSVCIntrin::_InterlockedCompareExchange_acq;
1301 case AArch64::BI_InterlockedCompareExchange8_rel:
1302 case AArch64::BI_InterlockedCompareExchange16_rel:
1303 case AArch64::BI_InterlockedCompareExchange_rel:
1304 case AArch64::BI_InterlockedCompareExchange64_rel:
1305 return MSVCIntrin::_InterlockedCompareExchange_rel;
1306 case AArch64::BI_InterlockedCompareExchange8_nf:
1307 case AArch64::BI_InterlockedCompareExchange16_nf:
1308 case AArch64::BI_InterlockedCompareExchange_nf:
1309 case AArch64::BI_InterlockedCompareExchange64_nf:
1310 return MSVCIntrin::_InterlockedCompareExchange_nf;
1311 case AArch64::BI_InterlockedCompareExchange128:
1312 return MSVCIntrin::_InterlockedCompareExchange128;
1313 case AArch64::BI_InterlockedCompareExchange128_acq:
1314 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1315 case AArch64::BI_InterlockedCompareExchange128_nf:
1316 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1317 case AArch64::BI_InterlockedCompareExchange128_rel:
1318 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1319 case AArch64::BI_InterlockedOr8_acq:
1320 case AArch64::BI_InterlockedOr16_acq:
1321 case AArch64::BI_InterlockedOr_acq:
1322 case AArch64::BI_InterlockedOr64_acq:
1323 return MSVCIntrin::_InterlockedOr_acq;
1324 case AArch64::BI_InterlockedOr8_rel:
1325 case AArch64::BI_InterlockedOr16_rel:
1326 case AArch64::BI_InterlockedOr_rel:
1327 case AArch64::BI_InterlockedOr64_rel:
1328 return MSVCIntrin::_InterlockedOr_rel;
1329 case AArch64::BI_InterlockedOr8_nf:
1330 case AArch64::BI_InterlockedOr16_nf:
1331 case AArch64::BI_InterlockedOr_nf:
1332 case AArch64::BI_InterlockedOr64_nf:
1333 return MSVCIntrin::_InterlockedOr_nf;
1334 case AArch64::BI_InterlockedXor8_acq:
1335 case AArch64::BI_InterlockedXor16_acq:
1336 case AArch64::BI_InterlockedXor_acq:
1337 case AArch64::BI_InterlockedXor64_acq:
1338 return MSVCIntrin::_InterlockedXor_acq;
1339 case AArch64::BI_InterlockedXor8_rel:
1340 case AArch64::BI_InterlockedXor16_rel:
1341 case AArch64::BI_InterlockedXor_rel:
1342 case AArch64::BI_InterlockedXor64_rel:
1343 return MSVCIntrin::_InterlockedXor_rel;
1344 case AArch64::BI_InterlockedXor8_nf:
1345 case AArch64::BI_InterlockedXor16_nf:
1346 case AArch64::BI_InterlockedXor_nf:
1347 case AArch64::BI_InterlockedXor64_nf:
1348 return MSVCIntrin::_InterlockedXor_nf;
1349 case AArch64::BI_InterlockedAnd8_acq:
1350 case AArch64::BI_InterlockedAnd16_acq:
1351 case AArch64::BI_InterlockedAnd_acq:
1352 case AArch64::BI_InterlockedAnd64_acq:
1353 return MSVCIntrin::_InterlockedAnd_acq;
1354 case AArch64::BI_InterlockedAnd8_rel:
1355 case AArch64::BI_InterlockedAnd16_rel:
1356 case AArch64::BI_InterlockedAnd_rel:
1357 case AArch64::BI_InterlockedAnd64_rel:
1358 return MSVCIntrin::_InterlockedAnd_rel;
1359 case AArch64::BI_InterlockedAnd8_nf:
1360 case AArch64::BI_InterlockedAnd16_nf:
1361 case AArch64::BI_InterlockedAnd_nf:
1362 case AArch64::BI_InterlockedAnd64_nf:
1363 return MSVCIntrin::_InterlockedAnd_nf;
1364 case AArch64::BI_InterlockedIncrement16_acq:
1365 case AArch64::BI_InterlockedIncrement_acq:
1366 case AArch64::BI_InterlockedIncrement64_acq:
1367 return MSVCIntrin::_InterlockedIncrement_acq;
1368 case AArch64::BI_InterlockedIncrement16_rel:
1369 case AArch64::BI_InterlockedIncrement_rel:
1370 case AArch64::BI_InterlockedIncrement64_rel:
1371 return MSVCIntrin::_InterlockedIncrement_rel;
1372 case AArch64::BI_InterlockedIncrement16_nf:
1373 case AArch64::BI_InterlockedIncrement_nf:
1374 case AArch64::BI_InterlockedIncrement64_nf:
1375 return MSVCIntrin::_InterlockedIncrement_nf;
1376 case AArch64::BI_InterlockedDecrement16_acq:
1377 case AArch64::BI_InterlockedDecrement_acq:
1378 case AArch64::BI_InterlockedDecrement64_acq:
1379 return MSVCIntrin::_InterlockedDecrement_acq;
1380 case AArch64::BI_InterlockedDecrement16_rel:
1381 case AArch64::BI_InterlockedDecrement_rel:
1382 case AArch64::BI_InterlockedDecrement64_rel:
1383 return MSVCIntrin::_InterlockedDecrement_rel;
1384 case AArch64::BI_InterlockedDecrement16_nf:
1385 case AArch64::BI_InterlockedDecrement_nf:
1386 case AArch64::BI_InterlockedDecrement64_nf:
1387 return MSVCIntrin::_InterlockedDecrement_nf;
1388 }
1389 llvm_unreachable("must return from switch");
1390 }
1391
1392 static Optional<CodeGenFunction::MSVCIntrin>
translateX86ToMsvcIntrin(unsigned BuiltinID)1393 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1394 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1395 switch (BuiltinID) {
1396 default:
1397 return None;
1398 case clang::X86::BI_BitScanForward:
1399 case clang::X86::BI_BitScanForward64:
1400 return MSVCIntrin::_BitScanForward;
1401 case clang::X86::BI_BitScanReverse:
1402 case clang::X86::BI_BitScanReverse64:
1403 return MSVCIntrin::_BitScanReverse;
1404 case clang::X86::BI_InterlockedAnd64:
1405 return MSVCIntrin::_InterlockedAnd;
1406 case clang::X86::BI_InterlockedCompareExchange128:
1407 return MSVCIntrin::_InterlockedCompareExchange128;
1408 case clang::X86::BI_InterlockedExchange64:
1409 return MSVCIntrin::_InterlockedExchange;
1410 case clang::X86::BI_InterlockedExchangeAdd64:
1411 return MSVCIntrin::_InterlockedExchangeAdd;
1412 case clang::X86::BI_InterlockedExchangeSub64:
1413 return MSVCIntrin::_InterlockedExchangeSub;
1414 case clang::X86::BI_InterlockedOr64:
1415 return MSVCIntrin::_InterlockedOr;
1416 case clang::X86::BI_InterlockedXor64:
1417 return MSVCIntrin::_InterlockedXor;
1418 case clang::X86::BI_InterlockedDecrement64:
1419 return MSVCIntrin::_InterlockedDecrement;
1420 case clang::X86::BI_InterlockedIncrement64:
1421 return MSVCIntrin::_InterlockedIncrement;
1422 }
1423 llvm_unreachable("must return from switch");
1424 }
1425
1426 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,const CallExpr * E)1427 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1428 const CallExpr *E) {
1429 switch (BuiltinID) {
1430 case MSVCIntrin::_BitScanForward:
1431 case MSVCIntrin::_BitScanReverse: {
1432 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1433 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1434
1435 llvm::Type *ArgType = ArgValue->getType();
1436 llvm::Type *IndexType =
1437 IndexAddress.getPointer()->getType()->getPointerElementType();
1438 llvm::Type *ResultType = ConvertType(E->getType());
1439
1440 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1441 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1442 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1443
1444 BasicBlock *Begin = Builder.GetInsertBlock();
1445 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1446 Builder.SetInsertPoint(End);
1447 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1448
1449 Builder.SetInsertPoint(Begin);
1450 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1451 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1452 Builder.CreateCondBr(IsZero, End, NotZero);
1453 Result->addIncoming(ResZero, Begin);
1454
1455 Builder.SetInsertPoint(NotZero);
1456
1457 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1458 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1459 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1460 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1461 Builder.CreateStore(ZeroCount, IndexAddress, false);
1462 } else {
1463 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1464 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1465
1466 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1467 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1468 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1469 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1470 Builder.CreateStore(Index, IndexAddress, false);
1471 }
1472 Builder.CreateBr(End);
1473 Result->addIncoming(ResOne, NotZero);
1474
1475 Builder.SetInsertPoint(End);
1476 return Result;
1477 }
1478 case MSVCIntrin::_InterlockedAnd:
1479 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1480 case MSVCIntrin::_InterlockedExchange:
1481 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1482 case MSVCIntrin::_InterlockedExchangeAdd:
1483 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1484 case MSVCIntrin::_InterlockedExchangeSub:
1485 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1486 case MSVCIntrin::_InterlockedOr:
1487 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1488 case MSVCIntrin::_InterlockedXor:
1489 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1490 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1491 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1492 AtomicOrdering::Acquire);
1493 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1494 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1495 AtomicOrdering::Release);
1496 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1497 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1498 AtomicOrdering::Monotonic);
1499 case MSVCIntrin::_InterlockedExchange_acq:
1500 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1501 AtomicOrdering::Acquire);
1502 case MSVCIntrin::_InterlockedExchange_rel:
1503 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1504 AtomicOrdering::Release);
1505 case MSVCIntrin::_InterlockedExchange_nf:
1506 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1507 AtomicOrdering::Monotonic);
1508 case MSVCIntrin::_InterlockedCompareExchange_acq:
1509 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1510 case MSVCIntrin::_InterlockedCompareExchange_rel:
1511 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1512 case MSVCIntrin::_InterlockedCompareExchange_nf:
1513 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1514 case MSVCIntrin::_InterlockedCompareExchange128:
1515 return EmitAtomicCmpXchg128ForMSIntrin(
1516 *this, E, AtomicOrdering::SequentiallyConsistent);
1517 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1518 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1519 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1520 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1521 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1522 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1523 case MSVCIntrin::_InterlockedOr_acq:
1524 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1525 AtomicOrdering::Acquire);
1526 case MSVCIntrin::_InterlockedOr_rel:
1527 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1528 AtomicOrdering::Release);
1529 case MSVCIntrin::_InterlockedOr_nf:
1530 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1531 AtomicOrdering::Monotonic);
1532 case MSVCIntrin::_InterlockedXor_acq:
1533 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1534 AtomicOrdering::Acquire);
1535 case MSVCIntrin::_InterlockedXor_rel:
1536 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1537 AtomicOrdering::Release);
1538 case MSVCIntrin::_InterlockedXor_nf:
1539 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1540 AtomicOrdering::Monotonic);
1541 case MSVCIntrin::_InterlockedAnd_acq:
1542 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1543 AtomicOrdering::Acquire);
1544 case MSVCIntrin::_InterlockedAnd_rel:
1545 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1546 AtomicOrdering::Release);
1547 case MSVCIntrin::_InterlockedAnd_nf:
1548 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1549 AtomicOrdering::Monotonic);
1550 case MSVCIntrin::_InterlockedIncrement_acq:
1551 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1552 case MSVCIntrin::_InterlockedIncrement_rel:
1553 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1554 case MSVCIntrin::_InterlockedIncrement_nf:
1555 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1556 case MSVCIntrin::_InterlockedDecrement_acq:
1557 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1558 case MSVCIntrin::_InterlockedDecrement_rel:
1559 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1560 case MSVCIntrin::_InterlockedDecrement_nf:
1561 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1562
1563 case MSVCIntrin::_InterlockedDecrement:
1564 return EmitAtomicDecrementValue(*this, E);
1565 case MSVCIntrin::_InterlockedIncrement:
1566 return EmitAtomicIncrementValue(*this, E);
1567
1568 case MSVCIntrin::__fastfail: {
1569 // Request immediate process termination from the kernel. The instruction
1570 // sequences to do this are documented on MSDN:
1571 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1572 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1573 StringRef Asm, Constraints;
1574 switch (ISA) {
1575 default:
1576 ErrorUnsupported(E, "__fastfail call for this architecture");
1577 break;
1578 case llvm::Triple::x86:
1579 case llvm::Triple::x86_64:
1580 Asm = "int $$0x29";
1581 Constraints = "{cx}";
1582 break;
1583 case llvm::Triple::thumb:
1584 Asm = "udf #251";
1585 Constraints = "{r0}";
1586 break;
1587 case llvm::Triple::aarch64:
1588 Asm = "brk #0xF003";
1589 Constraints = "{w0}";
1590 }
1591 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1592 llvm::InlineAsm *IA =
1593 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1594 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1595 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1596 llvm::Attribute::NoReturn);
1597 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1598 CI->setAttributes(NoReturnAttr);
1599 return CI;
1600 }
1601 }
1602 llvm_unreachable("Incorrect MSVC intrinsic!");
1603 }
1604
1605 namespace {
1606 // ARC cleanup for __builtin_os_log_format
1607 struct CallObjCArcUse final : EHScopeStack::Cleanup {
CallObjCArcUse__anonc37ac5ca0411::CallObjCArcUse1608 CallObjCArcUse(llvm::Value *object) : object(object) {}
1609 llvm::Value *object;
1610
Emit__anonc37ac5ca0411::CallObjCArcUse1611 void Emit(CodeGenFunction &CGF, Flags flags) override {
1612 CGF.EmitARCIntrinsicUse(object);
1613 }
1614 };
1615 }
1616
EmitCheckedArgForBuiltin(const Expr * E,BuiltinCheckKind Kind)1617 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1618 BuiltinCheckKind Kind) {
1619 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1620 && "Unsupported builtin check kind");
1621
1622 Value *ArgValue = EmitScalarExpr(E);
1623 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1624 return ArgValue;
1625
1626 SanitizerScope SanScope(this);
1627 Value *Cond = Builder.CreateICmpNE(
1628 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1629 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1630 SanitizerHandler::InvalidBuiltin,
1631 {EmitCheckSourceLocation(E->getExprLoc()),
1632 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1633 None);
1634 return ArgValue;
1635 }
1636
1637 /// Get the argument type for arguments to os_log_helper.
getOSLogArgType(ASTContext & C,int Size)1638 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1639 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1640 return C.getCanonicalType(UnsignedTy);
1641 }
1642
generateBuiltinOSLogHelperFunction(const analyze_os_log::OSLogBufferLayout & Layout,CharUnits BufferAlignment)1643 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1644 const analyze_os_log::OSLogBufferLayout &Layout,
1645 CharUnits BufferAlignment) {
1646 ASTContext &Ctx = getContext();
1647
1648 llvm::SmallString<64> Name;
1649 {
1650 raw_svector_ostream OS(Name);
1651 OS << "__os_log_helper";
1652 OS << "_" << BufferAlignment.getQuantity();
1653 OS << "_" << int(Layout.getSummaryByte());
1654 OS << "_" << int(Layout.getNumArgsByte());
1655 for (const auto &Item : Layout.Items)
1656 OS << "_" << int(Item.getSizeByte()) << "_"
1657 << int(Item.getDescriptorByte());
1658 }
1659
1660 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1661 return F;
1662
1663 llvm::SmallVector<QualType, 4> ArgTys;
1664 FunctionArgList Args;
1665 Args.push_back(ImplicitParamDecl::Create(
1666 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1667 ImplicitParamDecl::Other));
1668 ArgTys.emplace_back(Ctx.VoidPtrTy);
1669
1670 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1671 char Size = Layout.Items[I].getSizeByte();
1672 if (!Size)
1673 continue;
1674
1675 QualType ArgTy = getOSLogArgType(Ctx, Size);
1676 Args.push_back(ImplicitParamDecl::Create(
1677 Ctx, nullptr, SourceLocation(),
1678 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1679 ImplicitParamDecl::Other));
1680 ArgTys.emplace_back(ArgTy);
1681 }
1682
1683 QualType ReturnTy = Ctx.VoidTy;
1684 QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1685
1686 // The helper function has linkonce_odr linkage to enable the linker to merge
1687 // identical functions. To ensure the merging always happens, 'noinline' is
1688 // attached to the function when compiling with -Oz.
1689 const CGFunctionInfo &FI =
1690 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1691 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1692 llvm::Function *Fn = llvm::Function::Create(
1693 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1694 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1695 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1696 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1697 Fn->setDoesNotThrow();
1698
1699 // Attach 'noinline' at -Oz.
1700 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1701 Fn->addFnAttr(llvm::Attribute::NoInline);
1702
1703 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1704 IdentifierInfo *II = &Ctx.Idents.get(Name);
1705 FunctionDecl *FD = FunctionDecl::Create(
1706 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1707 FuncionTy, nullptr, SC_PrivateExtern, false, false);
1708 // Avoid generating debug location info for the function.
1709 FD->setImplicit();
1710
1711 StartFunction(FD, ReturnTy, Fn, FI, Args);
1712
1713 // Create a scope with an artificial location for the body of this function.
1714 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1715
1716 CharUnits Offset;
1717 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1718 BufferAlignment);
1719 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1720 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1721 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1722 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1723
1724 unsigned I = 1;
1725 for (const auto &Item : Layout.Items) {
1726 Builder.CreateStore(
1727 Builder.getInt8(Item.getDescriptorByte()),
1728 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1729 Builder.CreateStore(
1730 Builder.getInt8(Item.getSizeByte()),
1731 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1732
1733 CharUnits Size = Item.size();
1734 if (!Size.getQuantity())
1735 continue;
1736
1737 Address Arg = GetAddrOfLocalVar(Args[I]);
1738 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1739 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1740 "argDataCast");
1741 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1742 Offset += Size;
1743 ++I;
1744 }
1745
1746 FinishFunction();
1747
1748 return Fn;
1749 }
1750
emitBuiltinOSLogFormat(const CallExpr & E)1751 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1752 assert(E.getNumArgs() >= 2 &&
1753 "__builtin_os_log_format takes at least 2 arguments");
1754 ASTContext &Ctx = getContext();
1755 analyze_os_log::OSLogBufferLayout Layout;
1756 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1757 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1758 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1759
1760 // Ignore argument 1, the format string. It is not currently used.
1761 CallArgList Args;
1762 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1763
1764 for (const auto &Item : Layout.Items) {
1765 int Size = Item.getSizeByte();
1766 if (!Size)
1767 continue;
1768
1769 llvm::Value *ArgVal;
1770
1771 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1772 uint64_t Val = 0;
1773 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1774 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1775 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1776 } else if (const Expr *TheExpr = Item.getExpr()) {
1777 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1778
1779 // If a temporary object that requires destruction after the full
1780 // expression is passed, push a lifetime-extended cleanup to extend its
1781 // lifetime to the end of the enclosing block scope.
1782 auto LifetimeExtendObject = [&](const Expr *E) {
1783 E = E->IgnoreParenCasts();
1784 // Extend lifetimes of objects returned by function calls and message
1785 // sends.
1786
1787 // FIXME: We should do this in other cases in which temporaries are
1788 // created including arguments of non-ARC types (e.g., C++
1789 // temporaries).
1790 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1791 return true;
1792 return false;
1793 };
1794
1795 if (TheExpr->getType()->isObjCRetainableType() &&
1796 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1797 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1798 "Only scalar can be a ObjC retainable type");
1799 if (!isa<Constant>(ArgVal)) {
1800 CleanupKind Cleanup = getARCCleanupKind();
1801 QualType Ty = TheExpr->getType();
1802 Address Alloca = Address::invalid();
1803 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1804 ArgVal = EmitARCRetain(Ty, ArgVal);
1805 Builder.CreateStore(ArgVal, Addr);
1806 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1807 CodeGenFunction::destroyARCStrongPrecise,
1808 Cleanup & EHCleanup);
1809
1810 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1811 // argument has to be alive.
1812 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1813 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1814 }
1815 }
1816 } else {
1817 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1818 }
1819
1820 unsigned ArgValSize =
1821 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1822 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1823 ArgValSize);
1824 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1825 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1826 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1827 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1828 Args.add(RValue::get(ArgVal), ArgTy);
1829 }
1830
1831 const CGFunctionInfo &FI =
1832 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1833 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1834 Layout, BufAddr.getAlignment());
1835 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1836 return RValue::get(BufAddr.getPointer());
1837 }
1838
isSpecialUnsignedMultiplySignedResult(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)1839 static bool isSpecialUnsignedMultiplySignedResult(
1840 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1841 WidthAndSignedness ResultInfo) {
1842 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1843 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1844 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1845 }
1846
EmitCheckedUnsignedMultiplySignedResult(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)1847 static RValue EmitCheckedUnsignedMultiplySignedResult(
1848 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1849 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1850 const clang::Expr *ResultArg, QualType ResultQTy,
1851 WidthAndSignedness ResultInfo) {
1852 assert(isSpecialUnsignedMultiplySignedResult(
1853 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1854 "Cannot specialize this multiply");
1855
1856 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1857 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1858
1859 llvm::Value *HasOverflow;
1860 llvm::Value *Result = EmitOverflowIntrinsic(
1861 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1862
1863 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1864 // however, since the original builtin had a signed result, we need to report
1865 // an overflow when the result is greater than INT_MAX.
1866 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1867 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1868
1869 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1870 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1871
1872 bool isVolatile =
1873 ResultArg->getType()->getPointeeType().isVolatileQualified();
1874 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1875 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1876 isVolatile);
1877 return RValue::get(HasOverflow);
1878 }
1879
1880 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
isSpecialMixedSignMultiply(unsigned BuiltinID,WidthAndSignedness Op1Info,WidthAndSignedness Op2Info,WidthAndSignedness ResultInfo)1881 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1882 WidthAndSignedness Op1Info,
1883 WidthAndSignedness Op2Info,
1884 WidthAndSignedness ResultInfo) {
1885 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1886 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1887 Op1Info.Signed != Op2Info.Signed;
1888 }
1889
1890 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1891 /// the generic checked-binop irgen.
1892 static RValue
EmitCheckedMixedSignMultiply(CodeGenFunction & CGF,const clang::Expr * Op1,WidthAndSignedness Op1Info,const clang::Expr * Op2,WidthAndSignedness Op2Info,const clang::Expr * ResultArg,QualType ResultQTy,WidthAndSignedness ResultInfo)1893 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1894 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1895 WidthAndSignedness Op2Info,
1896 const clang::Expr *ResultArg, QualType ResultQTy,
1897 WidthAndSignedness ResultInfo) {
1898 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1899 Op2Info, ResultInfo) &&
1900 "Not a mixed-sign multipliction we can specialize");
1901
1902 // Emit the signed and unsigned operands.
1903 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1904 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1905 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1906 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1907 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1908 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1909
1910 // One of the operands may be smaller than the other. If so, [s|z]ext it.
1911 if (SignedOpWidth < UnsignedOpWidth)
1912 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1913 if (UnsignedOpWidth < SignedOpWidth)
1914 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1915
1916 llvm::Type *OpTy = Signed->getType();
1917 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1918 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1919 llvm::Type *ResTy = ResultPtr.getElementType();
1920 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1921
1922 // Take the absolute value of the signed operand.
1923 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1924 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1925 llvm::Value *AbsSigned =
1926 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1927
1928 // Perform a checked unsigned multiplication.
1929 llvm::Value *UnsignedOverflow;
1930 llvm::Value *UnsignedResult =
1931 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1932 Unsigned, UnsignedOverflow);
1933
1934 llvm::Value *Overflow, *Result;
1935 if (ResultInfo.Signed) {
1936 // Signed overflow occurs if the result is greater than INT_MAX or lesser
1937 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1938 auto IntMax =
1939 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1940 llvm::Value *MaxResult =
1941 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1942 CGF.Builder.CreateZExt(IsNegative, OpTy));
1943 llvm::Value *SignedOverflow =
1944 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1945 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1946
1947 // Prepare the signed result (possibly by negating it).
1948 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1949 llvm::Value *SignedResult =
1950 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1951 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1952 } else {
1953 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1954 llvm::Value *Underflow = CGF.Builder.CreateAnd(
1955 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1956 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1957 if (ResultInfo.Width < OpWidth) {
1958 auto IntMax =
1959 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1960 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1961 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1962 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1963 }
1964
1965 // Negate the product if it would be negative in infinite precision.
1966 Result = CGF.Builder.CreateSelect(
1967 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1968
1969 Result = CGF.Builder.CreateTrunc(Result, ResTy);
1970 }
1971 assert(Overflow && Result && "Missing overflow or result");
1972
1973 bool isVolatile =
1974 ResultArg->getType()->getPointeeType().isVolatileQualified();
1975 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1976 isVolatile);
1977 return RValue::get(Overflow);
1978 }
1979
dumpRecord(CodeGenFunction & CGF,QualType RType,Value * & RecordPtr,CharUnits Align,llvm::FunctionCallee Func,int Lvl)1980 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1981 Value *&RecordPtr, CharUnits Align,
1982 llvm::FunctionCallee Func, int Lvl) {
1983 ASTContext &Context = CGF.getContext();
1984 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1985 std::string Pad = std::string(Lvl * 4, ' ');
1986
1987 Value *GString =
1988 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1989 Value *Res = CGF.Builder.CreateCall(Func, {GString});
1990
1991 static llvm::DenseMap<QualType, const char *> Types;
1992 if (Types.empty()) {
1993 Types[Context.CharTy] = "%c";
1994 Types[Context.BoolTy] = "%d";
1995 Types[Context.SignedCharTy] = "%hhd";
1996 Types[Context.UnsignedCharTy] = "%hhu";
1997 Types[Context.IntTy] = "%d";
1998 Types[Context.UnsignedIntTy] = "%u";
1999 Types[Context.LongTy] = "%ld";
2000 Types[Context.UnsignedLongTy] = "%lu";
2001 Types[Context.LongLongTy] = "%lld";
2002 Types[Context.UnsignedLongLongTy] = "%llu";
2003 Types[Context.ShortTy] = "%hd";
2004 Types[Context.UnsignedShortTy] = "%hu";
2005 Types[Context.VoidPtrTy] = "%p";
2006 Types[Context.FloatTy] = "%f";
2007 Types[Context.DoubleTy] = "%f";
2008 Types[Context.LongDoubleTy] = "%Lf";
2009 Types[Context.getPointerType(Context.CharTy)] = "%s";
2010 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2011 }
2012
2013 for (const auto *FD : RD->fields()) {
2014 Value *FieldPtr = RecordPtr;
2015 if (RD->isUnion())
2016 FieldPtr = CGF.Builder.CreatePointerCast(
2017 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
2018 else
2019 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
2020 FD->getFieldIndex());
2021
2022 GString = CGF.Builder.CreateGlobalStringPtr(
2023 llvm::Twine(Pad)
2024 .concat(FD->getType().getAsString())
2025 .concat(llvm::Twine(' '))
2026 .concat(FD->getNameAsString())
2027 .concat(" : ")
2028 .str());
2029 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2030 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2031
2032 QualType CanonicalType =
2033 FD->getType().getUnqualifiedType().getCanonicalType();
2034
2035 // We check whether we are in a recursive type
2036 if (CanonicalType->isRecordType()) {
2037 TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
2038 Res = CGF.Builder.CreateAdd(TmpRes, Res);
2039 continue;
2040 }
2041
2042 // We try to determine the best format to print the current field
2043 llvm::Twine Format = Types.find(CanonicalType) == Types.end()
2044 ? Types[Context.VoidPtrTy]
2045 : Types[CanonicalType];
2046
2047 Address FieldAddress = Address(FieldPtr, Align);
2048 FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
2049
2050 // FIXME Need to handle bitfield here
2051 GString = CGF.Builder.CreateGlobalStringPtr(
2052 Format.concat(llvm::Twine('\n')).str());
2053 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
2054 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2055 }
2056
2057 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2058 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2059 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2060 return Res;
2061 }
2062
2063 static bool
TypeRequiresBuiltinLaunderImp(const ASTContext & Ctx,QualType Ty,llvm::SmallPtrSetImpl<const Decl * > & Seen)2064 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2065 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2066 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2067 Ty = Ctx.getBaseElementType(Arr);
2068
2069 const auto *Record = Ty->getAsCXXRecordDecl();
2070 if (!Record)
2071 return false;
2072
2073 // We've already checked this type, or are in the process of checking it.
2074 if (!Seen.insert(Record).second)
2075 return false;
2076
2077 assert(Record->hasDefinition() &&
2078 "Incomplete types should already be diagnosed");
2079
2080 if (Record->isDynamicClass())
2081 return true;
2082
2083 for (FieldDecl *F : Record->fields()) {
2084 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2085 return true;
2086 }
2087 return false;
2088 }
2089
2090 /// Determine if the specified type requires laundering by checking if it is a
2091 /// dynamic class type or contains a subobject which is a dynamic class type.
TypeRequiresBuiltinLaunder(CodeGenModule & CGM,QualType Ty)2092 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2093 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2094 return false;
2095 llvm::SmallPtrSet<const Decl *, 16> Seen;
2096 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2097 }
2098
emitRotate(const CallExpr * E,bool IsRotateRight)2099 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2100 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2101 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2102
2103 // The builtin's shift arg may have a different type than the source arg and
2104 // result, but the LLVM intrinsic uses the same type for all values.
2105 llvm::Type *Ty = Src->getType();
2106 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2107
2108 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2109 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2110 Function *F = CGM.getIntrinsic(IID, Ty);
2111 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2112 }
2113
2114 // Map math builtins for long-double to f128 version.
mutateLongDoubleBuiltin(unsigned BuiltinID)2115 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2116 switch (BuiltinID) {
2117 #define MUTATE_LDBL(func) \
2118 case Builtin::BI__builtin_##func##l: \
2119 return Builtin::BI__builtin_##func##f128;
2120 MUTATE_LDBL(sqrt)
2121 MUTATE_LDBL(cbrt)
2122 MUTATE_LDBL(fabs)
2123 MUTATE_LDBL(log)
2124 MUTATE_LDBL(log2)
2125 MUTATE_LDBL(log10)
2126 MUTATE_LDBL(log1p)
2127 MUTATE_LDBL(logb)
2128 MUTATE_LDBL(exp)
2129 MUTATE_LDBL(exp2)
2130 MUTATE_LDBL(expm1)
2131 MUTATE_LDBL(fdim)
2132 MUTATE_LDBL(hypot)
2133 MUTATE_LDBL(ilogb)
2134 MUTATE_LDBL(pow)
2135 MUTATE_LDBL(fmin)
2136 MUTATE_LDBL(fmax)
2137 MUTATE_LDBL(ceil)
2138 MUTATE_LDBL(trunc)
2139 MUTATE_LDBL(rint)
2140 MUTATE_LDBL(nearbyint)
2141 MUTATE_LDBL(round)
2142 MUTATE_LDBL(floor)
2143 MUTATE_LDBL(lround)
2144 MUTATE_LDBL(llround)
2145 MUTATE_LDBL(lrint)
2146 MUTATE_LDBL(llrint)
2147 MUTATE_LDBL(fmod)
2148 MUTATE_LDBL(modf)
2149 MUTATE_LDBL(nan)
2150 MUTATE_LDBL(nans)
2151 MUTATE_LDBL(inf)
2152 MUTATE_LDBL(fma)
2153 MUTATE_LDBL(sin)
2154 MUTATE_LDBL(cos)
2155 MUTATE_LDBL(tan)
2156 MUTATE_LDBL(sinh)
2157 MUTATE_LDBL(cosh)
2158 MUTATE_LDBL(tanh)
2159 MUTATE_LDBL(asin)
2160 MUTATE_LDBL(acos)
2161 MUTATE_LDBL(atan)
2162 MUTATE_LDBL(asinh)
2163 MUTATE_LDBL(acosh)
2164 MUTATE_LDBL(atanh)
2165 MUTATE_LDBL(atan2)
2166 MUTATE_LDBL(erf)
2167 MUTATE_LDBL(erfc)
2168 MUTATE_LDBL(ldexp)
2169 MUTATE_LDBL(frexp)
2170 MUTATE_LDBL(huge_val)
2171 MUTATE_LDBL(copysign)
2172 MUTATE_LDBL(nextafter)
2173 MUTATE_LDBL(nexttoward)
2174 MUTATE_LDBL(remainder)
2175 MUTATE_LDBL(remquo)
2176 MUTATE_LDBL(scalbln)
2177 MUTATE_LDBL(scalbn)
2178 MUTATE_LDBL(tgamma)
2179 MUTATE_LDBL(lgamma)
2180 #undef MUTATE_LDBL
2181 default:
2182 return BuiltinID;
2183 }
2184 }
2185
EmitBuiltinExpr(const GlobalDecl GD,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)2186 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2187 const CallExpr *E,
2188 ReturnValueSlot ReturnValue) {
2189 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2190 // See if we can constant fold this builtin. If so, don't emit it at all.
2191 Expr::EvalResult Result;
2192 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2193 !Result.hasSideEffects()) {
2194 if (Result.Val.isInt())
2195 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2196 Result.Val.getInt()));
2197 if (Result.Val.isFloat())
2198 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2199 Result.Val.getFloat()));
2200 }
2201
2202 // If current long-double semantics is IEEE 128-bit, replace math builtins
2203 // of long-double with f128 equivalent.
2204 // TODO: This mutation should also be applied to other targets other than PPC,
2205 // after backend supports IEEE 128-bit style libcalls.
2206 if (getTarget().getTriple().isPPC64() &&
2207 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2208 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2209
2210 // If the builtin has been declared explicitly with an assembler label,
2211 // disable the specialized emitting below. Ideally we should communicate the
2212 // rename in IR, or at least avoid generating the intrinsic calls that are
2213 // likely to get lowered to the renamed library functions.
2214 const unsigned BuiltinIDIfNoAsmLabel =
2215 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2216
2217 // There are LLVM math intrinsics/instructions corresponding to math library
2218 // functions except the LLVM op will never set errno while the math library
2219 // might. Also, math builtins have the same semantics as their math library
2220 // twins. Thus, we can transform math library and builtin calls to their
2221 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2222 if (FD->hasAttr<ConstAttr>()) {
2223 switch (BuiltinIDIfNoAsmLabel) {
2224 case Builtin::BIceil:
2225 case Builtin::BIceilf:
2226 case Builtin::BIceill:
2227 case Builtin::BI__builtin_ceil:
2228 case Builtin::BI__builtin_ceilf:
2229 case Builtin::BI__builtin_ceilf16:
2230 case Builtin::BI__builtin_ceill:
2231 case Builtin::BI__builtin_ceilf128:
2232 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2233 Intrinsic::ceil,
2234 Intrinsic::experimental_constrained_ceil));
2235
2236 case Builtin::BIcopysign:
2237 case Builtin::BIcopysignf:
2238 case Builtin::BIcopysignl:
2239 case Builtin::BI__builtin_copysign:
2240 case Builtin::BI__builtin_copysignf:
2241 case Builtin::BI__builtin_copysignf16:
2242 case Builtin::BI__builtin_copysignl:
2243 case Builtin::BI__builtin_copysignf128:
2244 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2245
2246 case Builtin::BIcos:
2247 case Builtin::BIcosf:
2248 case Builtin::BIcosl:
2249 case Builtin::BI__builtin_cos:
2250 case Builtin::BI__builtin_cosf:
2251 case Builtin::BI__builtin_cosf16:
2252 case Builtin::BI__builtin_cosl:
2253 case Builtin::BI__builtin_cosf128:
2254 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2255 Intrinsic::cos,
2256 Intrinsic::experimental_constrained_cos));
2257
2258 case Builtin::BIexp:
2259 case Builtin::BIexpf:
2260 case Builtin::BIexpl:
2261 case Builtin::BI__builtin_exp:
2262 case Builtin::BI__builtin_expf:
2263 case Builtin::BI__builtin_expf16:
2264 case Builtin::BI__builtin_expl:
2265 case Builtin::BI__builtin_expf128:
2266 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2267 Intrinsic::exp,
2268 Intrinsic::experimental_constrained_exp));
2269
2270 case Builtin::BIexp2:
2271 case Builtin::BIexp2f:
2272 case Builtin::BIexp2l:
2273 case Builtin::BI__builtin_exp2:
2274 case Builtin::BI__builtin_exp2f:
2275 case Builtin::BI__builtin_exp2f16:
2276 case Builtin::BI__builtin_exp2l:
2277 case Builtin::BI__builtin_exp2f128:
2278 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2279 Intrinsic::exp2,
2280 Intrinsic::experimental_constrained_exp2));
2281
2282 case Builtin::BIfabs:
2283 case Builtin::BIfabsf:
2284 case Builtin::BIfabsl:
2285 case Builtin::BI__builtin_fabs:
2286 case Builtin::BI__builtin_fabsf:
2287 case Builtin::BI__builtin_fabsf16:
2288 case Builtin::BI__builtin_fabsl:
2289 case Builtin::BI__builtin_fabsf128:
2290 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2291
2292 case Builtin::BIfloor:
2293 case Builtin::BIfloorf:
2294 case Builtin::BIfloorl:
2295 case Builtin::BI__builtin_floor:
2296 case Builtin::BI__builtin_floorf:
2297 case Builtin::BI__builtin_floorf16:
2298 case Builtin::BI__builtin_floorl:
2299 case Builtin::BI__builtin_floorf128:
2300 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2301 Intrinsic::floor,
2302 Intrinsic::experimental_constrained_floor));
2303
2304 case Builtin::BIfma:
2305 case Builtin::BIfmaf:
2306 case Builtin::BIfmal:
2307 case Builtin::BI__builtin_fma:
2308 case Builtin::BI__builtin_fmaf:
2309 case Builtin::BI__builtin_fmaf16:
2310 case Builtin::BI__builtin_fmal:
2311 case Builtin::BI__builtin_fmaf128:
2312 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2313 Intrinsic::fma,
2314 Intrinsic::experimental_constrained_fma));
2315
2316 case Builtin::BIfmax:
2317 case Builtin::BIfmaxf:
2318 case Builtin::BIfmaxl:
2319 case Builtin::BI__builtin_fmax:
2320 case Builtin::BI__builtin_fmaxf:
2321 case Builtin::BI__builtin_fmaxf16:
2322 case Builtin::BI__builtin_fmaxl:
2323 case Builtin::BI__builtin_fmaxf128:
2324 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2325 Intrinsic::maxnum,
2326 Intrinsic::experimental_constrained_maxnum));
2327
2328 case Builtin::BIfmin:
2329 case Builtin::BIfminf:
2330 case Builtin::BIfminl:
2331 case Builtin::BI__builtin_fmin:
2332 case Builtin::BI__builtin_fminf:
2333 case Builtin::BI__builtin_fminf16:
2334 case Builtin::BI__builtin_fminl:
2335 case Builtin::BI__builtin_fminf128:
2336 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2337 Intrinsic::minnum,
2338 Intrinsic::experimental_constrained_minnum));
2339
2340 // fmod() is a special-case. It maps to the frem instruction rather than an
2341 // LLVM intrinsic.
2342 case Builtin::BIfmod:
2343 case Builtin::BIfmodf:
2344 case Builtin::BIfmodl:
2345 case Builtin::BI__builtin_fmod:
2346 case Builtin::BI__builtin_fmodf:
2347 case Builtin::BI__builtin_fmodf16:
2348 case Builtin::BI__builtin_fmodl:
2349 case Builtin::BI__builtin_fmodf128: {
2350 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2351 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2352 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2353 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2354 }
2355
2356 case Builtin::BIlog:
2357 case Builtin::BIlogf:
2358 case Builtin::BIlogl:
2359 case Builtin::BI__builtin_log:
2360 case Builtin::BI__builtin_logf:
2361 case Builtin::BI__builtin_logf16:
2362 case Builtin::BI__builtin_logl:
2363 case Builtin::BI__builtin_logf128:
2364 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2365 Intrinsic::log,
2366 Intrinsic::experimental_constrained_log));
2367
2368 case Builtin::BIlog10:
2369 case Builtin::BIlog10f:
2370 case Builtin::BIlog10l:
2371 case Builtin::BI__builtin_log10:
2372 case Builtin::BI__builtin_log10f:
2373 case Builtin::BI__builtin_log10f16:
2374 case Builtin::BI__builtin_log10l:
2375 case Builtin::BI__builtin_log10f128:
2376 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2377 Intrinsic::log10,
2378 Intrinsic::experimental_constrained_log10));
2379
2380 case Builtin::BIlog2:
2381 case Builtin::BIlog2f:
2382 case Builtin::BIlog2l:
2383 case Builtin::BI__builtin_log2:
2384 case Builtin::BI__builtin_log2f:
2385 case Builtin::BI__builtin_log2f16:
2386 case Builtin::BI__builtin_log2l:
2387 case Builtin::BI__builtin_log2f128:
2388 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2389 Intrinsic::log2,
2390 Intrinsic::experimental_constrained_log2));
2391
2392 case Builtin::BInearbyint:
2393 case Builtin::BInearbyintf:
2394 case Builtin::BInearbyintl:
2395 case Builtin::BI__builtin_nearbyint:
2396 case Builtin::BI__builtin_nearbyintf:
2397 case Builtin::BI__builtin_nearbyintl:
2398 case Builtin::BI__builtin_nearbyintf128:
2399 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2400 Intrinsic::nearbyint,
2401 Intrinsic::experimental_constrained_nearbyint));
2402
2403 case Builtin::BIpow:
2404 case Builtin::BIpowf:
2405 case Builtin::BIpowl:
2406 case Builtin::BI__builtin_pow:
2407 case Builtin::BI__builtin_powf:
2408 case Builtin::BI__builtin_powf16:
2409 case Builtin::BI__builtin_powl:
2410 case Builtin::BI__builtin_powf128:
2411 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2412 Intrinsic::pow,
2413 Intrinsic::experimental_constrained_pow));
2414
2415 case Builtin::BIrint:
2416 case Builtin::BIrintf:
2417 case Builtin::BIrintl:
2418 case Builtin::BI__builtin_rint:
2419 case Builtin::BI__builtin_rintf:
2420 case Builtin::BI__builtin_rintf16:
2421 case Builtin::BI__builtin_rintl:
2422 case Builtin::BI__builtin_rintf128:
2423 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2424 Intrinsic::rint,
2425 Intrinsic::experimental_constrained_rint));
2426
2427 case Builtin::BIround:
2428 case Builtin::BIroundf:
2429 case Builtin::BIroundl:
2430 case Builtin::BI__builtin_round:
2431 case Builtin::BI__builtin_roundf:
2432 case Builtin::BI__builtin_roundf16:
2433 case Builtin::BI__builtin_roundl:
2434 case Builtin::BI__builtin_roundf128:
2435 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2436 Intrinsic::round,
2437 Intrinsic::experimental_constrained_round));
2438
2439 case Builtin::BIsin:
2440 case Builtin::BIsinf:
2441 case Builtin::BIsinl:
2442 case Builtin::BI__builtin_sin:
2443 case Builtin::BI__builtin_sinf:
2444 case Builtin::BI__builtin_sinf16:
2445 case Builtin::BI__builtin_sinl:
2446 case Builtin::BI__builtin_sinf128:
2447 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2448 Intrinsic::sin,
2449 Intrinsic::experimental_constrained_sin));
2450
2451 case Builtin::BIsqrt:
2452 case Builtin::BIsqrtf:
2453 case Builtin::BIsqrtl:
2454 case Builtin::BI__builtin_sqrt:
2455 case Builtin::BI__builtin_sqrtf:
2456 case Builtin::BI__builtin_sqrtf16:
2457 case Builtin::BI__builtin_sqrtl:
2458 case Builtin::BI__builtin_sqrtf128:
2459 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2460 Intrinsic::sqrt,
2461 Intrinsic::experimental_constrained_sqrt));
2462
2463 case Builtin::BItrunc:
2464 case Builtin::BItruncf:
2465 case Builtin::BItruncl:
2466 case Builtin::BI__builtin_trunc:
2467 case Builtin::BI__builtin_truncf:
2468 case Builtin::BI__builtin_truncf16:
2469 case Builtin::BI__builtin_truncl:
2470 case Builtin::BI__builtin_truncf128:
2471 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2472 Intrinsic::trunc,
2473 Intrinsic::experimental_constrained_trunc));
2474
2475 case Builtin::BIlround:
2476 case Builtin::BIlroundf:
2477 case Builtin::BIlroundl:
2478 case Builtin::BI__builtin_lround:
2479 case Builtin::BI__builtin_lroundf:
2480 case Builtin::BI__builtin_lroundl:
2481 case Builtin::BI__builtin_lroundf128:
2482 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2483 *this, E, Intrinsic::lround,
2484 Intrinsic::experimental_constrained_lround));
2485
2486 case Builtin::BIllround:
2487 case Builtin::BIllroundf:
2488 case Builtin::BIllroundl:
2489 case Builtin::BI__builtin_llround:
2490 case Builtin::BI__builtin_llroundf:
2491 case Builtin::BI__builtin_llroundl:
2492 case Builtin::BI__builtin_llroundf128:
2493 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2494 *this, E, Intrinsic::llround,
2495 Intrinsic::experimental_constrained_llround));
2496
2497 case Builtin::BIlrint:
2498 case Builtin::BIlrintf:
2499 case Builtin::BIlrintl:
2500 case Builtin::BI__builtin_lrint:
2501 case Builtin::BI__builtin_lrintf:
2502 case Builtin::BI__builtin_lrintl:
2503 case Builtin::BI__builtin_lrintf128:
2504 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2505 *this, E, Intrinsic::lrint,
2506 Intrinsic::experimental_constrained_lrint));
2507
2508 case Builtin::BIllrint:
2509 case Builtin::BIllrintf:
2510 case Builtin::BIllrintl:
2511 case Builtin::BI__builtin_llrint:
2512 case Builtin::BI__builtin_llrintf:
2513 case Builtin::BI__builtin_llrintl:
2514 case Builtin::BI__builtin_llrintf128:
2515 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2516 *this, E, Intrinsic::llrint,
2517 Intrinsic::experimental_constrained_llrint));
2518
2519 default:
2520 break;
2521 }
2522 }
2523
2524 switch (BuiltinIDIfNoAsmLabel) {
2525 default: break;
2526 case Builtin::BI__builtin___CFStringMakeConstantString:
2527 case Builtin::BI__builtin___NSStringMakeConstantString:
2528 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2529 case Builtin::BI__builtin_stdarg_start:
2530 case Builtin::BI__builtin_va_start:
2531 case Builtin::BI__va_start:
2532 case Builtin::BI__builtin_va_end:
2533 return RValue::get(
2534 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2535 ? EmitScalarExpr(E->getArg(0))
2536 : EmitVAListRef(E->getArg(0)).getPointer(),
2537 BuiltinID != Builtin::BI__builtin_va_end));
2538 case Builtin::BI__builtin_va_copy: {
2539 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2540 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2541
2542 llvm::Type *Type = Int8PtrTy;
2543
2544 DstPtr = Builder.CreateBitCast(DstPtr, Type);
2545 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2546 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2547 {DstPtr, SrcPtr}));
2548 }
2549 case Builtin::BI__builtin_abs:
2550 case Builtin::BI__builtin_labs:
2551 case Builtin::BI__builtin_llabs: {
2552 // X < 0 ? -X : X
2553 // The negation has 'nsw' because abs of INT_MIN is undefined.
2554 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2555 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2556 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2557 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2558 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2559 return RValue::get(Result);
2560 }
2561 case Builtin::BI__builtin_complex: {
2562 Value *Real = EmitScalarExpr(E->getArg(0));
2563 Value *Imag = EmitScalarExpr(E->getArg(1));
2564 return RValue::getComplex({Real, Imag});
2565 }
2566 case Builtin::BI__builtin_conj:
2567 case Builtin::BI__builtin_conjf:
2568 case Builtin::BI__builtin_conjl:
2569 case Builtin::BIconj:
2570 case Builtin::BIconjf:
2571 case Builtin::BIconjl: {
2572 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2573 Value *Real = ComplexVal.first;
2574 Value *Imag = ComplexVal.second;
2575 Imag = Builder.CreateFNeg(Imag, "neg");
2576 return RValue::getComplex(std::make_pair(Real, Imag));
2577 }
2578 case Builtin::BI__builtin_creal:
2579 case Builtin::BI__builtin_crealf:
2580 case Builtin::BI__builtin_creall:
2581 case Builtin::BIcreal:
2582 case Builtin::BIcrealf:
2583 case Builtin::BIcreall: {
2584 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2585 return RValue::get(ComplexVal.first);
2586 }
2587
2588 case Builtin::BI__builtin_dump_struct: {
2589 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2590 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2591 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2592
2593 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2594 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2595
2596 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2597 QualType Arg0Type = Arg0->getType()->getPointeeType();
2598
2599 Value *RecordPtr = EmitScalarExpr(Arg0);
2600 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2601 {LLVMFuncType, Func}, 0);
2602 return RValue::get(Res);
2603 }
2604
2605 case Builtin::BI__builtin_preserve_access_index: {
2606 // Only enabled preserved access index region when debuginfo
2607 // is available as debuginfo is needed to preserve user-level
2608 // access pattern.
2609 if (!getDebugInfo()) {
2610 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2611 return RValue::get(EmitScalarExpr(E->getArg(0)));
2612 }
2613
2614 // Nested builtin_preserve_access_index() not supported
2615 if (IsInPreservedAIRegion) {
2616 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2617 return RValue::get(EmitScalarExpr(E->getArg(0)));
2618 }
2619
2620 IsInPreservedAIRegion = true;
2621 Value *Res = EmitScalarExpr(E->getArg(0));
2622 IsInPreservedAIRegion = false;
2623 return RValue::get(Res);
2624 }
2625
2626 case Builtin::BI__builtin_cimag:
2627 case Builtin::BI__builtin_cimagf:
2628 case Builtin::BI__builtin_cimagl:
2629 case Builtin::BIcimag:
2630 case Builtin::BIcimagf:
2631 case Builtin::BIcimagl: {
2632 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2633 return RValue::get(ComplexVal.second);
2634 }
2635
2636 case Builtin::BI__builtin_clrsb:
2637 case Builtin::BI__builtin_clrsbl:
2638 case Builtin::BI__builtin_clrsbll: {
2639 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2640 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2641
2642 llvm::Type *ArgType = ArgValue->getType();
2643 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2644
2645 llvm::Type *ResultType = ConvertType(E->getType());
2646 Value *Zero = llvm::Constant::getNullValue(ArgType);
2647 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2648 Value *Inverse = Builder.CreateNot(ArgValue, "not");
2649 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2650 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2651 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2652 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2653 "cast");
2654 return RValue::get(Result);
2655 }
2656 case Builtin::BI__builtin_ctzs:
2657 case Builtin::BI__builtin_ctz:
2658 case Builtin::BI__builtin_ctzl:
2659 case Builtin::BI__builtin_ctzll: {
2660 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2661
2662 llvm::Type *ArgType = ArgValue->getType();
2663 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2664
2665 llvm::Type *ResultType = ConvertType(E->getType());
2666 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2667 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2668 if (Result->getType() != ResultType)
2669 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2670 "cast");
2671 return RValue::get(Result);
2672 }
2673 case Builtin::BI__builtin_clzs:
2674 case Builtin::BI__builtin_clz:
2675 case Builtin::BI__builtin_clzl:
2676 case Builtin::BI__builtin_clzll: {
2677 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2678
2679 llvm::Type *ArgType = ArgValue->getType();
2680 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2681
2682 llvm::Type *ResultType = ConvertType(E->getType());
2683 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2684 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2685 if (Result->getType() != ResultType)
2686 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2687 "cast");
2688 return RValue::get(Result);
2689 }
2690 case Builtin::BI__builtin_ffs:
2691 case Builtin::BI__builtin_ffsl:
2692 case Builtin::BI__builtin_ffsll: {
2693 // ffs(x) -> x ? cttz(x) + 1 : 0
2694 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2695
2696 llvm::Type *ArgType = ArgValue->getType();
2697 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2698
2699 llvm::Type *ResultType = ConvertType(E->getType());
2700 Value *Tmp =
2701 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2702 llvm::ConstantInt::get(ArgType, 1));
2703 Value *Zero = llvm::Constant::getNullValue(ArgType);
2704 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2705 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2706 if (Result->getType() != ResultType)
2707 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2708 "cast");
2709 return RValue::get(Result);
2710 }
2711 case Builtin::BI__builtin_parity:
2712 case Builtin::BI__builtin_parityl:
2713 case Builtin::BI__builtin_parityll: {
2714 // parity(x) -> ctpop(x) & 1
2715 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2716
2717 llvm::Type *ArgType = ArgValue->getType();
2718 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2719
2720 llvm::Type *ResultType = ConvertType(E->getType());
2721 Value *Tmp = Builder.CreateCall(F, ArgValue);
2722 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2723 if (Result->getType() != ResultType)
2724 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2725 "cast");
2726 return RValue::get(Result);
2727 }
2728 case Builtin::BI__lzcnt16:
2729 case Builtin::BI__lzcnt:
2730 case Builtin::BI__lzcnt64: {
2731 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2732
2733 llvm::Type *ArgType = ArgValue->getType();
2734 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2735
2736 llvm::Type *ResultType = ConvertType(E->getType());
2737 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2738 if (Result->getType() != ResultType)
2739 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2740 "cast");
2741 return RValue::get(Result);
2742 }
2743 case Builtin::BI__popcnt16:
2744 case Builtin::BI__popcnt:
2745 case Builtin::BI__popcnt64:
2746 case Builtin::BI__builtin_popcount:
2747 case Builtin::BI__builtin_popcountl:
2748 case Builtin::BI__builtin_popcountll: {
2749 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2750
2751 llvm::Type *ArgType = ArgValue->getType();
2752 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2753
2754 llvm::Type *ResultType = ConvertType(E->getType());
2755 Value *Result = Builder.CreateCall(F, ArgValue);
2756 if (Result->getType() != ResultType)
2757 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2758 "cast");
2759 return RValue::get(Result);
2760 }
2761 case Builtin::BI__builtin_unpredictable: {
2762 // Always return the argument of __builtin_unpredictable. LLVM does not
2763 // handle this builtin. Metadata for this builtin should be added directly
2764 // to instructions such as branches or switches that use it.
2765 return RValue::get(EmitScalarExpr(E->getArg(0)));
2766 }
2767 case Builtin::BI__builtin_expect: {
2768 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2769 llvm::Type *ArgType = ArgValue->getType();
2770
2771 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2772 // Don't generate llvm.expect on -O0 as the backend won't use it for
2773 // anything.
2774 // Note, we still IRGen ExpectedValue because it could have side-effects.
2775 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2776 return RValue::get(ArgValue);
2777
2778 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2779 Value *Result =
2780 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2781 return RValue::get(Result);
2782 }
2783 case Builtin::BI__builtin_expect_with_probability: {
2784 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2785 llvm::Type *ArgType = ArgValue->getType();
2786
2787 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2788 llvm::APFloat Probability(0.0);
2789 const Expr *ProbArg = E->getArg(2);
2790 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2791 assert(EvalSucceed && "probability should be able to evaluate as float");
2792 (void)EvalSucceed;
2793 bool LoseInfo = false;
2794 Probability.convert(llvm::APFloat::IEEEdouble(),
2795 llvm::RoundingMode::Dynamic, &LoseInfo);
2796 llvm::Type *Ty = ConvertType(ProbArg->getType());
2797 Constant *Confidence = ConstantFP::get(Ty, Probability);
2798 // Don't generate llvm.expect.with.probability on -O0 as the backend
2799 // won't use it for anything.
2800 // Note, we still IRGen ExpectedValue because it could have side-effects.
2801 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2802 return RValue::get(ArgValue);
2803
2804 Function *FnExpect =
2805 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2806 Value *Result = Builder.CreateCall(
2807 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2808 return RValue::get(Result);
2809 }
2810 case Builtin::BI__builtin_assume_aligned: {
2811 const Expr *Ptr = E->getArg(0);
2812 Value *PtrValue = EmitScalarExpr(Ptr);
2813 Value *OffsetValue =
2814 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2815
2816 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2817 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2818 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2819 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2820 llvm::Value::MaximumAlignment);
2821
2822 emitAlignmentAssumption(PtrValue, Ptr,
2823 /*The expr loc is sufficient.*/ SourceLocation(),
2824 AlignmentCI, OffsetValue);
2825 return RValue::get(PtrValue);
2826 }
2827 case Builtin::BI__assume:
2828 case Builtin::BI__builtin_assume: {
2829 if (E->getArg(0)->HasSideEffects(getContext()))
2830 return RValue::get(nullptr);
2831
2832 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2833 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2834 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2835 }
2836 case Builtin::BI__builtin_bswap16:
2837 case Builtin::BI__builtin_bswap32:
2838 case Builtin::BI__builtin_bswap64: {
2839 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2840 }
2841 case Builtin::BI__builtin_bitreverse8:
2842 case Builtin::BI__builtin_bitreverse16:
2843 case Builtin::BI__builtin_bitreverse32:
2844 case Builtin::BI__builtin_bitreverse64: {
2845 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2846 }
2847 case Builtin::BI__builtin_rotateleft8:
2848 case Builtin::BI__builtin_rotateleft16:
2849 case Builtin::BI__builtin_rotateleft32:
2850 case Builtin::BI__builtin_rotateleft64:
2851 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2852 case Builtin::BI_rotl16:
2853 case Builtin::BI_rotl:
2854 case Builtin::BI_lrotl:
2855 case Builtin::BI_rotl64:
2856 return emitRotate(E, false);
2857
2858 case Builtin::BI__builtin_rotateright8:
2859 case Builtin::BI__builtin_rotateright16:
2860 case Builtin::BI__builtin_rotateright32:
2861 case Builtin::BI__builtin_rotateright64:
2862 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2863 case Builtin::BI_rotr16:
2864 case Builtin::BI_rotr:
2865 case Builtin::BI_lrotr:
2866 case Builtin::BI_rotr64:
2867 return emitRotate(E, true);
2868
2869 case Builtin::BI__builtin_constant_p: {
2870 llvm::Type *ResultType = ConvertType(E->getType());
2871
2872 const Expr *Arg = E->getArg(0);
2873 QualType ArgType = Arg->getType();
2874 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2875 // and likely a mistake.
2876 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2877 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2878 // Per the GCC documentation, only numeric constants are recognized after
2879 // inlining.
2880 return RValue::get(ConstantInt::get(ResultType, 0));
2881
2882 if (Arg->HasSideEffects(getContext()))
2883 // The argument is unevaluated, so be conservative if it might have
2884 // side-effects.
2885 return RValue::get(ConstantInt::get(ResultType, 0));
2886
2887 Value *ArgValue = EmitScalarExpr(Arg);
2888 if (ArgType->isObjCObjectPointerType()) {
2889 // Convert Objective-C objects to id because we cannot distinguish between
2890 // LLVM types for Obj-C classes as they are opaque.
2891 ArgType = CGM.getContext().getObjCIdType();
2892 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2893 }
2894 Function *F =
2895 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2896 Value *Result = Builder.CreateCall(F, ArgValue);
2897 if (Result->getType() != ResultType)
2898 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2899 return RValue::get(Result);
2900 }
2901 case Builtin::BI__builtin_dynamic_object_size:
2902 case Builtin::BI__builtin_object_size: {
2903 unsigned Type =
2904 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2905 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2906
2907 // We pass this builtin onto the optimizer so that it can figure out the
2908 // object size in more complex cases.
2909 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2910 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2911 /*EmittedE=*/nullptr, IsDynamic));
2912 }
2913 case Builtin::BI__builtin_prefetch: {
2914 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2915 // FIXME: Technically these constants should of type 'int', yes?
2916 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2917 llvm::ConstantInt::get(Int32Ty, 0);
2918 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2919 llvm::ConstantInt::get(Int32Ty, 3);
2920 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2921 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2922 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2923 }
2924 case Builtin::BI__builtin_readcyclecounter: {
2925 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2926 return RValue::get(Builder.CreateCall(F));
2927 }
2928 case Builtin::BI__builtin___clear_cache: {
2929 Value *Begin = EmitScalarExpr(E->getArg(0));
2930 Value *End = EmitScalarExpr(E->getArg(1));
2931 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2932 return RValue::get(Builder.CreateCall(F, {Begin, End}));
2933 }
2934 case Builtin::BI__builtin_trap:
2935 return RValue::get(EmitTrapCall(Intrinsic::trap));
2936 case Builtin::BI__debugbreak:
2937 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2938 case Builtin::BI__builtin_unreachable: {
2939 EmitUnreachable(E->getExprLoc());
2940
2941 // We do need to preserve an insertion point.
2942 EmitBlock(createBasicBlock("unreachable.cont"));
2943
2944 return RValue::get(nullptr);
2945 }
2946
2947 case Builtin::BI__builtin_powi:
2948 case Builtin::BI__builtin_powif:
2949 case Builtin::BI__builtin_powil:
2950 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(
2951 *this, E, Intrinsic::powi, Intrinsic::experimental_constrained_powi));
2952
2953 case Builtin::BI__builtin_isgreater:
2954 case Builtin::BI__builtin_isgreaterequal:
2955 case Builtin::BI__builtin_isless:
2956 case Builtin::BI__builtin_islessequal:
2957 case Builtin::BI__builtin_islessgreater:
2958 case Builtin::BI__builtin_isunordered: {
2959 // Ordered comparisons: we know the arguments to these are matching scalar
2960 // floating point values.
2961 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2962 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2963 Value *LHS = EmitScalarExpr(E->getArg(0));
2964 Value *RHS = EmitScalarExpr(E->getArg(1));
2965
2966 switch (BuiltinID) {
2967 default: llvm_unreachable("Unknown ordered comparison");
2968 case Builtin::BI__builtin_isgreater:
2969 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2970 break;
2971 case Builtin::BI__builtin_isgreaterequal:
2972 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2973 break;
2974 case Builtin::BI__builtin_isless:
2975 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2976 break;
2977 case Builtin::BI__builtin_islessequal:
2978 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2979 break;
2980 case Builtin::BI__builtin_islessgreater:
2981 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2982 break;
2983 case Builtin::BI__builtin_isunordered:
2984 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2985 break;
2986 }
2987 // ZExt bool to int type.
2988 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
2989 }
2990 case Builtin::BI__builtin_isnan: {
2991 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2992 Value *V = EmitScalarExpr(E->getArg(0));
2993 llvm::Type *Ty = V->getType();
2994 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
2995 if (!Builder.getIsFPConstrained() ||
2996 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
2997 !Ty->isIEEE()) {
2998 V = Builder.CreateFCmpUNO(V, V, "cmp");
2999 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3000 }
3001
3002 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3003 return RValue::get(Result);
3004
3005 // NaN has all exp bits set and a non zero significand. Therefore:
3006 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3007 unsigned bitsize = Ty->getScalarSizeInBits();
3008 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3009 Value *IntV = Builder.CreateBitCast(V, IntTy);
3010 APInt AndMask = APInt::getSignedMaxValue(bitsize);
3011 Value *AbsV =
3012 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3013 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3014 Value *Sub =
3015 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3016 // V = sign bit (Sub) <=> V = (Sub < 0)
3017 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3018 if (bitsize > 32)
3019 V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3020 return RValue::get(V);
3021 }
3022
3023 case Builtin::BI__builtin_matrix_transpose: {
3024 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3025 Value *MatValue = EmitScalarExpr(E->getArg(0));
3026 MatrixBuilder<CGBuilderTy> MB(Builder);
3027 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3028 MatrixTy->getNumColumns());
3029 return RValue::get(Result);
3030 }
3031
3032 case Builtin::BI__builtin_matrix_column_major_load: {
3033 MatrixBuilder<CGBuilderTy> MB(Builder);
3034 // Emit everything that isn't dependent on the first parameter type
3035 Value *Stride = EmitScalarExpr(E->getArg(3));
3036 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3037 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3038 assert(PtrTy && "arg0 must be of pointer type");
3039 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3040
3041 Address Src = EmitPointerWithAlignment(E->getArg(0));
3042 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3043 E->getArg(0)->getExprLoc(), FD, 0);
3044 Value *Result = MB.CreateColumnMajorLoad(
3045 Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
3046 IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
3047 "matrix");
3048 return RValue::get(Result);
3049 }
3050
3051 case Builtin::BI__builtin_matrix_column_major_store: {
3052 MatrixBuilder<CGBuilderTy> MB(Builder);
3053 Value *Matrix = EmitScalarExpr(E->getArg(0));
3054 Address Dst = EmitPointerWithAlignment(E->getArg(1));
3055 Value *Stride = EmitScalarExpr(E->getArg(2));
3056
3057 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3058 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3059 assert(PtrTy && "arg1 must be of pointer type");
3060 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3061
3062 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3063 E->getArg(1)->getExprLoc(), FD, 0);
3064 Value *Result = MB.CreateColumnMajorStore(
3065 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3066 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3067 return RValue::get(Result);
3068 }
3069
3070 case Builtin::BIfinite:
3071 case Builtin::BI__finite:
3072 case Builtin::BIfinitef:
3073 case Builtin::BI__finitef:
3074 case Builtin::BIfinitel:
3075 case Builtin::BI__finitel:
3076 case Builtin::BI__builtin_isinf:
3077 case Builtin::BI__builtin_isfinite: {
3078 // isinf(x) --> fabs(x) == infinity
3079 // isfinite(x) --> fabs(x) != infinity
3080 // x != NaN via the ordered compare in either case.
3081 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3082 Value *V = EmitScalarExpr(E->getArg(0));
3083 llvm::Type *Ty = V->getType();
3084 if (!Builder.getIsFPConstrained() ||
3085 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3086 !Ty->isIEEE()) {
3087 Value *Fabs = EmitFAbs(*this, V);
3088 Constant *Infinity = ConstantFP::getInfinity(V->getType());
3089 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3090 ? CmpInst::FCMP_OEQ
3091 : CmpInst::FCMP_ONE;
3092 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3093 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3094 }
3095
3096 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3097 return RValue::get(Result);
3098
3099 // Inf values have all exp bits set and a zero significand. Therefore:
3100 // isinf(V) == ((V << 1) == ((exp mask) << 1))
3101 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3102 unsigned bitsize = Ty->getScalarSizeInBits();
3103 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3104 Value *IntV = Builder.CreateBitCast(V, IntTy);
3105 Value *Shl1 = Builder.CreateShl(IntV, 1);
3106 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3107 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3108 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3109 if (BuiltinID == Builtin::BI__builtin_isinf)
3110 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3111 else
3112 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3113 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3114 }
3115
3116 case Builtin::BI__builtin_isinf_sign: {
3117 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3118 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3119 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3120 Value *Arg = EmitScalarExpr(E->getArg(0));
3121 Value *AbsArg = EmitFAbs(*this, Arg);
3122 Value *IsInf = Builder.CreateFCmpOEQ(
3123 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3124 Value *IsNeg = EmitSignBit(*this, Arg);
3125
3126 llvm::Type *IntTy = ConvertType(E->getType());
3127 Value *Zero = Constant::getNullValue(IntTy);
3128 Value *One = ConstantInt::get(IntTy, 1);
3129 Value *NegativeOne = ConstantInt::get(IntTy, -1);
3130 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3131 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3132 return RValue::get(Result);
3133 }
3134
3135 case Builtin::BI__builtin_isnormal: {
3136 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3137 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3138 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3139 Value *V = EmitScalarExpr(E->getArg(0));
3140 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3141
3142 Value *Abs = EmitFAbs(*this, V);
3143 Value *IsLessThanInf =
3144 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3145 APFloat Smallest = APFloat::getSmallestNormalized(
3146 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3147 Value *IsNormal =
3148 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3149 "isnormal");
3150 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3151 V = Builder.CreateAnd(V, IsNormal, "and");
3152 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3153 }
3154
3155 case Builtin::BI__builtin_flt_rounds: {
3156 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3157
3158 llvm::Type *ResultType = ConvertType(E->getType());
3159 Value *Result = Builder.CreateCall(F);
3160 if (Result->getType() != ResultType)
3161 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3162 "cast");
3163 return RValue::get(Result);
3164 }
3165
3166 case Builtin::BI__builtin_fpclassify: {
3167 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3168 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3169 Value *V = EmitScalarExpr(E->getArg(5));
3170 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3171
3172 // Create Result
3173 BasicBlock *Begin = Builder.GetInsertBlock();
3174 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3175 Builder.SetInsertPoint(End);
3176 PHINode *Result =
3177 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3178 "fpclassify_result");
3179
3180 // if (V==0) return FP_ZERO
3181 Builder.SetInsertPoint(Begin);
3182 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3183 "iszero");
3184 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3185 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3186 Builder.CreateCondBr(IsZero, End, NotZero);
3187 Result->addIncoming(ZeroLiteral, Begin);
3188
3189 // if (V != V) return FP_NAN
3190 Builder.SetInsertPoint(NotZero);
3191 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3192 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3193 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3194 Builder.CreateCondBr(IsNan, End, NotNan);
3195 Result->addIncoming(NanLiteral, NotZero);
3196
3197 // if (fabs(V) == infinity) return FP_INFINITY
3198 Builder.SetInsertPoint(NotNan);
3199 Value *VAbs = EmitFAbs(*this, V);
3200 Value *IsInf =
3201 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3202 "isinf");
3203 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3204 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3205 Builder.CreateCondBr(IsInf, End, NotInf);
3206 Result->addIncoming(InfLiteral, NotNan);
3207
3208 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3209 Builder.SetInsertPoint(NotInf);
3210 APFloat Smallest = APFloat::getSmallestNormalized(
3211 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3212 Value *IsNormal =
3213 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3214 "isnormal");
3215 Value *NormalResult =
3216 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3217 EmitScalarExpr(E->getArg(3)));
3218 Builder.CreateBr(End);
3219 Result->addIncoming(NormalResult, NotInf);
3220
3221 // return Result
3222 Builder.SetInsertPoint(End);
3223 return RValue::get(Result);
3224 }
3225
3226 case Builtin::BIalloca:
3227 case Builtin::BI_alloca:
3228 case Builtin::BI__builtin_alloca: {
3229 Value *Size = EmitScalarExpr(E->getArg(0));
3230 const TargetInfo &TI = getContext().getTargetInfo();
3231 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3232 const Align SuitableAlignmentInBytes =
3233 CGM.getContext()
3234 .toCharUnitsFromBits(TI.getSuitableAlign())
3235 .getAsAlign();
3236 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3237 AI->setAlignment(SuitableAlignmentInBytes);
3238 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3239 return RValue::get(AI);
3240 }
3241
3242 case Builtin::BI__builtin_alloca_with_align: {
3243 Value *Size = EmitScalarExpr(E->getArg(0));
3244 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3245 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3246 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3247 const Align AlignmentInBytes =
3248 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3249 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3250 AI->setAlignment(AlignmentInBytes);
3251 initializeAlloca(*this, AI, Size, AlignmentInBytes);
3252 return RValue::get(AI);
3253 }
3254
3255 case Builtin::BIbzero:
3256 case Builtin::BI__builtin_bzero: {
3257 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3258 Value *SizeVal = EmitScalarExpr(E->getArg(1));
3259 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3260 E->getArg(0)->getExprLoc(), FD, 0);
3261 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3262 return RValue::get(nullptr);
3263 }
3264 case Builtin::BImemcpy:
3265 case Builtin::BI__builtin_memcpy:
3266 case Builtin::BImempcpy:
3267 case Builtin::BI__builtin_mempcpy: {
3268 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3269 Address Src = EmitPointerWithAlignment(E->getArg(1));
3270 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3271 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3272 E->getArg(0)->getExprLoc(), FD, 0);
3273 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3274 E->getArg(1)->getExprLoc(), FD, 1);
3275 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3276 if (BuiltinID == Builtin::BImempcpy ||
3277 BuiltinID == Builtin::BI__builtin_mempcpy)
3278 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3279 Dest.getPointer(), SizeVal));
3280 else
3281 return RValue::get(Dest.getPointer());
3282 }
3283
3284 case Builtin::BI__builtin_memcpy_inline: {
3285 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3286 Address Src = EmitPointerWithAlignment(E->getArg(1));
3287 uint64_t Size =
3288 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3289 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3290 E->getArg(0)->getExprLoc(), FD, 0);
3291 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3292 E->getArg(1)->getExprLoc(), FD, 1);
3293 Builder.CreateMemCpyInline(Dest, Src, Size);
3294 return RValue::get(nullptr);
3295 }
3296
3297 case Builtin::BI__builtin_char_memchr:
3298 BuiltinID = Builtin::BI__builtin_memchr;
3299 break;
3300
3301 case Builtin::BI__builtin___memcpy_chk: {
3302 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3303 Expr::EvalResult SizeResult, DstSizeResult;
3304 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3305 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3306 break;
3307 llvm::APSInt Size = SizeResult.Val.getInt();
3308 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3309 if (Size.ugt(DstSize))
3310 break;
3311 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3312 Address Src = EmitPointerWithAlignment(E->getArg(1));
3313 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3314 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3315 return RValue::get(Dest.getPointer());
3316 }
3317
3318 case Builtin::BI__builtin_objc_memmove_collectable: {
3319 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3320 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3321 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3322 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3323 DestAddr, SrcAddr, SizeVal);
3324 return RValue::get(DestAddr.getPointer());
3325 }
3326
3327 case Builtin::BI__builtin___memmove_chk: {
3328 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3329 Expr::EvalResult SizeResult, DstSizeResult;
3330 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3331 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3332 break;
3333 llvm::APSInt Size = SizeResult.Val.getInt();
3334 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3335 if (Size.ugt(DstSize))
3336 break;
3337 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3338 Address Src = EmitPointerWithAlignment(E->getArg(1));
3339 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3340 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3341 return RValue::get(Dest.getPointer());
3342 }
3343
3344 case Builtin::BImemmove:
3345 case Builtin::BI__builtin_memmove: {
3346 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3347 Address Src = EmitPointerWithAlignment(E->getArg(1));
3348 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3349 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3350 E->getArg(0)->getExprLoc(), FD, 0);
3351 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3352 E->getArg(1)->getExprLoc(), FD, 1);
3353 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3354 return RValue::get(Dest.getPointer());
3355 }
3356 case Builtin::BImemset:
3357 case Builtin::BI__builtin_memset: {
3358 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3359 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3360 Builder.getInt8Ty());
3361 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3362 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3363 E->getArg(0)->getExprLoc(), FD, 0);
3364 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3365 return RValue::get(Dest.getPointer());
3366 }
3367 case Builtin::BI__builtin___memset_chk: {
3368 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3369 Expr::EvalResult SizeResult, DstSizeResult;
3370 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3371 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3372 break;
3373 llvm::APSInt Size = SizeResult.Val.getInt();
3374 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3375 if (Size.ugt(DstSize))
3376 break;
3377 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3378 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3379 Builder.getInt8Ty());
3380 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3381 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3382 return RValue::get(Dest.getPointer());
3383 }
3384 case Builtin::BI__builtin_wmemchr: {
3385 // The MSVC runtime library does not provide a definition of wmemchr, so we
3386 // need an inline implementation.
3387 if (!getTarget().getTriple().isOSMSVCRT())
3388 break;
3389
3390 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3391 Value *Str = EmitScalarExpr(E->getArg(0));
3392 Value *Chr = EmitScalarExpr(E->getArg(1));
3393 Value *Size = EmitScalarExpr(E->getArg(2));
3394
3395 BasicBlock *Entry = Builder.GetInsertBlock();
3396 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3397 BasicBlock *Next = createBasicBlock("wmemchr.next");
3398 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3399 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3400 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3401
3402 EmitBlock(CmpEq);
3403 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3404 StrPhi->addIncoming(Str, Entry);
3405 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3406 SizePhi->addIncoming(Size, Entry);
3407 CharUnits WCharAlign =
3408 getContext().getTypeAlignInChars(getContext().WCharTy);
3409 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3410 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3411 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3412 Builder.CreateCondBr(StrEqChr, Exit, Next);
3413
3414 EmitBlock(Next);
3415 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3416 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3417 Value *NextSizeEq0 =
3418 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3419 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3420 StrPhi->addIncoming(NextStr, Next);
3421 SizePhi->addIncoming(NextSize, Next);
3422
3423 EmitBlock(Exit);
3424 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3425 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3426 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3427 Ret->addIncoming(FoundChr, CmpEq);
3428 return RValue::get(Ret);
3429 }
3430 case Builtin::BI__builtin_wmemcmp: {
3431 // The MSVC runtime library does not provide a definition of wmemcmp, so we
3432 // need an inline implementation.
3433 if (!getTarget().getTriple().isOSMSVCRT())
3434 break;
3435
3436 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3437
3438 Value *Dst = EmitScalarExpr(E->getArg(0));
3439 Value *Src = EmitScalarExpr(E->getArg(1));
3440 Value *Size = EmitScalarExpr(E->getArg(2));
3441
3442 BasicBlock *Entry = Builder.GetInsertBlock();
3443 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3444 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3445 BasicBlock *Next = createBasicBlock("wmemcmp.next");
3446 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3447 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3448 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3449
3450 EmitBlock(CmpGT);
3451 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3452 DstPhi->addIncoming(Dst, Entry);
3453 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3454 SrcPhi->addIncoming(Src, Entry);
3455 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3456 SizePhi->addIncoming(Size, Entry);
3457 CharUnits WCharAlign =
3458 getContext().getTypeAlignInChars(getContext().WCharTy);
3459 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3460 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3461 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3462 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3463
3464 EmitBlock(CmpLT);
3465 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3466 Builder.CreateCondBr(DstLtSrc, Exit, Next);
3467
3468 EmitBlock(Next);
3469 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3470 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3471 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3472 Value *NextSizeEq0 =
3473 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3474 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3475 DstPhi->addIncoming(NextDst, Next);
3476 SrcPhi->addIncoming(NextSrc, Next);
3477 SizePhi->addIncoming(NextSize, Next);
3478
3479 EmitBlock(Exit);
3480 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3481 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3482 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3483 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3484 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3485 return RValue::get(Ret);
3486 }
3487 case Builtin::BI__builtin_dwarf_cfa: {
3488 // The offset in bytes from the first argument to the CFA.
3489 //
3490 // Why on earth is this in the frontend? Is there any reason at
3491 // all that the backend can't reasonably determine this while
3492 // lowering llvm.eh.dwarf.cfa()?
3493 //
3494 // TODO: If there's a satisfactory reason, add a target hook for
3495 // this instead of hard-coding 0, which is correct for most targets.
3496 int32_t Offset = 0;
3497
3498 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3499 return RValue::get(Builder.CreateCall(F,
3500 llvm::ConstantInt::get(Int32Ty, Offset)));
3501 }
3502 case Builtin::BI__builtin_return_address: {
3503 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3504 getContext().UnsignedIntTy);
3505 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3506 return RValue::get(Builder.CreateCall(F, Depth));
3507 }
3508 case Builtin::BI_ReturnAddress: {
3509 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3510 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3511 }
3512 case Builtin::BI__builtin_frame_address: {
3513 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3514 getContext().UnsignedIntTy);
3515 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3516 return RValue::get(Builder.CreateCall(F, Depth));
3517 }
3518 case Builtin::BI__builtin_extract_return_addr: {
3519 Value *Address = EmitScalarExpr(E->getArg(0));
3520 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3521 return RValue::get(Result);
3522 }
3523 case Builtin::BI__builtin_frob_return_addr: {
3524 Value *Address = EmitScalarExpr(E->getArg(0));
3525 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3526 return RValue::get(Result);
3527 }
3528 case Builtin::BI__builtin_dwarf_sp_column: {
3529 llvm::IntegerType *Ty
3530 = cast<llvm::IntegerType>(ConvertType(E->getType()));
3531 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3532 if (Column == -1) {
3533 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3534 return RValue::get(llvm::UndefValue::get(Ty));
3535 }
3536 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3537 }
3538 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3539 Value *Address = EmitScalarExpr(E->getArg(0));
3540 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3541 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3542 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3543 }
3544 case Builtin::BI__builtin_eh_return: {
3545 Value *Int = EmitScalarExpr(E->getArg(0));
3546 Value *Ptr = EmitScalarExpr(E->getArg(1));
3547
3548 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3549 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3550 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3551 Function *F =
3552 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3553 : Intrinsic::eh_return_i64);
3554 Builder.CreateCall(F, {Int, Ptr});
3555 Builder.CreateUnreachable();
3556
3557 // We do need to preserve an insertion point.
3558 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3559
3560 return RValue::get(nullptr);
3561 }
3562 case Builtin::BI__builtin_unwind_init: {
3563 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3564 return RValue::get(Builder.CreateCall(F));
3565 }
3566 case Builtin::BI__builtin_extend_pointer: {
3567 // Extends a pointer to the size of an _Unwind_Word, which is
3568 // uint64_t on all platforms. Generally this gets poked into a
3569 // register and eventually used as an address, so if the
3570 // addressing registers are wider than pointers and the platform
3571 // doesn't implicitly ignore high-order bits when doing
3572 // addressing, we need to make sure we zext / sext based on
3573 // the platform's expectations.
3574 //
3575 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3576
3577 // Cast the pointer to intptr_t.
3578 Value *Ptr = EmitScalarExpr(E->getArg(0));
3579 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3580
3581 // If that's 64 bits, we're done.
3582 if (IntPtrTy->getBitWidth() == 64)
3583 return RValue::get(Result);
3584
3585 // Otherwise, ask the codegen data what to do.
3586 if (getTargetHooks().extendPointerWithSExt())
3587 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3588 else
3589 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3590 }
3591 case Builtin::BI__builtin_setjmp: {
3592 // Buffer is a void**.
3593 Address Buf = EmitPointerWithAlignment(E->getArg(0));
3594
3595 // Store the frame pointer to the setjmp buffer.
3596 Value *FrameAddr = Builder.CreateCall(
3597 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3598 ConstantInt::get(Int32Ty, 0));
3599 Builder.CreateStore(FrameAddr, Buf);
3600
3601 // Store the stack pointer to the setjmp buffer.
3602 Value *StackAddr =
3603 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3604 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3605 Builder.CreateStore(StackAddr, StackSaveSlot);
3606
3607 // Call LLVM's EH setjmp, which is lightweight.
3608 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3609 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3610 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3611 }
3612 case Builtin::BI__builtin_longjmp: {
3613 Value *Buf = EmitScalarExpr(E->getArg(0));
3614 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3615
3616 // Call LLVM's EH longjmp, which is lightweight.
3617 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3618
3619 // longjmp doesn't return; mark this as unreachable.
3620 Builder.CreateUnreachable();
3621
3622 // We do need to preserve an insertion point.
3623 EmitBlock(createBasicBlock("longjmp.cont"));
3624
3625 return RValue::get(nullptr);
3626 }
3627 case Builtin::BI__builtin_launder: {
3628 const Expr *Arg = E->getArg(0);
3629 QualType ArgTy = Arg->getType()->getPointeeType();
3630 Value *Ptr = EmitScalarExpr(Arg);
3631 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3632 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3633
3634 return RValue::get(Ptr);
3635 }
3636 case Builtin::BI__sync_fetch_and_add:
3637 case Builtin::BI__sync_fetch_and_sub:
3638 case Builtin::BI__sync_fetch_and_or:
3639 case Builtin::BI__sync_fetch_and_and:
3640 case Builtin::BI__sync_fetch_and_xor:
3641 case Builtin::BI__sync_fetch_and_nand:
3642 case Builtin::BI__sync_add_and_fetch:
3643 case Builtin::BI__sync_sub_and_fetch:
3644 case Builtin::BI__sync_and_and_fetch:
3645 case Builtin::BI__sync_or_and_fetch:
3646 case Builtin::BI__sync_xor_and_fetch:
3647 case Builtin::BI__sync_nand_and_fetch:
3648 case Builtin::BI__sync_val_compare_and_swap:
3649 case Builtin::BI__sync_bool_compare_and_swap:
3650 case Builtin::BI__sync_lock_test_and_set:
3651 case Builtin::BI__sync_lock_release:
3652 case Builtin::BI__sync_swap:
3653 llvm_unreachable("Shouldn't make it through sema");
3654 case Builtin::BI__sync_fetch_and_add_1:
3655 case Builtin::BI__sync_fetch_and_add_2:
3656 case Builtin::BI__sync_fetch_and_add_4:
3657 case Builtin::BI__sync_fetch_and_add_8:
3658 case Builtin::BI__sync_fetch_and_add_16:
3659 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3660 case Builtin::BI__sync_fetch_and_sub_1:
3661 case Builtin::BI__sync_fetch_and_sub_2:
3662 case Builtin::BI__sync_fetch_and_sub_4:
3663 case Builtin::BI__sync_fetch_and_sub_8:
3664 case Builtin::BI__sync_fetch_and_sub_16:
3665 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3666 case Builtin::BI__sync_fetch_and_or_1:
3667 case Builtin::BI__sync_fetch_and_or_2:
3668 case Builtin::BI__sync_fetch_and_or_4:
3669 case Builtin::BI__sync_fetch_and_or_8:
3670 case Builtin::BI__sync_fetch_and_or_16:
3671 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3672 case Builtin::BI__sync_fetch_and_and_1:
3673 case Builtin::BI__sync_fetch_and_and_2:
3674 case Builtin::BI__sync_fetch_and_and_4:
3675 case Builtin::BI__sync_fetch_and_and_8:
3676 case Builtin::BI__sync_fetch_and_and_16:
3677 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3678 case Builtin::BI__sync_fetch_and_xor_1:
3679 case Builtin::BI__sync_fetch_and_xor_2:
3680 case Builtin::BI__sync_fetch_and_xor_4:
3681 case Builtin::BI__sync_fetch_and_xor_8:
3682 case Builtin::BI__sync_fetch_and_xor_16:
3683 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3684 case Builtin::BI__sync_fetch_and_nand_1:
3685 case Builtin::BI__sync_fetch_and_nand_2:
3686 case Builtin::BI__sync_fetch_and_nand_4:
3687 case Builtin::BI__sync_fetch_and_nand_8:
3688 case Builtin::BI__sync_fetch_and_nand_16:
3689 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3690
3691 // Clang extensions: not overloaded yet.
3692 case Builtin::BI__sync_fetch_and_min:
3693 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3694 case Builtin::BI__sync_fetch_and_max:
3695 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3696 case Builtin::BI__sync_fetch_and_umin:
3697 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3698 case Builtin::BI__sync_fetch_and_umax:
3699 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3700
3701 case Builtin::BI__sync_add_and_fetch_1:
3702 case Builtin::BI__sync_add_and_fetch_2:
3703 case Builtin::BI__sync_add_and_fetch_4:
3704 case Builtin::BI__sync_add_and_fetch_8:
3705 case Builtin::BI__sync_add_and_fetch_16:
3706 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3707 llvm::Instruction::Add);
3708 case Builtin::BI__sync_sub_and_fetch_1:
3709 case Builtin::BI__sync_sub_and_fetch_2:
3710 case Builtin::BI__sync_sub_and_fetch_4:
3711 case Builtin::BI__sync_sub_and_fetch_8:
3712 case Builtin::BI__sync_sub_and_fetch_16:
3713 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3714 llvm::Instruction::Sub);
3715 case Builtin::BI__sync_and_and_fetch_1:
3716 case Builtin::BI__sync_and_and_fetch_2:
3717 case Builtin::BI__sync_and_and_fetch_4:
3718 case Builtin::BI__sync_and_and_fetch_8:
3719 case Builtin::BI__sync_and_and_fetch_16:
3720 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3721 llvm::Instruction::And);
3722 case Builtin::BI__sync_or_and_fetch_1:
3723 case Builtin::BI__sync_or_and_fetch_2:
3724 case Builtin::BI__sync_or_and_fetch_4:
3725 case Builtin::BI__sync_or_and_fetch_8:
3726 case Builtin::BI__sync_or_and_fetch_16:
3727 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3728 llvm::Instruction::Or);
3729 case Builtin::BI__sync_xor_and_fetch_1:
3730 case Builtin::BI__sync_xor_and_fetch_2:
3731 case Builtin::BI__sync_xor_and_fetch_4:
3732 case Builtin::BI__sync_xor_and_fetch_8:
3733 case Builtin::BI__sync_xor_and_fetch_16:
3734 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3735 llvm::Instruction::Xor);
3736 case Builtin::BI__sync_nand_and_fetch_1:
3737 case Builtin::BI__sync_nand_and_fetch_2:
3738 case Builtin::BI__sync_nand_and_fetch_4:
3739 case Builtin::BI__sync_nand_and_fetch_8:
3740 case Builtin::BI__sync_nand_and_fetch_16:
3741 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3742 llvm::Instruction::And, true);
3743
3744 case Builtin::BI__sync_val_compare_and_swap_1:
3745 case Builtin::BI__sync_val_compare_and_swap_2:
3746 case Builtin::BI__sync_val_compare_and_swap_4:
3747 case Builtin::BI__sync_val_compare_and_swap_8:
3748 case Builtin::BI__sync_val_compare_and_swap_16:
3749 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3750
3751 case Builtin::BI__sync_bool_compare_and_swap_1:
3752 case Builtin::BI__sync_bool_compare_and_swap_2:
3753 case Builtin::BI__sync_bool_compare_and_swap_4:
3754 case Builtin::BI__sync_bool_compare_and_swap_8:
3755 case Builtin::BI__sync_bool_compare_and_swap_16:
3756 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3757
3758 case Builtin::BI__sync_swap_1:
3759 case Builtin::BI__sync_swap_2:
3760 case Builtin::BI__sync_swap_4:
3761 case Builtin::BI__sync_swap_8:
3762 case Builtin::BI__sync_swap_16:
3763 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3764
3765 case Builtin::BI__sync_lock_test_and_set_1:
3766 case Builtin::BI__sync_lock_test_and_set_2:
3767 case Builtin::BI__sync_lock_test_and_set_4:
3768 case Builtin::BI__sync_lock_test_and_set_8:
3769 case Builtin::BI__sync_lock_test_and_set_16:
3770 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3771
3772 case Builtin::BI__sync_lock_release_1:
3773 case Builtin::BI__sync_lock_release_2:
3774 case Builtin::BI__sync_lock_release_4:
3775 case Builtin::BI__sync_lock_release_8:
3776 case Builtin::BI__sync_lock_release_16: {
3777 Value *Ptr = EmitScalarExpr(E->getArg(0));
3778 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3779 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3780 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3781 StoreSize.getQuantity() * 8);
3782 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3783 llvm::StoreInst *Store =
3784 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3785 StoreSize);
3786 Store->setAtomic(llvm::AtomicOrdering::Release);
3787 return RValue::get(nullptr);
3788 }
3789
3790 case Builtin::BI__sync_synchronize: {
3791 // We assume this is supposed to correspond to a C++0x-style
3792 // sequentially-consistent fence (i.e. this is only usable for
3793 // synchronization, not device I/O or anything like that). This intrinsic
3794 // is really badly designed in the sense that in theory, there isn't
3795 // any way to safely use it... but in practice, it mostly works
3796 // to use it with non-atomic loads and stores to get acquire/release
3797 // semantics.
3798 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3799 return RValue::get(nullptr);
3800 }
3801
3802 case Builtin::BI__builtin_nontemporal_load:
3803 return RValue::get(EmitNontemporalLoad(*this, E));
3804 case Builtin::BI__builtin_nontemporal_store:
3805 return RValue::get(EmitNontemporalStore(*this, E));
3806 case Builtin::BI__c11_atomic_is_lock_free:
3807 case Builtin::BI__atomic_is_lock_free: {
3808 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3809 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3810 // _Atomic(T) is always properly-aligned.
3811 const char *LibCallName = "__atomic_is_lock_free";
3812 CallArgList Args;
3813 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3814 getContext().getSizeType());
3815 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3816 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3817 getContext().VoidPtrTy);
3818 else
3819 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3820 getContext().VoidPtrTy);
3821 const CGFunctionInfo &FuncInfo =
3822 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3823 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3824 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3825 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3826 ReturnValueSlot(), Args);
3827 }
3828
3829 case Builtin::BI__atomic_test_and_set: {
3830 // Look at the argument type to determine whether this is a volatile
3831 // operation. The parameter type is always volatile.
3832 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3833 bool Volatile =
3834 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3835
3836 Value *Ptr = EmitScalarExpr(E->getArg(0));
3837 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3838 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3839 Value *NewVal = Builder.getInt8(1);
3840 Value *Order = EmitScalarExpr(E->getArg(1));
3841 if (isa<llvm::ConstantInt>(Order)) {
3842 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3843 AtomicRMWInst *Result = nullptr;
3844 switch (ord) {
3845 case 0: // memory_order_relaxed
3846 default: // invalid order
3847 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3848 llvm::AtomicOrdering::Monotonic);
3849 break;
3850 case 1: // memory_order_consume
3851 case 2: // memory_order_acquire
3852 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3853 llvm::AtomicOrdering::Acquire);
3854 break;
3855 case 3: // memory_order_release
3856 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3857 llvm::AtomicOrdering::Release);
3858 break;
3859 case 4: // memory_order_acq_rel
3860
3861 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3862 llvm::AtomicOrdering::AcquireRelease);
3863 break;
3864 case 5: // memory_order_seq_cst
3865 Result = Builder.CreateAtomicRMW(
3866 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3867 llvm::AtomicOrdering::SequentiallyConsistent);
3868 break;
3869 }
3870 Result->setVolatile(Volatile);
3871 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3872 }
3873
3874 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3875
3876 llvm::BasicBlock *BBs[5] = {
3877 createBasicBlock("monotonic", CurFn),
3878 createBasicBlock("acquire", CurFn),
3879 createBasicBlock("release", CurFn),
3880 createBasicBlock("acqrel", CurFn),
3881 createBasicBlock("seqcst", CurFn)
3882 };
3883 llvm::AtomicOrdering Orders[5] = {
3884 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3885 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3886 llvm::AtomicOrdering::SequentiallyConsistent};
3887
3888 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3889 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3890
3891 Builder.SetInsertPoint(ContBB);
3892 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3893
3894 for (unsigned i = 0; i < 5; ++i) {
3895 Builder.SetInsertPoint(BBs[i]);
3896 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3897 Ptr, NewVal, Orders[i]);
3898 RMW->setVolatile(Volatile);
3899 Result->addIncoming(RMW, BBs[i]);
3900 Builder.CreateBr(ContBB);
3901 }
3902
3903 SI->addCase(Builder.getInt32(0), BBs[0]);
3904 SI->addCase(Builder.getInt32(1), BBs[1]);
3905 SI->addCase(Builder.getInt32(2), BBs[1]);
3906 SI->addCase(Builder.getInt32(3), BBs[2]);
3907 SI->addCase(Builder.getInt32(4), BBs[3]);
3908 SI->addCase(Builder.getInt32(5), BBs[4]);
3909
3910 Builder.SetInsertPoint(ContBB);
3911 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3912 }
3913
3914 case Builtin::BI__atomic_clear: {
3915 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3916 bool Volatile =
3917 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3918
3919 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3920 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3921 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3922 Value *NewVal = Builder.getInt8(0);
3923 Value *Order = EmitScalarExpr(E->getArg(1));
3924 if (isa<llvm::ConstantInt>(Order)) {
3925 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3926 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3927 switch (ord) {
3928 case 0: // memory_order_relaxed
3929 default: // invalid order
3930 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3931 break;
3932 case 3: // memory_order_release
3933 Store->setOrdering(llvm::AtomicOrdering::Release);
3934 break;
3935 case 5: // memory_order_seq_cst
3936 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3937 break;
3938 }
3939 return RValue::get(nullptr);
3940 }
3941
3942 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3943
3944 llvm::BasicBlock *BBs[3] = {
3945 createBasicBlock("monotonic", CurFn),
3946 createBasicBlock("release", CurFn),
3947 createBasicBlock("seqcst", CurFn)
3948 };
3949 llvm::AtomicOrdering Orders[3] = {
3950 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3951 llvm::AtomicOrdering::SequentiallyConsistent};
3952
3953 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3954 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3955
3956 for (unsigned i = 0; i < 3; ++i) {
3957 Builder.SetInsertPoint(BBs[i]);
3958 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3959 Store->setOrdering(Orders[i]);
3960 Builder.CreateBr(ContBB);
3961 }
3962
3963 SI->addCase(Builder.getInt32(0), BBs[0]);
3964 SI->addCase(Builder.getInt32(3), BBs[1]);
3965 SI->addCase(Builder.getInt32(5), BBs[2]);
3966
3967 Builder.SetInsertPoint(ContBB);
3968 return RValue::get(nullptr);
3969 }
3970
3971 case Builtin::BI__atomic_thread_fence:
3972 case Builtin::BI__atomic_signal_fence:
3973 case Builtin::BI__c11_atomic_thread_fence:
3974 case Builtin::BI__c11_atomic_signal_fence: {
3975 llvm::SyncScope::ID SSID;
3976 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3977 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3978 SSID = llvm::SyncScope::SingleThread;
3979 else
3980 SSID = llvm::SyncScope::System;
3981 Value *Order = EmitScalarExpr(E->getArg(0));
3982 if (isa<llvm::ConstantInt>(Order)) {
3983 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3984 switch (ord) {
3985 case 0: // memory_order_relaxed
3986 default: // invalid order
3987 break;
3988 case 1: // memory_order_consume
3989 case 2: // memory_order_acquire
3990 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
3991 break;
3992 case 3: // memory_order_release
3993 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
3994 break;
3995 case 4: // memory_order_acq_rel
3996 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
3997 break;
3998 case 5: // memory_order_seq_cst
3999 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4000 break;
4001 }
4002 return RValue::get(nullptr);
4003 }
4004
4005 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4006 AcquireBB = createBasicBlock("acquire", CurFn);
4007 ReleaseBB = createBasicBlock("release", CurFn);
4008 AcqRelBB = createBasicBlock("acqrel", CurFn);
4009 SeqCstBB = createBasicBlock("seqcst", CurFn);
4010 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4011
4012 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4013 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4014
4015 Builder.SetInsertPoint(AcquireBB);
4016 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4017 Builder.CreateBr(ContBB);
4018 SI->addCase(Builder.getInt32(1), AcquireBB);
4019 SI->addCase(Builder.getInt32(2), AcquireBB);
4020
4021 Builder.SetInsertPoint(ReleaseBB);
4022 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4023 Builder.CreateBr(ContBB);
4024 SI->addCase(Builder.getInt32(3), ReleaseBB);
4025
4026 Builder.SetInsertPoint(AcqRelBB);
4027 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4028 Builder.CreateBr(ContBB);
4029 SI->addCase(Builder.getInt32(4), AcqRelBB);
4030
4031 Builder.SetInsertPoint(SeqCstBB);
4032 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4033 Builder.CreateBr(ContBB);
4034 SI->addCase(Builder.getInt32(5), SeqCstBB);
4035
4036 Builder.SetInsertPoint(ContBB);
4037 return RValue::get(nullptr);
4038 }
4039
4040 case Builtin::BI__builtin_signbit:
4041 case Builtin::BI__builtin_signbitf:
4042 case Builtin::BI__builtin_signbitl: {
4043 return RValue::get(
4044 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4045 ConvertType(E->getType())));
4046 }
4047 case Builtin::BI__warn_memset_zero_len:
4048 return RValue::getIgnored();
4049 case Builtin::BI__annotation: {
4050 // Re-encode each wide string to UTF8 and make an MDString.
4051 SmallVector<Metadata *, 1> Strings;
4052 for (const Expr *Arg : E->arguments()) {
4053 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4054 assert(Str->getCharByteWidth() == 2);
4055 StringRef WideBytes = Str->getBytes();
4056 std::string StrUtf8;
4057 if (!convertUTF16ToUTF8String(
4058 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4059 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4060 continue;
4061 }
4062 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4063 }
4064
4065 // Build and MDTuple of MDStrings and emit the intrinsic call.
4066 llvm::Function *F =
4067 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4068 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4069 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4070 return RValue::getIgnored();
4071 }
4072 case Builtin::BI__builtin_annotation: {
4073 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4074 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4075 AnnVal->getType());
4076
4077 // Get the annotation string, go through casts. Sema requires this to be a
4078 // non-wide string literal, potentially casted, so the cast<> is safe.
4079 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4080 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4081 return RValue::get(
4082 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4083 }
4084 case Builtin::BI__builtin_addcb:
4085 case Builtin::BI__builtin_addcs:
4086 case Builtin::BI__builtin_addc:
4087 case Builtin::BI__builtin_addcl:
4088 case Builtin::BI__builtin_addcll:
4089 case Builtin::BI__builtin_subcb:
4090 case Builtin::BI__builtin_subcs:
4091 case Builtin::BI__builtin_subc:
4092 case Builtin::BI__builtin_subcl:
4093 case Builtin::BI__builtin_subcll: {
4094
4095 // We translate all of these builtins from expressions of the form:
4096 // int x = ..., y = ..., carryin = ..., carryout, result;
4097 // result = __builtin_addc(x, y, carryin, &carryout);
4098 //
4099 // to LLVM IR of the form:
4100 //
4101 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4102 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4103 // %carry1 = extractvalue {i32, i1} %tmp1, 1
4104 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4105 // i32 %carryin)
4106 // %result = extractvalue {i32, i1} %tmp2, 0
4107 // %carry2 = extractvalue {i32, i1} %tmp2, 1
4108 // %tmp3 = or i1 %carry1, %carry2
4109 // %tmp4 = zext i1 %tmp3 to i32
4110 // store i32 %tmp4, i32* %carryout
4111
4112 // Scalarize our inputs.
4113 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4114 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4115 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4116 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4117
4118 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4119 llvm::Intrinsic::ID IntrinsicId;
4120 switch (BuiltinID) {
4121 default: llvm_unreachable("Unknown multiprecision builtin id.");
4122 case Builtin::BI__builtin_addcb:
4123 case Builtin::BI__builtin_addcs:
4124 case Builtin::BI__builtin_addc:
4125 case Builtin::BI__builtin_addcl:
4126 case Builtin::BI__builtin_addcll:
4127 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4128 break;
4129 case Builtin::BI__builtin_subcb:
4130 case Builtin::BI__builtin_subcs:
4131 case Builtin::BI__builtin_subc:
4132 case Builtin::BI__builtin_subcl:
4133 case Builtin::BI__builtin_subcll:
4134 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4135 break;
4136 }
4137
4138 // Construct our resulting LLVM IR expression.
4139 llvm::Value *Carry1;
4140 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4141 X, Y, Carry1);
4142 llvm::Value *Carry2;
4143 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4144 Sum1, Carryin, Carry2);
4145 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4146 X->getType());
4147 Builder.CreateStore(CarryOut, CarryOutPtr);
4148 return RValue::get(Sum2);
4149 }
4150
4151 case Builtin::BI__builtin_add_overflow:
4152 case Builtin::BI__builtin_sub_overflow:
4153 case Builtin::BI__builtin_mul_overflow: {
4154 const clang::Expr *LeftArg = E->getArg(0);
4155 const clang::Expr *RightArg = E->getArg(1);
4156 const clang::Expr *ResultArg = E->getArg(2);
4157
4158 clang::QualType ResultQTy =
4159 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4160
4161 WidthAndSignedness LeftInfo =
4162 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4163 WidthAndSignedness RightInfo =
4164 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4165 WidthAndSignedness ResultInfo =
4166 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4167
4168 // Handle mixed-sign multiplication as a special case, because adding
4169 // runtime or backend support for our generic irgen would be too expensive.
4170 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4171 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4172 RightInfo, ResultArg, ResultQTy,
4173 ResultInfo);
4174
4175 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4176 ResultInfo))
4177 return EmitCheckedUnsignedMultiplySignedResult(
4178 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4179 ResultInfo);
4180
4181 WidthAndSignedness EncompassingInfo =
4182 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4183
4184 llvm::Type *EncompassingLLVMTy =
4185 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4186
4187 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4188
4189 llvm::Intrinsic::ID IntrinsicId;
4190 switch (BuiltinID) {
4191 default:
4192 llvm_unreachable("Unknown overflow builtin id.");
4193 case Builtin::BI__builtin_add_overflow:
4194 IntrinsicId = EncompassingInfo.Signed
4195 ? llvm::Intrinsic::sadd_with_overflow
4196 : llvm::Intrinsic::uadd_with_overflow;
4197 break;
4198 case Builtin::BI__builtin_sub_overflow:
4199 IntrinsicId = EncompassingInfo.Signed
4200 ? llvm::Intrinsic::ssub_with_overflow
4201 : llvm::Intrinsic::usub_with_overflow;
4202 break;
4203 case Builtin::BI__builtin_mul_overflow:
4204 IntrinsicId = EncompassingInfo.Signed
4205 ? llvm::Intrinsic::smul_with_overflow
4206 : llvm::Intrinsic::umul_with_overflow;
4207 break;
4208 }
4209
4210 llvm::Value *Left = EmitScalarExpr(LeftArg);
4211 llvm::Value *Right = EmitScalarExpr(RightArg);
4212 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4213
4214 // Extend each operand to the encompassing type.
4215 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4216 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4217
4218 // Perform the operation on the extended values.
4219 llvm::Value *Overflow, *Result;
4220 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4221
4222 if (EncompassingInfo.Width > ResultInfo.Width) {
4223 // The encompassing type is wider than the result type, so we need to
4224 // truncate it.
4225 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4226
4227 // To see if the truncation caused an overflow, we will extend
4228 // the result and then compare it to the original result.
4229 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4230 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4231 llvm::Value *TruncationOverflow =
4232 Builder.CreateICmpNE(Result, ResultTruncExt);
4233
4234 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4235 Result = ResultTrunc;
4236 }
4237
4238 // Finally, store the result using the pointer.
4239 bool isVolatile =
4240 ResultArg->getType()->getPointeeType().isVolatileQualified();
4241 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4242
4243 return RValue::get(Overflow);
4244 }
4245
4246 case Builtin::BI__builtin_uadd_overflow:
4247 case Builtin::BI__builtin_uaddl_overflow:
4248 case Builtin::BI__builtin_uaddll_overflow:
4249 case Builtin::BI__builtin_usub_overflow:
4250 case Builtin::BI__builtin_usubl_overflow:
4251 case Builtin::BI__builtin_usubll_overflow:
4252 case Builtin::BI__builtin_umul_overflow:
4253 case Builtin::BI__builtin_umull_overflow:
4254 case Builtin::BI__builtin_umulll_overflow:
4255 case Builtin::BI__builtin_sadd_overflow:
4256 case Builtin::BI__builtin_saddl_overflow:
4257 case Builtin::BI__builtin_saddll_overflow:
4258 case Builtin::BI__builtin_ssub_overflow:
4259 case Builtin::BI__builtin_ssubl_overflow:
4260 case Builtin::BI__builtin_ssubll_overflow:
4261 case Builtin::BI__builtin_smul_overflow:
4262 case Builtin::BI__builtin_smull_overflow:
4263 case Builtin::BI__builtin_smulll_overflow: {
4264
4265 // We translate all of these builtins directly to the relevant llvm IR node.
4266
4267 // Scalarize our inputs.
4268 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4269 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4270 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4271
4272 // Decide which of the overflow intrinsics we are lowering to:
4273 llvm::Intrinsic::ID IntrinsicId;
4274 switch (BuiltinID) {
4275 default: llvm_unreachable("Unknown overflow builtin id.");
4276 case Builtin::BI__builtin_uadd_overflow:
4277 case Builtin::BI__builtin_uaddl_overflow:
4278 case Builtin::BI__builtin_uaddll_overflow:
4279 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4280 break;
4281 case Builtin::BI__builtin_usub_overflow:
4282 case Builtin::BI__builtin_usubl_overflow:
4283 case Builtin::BI__builtin_usubll_overflow:
4284 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4285 break;
4286 case Builtin::BI__builtin_umul_overflow:
4287 case Builtin::BI__builtin_umull_overflow:
4288 case Builtin::BI__builtin_umulll_overflow:
4289 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4290 break;
4291 case Builtin::BI__builtin_sadd_overflow:
4292 case Builtin::BI__builtin_saddl_overflow:
4293 case Builtin::BI__builtin_saddll_overflow:
4294 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4295 break;
4296 case Builtin::BI__builtin_ssub_overflow:
4297 case Builtin::BI__builtin_ssubl_overflow:
4298 case Builtin::BI__builtin_ssubll_overflow:
4299 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4300 break;
4301 case Builtin::BI__builtin_smul_overflow:
4302 case Builtin::BI__builtin_smull_overflow:
4303 case Builtin::BI__builtin_smulll_overflow:
4304 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4305 break;
4306 }
4307
4308
4309 llvm::Value *Carry;
4310 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4311 Builder.CreateStore(Sum, SumOutPtr);
4312
4313 return RValue::get(Carry);
4314 }
4315 case Builtin::BI__builtin_addressof:
4316 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4317 case Builtin::BI__builtin_operator_new:
4318 return EmitBuiltinNewDeleteCall(
4319 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4320 case Builtin::BI__builtin_operator_delete:
4321 return EmitBuiltinNewDeleteCall(
4322 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4323
4324 case Builtin::BI__builtin_is_aligned:
4325 return EmitBuiltinIsAligned(E);
4326 case Builtin::BI__builtin_align_up:
4327 return EmitBuiltinAlignTo(E, true);
4328 case Builtin::BI__builtin_align_down:
4329 return EmitBuiltinAlignTo(E, false);
4330
4331 case Builtin::BI__noop:
4332 // __noop always evaluates to an integer literal zero.
4333 return RValue::get(ConstantInt::get(IntTy, 0));
4334 case Builtin::BI__builtin_call_with_static_chain: {
4335 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4336 const Expr *Chain = E->getArg(1);
4337 return EmitCall(Call->getCallee()->getType(),
4338 EmitCallee(Call->getCallee()), Call, ReturnValue,
4339 EmitScalarExpr(Chain));
4340 }
4341 case Builtin::BI_InterlockedExchange8:
4342 case Builtin::BI_InterlockedExchange16:
4343 case Builtin::BI_InterlockedExchange:
4344 case Builtin::BI_InterlockedExchangePointer:
4345 return RValue::get(
4346 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4347 case Builtin::BI_InterlockedCompareExchangePointer:
4348 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4349 llvm::Type *RTy;
4350 llvm::IntegerType *IntType =
4351 IntegerType::get(getLLVMContext(),
4352 getContext().getTypeSize(E->getType()));
4353 llvm::Type *IntPtrType = IntType->getPointerTo();
4354
4355 llvm::Value *Destination =
4356 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4357
4358 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4359 RTy = Exchange->getType();
4360 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4361
4362 llvm::Value *Comparand =
4363 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4364
4365 auto Ordering =
4366 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4367 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4368
4369 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4370 Ordering, Ordering);
4371 Result->setVolatile(true);
4372
4373 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4374 0),
4375 RTy));
4376 }
4377 case Builtin::BI_InterlockedCompareExchange8:
4378 case Builtin::BI_InterlockedCompareExchange16:
4379 case Builtin::BI_InterlockedCompareExchange:
4380 case Builtin::BI_InterlockedCompareExchange64:
4381 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4382 case Builtin::BI_InterlockedIncrement16:
4383 case Builtin::BI_InterlockedIncrement:
4384 return RValue::get(
4385 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4386 case Builtin::BI_InterlockedDecrement16:
4387 case Builtin::BI_InterlockedDecrement:
4388 return RValue::get(
4389 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4390 case Builtin::BI_InterlockedAnd8:
4391 case Builtin::BI_InterlockedAnd16:
4392 case Builtin::BI_InterlockedAnd:
4393 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4394 case Builtin::BI_InterlockedExchangeAdd8:
4395 case Builtin::BI_InterlockedExchangeAdd16:
4396 case Builtin::BI_InterlockedExchangeAdd:
4397 return RValue::get(
4398 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4399 case Builtin::BI_InterlockedExchangeSub8:
4400 case Builtin::BI_InterlockedExchangeSub16:
4401 case Builtin::BI_InterlockedExchangeSub:
4402 return RValue::get(
4403 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4404 case Builtin::BI_InterlockedOr8:
4405 case Builtin::BI_InterlockedOr16:
4406 case Builtin::BI_InterlockedOr:
4407 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4408 case Builtin::BI_InterlockedXor8:
4409 case Builtin::BI_InterlockedXor16:
4410 case Builtin::BI_InterlockedXor:
4411 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4412
4413 case Builtin::BI_bittest64:
4414 case Builtin::BI_bittest:
4415 case Builtin::BI_bittestandcomplement64:
4416 case Builtin::BI_bittestandcomplement:
4417 case Builtin::BI_bittestandreset64:
4418 case Builtin::BI_bittestandreset:
4419 case Builtin::BI_bittestandset64:
4420 case Builtin::BI_bittestandset:
4421 case Builtin::BI_interlockedbittestandreset:
4422 case Builtin::BI_interlockedbittestandreset64:
4423 case Builtin::BI_interlockedbittestandset64:
4424 case Builtin::BI_interlockedbittestandset:
4425 case Builtin::BI_interlockedbittestandset_acq:
4426 case Builtin::BI_interlockedbittestandset_rel:
4427 case Builtin::BI_interlockedbittestandset_nf:
4428 case Builtin::BI_interlockedbittestandreset_acq:
4429 case Builtin::BI_interlockedbittestandreset_rel:
4430 case Builtin::BI_interlockedbittestandreset_nf:
4431 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4432
4433 // These builtins exist to emit regular volatile loads and stores not
4434 // affected by the -fms-volatile setting.
4435 case Builtin::BI__iso_volatile_load8:
4436 case Builtin::BI__iso_volatile_load16:
4437 case Builtin::BI__iso_volatile_load32:
4438 case Builtin::BI__iso_volatile_load64:
4439 return RValue::get(EmitISOVolatileLoad(*this, E));
4440 case Builtin::BI__iso_volatile_store8:
4441 case Builtin::BI__iso_volatile_store16:
4442 case Builtin::BI__iso_volatile_store32:
4443 case Builtin::BI__iso_volatile_store64:
4444 return RValue::get(EmitISOVolatileStore(*this, E));
4445
4446 case Builtin::BI__exception_code:
4447 case Builtin::BI_exception_code:
4448 return RValue::get(EmitSEHExceptionCode());
4449 case Builtin::BI__exception_info:
4450 case Builtin::BI_exception_info:
4451 return RValue::get(EmitSEHExceptionInfo());
4452 case Builtin::BI__abnormal_termination:
4453 case Builtin::BI_abnormal_termination:
4454 return RValue::get(EmitSEHAbnormalTermination());
4455 case Builtin::BI_setjmpex:
4456 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4457 E->getArg(0)->getType()->isPointerType())
4458 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4459 break;
4460 case Builtin::BI_setjmp:
4461 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4462 E->getArg(0)->getType()->isPointerType()) {
4463 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4464 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4465 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4466 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4467 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4468 }
4469 break;
4470
4471 case Builtin::BI__GetExceptionInfo: {
4472 if (llvm::GlobalVariable *GV =
4473 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4474 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4475 break;
4476 }
4477
4478 case Builtin::BI__fastfail:
4479 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4480
4481 case Builtin::BI__builtin_coro_size: {
4482 auto & Context = getContext();
4483 auto SizeTy = Context.getSizeType();
4484 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4485 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4486 return RValue::get(Builder.CreateCall(F));
4487 }
4488
4489 case Builtin::BI__builtin_coro_id:
4490 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4491 case Builtin::BI__builtin_coro_promise:
4492 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4493 case Builtin::BI__builtin_coro_resume:
4494 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4495 case Builtin::BI__builtin_coro_frame:
4496 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4497 case Builtin::BI__builtin_coro_noop:
4498 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4499 case Builtin::BI__builtin_coro_free:
4500 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4501 case Builtin::BI__builtin_coro_destroy:
4502 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4503 case Builtin::BI__builtin_coro_done:
4504 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4505 case Builtin::BI__builtin_coro_alloc:
4506 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4507 case Builtin::BI__builtin_coro_begin:
4508 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4509 case Builtin::BI__builtin_coro_end:
4510 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4511 case Builtin::BI__builtin_coro_suspend:
4512 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4513 case Builtin::BI__builtin_coro_param:
4514 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
4515
4516 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4517 case Builtin::BIread_pipe:
4518 case Builtin::BIwrite_pipe: {
4519 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4520 *Arg1 = EmitScalarExpr(E->getArg(1));
4521 CGOpenCLRuntime OpenCLRT(CGM);
4522 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4523 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4524
4525 // Type of the generic packet parameter.
4526 unsigned GenericAS =
4527 getContext().getTargetAddressSpace(LangAS::opencl_generic);
4528 llvm::Type *I8PTy = llvm::PointerType::get(
4529 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4530
4531 // Testing which overloaded version we should generate the call for.
4532 if (2U == E->getNumArgs()) {
4533 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4534 : "__write_pipe_2";
4535 // Creating a generic function type to be able to call with any builtin or
4536 // user defined type.
4537 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4538 llvm::FunctionType *FTy = llvm::FunctionType::get(
4539 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4540 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4541 return RValue::get(
4542 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4543 {Arg0, BCast, PacketSize, PacketAlign}));
4544 } else {
4545 assert(4 == E->getNumArgs() &&
4546 "Illegal number of parameters to pipe function");
4547 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4548 : "__write_pipe_4";
4549
4550 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4551 Int32Ty, Int32Ty};
4552 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4553 *Arg3 = EmitScalarExpr(E->getArg(3));
4554 llvm::FunctionType *FTy = llvm::FunctionType::get(
4555 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4556 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4557 // We know the third argument is an integer type, but we may need to cast
4558 // it to i32.
4559 if (Arg2->getType() != Int32Ty)
4560 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4561 return RValue::get(
4562 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4563 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4564 }
4565 }
4566 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4567 // functions
4568 case Builtin::BIreserve_read_pipe:
4569 case Builtin::BIreserve_write_pipe:
4570 case Builtin::BIwork_group_reserve_read_pipe:
4571 case Builtin::BIwork_group_reserve_write_pipe:
4572 case Builtin::BIsub_group_reserve_read_pipe:
4573 case Builtin::BIsub_group_reserve_write_pipe: {
4574 // Composing the mangled name for the function.
4575 const char *Name;
4576 if (BuiltinID == Builtin::BIreserve_read_pipe)
4577 Name = "__reserve_read_pipe";
4578 else if (BuiltinID == Builtin::BIreserve_write_pipe)
4579 Name = "__reserve_write_pipe";
4580 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4581 Name = "__work_group_reserve_read_pipe";
4582 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4583 Name = "__work_group_reserve_write_pipe";
4584 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4585 Name = "__sub_group_reserve_read_pipe";
4586 else
4587 Name = "__sub_group_reserve_write_pipe";
4588
4589 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4590 *Arg1 = EmitScalarExpr(E->getArg(1));
4591 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4592 CGOpenCLRuntime OpenCLRT(CGM);
4593 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4594 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4595
4596 // Building the generic function prototype.
4597 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4598 llvm::FunctionType *FTy = llvm::FunctionType::get(
4599 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4600 // We know the second argument is an integer type, but we may need to cast
4601 // it to i32.
4602 if (Arg1->getType() != Int32Ty)
4603 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4604 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4605 {Arg0, Arg1, PacketSize, PacketAlign}));
4606 }
4607 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4608 // functions
4609 case Builtin::BIcommit_read_pipe:
4610 case Builtin::BIcommit_write_pipe:
4611 case Builtin::BIwork_group_commit_read_pipe:
4612 case Builtin::BIwork_group_commit_write_pipe:
4613 case Builtin::BIsub_group_commit_read_pipe:
4614 case Builtin::BIsub_group_commit_write_pipe: {
4615 const char *Name;
4616 if (BuiltinID == Builtin::BIcommit_read_pipe)
4617 Name = "__commit_read_pipe";
4618 else if (BuiltinID == Builtin::BIcommit_write_pipe)
4619 Name = "__commit_write_pipe";
4620 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4621 Name = "__work_group_commit_read_pipe";
4622 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4623 Name = "__work_group_commit_write_pipe";
4624 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4625 Name = "__sub_group_commit_read_pipe";
4626 else
4627 Name = "__sub_group_commit_write_pipe";
4628
4629 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4630 *Arg1 = EmitScalarExpr(E->getArg(1));
4631 CGOpenCLRuntime OpenCLRT(CGM);
4632 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4633 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4634
4635 // Building the generic function prototype.
4636 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4637 llvm::FunctionType *FTy =
4638 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4639 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4640
4641 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4642 {Arg0, Arg1, PacketSize, PacketAlign}));
4643 }
4644 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4645 case Builtin::BIget_pipe_num_packets:
4646 case Builtin::BIget_pipe_max_packets: {
4647 const char *BaseName;
4648 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4649 if (BuiltinID == Builtin::BIget_pipe_num_packets)
4650 BaseName = "__get_pipe_num_packets";
4651 else
4652 BaseName = "__get_pipe_max_packets";
4653 std::string Name = std::string(BaseName) +
4654 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4655
4656 // Building the generic function prototype.
4657 Value *Arg0 = EmitScalarExpr(E->getArg(0));
4658 CGOpenCLRuntime OpenCLRT(CGM);
4659 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4660 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4661 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4662 llvm::FunctionType *FTy = llvm::FunctionType::get(
4663 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4664
4665 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4666 {Arg0, PacketSize, PacketAlign}));
4667 }
4668
4669 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4670 case Builtin::BIto_global:
4671 case Builtin::BIto_local:
4672 case Builtin::BIto_private: {
4673 auto Arg0 = EmitScalarExpr(E->getArg(0));
4674 auto NewArgT = llvm::PointerType::get(Int8Ty,
4675 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4676 auto NewRetT = llvm::PointerType::get(Int8Ty,
4677 CGM.getContext().getTargetAddressSpace(
4678 E->getType()->getPointeeType().getAddressSpace()));
4679 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4680 llvm::Value *NewArg;
4681 if (Arg0->getType()->getPointerAddressSpace() !=
4682 NewArgT->getPointerAddressSpace())
4683 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4684 else
4685 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4686 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4687 auto NewCall =
4688 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4689 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4690 ConvertType(E->getType())));
4691 }
4692
4693 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4694 // It contains four different overload formats specified in Table 6.13.17.1.
4695 case Builtin::BIenqueue_kernel: {
4696 StringRef Name; // Generated function call name
4697 unsigned NumArgs = E->getNumArgs();
4698
4699 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4700 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4701 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4702
4703 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4704 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4705 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4706 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4707 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4708
4709 if (NumArgs == 4) {
4710 // The most basic form of the call with parameters:
4711 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4712 Name = "__enqueue_kernel_basic";
4713 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4714 GenericVoidPtrTy};
4715 llvm::FunctionType *FTy = llvm::FunctionType::get(
4716 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4717
4718 auto Info =
4719 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4720 llvm::Value *Kernel =
4721 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4722 llvm::Value *Block =
4723 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4724
4725 AttrBuilder B;
4726 B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4727 llvm::AttributeList ByValAttrSet =
4728 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4729
4730 auto RTCall =
4731 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4732 {Queue, Flags, Range, Kernel, Block});
4733 RTCall->setAttributes(ByValAttrSet);
4734 return RValue::get(RTCall);
4735 }
4736 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4737
4738 // Create a temporary array to hold the sizes of local pointer arguments
4739 // for the block. \p First is the position of the first size argument.
4740 auto CreateArrayForSizeVar = [=](unsigned First)
4741 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4742 llvm::APInt ArraySize(32, NumArgs - First);
4743 QualType SizeArrayTy = getContext().getConstantArrayType(
4744 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4745 /*IndexTypeQuals=*/0);
4746 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4747 llvm::Value *TmpPtr = Tmp.getPointer();
4748 llvm::Value *TmpSize = EmitLifetimeStart(
4749 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4750 llvm::Value *ElemPtr;
4751 // Each of the following arguments specifies the size of the corresponding
4752 // argument passed to the enqueued block.
4753 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4754 for (unsigned I = First; I < NumArgs; ++I) {
4755 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4756 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
4757 {Zero, Index});
4758 if (I == First)
4759 ElemPtr = GEP;
4760 auto *V =
4761 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4762 Builder.CreateAlignedStore(
4763 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4764 }
4765 return std::tie(ElemPtr, TmpSize, TmpPtr);
4766 };
4767
4768 // Could have events and/or varargs.
4769 if (E->getArg(3)->getType()->isBlockPointerType()) {
4770 // No events passed, but has variadic arguments.
4771 Name = "__enqueue_kernel_varargs";
4772 auto Info =
4773 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4774 llvm::Value *Kernel =
4775 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4776 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4777 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4778 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4779
4780 // Create a vector of the arguments, as well as a constant value to
4781 // express to the runtime the number of variadic arguments.
4782 llvm::Value *const Args[] = {Queue, Flags,
4783 Range, Kernel,
4784 Block, ConstantInt::get(IntTy, NumArgs - 4),
4785 ElemPtr};
4786 llvm::Type *const ArgTys[] = {
4787 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
4788 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4789
4790 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4791 auto Call = RValue::get(
4792 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4793 if (TmpSize)
4794 EmitLifetimeEnd(TmpSize, TmpPtr);
4795 return Call;
4796 }
4797 // Any calls now have event arguments passed.
4798 if (NumArgs >= 7) {
4799 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4800 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4801 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4802
4803 llvm::Value *NumEvents =
4804 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4805
4806 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4807 // to be a null pointer constant (including `0` literal), we can take it
4808 // into account and emit null pointer directly.
4809 llvm::Value *EventWaitList = nullptr;
4810 if (E->getArg(4)->isNullPointerConstant(
4811 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4812 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4813 } else {
4814 EventWaitList = E->getArg(4)->getType()->isArrayType()
4815 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4816 : EmitScalarExpr(E->getArg(4));
4817 // Convert to generic address space.
4818 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4819 }
4820 llvm::Value *EventRet = nullptr;
4821 if (E->getArg(5)->isNullPointerConstant(
4822 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4823 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4824 } else {
4825 EventRet =
4826 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4827 }
4828
4829 auto Info =
4830 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4831 llvm::Value *Kernel =
4832 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4833 llvm::Value *Block =
4834 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4835
4836 std::vector<llvm::Type *> ArgTys = {
4837 QueueTy, Int32Ty, RangeTy, Int32Ty,
4838 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4839
4840 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
4841 NumEvents, EventWaitList, EventRet,
4842 Kernel, Block};
4843
4844 if (NumArgs == 7) {
4845 // Has events but no variadics.
4846 Name = "__enqueue_kernel_basic_events";
4847 llvm::FunctionType *FTy = llvm::FunctionType::get(
4848 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4849 return RValue::get(
4850 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4851 llvm::ArrayRef<llvm::Value *>(Args)));
4852 }
4853 // Has event info and variadics
4854 // Pass the number of variadics to the runtime function too.
4855 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4856 ArgTys.push_back(Int32Ty);
4857 Name = "__enqueue_kernel_events_varargs";
4858
4859 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4860 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4861 Args.push_back(ElemPtr);
4862 ArgTys.push_back(ElemPtr->getType());
4863
4864 llvm::FunctionType *FTy = llvm::FunctionType::get(
4865 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4866 auto Call =
4867 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4868 llvm::ArrayRef<llvm::Value *>(Args)));
4869 if (TmpSize)
4870 EmitLifetimeEnd(TmpSize, TmpPtr);
4871 return Call;
4872 }
4873 LLVM_FALLTHROUGH;
4874 }
4875 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4876 // parameter.
4877 case Builtin::BIget_kernel_work_group_size: {
4878 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4879 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4880 auto Info =
4881 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4882 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4883 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4884 return RValue::get(EmitRuntimeCall(
4885 CGM.CreateRuntimeFunction(
4886 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4887 false),
4888 "__get_kernel_work_group_size_impl"),
4889 {Kernel, Arg}));
4890 }
4891 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4892 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4893 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4894 auto Info =
4895 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4896 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4897 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4898 return RValue::get(EmitRuntimeCall(
4899 CGM.CreateRuntimeFunction(
4900 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4901 false),
4902 "__get_kernel_preferred_work_group_size_multiple_impl"),
4903 {Kernel, Arg}));
4904 }
4905 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4906 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4907 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4908 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4909 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4910 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4911 auto Info =
4912 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4913 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4914 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4915 const char *Name =
4916 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4917 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4918 : "__get_kernel_sub_group_count_for_ndrange_impl";
4919 return RValue::get(EmitRuntimeCall(
4920 CGM.CreateRuntimeFunction(
4921 llvm::FunctionType::get(
4922 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4923 false),
4924 Name),
4925 {NDRange, Kernel, Block}));
4926 }
4927
4928 case Builtin::BI__builtin_store_half:
4929 case Builtin::BI__builtin_store_halff: {
4930 Value *Val = EmitScalarExpr(E->getArg(0));
4931 Address Address = EmitPointerWithAlignment(E->getArg(1));
4932 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4933 return RValue::get(Builder.CreateStore(HalfVal, Address));
4934 }
4935 case Builtin::BI__builtin_load_half: {
4936 Address Address = EmitPointerWithAlignment(E->getArg(0));
4937 Value *HalfVal = Builder.CreateLoad(Address);
4938 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4939 }
4940 case Builtin::BI__builtin_load_halff: {
4941 Address Address = EmitPointerWithAlignment(E->getArg(0));
4942 Value *HalfVal = Builder.CreateLoad(Address);
4943 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4944 }
4945 case Builtin::BIprintf:
4946 if (getTarget().getTriple().isNVPTX())
4947 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4948 if (getTarget().getTriple().getArch() == Triple::amdgcn &&
4949 getLangOpts().HIP)
4950 return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
4951 break;
4952 case Builtin::BI__builtin_canonicalize:
4953 case Builtin::BI__builtin_canonicalizef:
4954 case Builtin::BI__builtin_canonicalizef16:
4955 case Builtin::BI__builtin_canonicalizel:
4956 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4957
4958 case Builtin::BI__builtin_thread_pointer: {
4959 if (!getContext().getTargetInfo().isTLSSupported())
4960 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4961 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4962 break;
4963 }
4964 case Builtin::BI__builtin_os_log_format:
4965 return emitBuiltinOSLogFormat(*E);
4966
4967 case Builtin::BI__xray_customevent: {
4968 if (!ShouldXRayInstrumentFunction())
4969 return RValue::getIgnored();
4970
4971 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4972 XRayInstrKind::Custom))
4973 return RValue::getIgnored();
4974
4975 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4976 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4977 return RValue::getIgnored();
4978
4979 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4980 auto FTy = F->getFunctionType();
4981 auto Arg0 = E->getArg(0);
4982 auto Arg0Val = EmitScalarExpr(Arg0);
4983 auto Arg0Ty = Arg0->getType();
4984 auto PTy0 = FTy->getParamType(0);
4985 if (PTy0 != Arg0Val->getType()) {
4986 if (Arg0Ty->isArrayType())
4987 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4988 else
4989 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
4990 }
4991 auto Arg1 = EmitScalarExpr(E->getArg(1));
4992 auto PTy1 = FTy->getParamType(1);
4993 if (PTy1 != Arg1->getType())
4994 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
4995 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
4996 }
4997
4998 case Builtin::BI__xray_typedevent: {
4999 // TODO: There should be a way to always emit events even if the current
5000 // function is not instrumented. Losing events in a stream can cripple
5001 // a trace.
5002 if (!ShouldXRayInstrumentFunction())
5003 return RValue::getIgnored();
5004
5005 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5006 XRayInstrKind::Typed))
5007 return RValue::getIgnored();
5008
5009 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5010 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5011 return RValue::getIgnored();
5012
5013 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5014 auto FTy = F->getFunctionType();
5015 auto Arg0 = EmitScalarExpr(E->getArg(0));
5016 auto PTy0 = FTy->getParamType(0);
5017 if (PTy0 != Arg0->getType())
5018 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5019 auto Arg1 = E->getArg(1);
5020 auto Arg1Val = EmitScalarExpr(Arg1);
5021 auto Arg1Ty = Arg1->getType();
5022 auto PTy1 = FTy->getParamType(1);
5023 if (PTy1 != Arg1Val->getType()) {
5024 if (Arg1Ty->isArrayType())
5025 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5026 else
5027 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5028 }
5029 auto Arg2 = EmitScalarExpr(E->getArg(2));
5030 auto PTy2 = FTy->getParamType(2);
5031 if (PTy2 != Arg2->getType())
5032 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5033 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5034 }
5035
5036 case Builtin::BI__builtin_ms_va_start:
5037 case Builtin::BI__builtin_ms_va_end:
5038 return RValue::get(
5039 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5040 BuiltinID == Builtin::BI__builtin_ms_va_start));
5041
5042 case Builtin::BI__builtin_ms_va_copy: {
5043 // Lower this manually. We can't reliably determine whether or not any
5044 // given va_copy() is for a Win64 va_list from the calling convention
5045 // alone, because it's legal to do this from a System V ABI function.
5046 // With opaque pointer types, we won't have enough information in LLVM
5047 // IR to determine this from the argument types, either. Best to do it
5048 // now, while we have enough information.
5049 Address DestAddr = EmitMSVAListRef(E->getArg(0));
5050 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5051
5052 llvm::Type *BPP = Int8PtrPtrTy;
5053
5054 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5055 DestAddr.getAlignment());
5056 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5057 SrcAddr.getAlignment());
5058
5059 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5060 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5061 }
5062
5063 case Builtin::BI__builtin_get_device_side_mangled_name: {
5064 auto Name = CGM.getCUDARuntime().getDeviceSideName(
5065 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5066 auto Str = CGM.GetAddrOfConstantCString(Name, "");
5067 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5068 llvm::ConstantInt::get(SizeTy, 0)};
5069 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5070 Str.getPointer(), Zeros);
5071 return RValue::get(Ptr);
5072 }
5073 }
5074
5075 // If this is an alias for a lib function (e.g. __builtin_sin), emit
5076 // the call using the normal call path, but using the unmangled
5077 // version of the function name.
5078 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5079 return emitLibraryCall(*this, FD, E,
5080 CGM.getBuiltinLibFunction(FD, BuiltinID));
5081
5082 // If this is a predefined lib function (e.g. malloc), emit the call
5083 // using exactly the normal call path.
5084 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5085 return emitLibraryCall(*this, FD, E,
5086 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5087
5088 // Check that a call to a target specific builtin has the correct target
5089 // features.
5090 // This is down here to avoid non-target specific builtins, however, if
5091 // generic builtins start to require generic target features then we
5092 // can move this up to the beginning of the function.
5093 checkTargetFeatures(E, FD);
5094
5095 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5096 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5097
5098 // See if we have a target specific intrinsic.
5099 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5100 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5101 StringRef Prefix =
5102 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5103 if (!Prefix.empty()) {
5104 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
5105 // NOTE we don't need to perform a compatibility flag check here since the
5106 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5107 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5108 if (IntrinsicID == Intrinsic::not_intrinsic)
5109 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5110 }
5111
5112 if (IntrinsicID != Intrinsic::not_intrinsic) {
5113 SmallVector<Value*, 16> Args;
5114
5115 // Find out if any arguments are required to be integer constant
5116 // expressions.
5117 unsigned ICEArguments = 0;
5118 ASTContext::GetBuiltinTypeError Error;
5119 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5120 assert(Error == ASTContext::GE_None && "Should not codegen an error");
5121
5122 Function *F = CGM.getIntrinsic(IntrinsicID);
5123 llvm::FunctionType *FTy = F->getFunctionType();
5124
5125 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5126 Value *ArgValue;
5127 // If this is a normal argument, just emit it as a scalar.
5128 if ((ICEArguments & (1 << i)) == 0) {
5129 ArgValue = EmitScalarExpr(E->getArg(i));
5130 } else {
5131 // If this is required to be a constant, constant fold it so that we
5132 // know that the generated intrinsic gets a ConstantInt.
5133 ArgValue = llvm::ConstantInt::get(
5134 getLLVMContext(),
5135 *E->getArg(i)->getIntegerConstantExpr(getContext()));
5136 }
5137
5138 // If the intrinsic arg type is different from the builtin arg type
5139 // we need to do a bit cast.
5140 llvm::Type *PTy = FTy->getParamType(i);
5141 if (PTy != ArgValue->getType()) {
5142 // XXX - vector of pointers?
5143 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5144 if (PtrTy->getAddressSpace() !=
5145 ArgValue->getType()->getPointerAddressSpace()) {
5146 ArgValue = Builder.CreateAddrSpaceCast(
5147 ArgValue,
5148 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5149 }
5150 }
5151
5152 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
5153 "Must be able to losslessly bit cast to param");
5154 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5155 }
5156
5157 Args.push_back(ArgValue);
5158 }
5159
5160 Value *V = Builder.CreateCall(F, Args);
5161 QualType BuiltinRetType = E->getType();
5162
5163 llvm::Type *RetTy = VoidTy;
5164 if (!BuiltinRetType->isVoidType())
5165 RetTy = ConvertType(BuiltinRetType);
5166
5167 if (RetTy != V->getType()) {
5168 // XXX - vector of pointers?
5169 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5170 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5171 V = Builder.CreateAddrSpaceCast(
5172 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5173 }
5174 }
5175
5176 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
5177 "Must be able to losslessly bit cast result type");
5178 V = Builder.CreateBitCast(V, RetTy);
5179 }
5180
5181 return RValue::get(V);
5182 }
5183
5184 // Some target-specific builtins can have aggregate return values, e.g.
5185 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5186 // ReturnValue to be non-null, so that the target-specific emission code can
5187 // always just emit into it.
5188 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5189 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5190 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5191 ReturnValue = ReturnValueSlot(DestPtr, false);
5192 }
5193
5194 // Now see if we can emit a target-specific builtin.
5195 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5196 switch (EvalKind) {
5197 case TEK_Scalar:
5198 return RValue::get(V);
5199 case TEK_Aggregate:
5200 return RValue::getAggregate(ReturnValue.getValue(),
5201 ReturnValue.isVolatile());
5202 case TEK_Complex:
5203 llvm_unreachable("No current target builtin returns complex");
5204 }
5205 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
5206 }
5207
5208 ErrorUnsupported(E, "builtin function");
5209
5210 // Unknown builtin, for now just dump it out and return undef.
5211 return GetUndefRValue(E->getType());
5212 }
5213
EmitTargetArchBuiltinExpr(CodeGenFunction * CGF,unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)5214 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5215 unsigned BuiltinID, const CallExpr *E,
5216 ReturnValueSlot ReturnValue,
5217 llvm::Triple::ArchType Arch) {
5218 switch (Arch) {
5219 case llvm::Triple::arm:
5220 case llvm::Triple::armeb:
5221 case llvm::Triple::thumb:
5222 case llvm::Triple::thumbeb:
5223 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5224 case llvm::Triple::aarch64:
5225 case llvm::Triple::aarch64_32:
5226 case llvm::Triple::aarch64_be:
5227 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5228 case llvm::Triple::bpfeb:
5229 case llvm::Triple::bpfel:
5230 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5231 case llvm::Triple::x86:
5232 case llvm::Triple::x86_64:
5233 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5234 case llvm::Triple::ppc:
5235 case llvm::Triple::ppcle:
5236 case llvm::Triple::ppc64:
5237 case llvm::Triple::ppc64le:
5238 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5239 case llvm::Triple::r600:
5240 case llvm::Triple::amdgcn:
5241 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5242 case llvm::Triple::systemz:
5243 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5244 case llvm::Triple::nvptx:
5245 case llvm::Triple::nvptx64:
5246 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5247 case llvm::Triple::wasm32:
5248 case llvm::Triple::wasm64:
5249 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5250 case llvm::Triple::hexagon:
5251 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5252 case llvm::Triple::riscv32:
5253 case llvm::Triple::riscv64:
5254 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5255 default:
5256 return nullptr;
5257 }
5258 }
5259
EmitTargetBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)5260 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5261 const CallExpr *E,
5262 ReturnValueSlot ReturnValue) {
5263 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5264 assert(getContext().getAuxTargetInfo() && "Missing aux target info");
5265 return EmitTargetArchBuiltinExpr(
5266 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5267 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5268 }
5269
5270 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5271 getTarget().getTriple().getArch());
5272 }
5273
GetNeonType(CodeGenFunction * CGF,NeonTypeFlags TypeFlags,bool HasLegalHalfType=true,bool V1Ty=false,bool AllowBFloatArgsAndRet=true)5274 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5275 NeonTypeFlags TypeFlags,
5276 bool HasLegalHalfType = true,
5277 bool V1Ty = false,
5278 bool AllowBFloatArgsAndRet = true) {
5279 int IsQuad = TypeFlags.isQuad();
5280 switch (TypeFlags.getEltType()) {
5281 case NeonTypeFlags::Int8:
5282 case NeonTypeFlags::Poly8:
5283 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5284 case NeonTypeFlags::Int16:
5285 case NeonTypeFlags::Poly16:
5286 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5287 case NeonTypeFlags::BFloat16:
5288 if (AllowBFloatArgsAndRet)
5289 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5290 else
5291 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5292 case NeonTypeFlags::Float16:
5293 if (HasLegalHalfType)
5294 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5295 else
5296 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5297 case NeonTypeFlags::Int32:
5298 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5299 case NeonTypeFlags::Int64:
5300 case NeonTypeFlags::Poly64:
5301 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5302 case NeonTypeFlags::Poly128:
5303 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5304 // There is a lot of i128 and f128 API missing.
5305 // so we use v16i8 to represent poly128 and get pattern matched.
5306 return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5307 case NeonTypeFlags::Float32:
5308 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5309 case NeonTypeFlags::Float64:
5310 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5311 }
5312 llvm_unreachable("Unknown vector element type!");
5313 }
5314
GetFloatNeonType(CodeGenFunction * CGF,NeonTypeFlags IntTypeFlags)5315 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5316 NeonTypeFlags IntTypeFlags) {
5317 int IsQuad = IntTypeFlags.isQuad();
5318 switch (IntTypeFlags.getEltType()) {
5319 case NeonTypeFlags::Int16:
5320 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5321 case NeonTypeFlags::Int32:
5322 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5323 case NeonTypeFlags::Int64:
5324 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5325 default:
5326 llvm_unreachable("Type can't be converted to floating-point!");
5327 }
5328 }
5329
EmitNeonSplat(Value * V,Constant * C,const ElementCount & Count)5330 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5331 const ElementCount &Count) {
5332 Value *SV = llvm::ConstantVector::getSplat(Count, C);
5333 return Builder.CreateShuffleVector(V, V, SV, "lane");
5334 }
5335
EmitNeonSplat(Value * V,Constant * C)5336 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5337 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5338 return EmitNeonSplat(V, C, EC);
5339 }
5340
EmitNeonCall(Function * F,SmallVectorImpl<Value * > & Ops,const char * name,unsigned shift,bool rightshift)5341 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5342 const char *name,
5343 unsigned shift, bool rightshift) {
5344 unsigned j = 0;
5345 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5346 ai != ae; ++ai, ++j) {
5347 if (F->isConstrainedFPIntrinsic())
5348 if (ai->getType()->isMetadataTy())
5349 continue;
5350 if (shift > 0 && shift == j)
5351 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5352 else
5353 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5354 }
5355
5356 if (F->isConstrainedFPIntrinsic())
5357 return Builder.CreateConstrainedFPCall(F, Ops, name);
5358 else
5359 return Builder.CreateCall(F, Ops, name);
5360 }
5361
EmitNeonShiftVector(Value * V,llvm::Type * Ty,bool neg)5362 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5363 bool neg) {
5364 int SV = cast<ConstantInt>(V)->getSExtValue();
5365 return ConstantInt::get(Ty, neg ? -SV : SV);
5366 }
5367
5368 // Right-shift a vector by a constant.
EmitNeonRShiftImm(Value * Vec,Value * Shift,llvm::Type * Ty,bool usgn,const char * name)5369 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5370 llvm::Type *Ty, bool usgn,
5371 const char *name) {
5372 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5373
5374 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5375 int EltSize = VTy->getScalarSizeInBits();
5376
5377 Vec = Builder.CreateBitCast(Vec, Ty);
5378
5379 // lshr/ashr are undefined when the shift amount is equal to the vector
5380 // element size.
5381 if (ShiftAmt == EltSize) {
5382 if (usgn) {
5383 // Right-shifting an unsigned value by its size yields 0.
5384 return llvm::ConstantAggregateZero::get(VTy);
5385 } else {
5386 // Right-shifting a signed value by its size is equivalent
5387 // to a shift of size-1.
5388 --ShiftAmt;
5389 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5390 }
5391 }
5392
5393 Shift = EmitNeonShiftVector(Shift, Ty, false);
5394 if (usgn)
5395 return Builder.CreateLShr(Vec, Shift, name);
5396 else
5397 return Builder.CreateAShr(Vec, Shift, name);
5398 }
5399
5400 enum {
5401 AddRetType = (1 << 0),
5402 Add1ArgType = (1 << 1),
5403 Add2ArgTypes = (1 << 2),
5404
5405 VectorizeRetType = (1 << 3),
5406 VectorizeArgTypes = (1 << 4),
5407
5408 InventFloatType = (1 << 5),
5409 UnsignedAlts = (1 << 6),
5410
5411 Use64BitVectors = (1 << 7),
5412 Use128BitVectors = (1 << 8),
5413
5414 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5415 VectorRet = AddRetType | VectorizeRetType,
5416 VectorRetGetArgs01 =
5417 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5418 FpCmpzModifiers =
5419 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5420 };
5421
5422 namespace {
5423 struct ARMVectorIntrinsicInfo {
5424 const char *NameHint;
5425 unsigned BuiltinID;
5426 unsigned LLVMIntrinsic;
5427 unsigned AltLLVMIntrinsic;
5428 uint64_t TypeModifier;
5429
operator <__anonc37ac5ca0811::ARMVectorIntrinsicInfo5430 bool operator<(unsigned RHSBuiltinID) const {
5431 return BuiltinID < RHSBuiltinID;
5432 }
operator <__anonc37ac5ca0811::ARMVectorIntrinsicInfo5433 bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5434 return BuiltinID < TE.BuiltinID;
5435 }
5436 };
5437 } // end anonymous namespace
5438
5439 #define NEONMAP0(NameBase) \
5440 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5441
5442 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5443 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5444 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5445
5446 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5447 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5448 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5449 TypeModifier }
5450
5451 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5452 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5453 NEONMAP0(splat_lane_v),
5454 NEONMAP0(splat_laneq_v),
5455 NEONMAP0(splatq_lane_v),
5456 NEONMAP0(splatq_laneq_v),
5457 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5458 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5459 NEONMAP1(vabs_v, arm_neon_vabs, 0),
5460 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5461 NEONMAP0(vadd_v),
5462 NEONMAP0(vaddhn_v),
5463 NEONMAP0(vaddq_v),
5464 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5465 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5466 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5467 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5468 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5469 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5470 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5471 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5472 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5473 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5474 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5475 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5476 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5477 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5478 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5479 NEONMAP1(vcage_v, arm_neon_vacge, 0),
5480 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5481 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5482 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5483 NEONMAP1(vcale_v, arm_neon_vacge, 0),
5484 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5485 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5486 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5487 NEONMAP0(vceqz_v),
5488 NEONMAP0(vceqzq_v),
5489 NEONMAP0(vcgez_v),
5490 NEONMAP0(vcgezq_v),
5491 NEONMAP0(vcgtz_v),
5492 NEONMAP0(vcgtzq_v),
5493 NEONMAP0(vclez_v),
5494 NEONMAP0(vclezq_v),
5495 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5496 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5497 NEONMAP0(vcltz_v),
5498 NEONMAP0(vcltzq_v),
5499 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5500 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5501 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5502 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5503 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5504 NEONMAP0(vcvt_f16_v),
5505 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5506 NEONMAP0(vcvt_f32_v),
5507 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5508 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5509 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5510 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5511 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5512 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5513 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5514 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5515 NEONMAP0(vcvt_s16_v),
5516 NEONMAP0(vcvt_s32_v),
5517 NEONMAP0(vcvt_s64_v),
5518 NEONMAP0(vcvt_u16_v),
5519 NEONMAP0(vcvt_u32_v),
5520 NEONMAP0(vcvt_u64_v),
5521 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5522 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5523 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5524 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5525 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5526 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5527 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5528 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5529 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5530 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5531 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5532 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5533 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5534 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5535 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5536 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5537 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5538 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5539 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5540 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5541 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5542 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5543 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5544 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5545 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5546 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5547 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5548 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5549 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5550 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5551 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5552 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5553 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5554 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5555 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5556 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5557 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5558 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5559 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5560 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5561 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5562 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5563 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5564 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5565 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5566 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5567 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5568 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5569 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5570 NEONMAP0(vcvtq_f16_v),
5571 NEONMAP0(vcvtq_f32_v),
5572 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5573 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5574 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5575 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5576 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5577 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5578 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5579 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5580 NEONMAP0(vcvtq_s16_v),
5581 NEONMAP0(vcvtq_s32_v),
5582 NEONMAP0(vcvtq_s64_v),
5583 NEONMAP0(vcvtq_u16_v),
5584 NEONMAP0(vcvtq_u32_v),
5585 NEONMAP0(vcvtq_u64_v),
5586 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5587 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5588 NEONMAP0(vext_v),
5589 NEONMAP0(vextq_v),
5590 NEONMAP0(vfma_v),
5591 NEONMAP0(vfmaq_v),
5592 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5593 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5594 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5595 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5596 NEONMAP0(vld1_dup_v),
5597 NEONMAP1(vld1_v, arm_neon_vld1, 0),
5598 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5599 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5600 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5601 NEONMAP0(vld1q_dup_v),
5602 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5603 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5604 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5605 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5606 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5607 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5608 NEONMAP1(vld2_v, arm_neon_vld2, 0),
5609 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5610 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5611 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5612 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5613 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5614 NEONMAP1(vld3_v, arm_neon_vld3, 0),
5615 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5616 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5617 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5618 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5619 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5620 NEONMAP1(vld4_v, arm_neon_vld4, 0),
5621 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5622 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5623 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5624 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5625 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5626 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5627 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5628 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5629 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5630 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5631 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5632 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5633 NEONMAP0(vmovl_v),
5634 NEONMAP0(vmovn_v),
5635 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5636 NEONMAP0(vmull_v),
5637 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5638 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5639 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5640 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5641 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5642 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5643 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5644 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5645 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5646 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5647 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5648 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5649 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5650 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5651 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5652 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5653 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5654 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5655 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5656 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5657 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5658 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5659 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5660 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5661 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5662 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5663 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5664 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5665 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5666 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5667 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5668 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5669 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5670 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5671 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5672 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5673 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5674 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5675 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5676 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5677 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5678 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5679 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5680 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5681 NEONMAP0(vrndi_v),
5682 NEONMAP0(vrndiq_v),
5683 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5684 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5685 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5686 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5687 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5688 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5689 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5690 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5691 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5692 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5693 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5694 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5695 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5696 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5697 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5698 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5699 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5700 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5701 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5702 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5703 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5704 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5705 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5706 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5707 NEONMAP0(vshl_n_v),
5708 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5709 NEONMAP0(vshll_n_v),
5710 NEONMAP0(vshlq_n_v),
5711 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5712 NEONMAP0(vshr_n_v),
5713 NEONMAP0(vshrn_n_v),
5714 NEONMAP0(vshrq_n_v),
5715 NEONMAP1(vst1_v, arm_neon_vst1, 0),
5716 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5717 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5718 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5719 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5720 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5721 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5722 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5723 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5724 NEONMAP1(vst2_v, arm_neon_vst2, 0),
5725 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5726 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5727 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5728 NEONMAP1(vst3_v, arm_neon_vst3, 0),
5729 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5730 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5731 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5732 NEONMAP1(vst4_v, arm_neon_vst4, 0),
5733 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5734 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5735 NEONMAP0(vsubhn_v),
5736 NEONMAP0(vtrn_v),
5737 NEONMAP0(vtrnq_v),
5738 NEONMAP0(vtst_v),
5739 NEONMAP0(vtstq_v),
5740 NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5741 NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5742 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5743 NEONMAP0(vuzp_v),
5744 NEONMAP0(vuzpq_v),
5745 NEONMAP0(vzip_v),
5746 NEONMAP0(vzipq_v)
5747 };
5748
5749 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5750 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5751 NEONMAP0(splat_lane_v),
5752 NEONMAP0(splat_laneq_v),
5753 NEONMAP0(splatq_lane_v),
5754 NEONMAP0(splatq_laneq_v),
5755 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5756 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5757 NEONMAP0(vadd_v),
5758 NEONMAP0(vaddhn_v),
5759 NEONMAP0(vaddq_p128),
5760 NEONMAP0(vaddq_v),
5761 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5762 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5763 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5764 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5765 NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
5766 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5767 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5768 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5769 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5770 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5771 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5772 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5773 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5774 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5775 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5776 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5777 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5778 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5779 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5780 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5781 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5782 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5783 NEONMAP0(vceqz_v),
5784 NEONMAP0(vceqzq_v),
5785 NEONMAP0(vcgez_v),
5786 NEONMAP0(vcgezq_v),
5787 NEONMAP0(vcgtz_v),
5788 NEONMAP0(vcgtzq_v),
5789 NEONMAP0(vclez_v),
5790 NEONMAP0(vclezq_v),
5791 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5792 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5793 NEONMAP0(vcltz_v),
5794 NEONMAP0(vcltzq_v),
5795 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5796 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5797 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5798 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5799 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5800 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5801 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5802 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5803 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5804 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5805 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5806 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5807 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5808 NEONMAP0(vcvt_f16_v),
5809 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5810 NEONMAP0(vcvt_f32_v),
5811 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5812 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5813 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5814 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5815 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5816 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5817 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5818 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5819 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5820 NEONMAP0(vcvtq_f16_v),
5821 NEONMAP0(vcvtq_f32_v),
5822 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5823 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5824 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5825 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5826 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5827 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5828 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5829 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5830 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5831 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5832 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5833 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5834 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5835 NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
5836 NEONMAP0(vext_v),
5837 NEONMAP0(vextq_v),
5838 NEONMAP0(vfma_v),
5839 NEONMAP0(vfmaq_v),
5840 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5841 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5842 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5843 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5844 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5845 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5846 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5847 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5848 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5849 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5850 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5851 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5852 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5853 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5854 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5855 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5856 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5857 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5858 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5859 NEONMAP0(vmovl_v),
5860 NEONMAP0(vmovn_v),
5861 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5862 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5863 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5864 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5865 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5866 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5867 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5868 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5869 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5870 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5871 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5872 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5873 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5874 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5875 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5876 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5877 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5878 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5879 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5880 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5881 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5882 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5883 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5884 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5885 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5886 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5887 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5888 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5889 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5890 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5891 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5892 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5893 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5894 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5895 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5896 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5897 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5898 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5899 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5900 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5901 NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
5902 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5903 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5904 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5905 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5906 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5907 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5908 NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
5909 NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
5910 NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
5911 NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
5912 NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
5913 NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
5914 NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
5915 NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
5916 NEONMAP0(vrndi_v),
5917 NEONMAP0(vrndiq_v),
5918 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5919 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5920 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5921 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5922 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5923 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5924 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5925 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5926 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5927 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5928 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5929 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5930 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5931 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5932 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5933 NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
5934 NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
5935 NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
5936 NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
5937 NEONMAP0(vshl_n_v),
5938 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5939 NEONMAP0(vshll_n_v),
5940 NEONMAP0(vshlq_n_v),
5941 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5942 NEONMAP0(vshr_n_v),
5943 NEONMAP0(vshrn_n_v),
5944 NEONMAP0(vshrq_n_v),
5945 NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
5946 NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
5947 NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
5948 NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
5949 NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
5950 NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
5951 NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
5952 NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
5953 NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
5954 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5955 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5956 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5957 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5958 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5959 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5960 NEONMAP0(vsubhn_v),
5961 NEONMAP0(vtst_v),
5962 NEONMAP0(vtstq_v),
5963 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
5964 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
5965 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
5966 NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
5967 };
5968
5969 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5970 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5971 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5972 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5973 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5974 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5975 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5976 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5977 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5978 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5979 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5980 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5981 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5982 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5983 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5984 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5985 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5986 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5987 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5988 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5989 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5990 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5991 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5992 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
5993 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
5994 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5995 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5996 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
5997 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
5998 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
5999 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6000 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6001 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6002 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6003 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6004 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6005 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6006 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6007 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6008 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6009 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6010 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6011 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6012 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6013 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6014 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6015 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6016 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6017 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6018 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6019 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6020 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6021 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6022 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6023 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6024 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6025 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6026 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6027 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6028 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6029 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6030 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6031 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6032 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6033 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6034 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6035 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6036 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6037 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6038 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6039 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6040 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6041 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6042 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6043 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6044 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6045 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6046 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6047 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6048 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6049 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6050 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6051 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6052 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6053 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6054 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6055 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6056 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6057 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6058 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6059 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6060 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6061 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6062 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6063 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6064 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6065 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6066 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6067 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6068 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6069 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6070 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6071 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6072 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6073 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6074 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6075 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6076 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6077 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6078 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6079 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6080 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6081 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6082 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6083 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6084 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6085 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6086 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6087 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6088 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6089 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6090 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6091 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6092 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6093 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6094 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6095 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6096 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6097 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6098 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6099 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6100 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6101 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6102 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6103 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6104 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6105 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6106 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6107 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6108 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6109 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6110 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6111 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6112 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6113 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6114 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6115 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6116 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6117 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6118 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6119 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6120 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6121 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6122 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6123 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6124 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6125 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6126 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6127 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6128 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6129 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6130 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6131 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6132 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6133 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6134 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6135 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6136 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6137 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6138 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6139 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6140 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6141 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6142 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6143 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6144 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6145 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6146 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6147 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6148 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6149 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6150 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6151 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6152 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6153 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6154 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6155 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6156 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6157 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6158 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6159 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6160 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6161 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6162 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6163 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6164 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6165 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6166 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6167 // FP16 scalar intrinisics go here.
6168 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6169 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6170 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6171 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6172 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6173 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6174 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6175 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6176 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6177 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6178 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6179 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6180 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6181 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6182 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6183 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6184 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6185 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6186 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6187 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6188 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6189 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6190 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6191 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6192 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6193 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6194 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6195 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6196 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6197 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6198 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6199 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6200 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6201 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6202 };
6203
6204 #undef NEONMAP0
6205 #undef NEONMAP1
6206 #undef NEONMAP2
6207
6208 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6209 { \
6210 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
6211 TypeModifier \
6212 }
6213
6214 #define SVEMAP2(NameBase, TypeModifier) \
6215 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6216 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6217 #define GET_SVE_LLVM_INTRINSIC_MAP
6218 #include "clang/Basic/arm_sve_builtin_cg.inc"
6219 #undef GET_SVE_LLVM_INTRINSIC_MAP
6220 };
6221
6222 #undef SVEMAP1
6223 #undef SVEMAP2
6224
6225 static bool NEONSIMDIntrinsicsProvenSorted = false;
6226
6227 static bool AArch64SIMDIntrinsicsProvenSorted = false;
6228 static bool AArch64SISDIntrinsicsProvenSorted = false;
6229 static bool AArch64SVEIntrinsicsProvenSorted = false;
6230
6231 static const ARMVectorIntrinsicInfo *
findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,unsigned BuiltinID,bool & MapProvenSorted)6232 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6233 unsigned BuiltinID, bool &MapProvenSorted) {
6234
6235 #ifndef NDEBUG
6236 if (!MapProvenSorted) {
6237 assert(llvm::is_sorted(IntrinsicMap));
6238 MapProvenSorted = true;
6239 }
6240 #endif
6241
6242 const ARMVectorIntrinsicInfo *Builtin =
6243 llvm::lower_bound(IntrinsicMap, BuiltinID);
6244
6245 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6246 return Builtin;
6247
6248 return nullptr;
6249 }
6250
LookupNeonLLVMIntrinsic(unsigned IntrinsicID,unsigned Modifier,llvm::Type * ArgType,const CallExpr * E)6251 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6252 unsigned Modifier,
6253 llvm::Type *ArgType,
6254 const CallExpr *E) {
6255 int VectorSize = 0;
6256 if (Modifier & Use64BitVectors)
6257 VectorSize = 64;
6258 else if (Modifier & Use128BitVectors)
6259 VectorSize = 128;
6260
6261 // Return type.
6262 SmallVector<llvm::Type *, 3> Tys;
6263 if (Modifier & AddRetType) {
6264 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6265 if (Modifier & VectorizeRetType)
6266 Ty = llvm::FixedVectorType::get(
6267 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6268
6269 Tys.push_back(Ty);
6270 }
6271
6272 // Arguments.
6273 if (Modifier & VectorizeArgTypes) {
6274 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6275 ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6276 }
6277
6278 if (Modifier & (Add1ArgType | Add2ArgTypes))
6279 Tys.push_back(ArgType);
6280
6281 if (Modifier & Add2ArgTypes)
6282 Tys.push_back(ArgType);
6283
6284 if (Modifier & InventFloatType)
6285 Tys.push_back(FloatTy);
6286
6287 return CGM.getIntrinsic(IntrinsicID, Tys);
6288 }
6289
EmitCommonNeonSISDBuiltinExpr(CodeGenFunction & CGF,const ARMVectorIntrinsicInfo & SISDInfo,SmallVectorImpl<Value * > & Ops,const CallExpr * E)6290 static Value *EmitCommonNeonSISDBuiltinExpr(
6291 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6292 SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6293 unsigned BuiltinID = SISDInfo.BuiltinID;
6294 unsigned int Int = SISDInfo.LLVMIntrinsic;
6295 unsigned Modifier = SISDInfo.TypeModifier;
6296 const char *s = SISDInfo.NameHint;
6297
6298 switch (BuiltinID) {
6299 case NEON::BI__builtin_neon_vcled_s64:
6300 case NEON::BI__builtin_neon_vcled_u64:
6301 case NEON::BI__builtin_neon_vcles_f32:
6302 case NEON::BI__builtin_neon_vcled_f64:
6303 case NEON::BI__builtin_neon_vcltd_s64:
6304 case NEON::BI__builtin_neon_vcltd_u64:
6305 case NEON::BI__builtin_neon_vclts_f32:
6306 case NEON::BI__builtin_neon_vcltd_f64:
6307 case NEON::BI__builtin_neon_vcales_f32:
6308 case NEON::BI__builtin_neon_vcaled_f64:
6309 case NEON::BI__builtin_neon_vcalts_f32:
6310 case NEON::BI__builtin_neon_vcaltd_f64:
6311 // Only one direction of comparisons actually exist, cmle is actually a cmge
6312 // with swapped operands. The table gives us the right intrinsic but we
6313 // still need to do the swap.
6314 std::swap(Ops[0], Ops[1]);
6315 break;
6316 }
6317
6318 assert(Int && "Generic code assumes a valid intrinsic");
6319
6320 // Determine the type(s) of this overloaded AArch64 intrinsic.
6321 const Expr *Arg = E->getArg(0);
6322 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6323 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6324
6325 int j = 0;
6326 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6327 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6328 ai != ae; ++ai, ++j) {
6329 llvm::Type *ArgTy = ai->getType();
6330 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6331 ArgTy->getPrimitiveSizeInBits())
6332 continue;
6333
6334 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
6335 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6336 // it before inserting.
6337 Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6338 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6339 Ops[j] =
6340 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6341 }
6342
6343 Value *Result = CGF.EmitNeonCall(F, Ops, s);
6344 llvm::Type *ResultType = CGF.ConvertType(E->getType());
6345 if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6346 Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6347 return CGF.Builder.CreateExtractElement(Result, C0);
6348
6349 return CGF.Builder.CreateBitCast(Result, ResultType, s);
6350 }
6351
EmitCommonNeonBuiltinExpr(unsigned BuiltinID,unsigned LLVMIntrinsic,unsigned AltLLVMIntrinsic,const char * NameHint,unsigned Modifier,const CallExpr * E,SmallVectorImpl<llvm::Value * > & Ops,Address PtrOp0,Address PtrOp1,llvm::Triple::ArchType Arch)6352 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6353 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6354 const char *NameHint, unsigned Modifier, const CallExpr *E,
6355 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6356 llvm::Triple::ArchType Arch) {
6357 // Get the last argument, which specifies the vector type.
6358 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6359 Optional<llvm::APSInt> NeonTypeConst =
6360 Arg->getIntegerConstantExpr(getContext());
6361 if (!NeonTypeConst)
6362 return nullptr;
6363
6364 // Determine the type of this overloaded NEON intrinsic.
6365 NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6366 bool Usgn = Type.isUnsigned();
6367 bool Quad = Type.isQuad();
6368 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6369 const bool AllowBFloatArgsAndRet =
6370 getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6371
6372 llvm::FixedVectorType *VTy =
6373 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6374 llvm::Type *Ty = VTy;
6375 if (!Ty)
6376 return nullptr;
6377
6378 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6379 return Builder.getInt32(addr.getAlignment().getQuantity());
6380 };
6381
6382 unsigned Int = LLVMIntrinsic;
6383 if ((Modifier & UnsignedAlts) && !Usgn)
6384 Int = AltLLVMIntrinsic;
6385
6386 switch (BuiltinID) {
6387 default: break;
6388 case NEON::BI__builtin_neon_splat_lane_v:
6389 case NEON::BI__builtin_neon_splat_laneq_v:
6390 case NEON::BI__builtin_neon_splatq_lane_v:
6391 case NEON::BI__builtin_neon_splatq_laneq_v: {
6392 auto NumElements = VTy->getElementCount();
6393 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6394 NumElements = NumElements * 2;
6395 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6396 NumElements = NumElements.divideCoefficientBy(2);
6397
6398 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6399 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6400 }
6401 case NEON::BI__builtin_neon_vpadd_v:
6402 case NEON::BI__builtin_neon_vpaddq_v:
6403 // We don't allow fp/int overloading of intrinsics.
6404 if (VTy->getElementType()->isFloatingPointTy() &&
6405 Int == Intrinsic::aarch64_neon_addp)
6406 Int = Intrinsic::aarch64_neon_faddp;
6407 break;
6408 case NEON::BI__builtin_neon_vabs_v:
6409 case NEON::BI__builtin_neon_vabsq_v:
6410 if (VTy->getElementType()->isFloatingPointTy())
6411 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6412 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6413 case NEON::BI__builtin_neon_vadd_v:
6414 case NEON::BI__builtin_neon_vaddq_v: {
6415 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6416 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6417 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6418 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
6419 return Builder.CreateBitCast(Ops[0], Ty);
6420 }
6421 case NEON::BI__builtin_neon_vaddhn_v: {
6422 llvm::FixedVectorType *SrcTy =
6423 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6424
6425 // %sum = add <4 x i32> %lhs, %rhs
6426 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6427 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6428 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6429
6430 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6431 Constant *ShiftAmt =
6432 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6433 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6434
6435 // %res = trunc <4 x i32> %high to <4 x i16>
6436 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6437 }
6438 case NEON::BI__builtin_neon_vcale_v:
6439 case NEON::BI__builtin_neon_vcaleq_v:
6440 case NEON::BI__builtin_neon_vcalt_v:
6441 case NEON::BI__builtin_neon_vcaltq_v:
6442 std::swap(Ops[0], Ops[1]);
6443 LLVM_FALLTHROUGH;
6444 case NEON::BI__builtin_neon_vcage_v:
6445 case NEON::BI__builtin_neon_vcageq_v:
6446 case NEON::BI__builtin_neon_vcagt_v:
6447 case NEON::BI__builtin_neon_vcagtq_v: {
6448 llvm::Type *Ty;
6449 switch (VTy->getScalarSizeInBits()) {
6450 default: llvm_unreachable("unexpected type");
6451 case 32:
6452 Ty = FloatTy;
6453 break;
6454 case 64:
6455 Ty = DoubleTy;
6456 break;
6457 case 16:
6458 Ty = HalfTy;
6459 break;
6460 }
6461 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6462 llvm::Type *Tys[] = { VTy, VecFlt };
6463 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6464 return EmitNeonCall(F, Ops, NameHint);
6465 }
6466 case NEON::BI__builtin_neon_vceqz_v:
6467 case NEON::BI__builtin_neon_vceqzq_v:
6468 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6469 ICmpInst::ICMP_EQ, "vceqz");
6470 case NEON::BI__builtin_neon_vcgez_v:
6471 case NEON::BI__builtin_neon_vcgezq_v:
6472 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6473 ICmpInst::ICMP_SGE, "vcgez");
6474 case NEON::BI__builtin_neon_vclez_v:
6475 case NEON::BI__builtin_neon_vclezq_v:
6476 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6477 ICmpInst::ICMP_SLE, "vclez");
6478 case NEON::BI__builtin_neon_vcgtz_v:
6479 case NEON::BI__builtin_neon_vcgtzq_v:
6480 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6481 ICmpInst::ICMP_SGT, "vcgtz");
6482 case NEON::BI__builtin_neon_vcltz_v:
6483 case NEON::BI__builtin_neon_vcltzq_v:
6484 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6485 ICmpInst::ICMP_SLT, "vcltz");
6486 case NEON::BI__builtin_neon_vclz_v:
6487 case NEON::BI__builtin_neon_vclzq_v:
6488 // We generate target-independent intrinsic, which needs a second argument
6489 // for whether or not clz of zero is undefined; on ARM it isn't.
6490 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6491 break;
6492 case NEON::BI__builtin_neon_vcvt_f32_v:
6493 case NEON::BI__builtin_neon_vcvtq_f32_v:
6494 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6495 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6496 HasLegalHalfType);
6497 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6498 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6499 case NEON::BI__builtin_neon_vcvt_f16_v:
6500 case NEON::BI__builtin_neon_vcvtq_f16_v:
6501 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6502 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6503 HasLegalHalfType);
6504 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6505 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6506 case NEON::BI__builtin_neon_vcvt_n_f16_v:
6507 case NEON::BI__builtin_neon_vcvt_n_f32_v:
6508 case NEON::BI__builtin_neon_vcvt_n_f64_v:
6509 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6510 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6511 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6512 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6513 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6514 Function *F = CGM.getIntrinsic(Int, Tys);
6515 return EmitNeonCall(F, Ops, "vcvt_n");
6516 }
6517 case NEON::BI__builtin_neon_vcvt_n_s16_v:
6518 case NEON::BI__builtin_neon_vcvt_n_s32_v:
6519 case NEON::BI__builtin_neon_vcvt_n_u16_v:
6520 case NEON::BI__builtin_neon_vcvt_n_u32_v:
6521 case NEON::BI__builtin_neon_vcvt_n_s64_v:
6522 case NEON::BI__builtin_neon_vcvt_n_u64_v:
6523 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6524 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6525 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6526 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6527 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6528 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6529 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6530 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6531 return EmitNeonCall(F, Ops, "vcvt_n");
6532 }
6533 case NEON::BI__builtin_neon_vcvt_s32_v:
6534 case NEON::BI__builtin_neon_vcvt_u32_v:
6535 case NEON::BI__builtin_neon_vcvt_s64_v:
6536 case NEON::BI__builtin_neon_vcvt_u64_v:
6537 case NEON::BI__builtin_neon_vcvt_s16_v:
6538 case NEON::BI__builtin_neon_vcvt_u16_v:
6539 case NEON::BI__builtin_neon_vcvtq_s32_v:
6540 case NEON::BI__builtin_neon_vcvtq_u32_v:
6541 case NEON::BI__builtin_neon_vcvtq_s64_v:
6542 case NEON::BI__builtin_neon_vcvtq_u64_v:
6543 case NEON::BI__builtin_neon_vcvtq_s16_v:
6544 case NEON::BI__builtin_neon_vcvtq_u16_v: {
6545 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6546 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6547 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6548 }
6549 case NEON::BI__builtin_neon_vcvta_s16_v:
6550 case NEON::BI__builtin_neon_vcvta_s32_v:
6551 case NEON::BI__builtin_neon_vcvta_s64_v:
6552 case NEON::BI__builtin_neon_vcvta_u16_v:
6553 case NEON::BI__builtin_neon_vcvta_u32_v:
6554 case NEON::BI__builtin_neon_vcvta_u64_v:
6555 case NEON::BI__builtin_neon_vcvtaq_s16_v:
6556 case NEON::BI__builtin_neon_vcvtaq_s32_v:
6557 case NEON::BI__builtin_neon_vcvtaq_s64_v:
6558 case NEON::BI__builtin_neon_vcvtaq_u16_v:
6559 case NEON::BI__builtin_neon_vcvtaq_u32_v:
6560 case NEON::BI__builtin_neon_vcvtaq_u64_v:
6561 case NEON::BI__builtin_neon_vcvtn_s16_v:
6562 case NEON::BI__builtin_neon_vcvtn_s32_v:
6563 case NEON::BI__builtin_neon_vcvtn_s64_v:
6564 case NEON::BI__builtin_neon_vcvtn_u16_v:
6565 case NEON::BI__builtin_neon_vcvtn_u32_v:
6566 case NEON::BI__builtin_neon_vcvtn_u64_v:
6567 case NEON::BI__builtin_neon_vcvtnq_s16_v:
6568 case NEON::BI__builtin_neon_vcvtnq_s32_v:
6569 case NEON::BI__builtin_neon_vcvtnq_s64_v:
6570 case NEON::BI__builtin_neon_vcvtnq_u16_v:
6571 case NEON::BI__builtin_neon_vcvtnq_u32_v:
6572 case NEON::BI__builtin_neon_vcvtnq_u64_v:
6573 case NEON::BI__builtin_neon_vcvtp_s16_v:
6574 case NEON::BI__builtin_neon_vcvtp_s32_v:
6575 case NEON::BI__builtin_neon_vcvtp_s64_v:
6576 case NEON::BI__builtin_neon_vcvtp_u16_v:
6577 case NEON::BI__builtin_neon_vcvtp_u32_v:
6578 case NEON::BI__builtin_neon_vcvtp_u64_v:
6579 case NEON::BI__builtin_neon_vcvtpq_s16_v:
6580 case NEON::BI__builtin_neon_vcvtpq_s32_v:
6581 case NEON::BI__builtin_neon_vcvtpq_s64_v:
6582 case NEON::BI__builtin_neon_vcvtpq_u16_v:
6583 case NEON::BI__builtin_neon_vcvtpq_u32_v:
6584 case NEON::BI__builtin_neon_vcvtpq_u64_v:
6585 case NEON::BI__builtin_neon_vcvtm_s16_v:
6586 case NEON::BI__builtin_neon_vcvtm_s32_v:
6587 case NEON::BI__builtin_neon_vcvtm_s64_v:
6588 case NEON::BI__builtin_neon_vcvtm_u16_v:
6589 case NEON::BI__builtin_neon_vcvtm_u32_v:
6590 case NEON::BI__builtin_neon_vcvtm_u64_v:
6591 case NEON::BI__builtin_neon_vcvtmq_s16_v:
6592 case NEON::BI__builtin_neon_vcvtmq_s32_v:
6593 case NEON::BI__builtin_neon_vcvtmq_s64_v:
6594 case NEON::BI__builtin_neon_vcvtmq_u16_v:
6595 case NEON::BI__builtin_neon_vcvtmq_u32_v:
6596 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6597 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6598 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6599 }
6600 case NEON::BI__builtin_neon_vcvtx_f32_v: {
6601 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6602 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6603
6604 }
6605 case NEON::BI__builtin_neon_vext_v:
6606 case NEON::BI__builtin_neon_vextq_v: {
6607 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6608 SmallVector<int, 16> Indices;
6609 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6610 Indices.push_back(i+CV);
6611
6612 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6613 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6614 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6615 }
6616 case NEON::BI__builtin_neon_vfma_v:
6617 case NEON::BI__builtin_neon_vfmaq_v: {
6618 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6619 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6620 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6621
6622 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6623 return emitCallMaybeConstrainedFPBuiltin(
6624 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6625 {Ops[1], Ops[2], Ops[0]});
6626 }
6627 case NEON::BI__builtin_neon_vld1_v:
6628 case NEON::BI__builtin_neon_vld1q_v: {
6629 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6630 Ops.push_back(getAlignmentValue32(PtrOp0));
6631 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6632 }
6633 case NEON::BI__builtin_neon_vld1_x2_v:
6634 case NEON::BI__builtin_neon_vld1q_x2_v:
6635 case NEON::BI__builtin_neon_vld1_x3_v:
6636 case NEON::BI__builtin_neon_vld1q_x3_v:
6637 case NEON::BI__builtin_neon_vld1_x4_v:
6638 case NEON::BI__builtin_neon_vld1q_x4_v: {
6639 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6640 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6641 llvm::Type *Tys[2] = { VTy, PTy };
6642 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6643 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6644 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6645 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6646 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6647 }
6648 case NEON::BI__builtin_neon_vld2_v:
6649 case NEON::BI__builtin_neon_vld2q_v:
6650 case NEON::BI__builtin_neon_vld3_v:
6651 case NEON::BI__builtin_neon_vld3q_v:
6652 case NEON::BI__builtin_neon_vld4_v:
6653 case NEON::BI__builtin_neon_vld4q_v:
6654 case NEON::BI__builtin_neon_vld2_dup_v:
6655 case NEON::BI__builtin_neon_vld2q_dup_v:
6656 case NEON::BI__builtin_neon_vld3_dup_v:
6657 case NEON::BI__builtin_neon_vld3q_dup_v:
6658 case NEON::BI__builtin_neon_vld4_dup_v:
6659 case NEON::BI__builtin_neon_vld4q_dup_v: {
6660 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6661 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6662 Value *Align = getAlignmentValue32(PtrOp1);
6663 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6664 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6665 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6666 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6667 }
6668 case NEON::BI__builtin_neon_vld1_dup_v:
6669 case NEON::BI__builtin_neon_vld1q_dup_v: {
6670 Value *V = UndefValue::get(Ty);
6671 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
6672 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
6673 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6674 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6675 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6676 return EmitNeonSplat(Ops[0], CI);
6677 }
6678 case NEON::BI__builtin_neon_vld2_lane_v:
6679 case NEON::BI__builtin_neon_vld2q_lane_v:
6680 case NEON::BI__builtin_neon_vld3_lane_v:
6681 case NEON::BI__builtin_neon_vld3q_lane_v:
6682 case NEON::BI__builtin_neon_vld4_lane_v:
6683 case NEON::BI__builtin_neon_vld4q_lane_v: {
6684 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6685 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6686 for (unsigned I = 2; I < Ops.size() - 1; ++I)
6687 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6688 Ops.push_back(getAlignmentValue32(PtrOp1));
6689 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6690 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6691 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6692 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6693 }
6694 case NEON::BI__builtin_neon_vmovl_v: {
6695 llvm::FixedVectorType *DTy =
6696 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6697 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6698 if (Usgn)
6699 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6700 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6701 }
6702 case NEON::BI__builtin_neon_vmovn_v: {
6703 llvm::FixedVectorType *QTy =
6704 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6705 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6706 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6707 }
6708 case NEON::BI__builtin_neon_vmull_v:
6709 // FIXME: the integer vmull operations could be emitted in terms of pure
6710 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6711 // hoisting the exts outside loops. Until global ISel comes along that can
6712 // see through such movement this leads to bad CodeGen. So we need an
6713 // intrinsic for now.
6714 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6715 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6716 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6717 case NEON::BI__builtin_neon_vpadal_v:
6718 case NEON::BI__builtin_neon_vpadalq_v: {
6719 // The source operand type has twice as many elements of half the size.
6720 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6721 llvm::Type *EltTy =
6722 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6723 auto *NarrowTy =
6724 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6725 llvm::Type *Tys[2] = { Ty, NarrowTy };
6726 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6727 }
6728 case NEON::BI__builtin_neon_vpaddl_v:
6729 case NEON::BI__builtin_neon_vpaddlq_v: {
6730 // The source operand type has twice as many elements of half the size.
6731 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6732 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6733 auto *NarrowTy =
6734 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6735 llvm::Type *Tys[2] = { Ty, NarrowTy };
6736 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6737 }
6738 case NEON::BI__builtin_neon_vqdmlal_v:
6739 case NEON::BI__builtin_neon_vqdmlsl_v: {
6740 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6741 Ops[1] =
6742 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6743 Ops.resize(2);
6744 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6745 }
6746 case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6747 case NEON::BI__builtin_neon_vqdmulh_lane_v:
6748 case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6749 case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6750 auto *RTy = cast<llvm::FixedVectorType>(Ty);
6751 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6752 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6753 RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6754 RTy->getNumElements() * 2);
6755 llvm::Type *Tys[2] = {
6756 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6757 /*isQuad*/ false))};
6758 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6759 }
6760 case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6761 case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6762 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6763 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6764 llvm::Type *Tys[2] = {
6765 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6766 /*isQuad*/ true))};
6767 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6768 }
6769 case NEON::BI__builtin_neon_vqshl_n_v:
6770 case NEON::BI__builtin_neon_vqshlq_n_v:
6771 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6772 1, false);
6773 case NEON::BI__builtin_neon_vqshlu_n_v:
6774 case NEON::BI__builtin_neon_vqshluq_n_v:
6775 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6776 1, false);
6777 case NEON::BI__builtin_neon_vrecpe_v:
6778 case NEON::BI__builtin_neon_vrecpeq_v:
6779 case NEON::BI__builtin_neon_vrsqrte_v:
6780 case NEON::BI__builtin_neon_vrsqrteq_v:
6781 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6782 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6783 case NEON::BI__builtin_neon_vrndi_v:
6784 case NEON::BI__builtin_neon_vrndiq_v:
6785 Int = Builder.getIsFPConstrained()
6786 ? Intrinsic::experimental_constrained_nearbyint
6787 : Intrinsic::nearbyint;
6788 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6789 case NEON::BI__builtin_neon_vrshr_n_v:
6790 case NEON::BI__builtin_neon_vrshrq_n_v:
6791 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6792 1, true);
6793 case NEON::BI__builtin_neon_vsha512hq_v:
6794 case NEON::BI__builtin_neon_vsha512h2q_v:
6795 case NEON::BI__builtin_neon_vsha512su0q_v:
6796 case NEON::BI__builtin_neon_vsha512su1q_v: {
6797 Function *F = CGM.getIntrinsic(Int);
6798 return EmitNeonCall(F, Ops, "");
6799 }
6800 case NEON::BI__builtin_neon_vshl_n_v:
6801 case NEON::BI__builtin_neon_vshlq_n_v:
6802 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6803 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6804 "vshl_n");
6805 case NEON::BI__builtin_neon_vshll_n_v: {
6806 llvm::FixedVectorType *SrcTy =
6807 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6808 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6809 if (Usgn)
6810 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6811 else
6812 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6813 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6814 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6815 }
6816 case NEON::BI__builtin_neon_vshrn_n_v: {
6817 llvm::FixedVectorType *SrcTy =
6818 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6819 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6820 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6821 if (Usgn)
6822 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6823 else
6824 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6825 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6826 }
6827 case NEON::BI__builtin_neon_vshr_n_v:
6828 case NEON::BI__builtin_neon_vshrq_n_v:
6829 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6830 case NEON::BI__builtin_neon_vst1_v:
6831 case NEON::BI__builtin_neon_vst1q_v:
6832 case NEON::BI__builtin_neon_vst2_v:
6833 case NEON::BI__builtin_neon_vst2q_v:
6834 case NEON::BI__builtin_neon_vst3_v:
6835 case NEON::BI__builtin_neon_vst3q_v:
6836 case NEON::BI__builtin_neon_vst4_v:
6837 case NEON::BI__builtin_neon_vst4q_v:
6838 case NEON::BI__builtin_neon_vst2_lane_v:
6839 case NEON::BI__builtin_neon_vst2q_lane_v:
6840 case NEON::BI__builtin_neon_vst3_lane_v:
6841 case NEON::BI__builtin_neon_vst3q_lane_v:
6842 case NEON::BI__builtin_neon_vst4_lane_v:
6843 case NEON::BI__builtin_neon_vst4q_lane_v: {
6844 llvm::Type *Tys[] = {Int8PtrTy, Ty};
6845 Ops.push_back(getAlignmentValue32(PtrOp0));
6846 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6847 }
6848 case NEON::BI__builtin_neon_vsm3partw1q_v:
6849 case NEON::BI__builtin_neon_vsm3partw2q_v:
6850 case NEON::BI__builtin_neon_vsm3ss1q_v:
6851 case NEON::BI__builtin_neon_vsm4ekeyq_v:
6852 case NEON::BI__builtin_neon_vsm4eq_v: {
6853 Function *F = CGM.getIntrinsic(Int);
6854 return EmitNeonCall(F, Ops, "");
6855 }
6856 case NEON::BI__builtin_neon_vsm3tt1aq_v:
6857 case NEON::BI__builtin_neon_vsm3tt1bq_v:
6858 case NEON::BI__builtin_neon_vsm3tt2aq_v:
6859 case NEON::BI__builtin_neon_vsm3tt2bq_v: {
6860 Function *F = CGM.getIntrinsic(Int);
6861 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
6862 return EmitNeonCall(F, Ops, "");
6863 }
6864 case NEON::BI__builtin_neon_vst1_x2_v:
6865 case NEON::BI__builtin_neon_vst1q_x2_v:
6866 case NEON::BI__builtin_neon_vst1_x3_v:
6867 case NEON::BI__builtin_neon_vst1q_x3_v:
6868 case NEON::BI__builtin_neon_vst1_x4_v:
6869 case NEON::BI__builtin_neon_vst1q_x4_v: {
6870 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6871 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6872 // in AArch64 it comes last. We may want to stick to one or another.
6873 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6874 Arch == llvm::Triple::aarch64_32) {
6875 llvm::Type *Tys[2] = { VTy, PTy };
6876 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6877 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6878 }
6879 llvm::Type *Tys[2] = { PTy, VTy };
6880 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6881 }
6882 case NEON::BI__builtin_neon_vsubhn_v: {
6883 llvm::FixedVectorType *SrcTy =
6884 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6885
6886 // %sum = add <4 x i32> %lhs, %rhs
6887 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6888 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6889 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6890
6891 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6892 Constant *ShiftAmt =
6893 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6894 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6895
6896 // %res = trunc <4 x i32> %high to <4 x i16>
6897 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6898 }
6899 case NEON::BI__builtin_neon_vtrn_v:
6900 case NEON::BI__builtin_neon_vtrnq_v: {
6901 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6902 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6903 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6904 Value *SV = nullptr;
6905
6906 for (unsigned vi = 0; vi != 2; ++vi) {
6907 SmallVector<int, 16> Indices;
6908 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6909 Indices.push_back(i+vi);
6910 Indices.push_back(i+e+vi);
6911 }
6912 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6913 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6914 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6915 }
6916 return SV;
6917 }
6918 case NEON::BI__builtin_neon_vtst_v:
6919 case NEON::BI__builtin_neon_vtstq_v: {
6920 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6921 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6922 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6923 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6924 ConstantAggregateZero::get(Ty));
6925 return Builder.CreateSExt(Ops[0], Ty, "vtst");
6926 }
6927 case NEON::BI__builtin_neon_vuzp_v:
6928 case NEON::BI__builtin_neon_vuzpq_v: {
6929 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6930 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6931 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6932 Value *SV = nullptr;
6933
6934 for (unsigned vi = 0; vi != 2; ++vi) {
6935 SmallVector<int, 16> Indices;
6936 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6937 Indices.push_back(2*i+vi);
6938
6939 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6940 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
6941 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6942 }
6943 return SV;
6944 }
6945 case NEON::BI__builtin_neon_vxarq_v: {
6946 Function *F = CGM.getIntrinsic(Int);
6947 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
6948 return EmitNeonCall(F, Ops, "");
6949 }
6950 case NEON::BI__builtin_neon_vzip_v:
6951 case NEON::BI__builtin_neon_vzipq_v: {
6952 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6953 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6954 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6955 Value *SV = nullptr;
6956
6957 for (unsigned vi = 0; vi != 2; ++vi) {
6958 SmallVector<int, 16> Indices;
6959 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6960 Indices.push_back((i + vi*e) >> 1);
6961 Indices.push_back(((i + vi*e) >> 1)+e);
6962 }
6963 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6964 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
6965 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6966 }
6967 return SV;
6968 }
6969 case NEON::BI__builtin_neon_vdot_v:
6970 case NEON::BI__builtin_neon_vdotq_v: {
6971 auto *InputTy =
6972 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6973 llvm::Type *Tys[2] = { Ty, InputTy };
6974 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6975 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
6976 }
6977 case NEON::BI__builtin_neon_vfmlal_low_v:
6978 case NEON::BI__builtin_neon_vfmlalq_low_v: {
6979 auto *InputTy =
6980 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6981 llvm::Type *Tys[2] = { Ty, InputTy };
6982 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
6983 }
6984 case NEON::BI__builtin_neon_vfmlsl_low_v:
6985 case NEON::BI__builtin_neon_vfmlslq_low_v: {
6986 auto *InputTy =
6987 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6988 llvm::Type *Tys[2] = { Ty, InputTy };
6989 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
6990 }
6991 case NEON::BI__builtin_neon_vfmlal_high_v:
6992 case NEON::BI__builtin_neon_vfmlalq_high_v: {
6993 auto *InputTy =
6994 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6995 llvm::Type *Tys[2] = { Ty, InputTy };
6996 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
6997 }
6998 case NEON::BI__builtin_neon_vfmlsl_high_v:
6999 case NEON::BI__builtin_neon_vfmlslq_high_v: {
7000 auto *InputTy =
7001 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7002 llvm::Type *Tys[2] = { Ty, InputTy };
7003 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7004 }
7005 case NEON::BI__builtin_neon_vmmlaq_v: {
7006 auto *InputTy =
7007 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7008 llvm::Type *Tys[2] = { Ty, InputTy };
7009 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7010 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7011 }
7012 case NEON::BI__builtin_neon_vusmmlaq_v: {
7013 auto *InputTy =
7014 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7015 llvm::Type *Tys[2] = { Ty, InputTy };
7016 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7017 }
7018 case NEON::BI__builtin_neon_vusdot_v:
7019 case NEON::BI__builtin_neon_vusdotq_v: {
7020 auto *InputTy =
7021 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7022 llvm::Type *Tys[2] = { Ty, InputTy };
7023 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7024 }
7025 case NEON::BI__builtin_neon_vbfdot_v:
7026 case NEON::BI__builtin_neon_vbfdotq_v: {
7027 llvm::Type *InputTy =
7028 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7029 llvm::Type *Tys[2] = { Ty, InputTy };
7030 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7031 }
7032 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7033 llvm::Type *Tys[1] = { Ty };
7034 Function *F = CGM.getIntrinsic(Int, Tys);
7035 return EmitNeonCall(F, Ops, "vcvtfp2bf");
7036 }
7037
7038 }
7039
7040 assert(Int && "Expected valid intrinsic number");
7041
7042 // Determine the type(s) of this overloaded AArch64 intrinsic.
7043 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7044
7045 Value *Result = EmitNeonCall(F, Ops, NameHint);
7046 llvm::Type *ResultType = ConvertType(E->getType());
7047 // AArch64 intrinsic one-element vector type cast to
7048 // scalar type expected by the builtin
7049 return Builder.CreateBitCast(Result, ResultType, NameHint);
7050 }
7051
EmitAArch64CompareBuiltinExpr(Value * Op,llvm::Type * Ty,const CmpInst::Predicate Fp,const CmpInst::Predicate Ip,const Twine & Name)7052 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7053 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7054 const CmpInst::Predicate Ip, const Twine &Name) {
7055 llvm::Type *OTy = Op->getType();
7056
7057 // FIXME: this is utterly horrific. We should not be looking at previous
7058 // codegen context to find out what needs doing. Unfortunately TableGen
7059 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7060 // (etc).
7061 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7062 OTy = BI->getOperand(0)->getType();
7063
7064 Op = Builder.CreateBitCast(Op, OTy);
7065 if (OTy->getScalarType()->isFloatingPointTy()) {
7066 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7067 } else {
7068 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7069 }
7070 return Builder.CreateSExt(Op, Ty, Name);
7071 }
7072
packTBLDVectorList(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Value * ExtOp,Value * IndexOp,llvm::Type * ResTy,unsigned IntID,const char * Name)7073 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7074 Value *ExtOp, Value *IndexOp,
7075 llvm::Type *ResTy, unsigned IntID,
7076 const char *Name) {
7077 SmallVector<Value *, 2> TblOps;
7078 if (ExtOp)
7079 TblOps.push_back(ExtOp);
7080
7081 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7082 SmallVector<int, 16> Indices;
7083 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7084 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7085 Indices.push_back(2*i);
7086 Indices.push_back(2*i+1);
7087 }
7088
7089 int PairPos = 0, End = Ops.size() - 1;
7090 while (PairPos < End) {
7091 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7092 Ops[PairPos+1], Indices,
7093 Name));
7094 PairPos += 2;
7095 }
7096
7097 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7098 // of the 128-bit lookup table with zero.
7099 if (PairPos == End) {
7100 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7101 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7102 ZeroTbl, Indices, Name));
7103 }
7104
7105 Function *TblF;
7106 TblOps.push_back(IndexOp);
7107 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7108
7109 return CGF.EmitNeonCall(TblF, TblOps, Name);
7110 }
7111
GetValueForARMHint(unsigned BuiltinID)7112 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7113 unsigned Value;
7114 switch (BuiltinID) {
7115 default:
7116 return nullptr;
7117 case ARM::BI__builtin_arm_nop:
7118 Value = 0;
7119 break;
7120 case ARM::BI__builtin_arm_yield:
7121 case ARM::BI__yield:
7122 Value = 1;
7123 break;
7124 case ARM::BI__builtin_arm_wfe:
7125 case ARM::BI__wfe:
7126 Value = 2;
7127 break;
7128 case ARM::BI__builtin_arm_wfi:
7129 case ARM::BI__wfi:
7130 Value = 3;
7131 break;
7132 case ARM::BI__builtin_arm_sev:
7133 case ARM::BI__sev:
7134 Value = 4;
7135 break;
7136 case ARM::BI__builtin_arm_sevl:
7137 case ARM::BI__sevl:
7138 Value = 5;
7139 break;
7140 }
7141
7142 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7143 llvm::ConstantInt::get(Int32Ty, Value));
7144 }
7145
7146 enum SpecialRegisterAccessKind {
7147 NormalRead,
7148 VolatileRead,
7149 Write,
7150 };
7151
7152 // Generates the IR for the read/write special register builtin,
7153 // ValueType is the type of the value that is to be written or read,
7154 // RegisterType is the type of the register being written to or read from.
EmitSpecialRegisterBuiltin(CodeGenFunction & CGF,const CallExpr * E,llvm::Type * RegisterType,llvm::Type * ValueType,SpecialRegisterAccessKind AccessKind,StringRef SysReg="")7155 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7156 const CallExpr *E,
7157 llvm::Type *RegisterType,
7158 llvm::Type *ValueType,
7159 SpecialRegisterAccessKind AccessKind,
7160 StringRef SysReg = "") {
7161 // write and register intrinsics only support 32 and 64 bit operations.
7162 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
7163 && "Unsupported size for register.");
7164
7165 CodeGen::CGBuilderTy &Builder = CGF.Builder;
7166 CodeGen::CodeGenModule &CGM = CGF.CGM;
7167 LLVMContext &Context = CGM.getLLVMContext();
7168
7169 if (SysReg.empty()) {
7170 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7171 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7172 }
7173
7174 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7175 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7176 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7177
7178 llvm::Type *Types[] = { RegisterType };
7179
7180 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7181 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
7182 && "Can't fit 64-bit value in 32-bit register");
7183
7184 if (AccessKind != Write) {
7185 assert(AccessKind == NormalRead || AccessKind == VolatileRead);
7186 llvm::Function *F = CGM.getIntrinsic(
7187 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7188 : llvm::Intrinsic::read_register,
7189 Types);
7190 llvm::Value *Call = Builder.CreateCall(F, Metadata);
7191
7192 if (MixedTypes)
7193 // Read into 64 bit register and then truncate result to 32 bit.
7194 return Builder.CreateTrunc(Call, ValueType);
7195
7196 if (ValueType->isPointerTy())
7197 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7198 return Builder.CreateIntToPtr(Call, ValueType);
7199
7200 return Call;
7201 }
7202
7203 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7204 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7205 if (MixedTypes) {
7206 // Extend 32 bit write value to 64 bit to pass to write.
7207 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7208 return Builder.CreateCall(F, { Metadata, ArgValue });
7209 }
7210
7211 if (ValueType->isPointerTy()) {
7212 // Have VoidPtrTy ArgValue but want to return an i32/i64.
7213 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7214 return Builder.CreateCall(F, { Metadata, ArgValue });
7215 }
7216
7217 return Builder.CreateCall(F, { Metadata, ArgValue });
7218 }
7219
7220 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7221 /// argument that specifies the vector type.
HasExtraNeonArgument(unsigned BuiltinID)7222 static bool HasExtraNeonArgument(unsigned BuiltinID) {
7223 switch (BuiltinID) {
7224 default: break;
7225 case NEON::BI__builtin_neon_vget_lane_i8:
7226 case NEON::BI__builtin_neon_vget_lane_i16:
7227 case NEON::BI__builtin_neon_vget_lane_bf16:
7228 case NEON::BI__builtin_neon_vget_lane_i32:
7229 case NEON::BI__builtin_neon_vget_lane_i64:
7230 case NEON::BI__builtin_neon_vget_lane_f32:
7231 case NEON::BI__builtin_neon_vgetq_lane_i8:
7232 case NEON::BI__builtin_neon_vgetq_lane_i16:
7233 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7234 case NEON::BI__builtin_neon_vgetq_lane_i32:
7235 case NEON::BI__builtin_neon_vgetq_lane_i64:
7236 case NEON::BI__builtin_neon_vgetq_lane_f32:
7237 case NEON::BI__builtin_neon_vduph_lane_bf16:
7238 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7239 case NEON::BI__builtin_neon_vset_lane_i8:
7240 case NEON::BI__builtin_neon_vset_lane_i16:
7241 case NEON::BI__builtin_neon_vset_lane_bf16:
7242 case NEON::BI__builtin_neon_vset_lane_i32:
7243 case NEON::BI__builtin_neon_vset_lane_i64:
7244 case NEON::BI__builtin_neon_vset_lane_f32:
7245 case NEON::BI__builtin_neon_vsetq_lane_i8:
7246 case NEON::BI__builtin_neon_vsetq_lane_i16:
7247 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7248 case NEON::BI__builtin_neon_vsetq_lane_i32:
7249 case NEON::BI__builtin_neon_vsetq_lane_i64:
7250 case NEON::BI__builtin_neon_vsetq_lane_f32:
7251 case NEON::BI__builtin_neon_vsha1h_u32:
7252 case NEON::BI__builtin_neon_vsha1cq_u32:
7253 case NEON::BI__builtin_neon_vsha1pq_u32:
7254 case NEON::BI__builtin_neon_vsha1mq_u32:
7255 case NEON::BI__builtin_neon_vcvth_bf16_f32:
7256 case clang::ARM::BI_MoveToCoprocessor:
7257 case clang::ARM::BI_MoveToCoprocessor2:
7258 return false;
7259 }
7260 return true;
7261 }
7262
EmitARMBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)7263 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7264 const CallExpr *E,
7265 ReturnValueSlot ReturnValue,
7266 llvm::Triple::ArchType Arch) {
7267 if (auto Hint = GetValueForARMHint(BuiltinID))
7268 return Hint;
7269
7270 if (BuiltinID == ARM::BI__emit) {
7271 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7272 llvm::FunctionType *FTy =
7273 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7274
7275 Expr::EvalResult Result;
7276 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7277 llvm_unreachable("Sema will ensure that the parameter is constant");
7278
7279 llvm::APSInt Value = Result.Val.getInt();
7280 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7281
7282 llvm::InlineAsm *Emit =
7283 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7284 /*hasSideEffects=*/true)
7285 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7286 /*hasSideEffects=*/true);
7287
7288 return Builder.CreateCall(Emit);
7289 }
7290
7291 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7292 Value *Option = EmitScalarExpr(E->getArg(0));
7293 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7294 }
7295
7296 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7297 Value *Address = EmitScalarExpr(E->getArg(0));
7298 Value *RW = EmitScalarExpr(E->getArg(1));
7299 Value *IsData = EmitScalarExpr(E->getArg(2));
7300
7301 // Locality is not supported on ARM target
7302 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7303
7304 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7305 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7306 }
7307
7308 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7309 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7310 return Builder.CreateCall(
7311 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7312 }
7313
7314 if (BuiltinID == ARM::BI__builtin_arm_cls) {
7315 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7316 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7317 }
7318 if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7319 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7320 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7321 "cls");
7322 }
7323
7324 if (BuiltinID == ARM::BI__clear_cache) {
7325 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7326 const FunctionDecl *FD = E->getDirectCallee();
7327 Value *Ops[2];
7328 for (unsigned i = 0; i < 2; i++)
7329 Ops[i] = EmitScalarExpr(E->getArg(i));
7330 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7331 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7332 StringRef Name = FD->getName();
7333 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7334 }
7335
7336 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7337 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7338 Function *F;
7339
7340 switch (BuiltinID) {
7341 default: llvm_unreachable("unexpected builtin");
7342 case ARM::BI__builtin_arm_mcrr:
7343 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7344 break;
7345 case ARM::BI__builtin_arm_mcrr2:
7346 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7347 break;
7348 }
7349
7350 // MCRR{2} instruction has 5 operands but
7351 // the intrinsic has 4 because Rt and Rt2
7352 // are represented as a single unsigned 64
7353 // bit integer in the intrinsic definition
7354 // but internally it's represented as 2 32
7355 // bit integers.
7356
7357 Value *Coproc = EmitScalarExpr(E->getArg(0));
7358 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7359 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7360 Value *CRm = EmitScalarExpr(E->getArg(3));
7361
7362 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7363 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7364 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7365 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7366
7367 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7368 }
7369
7370 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7371 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7372 Function *F;
7373
7374 switch (BuiltinID) {
7375 default: llvm_unreachable("unexpected builtin");
7376 case ARM::BI__builtin_arm_mrrc:
7377 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7378 break;
7379 case ARM::BI__builtin_arm_mrrc2:
7380 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7381 break;
7382 }
7383
7384 Value *Coproc = EmitScalarExpr(E->getArg(0));
7385 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7386 Value *CRm = EmitScalarExpr(E->getArg(2));
7387 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7388
7389 // Returns an unsigned 64 bit integer, represented
7390 // as two 32 bit integers.
7391
7392 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7393 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7394 Rt = Builder.CreateZExt(Rt, Int64Ty);
7395 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7396
7397 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7398 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7399 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7400
7401 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7402 }
7403
7404 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7405 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7406 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7407 getContext().getTypeSize(E->getType()) == 64) ||
7408 BuiltinID == ARM::BI__ldrexd) {
7409 Function *F;
7410
7411 switch (BuiltinID) {
7412 default: llvm_unreachable("unexpected builtin");
7413 case ARM::BI__builtin_arm_ldaex:
7414 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7415 break;
7416 case ARM::BI__builtin_arm_ldrexd:
7417 case ARM::BI__builtin_arm_ldrex:
7418 case ARM::BI__ldrexd:
7419 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7420 break;
7421 }
7422
7423 Value *LdPtr = EmitScalarExpr(E->getArg(0));
7424 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7425 "ldrexd");
7426
7427 Value *Val0 = Builder.CreateExtractValue(Val, 1);
7428 Value *Val1 = Builder.CreateExtractValue(Val, 0);
7429 Val0 = Builder.CreateZExt(Val0, Int64Ty);
7430 Val1 = Builder.CreateZExt(Val1, Int64Ty);
7431
7432 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7433 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7434 Val = Builder.CreateOr(Val, Val1);
7435 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7436 }
7437
7438 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7439 BuiltinID == ARM::BI__builtin_arm_ldaex) {
7440 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7441
7442 QualType Ty = E->getType();
7443 llvm::Type *RealResTy = ConvertType(Ty);
7444 llvm::Type *PtrTy = llvm::IntegerType::get(
7445 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7446 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7447
7448 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7449 ? Intrinsic::arm_ldaex
7450 : Intrinsic::arm_ldrex,
7451 PtrTy);
7452 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7453
7454 if (RealResTy->isPointerTy())
7455 return Builder.CreateIntToPtr(Val, RealResTy);
7456 else {
7457 llvm::Type *IntResTy = llvm::IntegerType::get(
7458 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7459 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7460 return Builder.CreateBitCast(Val, RealResTy);
7461 }
7462 }
7463
7464 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7465 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7466 BuiltinID == ARM::BI__builtin_arm_strex) &&
7467 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7468 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7469 ? Intrinsic::arm_stlexd
7470 : Intrinsic::arm_strexd);
7471 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7472
7473 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7474 Value *Val = EmitScalarExpr(E->getArg(0));
7475 Builder.CreateStore(Val, Tmp);
7476
7477 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
7478 Val = Builder.CreateLoad(LdPtr);
7479
7480 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7481 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7482 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7483 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7484 }
7485
7486 if (BuiltinID == ARM::BI__builtin_arm_strex ||
7487 BuiltinID == ARM::BI__builtin_arm_stlex) {
7488 Value *StoreVal = EmitScalarExpr(E->getArg(0));
7489 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7490
7491 QualType Ty = E->getArg(0)->getType();
7492 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7493 getContext().getTypeSize(Ty));
7494 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7495
7496 if (StoreVal->getType()->isPointerTy())
7497 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7498 else {
7499 llvm::Type *IntTy = llvm::IntegerType::get(
7500 getLLVMContext(),
7501 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7502 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7503 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7504 }
7505
7506 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7507 ? Intrinsic::arm_stlex
7508 : Intrinsic::arm_strex,
7509 StoreAddr->getType());
7510 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7511 }
7512
7513 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7514 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7515 return Builder.CreateCall(F);
7516 }
7517
7518 // CRC32
7519 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7520 switch (BuiltinID) {
7521 case ARM::BI__builtin_arm_crc32b:
7522 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7523 case ARM::BI__builtin_arm_crc32cb:
7524 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7525 case ARM::BI__builtin_arm_crc32h:
7526 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7527 case ARM::BI__builtin_arm_crc32ch:
7528 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7529 case ARM::BI__builtin_arm_crc32w:
7530 case ARM::BI__builtin_arm_crc32d:
7531 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7532 case ARM::BI__builtin_arm_crc32cw:
7533 case ARM::BI__builtin_arm_crc32cd:
7534 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7535 }
7536
7537 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7538 Value *Arg0 = EmitScalarExpr(E->getArg(0));
7539 Value *Arg1 = EmitScalarExpr(E->getArg(1));
7540
7541 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7542 // intrinsics, hence we need different codegen for these cases.
7543 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7544 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7545 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7546 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7547 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7548 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7549
7550 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7551 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7552 return Builder.CreateCall(F, {Res, Arg1b});
7553 } else {
7554 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7555
7556 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7557 return Builder.CreateCall(F, {Arg0, Arg1});
7558 }
7559 }
7560
7561 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7562 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7563 BuiltinID == ARM::BI__builtin_arm_rsrp ||
7564 BuiltinID == ARM::BI__builtin_arm_wsr ||
7565 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7566 BuiltinID == ARM::BI__builtin_arm_wsrp) {
7567
7568 SpecialRegisterAccessKind AccessKind = Write;
7569 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7570 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7571 BuiltinID == ARM::BI__builtin_arm_rsrp)
7572 AccessKind = VolatileRead;
7573
7574 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7575 BuiltinID == ARM::BI__builtin_arm_wsrp;
7576
7577 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7578 BuiltinID == ARM::BI__builtin_arm_wsr64;
7579
7580 llvm::Type *ValueType;
7581 llvm::Type *RegisterType;
7582 if (IsPointerBuiltin) {
7583 ValueType = VoidPtrTy;
7584 RegisterType = Int32Ty;
7585 } else if (Is64Bit) {
7586 ValueType = RegisterType = Int64Ty;
7587 } else {
7588 ValueType = RegisterType = Int32Ty;
7589 }
7590
7591 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7592 AccessKind);
7593 }
7594
7595 // Handle MSVC intrinsics before argument evaluation to prevent double
7596 // evaluation.
7597 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7598 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7599
7600 // Deal with MVE builtins
7601 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7602 return Result;
7603 // Handle CDE builtins
7604 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7605 return Result;
7606
7607 // Find out if any arguments are required to be integer constant
7608 // expressions.
7609 unsigned ICEArguments = 0;
7610 ASTContext::GetBuiltinTypeError Error;
7611 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7612 assert(Error == ASTContext::GE_None && "Should not codegen an error");
7613
7614 auto getAlignmentValue32 = [&](Address addr) -> Value* {
7615 return Builder.getInt32(addr.getAlignment().getQuantity());
7616 };
7617
7618 Address PtrOp0 = Address::invalid();
7619 Address PtrOp1 = Address::invalid();
7620 SmallVector<Value*, 4> Ops;
7621 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7622 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7623 for (unsigned i = 0, e = NumArgs; i != e; i++) {
7624 if (i == 0) {
7625 switch (BuiltinID) {
7626 case NEON::BI__builtin_neon_vld1_v:
7627 case NEON::BI__builtin_neon_vld1q_v:
7628 case NEON::BI__builtin_neon_vld1q_lane_v:
7629 case NEON::BI__builtin_neon_vld1_lane_v:
7630 case NEON::BI__builtin_neon_vld1_dup_v:
7631 case NEON::BI__builtin_neon_vld1q_dup_v:
7632 case NEON::BI__builtin_neon_vst1_v:
7633 case NEON::BI__builtin_neon_vst1q_v:
7634 case NEON::BI__builtin_neon_vst1q_lane_v:
7635 case NEON::BI__builtin_neon_vst1_lane_v:
7636 case NEON::BI__builtin_neon_vst2_v:
7637 case NEON::BI__builtin_neon_vst2q_v:
7638 case NEON::BI__builtin_neon_vst2_lane_v:
7639 case NEON::BI__builtin_neon_vst2q_lane_v:
7640 case NEON::BI__builtin_neon_vst3_v:
7641 case NEON::BI__builtin_neon_vst3q_v:
7642 case NEON::BI__builtin_neon_vst3_lane_v:
7643 case NEON::BI__builtin_neon_vst3q_lane_v:
7644 case NEON::BI__builtin_neon_vst4_v:
7645 case NEON::BI__builtin_neon_vst4q_v:
7646 case NEON::BI__builtin_neon_vst4_lane_v:
7647 case NEON::BI__builtin_neon_vst4q_lane_v:
7648 // Get the alignment for the argument in addition to the value;
7649 // we'll use it later.
7650 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7651 Ops.push_back(PtrOp0.getPointer());
7652 continue;
7653 }
7654 }
7655 if (i == 1) {
7656 switch (BuiltinID) {
7657 case NEON::BI__builtin_neon_vld2_v:
7658 case NEON::BI__builtin_neon_vld2q_v:
7659 case NEON::BI__builtin_neon_vld3_v:
7660 case NEON::BI__builtin_neon_vld3q_v:
7661 case NEON::BI__builtin_neon_vld4_v:
7662 case NEON::BI__builtin_neon_vld4q_v:
7663 case NEON::BI__builtin_neon_vld2_lane_v:
7664 case NEON::BI__builtin_neon_vld2q_lane_v:
7665 case NEON::BI__builtin_neon_vld3_lane_v:
7666 case NEON::BI__builtin_neon_vld3q_lane_v:
7667 case NEON::BI__builtin_neon_vld4_lane_v:
7668 case NEON::BI__builtin_neon_vld4q_lane_v:
7669 case NEON::BI__builtin_neon_vld2_dup_v:
7670 case NEON::BI__builtin_neon_vld2q_dup_v:
7671 case NEON::BI__builtin_neon_vld3_dup_v:
7672 case NEON::BI__builtin_neon_vld3q_dup_v:
7673 case NEON::BI__builtin_neon_vld4_dup_v:
7674 case NEON::BI__builtin_neon_vld4q_dup_v:
7675 // Get the alignment for the argument in addition to the value;
7676 // we'll use it later.
7677 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7678 Ops.push_back(PtrOp1.getPointer());
7679 continue;
7680 }
7681 }
7682
7683 if ((ICEArguments & (1 << i)) == 0) {
7684 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7685 } else {
7686 // If this is required to be a constant, constant fold it so that we know
7687 // that the generated intrinsic gets a ConstantInt.
7688 Ops.push_back(llvm::ConstantInt::get(
7689 getLLVMContext(),
7690 *E->getArg(i)->getIntegerConstantExpr(getContext())));
7691 }
7692 }
7693
7694 switch (BuiltinID) {
7695 default: break;
7696
7697 case NEON::BI__builtin_neon_vget_lane_i8:
7698 case NEON::BI__builtin_neon_vget_lane_i16:
7699 case NEON::BI__builtin_neon_vget_lane_i32:
7700 case NEON::BI__builtin_neon_vget_lane_i64:
7701 case NEON::BI__builtin_neon_vget_lane_bf16:
7702 case NEON::BI__builtin_neon_vget_lane_f32:
7703 case NEON::BI__builtin_neon_vgetq_lane_i8:
7704 case NEON::BI__builtin_neon_vgetq_lane_i16:
7705 case NEON::BI__builtin_neon_vgetq_lane_i32:
7706 case NEON::BI__builtin_neon_vgetq_lane_i64:
7707 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7708 case NEON::BI__builtin_neon_vgetq_lane_f32:
7709 case NEON::BI__builtin_neon_vduph_lane_bf16:
7710 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7711 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7712
7713 case NEON::BI__builtin_neon_vrndns_f32: {
7714 Value *Arg = EmitScalarExpr(E->getArg(0));
7715 llvm::Type *Tys[] = {Arg->getType()};
7716 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7717 return Builder.CreateCall(F, {Arg}, "vrndn"); }
7718
7719 case NEON::BI__builtin_neon_vset_lane_i8:
7720 case NEON::BI__builtin_neon_vset_lane_i16:
7721 case NEON::BI__builtin_neon_vset_lane_i32:
7722 case NEON::BI__builtin_neon_vset_lane_i64:
7723 case NEON::BI__builtin_neon_vset_lane_bf16:
7724 case NEON::BI__builtin_neon_vset_lane_f32:
7725 case NEON::BI__builtin_neon_vsetq_lane_i8:
7726 case NEON::BI__builtin_neon_vsetq_lane_i16:
7727 case NEON::BI__builtin_neon_vsetq_lane_i32:
7728 case NEON::BI__builtin_neon_vsetq_lane_i64:
7729 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7730 case NEON::BI__builtin_neon_vsetq_lane_f32:
7731 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7732
7733 case NEON::BI__builtin_neon_vsha1h_u32:
7734 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7735 "vsha1h");
7736 case NEON::BI__builtin_neon_vsha1cq_u32:
7737 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7738 "vsha1h");
7739 case NEON::BI__builtin_neon_vsha1pq_u32:
7740 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7741 "vsha1h");
7742 case NEON::BI__builtin_neon_vsha1mq_u32:
7743 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7744 "vsha1h");
7745
7746 case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7747 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
7748 "vcvtbfp2bf");
7749 }
7750
7751 // The ARM _MoveToCoprocessor builtins put the input register value as
7752 // the first argument, but the LLVM intrinsic expects it as the third one.
7753 case ARM::BI_MoveToCoprocessor:
7754 case ARM::BI_MoveToCoprocessor2: {
7755 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
7756 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
7757 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7758 Ops[3], Ops[4], Ops[5]});
7759 }
7760 }
7761
7762 // Get the last argument, which specifies the vector type.
7763 assert(HasExtraArg);
7764 const Expr *Arg = E->getArg(E->getNumArgs()-1);
7765 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7766 if (!Result)
7767 return nullptr;
7768
7769 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7770 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7771 // Determine the overloaded type of this builtin.
7772 llvm::Type *Ty;
7773 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7774 Ty = FloatTy;
7775 else
7776 Ty = DoubleTy;
7777
7778 // Determine whether this is an unsigned conversion or not.
7779 bool usgn = Result->getZExtValue() == 1;
7780 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7781
7782 // Call the appropriate intrinsic.
7783 Function *F = CGM.getIntrinsic(Int, Ty);
7784 return Builder.CreateCall(F, Ops, "vcvtr");
7785 }
7786
7787 // Determine the type of this overloaded NEON intrinsic.
7788 NeonTypeFlags Type = Result->getZExtValue();
7789 bool usgn = Type.isUnsigned();
7790 bool rightShift = false;
7791
7792 llvm::FixedVectorType *VTy =
7793 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
7794 getTarget().hasBFloat16Type());
7795 llvm::Type *Ty = VTy;
7796 if (!Ty)
7797 return nullptr;
7798
7799 // Many NEON builtins have identical semantics and uses in ARM and
7800 // AArch64. Emit these in a single function.
7801 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7802 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7803 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7804 if (Builtin)
7805 return EmitCommonNeonBuiltinExpr(
7806 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7807 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7808
7809 unsigned Int;
7810 switch (BuiltinID) {
7811 default: return nullptr;
7812 case NEON::BI__builtin_neon_vld1q_lane_v:
7813 // Handle 64-bit integer elements as a special case. Use shuffles of
7814 // one-element vectors to avoid poor code for i64 in the backend.
7815 if (VTy->getElementType()->isIntegerTy(64)) {
7816 // Extract the other lane.
7817 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7818 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7819 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7820 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7821 // Load the value as a one-element vector.
7822 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7823 llvm::Type *Tys[] = {Ty, Int8PtrTy};
7824 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7825 Value *Align = getAlignmentValue32(PtrOp0);
7826 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7827 // Combine them.
7828 int Indices[] = {1 - Lane, Lane};
7829 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7830 }
7831 LLVM_FALLTHROUGH;
7832 case NEON::BI__builtin_neon_vld1_lane_v: {
7833 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7834 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7835 Value *Ld = Builder.CreateLoad(PtrOp0);
7836 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7837 }
7838 case NEON::BI__builtin_neon_vqrshrn_n_v:
7839 Int =
7840 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7841 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7842 1, true);
7843 case NEON::BI__builtin_neon_vqrshrun_n_v:
7844 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7845 Ops, "vqrshrun_n", 1, true);
7846 case NEON::BI__builtin_neon_vqshrn_n_v:
7847 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7848 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7849 1, true);
7850 case NEON::BI__builtin_neon_vqshrun_n_v:
7851 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7852 Ops, "vqshrun_n", 1, true);
7853 case NEON::BI__builtin_neon_vrecpe_v:
7854 case NEON::BI__builtin_neon_vrecpeq_v:
7855 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7856 Ops, "vrecpe");
7857 case NEON::BI__builtin_neon_vrshrn_n_v:
7858 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7859 Ops, "vrshrn_n", 1, true);
7860 case NEON::BI__builtin_neon_vrsra_n_v:
7861 case NEON::BI__builtin_neon_vrsraq_n_v:
7862 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7863 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7864 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7865 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7866 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7867 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7868 case NEON::BI__builtin_neon_vsri_n_v:
7869 case NEON::BI__builtin_neon_vsriq_n_v:
7870 rightShift = true;
7871 LLVM_FALLTHROUGH;
7872 case NEON::BI__builtin_neon_vsli_n_v:
7873 case NEON::BI__builtin_neon_vsliq_n_v:
7874 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7875 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7876 Ops, "vsli_n");
7877 case NEON::BI__builtin_neon_vsra_n_v:
7878 case NEON::BI__builtin_neon_vsraq_n_v:
7879 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7880 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7881 return Builder.CreateAdd(Ops[0], Ops[1]);
7882 case NEON::BI__builtin_neon_vst1q_lane_v:
7883 // Handle 64-bit integer elements as a special case. Use a shuffle to get
7884 // a one-element vector and avoid poor code for i64 in the backend.
7885 if (VTy->getElementType()->isIntegerTy(64)) {
7886 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7887 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7888 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7889 Ops[2] = getAlignmentValue32(PtrOp0);
7890 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7891 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7892 Tys), Ops);
7893 }
7894 LLVM_FALLTHROUGH;
7895 case NEON::BI__builtin_neon_vst1_lane_v: {
7896 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7897 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7898 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7899 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7900 return St;
7901 }
7902 case NEON::BI__builtin_neon_vtbl1_v:
7903 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7904 Ops, "vtbl1");
7905 case NEON::BI__builtin_neon_vtbl2_v:
7906 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7907 Ops, "vtbl2");
7908 case NEON::BI__builtin_neon_vtbl3_v:
7909 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7910 Ops, "vtbl3");
7911 case NEON::BI__builtin_neon_vtbl4_v:
7912 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7913 Ops, "vtbl4");
7914 case NEON::BI__builtin_neon_vtbx1_v:
7915 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7916 Ops, "vtbx1");
7917 case NEON::BI__builtin_neon_vtbx2_v:
7918 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
7919 Ops, "vtbx2");
7920 case NEON::BI__builtin_neon_vtbx3_v:
7921 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
7922 Ops, "vtbx3");
7923 case NEON::BI__builtin_neon_vtbx4_v:
7924 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
7925 Ops, "vtbx4");
7926 }
7927 }
7928
7929 template<typename Integer>
GetIntegerConstantValue(const Expr * E,ASTContext & Context)7930 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
7931 return E->getIntegerConstantExpr(Context)->getExtValue();
7932 }
7933
SignOrZeroExtend(CGBuilderTy & Builder,llvm::Value * V,llvm::Type * T,bool Unsigned)7934 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
7935 llvm::Type *T, bool Unsigned) {
7936 // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
7937 // which finds it convenient to specify signed/unsigned as a boolean flag.
7938 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
7939 }
7940
MVEImmediateShr(CGBuilderTy & Builder,llvm::Value * V,uint32_t Shift,bool Unsigned)7941 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
7942 uint32_t Shift, bool Unsigned) {
7943 // MVE helper function for integer shift right. This must handle signed vs
7944 // unsigned, and also deal specially with the case where the shift count is
7945 // equal to the lane size. In LLVM IR, an LShr with that parameter would be
7946 // undefined behavior, but in MVE it's legal, so we must convert it to code
7947 // that is not undefined in IR.
7948 unsigned LaneBits = cast<llvm::VectorType>(V->getType())
7949 ->getElementType()
7950 ->getPrimitiveSizeInBits();
7951 if (Shift == LaneBits) {
7952 // An unsigned shift of the full lane size always generates zero, so we can
7953 // simply emit a zero vector. A signed shift of the full lane size does the
7954 // same thing as shifting by one bit fewer.
7955 if (Unsigned)
7956 return llvm::Constant::getNullValue(V->getType());
7957 else
7958 --Shift;
7959 }
7960 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
7961 }
7962
ARMMVEVectorSplat(CGBuilderTy & Builder,llvm::Value * V)7963 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
7964 // MVE-specific helper function for a vector splat, which infers the element
7965 // count of the output vector by knowing that MVE vectors are all 128 bits
7966 // wide.
7967 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
7968 return Builder.CreateVectorSplat(Elements, V);
7969 }
7970
ARMMVEVectorReinterpret(CGBuilderTy & Builder,CodeGenFunction * CGF,llvm::Value * V,llvm::Type * DestType)7971 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
7972 CodeGenFunction *CGF,
7973 llvm::Value *V,
7974 llvm::Type *DestType) {
7975 // Convert one MVE vector type into another by reinterpreting its in-register
7976 // format.
7977 //
7978 // Little-endian, this is identical to a bitcast (which reinterprets the
7979 // memory format). But big-endian, they're not necessarily the same, because
7980 // the register and memory formats map to each other differently depending on
7981 // the lane size.
7982 //
7983 // We generate a bitcast whenever we can (if we're little-endian, or if the
7984 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
7985 // that performs the different kind of reinterpretation.
7986 if (CGF->getTarget().isBigEndian() &&
7987 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
7988 return Builder.CreateCall(
7989 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
7990 {DestType, V->getType()}),
7991 V);
7992 } else {
7993 return Builder.CreateBitCast(V, DestType);
7994 }
7995 }
7996
VectorUnzip(CGBuilderTy & Builder,llvm::Value * V,bool Odd)7997 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
7998 // Make a shufflevector that extracts every other element of a vector (evens
7999 // or odds, as desired).
8000 SmallVector<int, 16> Indices;
8001 unsigned InputElements =
8002 cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8003 for (unsigned i = 0; i < InputElements; i += 2)
8004 Indices.push_back(i + Odd);
8005 return Builder.CreateShuffleVector(V, Indices);
8006 }
8007
VectorZip(CGBuilderTy & Builder,llvm::Value * V0,llvm::Value * V1)8008 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8009 llvm::Value *V1) {
8010 // Make a shufflevector that interleaves two vectors element by element.
8011 assert(V0->getType() == V1->getType() && "Can't zip different vector types");
8012 SmallVector<int, 16> Indices;
8013 unsigned InputElements =
8014 cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8015 for (unsigned i = 0; i < InputElements; i++) {
8016 Indices.push_back(i);
8017 Indices.push_back(i + InputElements);
8018 }
8019 return Builder.CreateShuffleVector(V0, V1, Indices);
8020 }
8021
8022 template<unsigned HighBit, unsigned OtherBits>
ARMMVEConstantSplat(CGBuilderTy & Builder,llvm::Type * VT)8023 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8024 // MVE-specific helper function to make a vector splat of a constant such as
8025 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8026 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8027 unsigned LaneBits = T->getPrimitiveSizeInBits();
8028 uint32_t Value = HighBit << (LaneBits - 1);
8029 if (OtherBits)
8030 Value |= (1UL << (LaneBits - 1)) - 1;
8031 llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8032 return ARMMVEVectorSplat(Builder, Lane);
8033 }
8034
ARMMVEVectorElementReverse(CGBuilderTy & Builder,llvm::Value * V,unsigned ReverseWidth)8035 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8036 llvm::Value *V,
8037 unsigned ReverseWidth) {
8038 // MVE-specific helper function which reverses the elements of a
8039 // vector within every (ReverseWidth)-bit collection of lanes.
8040 SmallVector<int, 16> Indices;
8041 unsigned LaneSize = V->getType()->getScalarSizeInBits();
8042 unsigned Elements = 128 / LaneSize;
8043 unsigned Mask = ReverseWidth / LaneSize - 1;
8044 for (unsigned i = 0; i < Elements; i++)
8045 Indices.push_back(i ^ Mask);
8046 return Builder.CreateShuffleVector(V, Indices);
8047 }
8048
EmitARMMVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)8049 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8050 const CallExpr *E,
8051 ReturnValueSlot ReturnValue,
8052 llvm::Triple::ArchType Arch) {
8053 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8054 Intrinsic::ID IRIntr;
8055 unsigned NumVectors;
8056
8057 // Code autogenerated by Tablegen will handle all the simple builtins.
8058 switch (BuiltinID) {
8059 #include "clang/Basic/arm_mve_builtin_cg.inc"
8060
8061 // If we didn't match an MVE builtin id at all, go back to the
8062 // main EmitARMBuiltinExpr.
8063 default:
8064 return nullptr;
8065 }
8066
8067 // Anything that breaks from that switch is an MVE builtin that
8068 // needs handwritten code to generate.
8069
8070 switch (CustomCodeGenType) {
8071
8072 case CustomCodeGen::VLD24: {
8073 llvm::SmallVector<Value *, 4> Ops;
8074 llvm::SmallVector<llvm::Type *, 4> Tys;
8075
8076 auto MvecCType = E->getType();
8077 auto MvecLType = ConvertType(MvecCType);
8078 assert(MvecLType->isStructTy() &&
8079 "Return type for vld[24]q should be a struct");
8080 assert(MvecLType->getStructNumElements() == 1 &&
8081 "Return-type struct for vld[24]q should have one element");
8082 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8083 assert(MvecLTypeInner->isArrayTy() &&
8084 "Return-type struct for vld[24]q should contain an array");
8085 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8086 "Array member of return-type struct vld[24]q has wrong length");
8087 auto VecLType = MvecLTypeInner->getArrayElementType();
8088
8089 Tys.push_back(VecLType);
8090
8091 auto Addr = E->getArg(0);
8092 Ops.push_back(EmitScalarExpr(Addr));
8093 Tys.push_back(ConvertType(Addr->getType()));
8094
8095 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8096 Value *LoadResult = Builder.CreateCall(F, Ops);
8097 Value *MvecOut = UndefValue::get(MvecLType);
8098 for (unsigned i = 0; i < NumVectors; ++i) {
8099 Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8100 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8101 }
8102
8103 if (ReturnValue.isNull())
8104 return MvecOut;
8105 else
8106 return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8107 }
8108
8109 case CustomCodeGen::VST24: {
8110 llvm::SmallVector<Value *, 4> Ops;
8111 llvm::SmallVector<llvm::Type *, 4> Tys;
8112
8113 auto Addr = E->getArg(0);
8114 Ops.push_back(EmitScalarExpr(Addr));
8115 Tys.push_back(ConvertType(Addr->getType()));
8116
8117 auto MvecCType = E->getArg(1)->getType();
8118 auto MvecLType = ConvertType(MvecCType);
8119 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
8120 assert(MvecLType->getStructNumElements() == 1 &&
8121 "Data-type struct for vst2q should have one element");
8122 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8123 assert(MvecLTypeInner->isArrayTy() &&
8124 "Data-type struct for vst2q should contain an array");
8125 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8126 "Array member of return-type struct vld[24]q has wrong length");
8127 auto VecLType = MvecLTypeInner->getArrayElementType();
8128
8129 Tys.push_back(VecLType);
8130
8131 AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8132 EmitAggExpr(E->getArg(1), MvecSlot);
8133 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8134 for (unsigned i = 0; i < NumVectors; i++)
8135 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8136
8137 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8138 Value *ToReturn = nullptr;
8139 for (unsigned i = 0; i < NumVectors; i++) {
8140 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8141 ToReturn = Builder.CreateCall(F, Ops);
8142 Ops.pop_back();
8143 }
8144 return ToReturn;
8145 }
8146 }
8147 llvm_unreachable("unknown custom codegen type.");
8148 }
8149
EmitARMCDEBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue,llvm::Triple::ArchType Arch)8150 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8151 const CallExpr *E,
8152 ReturnValueSlot ReturnValue,
8153 llvm::Triple::ArchType Arch) {
8154 switch (BuiltinID) {
8155 default:
8156 return nullptr;
8157 #include "clang/Basic/arm_cde_builtin_cg.inc"
8158 }
8159 }
8160
EmitAArch64TblBuiltinExpr(CodeGenFunction & CGF,unsigned BuiltinID,const CallExpr * E,SmallVectorImpl<Value * > & Ops,llvm::Triple::ArchType Arch)8161 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8162 const CallExpr *E,
8163 SmallVectorImpl<Value *> &Ops,
8164 llvm::Triple::ArchType Arch) {
8165 unsigned int Int = 0;
8166 const char *s = nullptr;
8167
8168 switch (BuiltinID) {
8169 default:
8170 return nullptr;
8171 case NEON::BI__builtin_neon_vtbl1_v:
8172 case NEON::BI__builtin_neon_vqtbl1_v:
8173 case NEON::BI__builtin_neon_vqtbl1q_v:
8174 case NEON::BI__builtin_neon_vtbl2_v:
8175 case NEON::BI__builtin_neon_vqtbl2_v:
8176 case NEON::BI__builtin_neon_vqtbl2q_v:
8177 case NEON::BI__builtin_neon_vtbl3_v:
8178 case NEON::BI__builtin_neon_vqtbl3_v:
8179 case NEON::BI__builtin_neon_vqtbl3q_v:
8180 case NEON::BI__builtin_neon_vtbl4_v:
8181 case NEON::BI__builtin_neon_vqtbl4_v:
8182 case NEON::BI__builtin_neon_vqtbl4q_v:
8183 break;
8184 case NEON::BI__builtin_neon_vtbx1_v:
8185 case NEON::BI__builtin_neon_vqtbx1_v:
8186 case NEON::BI__builtin_neon_vqtbx1q_v:
8187 case NEON::BI__builtin_neon_vtbx2_v:
8188 case NEON::BI__builtin_neon_vqtbx2_v:
8189 case NEON::BI__builtin_neon_vqtbx2q_v:
8190 case NEON::BI__builtin_neon_vtbx3_v:
8191 case NEON::BI__builtin_neon_vqtbx3_v:
8192 case NEON::BI__builtin_neon_vqtbx3q_v:
8193 case NEON::BI__builtin_neon_vtbx4_v:
8194 case NEON::BI__builtin_neon_vqtbx4_v:
8195 case NEON::BI__builtin_neon_vqtbx4q_v:
8196 break;
8197 }
8198
8199 assert(E->getNumArgs() >= 3);
8200
8201 // Get the last argument, which specifies the vector type.
8202 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8203 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8204 if (!Result)
8205 return nullptr;
8206
8207 // Determine the type of this overloaded NEON intrinsic.
8208 NeonTypeFlags Type = Result->getZExtValue();
8209 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8210 if (!Ty)
8211 return nullptr;
8212
8213 CodeGen::CGBuilderTy &Builder = CGF.Builder;
8214
8215 // AArch64 scalar builtins are not overloaded, they do not have an extra
8216 // argument that specifies the vector type, need to handle each case.
8217 switch (BuiltinID) {
8218 case NEON::BI__builtin_neon_vtbl1_v: {
8219 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8220 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8221 "vtbl1");
8222 }
8223 case NEON::BI__builtin_neon_vtbl2_v: {
8224 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8225 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8226 "vtbl1");
8227 }
8228 case NEON::BI__builtin_neon_vtbl3_v: {
8229 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8230 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8231 "vtbl2");
8232 }
8233 case NEON::BI__builtin_neon_vtbl4_v: {
8234 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8235 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8236 "vtbl2");
8237 }
8238 case NEON::BI__builtin_neon_vtbx1_v: {
8239 Value *TblRes =
8240 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8241 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8242
8243 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8244 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8245 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8246
8247 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8248 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8249 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8250 }
8251 case NEON::BI__builtin_neon_vtbx2_v: {
8252 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8253 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8254 "vtbx1");
8255 }
8256 case NEON::BI__builtin_neon_vtbx3_v: {
8257 Value *TblRes =
8258 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8259 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8260
8261 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8262 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8263 TwentyFourV);
8264 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8265
8266 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8267 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8268 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8269 }
8270 case NEON::BI__builtin_neon_vtbx4_v: {
8271 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8272 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8273 "vtbx2");
8274 }
8275 case NEON::BI__builtin_neon_vqtbl1_v:
8276 case NEON::BI__builtin_neon_vqtbl1q_v:
8277 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8278 case NEON::BI__builtin_neon_vqtbl2_v:
8279 case NEON::BI__builtin_neon_vqtbl2q_v: {
8280 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8281 case NEON::BI__builtin_neon_vqtbl3_v:
8282 case NEON::BI__builtin_neon_vqtbl3q_v:
8283 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8284 case NEON::BI__builtin_neon_vqtbl4_v:
8285 case NEON::BI__builtin_neon_vqtbl4q_v:
8286 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8287 case NEON::BI__builtin_neon_vqtbx1_v:
8288 case NEON::BI__builtin_neon_vqtbx1q_v:
8289 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8290 case NEON::BI__builtin_neon_vqtbx2_v:
8291 case NEON::BI__builtin_neon_vqtbx2q_v:
8292 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8293 case NEON::BI__builtin_neon_vqtbx3_v:
8294 case NEON::BI__builtin_neon_vqtbx3q_v:
8295 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8296 case NEON::BI__builtin_neon_vqtbx4_v:
8297 case NEON::BI__builtin_neon_vqtbx4q_v:
8298 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8299 }
8300 }
8301
8302 if (!Int)
8303 return nullptr;
8304
8305 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8306 return CGF.EmitNeonCall(F, Ops, s);
8307 }
8308
vectorWrapScalar16(Value * Op)8309 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8310 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8311 Op = Builder.CreateBitCast(Op, Int16Ty);
8312 Value *V = UndefValue::get(VTy);
8313 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8314 Op = Builder.CreateInsertElement(V, Op, CI);
8315 return Op;
8316 }
8317
8318 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8319 /// access builtin. Only required if it can't be inferred from the base pointer
8320 /// operand.
SVEBuiltinMemEltTy(SVETypeFlags TypeFlags)8321 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
8322 switch (TypeFlags.getMemEltType()) {
8323 case SVETypeFlags::MemEltTyDefault:
8324 return getEltType(TypeFlags);
8325 case SVETypeFlags::MemEltTyInt8:
8326 return Builder.getInt8Ty();
8327 case SVETypeFlags::MemEltTyInt16:
8328 return Builder.getInt16Ty();
8329 case SVETypeFlags::MemEltTyInt32:
8330 return Builder.getInt32Ty();
8331 case SVETypeFlags::MemEltTyInt64:
8332 return Builder.getInt64Ty();
8333 }
8334 llvm_unreachable("Unknown MemEltType");
8335 }
8336
getEltType(SVETypeFlags TypeFlags)8337 llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
8338 switch (TypeFlags.getEltType()) {
8339 default:
8340 llvm_unreachable("Invalid SVETypeFlag!");
8341
8342 case SVETypeFlags::EltTyInt8:
8343 return Builder.getInt8Ty();
8344 case SVETypeFlags::EltTyInt16:
8345 return Builder.getInt16Ty();
8346 case SVETypeFlags::EltTyInt32:
8347 return Builder.getInt32Ty();
8348 case SVETypeFlags::EltTyInt64:
8349 return Builder.getInt64Ty();
8350
8351 case SVETypeFlags::EltTyFloat16:
8352 return Builder.getHalfTy();
8353 case SVETypeFlags::EltTyFloat32:
8354 return Builder.getFloatTy();
8355 case SVETypeFlags::EltTyFloat64:
8356 return Builder.getDoubleTy();
8357
8358 case SVETypeFlags::EltTyBFloat16:
8359 return Builder.getBFloatTy();
8360
8361 case SVETypeFlags::EltTyBool8:
8362 case SVETypeFlags::EltTyBool16:
8363 case SVETypeFlags::EltTyBool32:
8364 case SVETypeFlags::EltTyBool64:
8365 return Builder.getInt1Ty();
8366 }
8367 }
8368
8369 // Return the llvm predicate vector type corresponding to the specified element
8370 // TypeFlags.
8371 llvm::ScalableVectorType *
getSVEPredType(SVETypeFlags TypeFlags)8372 CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
8373 switch (TypeFlags.getEltType()) {
8374 default: llvm_unreachable("Unhandled SVETypeFlag!");
8375
8376 case SVETypeFlags::EltTyInt8:
8377 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8378 case SVETypeFlags::EltTyInt16:
8379 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8380 case SVETypeFlags::EltTyInt32:
8381 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8382 case SVETypeFlags::EltTyInt64:
8383 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8384
8385 case SVETypeFlags::EltTyBFloat16:
8386 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8387 case SVETypeFlags::EltTyFloat16:
8388 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8389 case SVETypeFlags::EltTyFloat32:
8390 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8391 case SVETypeFlags::EltTyFloat64:
8392 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8393
8394 case SVETypeFlags::EltTyBool8:
8395 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8396 case SVETypeFlags::EltTyBool16:
8397 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8398 case SVETypeFlags::EltTyBool32:
8399 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8400 case SVETypeFlags::EltTyBool64:
8401 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8402 }
8403 }
8404
8405 // Return the llvm vector type corresponding to the specified element TypeFlags.
8406 llvm::ScalableVectorType *
getSVEType(const SVETypeFlags & TypeFlags)8407 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8408 switch (TypeFlags.getEltType()) {
8409 default:
8410 llvm_unreachable("Invalid SVETypeFlag!");
8411
8412 case SVETypeFlags::EltTyInt8:
8413 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8414 case SVETypeFlags::EltTyInt16:
8415 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8416 case SVETypeFlags::EltTyInt32:
8417 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8418 case SVETypeFlags::EltTyInt64:
8419 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8420
8421 case SVETypeFlags::EltTyFloat16:
8422 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8423 case SVETypeFlags::EltTyBFloat16:
8424 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8425 case SVETypeFlags::EltTyFloat32:
8426 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8427 case SVETypeFlags::EltTyFloat64:
8428 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8429
8430 case SVETypeFlags::EltTyBool8:
8431 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8432 case SVETypeFlags::EltTyBool16:
8433 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8434 case SVETypeFlags::EltTyBool32:
8435 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8436 case SVETypeFlags::EltTyBool64:
8437 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8438 }
8439 }
8440
EmitSVEAllTruePred(SVETypeFlags TypeFlags)8441 llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
8442 Function *Ptrue =
8443 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8444 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8445 }
8446
8447 constexpr unsigned SVEBitsPerBlock = 128;
8448
getSVEVectorForElementType(llvm::Type * EltTy)8449 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8450 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8451 return llvm::ScalableVectorType::get(EltTy, NumElts);
8452 }
8453
8454 // Reinterpret the input predicate so that it can be used to correctly isolate
8455 // the elements of the specified datatype.
EmitSVEPredicateCast(Value * Pred,llvm::ScalableVectorType * VTy)8456 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8457 llvm::ScalableVectorType *VTy) {
8458 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8459 if (Pred->getType() == RTy)
8460 return Pred;
8461
8462 unsigned IntID;
8463 llvm::Type *IntrinsicTy;
8464 switch (VTy->getMinNumElements()) {
8465 default:
8466 llvm_unreachable("unsupported element count!");
8467 case 2:
8468 case 4:
8469 case 8:
8470 IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8471 IntrinsicTy = RTy;
8472 break;
8473 case 16:
8474 IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8475 IntrinsicTy = Pred->getType();
8476 break;
8477 }
8478
8479 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8480 Value *C = Builder.CreateCall(F, Pred);
8481 assert(C->getType() == RTy && "Unexpected return type!");
8482 return C;
8483 }
8484
EmitSVEGatherLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8485 Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
8486 SmallVectorImpl<Value *> &Ops,
8487 unsigned IntID) {
8488 auto *ResultTy = getSVEType(TypeFlags);
8489 auto *OverloadedTy =
8490 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8491
8492 // At the ACLE level there's only one predicate type, svbool_t, which is
8493 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8494 // actual type being loaded. For example, when loading doubles (i64) the
8495 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8496 // the predicate and the data being loaded must match. Cast accordingly.
8497 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8498
8499 Function *F = nullptr;
8500 if (Ops[1]->getType()->isVectorTy())
8501 // This is the "vector base, scalar offset" case. In order to uniquely
8502 // map this built-in to an LLVM IR intrinsic, we need both the return type
8503 // and the type of the vector base.
8504 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8505 else
8506 // This is the "scalar base, vector offset case". The type of the offset
8507 // is encoded in the name of the intrinsic. We only need to specify the
8508 // return type in order to uniquely map this built-in to an LLVM IR
8509 // intrinsic.
8510 F = CGM.getIntrinsic(IntID, OverloadedTy);
8511
8512 // Pass 0 when the offset is missing. This can only be applied when using
8513 // the "vector base" addressing mode for which ACLE allows no offset. The
8514 // corresponding LLVM IR always requires an offset.
8515 if (Ops.size() == 2) {
8516 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8517 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8518 }
8519
8520 // For "vector base, scalar index" scale the index so that it becomes a
8521 // scalar offset.
8522 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8523 unsigned BytesPerElt =
8524 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8525 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8526 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8527 }
8528
8529 Value *Call = Builder.CreateCall(F, Ops);
8530
8531 // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8532 // other cases it's folded into a nop.
8533 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8534 : Builder.CreateSExt(Call, ResultTy);
8535 }
8536
EmitSVEScatterStore(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8537 Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
8538 SmallVectorImpl<Value *> &Ops,
8539 unsigned IntID) {
8540 auto *SrcDataTy = getSVEType(TypeFlags);
8541 auto *OverloadedTy =
8542 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8543
8544 // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8545 // it's the first argument. Move it accordingly.
8546 Ops.insert(Ops.begin(), Ops.pop_back_val());
8547
8548 Function *F = nullptr;
8549 if (Ops[2]->getType()->isVectorTy())
8550 // This is the "vector base, scalar offset" case. In order to uniquely
8551 // map this built-in to an LLVM IR intrinsic, we need both the return type
8552 // and the type of the vector base.
8553 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8554 else
8555 // This is the "scalar base, vector offset case". The type of the offset
8556 // is encoded in the name of the intrinsic. We only need to specify the
8557 // return type in order to uniquely map this built-in to an LLVM IR
8558 // intrinsic.
8559 F = CGM.getIntrinsic(IntID, OverloadedTy);
8560
8561 // Pass 0 when the offset is missing. This can only be applied when using
8562 // the "vector base" addressing mode for which ACLE allows no offset. The
8563 // corresponding LLVM IR always requires an offset.
8564 if (Ops.size() == 3) {
8565 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8566 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8567 }
8568
8569 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8570 // folded into a nop.
8571 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8572
8573 // At the ACLE level there's only one predicate type, svbool_t, which is
8574 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8575 // actual type being stored. For example, when storing doubles (i64) the
8576 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8577 // the predicate and the data being stored must match. Cast accordingly.
8578 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8579
8580 // For "vector base, scalar index" scale the index so that it becomes a
8581 // scalar offset.
8582 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8583 unsigned BytesPerElt =
8584 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8585 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8586 Ops[3] = Builder.CreateMul(Ops[3], Scale);
8587 }
8588
8589 return Builder.CreateCall(F, Ops);
8590 }
8591
EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8592 Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
8593 SmallVectorImpl<Value *> &Ops,
8594 unsigned IntID) {
8595 // The gather prefetches are overloaded on the vector input - this can either
8596 // be the vector of base addresses or vector of offsets.
8597 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8598 if (!OverloadedTy)
8599 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8600
8601 // Cast the predicate from svbool_t to the right number of elements.
8602 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8603
8604 // vector + imm addressing modes
8605 if (Ops[1]->getType()->isVectorTy()) {
8606 if (Ops.size() == 3) {
8607 // Pass 0 for 'vector+imm' when the index is omitted.
8608 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8609
8610 // The sv_prfop is the last operand in the builtin and IR intrinsic.
8611 std::swap(Ops[2], Ops[3]);
8612 } else {
8613 // Index needs to be passed as scaled offset.
8614 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8615 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8616 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8617 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8618 }
8619 }
8620
8621 Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8622 return Builder.CreateCall(F, Ops);
8623 }
8624
EmitSVEStructLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8625 Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
8626 SmallVectorImpl<Value*> &Ops,
8627 unsigned IntID) {
8628 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8629 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8630 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8631
8632 unsigned N;
8633 switch (IntID) {
8634 case Intrinsic::aarch64_sve_ld2:
8635 N = 2;
8636 break;
8637 case Intrinsic::aarch64_sve_ld3:
8638 N = 3;
8639 break;
8640 case Intrinsic::aarch64_sve_ld4:
8641 N = 4;
8642 break;
8643 default:
8644 llvm_unreachable("unknown intrinsic!");
8645 }
8646 auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8647 VTy->getElementCount() * N);
8648
8649 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8650 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8651 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8652 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8653 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8654
8655 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8656 return Builder.CreateCall(F, { Predicate, BasePtr });
8657 }
8658
EmitSVEStructStore(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned IntID)8659 Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8660 SmallVectorImpl<Value*> &Ops,
8661 unsigned IntID) {
8662 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8663 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8664 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8665
8666 unsigned N;
8667 switch (IntID) {
8668 case Intrinsic::aarch64_sve_st2:
8669 N = 2;
8670 break;
8671 case Intrinsic::aarch64_sve_st3:
8672 N = 3;
8673 break;
8674 case Intrinsic::aarch64_sve_st4:
8675 N = 4;
8676 break;
8677 default:
8678 llvm_unreachable("unknown intrinsic!");
8679 }
8680 auto TupleTy =
8681 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8682
8683 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8684 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8685 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8686 Value *Val = Ops.back();
8687 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8688 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8689
8690 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8691 // need to break up the tuple vector.
8692 SmallVector<llvm::Value*, 5> Operands;
8693 Function *FExtr =
8694 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8695 for (unsigned I = 0; I < N; ++I)
8696 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8697 Operands.append({Predicate, BasePtr});
8698
8699 Function *F = CGM.getIntrinsic(IntID, { VTy });
8700 return Builder.CreateCall(F, Operands);
8701 }
8702
8703 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8704 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8705 // to a wider type.
EmitSVEPMull(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8706 Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8707 SmallVectorImpl<Value *> &Ops,
8708 unsigned BuiltinID) {
8709 // Splat scalar operand to vector (intrinsics with _n infix)
8710 if (TypeFlags.hasSplatOperand()) {
8711 unsigned OpNo = TypeFlags.getSplatOperand();
8712 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8713 }
8714
8715 // The pair-wise function has a narrower overloaded type.
8716 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8717 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8718
8719 // Now bitcast to the wider result type.
8720 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8721 return EmitSVEReinterpret(Call, Ty);
8722 }
8723
EmitSVEMovl(SVETypeFlags TypeFlags,ArrayRef<Value * > Ops,unsigned BuiltinID)8724 Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8725 ArrayRef<Value *> Ops, unsigned BuiltinID) {
8726 llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8727 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8728 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8729 }
8730
EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8731 Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8732 SmallVectorImpl<Value *> &Ops,
8733 unsigned BuiltinID) {
8734 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8735 auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8736 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8737
8738 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8739 Value *BasePtr = Ops[1];
8740
8741 // Implement the index operand if not omitted.
8742 if (Ops.size() > 3) {
8743 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8744 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8745 }
8746
8747 // Prefetch intriniscs always expect an i8*
8748 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8749 Value *PrfOp = Ops.back();
8750
8751 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8752 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8753 }
8754
EmitSVEMaskedLoad(const CallExpr * E,llvm::Type * ReturnTy,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID,bool IsZExtReturn)8755 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8756 llvm::Type *ReturnTy,
8757 SmallVectorImpl<Value *> &Ops,
8758 unsigned BuiltinID,
8759 bool IsZExtReturn) {
8760 QualType LangPTy = E->getArg(1)->getType();
8761 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8762 LangPTy->castAs<PointerType>()->getPointeeType());
8763
8764 // The vector type that is returned may be different from the
8765 // eventual type loaded from memory.
8766 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8767 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8768
8769 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8770 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8771 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8772 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8773
8774 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8775 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8776 Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8777
8778 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8779 : Builder.CreateSExt(Load, VectorTy);
8780 }
8781
EmitSVEMaskedStore(const CallExpr * E,SmallVectorImpl<Value * > & Ops,unsigned BuiltinID)8782 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8783 SmallVectorImpl<Value *> &Ops,
8784 unsigned BuiltinID) {
8785 QualType LangPTy = E->getArg(1)->getType();
8786 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8787 LangPTy->castAs<PointerType>()->getPointeeType());
8788
8789 // The vector type that is stored may be different from the
8790 // eventual type stored to memory.
8791 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8792 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8793
8794 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8795 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8796 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8797 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8798
8799 // Last value is always the data
8800 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8801
8802 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8803 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8804 return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8805 }
8806
8807 // Limit the usage of scalable llvm IR generated by the ACLE by using the
8808 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
EmitSVEDupX(Value * Scalar,llvm::Type * Ty)8809 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8810 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8811 return Builder.CreateCall(F, Scalar);
8812 }
8813
EmitSVEDupX(Value * Scalar)8814 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8815 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8816 }
8817
EmitSVEReinterpret(Value * Val,llvm::Type * Ty)8818 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8819 // FIXME: For big endian this needs an additional REV, or needs a separate
8820 // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8821 // instruction is defined as 'bitwise' equivalent from memory point of
8822 // view (when storing/reloading), whereas the svreinterpret builtin
8823 // implements bitwise equivalent cast from register point of view.
8824 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8825 return Builder.CreateBitCast(Val, Ty);
8826 }
8827
InsertExplicitZeroOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)8828 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8829 SmallVectorImpl<Value *> &Ops) {
8830 auto *SplatZero = Constant::getNullValue(Ty);
8831 Ops.insert(Ops.begin(), SplatZero);
8832 }
8833
InsertExplicitUndefOperand(CGBuilderTy & Builder,llvm::Type * Ty,SmallVectorImpl<Value * > & Ops)8834 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8835 SmallVectorImpl<Value *> &Ops) {
8836 auto *SplatUndef = UndefValue::get(Ty);
8837 Ops.insert(Ops.begin(), SplatUndef);
8838 }
8839
getSVEOverloadTypes(SVETypeFlags TypeFlags,llvm::Type * ResultType,ArrayRef<Value * > Ops)8840 SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8841 SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8842 if (TypeFlags.isOverloadNone())
8843 return {};
8844
8845 llvm::Type *DefaultType = getSVEType(TypeFlags);
8846
8847 if (TypeFlags.isOverloadWhile())
8848 return {DefaultType, Ops[1]->getType()};
8849
8850 if (TypeFlags.isOverloadWhileRW())
8851 return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8852
8853 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8854 return {Ops[0]->getType(), Ops.back()->getType()};
8855
8856 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8857 return {ResultType, Ops[0]->getType()};
8858
8859 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8860 return {DefaultType};
8861 }
8862
EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,const CallExpr * E)8863 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8864 const CallExpr *E) {
8865 // Find out if any arguments are required to be integer constant expressions.
8866 unsigned ICEArguments = 0;
8867 ASTContext::GetBuiltinTypeError Error;
8868 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8869 assert(Error == ASTContext::GE_None && "Should not codegen an error");
8870
8871 llvm::Type *Ty = ConvertType(E->getType());
8872 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8873 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8874 Value *Val = EmitScalarExpr(E->getArg(0));
8875 return EmitSVEReinterpret(Val, Ty);
8876 }
8877
8878 llvm::SmallVector<Value *, 4> Ops;
8879 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8880 if ((ICEArguments & (1 << i)) == 0)
8881 Ops.push_back(EmitScalarExpr(E->getArg(i)));
8882 else {
8883 // If this is required to be a constant, constant fold it so that we know
8884 // that the generated intrinsic gets a ConstantInt.
8885 Optional<llvm::APSInt> Result =
8886 E->getArg(i)->getIntegerConstantExpr(getContext());
8887 assert(Result && "Expected argument to be a constant");
8888
8889 // Immediates for SVE llvm intrinsics are always 32bit. We can safely
8890 // truncate because the immediate has been range checked and no valid
8891 // immediate requires more than a handful of bits.
8892 *Result = Result->extOrTrunc(32);
8893 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
8894 }
8895 }
8896
8897 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8898 AArch64SVEIntrinsicsProvenSorted);
8899 SVETypeFlags TypeFlags(Builtin->TypeModifier);
8900 if (TypeFlags.isLoad())
8901 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8902 TypeFlags.isZExtReturn());
8903 else if (TypeFlags.isStore())
8904 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8905 else if (TypeFlags.isGatherLoad())
8906 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8907 else if (TypeFlags.isScatterStore())
8908 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8909 else if (TypeFlags.isPrefetch())
8910 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8911 else if (TypeFlags.isGatherPrefetch())
8912 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8913 else if (TypeFlags.isStructLoad())
8914 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8915 else if (TypeFlags.isStructStore())
8916 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8917 else if (TypeFlags.isUndef())
8918 return UndefValue::get(Ty);
8919 else if (Builtin->LLVMIntrinsic != 0) {
8920 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
8921 InsertExplicitZeroOperand(Builder, Ty, Ops);
8922
8923 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
8924 InsertExplicitUndefOperand(Builder, Ty, Ops);
8925
8926 // Some ACLE builtins leave out the argument to specify the predicate
8927 // pattern, which is expected to be expanded to an SV_ALL pattern.
8928 if (TypeFlags.isAppendSVALL())
8929 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
8930 if (TypeFlags.isInsertOp1SVALL())
8931 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
8932
8933 // Predicates must match the main datatype.
8934 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
8935 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
8936 if (PredTy->getElementType()->isIntegerTy(1))
8937 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
8938
8939 // Splat scalar operand to vector (intrinsics with _n infix)
8940 if (TypeFlags.hasSplatOperand()) {
8941 unsigned OpNo = TypeFlags.getSplatOperand();
8942 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8943 }
8944
8945 if (TypeFlags.isReverseCompare())
8946 std::swap(Ops[1], Ops[2]);
8947
8948 if (TypeFlags.isReverseUSDOT())
8949 std::swap(Ops[1], Ops[2]);
8950
8951 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
8952 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
8953 llvm::Type *OpndTy = Ops[1]->getType();
8954 auto *SplatZero = Constant::getNullValue(OpndTy);
8955 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
8956 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
8957 }
8958
8959 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
8960 getSVEOverloadTypes(TypeFlags, Ty, Ops));
8961 Value *Call = Builder.CreateCall(F, Ops);
8962
8963 // Predicate results must be converted to svbool_t.
8964 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
8965 if (PredTy->getScalarType()->isIntegerTy(1))
8966 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8967
8968 return Call;
8969 }
8970
8971 switch (BuiltinID) {
8972 default:
8973 return nullptr;
8974
8975 case SVE::BI__builtin_sve_svmov_b_z: {
8976 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
8977 SVETypeFlags TypeFlags(Builtin->TypeModifier);
8978 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8979 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
8980 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
8981 }
8982
8983 case SVE::BI__builtin_sve_svnot_b_z: {
8984 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
8985 SVETypeFlags TypeFlags(Builtin->TypeModifier);
8986 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8987 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
8988 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
8989 }
8990
8991 case SVE::BI__builtin_sve_svmovlb_u16:
8992 case SVE::BI__builtin_sve_svmovlb_u32:
8993 case SVE::BI__builtin_sve_svmovlb_u64:
8994 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
8995
8996 case SVE::BI__builtin_sve_svmovlb_s16:
8997 case SVE::BI__builtin_sve_svmovlb_s32:
8998 case SVE::BI__builtin_sve_svmovlb_s64:
8999 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9000
9001 case SVE::BI__builtin_sve_svmovlt_u16:
9002 case SVE::BI__builtin_sve_svmovlt_u32:
9003 case SVE::BI__builtin_sve_svmovlt_u64:
9004 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9005
9006 case SVE::BI__builtin_sve_svmovlt_s16:
9007 case SVE::BI__builtin_sve_svmovlt_s32:
9008 case SVE::BI__builtin_sve_svmovlt_s64:
9009 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9010
9011 case SVE::BI__builtin_sve_svpmullt_u16:
9012 case SVE::BI__builtin_sve_svpmullt_u64:
9013 case SVE::BI__builtin_sve_svpmullt_n_u16:
9014 case SVE::BI__builtin_sve_svpmullt_n_u64:
9015 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9016
9017 case SVE::BI__builtin_sve_svpmullb_u16:
9018 case SVE::BI__builtin_sve_svpmullb_u64:
9019 case SVE::BI__builtin_sve_svpmullb_n_u16:
9020 case SVE::BI__builtin_sve_svpmullb_n_u64:
9021 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9022
9023 case SVE::BI__builtin_sve_svdup_n_b8:
9024 case SVE::BI__builtin_sve_svdup_n_b16:
9025 case SVE::BI__builtin_sve_svdup_n_b32:
9026 case SVE::BI__builtin_sve_svdup_n_b64: {
9027 Value *CmpNE =
9028 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9029 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9030 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9031 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9032 }
9033
9034 case SVE::BI__builtin_sve_svdupq_n_b8:
9035 case SVE::BI__builtin_sve_svdupq_n_b16:
9036 case SVE::BI__builtin_sve_svdupq_n_b32:
9037 case SVE::BI__builtin_sve_svdupq_n_b64:
9038 case SVE::BI__builtin_sve_svdupq_n_u8:
9039 case SVE::BI__builtin_sve_svdupq_n_s8:
9040 case SVE::BI__builtin_sve_svdupq_n_u64:
9041 case SVE::BI__builtin_sve_svdupq_n_f64:
9042 case SVE::BI__builtin_sve_svdupq_n_s64:
9043 case SVE::BI__builtin_sve_svdupq_n_u16:
9044 case SVE::BI__builtin_sve_svdupq_n_f16:
9045 case SVE::BI__builtin_sve_svdupq_n_bf16:
9046 case SVE::BI__builtin_sve_svdupq_n_s16:
9047 case SVE::BI__builtin_sve_svdupq_n_u32:
9048 case SVE::BI__builtin_sve_svdupq_n_f32:
9049 case SVE::BI__builtin_sve_svdupq_n_s32: {
9050 // These builtins are implemented by storing each element to an array and using
9051 // ld1rq to materialize a vector.
9052 unsigned NumOpnds = Ops.size();
9053
9054 bool IsBoolTy =
9055 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9056
9057 // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9058 // so that the compare can use the width that is natural for the expected
9059 // number of predicate lanes.
9060 llvm::Type *EltTy = Ops[0]->getType();
9061 if (IsBoolTy)
9062 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9063
9064 Address Alloca = CreateTempAlloca(llvm::ArrayType::get(EltTy, NumOpnds),
9065 CharUnits::fromQuantity(16));
9066 for (unsigned I = 0; I < NumOpnds; ++I)
9067 Builder.CreateDefaultAlignedStore(
9068 IsBoolTy ? Builder.CreateZExt(Ops[I], EltTy) : Ops[I],
9069 Builder.CreateGEP(Alloca.getElementType(), Alloca.getPointer(),
9070 {Builder.getInt64(0), Builder.getInt64(I)}));
9071
9072 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9073 Value *Pred = EmitSVEAllTruePred(TypeFlags);
9074
9075 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9076 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_ld1rq, OverloadedTy);
9077 Value *Alloca0 = Builder.CreateGEP(
9078 Alloca.getElementType(), Alloca.getPointer(),
9079 {Builder.getInt64(0), Builder.getInt64(0)});
9080 Value *LD1RQ = Builder.CreateCall(F, {Pred, Alloca0});
9081
9082 if (!IsBoolTy)
9083 return LD1RQ;
9084
9085 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9086 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9087 : Intrinsic::aarch64_sve_cmpne_wide,
9088 OverloadedTy);
9089 Value *Call =
9090 Builder.CreateCall(F, {Pred, LD1RQ, EmitSVEDupX(Builder.getInt64(0))});
9091 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9092 }
9093
9094 case SVE::BI__builtin_sve_svpfalse_b:
9095 return ConstantInt::getFalse(Ty);
9096
9097 case SVE::BI__builtin_sve_svlen_bf16:
9098 case SVE::BI__builtin_sve_svlen_f16:
9099 case SVE::BI__builtin_sve_svlen_f32:
9100 case SVE::BI__builtin_sve_svlen_f64:
9101 case SVE::BI__builtin_sve_svlen_s8:
9102 case SVE::BI__builtin_sve_svlen_s16:
9103 case SVE::BI__builtin_sve_svlen_s32:
9104 case SVE::BI__builtin_sve_svlen_s64:
9105 case SVE::BI__builtin_sve_svlen_u8:
9106 case SVE::BI__builtin_sve_svlen_u16:
9107 case SVE::BI__builtin_sve_svlen_u32:
9108 case SVE::BI__builtin_sve_svlen_u64: {
9109 SVETypeFlags TF(Builtin->TypeModifier);
9110 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9111 auto *NumEls =
9112 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9113
9114 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9115 return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9116 }
9117
9118 case SVE::BI__builtin_sve_svtbl2_u8:
9119 case SVE::BI__builtin_sve_svtbl2_s8:
9120 case SVE::BI__builtin_sve_svtbl2_u16:
9121 case SVE::BI__builtin_sve_svtbl2_s16:
9122 case SVE::BI__builtin_sve_svtbl2_u32:
9123 case SVE::BI__builtin_sve_svtbl2_s32:
9124 case SVE::BI__builtin_sve_svtbl2_u64:
9125 case SVE::BI__builtin_sve_svtbl2_s64:
9126 case SVE::BI__builtin_sve_svtbl2_f16:
9127 case SVE::BI__builtin_sve_svtbl2_bf16:
9128 case SVE::BI__builtin_sve_svtbl2_f32:
9129 case SVE::BI__builtin_sve_svtbl2_f64: {
9130 SVETypeFlags TF(Builtin->TypeModifier);
9131 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9132 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9133 Function *FExtr =
9134 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9135 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9136 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9137 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9138 return Builder.CreateCall(F, {V0, V1, Ops[1]});
9139 }
9140 }
9141
9142 /// Should not happen
9143 return nullptr;
9144 }
9145
EmitAArch64BuiltinExpr(unsigned BuiltinID,const CallExpr * E,llvm::Triple::ArchType Arch)9146 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9147 const CallExpr *E,
9148 llvm::Triple::ArchType Arch) {
9149 if (BuiltinID >= AArch64::FirstSVEBuiltin &&
9150 BuiltinID <= AArch64::LastSVEBuiltin)
9151 return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9152
9153 unsigned HintID = static_cast<unsigned>(-1);
9154 switch (BuiltinID) {
9155 default: break;
9156 case AArch64::BI__builtin_arm_nop:
9157 HintID = 0;
9158 break;
9159 case AArch64::BI__builtin_arm_yield:
9160 case AArch64::BI__yield:
9161 HintID = 1;
9162 break;
9163 case AArch64::BI__builtin_arm_wfe:
9164 case AArch64::BI__wfe:
9165 HintID = 2;
9166 break;
9167 case AArch64::BI__builtin_arm_wfi:
9168 case AArch64::BI__wfi:
9169 HintID = 3;
9170 break;
9171 case AArch64::BI__builtin_arm_sev:
9172 case AArch64::BI__sev:
9173 HintID = 4;
9174 break;
9175 case AArch64::BI__builtin_arm_sevl:
9176 case AArch64::BI__sevl:
9177 HintID = 5;
9178 break;
9179 }
9180
9181 if (HintID != static_cast<unsigned>(-1)) {
9182 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9183 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9184 }
9185
9186 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9187 Value *Address = EmitScalarExpr(E->getArg(0));
9188 Value *RW = EmitScalarExpr(E->getArg(1));
9189 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
9190 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9191 Value *IsData = EmitScalarExpr(E->getArg(4));
9192
9193 Value *Locality = nullptr;
9194 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9195 // Temporal fetch, needs to convert cache level to locality.
9196 Locality = llvm::ConstantInt::get(Int32Ty,
9197 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9198 } else {
9199 // Streaming fetch.
9200 Locality = llvm::ConstantInt::get(Int32Ty, 0);
9201 }
9202
9203 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9204 // PLDL3STRM or PLDL2STRM.
9205 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9206 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9207 }
9208
9209 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9210 assert((getContext().getTypeSize(E->getType()) == 32) &&
9211 "rbit of unusual size!");
9212 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9213 return Builder.CreateCall(
9214 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9215 }
9216 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9217 assert((getContext().getTypeSize(E->getType()) == 64) &&
9218 "rbit of unusual size!");
9219 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9220 return Builder.CreateCall(
9221 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9222 }
9223
9224 if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9225 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9226 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9227 "cls");
9228 }
9229 if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9230 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9231 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9232 "cls");
9233 }
9234
9235 if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
9236 BuiltinID == AArch64::BI__builtin_arm_frint32z) {
9237 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9238 llvm::Type *Ty = Arg->getType();
9239 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9240 Arg, "frint32z");
9241 }
9242
9243 if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
9244 BuiltinID == AArch64::BI__builtin_arm_frint64z) {
9245 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9246 llvm::Type *Ty = Arg->getType();
9247 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9248 Arg, "frint64z");
9249 }
9250
9251 if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
9252 BuiltinID == AArch64::BI__builtin_arm_frint32x) {
9253 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9254 llvm::Type *Ty = Arg->getType();
9255 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9256 Arg, "frint32x");
9257 }
9258
9259 if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
9260 BuiltinID == AArch64::BI__builtin_arm_frint64x) {
9261 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9262 llvm::Type *Ty = Arg->getType();
9263 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9264 Arg, "frint64x");
9265 }
9266
9267 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9268 assert((getContext().getTypeSize(E->getType()) == 32) &&
9269 "__jcvt of unusual size!");
9270 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9271 return Builder.CreateCall(
9272 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9273 }
9274
9275 if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9276 BuiltinID == AArch64::BI__builtin_arm_st64b ||
9277 BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9278 BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9279 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9280 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9281
9282 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9283 // Load from the address via an LLVM intrinsic, receiving a
9284 // tuple of 8 i64 words, and store each one to ValPtr.
9285 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9286 llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9287 llvm::Value *ToRet;
9288 for (size_t i = 0; i < 8; i++) {
9289 llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i));
9290 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9291 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9292 }
9293 return ToRet;
9294 } else {
9295 // Load 8 i64 words from ValPtr, and store them to the address
9296 // via an LLVM intrinsic.
9297 SmallVector<llvm::Value *, 9> Args;
9298 Args.push_back(MemAddr);
9299 for (size_t i = 0; i < 8; i++) {
9300 llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i));
9301 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9302 Args.push_back(Builder.CreateLoad(Addr));
9303 }
9304
9305 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9306 ? Intrinsic::aarch64_st64b
9307 : BuiltinID == AArch64::BI__builtin_arm_st64bv
9308 ? Intrinsic::aarch64_st64bv
9309 : Intrinsic::aarch64_st64bv0);
9310 Function *F = CGM.getIntrinsic(Intr);
9311 return Builder.CreateCall(F, Args);
9312 }
9313 }
9314
9315 if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
9316 BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
9317
9318 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
9319 ? Intrinsic::aarch64_rndr
9320 : Intrinsic::aarch64_rndrrs);
9321 Function *F = CGM.getIntrinsic(Intr);
9322 llvm::Value *Val = Builder.CreateCall(F);
9323 Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9324 Value *Status = Builder.CreateExtractValue(Val, 1);
9325
9326 Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9327 Builder.CreateStore(RandomValue, MemAddress);
9328 Status = Builder.CreateZExt(Status, Int32Ty);
9329 return Status;
9330 }
9331
9332 if (BuiltinID == AArch64::BI__clear_cache) {
9333 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
9334 const FunctionDecl *FD = E->getDirectCallee();
9335 Value *Ops[2];
9336 for (unsigned i = 0; i < 2; i++)
9337 Ops[i] = EmitScalarExpr(E->getArg(i));
9338 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9339 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9340 StringRef Name = FD->getName();
9341 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9342 }
9343
9344 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9345 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9346 getContext().getTypeSize(E->getType()) == 128) {
9347 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9348 ? Intrinsic::aarch64_ldaxp
9349 : Intrinsic::aarch64_ldxp);
9350
9351 Value *LdPtr = EmitScalarExpr(E->getArg(0));
9352 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9353 "ldxp");
9354
9355 Value *Val0 = Builder.CreateExtractValue(Val, 1);
9356 Value *Val1 = Builder.CreateExtractValue(Val, 0);
9357 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9358 Val0 = Builder.CreateZExt(Val0, Int128Ty);
9359 Val1 = Builder.CreateZExt(Val1, Int128Ty);
9360
9361 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9362 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9363 Val = Builder.CreateOr(Val, Val1);
9364 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9365 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9366 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9367 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9368
9369 QualType Ty = E->getType();
9370 llvm::Type *RealResTy = ConvertType(Ty);
9371 llvm::Type *PtrTy = llvm::IntegerType::get(
9372 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
9373 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9374
9375 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9376 ? Intrinsic::aarch64_ldaxr
9377 : Intrinsic::aarch64_ldxr,
9378 PtrTy);
9379 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9380
9381 if (RealResTy->isPointerTy())
9382 return Builder.CreateIntToPtr(Val, RealResTy);
9383
9384 llvm::Type *IntResTy = llvm::IntegerType::get(
9385 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9386 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
9387 return Builder.CreateBitCast(Val, RealResTy);
9388 }
9389
9390 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9391 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9392 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9393 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9394 ? Intrinsic::aarch64_stlxp
9395 : Intrinsic::aarch64_stxp);
9396 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9397
9398 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9399 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9400
9401 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
9402 llvm::Value *Val = Builder.CreateLoad(Tmp);
9403
9404 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9405 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9406 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9407 Int8PtrTy);
9408 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9409 }
9410
9411 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9412 BuiltinID == AArch64::BI__builtin_arm_stlex) {
9413 Value *StoreVal = EmitScalarExpr(E->getArg(0));
9414 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9415
9416 QualType Ty = E->getArg(0)->getType();
9417 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9418 getContext().getTypeSize(Ty));
9419 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9420
9421 if (StoreVal->getType()->isPointerTy())
9422 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9423 else {
9424 llvm::Type *IntTy = llvm::IntegerType::get(
9425 getLLVMContext(),
9426 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9427 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9428 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9429 }
9430
9431 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9432 ? Intrinsic::aarch64_stlxr
9433 : Intrinsic::aarch64_stxr,
9434 StoreAddr->getType());
9435 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9436 }
9437
9438 if (BuiltinID == AArch64::BI__getReg) {
9439 Expr::EvalResult Result;
9440 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9441 llvm_unreachable("Sema will ensure that the parameter is constant");
9442
9443 llvm::APSInt Value = Result.Val.getInt();
9444 LLVMContext &Context = CGM.getLLVMContext();
9445 std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
9446
9447 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9448 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9449 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9450
9451 llvm::Function *F =
9452 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9453 return Builder.CreateCall(F, Metadata);
9454 }
9455
9456 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9457 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9458 return Builder.CreateCall(F);
9459 }
9460
9461 if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9462 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9463 llvm::SyncScope::SingleThread);
9464
9465 // CRC32
9466 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9467 switch (BuiltinID) {
9468 case AArch64::BI__builtin_arm_crc32b:
9469 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9470 case AArch64::BI__builtin_arm_crc32cb:
9471 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9472 case AArch64::BI__builtin_arm_crc32h:
9473 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9474 case AArch64::BI__builtin_arm_crc32ch:
9475 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9476 case AArch64::BI__builtin_arm_crc32w:
9477 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9478 case AArch64::BI__builtin_arm_crc32cw:
9479 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9480 case AArch64::BI__builtin_arm_crc32d:
9481 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9482 case AArch64::BI__builtin_arm_crc32cd:
9483 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9484 }
9485
9486 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9487 Value *Arg0 = EmitScalarExpr(E->getArg(0));
9488 Value *Arg1 = EmitScalarExpr(E->getArg(1));
9489 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9490
9491 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9492 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9493
9494 return Builder.CreateCall(F, {Arg0, Arg1});
9495 }
9496
9497 // Memory Tagging Extensions (MTE) Intrinsics
9498 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9499 switch (BuiltinID) {
9500 case AArch64::BI__builtin_arm_irg:
9501 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9502 case AArch64::BI__builtin_arm_addg:
9503 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9504 case AArch64::BI__builtin_arm_gmi:
9505 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9506 case AArch64::BI__builtin_arm_ldg:
9507 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9508 case AArch64::BI__builtin_arm_stg:
9509 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9510 case AArch64::BI__builtin_arm_subp:
9511 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9512 }
9513
9514 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9515 llvm::Type *T = ConvertType(E->getType());
9516
9517 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9518 Value *Pointer = EmitScalarExpr(E->getArg(0));
9519 Value *Mask = EmitScalarExpr(E->getArg(1));
9520
9521 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9522 Mask = Builder.CreateZExt(Mask, Int64Ty);
9523 Value *RV = Builder.CreateCall(
9524 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9525 return Builder.CreatePointerCast(RV, T);
9526 }
9527 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9528 Value *Pointer = EmitScalarExpr(E->getArg(0));
9529 Value *TagOffset = EmitScalarExpr(E->getArg(1));
9530
9531 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9532 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9533 Value *RV = Builder.CreateCall(
9534 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9535 return Builder.CreatePointerCast(RV, T);
9536 }
9537 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9538 Value *Pointer = EmitScalarExpr(E->getArg(0));
9539 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9540
9541 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9542 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9543 return Builder.CreateCall(
9544 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9545 }
9546 // Although it is possible to supply a different return
9547 // address (first arg) to this intrinsic, for now we set
9548 // return address same as input address.
9549 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9550 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9551 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9552 Value *RV = Builder.CreateCall(
9553 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9554 return Builder.CreatePointerCast(RV, T);
9555 }
9556 // Although it is possible to supply a different tag (to set)
9557 // to this intrinsic (as first arg), for now we supply
9558 // the tag that is in input address arg (common use case).
9559 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9560 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9561 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9562 return Builder.CreateCall(
9563 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9564 }
9565 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9566 Value *PointerA = EmitScalarExpr(E->getArg(0));
9567 Value *PointerB = EmitScalarExpr(E->getArg(1));
9568 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9569 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9570 return Builder.CreateCall(
9571 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9572 }
9573 }
9574
9575 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9576 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9577 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9578 BuiltinID == AArch64::BI__builtin_arm_wsr ||
9579 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9580 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9581
9582 SpecialRegisterAccessKind AccessKind = Write;
9583 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9584 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9585 BuiltinID == AArch64::BI__builtin_arm_rsrp)
9586 AccessKind = VolatileRead;
9587
9588 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9589 BuiltinID == AArch64::BI__builtin_arm_wsrp;
9590
9591 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9592 BuiltinID != AArch64::BI__builtin_arm_wsr;
9593
9594 llvm::Type *ValueType;
9595 llvm::Type *RegisterType = Int64Ty;
9596 if (IsPointerBuiltin) {
9597 ValueType = VoidPtrTy;
9598 } else if (Is64Bit) {
9599 ValueType = Int64Ty;
9600 } else {
9601 ValueType = Int32Ty;
9602 }
9603
9604 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9605 AccessKind);
9606 }
9607
9608 if (BuiltinID == AArch64::BI_ReadStatusReg ||
9609 BuiltinID == AArch64::BI_WriteStatusReg) {
9610 LLVMContext &Context = CGM.getLLVMContext();
9611
9612 unsigned SysReg =
9613 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9614
9615 std::string SysRegStr;
9616 llvm::raw_string_ostream(SysRegStr) <<
9617 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
9618 ((SysReg >> 11) & 7) << ":" <<
9619 ((SysReg >> 7) & 15) << ":" <<
9620 ((SysReg >> 3) & 15) << ":" <<
9621 ( SysReg & 7);
9622
9623 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9624 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9625 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9626
9627 llvm::Type *RegisterType = Int64Ty;
9628 llvm::Type *Types[] = { RegisterType };
9629
9630 if (BuiltinID == AArch64::BI_ReadStatusReg) {
9631 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9632
9633 return Builder.CreateCall(F, Metadata);
9634 }
9635
9636 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9637 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9638
9639 return Builder.CreateCall(F, { Metadata, ArgValue });
9640 }
9641
9642 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
9643 llvm::Function *F =
9644 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9645 return Builder.CreateCall(F);
9646 }
9647
9648 if (BuiltinID == AArch64::BI__builtin_sponentry) {
9649 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9650 return Builder.CreateCall(F);
9651 }
9652
9653 // Handle MSVC intrinsics before argument evaluation to prevent double
9654 // evaluation.
9655 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
9656 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
9657
9658 // Find out if any arguments are required to be integer constant
9659 // expressions.
9660 unsigned ICEArguments = 0;
9661 ASTContext::GetBuiltinTypeError Error;
9662 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9663 assert(Error == ASTContext::GE_None && "Should not codegen an error");
9664
9665 llvm::SmallVector<Value*, 4> Ops;
9666 Address PtrOp0 = Address::invalid();
9667 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
9668 if (i == 0) {
9669 switch (BuiltinID) {
9670 case NEON::BI__builtin_neon_vld1_v:
9671 case NEON::BI__builtin_neon_vld1q_v:
9672 case NEON::BI__builtin_neon_vld1_dup_v:
9673 case NEON::BI__builtin_neon_vld1q_dup_v:
9674 case NEON::BI__builtin_neon_vld1_lane_v:
9675 case NEON::BI__builtin_neon_vld1q_lane_v:
9676 case NEON::BI__builtin_neon_vst1_v:
9677 case NEON::BI__builtin_neon_vst1q_v:
9678 case NEON::BI__builtin_neon_vst1_lane_v:
9679 case NEON::BI__builtin_neon_vst1q_lane_v:
9680 // Get the alignment for the argument in addition to the value;
9681 // we'll use it later.
9682 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9683 Ops.push_back(PtrOp0.getPointer());
9684 continue;
9685 }
9686 }
9687 if ((ICEArguments & (1 << i)) == 0) {
9688 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9689 } else {
9690 // If this is required to be a constant, constant fold it so that we know
9691 // that the generated intrinsic gets a ConstantInt.
9692 Ops.push_back(llvm::ConstantInt::get(
9693 getLLVMContext(),
9694 *E->getArg(i)->getIntegerConstantExpr(getContext())));
9695 }
9696 }
9697
9698 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
9699 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9700 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
9701
9702 if (Builtin) {
9703 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
9704 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
9705 assert(Result && "SISD intrinsic should have been handled");
9706 return Result;
9707 }
9708
9709 const Expr *Arg = E->getArg(E->getNumArgs()-1);
9710 NeonTypeFlags Type(0);
9711 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
9712 // Determine the type of this overloaded NEON intrinsic.
9713 Type = NeonTypeFlags(Result->getZExtValue());
9714
9715 bool usgn = Type.isUnsigned();
9716 bool quad = Type.isQuad();
9717
9718 // Handle non-overloaded intrinsics first.
9719 switch (BuiltinID) {
9720 default: break;
9721 case NEON::BI__builtin_neon_vabsh_f16:
9722 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9723 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
9724 case NEON::BI__builtin_neon_vaddq_p128: {
9725 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
9726 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9727 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9728 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9729 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
9730 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9731 return Builder.CreateBitCast(Ops[0], Int128Ty);
9732 }
9733 case NEON::BI__builtin_neon_vldrq_p128: {
9734 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9735 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
9736 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
9737 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
9738 CharUnits::fromQuantity(16));
9739 }
9740 case NEON::BI__builtin_neon_vstrq_p128: {
9741 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9742 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9743 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9744 }
9745 case NEON::BI__builtin_neon_vcvts_f32_u32:
9746 case NEON::BI__builtin_neon_vcvtd_f64_u64:
9747 usgn = true;
9748 LLVM_FALLTHROUGH;
9749 case NEON::BI__builtin_neon_vcvts_f32_s32:
9750 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9751 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9752 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9753 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9754 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9755 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9756 if (usgn)
9757 return Builder.CreateUIToFP(Ops[0], FTy);
9758 return Builder.CreateSIToFP(Ops[0], FTy);
9759 }
9760 case NEON::BI__builtin_neon_vcvth_f16_u16:
9761 case NEON::BI__builtin_neon_vcvth_f16_u32:
9762 case NEON::BI__builtin_neon_vcvth_f16_u64:
9763 usgn = true;
9764 LLVM_FALLTHROUGH;
9765 case NEON::BI__builtin_neon_vcvth_f16_s16:
9766 case NEON::BI__builtin_neon_vcvth_f16_s32:
9767 case NEON::BI__builtin_neon_vcvth_f16_s64: {
9768 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9769 llvm::Type *FTy = HalfTy;
9770 llvm::Type *InTy;
9771 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9772 InTy = Int64Ty;
9773 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9774 InTy = Int32Ty;
9775 else
9776 InTy = Int16Ty;
9777 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9778 if (usgn)
9779 return Builder.CreateUIToFP(Ops[0], FTy);
9780 return Builder.CreateSIToFP(Ops[0], FTy);
9781 }
9782 case NEON::BI__builtin_neon_vcvtah_u16_f16:
9783 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9784 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9785 case NEON::BI__builtin_neon_vcvtph_u16_f16:
9786 case NEON::BI__builtin_neon_vcvth_u16_f16:
9787 case NEON::BI__builtin_neon_vcvtah_s16_f16:
9788 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9789 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9790 case NEON::BI__builtin_neon_vcvtph_s16_f16:
9791 case NEON::BI__builtin_neon_vcvth_s16_f16: {
9792 unsigned Int;
9793 llvm::Type* InTy = Int32Ty;
9794 llvm::Type* FTy = HalfTy;
9795 llvm::Type *Tys[2] = {InTy, FTy};
9796 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9797 switch (BuiltinID) {
9798 default: llvm_unreachable("missing builtin ID in switch!");
9799 case NEON::BI__builtin_neon_vcvtah_u16_f16:
9800 Int = Intrinsic::aarch64_neon_fcvtau; break;
9801 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9802 Int = Intrinsic::aarch64_neon_fcvtmu; break;
9803 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9804 Int = Intrinsic::aarch64_neon_fcvtnu; break;
9805 case NEON::BI__builtin_neon_vcvtph_u16_f16:
9806 Int = Intrinsic::aarch64_neon_fcvtpu; break;
9807 case NEON::BI__builtin_neon_vcvth_u16_f16:
9808 Int = Intrinsic::aarch64_neon_fcvtzu; break;
9809 case NEON::BI__builtin_neon_vcvtah_s16_f16:
9810 Int = Intrinsic::aarch64_neon_fcvtas; break;
9811 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9812 Int = Intrinsic::aarch64_neon_fcvtms; break;
9813 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9814 Int = Intrinsic::aarch64_neon_fcvtns; break;
9815 case NEON::BI__builtin_neon_vcvtph_s16_f16:
9816 Int = Intrinsic::aarch64_neon_fcvtps; break;
9817 case NEON::BI__builtin_neon_vcvth_s16_f16:
9818 Int = Intrinsic::aarch64_neon_fcvtzs; break;
9819 }
9820 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9821 return Builder.CreateTrunc(Ops[0], Int16Ty);
9822 }
9823 case NEON::BI__builtin_neon_vcaleh_f16:
9824 case NEON::BI__builtin_neon_vcalth_f16:
9825 case NEON::BI__builtin_neon_vcageh_f16:
9826 case NEON::BI__builtin_neon_vcagth_f16: {
9827 unsigned Int;
9828 llvm::Type* InTy = Int32Ty;
9829 llvm::Type* FTy = HalfTy;
9830 llvm::Type *Tys[2] = {InTy, FTy};
9831 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9832 switch (BuiltinID) {
9833 default: llvm_unreachable("missing builtin ID in switch!");
9834 case NEON::BI__builtin_neon_vcageh_f16:
9835 Int = Intrinsic::aarch64_neon_facge; break;
9836 case NEON::BI__builtin_neon_vcagth_f16:
9837 Int = Intrinsic::aarch64_neon_facgt; break;
9838 case NEON::BI__builtin_neon_vcaleh_f16:
9839 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9840 case NEON::BI__builtin_neon_vcalth_f16:
9841 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9842 }
9843 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9844 return Builder.CreateTrunc(Ops[0], Int16Ty);
9845 }
9846 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9847 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9848 unsigned Int;
9849 llvm::Type* InTy = Int32Ty;
9850 llvm::Type* FTy = HalfTy;
9851 llvm::Type *Tys[2] = {InTy, FTy};
9852 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9853 switch (BuiltinID) {
9854 default: llvm_unreachable("missing builtin ID in switch!");
9855 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9856 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9857 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9858 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9859 }
9860 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9861 return Builder.CreateTrunc(Ops[0], Int16Ty);
9862 }
9863 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9864 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9865 unsigned Int;
9866 llvm::Type* FTy = HalfTy;
9867 llvm::Type* InTy = Int32Ty;
9868 llvm::Type *Tys[2] = {FTy, InTy};
9869 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9870 switch (BuiltinID) {
9871 default: llvm_unreachable("missing builtin ID in switch!");
9872 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9873 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9874 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9875 break;
9876 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9877 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9878 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9879 break;
9880 }
9881 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9882 }
9883 case NEON::BI__builtin_neon_vpaddd_s64: {
9884 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9885 Value *Vec = EmitScalarExpr(E->getArg(0));
9886 // The vector is v2f64, so make sure it's bitcast to that.
9887 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9888 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9889 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9890 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9891 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9892 // Pairwise addition of a v2f64 into a scalar f64.
9893 return Builder.CreateAdd(Op0, Op1, "vpaddd");
9894 }
9895 case NEON::BI__builtin_neon_vpaddd_f64: {
9896 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
9897 Value *Vec = EmitScalarExpr(E->getArg(0));
9898 // The vector is v2f64, so make sure it's bitcast to that.
9899 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
9900 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9901 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9902 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9903 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9904 // Pairwise addition of a v2f64 into a scalar f64.
9905 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9906 }
9907 case NEON::BI__builtin_neon_vpadds_f32: {
9908 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
9909 Value *Vec = EmitScalarExpr(E->getArg(0));
9910 // The vector is v2f32, so make sure it's bitcast to that.
9911 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
9912 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9913 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9914 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9915 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9916 // Pairwise addition of a v2f32 into a scalar f32.
9917 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9918 }
9919 case NEON::BI__builtin_neon_vceqzd_s64:
9920 case NEON::BI__builtin_neon_vceqzd_f64:
9921 case NEON::BI__builtin_neon_vceqzs_f32:
9922 case NEON::BI__builtin_neon_vceqzh_f16:
9923 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9924 return EmitAArch64CompareBuiltinExpr(
9925 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9926 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
9927 case NEON::BI__builtin_neon_vcgezd_s64:
9928 case NEON::BI__builtin_neon_vcgezd_f64:
9929 case NEON::BI__builtin_neon_vcgezs_f32:
9930 case NEON::BI__builtin_neon_vcgezh_f16:
9931 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9932 return EmitAArch64CompareBuiltinExpr(
9933 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9934 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
9935 case NEON::BI__builtin_neon_vclezd_s64:
9936 case NEON::BI__builtin_neon_vclezd_f64:
9937 case NEON::BI__builtin_neon_vclezs_f32:
9938 case NEON::BI__builtin_neon_vclezh_f16:
9939 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9940 return EmitAArch64CompareBuiltinExpr(
9941 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9942 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
9943 case NEON::BI__builtin_neon_vcgtzd_s64:
9944 case NEON::BI__builtin_neon_vcgtzd_f64:
9945 case NEON::BI__builtin_neon_vcgtzs_f32:
9946 case NEON::BI__builtin_neon_vcgtzh_f16:
9947 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9948 return EmitAArch64CompareBuiltinExpr(
9949 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9950 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
9951 case NEON::BI__builtin_neon_vcltzd_s64:
9952 case NEON::BI__builtin_neon_vcltzd_f64:
9953 case NEON::BI__builtin_neon_vcltzs_f32:
9954 case NEON::BI__builtin_neon_vcltzh_f16:
9955 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9956 return EmitAArch64CompareBuiltinExpr(
9957 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9958 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
9959
9960 case NEON::BI__builtin_neon_vceqzd_u64: {
9961 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9962 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9963 Ops[0] =
9964 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
9965 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
9966 }
9967 case NEON::BI__builtin_neon_vceqd_f64:
9968 case NEON::BI__builtin_neon_vcled_f64:
9969 case NEON::BI__builtin_neon_vcltd_f64:
9970 case NEON::BI__builtin_neon_vcged_f64:
9971 case NEON::BI__builtin_neon_vcgtd_f64: {
9972 llvm::CmpInst::Predicate P;
9973 switch (BuiltinID) {
9974 default: llvm_unreachable("missing builtin ID in switch!");
9975 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
9976 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
9977 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
9978 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
9979 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
9980 }
9981 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9982 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9983 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9984 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9985 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
9986 }
9987 case NEON::BI__builtin_neon_vceqs_f32:
9988 case NEON::BI__builtin_neon_vcles_f32:
9989 case NEON::BI__builtin_neon_vclts_f32:
9990 case NEON::BI__builtin_neon_vcges_f32:
9991 case NEON::BI__builtin_neon_vcgts_f32: {
9992 llvm::CmpInst::Predicate P;
9993 switch (BuiltinID) {
9994 default: llvm_unreachable("missing builtin ID in switch!");
9995 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
9996 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
9997 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
9998 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
9999 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10000 }
10001 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10002 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10003 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10004 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10005 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10006 }
10007 case NEON::BI__builtin_neon_vceqh_f16:
10008 case NEON::BI__builtin_neon_vcleh_f16:
10009 case NEON::BI__builtin_neon_vclth_f16:
10010 case NEON::BI__builtin_neon_vcgeh_f16:
10011 case NEON::BI__builtin_neon_vcgth_f16: {
10012 llvm::CmpInst::Predicate P;
10013 switch (BuiltinID) {
10014 default: llvm_unreachable("missing builtin ID in switch!");
10015 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10016 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10017 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10018 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10019 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10020 }
10021 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10022 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10023 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10024 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10025 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10026 }
10027 case NEON::BI__builtin_neon_vceqd_s64:
10028 case NEON::BI__builtin_neon_vceqd_u64:
10029 case NEON::BI__builtin_neon_vcgtd_s64:
10030 case NEON::BI__builtin_neon_vcgtd_u64:
10031 case NEON::BI__builtin_neon_vcltd_s64:
10032 case NEON::BI__builtin_neon_vcltd_u64:
10033 case NEON::BI__builtin_neon_vcged_u64:
10034 case NEON::BI__builtin_neon_vcged_s64:
10035 case NEON::BI__builtin_neon_vcled_u64:
10036 case NEON::BI__builtin_neon_vcled_s64: {
10037 llvm::CmpInst::Predicate P;
10038 switch (BuiltinID) {
10039 default: llvm_unreachable("missing builtin ID in switch!");
10040 case NEON::BI__builtin_neon_vceqd_s64:
10041 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10042 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10043 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10044 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10045 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10046 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10047 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10048 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10049 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10050 }
10051 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10052 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10053 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10054 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10055 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10056 }
10057 case NEON::BI__builtin_neon_vtstd_s64:
10058 case NEON::BI__builtin_neon_vtstd_u64: {
10059 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10060 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10061 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10062 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10063 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10064 llvm::Constant::getNullValue(Int64Ty));
10065 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10066 }
10067 case NEON::BI__builtin_neon_vset_lane_i8:
10068 case NEON::BI__builtin_neon_vset_lane_i16:
10069 case NEON::BI__builtin_neon_vset_lane_i32:
10070 case NEON::BI__builtin_neon_vset_lane_i64:
10071 case NEON::BI__builtin_neon_vset_lane_bf16:
10072 case NEON::BI__builtin_neon_vset_lane_f32:
10073 case NEON::BI__builtin_neon_vsetq_lane_i8:
10074 case NEON::BI__builtin_neon_vsetq_lane_i16:
10075 case NEON::BI__builtin_neon_vsetq_lane_i32:
10076 case NEON::BI__builtin_neon_vsetq_lane_i64:
10077 case NEON::BI__builtin_neon_vsetq_lane_bf16:
10078 case NEON::BI__builtin_neon_vsetq_lane_f32:
10079 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10080 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10081 case NEON::BI__builtin_neon_vset_lane_f64:
10082 // The vector type needs a cast for the v1f64 variant.
10083 Ops[1] =
10084 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10085 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10086 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10087 case NEON::BI__builtin_neon_vsetq_lane_f64:
10088 // The vector type needs a cast for the v2f64 variant.
10089 Ops[1] =
10090 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10091 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10092 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10093
10094 case NEON::BI__builtin_neon_vget_lane_i8:
10095 case NEON::BI__builtin_neon_vdupb_lane_i8:
10096 Ops[0] =
10097 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10098 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10099 "vget_lane");
10100 case NEON::BI__builtin_neon_vgetq_lane_i8:
10101 case NEON::BI__builtin_neon_vdupb_laneq_i8:
10102 Ops[0] =
10103 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10104 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10105 "vgetq_lane");
10106 case NEON::BI__builtin_neon_vget_lane_i16:
10107 case NEON::BI__builtin_neon_vduph_lane_i16:
10108 Ops[0] =
10109 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10110 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10111 "vget_lane");
10112 case NEON::BI__builtin_neon_vgetq_lane_i16:
10113 case NEON::BI__builtin_neon_vduph_laneq_i16:
10114 Ops[0] =
10115 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10116 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10117 "vgetq_lane");
10118 case NEON::BI__builtin_neon_vget_lane_i32:
10119 case NEON::BI__builtin_neon_vdups_lane_i32:
10120 Ops[0] =
10121 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10122 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10123 "vget_lane");
10124 case NEON::BI__builtin_neon_vdups_lane_f32:
10125 Ops[0] =
10126 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10127 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10128 "vdups_lane");
10129 case NEON::BI__builtin_neon_vgetq_lane_i32:
10130 case NEON::BI__builtin_neon_vdups_laneq_i32:
10131 Ops[0] =
10132 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10133 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10134 "vgetq_lane");
10135 case NEON::BI__builtin_neon_vget_lane_i64:
10136 case NEON::BI__builtin_neon_vdupd_lane_i64:
10137 Ops[0] =
10138 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10139 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10140 "vget_lane");
10141 case NEON::BI__builtin_neon_vdupd_lane_f64:
10142 Ops[0] =
10143 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10144 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10145 "vdupd_lane");
10146 case NEON::BI__builtin_neon_vgetq_lane_i64:
10147 case NEON::BI__builtin_neon_vdupd_laneq_i64:
10148 Ops[0] =
10149 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10150 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10151 "vgetq_lane");
10152 case NEON::BI__builtin_neon_vget_lane_f32:
10153 Ops[0] =
10154 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10155 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10156 "vget_lane");
10157 case NEON::BI__builtin_neon_vget_lane_f64:
10158 Ops[0] =
10159 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10160 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10161 "vget_lane");
10162 case NEON::BI__builtin_neon_vgetq_lane_f32:
10163 case NEON::BI__builtin_neon_vdups_laneq_f32:
10164 Ops[0] =
10165 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10166 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10167 "vgetq_lane");
10168 case NEON::BI__builtin_neon_vgetq_lane_f64:
10169 case NEON::BI__builtin_neon_vdupd_laneq_f64:
10170 Ops[0] =
10171 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10172 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10173 "vgetq_lane");
10174 case NEON::BI__builtin_neon_vaddh_f16:
10175 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10176 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10177 case NEON::BI__builtin_neon_vsubh_f16:
10178 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10179 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10180 case NEON::BI__builtin_neon_vmulh_f16:
10181 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10182 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10183 case NEON::BI__builtin_neon_vdivh_f16:
10184 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10185 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10186 case NEON::BI__builtin_neon_vfmah_f16:
10187 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10188 return emitCallMaybeConstrainedFPBuiltin(
10189 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10190 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10191 case NEON::BI__builtin_neon_vfmsh_f16: {
10192 // FIXME: This should be an fneg instruction:
10193 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10194 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10195
10196 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10197 return emitCallMaybeConstrainedFPBuiltin(
10198 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10199 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10200 }
10201 case NEON::BI__builtin_neon_vaddd_s64:
10202 case NEON::BI__builtin_neon_vaddd_u64:
10203 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10204 case NEON::BI__builtin_neon_vsubd_s64:
10205 case NEON::BI__builtin_neon_vsubd_u64:
10206 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10207 case NEON::BI__builtin_neon_vqdmlalh_s16:
10208 case NEON::BI__builtin_neon_vqdmlslh_s16: {
10209 SmallVector<Value *, 2> ProductOps;
10210 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10211 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10212 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10213 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10214 ProductOps, "vqdmlXl");
10215 Constant *CI = ConstantInt::get(SizeTy, 0);
10216 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10217
10218 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10219 ? Intrinsic::aarch64_neon_sqadd
10220 : Intrinsic::aarch64_neon_sqsub;
10221 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10222 }
10223 case NEON::BI__builtin_neon_vqshlud_n_s64: {
10224 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10225 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10226 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10227 Ops, "vqshlu_n");
10228 }
10229 case NEON::BI__builtin_neon_vqshld_n_u64:
10230 case NEON::BI__builtin_neon_vqshld_n_s64: {
10231 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10232 ? Intrinsic::aarch64_neon_uqshl
10233 : Intrinsic::aarch64_neon_sqshl;
10234 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10235 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10236 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10237 }
10238 case NEON::BI__builtin_neon_vrshrd_n_u64:
10239 case NEON::BI__builtin_neon_vrshrd_n_s64: {
10240 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10241 ? Intrinsic::aarch64_neon_urshl
10242 : Intrinsic::aarch64_neon_srshl;
10243 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10244 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10245 Ops[1] = ConstantInt::get(Int64Ty, -SV);
10246 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10247 }
10248 case NEON::BI__builtin_neon_vrsrad_n_u64:
10249 case NEON::BI__builtin_neon_vrsrad_n_s64: {
10250 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10251 ? Intrinsic::aarch64_neon_urshl
10252 : Intrinsic::aarch64_neon_srshl;
10253 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10254 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10255 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10256 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10257 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10258 }
10259 case NEON::BI__builtin_neon_vshld_n_s64:
10260 case NEON::BI__builtin_neon_vshld_n_u64: {
10261 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10262 return Builder.CreateShl(
10263 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10264 }
10265 case NEON::BI__builtin_neon_vshrd_n_s64: {
10266 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10267 return Builder.CreateAShr(
10268 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10269 Amt->getZExtValue())),
10270 "shrd_n");
10271 }
10272 case NEON::BI__builtin_neon_vshrd_n_u64: {
10273 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10274 uint64_t ShiftAmt = Amt->getZExtValue();
10275 // Right-shifting an unsigned value by its size yields 0.
10276 if (ShiftAmt == 64)
10277 return ConstantInt::get(Int64Ty, 0);
10278 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10279 "shrd_n");
10280 }
10281 case NEON::BI__builtin_neon_vsrad_n_s64: {
10282 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10283 Ops[1] = Builder.CreateAShr(
10284 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10285 Amt->getZExtValue())),
10286 "shrd_n");
10287 return Builder.CreateAdd(Ops[0], Ops[1]);
10288 }
10289 case NEON::BI__builtin_neon_vsrad_n_u64: {
10290 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10291 uint64_t ShiftAmt = Amt->getZExtValue();
10292 // Right-shifting an unsigned value by its size yields 0.
10293 // As Op + 0 = Op, return Ops[0] directly.
10294 if (ShiftAmt == 64)
10295 return Ops[0];
10296 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10297 "shrd_n");
10298 return Builder.CreateAdd(Ops[0], Ops[1]);
10299 }
10300 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10301 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10302 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10303 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10304 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10305 "lane");
10306 SmallVector<Value *, 2> ProductOps;
10307 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10308 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10309 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10310 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10311 ProductOps, "vqdmlXl");
10312 Constant *CI = ConstantInt::get(SizeTy, 0);
10313 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10314 Ops.pop_back();
10315
10316 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10317 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10318 ? Intrinsic::aarch64_neon_sqadd
10319 : Intrinsic::aarch64_neon_sqsub;
10320 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10321 }
10322 case NEON::BI__builtin_neon_vqdmlals_s32:
10323 case NEON::BI__builtin_neon_vqdmlsls_s32: {
10324 SmallVector<Value *, 2> ProductOps;
10325 ProductOps.push_back(Ops[1]);
10326 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10327 Ops[1] =
10328 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10329 ProductOps, "vqdmlXl");
10330
10331 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10332 ? Intrinsic::aarch64_neon_sqadd
10333 : Intrinsic::aarch64_neon_sqsub;
10334 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10335 }
10336 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10337 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10338 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10339 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10340 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10341 "lane");
10342 SmallVector<Value *, 2> ProductOps;
10343 ProductOps.push_back(Ops[1]);
10344 ProductOps.push_back(Ops[2]);
10345 Ops[1] =
10346 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10347 ProductOps, "vqdmlXl");
10348 Ops.pop_back();
10349
10350 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10351 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10352 ? Intrinsic::aarch64_neon_sqadd
10353 : Intrinsic::aarch64_neon_sqsub;
10354 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10355 }
10356 case NEON::BI__builtin_neon_vget_lane_bf16:
10357 case NEON::BI__builtin_neon_vduph_lane_bf16:
10358 case NEON::BI__builtin_neon_vduph_lane_f16: {
10359 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10360 "vget_lane");
10361 }
10362 case NEON::BI__builtin_neon_vgetq_lane_bf16:
10363 case NEON::BI__builtin_neon_vduph_laneq_bf16:
10364 case NEON::BI__builtin_neon_vduph_laneq_f16: {
10365 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10366 "vgetq_lane");
10367 }
10368
10369 case AArch64::BI_InterlockedAdd: {
10370 Value *Arg0 = EmitScalarExpr(E->getArg(0));
10371 Value *Arg1 = EmitScalarExpr(E->getArg(1));
10372 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10373 AtomicRMWInst::Add, Arg0, Arg1,
10374 llvm::AtomicOrdering::SequentiallyConsistent);
10375 return Builder.CreateAdd(RMWI, Arg1);
10376 }
10377 }
10378
10379 llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10380 llvm::Type *Ty = VTy;
10381 if (!Ty)
10382 return nullptr;
10383
10384 // Not all intrinsics handled by the common case work for AArch64 yet, so only
10385 // defer to common code if it's been added to our special map.
10386 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10387 AArch64SIMDIntrinsicsProvenSorted);
10388
10389 if (Builtin)
10390 return EmitCommonNeonBuiltinExpr(
10391 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10392 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10393 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10394
10395 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10396 return V;
10397
10398 unsigned Int;
10399 switch (BuiltinID) {
10400 default: return nullptr;
10401 case NEON::BI__builtin_neon_vbsl_v:
10402 case NEON::BI__builtin_neon_vbslq_v: {
10403 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10404 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10405 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10406 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10407
10408 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10409 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10410 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10411 return Builder.CreateBitCast(Ops[0], Ty);
10412 }
10413 case NEON::BI__builtin_neon_vfma_lane_v:
10414 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10415 // The ARM builtins (and instructions) have the addend as the first
10416 // operand, but the 'fma' intrinsics have it last. Swap it around here.
10417 Value *Addend = Ops[0];
10418 Value *Multiplicand = Ops[1];
10419 Value *LaneSource = Ops[2];
10420 Ops[0] = Multiplicand;
10421 Ops[1] = LaneSource;
10422 Ops[2] = Addend;
10423
10424 // Now adjust things to handle the lane access.
10425 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10426 ? llvm::FixedVectorType::get(VTy->getElementType(),
10427 VTy->getNumElements() / 2)
10428 : VTy;
10429 llvm::Constant *cst = cast<Constant>(Ops[3]);
10430 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10431 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10432 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10433
10434 Ops.pop_back();
10435 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10436 : Intrinsic::fma;
10437 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10438 }
10439 case NEON::BI__builtin_neon_vfma_laneq_v: {
10440 auto *VTy = cast<llvm::FixedVectorType>(Ty);
10441 // v1f64 fma should be mapped to Neon scalar f64 fma
10442 if (VTy && VTy->getElementType() == DoubleTy) {
10443 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10444 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10445 llvm::FixedVectorType *VTy =
10446 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10447 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10448 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10449 Value *Result;
10450 Result = emitCallMaybeConstrainedFPBuiltin(
10451 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10452 DoubleTy, {Ops[1], Ops[2], Ops[0]});
10453 return Builder.CreateBitCast(Result, Ty);
10454 }
10455 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10456 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10457
10458 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10459 VTy->getNumElements() * 2);
10460 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10461 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10462 cast<ConstantInt>(Ops[3]));
10463 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10464
10465 return emitCallMaybeConstrainedFPBuiltin(
10466 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10467 {Ops[2], Ops[1], Ops[0]});
10468 }
10469 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10470 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10471 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10472
10473 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10474 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10475 return emitCallMaybeConstrainedFPBuiltin(
10476 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10477 {Ops[2], Ops[1], Ops[0]});
10478 }
10479 case NEON::BI__builtin_neon_vfmah_lane_f16:
10480 case NEON::BI__builtin_neon_vfmas_lane_f32:
10481 case NEON::BI__builtin_neon_vfmah_laneq_f16:
10482 case NEON::BI__builtin_neon_vfmas_laneq_f32:
10483 case NEON::BI__builtin_neon_vfmad_lane_f64:
10484 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10485 Ops.push_back(EmitScalarExpr(E->getArg(3)));
10486 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10487 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10488 return emitCallMaybeConstrainedFPBuiltin(
10489 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10490 {Ops[1], Ops[2], Ops[0]});
10491 }
10492 case NEON::BI__builtin_neon_vmull_v:
10493 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10494 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10495 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10496 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10497 case NEON::BI__builtin_neon_vmax_v:
10498 case NEON::BI__builtin_neon_vmaxq_v:
10499 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10500 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10501 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10502 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10503 case NEON::BI__builtin_neon_vmaxh_f16: {
10504 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10505 Int = Intrinsic::aarch64_neon_fmax;
10506 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10507 }
10508 case NEON::BI__builtin_neon_vmin_v:
10509 case NEON::BI__builtin_neon_vminq_v:
10510 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10511 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10512 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10513 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10514 case NEON::BI__builtin_neon_vminh_f16: {
10515 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10516 Int = Intrinsic::aarch64_neon_fmin;
10517 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10518 }
10519 case NEON::BI__builtin_neon_vabd_v:
10520 case NEON::BI__builtin_neon_vabdq_v:
10521 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10522 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10523 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10524 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10525 case NEON::BI__builtin_neon_vpadal_v:
10526 case NEON::BI__builtin_neon_vpadalq_v: {
10527 unsigned ArgElts = VTy->getNumElements();
10528 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10529 unsigned BitWidth = EltTy->getBitWidth();
10530 auto *ArgTy = llvm::FixedVectorType::get(
10531 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10532 llvm::Type* Tys[2] = { VTy, ArgTy };
10533 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10534 SmallVector<llvm::Value*, 1> TmpOps;
10535 TmpOps.push_back(Ops[1]);
10536 Function *F = CGM.getIntrinsic(Int, Tys);
10537 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10538 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10539 return Builder.CreateAdd(tmp, addend);
10540 }
10541 case NEON::BI__builtin_neon_vpmin_v:
10542 case NEON::BI__builtin_neon_vpminq_v:
10543 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10544 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10545 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10546 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10547 case NEON::BI__builtin_neon_vpmax_v:
10548 case NEON::BI__builtin_neon_vpmaxq_v:
10549 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10550 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10551 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10552 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10553 case NEON::BI__builtin_neon_vminnm_v:
10554 case NEON::BI__builtin_neon_vminnmq_v:
10555 Int = Intrinsic::aarch64_neon_fminnm;
10556 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10557 case NEON::BI__builtin_neon_vminnmh_f16:
10558 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10559 Int = Intrinsic::aarch64_neon_fminnm;
10560 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10561 case NEON::BI__builtin_neon_vmaxnm_v:
10562 case NEON::BI__builtin_neon_vmaxnmq_v:
10563 Int = Intrinsic::aarch64_neon_fmaxnm;
10564 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10565 case NEON::BI__builtin_neon_vmaxnmh_f16:
10566 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10567 Int = Intrinsic::aarch64_neon_fmaxnm;
10568 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10569 case NEON::BI__builtin_neon_vrecpss_f32: {
10570 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10571 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10572 Ops, "vrecps");
10573 }
10574 case NEON::BI__builtin_neon_vrecpsd_f64:
10575 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10576 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10577 Ops, "vrecps");
10578 case NEON::BI__builtin_neon_vrecpsh_f16:
10579 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10580 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10581 Ops, "vrecps");
10582 case NEON::BI__builtin_neon_vqshrun_n_v:
10583 Int = Intrinsic::aarch64_neon_sqshrun;
10584 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10585 case NEON::BI__builtin_neon_vqrshrun_n_v:
10586 Int = Intrinsic::aarch64_neon_sqrshrun;
10587 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10588 case NEON::BI__builtin_neon_vqshrn_n_v:
10589 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10590 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10591 case NEON::BI__builtin_neon_vrshrn_n_v:
10592 Int = Intrinsic::aarch64_neon_rshrn;
10593 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10594 case NEON::BI__builtin_neon_vqrshrn_n_v:
10595 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10596 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10597 case NEON::BI__builtin_neon_vrndah_f16: {
10598 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10599 Int = Builder.getIsFPConstrained()
10600 ? Intrinsic::experimental_constrained_round
10601 : Intrinsic::round;
10602 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10603 }
10604 case NEON::BI__builtin_neon_vrnda_v:
10605 case NEON::BI__builtin_neon_vrndaq_v: {
10606 Int = Builder.getIsFPConstrained()
10607 ? Intrinsic::experimental_constrained_round
10608 : Intrinsic::round;
10609 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10610 }
10611 case NEON::BI__builtin_neon_vrndih_f16: {
10612 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10613 Int = Builder.getIsFPConstrained()
10614 ? Intrinsic::experimental_constrained_nearbyint
10615 : Intrinsic::nearbyint;
10616 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10617 }
10618 case NEON::BI__builtin_neon_vrndmh_f16: {
10619 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10620 Int = Builder.getIsFPConstrained()
10621 ? Intrinsic::experimental_constrained_floor
10622 : Intrinsic::floor;
10623 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10624 }
10625 case NEON::BI__builtin_neon_vrndm_v:
10626 case NEON::BI__builtin_neon_vrndmq_v: {
10627 Int = Builder.getIsFPConstrained()
10628 ? Intrinsic::experimental_constrained_floor
10629 : Intrinsic::floor;
10630 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10631 }
10632 case NEON::BI__builtin_neon_vrndnh_f16: {
10633 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10634 Int = Builder.getIsFPConstrained()
10635 ? Intrinsic::experimental_constrained_roundeven
10636 : Intrinsic::roundeven;
10637 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10638 }
10639 case NEON::BI__builtin_neon_vrndn_v:
10640 case NEON::BI__builtin_neon_vrndnq_v: {
10641 Int = Builder.getIsFPConstrained()
10642 ? Intrinsic::experimental_constrained_roundeven
10643 : Intrinsic::roundeven;
10644 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10645 }
10646 case NEON::BI__builtin_neon_vrndns_f32: {
10647 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10648 Int = Builder.getIsFPConstrained()
10649 ? Intrinsic::experimental_constrained_roundeven
10650 : Intrinsic::roundeven;
10651 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10652 }
10653 case NEON::BI__builtin_neon_vrndph_f16: {
10654 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10655 Int = Builder.getIsFPConstrained()
10656 ? Intrinsic::experimental_constrained_ceil
10657 : Intrinsic::ceil;
10658 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10659 }
10660 case NEON::BI__builtin_neon_vrndp_v:
10661 case NEON::BI__builtin_neon_vrndpq_v: {
10662 Int = Builder.getIsFPConstrained()
10663 ? Intrinsic::experimental_constrained_ceil
10664 : Intrinsic::ceil;
10665 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10666 }
10667 case NEON::BI__builtin_neon_vrndxh_f16: {
10668 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10669 Int = Builder.getIsFPConstrained()
10670 ? Intrinsic::experimental_constrained_rint
10671 : Intrinsic::rint;
10672 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10673 }
10674 case NEON::BI__builtin_neon_vrndx_v:
10675 case NEON::BI__builtin_neon_vrndxq_v: {
10676 Int = Builder.getIsFPConstrained()
10677 ? Intrinsic::experimental_constrained_rint
10678 : Intrinsic::rint;
10679 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10680 }
10681 case NEON::BI__builtin_neon_vrndh_f16: {
10682 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10683 Int = Builder.getIsFPConstrained()
10684 ? Intrinsic::experimental_constrained_trunc
10685 : Intrinsic::trunc;
10686 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10687 }
10688 case NEON::BI__builtin_neon_vrnd32x_v:
10689 case NEON::BI__builtin_neon_vrnd32xq_v: {
10690 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10691 Int = Intrinsic::aarch64_neon_frint32x;
10692 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
10693 }
10694 case NEON::BI__builtin_neon_vrnd32z_v:
10695 case NEON::BI__builtin_neon_vrnd32zq_v: {
10696 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10697 Int = Intrinsic::aarch64_neon_frint32z;
10698 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
10699 }
10700 case NEON::BI__builtin_neon_vrnd64x_v:
10701 case NEON::BI__builtin_neon_vrnd64xq_v: {
10702 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10703 Int = Intrinsic::aarch64_neon_frint64x;
10704 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
10705 }
10706 case NEON::BI__builtin_neon_vrnd64z_v:
10707 case NEON::BI__builtin_neon_vrnd64zq_v: {
10708 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10709 Int = Intrinsic::aarch64_neon_frint64z;
10710 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
10711 }
10712 case NEON::BI__builtin_neon_vrnd_v:
10713 case NEON::BI__builtin_neon_vrndq_v: {
10714 Int = Builder.getIsFPConstrained()
10715 ? Intrinsic::experimental_constrained_trunc
10716 : Intrinsic::trunc;
10717 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10718 }
10719 case NEON::BI__builtin_neon_vcvt_f64_v:
10720 case NEON::BI__builtin_neon_vcvtq_f64_v:
10721 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10722 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10723 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10724 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10725 case NEON::BI__builtin_neon_vcvt_f64_f32: {
10726 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10727 "unexpected vcvt_f64_f32 builtin");
10728 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10729 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10730
10731 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10732 }
10733 case NEON::BI__builtin_neon_vcvt_f32_f64: {
10734 assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10735 "unexpected vcvt_f32_f64 builtin");
10736 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10737 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10738
10739 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10740 }
10741 case NEON::BI__builtin_neon_vcvt_s32_v:
10742 case NEON::BI__builtin_neon_vcvt_u32_v:
10743 case NEON::BI__builtin_neon_vcvt_s64_v:
10744 case NEON::BI__builtin_neon_vcvt_u64_v:
10745 case NEON::BI__builtin_neon_vcvt_s16_v:
10746 case NEON::BI__builtin_neon_vcvt_u16_v:
10747 case NEON::BI__builtin_neon_vcvtq_s32_v:
10748 case NEON::BI__builtin_neon_vcvtq_u32_v:
10749 case NEON::BI__builtin_neon_vcvtq_s64_v:
10750 case NEON::BI__builtin_neon_vcvtq_u64_v:
10751 case NEON::BI__builtin_neon_vcvtq_s16_v:
10752 case NEON::BI__builtin_neon_vcvtq_u16_v: {
10753 Int =
10754 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
10755 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
10756 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
10757 }
10758 case NEON::BI__builtin_neon_vcvta_s16_v:
10759 case NEON::BI__builtin_neon_vcvta_u16_v:
10760 case NEON::BI__builtin_neon_vcvta_s32_v:
10761 case NEON::BI__builtin_neon_vcvtaq_s16_v:
10762 case NEON::BI__builtin_neon_vcvtaq_s32_v:
10763 case NEON::BI__builtin_neon_vcvta_u32_v:
10764 case NEON::BI__builtin_neon_vcvtaq_u16_v:
10765 case NEON::BI__builtin_neon_vcvtaq_u32_v:
10766 case NEON::BI__builtin_neon_vcvta_s64_v:
10767 case NEON::BI__builtin_neon_vcvtaq_s64_v:
10768 case NEON::BI__builtin_neon_vcvta_u64_v:
10769 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10770 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10771 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10772 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10773 }
10774 case NEON::BI__builtin_neon_vcvtm_s16_v:
10775 case NEON::BI__builtin_neon_vcvtm_s32_v:
10776 case NEON::BI__builtin_neon_vcvtmq_s16_v:
10777 case NEON::BI__builtin_neon_vcvtmq_s32_v:
10778 case NEON::BI__builtin_neon_vcvtm_u16_v:
10779 case NEON::BI__builtin_neon_vcvtm_u32_v:
10780 case NEON::BI__builtin_neon_vcvtmq_u16_v:
10781 case NEON::BI__builtin_neon_vcvtmq_u32_v:
10782 case NEON::BI__builtin_neon_vcvtm_s64_v:
10783 case NEON::BI__builtin_neon_vcvtmq_s64_v:
10784 case NEON::BI__builtin_neon_vcvtm_u64_v:
10785 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10786 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10787 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10788 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10789 }
10790 case NEON::BI__builtin_neon_vcvtn_s16_v:
10791 case NEON::BI__builtin_neon_vcvtn_s32_v:
10792 case NEON::BI__builtin_neon_vcvtnq_s16_v:
10793 case NEON::BI__builtin_neon_vcvtnq_s32_v:
10794 case NEON::BI__builtin_neon_vcvtn_u16_v:
10795 case NEON::BI__builtin_neon_vcvtn_u32_v:
10796 case NEON::BI__builtin_neon_vcvtnq_u16_v:
10797 case NEON::BI__builtin_neon_vcvtnq_u32_v:
10798 case NEON::BI__builtin_neon_vcvtn_s64_v:
10799 case NEON::BI__builtin_neon_vcvtnq_s64_v:
10800 case NEON::BI__builtin_neon_vcvtn_u64_v:
10801 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10802 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10803 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10804 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10805 }
10806 case NEON::BI__builtin_neon_vcvtp_s16_v:
10807 case NEON::BI__builtin_neon_vcvtp_s32_v:
10808 case NEON::BI__builtin_neon_vcvtpq_s16_v:
10809 case NEON::BI__builtin_neon_vcvtpq_s32_v:
10810 case NEON::BI__builtin_neon_vcvtp_u16_v:
10811 case NEON::BI__builtin_neon_vcvtp_u32_v:
10812 case NEON::BI__builtin_neon_vcvtpq_u16_v:
10813 case NEON::BI__builtin_neon_vcvtpq_u32_v:
10814 case NEON::BI__builtin_neon_vcvtp_s64_v:
10815 case NEON::BI__builtin_neon_vcvtpq_s64_v:
10816 case NEON::BI__builtin_neon_vcvtp_u64_v:
10817 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10818 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10819 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10820 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10821 }
10822 case NEON::BI__builtin_neon_vmulx_v:
10823 case NEON::BI__builtin_neon_vmulxq_v: {
10824 Int = Intrinsic::aarch64_neon_fmulx;
10825 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10826 }
10827 case NEON::BI__builtin_neon_vmulxh_lane_f16:
10828 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10829 // vmulx_lane should be mapped to Neon scalar mulx after
10830 // extracting the scalar element
10831 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10832 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10833 Ops.pop_back();
10834 Int = Intrinsic::aarch64_neon_fmulx;
10835 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10836 }
10837 case NEON::BI__builtin_neon_vmul_lane_v:
10838 case NEON::BI__builtin_neon_vmul_laneq_v: {
10839 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10840 bool Quad = false;
10841 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10842 Quad = true;
10843 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10844 llvm::FixedVectorType *VTy =
10845 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10846 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10847 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10848 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10849 return Builder.CreateBitCast(Result, Ty);
10850 }
10851 case NEON::BI__builtin_neon_vnegd_s64:
10852 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10853 case NEON::BI__builtin_neon_vnegh_f16:
10854 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10855 case NEON::BI__builtin_neon_vpmaxnm_v:
10856 case NEON::BI__builtin_neon_vpmaxnmq_v: {
10857 Int = Intrinsic::aarch64_neon_fmaxnmp;
10858 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10859 }
10860 case NEON::BI__builtin_neon_vpminnm_v:
10861 case NEON::BI__builtin_neon_vpminnmq_v: {
10862 Int = Intrinsic::aarch64_neon_fminnmp;
10863 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10864 }
10865 case NEON::BI__builtin_neon_vsqrth_f16: {
10866 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10867 Int = Builder.getIsFPConstrained()
10868 ? Intrinsic::experimental_constrained_sqrt
10869 : Intrinsic::sqrt;
10870 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10871 }
10872 case NEON::BI__builtin_neon_vsqrt_v:
10873 case NEON::BI__builtin_neon_vsqrtq_v: {
10874 Int = Builder.getIsFPConstrained()
10875 ? Intrinsic::experimental_constrained_sqrt
10876 : Intrinsic::sqrt;
10877 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10878 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10879 }
10880 case NEON::BI__builtin_neon_vrbit_v:
10881 case NEON::BI__builtin_neon_vrbitq_v: {
10882 Int = Intrinsic::bitreverse;
10883 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10884 }
10885 case NEON::BI__builtin_neon_vaddv_u8:
10886 // FIXME: These are handled by the AArch64 scalar code.
10887 usgn = true;
10888 LLVM_FALLTHROUGH;
10889 case NEON::BI__builtin_neon_vaddv_s8: {
10890 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10891 Ty = Int32Ty;
10892 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10893 llvm::Type *Tys[2] = { Ty, VTy };
10894 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10895 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10896 return Builder.CreateTrunc(Ops[0], Int8Ty);
10897 }
10898 case NEON::BI__builtin_neon_vaddv_u16:
10899 usgn = true;
10900 LLVM_FALLTHROUGH;
10901 case NEON::BI__builtin_neon_vaddv_s16: {
10902 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10903 Ty = Int32Ty;
10904 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10905 llvm::Type *Tys[2] = { Ty, VTy };
10906 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10907 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10908 return Builder.CreateTrunc(Ops[0], Int16Ty);
10909 }
10910 case NEON::BI__builtin_neon_vaddvq_u8:
10911 usgn = true;
10912 LLVM_FALLTHROUGH;
10913 case NEON::BI__builtin_neon_vaddvq_s8: {
10914 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10915 Ty = Int32Ty;
10916 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10917 llvm::Type *Tys[2] = { Ty, VTy };
10918 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10919 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10920 return Builder.CreateTrunc(Ops[0], Int8Ty);
10921 }
10922 case NEON::BI__builtin_neon_vaddvq_u16:
10923 usgn = true;
10924 LLVM_FALLTHROUGH;
10925 case NEON::BI__builtin_neon_vaddvq_s16: {
10926 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10927 Ty = Int32Ty;
10928 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10929 llvm::Type *Tys[2] = { Ty, VTy };
10930 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10931 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10932 return Builder.CreateTrunc(Ops[0], Int16Ty);
10933 }
10934 case NEON::BI__builtin_neon_vmaxv_u8: {
10935 Int = Intrinsic::aarch64_neon_umaxv;
10936 Ty = Int32Ty;
10937 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10938 llvm::Type *Tys[2] = { Ty, VTy };
10939 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10940 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10941 return Builder.CreateTrunc(Ops[0], Int8Ty);
10942 }
10943 case NEON::BI__builtin_neon_vmaxv_u16: {
10944 Int = Intrinsic::aarch64_neon_umaxv;
10945 Ty = Int32Ty;
10946 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10947 llvm::Type *Tys[2] = { Ty, VTy };
10948 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10949 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10950 return Builder.CreateTrunc(Ops[0], Int16Ty);
10951 }
10952 case NEON::BI__builtin_neon_vmaxvq_u8: {
10953 Int = Intrinsic::aarch64_neon_umaxv;
10954 Ty = Int32Ty;
10955 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10956 llvm::Type *Tys[2] = { Ty, VTy };
10957 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10958 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10959 return Builder.CreateTrunc(Ops[0], Int8Ty);
10960 }
10961 case NEON::BI__builtin_neon_vmaxvq_u16: {
10962 Int = Intrinsic::aarch64_neon_umaxv;
10963 Ty = Int32Ty;
10964 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10965 llvm::Type *Tys[2] = { Ty, VTy };
10966 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10967 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10968 return Builder.CreateTrunc(Ops[0], Int16Ty);
10969 }
10970 case NEON::BI__builtin_neon_vmaxv_s8: {
10971 Int = Intrinsic::aarch64_neon_smaxv;
10972 Ty = Int32Ty;
10973 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10974 llvm::Type *Tys[2] = { Ty, VTy };
10975 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10976 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10977 return Builder.CreateTrunc(Ops[0], Int8Ty);
10978 }
10979 case NEON::BI__builtin_neon_vmaxv_s16: {
10980 Int = Intrinsic::aarch64_neon_smaxv;
10981 Ty = Int32Ty;
10982 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10983 llvm::Type *Tys[2] = { Ty, VTy };
10984 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10985 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10986 return Builder.CreateTrunc(Ops[0], Int16Ty);
10987 }
10988 case NEON::BI__builtin_neon_vmaxvq_s8: {
10989 Int = Intrinsic::aarch64_neon_smaxv;
10990 Ty = Int32Ty;
10991 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10992 llvm::Type *Tys[2] = { Ty, VTy };
10993 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10994 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10995 return Builder.CreateTrunc(Ops[0], Int8Ty);
10996 }
10997 case NEON::BI__builtin_neon_vmaxvq_s16: {
10998 Int = Intrinsic::aarch64_neon_smaxv;
10999 Ty = Int32Ty;
11000 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11001 llvm::Type *Tys[2] = { Ty, VTy };
11002 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11003 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11004 return Builder.CreateTrunc(Ops[0], Int16Ty);
11005 }
11006 case NEON::BI__builtin_neon_vmaxv_f16: {
11007 Int = Intrinsic::aarch64_neon_fmaxv;
11008 Ty = HalfTy;
11009 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11010 llvm::Type *Tys[2] = { Ty, VTy };
11011 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11012 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11013 return Builder.CreateTrunc(Ops[0], HalfTy);
11014 }
11015 case NEON::BI__builtin_neon_vmaxvq_f16: {
11016 Int = Intrinsic::aarch64_neon_fmaxv;
11017 Ty = HalfTy;
11018 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11019 llvm::Type *Tys[2] = { Ty, VTy };
11020 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11021 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11022 return Builder.CreateTrunc(Ops[0], HalfTy);
11023 }
11024 case NEON::BI__builtin_neon_vminv_u8: {
11025 Int = Intrinsic::aarch64_neon_uminv;
11026 Ty = Int32Ty;
11027 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11028 llvm::Type *Tys[2] = { Ty, VTy };
11029 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11030 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11031 return Builder.CreateTrunc(Ops[0], Int8Ty);
11032 }
11033 case NEON::BI__builtin_neon_vminv_u16: {
11034 Int = Intrinsic::aarch64_neon_uminv;
11035 Ty = Int32Ty;
11036 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11037 llvm::Type *Tys[2] = { Ty, VTy };
11038 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11039 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11040 return Builder.CreateTrunc(Ops[0], Int16Ty);
11041 }
11042 case NEON::BI__builtin_neon_vminvq_u8: {
11043 Int = Intrinsic::aarch64_neon_uminv;
11044 Ty = Int32Ty;
11045 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11046 llvm::Type *Tys[2] = { Ty, VTy };
11047 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11048 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11049 return Builder.CreateTrunc(Ops[0], Int8Ty);
11050 }
11051 case NEON::BI__builtin_neon_vminvq_u16: {
11052 Int = Intrinsic::aarch64_neon_uminv;
11053 Ty = Int32Ty;
11054 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11055 llvm::Type *Tys[2] = { Ty, VTy };
11056 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11057 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11058 return Builder.CreateTrunc(Ops[0], Int16Ty);
11059 }
11060 case NEON::BI__builtin_neon_vminv_s8: {
11061 Int = Intrinsic::aarch64_neon_sminv;
11062 Ty = Int32Ty;
11063 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11064 llvm::Type *Tys[2] = { Ty, VTy };
11065 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11066 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11067 return Builder.CreateTrunc(Ops[0], Int8Ty);
11068 }
11069 case NEON::BI__builtin_neon_vminv_s16: {
11070 Int = Intrinsic::aarch64_neon_sminv;
11071 Ty = Int32Ty;
11072 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11073 llvm::Type *Tys[2] = { Ty, VTy };
11074 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11075 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11076 return Builder.CreateTrunc(Ops[0], Int16Ty);
11077 }
11078 case NEON::BI__builtin_neon_vminvq_s8: {
11079 Int = Intrinsic::aarch64_neon_sminv;
11080 Ty = Int32Ty;
11081 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11082 llvm::Type *Tys[2] = { Ty, VTy };
11083 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11084 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11085 return Builder.CreateTrunc(Ops[0], Int8Ty);
11086 }
11087 case NEON::BI__builtin_neon_vminvq_s16: {
11088 Int = Intrinsic::aarch64_neon_sminv;
11089 Ty = Int32Ty;
11090 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11091 llvm::Type *Tys[2] = { Ty, VTy };
11092 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11093 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11094 return Builder.CreateTrunc(Ops[0], Int16Ty);
11095 }
11096 case NEON::BI__builtin_neon_vminv_f16: {
11097 Int = Intrinsic::aarch64_neon_fminv;
11098 Ty = HalfTy;
11099 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11100 llvm::Type *Tys[2] = { Ty, VTy };
11101 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11102 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11103 return Builder.CreateTrunc(Ops[0], HalfTy);
11104 }
11105 case NEON::BI__builtin_neon_vminvq_f16: {
11106 Int = Intrinsic::aarch64_neon_fminv;
11107 Ty = HalfTy;
11108 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11109 llvm::Type *Tys[2] = { Ty, VTy };
11110 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11111 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11112 return Builder.CreateTrunc(Ops[0], HalfTy);
11113 }
11114 case NEON::BI__builtin_neon_vmaxnmv_f16: {
11115 Int = Intrinsic::aarch64_neon_fmaxnmv;
11116 Ty = HalfTy;
11117 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11118 llvm::Type *Tys[2] = { Ty, VTy };
11119 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11120 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11121 return Builder.CreateTrunc(Ops[0], HalfTy);
11122 }
11123 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11124 Int = Intrinsic::aarch64_neon_fmaxnmv;
11125 Ty = HalfTy;
11126 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11127 llvm::Type *Tys[2] = { Ty, VTy };
11128 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11129 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11130 return Builder.CreateTrunc(Ops[0], HalfTy);
11131 }
11132 case NEON::BI__builtin_neon_vminnmv_f16: {
11133 Int = Intrinsic::aarch64_neon_fminnmv;
11134 Ty = HalfTy;
11135 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11136 llvm::Type *Tys[2] = { Ty, VTy };
11137 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11138 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11139 return Builder.CreateTrunc(Ops[0], HalfTy);
11140 }
11141 case NEON::BI__builtin_neon_vminnmvq_f16: {
11142 Int = Intrinsic::aarch64_neon_fminnmv;
11143 Ty = HalfTy;
11144 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11145 llvm::Type *Tys[2] = { Ty, VTy };
11146 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11147 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11148 return Builder.CreateTrunc(Ops[0], HalfTy);
11149 }
11150 case NEON::BI__builtin_neon_vmul_n_f64: {
11151 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11152 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11153 return Builder.CreateFMul(Ops[0], RHS);
11154 }
11155 case NEON::BI__builtin_neon_vaddlv_u8: {
11156 Int = Intrinsic::aarch64_neon_uaddlv;
11157 Ty = Int32Ty;
11158 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11159 llvm::Type *Tys[2] = { Ty, VTy };
11160 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11161 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11162 return Builder.CreateTrunc(Ops[0], Int16Ty);
11163 }
11164 case NEON::BI__builtin_neon_vaddlv_u16: {
11165 Int = Intrinsic::aarch64_neon_uaddlv;
11166 Ty = Int32Ty;
11167 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11168 llvm::Type *Tys[2] = { Ty, VTy };
11169 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11170 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11171 }
11172 case NEON::BI__builtin_neon_vaddlvq_u8: {
11173 Int = Intrinsic::aarch64_neon_uaddlv;
11174 Ty = Int32Ty;
11175 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11176 llvm::Type *Tys[2] = { Ty, VTy };
11177 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11178 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11179 return Builder.CreateTrunc(Ops[0], Int16Ty);
11180 }
11181 case NEON::BI__builtin_neon_vaddlvq_u16: {
11182 Int = Intrinsic::aarch64_neon_uaddlv;
11183 Ty = Int32Ty;
11184 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11185 llvm::Type *Tys[2] = { Ty, VTy };
11186 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11187 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11188 }
11189 case NEON::BI__builtin_neon_vaddlv_s8: {
11190 Int = Intrinsic::aarch64_neon_saddlv;
11191 Ty = Int32Ty;
11192 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11193 llvm::Type *Tys[2] = { Ty, VTy };
11194 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11195 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11196 return Builder.CreateTrunc(Ops[0], Int16Ty);
11197 }
11198 case NEON::BI__builtin_neon_vaddlv_s16: {
11199 Int = Intrinsic::aarch64_neon_saddlv;
11200 Ty = Int32Ty;
11201 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11202 llvm::Type *Tys[2] = { Ty, VTy };
11203 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11204 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11205 }
11206 case NEON::BI__builtin_neon_vaddlvq_s8: {
11207 Int = Intrinsic::aarch64_neon_saddlv;
11208 Ty = Int32Ty;
11209 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11210 llvm::Type *Tys[2] = { Ty, VTy };
11211 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11212 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11213 return Builder.CreateTrunc(Ops[0], Int16Ty);
11214 }
11215 case NEON::BI__builtin_neon_vaddlvq_s16: {
11216 Int = Intrinsic::aarch64_neon_saddlv;
11217 Ty = Int32Ty;
11218 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11219 llvm::Type *Tys[2] = { Ty, VTy };
11220 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11221 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11222 }
11223 case NEON::BI__builtin_neon_vsri_n_v:
11224 case NEON::BI__builtin_neon_vsriq_n_v: {
11225 Int = Intrinsic::aarch64_neon_vsri;
11226 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11227 return EmitNeonCall(Intrin, Ops, "vsri_n");
11228 }
11229 case NEON::BI__builtin_neon_vsli_n_v:
11230 case NEON::BI__builtin_neon_vsliq_n_v: {
11231 Int = Intrinsic::aarch64_neon_vsli;
11232 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11233 return EmitNeonCall(Intrin, Ops, "vsli_n");
11234 }
11235 case NEON::BI__builtin_neon_vsra_n_v:
11236 case NEON::BI__builtin_neon_vsraq_n_v:
11237 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11238 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11239 return Builder.CreateAdd(Ops[0], Ops[1]);
11240 case NEON::BI__builtin_neon_vrsra_n_v:
11241 case NEON::BI__builtin_neon_vrsraq_n_v: {
11242 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11243 SmallVector<llvm::Value*,2> TmpOps;
11244 TmpOps.push_back(Ops[1]);
11245 TmpOps.push_back(Ops[2]);
11246 Function* F = CGM.getIntrinsic(Int, Ty);
11247 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11248 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11249 return Builder.CreateAdd(Ops[0], tmp);
11250 }
11251 case NEON::BI__builtin_neon_vld1_v:
11252 case NEON::BI__builtin_neon_vld1q_v: {
11253 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11254 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11255 }
11256 case NEON::BI__builtin_neon_vst1_v:
11257 case NEON::BI__builtin_neon_vst1q_v:
11258 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11259 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11260 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11261 case NEON::BI__builtin_neon_vld1_lane_v:
11262 case NEON::BI__builtin_neon_vld1q_lane_v: {
11263 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11264 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11265 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11266 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11267 PtrOp0.getAlignment());
11268 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11269 }
11270 case NEON::BI__builtin_neon_vld1_dup_v:
11271 case NEON::BI__builtin_neon_vld1q_dup_v: {
11272 Value *V = UndefValue::get(Ty);
11273 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11274 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11275 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11276 PtrOp0.getAlignment());
11277 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11278 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11279 return EmitNeonSplat(Ops[0], CI);
11280 }
11281 case NEON::BI__builtin_neon_vst1_lane_v:
11282 case NEON::BI__builtin_neon_vst1q_lane_v:
11283 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11284 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11285 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11286 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11287 PtrOp0.getAlignment());
11288 case NEON::BI__builtin_neon_vld2_v:
11289 case NEON::BI__builtin_neon_vld2q_v: {
11290 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11291 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11292 llvm::Type *Tys[2] = { VTy, PTy };
11293 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11294 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11295 Ops[0] = Builder.CreateBitCast(Ops[0],
11296 llvm::PointerType::getUnqual(Ops[1]->getType()));
11297 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11298 }
11299 case NEON::BI__builtin_neon_vld3_v:
11300 case NEON::BI__builtin_neon_vld3q_v: {
11301 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11302 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11303 llvm::Type *Tys[2] = { VTy, PTy };
11304 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11305 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11306 Ops[0] = Builder.CreateBitCast(Ops[0],
11307 llvm::PointerType::getUnqual(Ops[1]->getType()));
11308 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11309 }
11310 case NEON::BI__builtin_neon_vld4_v:
11311 case NEON::BI__builtin_neon_vld4q_v: {
11312 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11313 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11314 llvm::Type *Tys[2] = { VTy, PTy };
11315 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11316 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11317 Ops[0] = Builder.CreateBitCast(Ops[0],
11318 llvm::PointerType::getUnqual(Ops[1]->getType()));
11319 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11320 }
11321 case NEON::BI__builtin_neon_vld2_dup_v:
11322 case NEON::BI__builtin_neon_vld2q_dup_v: {
11323 llvm::Type *PTy =
11324 llvm::PointerType::getUnqual(VTy->getElementType());
11325 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11326 llvm::Type *Tys[2] = { VTy, PTy };
11327 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11328 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11329 Ops[0] = Builder.CreateBitCast(Ops[0],
11330 llvm::PointerType::getUnqual(Ops[1]->getType()));
11331 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11332 }
11333 case NEON::BI__builtin_neon_vld3_dup_v:
11334 case NEON::BI__builtin_neon_vld3q_dup_v: {
11335 llvm::Type *PTy =
11336 llvm::PointerType::getUnqual(VTy->getElementType());
11337 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11338 llvm::Type *Tys[2] = { VTy, PTy };
11339 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11340 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11341 Ops[0] = Builder.CreateBitCast(Ops[0],
11342 llvm::PointerType::getUnqual(Ops[1]->getType()));
11343 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11344 }
11345 case NEON::BI__builtin_neon_vld4_dup_v:
11346 case NEON::BI__builtin_neon_vld4q_dup_v: {
11347 llvm::Type *PTy =
11348 llvm::PointerType::getUnqual(VTy->getElementType());
11349 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11350 llvm::Type *Tys[2] = { VTy, PTy };
11351 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11352 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11353 Ops[0] = Builder.CreateBitCast(Ops[0],
11354 llvm::PointerType::getUnqual(Ops[1]->getType()));
11355 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11356 }
11357 case NEON::BI__builtin_neon_vld2_lane_v:
11358 case NEON::BI__builtin_neon_vld2q_lane_v: {
11359 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11360 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11361 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11362 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11363 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11364 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11365 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11366 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11367 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11368 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11369 }
11370 case NEON::BI__builtin_neon_vld3_lane_v:
11371 case NEON::BI__builtin_neon_vld3q_lane_v: {
11372 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11373 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11374 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11375 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11376 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11377 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11378 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11379 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11380 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11381 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11382 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11383 }
11384 case NEON::BI__builtin_neon_vld4_lane_v:
11385 case NEON::BI__builtin_neon_vld4q_lane_v: {
11386 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11387 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11388 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11389 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11390 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11391 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11392 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11393 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11394 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11395 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11396 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11397 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11398 }
11399 case NEON::BI__builtin_neon_vst2_v:
11400 case NEON::BI__builtin_neon_vst2q_v: {
11401 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11402 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11403 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11404 Ops, "");
11405 }
11406 case NEON::BI__builtin_neon_vst2_lane_v:
11407 case NEON::BI__builtin_neon_vst2q_lane_v: {
11408 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11409 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11410 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11411 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11412 Ops, "");
11413 }
11414 case NEON::BI__builtin_neon_vst3_v:
11415 case NEON::BI__builtin_neon_vst3q_v: {
11416 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11417 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11418 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11419 Ops, "");
11420 }
11421 case NEON::BI__builtin_neon_vst3_lane_v:
11422 case NEON::BI__builtin_neon_vst3q_lane_v: {
11423 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11424 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11425 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11426 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11427 Ops, "");
11428 }
11429 case NEON::BI__builtin_neon_vst4_v:
11430 case NEON::BI__builtin_neon_vst4q_v: {
11431 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11432 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11433 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11434 Ops, "");
11435 }
11436 case NEON::BI__builtin_neon_vst4_lane_v:
11437 case NEON::BI__builtin_neon_vst4q_lane_v: {
11438 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11439 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11440 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11441 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11442 Ops, "");
11443 }
11444 case NEON::BI__builtin_neon_vtrn_v:
11445 case NEON::BI__builtin_neon_vtrnq_v: {
11446 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11447 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11448 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11449 Value *SV = nullptr;
11450
11451 for (unsigned vi = 0; vi != 2; ++vi) {
11452 SmallVector<int, 16> Indices;
11453 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11454 Indices.push_back(i+vi);
11455 Indices.push_back(i+e+vi);
11456 }
11457 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11458 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11459 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11460 }
11461 return SV;
11462 }
11463 case NEON::BI__builtin_neon_vuzp_v:
11464 case NEON::BI__builtin_neon_vuzpq_v: {
11465 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11466 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11467 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11468 Value *SV = nullptr;
11469
11470 for (unsigned vi = 0; vi != 2; ++vi) {
11471 SmallVector<int, 16> Indices;
11472 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11473 Indices.push_back(2*i+vi);
11474
11475 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11476 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11477 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11478 }
11479 return SV;
11480 }
11481 case NEON::BI__builtin_neon_vzip_v:
11482 case NEON::BI__builtin_neon_vzipq_v: {
11483 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11484 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11485 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11486 Value *SV = nullptr;
11487
11488 for (unsigned vi = 0; vi != 2; ++vi) {
11489 SmallVector<int, 16> Indices;
11490 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11491 Indices.push_back((i + vi*e) >> 1);
11492 Indices.push_back(((i + vi*e) >> 1)+e);
11493 }
11494 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11495 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11496 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11497 }
11498 return SV;
11499 }
11500 case NEON::BI__builtin_neon_vqtbl1q_v: {
11501 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11502 Ops, "vtbl1");
11503 }
11504 case NEON::BI__builtin_neon_vqtbl2q_v: {
11505 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11506 Ops, "vtbl2");
11507 }
11508 case NEON::BI__builtin_neon_vqtbl3q_v: {
11509 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11510 Ops, "vtbl3");
11511 }
11512 case NEON::BI__builtin_neon_vqtbl4q_v: {
11513 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11514 Ops, "vtbl4");
11515 }
11516 case NEON::BI__builtin_neon_vqtbx1q_v: {
11517 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11518 Ops, "vtbx1");
11519 }
11520 case NEON::BI__builtin_neon_vqtbx2q_v: {
11521 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11522 Ops, "vtbx2");
11523 }
11524 case NEON::BI__builtin_neon_vqtbx3q_v: {
11525 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11526 Ops, "vtbx3");
11527 }
11528 case NEON::BI__builtin_neon_vqtbx4q_v: {
11529 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11530 Ops, "vtbx4");
11531 }
11532 case NEON::BI__builtin_neon_vsqadd_v:
11533 case NEON::BI__builtin_neon_vsqaddq_v: {
11534 Int = Intrinsic::aarch64_neon_usqadd;
11535 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11536 }
11537 case NEON::BI__builtin_neon_vuqadd_v:
11538 case NEON::BI__builtin_neon_vuqaddq_v: {
11539 Int = Intrinsic::aarch64_neon_suqadd;
11540 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11541 }
11542 }
11543 }
11544
EmitBPFBuiltinExpr(unsigned BuiltinID,const CallExpr * E)11545 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11546 const CallExpr *E) {
11547 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
11548 BuiltinID == BPF::BI__builtin_btf_type_id ||
11549 BuiltinID == BPF::BI__builtin_preserve_type_info ||
11550 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
11551 "unexpected BPF builtin");
11552
11553 // A sequence number, injected into IR builtin functions, to
11554 // prevent CSE given the only difference of the funciton
11555 // may just be the debuginfo metadata.
11556 static uint32_t BuiltinSeqNum;
11557
11558 switch (BuiltinID) {
11559 default:
11560 llvm_unreachable("Unexpected BPF builtin");
11561 case BPF::BI__builtin_preserve_field_info: {
11562 const Expr *Arg = E->getArg(0);
11563 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11564
11565 if (!getDebugInfo()) {
11566 CGM.Error(E->getExprLoc(),
11567 "using __builtin_preserve_field_info() without -g");
11568 return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11569 : EmitLValue(Arg).getPointer(*this);
11570 }
11571
11572 // Enable underlying preserve_*_access_index() generation.
11573 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11574 IsInPreservedAIRegion = true;
11575 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11576 : EmitLValue(Arg).getPointer(*this);
11577 IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11578
11579 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11580 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11581
11582 // Built the IR for the preserve_field_info intrinsic.
11583 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11584 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11585 {FieldAddr->getType()});
11586 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11587 }
11588 case BPF::BI__builtin_btf_type_id:
11589 case BPF::BI__builtin_preserve_type_info: {
11590 if (!getDebugInfo()) {
11591 CGM.Error(E->getExprLoc(), "using builtin function without -g");
11592 return nullptr;
11593 }
11594
11595 const Expr *Arg0 = E->getArg(0);
11596 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11597 Arg0->getType(), Arg0->getExprLoc());
11598
11599 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11600 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11601 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11602
11603 llvm::Function *FnDecl;
11604 if (BuiltinID == BPF::BI__builtin_btf_type_id)
11605 FnDecl = llvm::Intrinsic::getDeclaration(
11606 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11607 else
11608 FnDecl = llvm::Intrinsic::getDeclaration(
11609 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11610 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11611 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11612 return Fn;
11613 }
11614 case BPF::BI__builtin_preserve_enum_value: {
11615 if (!getDebugInfo()) {
11616 CGM.Error(E->getExprLoc(), "using builtin function without -g");
11617 return nullptr;
11618 }
11619
11620 const Expr *Arg0 = E->getArg(0);
11621 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11622 Arg0->getType(), Arg0->getExprLoc());
11623
11624 // Find enumerator
11625 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11626 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11627 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11628 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11629
11630 auto &InitVal = Enumerator->getInitVal();
11631 std::string InitValStr;
11632 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
11633 InitValStr = std::to_string(InitVal.getSExtValue());
11634 else
11635 InitValStr = std::to_string(InitVal.getZExtValue());
11636 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11637 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11638
11639 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11640 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11641 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11642
11643 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
11644 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
11645 CallInst *Fn =
11646 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
11647 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11648 return Fn;
11649 }
11650 }
11651 }
11652
11653 llvm::Value *CodeGenFunction::
BuildVector(ArrayRef<llvm::Value * > Ops)11654 BuildVector(ArrayRef<llvm::Value*> Ops) {
11655 assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11656 "Not a power-of-two sized vector!");
11657 bool AllConstants = true;
11658 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11659 AllConstants &= isa<Constant>(Ops[i]);
11660
11661 // If this is a constant vector, create a ConstantVector.
11662 if (AllConstants) {
11663 SmallVector<llvm::Constant*, 16> CstOps;
11664 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11665 CstOps.push_back(cast<Constant>(Ops[i]));
11666 return llvm::ConstantVector::get(CstOps);
11667 }
11668
11669 // Otherwise, insertelement the values to build the vector.
11670 Value *Result = llvm::UndefValue::get(
11671 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11672
11673 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11674 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11675
11676 return Result;
11677 }
11678
11679 // Convert the mask from an integer type to a vector of i1.
getMaskVecValue(CodeGenFunction & CGF,Value * Mask,unsigned NumElts)11680 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11681 unsigned NumElts) {
11682
11683 auto *MaskTy = llvm::FixedVectorType::get(
11684 CGF.Builder.getInt1Ty(),
11685 cast<IntegerType>(Mask->getType())->getBitWidth());
11686 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11687
11688 // If we have less than 8 elements, then the starting mask was an i8 and
11689 // we need to extract down to the right number of elements.
11690 if (NumElts < 8) {
11691 int Indices[4];
11692 for (unsigned i = 0; i != NumElts; ++i)
11693 Indices[i] = i;
11694 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11695 makeArrayRef(Indices, NumElts),
11696 "extract");
11697 }
11698 return MaskVec;
11699 }
11700
EmitX86MaskedStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)11701 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11702 Align Alignment) {
11703 // Cast the pointer to right type.
11704 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11705 llvm::PointerType::getUnqual(Ops[1]->getType()));
11706
11707 Value *MaskVec = getMaskVecValue(
11708 CGF, Ops[2],
11709 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11710
11711 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11712 }
11713
EmitX86MaskedLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Align Alignment)11714 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11715 Align Alignment) {
11716 // Cast the pointer to right type.
11717 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11718 llvm::PointerType::getUnqual(Ops[1]->getType()));
11719
11720 Value *MaskVec = getMaskVecValue(
11721 CGF, Ops[2],
11722 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11723
11724 return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]);
11725 }
11726
EmitX86ExpandLoad(CodeGenFunction & CGF,ArrayRef<Value * > Ops)11727 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11728 ArrayRef<Value *> Ops) {
11729 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11730 llvm::Type *PtrTy = ResultTy->getElementType();
11731
11732 // Cast the pointer to element type.
11733 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11734 llvm::PointerType::getUnqual(PtrTy));
11735
11736 Value *MaskVec = getMaskVecValue(
11737 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
11738
11739 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11740 ResultTy);
11741 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11742 }
11743
EmitX86CompressExpand(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsCompress)11744 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11745 ArrayRef<Value *> Ops,
11746 bool IsCompress) {
11747 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11748
11749 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11750
11751 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11752 : Intrinsic::x86_avx512_mask_expand;
11753 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11754 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11755 }
11756
EmitX86CompressStore(CodeGenFunction & CGF,ArrayRef<Value * > Ops)11757 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11758 ArrayRef<Value *> Ops) {
11759 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11760 llvm::Type *PtrTy = ResultTy->getElementType();
11761
11762 // Cast the pointer to element type.
11763 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11764 llvm::PointerType::getUnqual(PtrTy));
11765
11766 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11767
11768 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11769 ResultTy);
11770 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11771 }
11772
EmitX86MaskLogic(CodeGenFunction & CGF,Instruction::BinaryOps Opc,ArrayRef<Value * > Ops,bool InvertLHS=false)11773 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11774 ArrayRef<Value *> Ops,
11775 bool InvertLHS = false) {
11776 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11777 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11778 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11779
11780 if (InvertLHS)
11781 LHS = CGF.Builder.CreateNot(LHS);
11782
11783 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11784 Ops[0]->getType());
11785 }
11786
EmitX86FunnelShift(CodeGenFunction & CGF,Value * Op0,Value * Op1,Value * Amt,bool IsRight)11787 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11788 Value *Amt, bool IsRight) {
11789 llvm::Type *Ty = Op0->getType();
11790
11791 // Amount may be scalar immediate, in which case create a splat vector.
11792 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11793 // we only care about the lowest log2 bits anyway.
11794 if (Amt->getType() != Ty) {
11795 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
11796 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11797 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11798 }
11799
11800 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11801 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11802 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11803 }
11804
EmitX86vpcom(CodeGenFunction & CGF,ArrayRef<Value * > Ops,bool IsSigned)11805 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11806 bool IsSigned) {
11807 Value *Op0 = Ops[0];
11808 Value *Op1 = Ops[1];
11809 llvm::Type *Ty = Op0->getType();
11810 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11811
11812 CmpInst::Predicate Pred;
11813 switch (Imm) {
11814 case 0x0:
11815 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11816 break;
11817 case 0x1:
11818 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11819 break;
11820 case 0x2:
11821 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11822 break;
11823 case 0x3:
11824 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11825 break;
11826 case 0x4:
11827 Pred = ICmpInst::ICMP_EQ;
11828 break;
11829 case 0x5:
11830 Pred = ICmpInst::ICMP_NE;
11831 break;
11832 case 0x6:
11833 return llvm::Constant::getNullValue(Ty); // FALSE
11834 case 0x7:
11835 return llvm::Constant::getAllOnesValue(Ty); // TRUE
11836 default:
11837 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11838 }
11839
11840 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11841 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11842 return Res;
11843 }
11844
EmitX86Select(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)11845 static Value *EmitX86Select(CodeGenFunction &CGF,
11846 Value *Mask, Value *Op0, Value *Op1) {
11847
11848 // If the mask is all ones just return first argument.
11849 if (const auto *C = dyn_cast<Constant>(Mask))
11850 if (C->isAllOnesValue())
11851 return Op0;
11852
11853 Mask = getMaskVecValue(
11854 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
11855
11856 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11857 }
11858
EmitX86ScalarSelect(CodeGenFunction & CGF,Value * Mask,Value * Op0,Value * Op1)11859 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11860 Value *Mask, Value *Op0, Value *Op1) {
11861 // If the mask is all ones just return first argument.
11862 if (const auto *C = dyn_cast<Constant>(Mask))
11863 if (C->isAllOnesValue())
11864 return Op0;
11865
11866 auto *MaskTy = llvm::FixedVectorType::get(
11867 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11868 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11869 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11870 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11871 }
11872
EmitX86MaskedCompareResult(CodeGenFunction & CGF,Value * Cmp,unsigned NumElts,Value * MaskIn)11873 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11874 unsigned NumElts, Value *MaskIn) {
11875 if (MaskIn) {
11876 const auto *C = dyn_cast<Constant>(MaskIn);
11877 if (!C || !C->isAllOnesValue())
11878 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11879 }
11880
11881 if (NumElts < 8) {
11882 int Indices[8];
11883 for (unsigned i = 0; i != NumElts; ++i)
11884 Indices[i] = i;
11885 for (unsigned i = NumElts; i != 8; ++i)
11886 Indices[i] = i % NumElts + NumElts;
11887 Cmp = CGF.Builder.CreateShuffleVector(
11888 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11889 }
11890
11891 return CGF.Builder.CreateBitCast(Cmp,
11892 IntegerType::get(CGF.getLLVMContext(),
11893 std::max(NumElts, 8U)));
11894 }
11895
EmitX86MaskedCompare(CodeGenFunction & CGF,unsigned CC,bool Signed,ArrayRef<Value * > Ops)11896 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
11897 bool Signed, ArrayRef<Value *> Ops) {
11898 assert((Ops.size() == 2 || Ops.size() == 4) &&
11899 "Unexpected number of arguments");
11900 unsigned NumElts =
11901 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
11902 Value *Cmp;
11903
11904 if (CC == 3) {
11905 Cmp = Constant::getNullValue(
11906 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11907 } else if (CC == 7) {
11908 Cmp = Constant::getAllOnesValue(
11909 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11910 } else {
11911 ICmpInst::Predicate Pred;
11912 switch (CC) {
11913 default: llvm_unreachable("Unknown condition code");
11914 case 0: Pred = ICmpInst::ICMP_EQ; break;
11915 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
11916 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
11917 case 4: Pred = ICmpInst::ICMP_NE; break;
11918 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
11919 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
11920 }
11921 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11922 }
11923
11924 Value *MaskIn = nullptr;
11925 if (Ops.size() == 4)
11926 MaskIn = Ops[3];
11927
11928 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
11929 }
11930
EmitX86ConvertToMask(CodeGenFunction & CGF,Value * In)11931 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
11932 Value *Zero = Constant::getNullValue(In->getType());
11933 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
11934 }
11935
EmitX86ConvertIntToFp(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops,bool IsSigned)11936 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
11937 ArrayRef<Value *> Ops, bool IsSigned) {
11938 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
11939 llvm::Type *Ty = Ops[1]->getType();
11940
11941 Value *Res;
11942 if (Rnd != 4) {
11943 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
11944 : Intrinsic::x86_avx512_uitofp_round;
11945 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
11946 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
11947 } else {
11948 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
11949 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
11950 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
11951 }
11952
11953 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11954 }
11955
11956 // Lowers X86 FMA intrinsics to IR.
EmitX86FMAExpr(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops,unsigned BuiltinID,bool IsAddSub)11957 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
11958 ArrayRef<Value *> Ops, unsigned BuiltinID,
11959 bool IsAddSub) {
11960
11961 bool Subtract = false;
11962 Intrinsic::ID IID = Intrinsic::not_intrinsic;
11963 switch (BuiltinID) {
11964 default: break;
11965 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11966 Subtract = true;
11967 LLVM_FALLTHROUGH;
11968 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11969 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11970 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11971 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
11972 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11973 Subtract = true;
11974 LLVM_FALLTHROUGH;
11975 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11976 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11977 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11978 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
11979 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11980 Subtract = true;
11981 LLVM_FALLTHROUGH;
11982 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11983 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11984 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11985 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
11986 break;
11987 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11988 Subtract = true;
11989 LLVM_FALLTHROUGH;
11990 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
11991 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
11992 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
11993 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
11994 break;
11995 }
11996
11997 Value *A = Ops[0];
11998 Value *B = Ops[1];
11999 Value *C = Ops[2];
12000
12001 if (Subtract)
12002 C = CGF.Builder.CreateFNeg(C);
12003
12004 Value *Res;
12005
12006 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12007 if (IID != Intrinsic::not_intrinsic &&
12008 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12009 IsAddSub)) {
12010 Function *Intr = CGF.CGM.getIntrinsic(IID);
12011 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12012 } else {
12013 llvm::Type *Ty = A->getType();
12014 Function *FMA;
12015 if (CGF.Builder.getIsFPConstrained()) {
12016 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12017 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12018 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12019 } else {
12020 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12021 Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12022 }
12023 }
12024
12025 // Handle any required masking.
12026 Value *MaskFalseVal = nullptr;
12027 switch (BuiltinID) {
12028 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12029 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12030 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12031 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12032 MaskFalseVal = Ops[0];
12033 break;
12034 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12035 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12036 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12037 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12038 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12039 break;
12040 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12041 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12042 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12043 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12044 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12045 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12046 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12047 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12048 MaskFalseVal = Ops[2];
12049 break;
12050 }
12051
12052 if (MaskFalseVal)
12053 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12054
12055 return Res;
12056 }
12057
EmitScalarFMAExpr(CodeGenFunction & CGF,const CallExpr * E,MutableArrayRef<Value * > Ops,Value * Upper,bool ZeroMask=false,unsigned PTIdx=0,bool NegAcc=false)12058 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12059 MutableArrayRef<Value *> Ops, Value *Upper,
12060 bool ZeroMask = false, unsigned PTIdx = 0,
12061 bool NegAcc = false) {
12062 unsigned Rnd = 4;
12063 if (Ops.size() > 4)
12064 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12065
12066 if (NegAcc)
12067 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12068
12069 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12070 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12071 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12072 Value *Res;
12073 if (Rnd != 4) {
12074 Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
12075 Intrinsic::x86_avx512_vfmadd_f32 :
12076 Intrinsic::x86_avx512_vfmadd_f64;
12077 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12078 {Ops[0], Ops[1], Ops[2], Ops[4]});
12079 } else if (CGF.Builder.getIsFPConstrained()) {
12080 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12081 Function *FMA = CGF.CGM.getIntrinsic(
12082 Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12083 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12084 } else {
12085 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12086 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12087 }
12088 // If we have more than 3 arguments, we need to do masking.
12089 if (Ops.size() > 3) {
12090 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12091 : Ops[PTIdx];
12092
12093 // If we negated the accumulator and the its the PassThru value we need to
12094 // bypass the negate. Conveniently Upper should be the same thing in this
12095 // case.
12096 if (NegAcc && PTIdx == 2)
12097 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12098
12099 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12100 }
12101 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12102 }
12103
EmitX86Muldq(CodeGenFunction & CGF,bool IsSigned,ArrayRef<Value * > Ops)12104 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12105 ArrayRef<Value *> Ops) {
12106 llvm::Type *Ty = Ops[0]->getType();
12107 // Arguments have a vXi32 type so cast to vXi64.
12108 Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12109 Ty->getPrimitiveSizeInBits() / 64);
12110 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12111 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12112
12113 if (IsSigned) {
12114 // Shift left then arithmetic shift right.
12115 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12116 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12117 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12118 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12119 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12120 } else {
12121 // Clear the upper bits.
12122 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12123 LHS = CGF.Builder.CreateAnd(LHS, Mask);
12124 RHS = CGF.Builder.CreateAnd(RHS, Mask);
12125 }
12126
12127 return CGF.Builder.CreateMul(LHS, RHS);
12128 }
12129
12130 // Emit a masked pternlog intrinsic. This only exists because the header has to
12131 // use a macro and we aren't able to pass the input argument to a pternlog
12132 // builtin and a select builtin without evaluating it twice.
EmitX86Ternlog(CodeGenFunction & CGF,bool ZeroMask,ArrayRef<Value * > Ops)12133 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12134 ArrayRef<Value *> Ops) {
12135 llvm::Type *Ty = Ops[0]->getType();
12136
12137 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12138 unsigned EltWidth = Ty->getScalarSizeInBits();
12139 Intrinsic::ID IID;
12140 if (VecWidth == 128 && EltWidth == 32)
12141 IID = Intrinsic::x86_avx512_pternlog_d_128;
12142 else if (VecWidth == 256 && EltWidth == 32)
12143 IID = Intrinsic::x86_avx512_pternlog_d_256;
12144 else if (VecWidth == 512 && EltWidth == 32)
12145 IID = Intrinsic::x86_avx512_pternlog_d_512;
12146 else if (VecWidth == 128 && EltWidth == 64)
12147 IID = Intrinsic::x86_avx512_pternlog_q_128;
12148 else if (VecWidth == 256 && EltWidth == 64)
12149 IID = Intrinsic::x86_avx512_pternlog_q_256;
12150 else if (VecWidth == 512 && EltWidth == 64)
12151 IID = Intrinsic::x86_avx512_pternlog_q_512;
12152 else
12153 llvm_unreachable("Unexpected intrinsic");
12154
12155 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12156 Ops.drop_back());
12157 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12158 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12159 }
12160
EmitX86SExtMask(CodeGenFunction & CGF,Value * Op,llvm::Type * DstTy)12161 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12162 llvm::Type *DstTy) {
12163 unsigned NumberOfElements =
12164 cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12165 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12166 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12167 }
12168
12169 // Emit binary intrinsic with the same type used in result/args.
EmitX86BinaryIntrinsic(CodeGenFunction & CGF,ArrayRef<Value * > Ops,Intrinsic::ID IID)12170 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF,
12171 ArrayRef<Value *> Ops, Intrinsic::ID IID) {
12172 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
12173 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
12174 }
12175
EmitX86CpuIs(const CallExpr * E)12176 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12177 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12178 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12179 return EmitX86CpuIs(CPUStr);
12180 }
12181
12182 // Convert F16 halfs to floats.
EmitX86CvtF16ToFloatExpr(CodeGenFunction & CGF,ArrayRef<Value * > Ops,llvm::Type * DstTy)12183 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12184 ArrayRef<Value *> Ops,
12185 llvm::Type *DstTy) {
12186 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
12187 "Unknown cvtph2ps intrinsic");
12188
12189 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12190 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12191 Function *F =
12192 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12193 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12194 }
12195
12196 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12197 Value *Src = Ops[0];
12198
12199 // Extract the subvector.
12200 if (NumDstElts !=
12201 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12202 assert(NumDstElts == 4 && "Unexpected vector size");
12203 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12204 }
12205
12206 // Bitcast from vXi16 to vXf16.
12207 auto *HalfTy = llvm::FixedVectorType::get(
12208 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12209 Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12210
12211 // Perform the fp-extension.
12212 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12213
12214 if (Ops.size() >= 3)
12215 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12216 return Res;
12217 }
12218
12219 // Convert a BF16 to a float.
EmitX86CvtBF16ToFloatExpr(CodeGenFunction & CGF,const CallExpr * E,ArrayRef<Value * > Ops)12220 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12221 const CallExpr *E,
12222 ArrayRef<Value *> Ops) {
12223 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12224 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12225 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12226 llvm::Type *ResultType = CGF.ConvertType(E->getType());
12227 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12228 return BitCast;
12229 }
12230
EmitX86CpuIs(StringRef CPUStr)12231 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12232
12233 llvm::Type *Int32Ty = Builder.getInt32Ty();
12234
12235 // Matching the struct layout from the compiler-rt/libgcc structure that is
12236 // filled in:
12237 // unsigned int __cpu_vendor;
12238 // unsigned int __cpu_type;
12239 // unsigned int __cpu_subtype;
12240 // unsigned int __cpu_features[1];
12241 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12242 llvm::ArrayType::get(Int32Ty, 1));
12243
12244 // Grab the global __cpu_model.
12245 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12246 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12247
12248 // Calculate the index needed to access the correct field based on the
12249 // range. Also adjust the expected value.
12250 unsigned Index;
12251 unsigned Value;
12252 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12253 #define X86_VENDOR(ENUM, STRING) \
12254 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12255 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
12256 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12257 #define X86_CPU_TYPE(ENUM, STR) \
12258 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12259 #define X86_CPU_SUBTYPE(ENUM, STR) \
12260 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12261 #include "llvm/Support/X86TargetParser.def"
12262 .Default({0, 0});
12263 assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
12264
12265 // Grab the appropriate field from __cpu_model.
12266 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12267 ConstantInt::get(Int32Ty, Index)};
12268 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12269 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12270 CharUnits::fromQuantity(4));
12271
12272 // Check the value of the field against the requested value.
12273 return Builder.CreateICmpEQ(CpuValue,
12274 llvm::ConstantInt::get(Int32Ty, Value));
12275 }
12276
EmitX86CpuSupports(const CallExpr * E)12277 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12278 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12279 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12280 return EmitX86CpuSupports(FeatureStr);
12281 }
12282
12283 uint64_t
GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs)12284 CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
12285 // Processor features and mapping to processor feature value.
12286 uint64_t FeaturesMask = 0;
12287 for (const StringRef &FeatureStr : FeatureStrs) {
12288 unsigned Feature =
12289 StringSwitch<unsigned>(FeatureStr)
12290 #define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
12291 #include "llvm/Support/X86TargetParser.def"
12292 ;
12293 FeaturesMask |= (1ULL << Feature);
12294 }
12295 return FeaturesMask;
12296 }
12297
EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs)12298 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12299 return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
12300 }
12301
EmitX86CpuSupports(uint64_t FeaturesMask)12302 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12303 uint32_t Features1 = Lo_32(FeaturesMask);
12304 uint32_t Features2 = Hi_32(FeaturesMask);
12305
12306 Value *Result = Builder.getTrue();
12307
12308 if (Features1 != 0) {
12309 // Matching the struct layout from the compiler-rt/libgcc structure that is
12310 // filled in:
12311 // unsigned int __cpu_vendor;
12312 // unsigned int __cpu_type;
12313 // unsigned int __cpu_subtype;
12314 // unsigned int __cpu_features[1];
12315 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12316 llvm::ArrayType::get(Int32Ty, 1));
12317
12318 // Grab the global __cpu_model.
12319 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12320 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12321
12322 // Grab the first (0th) element from the field __cpu_features off of the
12323 // global in the struct STy.
12324 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12325 Builder.getInt32(0)};
12326 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12327 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12328 CharUnits::fromQuantity(4));
12329
12330 // Check the value of the bit corresponding to the feature requested.
12331 Value *Mask = Builder.getInt32(Features1);
12332 Value *Bitset = Builder.CreateAnd(Features, Mask);
12333 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12334 Result = Builder.CreateAnd(Result, Cmp);
12335 }
12336
12337 if (Features2 != 0) {
12338 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12339 "__cpu_features2");
12340 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12341
12342 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12343 CharUnits::fromQuantity(4));
12344
12345 // Check the value of the bit corresponding to the feature requested.
12346 Value *Mask = Builder.getInt32(Features2);
12347 Value *Bitset = Builder.CreateAnd(Features, Mask);
12348 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12349 Result = Builder.CreateAnd(Result, Cmp);
12350 }
12351
12352 return Result;
12353 }
12354
EmitX86CpuInit()12355 Value *CodeGenFunction::EmitX86CpuInit() {
12356 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12357 /*Variadic*/ false);
12358 llvm::FunctionCallee Func =
12359 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12360 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12361 cast<llvm::GlobalValue>(Func.getCallee())
12362 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12363 return Builder.CreateCall(Func);
12364 }
12365
EmitX86BuiltinExpr(unsigned BuiltinID,const CallExpr * E)12366 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12367 const CallExpr *E) {
12368 if (BuiltinID == X86::BI__builtin_cpu_is)
12369 return EmitX86CpuIs(E);
12370 if (BuiltinID == X86::BI__builtin_cpu_supports)
12371 return EmitX86CpuSupports(E);
12372 if (BuiltinID == X86::BI__builtin_cpu_init)
12373 return EmitX86CpuInit();
12374
12375 // Handle MSVC intrinsics before argument evaluation to prevent double
12376 // evaluation.
12377 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12378 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12379
12380 SmallVector<Value*, 4> Ops;
12381 bool IsMaskFCmp = false;
12382
12383 // Find out if any arguments are required to be integer constant expressions.
12384 unsigned ICEArguments = 0;
12385 ASTContext::GetBuiltinTypeError Error;
12386 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12387 assert(Error == ASTContext::GE_None && "Should not codegen an error");
12388
12389 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12390 // If this is a normal argument, just emit it as a scalar.
12391 if ((ICEArguments & (1 << i)) == 0) {
12392 Ops.push_back(EmitScalarExpr(E->getArg(i)));
12393 continue;
12394 }
12395
12396 // If this is required to be a constant, constant fold it so that we know
12397 // that the generated intrinsic gets a ConstantInt.
12398 Ops.push_back(llvm::ConstantInt::get(
12399 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12400 }
12401
12402 // These exist so that the builtin that takes an immediate can be bounds
12403 // checked by clang to avoid passing bad immediates to the backend. Since
12404 // AVX has a larger immediate than SSE we would need separate builtins to
12405 // do the different bounds checking. Rather than create a clang specific
12406 // SSE only builtin, this implements eight separate builtins to match gcc
12407 // implementation.
12408 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12409 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12410 llvm::Function *F = CGM.getIntrinsic(ID);
12411 return Builder.CreateCall(F, Ops);
12412 };
12413
12414 // For the vector forms of FP comparisons, translate the builtins directly to
12415 // IR.
12416 // TODO: The builtins could be removed if the SSE header files used vector
12417 // extension comparisons directly (vector ordered/unordered may need
12418 // additional support via __builtin_isnan()).
12419 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12420 bool IsSignaling) {
12421 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12422 Value *Cmp;
12423 if (IsSignaling)
12424 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12425 else
12426 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12427 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12428 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12429 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12430 return Builder.CreateBitCast(Sext, FPVecTy);
12431 };
12432
12433 switch (BuiltinID) {
12434 default: return nullptr;
12435 case X86::BI_mm_prefetch: {
12436 Value *Address = Ops[0];
12437 ConstantInt *C = cast<ConstantInt>(Ops[1]);
12438 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12439 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12440 Value *Data = ConstantInt::get(Int32Ty, 1);
12441 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12442 return Builder.CreateCall(F, {Address, RW, Locality, Data});
12443 }
12444 case X86::BI_mm_clflush: {
12445 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12446 Ops[0]);
12447 }
12448 case X86::BI_mm_lfence: {
12449 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12450 }
12451 case X86::BI_mm_mfence: {
12452 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12453 }
12454 case X86::BI_mm_sfence: {
12455 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12456 }
12457 case X86::BI_mm_pause: {
12458 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12459 }
12460 case X86::BI__rdtsc: {
12461 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12462 }
12463 case X86::BI__builtin_ia32_rdtscp: {
12464 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12465 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12466 Ops[0]);
12467 return Builder.CreateExtractValue(Call, 0);
12468 }
12469 case X86::BI__builtin_ia32_lzcnt_u16:
12470 case X86::BI__builtin_ia32_lzcnt_u32:
12471 case X86::BI__builtin_ia32_lzcnt_u64: {
12472 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12473 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12474 }
12475 case X86::BI__builtin_ia32_tzcnt_u16:
12476 case X86::BI__builtin_ia32_tzcnt_u32:
12477 case X86::BI__builtin_ia32_tzcnt_u64: {
12478 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12479 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12480 }
12481 case X86::BI__builtin_ia32_undef128:
12482 case X86::BI__builtin_ia32_undef256:
12483 case X86::BI__builtin_ia32_undef512:
12484 // The x86 definition of "undef" is not the same as the LLVM definition
12485 // (PR32176). We leave optimizing away an unnecessary zero constant to the
12486 // IR optimizer and backend.
12487 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12488 // value, we should use that here instead of a zero.
12489 return llvm::Constant::getNullValue(ConvertType(E->getType()));
12490 case X86::BI__builtin_ia32_vec_init_v8qi:
12491 case X86::BI__builtin_ia32_vec_init_v4hi:
12492 case X86::BI__builtin_ia32_vec_init_v2si:
12493 return Builder.CreateBitCast(BuildVector(Ops),
12494 llvm::Type::getX86_MMXTy(getLLVMContext()));
12495 case X86::BI__builtin_ia32_vec_ext_v2si:
12496 case X86::BI__builtin_ia32_vec_ext_v16qi:
12497 case X86::BI__builtin_ia32_vec_ext_v8hi:
12498 case X86::BI__builtin_ia32_vec_ext_v4si:
12499 case X86::BI__builtin_ia32_vec_ext_v4sf:
12500 case X86::BI__builtin_ia32_vec_ext_v2di:
12501 case X86::BI__builtin_ia32_vec_ext_v32qi:
12502 case X86::BI__builtin_ia32_vec_ext_v16hi:
12503 case X86::BI__builtin_ia32_vec_ext_v8si:
12504 case X86::BI__builtin_ia32_vec_ext_v4di: {
12505 unsigned NumElts =
12506 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12507 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12508 Index &= NumElts - 1;
12509 // These builtins exist so we can ensure the index is an ICE and in range.
12510 // Otherwise we could just do this in the header file.
12511 return Builder.CreateExtractElement(Ops[0], Index);
12512 }
12513 case X86::BI__builtin_ia32_vec_set_v16qi:
12514 case X86::BI__builtin_ia32_vec_set_v8hi:
12515 case X86::BI__builtin_ia32_vec_set_v4si:
12516 case X86::BI__builtin_ia32_vec_set_v2di:
12517 case X86::BI__builtin_ia32_vec_set_v32qi:
12518 case X86::BI__builtin_ia32_vec_set_v16hi:
12519 case X86::BI__builtin_ia32_vec_set_v8si:
12520 case X86::BI__builtin_ia32_vec_set_v4di: {
12521 unsigned NumElts =
12522 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12523 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12524 Index &= NumElts - 1;
12525 // These builtins exist so we can ensure the index is an ICE and in range.
12526 // Otherwise we could just do this in the header file.
12527 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12528 }
12529 case X86::BI_mm_setcsr:
12530 case X86::BI__builtin_ia32_ldmxcsr: {
12531 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12532 Builder.CreateStore(Ops[0], Tmp);
12533 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12534 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12535 }
12536 case X86::BI_mm_getcsr:
12537 case X86::BI__builtin_ia32_stmxcsr: {
12538 Address Tmp = CreateMemTemp(E->getType());
12539 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12540 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12541 return Builder.CreateLoad(Tmp, "stmxcsr");
12542 }
12543 case X86::BI__builtin_ia32_xsave:
12544 case X86::BI__builtin_ia32_xsave64:
12545 case X86::BI__builtin_ia32_xrstor:
12546 case X86::BI__builtin_ia32_xrstor64:
12547 case X86::BI__builtin_ia32_xsaveopt:
12548 case X86::BI__builtin_ia32_xsaveopt64:
12549 case X86::BI__builtin_ia32_xrstors:
12550 case X86::BI__builtin_ia32_xrstors64:
12551 case X86::BI__builtin_ia32_xsavec:
12552 case X86::BI__builtin_ia32_xsavec64:
12553 case X86::BI__builtin_ia32_xsaves:
12554 case X86::BI__builtin_ia32_xsaves64:
12555 case X86::BI__builtin_ia32_xsetbv:
12556 case X86::BI_xsetbv: {
12557 Intrinsic::ID ID;
12558 #define INTRINSIC_X86_XSAVE_ID(NAME) \
12559 case X86::BI__builtin_ia32_##NAME: \
12560 ID = Intrinsic::x86_##NAME; \
12561 break
12562 switch (BuiltinID) {
12563 default: llvm_unreachable("Unsupported intrinsic!");
12564 INTRINSIC_X86_XSAVE_ID(xsave);
12565 INTRINSIC_X86_XSAVE_ID(xsave64);
12566 INTRINSIC_X86_XSAVE_ID(xrstor);
12567 INTRINSIC_X86_XSAVE_ID(xrstor64);
12568 INTRINSIC_X86_XSAVE_ID(xsaveopt);
12569 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12570 INTRINSIC_X86_XSAVE_ID(xrstors);
12571 INTRINSIC_X86_XSAVE_ID(xrstors64);
12572 INTRINSIC_X86_XSAVE_ID(xsavec);
12573 INTRINSIC_X86_XSAVE_ID(xsavec64);
12574 INTRINSIC_X86_XSAVE_ID(xsaves);
12575 INTRINSIC_X86_XSAVE_ID(xsaves64);
12576 INTRINSIC_X86_XSAVE_ID(xsetbv);
12577 case X86::BI_xsetbv:
12578 ID = Intrinsic::x86_xsetbv;
12579 break;
12580 }
12581 #undef INTRINSIC_X86_XSAVE_ID
12582 Value *Mhi = Builder.CreateTrunc(
12583 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12584 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12585 Ops[1] = Mhi;
12586 Ops.push_back(Mlo);
12587 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12588 }
12589 case X86::BI__builtin_ia32_xgetbv:
12590 case X86::BI_xgetbv:
12591 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12592 case X86::BI__builtin_ia32_storedqudi128_mask:
12593 case X86::BI__builtin_ia32_storedqusi128_mask:
12594 case X86::BI__builtin_ia32_storedquhi128_mask:
12595 case X86::BI__builtin_ia32_storedquqi128_mask:
12596 case X86::BI__builtin_ia32_storeupd128_mask:
12597 case X86::BI__builtin_ia32_storeups128_mask:
12598 case X86::BI__builtin_ia32_storedqudi256_mask:
12599 case X86::BI__builtin_ia32_storedqusi256_mask:
12600 case X86::BI__builtin_ia32_storedquhi256_mask:
12601 case X86::BI__builtin_ia32_storedquqi256_mask:
12602 case X86::BI__builtin_ia32_storeupd256_mask:
12603 case X86::BI__builtin_ia32_storeups256_mask:
12604 case X86::BI__builtin_ia32_storedqudi512_mask:
12605 case X86::BI__builtin_ia32_storedqusi512_mask:
12606 case X86::BI__builtin_ia32_storedquhi512_mask:
12607 case X86::BI__builtin_ia32_storedquqi512_mask:
12608 case X86::BI__builtin_ia32_storeupd512_mask:
12609 case X86::BI__builtin_ia32_storeups512_mask:
12610 return EmitX86MaskedStore(*this, Ops, Align(1));
12611
12612 case X86::BI__builtin_ia32_storess128_mask:
12613 case X86::BI__builtin_ia32_storesd128_mask:
12614 return EmitX86MaskedStore(*this, Ops, Align(1));
12615
12616 case X86::BI__builtin_ia32_vpopcntb_128:
12617 case X86::BI__builtin_ia32_vpopcntd_128:
12618 case X86::BI__builtin_ia32_vpopcntq_128:
12619 case X86::BI__builtin_ia32_vpopcntw_128:
12620 case X86::BI__builtin_ia32_vpopcntb_256:
12621 case X86::BI__builtin_ia32_vpopcntd_256:
12622 case X86::BI__builtin_ia32_vpopcntq_256:
12623 case X86::BI__builtin_ia32_vpopcntw_256:
12624 case X86::BI__builtin_ia32_vpopcntb_512:
12625 case X86::BI__builtin_ia32_vpopcntd_512:
12626 case X86::BI__builtin_ia32_vpopcntq_512:
12627 case X86::BI__builtin_ia32_vpopcntw_512: {
12628 llvm::Type *ResultType = ConvertType(E->getType());
12629 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12630 return Builder.CreateCall(F, Ops);
12631 }
12632 case X86::BI__builtin_ia32_cvtmask2b128:
12633 case X86::BI__builtin_ia32_cvtmask2b256:
12634 case X86::BI__builtin_ia32_cvtmask2b512:
12635 case X86::BI__builtin_ia32_cvtmask2w128:
12636 case X86::BI__builtin_ia32_cvtmask2w256:
12637 case X86::BI__builtin_ia32_cvtmask2w512:
12638 case X86::BI__builtin_ia32_cvtmask2d128:
12639 case X86::BI__builtin_ia32_cvtmask2d256:
12640 case X86::BI__builtin_ia32_cvtmask2d512:
12641 case X86::BI__builtin_ia32_cvtmask2q128:
12642 case X86::BI__builtin_ia32_cvtmask2q256:
12643 case X86::BI__builtin_ia32_cvtmask2q512:
12644 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12645
12646 case X86::BI__builtin_ia32_cvtb2mask128:
12647 case X86::BI__builtin_ia32_cvtb2mask256:
12648 case X86::BI__builtin_ia32_cvtb2mask512:
12649 case X86::BI__builtin_ia32_cvtw2mask128:
12650 case X86::BI__builtin_ia32_cvtw2mask256:
12651 case X86::BI__builtin_ia32_cvtw2mask512:
12652 case X86::BI__builtin_ia32_cvtd2mask128:
12653 case X86::BI__builtin_ia32_cvtd2mask256:
12654 case X86::BI__builtin_ia32_cvtd2mask512:
12655 case X86::BI__builtin_ia32_cvtq2mask128:
12656 case X86::BI__builtin_ia32_cvtq2mask256:
12657 case X86::BI__builtin_ia32_cvtq2mask512:
12658 return EmitX86ConvertToMask(*this, Ops[0]);
12659
12660 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12661 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12662 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12663 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
12664 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12665 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12666 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12667 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
12668
12669 case X86::BI__builtin_ia32_vfmaddss3:
12670 case X86::BI__builtin_ia32_vfmaddsd3:
12671 case X86::BI__builtin_ia32_vfmaddss3_mask:
12672 case X86::BI__builtin_ia32_vfmaddsd3_mask:
12673 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
12674 case X86::BI__builtin_ia32_vfmaddss:
12675 case X86::BI__builtin_ia32_vfmaddsd:
12676 return EmitScalarFMAExpr(*this, E, Ops,
12677 Constant::getNullValue(Ops[0]->getType()));
12678 case X86::BI__builtin_ia32_vfmaddss3_maskz:
12679 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12680 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
12681 case X86::BI__builtin_ia32_vfmaddss3_mask3:
12682 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12683 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
12684 case X86::BI__builtin_ia32_vfmsubss3_mask3:
12685 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12686 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
12687 /*NegAcc*/ true);
12688 case X86::BI__builtin_ia32_vfmaddps:
12689 case X86::BI__builtin_ia32_vfmaddpd:
12690 case X86::BI__builtin_ia32_vfmaddps256:
12691 case X86::BI__builtin_ia32_vfmaddpd256:
12692 case X86::BI__builtin_ia32_vfmaddps512_mask:
12693 case X86::BI__builtin_ia32_vfmaddps512_maskz:
12694 case X86::BI__builtin_ia32_vfmaddps512_mask3:
12695 case X86::BI__builtin_ia32_vfmsubps512_mask3:
12696 case X86::BI__builtin_ia32_vfmaddpd512_mask:
12697 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12698 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12699 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12700 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
12701 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12702 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12703 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12704 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12705 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12706 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12707 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12708 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12709 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
12710
12711 case X86::BI__builtin_ia32_movdqa32store128_mask:
12712 case X86::BI__builtin_ia32_movdqa64store128_mask:
12713 case X86::BI__builtin_ia32_storeaps128_mask:
12714 case X86::BI__builtin_ia32_storeapd128_mask:
12715 case X86::BI__builtin_ia32_movdqa32store256_mask:
12716 case X86::BI__builtin_ia32_movdqa64store256_mask:
12717 case X86::BI__builtin_ia32_storeaps256_mask:
12718 case X86::BI__builtin_ia32_storeapd256_mask:
12719 case X86::BI__builtin_ia32_movdqa32store512_mask:
12720 case X86::BI__builtin_ia32_movdqa64store512_mask:
12721 case X86::BI__builtin_ia32_storeaps512_mask:
12722 case X86::BI__builtin_ia32_storeapd512_mask:
12723 return EmitX86MaskedStore(
12724 *this, Ops,
12725 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12726
12727 case X86::BI__builtin_ia32_loadups128_mask:
12728 case X86::BI__builtin_ia32_loadups256_mask:
12729 case X86::BI__builtin_ia32_loadups512_mask:
12730 case X86::BI__builtin_ia32_loadupd128_mask:
12731 case X86::BI__builtin_ia32_loadupd256_mask:
12732 case X86::BI__builtin_ia32_loadupd512_mask:
12733 case X86::BI__builtin_ia32_loaddquqi128_mask:
12734 case X86::BI__builtin_ia32_loaddquqi256_mask:
12735 case X86::BI__builtin_ia32_loaddquqi512_mask:
12736 case X86::BI__builtin_ia32_loaddquhi128_mask:
12737 case X86::BI__builtin_ia32_loaddquhi256_mask:
12738 case X86::BI__builtin_ia32_loaddquhi512_mask:
12739 case X86::BI__builtin_ia32_loaddqusi128_mask:
12740 case X86::BI__builtin_ia32_loaddqusi256_mask:
12741 case X86::BI__builtin_ia32_loaddqusi512_mask:
12742 case X86::BI__builtin_ia32_loaddqudi128_mask:
12743 case X86::BI__builtin_ia32_loaddqudi256_mask:
12744 case X86::BI__builtin_ia32_loaddqudi512_mask:
12745 return EmitX86MaskedLoad(*this, Ops, Align(1));
12746
12747 case X86::BI__builtin_ia32_loadss128_mask:
12748 case X86::BI__builtin_ia32_loadsd128_mask:
12749 return EmitX86MaskedLoad(*this, Ops, Align(1));
12750
12751 case X86::BI__builtin_ia32_loadaps128_mask:
12752 case X86::BI__builtin_ia32_loadaps256_mask:
12753 case X86::BI__builtin_ia32_loadaps512_mask:
12754 case X86::BI__builtin_ia32_loadapd128_mask:
12755 case X86::BI__builtin_ia32_loadapd256_mask:
12756 case X86::BI__builtin_ia32_loadapd512_mask:
12757 case X86::BI__builtin_ia32_movdqa32load128_mask:
12758 case X86::BI__builtin_ia32_movdqa32load256_mask:
12759 case X86::BI__builtin_ia32_movdqa32load512_mask:
12760 case X86::BI__builtin_ia32_movdqa64load128_mask:
12761 case X86::BI__builtin_ia32_movdqa64load256_mask:
12762 case X86::BI__builtin_ia32_movdqa64load512_mask:
12763 return EmitX86MaskedLoad(
12764 *this, Ops,
12765 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12766
12767 case X86::BI__builtin_ia32_expandloaddf128_mask:
12768 case X86::BI__builtin_ia32_expandloaddf256_mask:
12769 case X86::BI__builtin_ia32_expandloaddf512_mask:
12770 case X86::BI__builtin_ia32_expandloadsf128_mask:
12771 case X86::BI__builtin_ia32_expandloadsf256_mask:
12772 case X86::BI__builtin_ia32_expandloadsf512_mask:
12773 case X86::BI__builtin_ia32_expandloaddi128_mask:
12774 case X86::BI__builtin_ia32_expandloaddi256_mask:
12775 case X86::BI__builtin_ia32_expandloaddi512_mask:
12776 case X86::BI__builtin_ia32_expandloadsi128_mask:
12777 case X86::BI__builtin_ia32_expandloadsi256_mask:
12778 case X86::BI__builtin_ia32_expandloadsi512_mask:
12779 case X86::BI__builtin_ia32_expandloadhi128_mask:
12780 case X86::BI__builtin_ia32_expandloadhi256_mask:
12781 case X86::BI__builtin_ia32_expandloadhi512_mask:
12782 case X86::BI__builtin_ia32_expandloadqi128_mask:
12783 case X86::BI__builtin_ia32_expandloadqi256_mask:
12784 case X86::BI__builtin_ia32_expandloadqi512_mask:
12785 return EmitX86ExpandLoad(*this, Ops);
12786
12787 case X86::BI__builtin_ia32_compressstoredf128_mask:
12788 case X86::BI__builtin_ia32_compressstoredf256_mask:
12789 case X86::BI__builtin_ia32_compressstoredf512_mask:
12790 case X86::BI__builtin_ia32_compressstoresf128_mask:
12791 case X86::BI__builtin_ia32_compressstoresf256_mask:
12792 case X86::BI__builtin_ia32_compressstoresf512_mask:
12793 case X86::BI__builtin_ia32_compressstoredi128_mask:
12794 case X86::BI__builtin_ia32_compressstoredi256_mask:
12795 case X86::BI__builtin_ia32_compressstoredi512_mask:
12796 case X86::BI__builtin_ia32_compressstoresi128_mask:
12797 case X86::BI__builtin_ia32_compressstoresi256_mask:
12798 case X86::BI__builtin_ia32_compressstoresi512_mask:
12799 case X86::BI__builtin_ia32_compressstorehi128_mask:
12800 case X86::BI__builtin_ia32_compressstorehi256_mask:
12801 case X86::BI__builtin_ia32_compressstorehi512_mask:
12802 case X86::BI__builtin_ia32_compressstoreqi128_mask:
12803 case X86::BI__builtin_ia32_compressstoreqi256_mask:
12804 case X86::BI__builtin_ia32_compressstoreqi512_mask:
12805 return EmitX86CompressStore(*this, Ops);
12806
12807 case X86::BI__builtin_ia32_expanddf128_mask:
12808 case X86::BI__builtin_ia32_expanddf256_mask:
12809 case X86::BI__builtin_ia32_expanddf512_mask:
12810 case X86::BI__builtin_ia32_expandsf128_mask:
12811 case X86::BI__builtin_ia32_expandsf256_mask:
12812 case X86::BI__builtin_ia32_expandsf512_mask:
12813 case X86::BI__builtin_ia32_expanddi128_mask:
12814 case X86::BI__builtin_ia32_expanddi256_mask:
12815 case X86::BI__builtin_ia32_expanddi512_mask:
12816 case X86::BI__builtin_ia32_expandsi128_mask:
12817 case X86::BI__builtin_ia32_expandsi256_mask:
12818 case X86::BI__builtin_ia32_expandsi512_mask:
12819 case X86::BI__builtin_ia32_expandhi128_mask:
12820 case X86::BI__builtin_ia32_expandhi256_mask:
12821 case X86::BI__builtin_ia32_expandhi512_mask:
12822 case X86::BI__builtin_ia32_expandqi128_mask:
12823 case X86::BI__builtin_ia32_expandqi256_mask:
12824 case X86::BI__builtin_ia32_expandqi512_mask:
12825 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12826
12827 case X86::BI__builtin_ia32_compressdf128_mask:
12828 case X86::BI__builtin_ia32_compressdf256_mask:
12829 case X86::BI__builtin_ia32_compressdf512_mask:
12830 case X86::BI__builtin_ia32_compresssf128_mask:
12831 case X86::BI__builtin_ia32_compresssf256_mask:
12832 case X86::BI__builtin_ia32_compresssf512_mask:
12833 case X86::BI__builtin_ia32_compressdi128_mask:
12834 case X86::BI__builtin_ia32_compressdi256_mask:
12835 case X86::BI__builtin_ia32_compressdi512_mask:
12836 case X86::BI__builtin_ia32_compresssi128_mask:
12837 case X86::BI__builtin_ia32_compresssi256_mask:
12838 case X86::BI__builtin_ia32_compresssi512_mask:
12839 case X86::BI__builtin_ia32_compresshi128_mask:
12840 case X86::BI__builtin_ia32_compresshi256_mask:
12841 case X86::BI__builtin_ia32_compresshi512_mask:
12842 case X86::BI__builtin_ia32_compressqi128_mask:
12843 case X86::BI__builtin_ia32_compressqi256_mask:
12844 case X86::BI__builtin_ia32_compressqi512_mask:
12845 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12846
12847 case X86::BI__builtin_ia32_gather3div2df:
12848 case X86::BI__builtin_ia32_gather3div2di:
12849 case X86::BI__builtin_ia32_gather3div4df:
12850 case X86::BI__builtin_ia32_gather3div4di:
12851 case X86::BI__builtin_ia32_gather3div4sf:
12852 case X86::BI__builtin_ia32_gather3div4si:
12853 case X86::BI__builtin_ia32_gather3div8sf:
12854 case X86::BI__builtin_ia32_gather3div8si:
12855 case X86::BI__builtin_ia32_gather3siv2df:
12856 case X86::BI__builtin_ia32_gather3siv2di:
12857 case X86::BI__builtin_ia32_gather3siv4df:
12858 case X86::BI__builtin_ia32_gather3siv4di:
12859 case X86::BI__builtin_ia32_gather3siv4sf:
12860 case X86::BI__builtin_ia32_gather3siv4si:
12861 case X86::BI__builtin_ia32_gather3siv8sf:
12862 case X86::BI__builtin_ia32_gather3siv8si:
12863 case X86::BI__builtin_ia32_gathersiv8df:
12864 case X86::BI__builtin_ia32_gathersiv16sf:
12865 case X86::BI__builtin_ia32_gatherdiv8df:
12866 case X86::BI__builtin_ia32_gatherdiv16sf:
12867 case X86::BI__builtin_ia32_gathersiv8di:
12868 case X86::BI__builtin_ia32_gathersiv16si:
12869 case X86::BI__builtin_ia32_gatherdiv8di:
12870 case X86::BI__builtin_ia32_gatherdiv16si: {
12871 Intrinsic::ID IID;
12872 switch (BuiltinID) {
12873 default: llvm_unreachable("Unexpected builtin");
12874 case X86::BI__builtin_ia32_gather3div2df:
12875 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12876 break;
12877 case X86::BI__builtin_ia32_gather3div2di:
12878 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12879 break;
12880 case X86::BI__builtin_ia32_gather3div4df:
12881 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12882 break;
12883 case X86::BI__builtin_ia32_gather3div4di:
12884 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12885 break;
12886 case X86::BI__builtin_ia32_gather3div4sf:
12887 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12888 break;
12889 case X86::BI__builtin_ia32_gather3div4si:
12890 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12891 break;
12892 case X86::BI__builtin_ia32_gather3div8sf:
12893 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12894 break;
12895 case X86::BI__builtin_ia32_gather3div8si:
12896 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
12897 break;
12898 case X86::BI__builtin_ia32_gather3siv2df:
12899 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
12900 break;
12901 case X86::BI__builtin_ia32_gather3siv2di:
12902 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
12903 break;
12904 case X86::BI__builtin_ia32_gather3siv4df:
12905 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
12906 break;
12907 case X86::BI__builtin_ia32_gather3siv4di:
12908 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
12909 break;
12910 case X86::BI__builtin_ia32_gather3siv4sf:
12911 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
12912 break;
12913 case X86::BI__builtin_ia32_gather3siv4si:
12914 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
12915 break;
12916 case X86::BI__builtin_ia32_gather3siv8sf:
12917 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
12918 break;
12919 case X86::BI__builtin_ia32_gather3siv8si:
12920 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
12921 break;
12922 case X86::BI__builtin_ia32_gathersiv8df:
12923 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
12924 break;
12925 case X86::BI__builtin_ia32_gathersiv16sf:
12926 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
12927 break;
12928 case X86::BI__builtin_ia32_gatherdiv8df:
12929 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
12930 break;
12931 case X86::BI__builtin_ia32_gatherdiv16sf:
12932 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
12933 break;
12934 case X86::BI__builtin_ia32_gathersiv8di:
12935 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
12936 break;
12937 case X86::BI__builtin_ia32_gathersiv16si:
12938 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
12939 break;
12940 case X86::BI__builtin_ia32_gatherdiv8di:
12941 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
12942 break;
12943 case X86::BI__builtin_ia32_gatherdiv16si:
12944 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
12945 break;
12946 }
12947
12948 unsigned MinElts = std::min(
12949 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
12950 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
12951 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
12952 Function *Intr = CGM.getIntrinsic(IID);
12953 return Builder.CreateCall(Intr, Ops);
12954 }
12955
12956 case X86::BI__builtin_ia32_scattersiv8df:
12957 case X86::BI__builtin_ia32_scattersiv16sf:
12958 case X86::BI__builtin_ia32_scatterdiv8df:
12959 case X86::BI__builtin_ia32_scatterdiv16sf:
12960 case X86::BI__builtin_ia32_scattersiv8di:
12961 case X86::BI__builtin_ia32_scattersiv16si:
12962 case X86::BI__builtin_ia32_scatterdiv8di:
12963 case X86::BI__builtin_ia32_scatterdiv16si:
12964 case X86::BI__builtin_ia32_scatterdiv2df:
12965 case X86::BI__builtin_ia32_scatterdiv2di:
12966 case X86::BI__builtin_ia32_scatterdiv4df:
12967 case X86::BI__builtin_ia32_scatterdiv4di:
12968 case X86::BI__builtin_ia32_scatterdiv4sf:
12969 case X86::BI__builtin_ia32_scatterdiv4si:
12970 case X86::BI__builtin_ia32_scatterdiv8sf:
12971 case X86::BI__builtin_ia32_scatterdiv8si:
12972 case X86::BI__builtin_ia32_scattersiv2df:
12973 case X86::BI__builtin_ia32_scattersiv2di:
12974 case X86::BI__builtin_ia32_scattersiv4df:
12975 case X86::BI__builtin_ia32_scattersiv4di:
12976 case X86::BI__builtin_ia32_scattersiv4sf:
12977 case X86::BI__builtin_ia32_scattersiv4si:
12978 case X86::BI__builtin_ia32_scattersiv8sf:
12979 case X86::BI__builtin_ia32_scattersiv8si: {
12980 Intrinsic::ID IID;
12981 switch (BuiltinID) {
12982 default: llvm_unreachable("Unexpected builtin");
12983 case X86::BI__builtin_ia32_scattersiv8df:
12984 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
12985 break;
12986 case X86::BI__builtin_ia32_scattersiv16sf:
12987 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
12988 break;
12989 case X86::BI__builtin_ia32_scatterdiv8df:
12990 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
12991 break;
12992 case X86::BI__builtin_ia32_scatterdiv16sf:
12993 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
12994 break;
12995 case X86::BI__builtin_ia32_scattersiv8di:
12996 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
12997 break;
12998 case X86::BI__builtin_ia32_scattersiv16si:
12999 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13000 break;
13001 case X86::BI__builtin_ia32_scatterdiv8di:
13002 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13003 break;
13004 case X86::BI__builtin_ia32_scatterdiv16si:
13005 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13006 break;
13007 case X86::BI__builtin_ia32_scatterdiv2df:
13008 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13009 break;
13010 case X86::BI__builtin_ia32_scatterdiv2di:
13011 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13012 break;
13013 case X86::BI__builtin_ia32_scatterdiv4df:
13014 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13015 break;
13016 case X86::BI__builtin_ia32_scatterdiv4di:
13017 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13018 break;
13019 case X86::BI__builtin_ia32_scatterdiv4sf:
13020 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13021 break;
13022 case X86::BI__builtin_ia32_scatterdiv4si:
13023 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13024 break;
13025 case X86::BI__builtin_ia32_scatterdiv8sf:
13026 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13027 break;
13028 case X86::BI__builtin_ia32_scatterdiv8si:
13029 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13030 break;
13031 case X86::BI__builtin_ia32_scattersiv2df:
13032 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13033 break;
13034 case X86::BI__builtin_ia32_scattersiv2di:
13035 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13036 break;
13037 case X86::BI__builtin_ia32_scattersiv4df:
13038 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13039 break;
13040 case X86::BI__builtin_ia32_scattersiv4di:
13041 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13042 break;
13043 case X86::BI__builtin_ia32_scattersiv4sf:
13044 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13045 break;
13046 case X86::BI__builtin_ia32_scattersiv4si:
13047 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13048 break;
13049 case X86::BI__builtin_ia32_scattersiv8sf:
13050 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13051 break;
13052 case X86::BI__builtin_ia32_scattersiv8si:
13053 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13054 break;
13055 }
13056
13057 unsigned MinElts = std::min(
13058 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13059 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13060 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13061 Function *Intr = CGM.getIntrinsic(IID);
13062 return Builder.CreateCall(Intr, Ops);
13063 }
13064
13065 case X86::BI__builtin_ia32_vextractf128_pd256:
13066 case X86::BI__builtin_ia32_vextractf128_ps256:
13067 case X86::BI__builtin_ia32_vextractf128_si256:
13068 case X86::BI__builtin_ia32_extract128i256:
13069 case X86::BI__builtin_ia32_extractf64x4_mask:
13070 case X86::BI__builtin_ia32_extractf32x4_mask:
13071 case X86::BI__builtin_ia32_extracti64x4_mask:
13072 case X86::BI__builtin_ia32_extracti32x4_mask:
13073 case X86::BI__builtin_ia32_extractf32x8_mask:
13074 case X86::BI__builtin_ia32_extracti32x8_mask:
13075 case X86::BI__builtin_ia32_extractf32x4_256_mask:
13076 case X86::BI__builtin_ia32_extracti32x4_256_mask:
13077 case X86::BI__builtin_ia32_extractf64x2_256_mask:
13078 case X86::BI__builtin_ia32_extracti64x2_256_mask:
13079 case X86::BI__builtin_ia32_extractf64x2_512_mask:
13080 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13081 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13082 unsigned NumElts = DstTy->getNumElements();
13083 unsigned SrcNumElts =
13084 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13085 unsigned SubVectors = SrcNumElts / NumElts;
13086 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13087 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13088 Index &= SubVectors - 1; // Remove any extra bits.
13089 Index *= NumElts;
13090
13091 int Indices[16];
13092 for (unsigned i = 0; i != NumElts; ++i)
13093 Indices[i] = i + Index;
13094
13095 Value *Res = Builder.CreateShuffleVector(Ops[0],
13096 makeArrayRef(Indices, NumElts),
13097 "extract");
13098
13099 if (Ops.size() == 4)
13100 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13101
13102 return Res;
13103 }
13104 case X86::BI__builtin_ia32_vinsertf128_pd256:
13105 case X86::BI__builtin_ia32_vinsertf128_ps256:
13106 case X86::BI__builtin_ia32_vinsertf128_si256:
13107 case X86::BI__builtin_ia32_insert128i256:
13108 case X86::BI__builtin_ia32_insertf64x4:
13109 case X86::BI__builtin_ia32_insertf32x4:
13110 case X86::BI__builtin_ia32_inserti64x4:
13111 case X86::BI__builtin_ia32_inserti32x4:
13112 case X86::BI__builtin_ia32_insertf32x8:
13113 case X86::BI__builtin_ia32_inserti32x8:
13114 case X86::BI__builtin_ia32_insertf32x4_256:
13115 case X86::BI__builtin_ia32_inserti32x4_256:
13116 case X86::BI__builtin_ia32_insertf64x2_256:
13117 case X86::BI__builtin_ia32_inserti64x2_256:
13118 case X86::BI__builtin_ia32_insertf64x2_512:
13119 case X86::BI__builtin_ia32_inserti64x2_512: {
13120 unsigned DstNumElts =
13121 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13122 unsigned SrcNumElts =
13123 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13124 unsigned SubVectors = DstNumElts / SrcNumElts;
13125 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13126 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13127 Index &= SubVectors - 1; // Remove any extra bits.
13128 Index *= SrcNumElts;
13129
13130 int Indices[16];
13131 for (unsigned i = 0; i != DstNumElts; ++i)
13132 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13133
13134 Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13135 makeArrayRef(Indices, DstNumElts),
13136 "widen");
13137
13138 for (unsigned i = 0; i != DstNumElts; ++i) {
13139 if (i >= Index && i < (Index + SrcNumElts))
13140 Indices[i] = (i - Index) + DstNumElts;
13141 else
13142 Indices[i] = i;
13143 }
13144
13145 return Builder.CreateShuffleVector(Ops[0], Op1,
13146 makeArrayRef(Indices, DstNumElts),
13147 "insert");
13148 }
13149 case X86::BI__builtin_ia32_pmovqd512_mask:
13150 case X86::BI__builtin_ia32_pmovwb512_mask: {
13151 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13152 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13153 }
13154 case X86::BI__builtin_ia32_pmovdb512_mask:
13155 case X86::BI__builtin_ia32_pmovdw512_mask:
13156 case X86::BI__builtin_ia32_pmovqw512_mask: {
13157 if (const auto *C = dyn_cast<Constant>(Ops[2]))
13158 if (C->isAllOnesValue())
13159 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13160
13161 Intrinsic::ID IID;
13162 switch (BuiltinID) {
13163 default: llvm_unreachable("Unsupported intrinsic!");
13164 case X86::BI__builtin_ia32_pmovdb512_mask:
13165 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13166 break;
13167 case X86::BI__builtin_ia32_pmovdw512_mask:
13168 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13169 break;
13170 case X86::BI__builtin_ia32_pmovqw512_mask:
13171 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13172 break;
13173 }
13174
13175 Function *Intr = CGM.getIntrinsic(IID);
13176 return Builder.CreateCall(Intr, Ops);
13177 }
13178 case X86::BI__builtin_ia32_pblendw128:
13179 case X86::BI__builtin_ia32_blendpd:
13180 case X86::BI__builtin_ia32_blendps:
13181 case X86::BI__builtin_ia32_blendpd256:
13182 case X86::BI__builtin_ia32_blendps256:
13183 case X86::BI__builtin_ia32_pblendw256:
13184 case X86::BI__builtin_ia32_pblendd128:
13185 case X86::BI__builtin_ia32_pblendd256: {
13186 unsigned NumElts =
13187 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13188 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13189
13190 int Indices[16];
13191 // If there are more than 8 elements, the immediate is used twice so make
13192 // sure we handle that.
13193 for (unsigned i = 0; i != NumElts; ++i)
13194 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13195
13196 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13197 makeArrayRef(Indices, NumElts),
13198 "blend");
13199 }
13200 case X86::BI__builtin_ia32_pshuflw:
13201 case X86::BI__builtin_ia32_pshuflw256:
13202 case X86::BI__builtin_ia32_pshuflw512: {
13203 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13204 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13205 unsigned NumElts = Ty->getNumElements();
13206
13207 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13208 Imm = (Imm & 0xff) * 0x01010101;
13209
13210 int Indices[32];
13211 for (unsigned l = 0; l != NumElts; l += 8) {
13212 for (unsigned i = 0; i != 4; ++i) {
13213 Indices[l + i] = l + (Imm & 3);
13214 Imm >>= 2;
13215 }
13216 for (unsigned i = 4; i != 8; ++i)
13217 Indices[l + i] = l + i;
13218 }
13219
13220 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13221 "pshuflw");
13222 }
13223 case X86::BI__builtin_ia32_pshufhw:
13224 case X86::BI__builtin_ia32_pshufhw256:
13225 case X86::BI__builtin_ia32_pshufhw512: {
13226 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13227 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13228 unsigned NumElts = Ty->getNumElements();
13229
13230 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13231 Imm = (Imm & 0xff) * 0x01010101;
13232
13233 int Indices[32];
13234 for (unsigned l = 0; l != NumElts; l += 8) {
13235 for (unsigned i = 0; i != 4; ++i)
13236 Indices[l + i] = l + i;
13237 for (unsigned i = 4; i != 8; ++i) {
13238 Indices[l + i] = l + 4 + (Imm & 3);
13239 Imm >>= 2;
13240 }
13241 }
13242
13243 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13244 "pshufhw");
13245 }
13246 case X86::BI__builtin_ia32_pshufd:
13247 case X86::BI__builtin_ia32_pshufd256:
13248 case X86::BI__builtin_ia32_pshufd512:
13249 case X86::BI__builtin_ia32_vpermilpd:
13250 case X86::BI__builtin_ia32_vpermilps:
13251 case X86::BI__builtin_ia32_vpermilpd256:
13252 case X86::BI__builtin_ia32_vpermilps256:
13253 case X86::BI__builtin_ia32_vpermilpd512:
13254 case X86::BI__builtin_ia32_vpermilps512: {
13255 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13256 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13257 unsigned NumElts = Ty->getNumElements();
13258 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13259 unsigned NumLaneElts = NumElts / NumLanes;
13260
13261 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13262 Imm = (Imm & 0xff) * 0x01010101;
13263
13264 int Indices[16];
13265 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13266 for (unsigned i = 0; i != NumLaneElts; ++i) {
13267 Indices[i + l] = (Imm % NumLaneElts) + l;
13268 Imm /= NumLaneElts;
13269 }
13270 }
13271
13272 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13273 "permil");
13274 }
13275 case X86::BI__builtin_ia32_shufpd:
13276 case X86::BI__builtin_ia32_shufpd256:
13277 case X86::BI__builtin_ia32_shufpd512:
13278 case X86::BI__builtin_ia32_shufps:
13279 case X86::BI__builtin_ia32_shufps256:
13280 case X86::BI__builtin_ia32_shufps512: {
13281 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13282 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13283 unsigned NumElts = Ty->getNumElements();
13284 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13285 unsigned NumLaneElts = NumElts / NumLanes;
13286
13287 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13288 Imm = (Imm & 0xff) * 0x01010101;
13289
13290 int Indices[16];
13291 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13292 for (unsigned i = 0; i != NumLaneElts; ++i) {
13293 unsigned Index = Imm % NumLaneElts;
13294 Imm /= NumLaneElts;
13295 if (i >= (NumLaneElts / 2))
13296 Index += NumElts;
13297 Indices[l + i] = l + Index;
13298 }
13299 }
13300
13301 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13302 makeArrayRef(Indices, NumElts),
13303 "shufp");
13304 }
13305 case X86::BI__builtin_ia32_permdi256:
13306 case X86::BI__builtin_ia32_permdf256:
13307 case X86::BI__builtin_ia32_permdi512:
13308 case X86::BI__builtin_ia32_permdf512: {
13309 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13310 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13311 unsigned NumElts = Ty->getNumElements();
13312
13313 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13314 int Indices[8];
13315 for (unsigned l = 0; l != NumElts; l += 4)
13316 for (unsigned i = 0; i != 4; ++i)
13317 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13318
13319 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13320 "perm");
13321 }
13322 case X86::BI__builtin_ia32_palignr128:
13323 case X86::BI__builtin_ia32_palignr256:
13324 case X86::BI__builtin_ia32_palignr512: {
13325 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13326
13327 unsigned NumElts =
13328 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13329 assert(NumElts % 16 == 0);
13330
13331 // If palignr is shifting the pair of vectors more than the size of two
13332 // lanes, emit zero.
13333 if (ShiftVal >= 32)
13334 return llvm::Constant::getNullValue(ConvertType(E->getType()));
13335
13336 // If palignr is shifting the pair of input vectors more than one lane,
13337 // but less than two lanes, convert to shifting in zeroes.
13338 if (ShiftVal > 16) {
13339 ShiftVal -= 16;
13340 Ops[1] = Ops[0];
13341 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13342 }
13343
13344 int Indices[64];
13345 // 256-bit palignr operates on 128-bit lanes so we need to handle that
13346 for (unsigned l = 0; l != NumElts; l += 16) {
13347 for (unsigned i = 0; i != 16; ++i) {
13348 unsigned Idx = ShiftVal + i;
13349 if (Idx >= 16)
13350 Idx += NumElts - 16; // End of lane, switch operand.
13351 Indices[l + i] = Idx + l;
13352 }
13353 }
13354
13355 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13356 makeArrayRef(Indices, NumElts),
13357 "palignr");
13358 }
13359 case X86::BI__builtin_ia32_alignd128:
13360 case X86::BI__builtin_ia32_alignd256:
13361 case X86::BI__builtin_ia32_alignd512:
13362 case X86::BI__builtin_ia32_alignq128:
13363 case X86::BI__builtin_ia32_alignq256:
13364 case X86::BI__builtin_ia32_alignq512: {
13365 unsigned NumElts =
13366 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13367 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13368
13369 // Mask the shift amount to width of two vectors.
13370 ShiftVal &= (2 * NumElts) - 1;
13371
13372 int Indices[16];
13373 for (unsigned i = 0; i != NumElts; ++i)
13374 Indices[i] = i + ShiftVal;
13375
13376 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13377 makeArrayRef(Indices, NumElts),
13378 "valign");
13379 }
13380 case X86::BI__builtin_ia32_shuf_f32x4_256:
13381 case X86::BI__builtin_ia32_shuf_f64x2_256:
13382 case X86::BI__builtin_ia32_shuf_i32x4_256:
13383 case X86::BI__builtin_ia32_shuf_i64x2_256:
13384 case X86::BI__builtin_ia32_shuf_f32x4:
13385 case X86::BI__builtin_ia32_shuf_f64x2:
13386 case X86::BI__builtin_ia32_shuf_i32x4:
13387 case X86::BI__builtin_ia32_shuf_i64x2: {
13388 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13389 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13390 unsigned NumElts = Ty->getNumElements();
13391 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13392 unsigned NumLaneElts = NumElts / NumLanes;
13393
13394 int Indices[16];
13395 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13396 unsigned Index = (Imm % NumLanes) * NumLaneElts;
13397 Imm /= NumLanes; // Discard the bits we just used.
13398 if (l >= (NumElts / 2))
13399 Index += NumElts; // Switch to other source.
13400 for (unsigned i = 0; i != NumLaneElts; ++i) {
13401 Indices[l + i] = Index + i;
13402 }
13403 }
13404
13405 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13406 makeArrayRef(Indices, NumElts),
13407 "shuf");
13408 }
13409
13410 case X86::BI__builtin_ia32_vperm2f128_pd256:
13411 case X86::BI__builtin_ia32_vperm2f128_ps256:
13412 case X86::BI__builtin_ia32_vperm2f128_si256:
13413 case X86::BI__builtin_ia32_permti256: {
13414 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13415 unsigned NumElts =
13416 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13417
13418 // This takes a very simple approach since there are two lanes and a
13419 // shuffle can have 2 inputs. So we reserve the first input for the first
13420 // lane and the second input for the second lane. This may result in
13421 // duplicate sources, but this can be dealt with in the backend.
13422
13423 Value *OutOps[2];
13424 int Indices[8];
13425 for (unsigned l = 0; l != 2; ++l) {
13426 // Determine the source for this lane.
13427 if (Imm & (1 << ((l * 4) + 3)))
13428 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13429 else if (Imm & (1 << ((l * 4) + 1)))
13430 OutOps[l] = Ops[1];
13431 else
13432 OutOps[l] = Ops[0];
13433
13434 for (unsigned i = 0; i != NumElts/2; ++i) {
13435 // Start with ith element of the source for this lane.
13436 unsigned Idx = (l * NumElts) + i;
13437 // If bit 0 of the immediate half is set, switch to the high half of
13438 // the source.
13439 if (Imm & (1 << (l * 4)))
13440 Idx += NumElts/2;
13441 Indices[(l * (NumElts/2)) + i] = Idx;
13442 }
13443 }
13444
13445 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13446 makeArrayRef(Indices, NumElts),
13447 "vperm");
13448 }
13449
13450 case X86::BI__builtin_ia32_pslldqi128_byteshift:
13451 case X86::BI__builtin_ia32_pslldqi256_byteshift:
13452 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13453 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13454 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13455 // Builtin type is vXi64 so multiply by 8 to get bytes.
13456 unsigned NumElts = ResultType->getNumElements() * 8;
13457
13458 // If pslldq is shifting the vector more than 15 bytes, emit zero.
13459 if (ShiftVal >= 16)
13460 return llvm::Constant::getNullValue(ResultType);
13461
13462 int Indices[64];
13463 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13464 for (unsigned l = 0; l != NumElts; l += 16) {
13465 for (unsigned i = 0; i != 16; ++i) {
13466 unsigned Idx = NumElts + i - ShiftVal;
13467 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13468 Indices[l + i] = Idx + l;
13469 }
13470 }
13471
13472 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13473 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13474 Value *Zero = llvm::Constant::getNullValue(VecTy);
13475 Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13476 makeArrayRef(Indices, NumElts),
13477 "pslldq");
13478 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13479 }
13480 case X86::BI__builtin_ia32_psrldqi128_byteshift:
13481 case X86::BI__builtin_ia32_psrldqi256_byteshift:
13482 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13483 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13484 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13485 // Builtin type is vXi64 so multiply by 8 to get bytes.
13486 unsigned NumElts = ResultType->getNumElements() * 8;
13487
13488 // If psrldq is shifting the vector more than 15 bytes, emit zero.
13489 if (ShiftVal >= 16)
13490 return llvm::Constant::getNullValue(ResultType);
13491
13492 int Indices[64];
13493 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13494 for (unsigned l = 0; l != NumElts; l += 16) {
13495 for (unsigned i = 0; i != 16; ++i) {
13496 unsigned Idx = i + ShiftVal;
13497 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13498 Indices[l + i] = Idx + l;
13499 }
13500 }
13501
13502 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13503 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13504 Value *Zero = llvm::Constant::getNullValue(VecTy);
13505 Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13506 makeArrayRef(Indices, NumElts),
13507 "psrldq");
13508 return Builder.CreateBitCast(SV, ResultType, "cast");
13509 }
13510 case X86::BI__builtin_ia32_kshiftliqi:
13511 case X86::BI__builtin_ia32_kshiftlihi:
13512 case X86::BI__builtin_ia32_kshiftlisi:
13513 case X86::BI__builtin_ia32_kshiftlidi: {
13514 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13515 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13516
13517 if (ShiftVal >= NumElts)
13518 return llvm::Constant::getNullValue(Ops[0]->getType());
13519
13520 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13521
13522 int Indices[64];
13523 for (unsigned i = 0; i != NumElts; ++i)
13524 Indices[i] = NumElts + i - ShiftVal;
13525
13526 Value *Zero = llvm::Constant::getNullValue(In->getType());
13527 Value *SV = Builder.CreateShuffleVector(Zero, In,
13528 makeArrayRef(Indices, NumElts),
13529 "kshiftl");
13530 return Builder.CreateBitCast(SV, Ops[0]->getType());
13531 }
13532 case X86::BI__builtin_ia32_kshiftriqi:
13533 case X86::BI__builtin_ia32_kshiftrihi:
13534 case X86::BI__builtin_ia32_kshiftrisi:
13535 case X86::BI__builtin_ia32_kshiftridi: {
13536 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13537 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13538
13539 if (ShiftVal >= NumElts)
13540 return llvm::Constant::getNullValue(Ops[0]->getType());
13541
13542 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13543
13544 int Indices[64];
13545 for (unsigned i = 0; i != NumElts; ++i)
13546 Indices[i] = i + ShiftVal;
13547
13548 Value *Zero = llvm::Constant::getNullValue(In->getType());
13549 Value *SV = Builder.CreateShuffleVector(In, Zero,
13550 makeArrayRef(Indices, NumElts),
13551 "kshiftr");
13552 return Builder.CreateBitCast(SV, Ops[0]->getType());
13553 }
13554 case X86::BI__builtin_ia32_movnti:
13555 case X86::BI__builtin_ia32_movnti64:
13556 case X86::BI__builtin_ia32_movntsd:
13557 case X86::BI__builtin_ia32_movntss: {
13558 llvm::MDNode *Node = llvm::MDNode::get(
13559 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13560
13561 Value *Ptr = Ops[0];
13562 Value *Src = Ops[1];
13563
13564 // Extract the 0'th element of the source vector.
13565 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13566 BuiltinID == X86::BI__builtin_ia32_movntss)
13567 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13568
13569 // Convert the type of the pointer to a pointer to the stored type.
13570 Value *BC = Builder.CreateBitCast(
13571 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13572
13573 // Unaligned nontemporal store of the scalar value.
13574 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13575 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13576 SI->setAlignment(llvm::Align(1));
13577 return SI;
13578 }
13579 // Rotate is a special case of funnel shift - 1st 2 args are the same.
13580 case X86::BI__builtin_ia32_vprotb:
13581 case X86::BI__builtin_ia32_vprotw:
13582 case X86::BI__builtin_ia32_vprotd:
13583 case X86::BI__builtin_ia32_vprotq:
13584 case X86::BI__builtin_ia32_vprotbi:
13585 case X86::BI__builtin_ia32_vprotwi:
13586 case X86::BI__builtin_ia32_vprotdi:
13587 case X86::BI__builtin_ia32_vprotqi:
13588 case X86::BI__builtin_ia32_prold128:
13589 case X86::BI__builtin_ia32_prold256:
13590 case X86::BI__builtin_ia32_prold512:
13591 case X86::BI__builtin_ia32_prolq128:
13592 case X86::BI__builtin_ia32_prolq256:
13593 case X86::BI__builtin_ia32_prolq512:
13594 case X86::BI__builtin_ia32_prolvd128:
13595 case X86::BI__builtin_ia32_prolvd256:
13596 case X86::BI__builtin_ia32_prolvd512:
13597 case X86::BI__builtin_ia32_prolvq128:
13598 case X86::BI__builtin_ia32_prolvq256:
13599 case X86::BI__builtin_ia32_prolvq512:
13600 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13601 case X86::BI__builtin_ia32_prord128:
13602 case X86::BI__builtin_ia32_prord256:
13603 case X86::BI__builtin_ia32_prord512:
13604 case X86::BI__builtin_ia32_prorq128:
13605 case X86::BI__builtin_ia32_prorq256:
13606 case X86::BI__builtin_ia32_prorq512:
13607 case X86::BI__builtin_ia32_prorvd128:
13608 case X86::BI__builtin_ia32_prorvd256:
13609 case X86::BI__builtin_ia32_prorvd512:
13610 case X86::BI__builtin_ia32_prorvq128:
13611 case X86::BI__builtin_ia32_prorvq256:
13612 case X86::BI__builtin_ia32_prorvq512:
13613 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13614 case X86::BI__builtin_ia32_selectb_128:
13615 case X86::BI__builtin_ia32_selectb_256:
13616 case X86::BI__builtin_ia32_selectb_512:
13617 case X86::BI__builtin_ia32_selectw_128:
13618 case X86::BI__builtin_ia32_selectw_256:
13619 case X86::BI__builtin_ia32_selectw_512:
13620 case X86::BI__builtin_ia32_selectd_128:
13621 case X86::BI__builtin_ia32_selectd_256:
13622 case X86::BI__builtin_ia32_selectd_512:
13623 case X86::BI__builtin_ia32_selectq_128:
13624 case X86::BI__builtin_ia32_selectq_256:
13625 case X86::BI__builtin_ia32_selectq_512:
13626 case X86::BI__builtin_ia32_selectps_128:
13627 case X86::BI__builtin_ia32_selectps_256:
13628 case X86::BI__builtin_ia32_selectps_512:
13629 case X86::BI__builtin_ia32_selectpd_128:
13630 case X86::BI__builtin_ia32_selectpd_256:
13631 case X86::BI__builtin_ia32_selectpd_512:
13632 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13633 case X86::BI__builtin_ia32_selectss_128:
13634 case X86::BI__builtin_ia32_selectsd_128: {
13635 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13636 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13637 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13638 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13639 }
13640 case X86::BI__builtin_ia32_cmpb128_mask:
13641 case X86::BI__builtin_ia32_cmpb256_mask:
13642 case X86::BI__builtin_ia32_cmpb512_mask:
13643 case X86::BI__builtin_ia32_cmpw128_mask:
13644 case X86::BI__builtin_ia32_cmpw256_mask:
13645 case X86::BI__builtin_ia32_cmpw512_mask:
13646 case X86::BI__builtin_ia32_cmpd128_mask:
13647 case X86::BI__builtin_ia32_cmpd256_mask:
13648 case X86::BI__builtin_ia32_cmpd512_mask:
13649 case X86::BI__builtin_ia32_cmpq128_mask:
13650 case X86::BI__builtin_ia32_cmpq256_mask:
13651 case X86::BI__builtin_ia32_cmpq512_mask: {
13652 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13653 return EmitX86MaskedCompare(*this, CC, true, Ops);
13654 }
13655 case X86::BI__builtin_ia32_ucmpb128_mask:
13656 case X86::BI__builtin_ia32_ucmpb256_mask:
13657 case X86::BI__builtin_ia32_ucmpb512_mask:
13658 case X86::BI__builtin_ia32_ucmpw128_mask:
13659 case X86::BI__builtin_ia32_ucmpw256_mask:
13660 case X86::BI__builtin_ia32_ucmpw512_mask:
13661 case X86::BI__builtin_ia32_ucmpd128_mask:
13662 case X86::BI__builtin_ia32_ucmpd256_mask:
13663 case X86::BI__builtin_ia32_ucmpd512_mask:
13664 case X86::BI__builtin_ia32_ucmpq128_mask:
13665 case X86::BI__builtin_ia32_ucmpq256_mask:
13666 case X86::BI__builtin_ia32_ucmpq512_mask: {
13667 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13668 return EmitX86MaskedCompare(*this, CC, false, Ops);
13669 }
13670 case X86::BI__builtin_ia32_vpcomb:
13671 case X86::BI__builtin_ia32_vpcomw:
13672 case X86::BI__builtin_ia32_vpcomd:
13673 case X86::BI__builtin_ia32_vpcomq:
13674 return EmitX86vpcom(*this, Ops, true);
13675 case X86::BI__builtin_ia32_vpcomub:
13676 case X86::BI__builtin_ia32_vpcomuw:
13677 case X86::BI__builtin_ia32_vpcomud:
13678 case X86::BI__builtin_ia32_vpcomuq:
13679 return EmitX86vpcom(*this, Ops, false);
13680
13681 case X86::BI__builtin_ia32_kortestcqi:
13682 case X86::BI__builtin_ia32_kortestchi:
13683 case X86::BI__builtin_ia32_kortestcsi:
13684 case X86::BI__builtin_ia32_kortestcdi: {
13685 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13686 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13687 Value *Cmp = Builder.CreateICmpEQ(Or, C);
13688 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13689 }
13690 case X86::BI__builtin_ia32_kortestzqi:
13691 case X86::BI__builtin_ia32_kortestzhi:
13692 case X86::BI__builtin_ia32_kortestzsi:
13693 case X86::BI__builtin_ia32_kortestzdi: {
13694 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13695 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13696 Value *Cmp = Builder.CreateICmpEQ(Or, C);
13697 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13698 }
13699
13700 case X86::BI__builtin_ia32_ktestcqi:
13701 case X86::BI__builtin_ia32_ktestzqi:
13702 case X86::BI__builtin_ia32_ktestchi:
13703 case X86::BI__builtin_ia32_ktestzhi:
13704 case X86::BI__builtin_ia32_ktestcsi:
13705 case X86::BI__builtin_ia32_ktestzsi:
13706 case X86::BI__builtin_ia32_ktestcdi:
13707 case X86::BI__builtin_ia32_ktestzdi: {
13708 Intrinsic::ID IID;
13709 switch (BuiltinID) {
13710 default: llvm_unreachable("Unsupported intrinsic!");
13711 case X86::BI__builtin_ia32_ktestcqi:
13712 IID = Intrinsic::x86_avx512_ktestc_b;
13713 break;
13714 case X86::BI__builtin_ia32_ktestzqi:
13715 IID = Intrinsic::x86_avx512_ktestz_b;
13716 break;
13717 case X86::BI__builtin_ia32_ktestchi:
13718 IID = Intrinsic::x86_avx512_ktestc_w;
13719 break;
13720 case X86::BI__builtin_ia32_ktestzhi:
13721 IID = Intrinsic::x86_avx512_ktestz_w;
13722 break;
13723 case X86::BI__builtin_ia32_ktestcsi:
13724 IID = Intrinsic::x86_avx512_ktestc_d;
13725 break;
13726 case X86::BI__builtin_ia32_ktestzsi:
13727 IID = Intrinsic::x86_avx512_ktestz_d;
13728 break;
13729 case X86::BI__builtin_ia32_ktestcdi:
13730 IID = Intrinsic::x86_avx512_ktestc_q;
13731 break;
13732 case X86::BI__builtin_ia32_ktestzdi:
13733 IID = Intrinsic::x86_avx512_ktestz_q;
13734 break;
13735 }
13736
13737 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13738 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13739 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13740 Function *Intr = CGM.getIntrinsic(IID);
13741 return Builder.CreateCall(Intr, {LHS, RHS});
13742 }
13743
13744 case X86::BI__builtin_ia32_kaddqi:
13745 case X86::BI__builtin_ia32_kaddhi:
13746 case X86::BI__builtin_ia32_kaddsi:
13747 case X86::BI__builtin_ia32_kadddi: {
13748 Intrinsic::ID IID;
13749 switch (BuiltinID) {
13750 default: llvm_unreachable("Unsupported intrinsic!");
13751 case X86::BI__builtin_ia32_kaddqi:
13752 IID = Intrinsic::x86_avx512_kadd_b;
13753 break;
13754 case X86::BI__builtin_ia32_kaddhi:
13755 IID = Intrinsic::x86_avx512_kadd_w;
13756 break;
13757 case X86::BI__builtin_ia32_kaddsi:
13758 IID = Intrinsic::x86_avx512_kadd_d;
13759 break;
13760 case X86::BI__builtin_ia32_kadddi:
13761 IID = Intrinsic::x86_avx512_kadd_q;
13762 break;
13763 }
13764
13765 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13766 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13767 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13768 Function *Intr = CGM.getIntrinsic(IID);
13769 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13770 return Builder.CreateBitCast(Res, Ops[0]->getType());
13771 }
13772 case X86::BI__builtin_ia32_kandqi:
13773 case X86::BI__builtin_ia32_kandhi:
13774 case X86::BI__builtin_ia32_kandsi:
13775 case X86::BI__builtin_ia32_kanddi:
13776 return EmitX86MaskLogic(*this, Instruction::And, Ops);
13777 case X86::BI__builtin_ia32_kandnqi:
13778 case X86::BI__builtin_ia32_kandnhi:
13779 case X86::BI__builtin_ia32_kandnsi:
13780 case X86::BI__builtin_ia32_kandndi:
13781 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13782 case X86::BI__builtin_ia32_korqi:
13783 case X86::BI__builtin_ia32_korhi:
13784 case X86::BI__builtin_ia32_korsi:
13785 case X86::BI__builtin_ia32_kordi:
13786 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13787 case X86::BI__builtin_ia32_kxnorqi:
13788 case X86::BI__builtin_ia32_kxnorhi:
13789 case X86::BI__builtin_ia32_kxnorsi:
13790 case X86::BI__builtin_ia32_kxnordi:
13791 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13792 case X86::BI__builtin_ia32_kxorqi:
13793 case X86::BI__builtin_ia32_kxorhi:
13794 case X86::BI__builtin_ia32_kxorsi:
13795 case X86::BI__builtin_ia32_kxordi:
13796 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
13797 case X86::BI__builtin_ia32_knotqi:
13798 case X86::BI__builtin_ia32_knothi:
13799 case X86::BI__builtin_ia32_knotsi:
13800 case X86::BI__builtin_ia32_knotdi: {
13801 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13802 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13803 return Builder.CreateBitCast(Builder.CreateNot(Res),
13804 Ops[0]->getType());
13805 }
13806 case X86::BI__builtin_ia32_kmovb:
13807 case X86::BI__builtin_ia32_kmovw:
13808 case X86::BI__builtin_ia32_kmovd:
13809 case X86::BI__builtin_ia32_kmovq: {
13810 // Bitcast to vXi1 type and then back to integer. This gets the mask
13811 // register type into the IR, but might be optimized out depending on
13812 // what's around it.
13813 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13814 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13815 return Builder.CreateBitCast(Res, Ops[0]->getType());
13816 }
13817
13818 case X86::BI__builtin_ia32_kunpckdi:
13819 case X86::BI__builtin_ia32_kunpcksi:
13820 case X86::BI__builtin_ia32_kunpckhi: {
13821 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13822 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13823 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13824 int Indices[64];
13825 for (unsigned i = 0; i != NumElts; ++i)
13826 Indices[i] = i;
13827
13828 // First extract half of each vector. This gives better codegen than
13829 // doing it in a single shuffle.
13830 LHS = Builder.CreateShuffleVector(LHS, LHS,
13831 makeArrayRef(Indices, NumElts / 2));
13832 RHS = Builder.CreateShuffleVector(RHS, RHS,
13833 makeArrayRef(Indices, NumElts / 2));
13834 // Concat the vectors.
13835 // NOTE: Operands are swapped to match the intrinsic definition.
13836 Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13837 makeArrayRef(Indices, NumElts));
13838 return Builder.CreateBitCast(Res, Ops[0]->getType());
13839 }
13840
13841 case X86::BI__builtin_ia32_vplzcntd_128:
13842 case X86::BI__builtin_ia32_vplzcntd_256:
13843 case X86::BI__builtin_ia32_vplzcntd_512:
13844 case X86::BI__builtin_ia32_vplzcntq_128:
13845 case X86::BI__builtin_ia32_vplzcntq_256:
13846 case X86::BI__builtin_ia32_vplzcntq_512: {
13847 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13848 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13849 }
13850 case X86::BI__builtin_ia32_sqrtss:
13851 case X86::BI__builtin_ia32_sqrtsd: {
13852 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13853 Function *F;
13854 if (Builder.getIsFPConstrained()) {
13855 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13856 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13857 A->getType());
13858 A = Builder.CreateConstrainedFPCall(F, {A});
13859 } else {
13860 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13861 A = Builder.CreateCall(F, {A});
13862 }
13863 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13864 }
13865 case X86::BI__builtin_ia32_sqrtsd_round_mask:
13866 case X86::BI__builtin_ia32_sqrtss_round_mask: {
13867 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13868 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13869 // otherwise keep the intrinsic.
13870 if (CC != 4) {
13871 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13872 Intrinsic::x86_avx512_mask_sqrt_sd :
13873 Intrinsic::x86_avx512_mask_sqrt_ss;
13874 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13875 }
13876 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13877 Function *F;
13878 if (Builder.getIsFPConstrained()) {
13879 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13880 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13881 A->getType());
13882 A = Builder.CreateConstrainedFPCall(F, A);
13883 } else {
13884 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13885 A = Builder.CreateCall(F, A);
13886 }
13887 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13888 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13889 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13890 }
13891 case X86::BI__builtin_ia32_sqrtpd256:
13892 case X86::BI__builtin_ia32_sqrtpd:
13893 case X86::BI__builtin_ia32_sqrtps256:
13894 case X86::BI__builtin_ia32_sqrtps:
13895 case X86::BI__builtin_ia32_sqrtps512:
13896 case X86::BI__builtin_ia32_sqrtpd512: {
13897 if (Ops.size() == 2) {
13898 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13899 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13900 // otherwise keep the intrinsic.
13901 if (CC != 4) {
13902 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
13903 Intrinsic::x86_avx512_sqrt_ps_512 :
13904 Intrinsic::x86_avx512_sqrt_pd_512;
13905 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13906 }
13907 }
13908 if (Builder.getIsFPConstrained()) {
13909 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13910 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13911 Ops[0]->getType());
13912 return Builder.CreateConstrainedFPCall(F, Ops[0]);
13913 } else {
13914 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
13915 return Builder.CreateCall(F, Ops[0]);
13916 }
13917 }
13918 case X86::BI__builtin_ia32_pabsb128:
13919 case X86::BI__builtin_ia32_pabsw128:
13920 case X86::BI__builtin_ia32_pabsd128:
13921 case X86::BI__builtin_ia32_pabsb256:
13922 case X86::BI__builtin_ia32_pabsw256:
13923 case X86::BI__builtin_ia32_pabsd256:
13924 case X86::BI__builtin_ia32_pabsq128:
13925 case X86::BI__builtin_ia32_pabsq256:
13926 case X86::BI__builtin_ia32_pabsb512:
13927 case X86::BI__builtin_ia32_pabsw512:
13928 case X86::BI__builtin_ia32_pabsd512:
13929 case X86::BI__builtin_ia32_pabsq512: {
13930 Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType());
13931 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13932 }
13933 case X86::BI__builtin_ia32_pmaxsb128:
13934 case X86::BI__builtin_ia32_pmaxsw128:
13935 case X86::BI__builtin_ia32_pmaxsd128:
13936 case X86::BI__builtin_ia32_pmaxsq128:
13937 case X86::BI__builtin_ia32_pmaxsb256:
13938 case X86::BI__builtin_ia32_pmaxsw256:
13939 case X86::BI__builtin_ia32_pmaxsd256:
13940 case X86::BI__builtin_ia32_pmaxsq256:
13941 case X86::BI__builtin_ia32_pmaxsb512:
13942 case X86::BI__builtin_ia32_pmaxsw512:
13943 case X86::BI__builtin_ia32_pmaxsd512:
13944 case X86::BI__builtin_ia32_pmaxsq512:
13945 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax);
13946 case X86::BI__builtin_ia32_pmaxub128:
13947 case X86::BI__builtin_ia32_pmaxuw128:
13948 case X86::BI__builtin_ia32_pmaxud128:
13949 case X86::BI__builtin_ia32_pmaxuq128:
13950 case X86::BI__builtin_ia32_pmaxub256:
13951 case X86::BI__builtin_ia32_pmaxuw256:
13952 case X86::BI__builtin_ia32_pmaxud256:
13953 case X86::BI__builtin_ia32_pmaxuq256:
13954 case X86::BI__builtin_ia32_pmaxub512:
13955 case X86::BI__builtin_ia32_pmaxuw512:
13956 case X86::BI__builtin_ia32_pmaxud512:
13957 case X86::BI__builtin_ia32_pmaxuq512:
13958 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax);
13959 case X86::BI__builtin_ia32_pminsb128:
13960 case X86::BI__builtin_ia32_pminsw128:
13961 case X86::BI__builtin_ia32_pminsd128:
13962 case X86::BI__builtin_ia32_pminsq128:
13963 case X86::BI__builtin_ia32_pminsb256:
13964 case X86::BI__builtin_ia32_pminsw256:
13965 case X86::BI__builtin_ia32_pminsd256:
13966 case X86::BI__builtin_ia32_pminsq256:
13967 case X86::BI__builtin_ia32_pminsb512:
13968 case X86::BI__builtin_ia32_pminsw512:
13969 case X86::BI__builtin_ia32_pminsd512:
13970 case X86::BI__builtin_ia32_pminsq512:
13971 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin);
13972 case X86::BI__builtin_ia32_pminub128:
13973 case X86::BI__builtin_ia32_pminuw128:
13974 case X86::BI__builtin_ia32_pminud128:
13975 case X86::BI__builtin_ia32_pminuq128:
13976 case X86::BI__builtin_ia32_pminub256:
13977 case X86::BI__builtin_ia32_pminuw256:
13978 case X86::BI__builtin_ia32_pminud256:
13979 case X86::BI__builtin_ia32_pminuq256:
13980 case X86::BI__builtin_ia32_pminub512:
13981 case X86::BI__builtin_ia32_pminuw512:
13982 case X86::BI__builtin_ia32_pminud512:
13983 case X86::BI__builtin_ia32_pminuq512:
13984 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin);
13985
13986 case X86::BI__builtin_ia32_pmuludq128:
13987 case X86::BI__builtin_ia32_pmuludq256:
13988 case X86::BI__builtin_ia32_pmuludq512:
13989 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
13990
13991 case X86::BI__builtin_ia32_pmuldq128:
13992 case X86::BI__builtin_ia32_pmuldq256:
13993 case X86::BI__builtin_ia32_pmuldq512:
13994 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
13995
13996 case X86::BI__builtin_ia32_pternlogd512_mask:
13997 case X86::BI__builtin_ia32_pternlogq512_mask:
13998 case X86::BI__builtin_ia32_pternlogd128_mask:
13999 case X86::BI__builtin_ia32_pternlogd256_mask:
14000 case X86::BI__builtin_ia32_pternlogq128_mask:
14001 case X86::BI__builtin_ia32_pternlogq256_mask:
14002 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14003
14004 case X86::BI__builtin_ia32_pternlogd512_maskz:
14005 case X86::BI__builtin_ia32_pternlogq512_maskz:
14006 case X86::BI__builtin_ia32_pternlogd128_maskz:
14007 case X86::BI__builtin_ia32_pternlogd256_maskz:
14008 case X86::BI__builtin_ia32_pternlogq128_maskz:
14009 case X86::BI__builtin_ia32_pternlogq256_maskz:
14010 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14011
14012 case X86::BI__builtin_ia32_vpshldd128:
14013 case X86::BI__builtin_ia32_vpshldd256:
14014 case X86::BI__builtin_ia32_vpshldd512:
14015 case X86::BI__builtin_ia32_vpshldq128:
14016 case X86::BI__builtin_ia32_vpshldq256:
14017 case X86::BI__builtin_ia32_vpshldq512:
14018 case X86::BI__builtin_ia32_vpshldw128:
14019 case X86::BI__builtin_ia32_vpshldw256:
14020 case X86::BI__builtin_ia32_vpshldw512:
14021 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14022
14023 case X86::BI__builtin_ia32_vpshrdd128:
14024 case X86::BI__builtin_ia32_vpshrdd256:
14025 case X86::BI__builtin_ia32_vpshrdd512:
14026 case X86::BI__builtin_ia32_vpshrdq128:
14027 case X86::BI__builtin_ia32_vpshrdq256:
14028 case X86::BI__builtin_ia32_vpshrdq512:
14029 case X86::BI__builtin_ia32_vpshrdw128:
14030 case X86::BI__builtin_ia32_vpshrdw256:
14031 case X86::BI__builtin_ia32_vpshrdw512:
14032 // Ops 0 and 1 are swapped.
14033 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14034
14035 case X86::BI__builtin_ia32_vpshldvd128:
14036 case X86::BI__builtin_ia32_vpshldvd256:
14037 case X86::BI__builtin_ia32_vpshldvd512:
14038 case X86::BI__builtin_ia32_vpshldvq128:
14039 case X86::BI__builtin_ia32_vpshldvq256:
14040 case X86::BI__builtin_ia32_vpshldvq512:
14041 case X86::BI__builtin_ia32_vpshldvw128:
14042 case X86::BI__builtin_ia32_vpshldvw256:
14043 case X86::BI__builtin_ia32_vpshldvw512:
14044 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14045
14046 case X86::BI__builtin_ia32_vpshrdvd128:
14047 case X86::BI__builtin_ia32_vpshrdvd256:
14048 case X86::BI__builtin_ia32_vpshrdvd512:
14049 case X86::BI__builtin_ia32_vpshrdvq128:
14050 case X86::BI__builtin_ia32_vpshrdvq256:
14051 case X86::BI__builtin_ia32_vpshrdvq512:
14052 case X86::BI__builtin_ia32_vpshrdvw128:
14053 case X86::BI__builtin_ia32_vpshrdvw256:
14054 case X86::BI__builtin_ia32_vpshrdvw512:
14055 // Ops 0 and 1 are swapped.
14056 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14057
14058 // Reductions
14059 case X86::BI__builtin_ia32_reduce_add_d512:
14060 case X86::BI__builtin_ia32_reduce_add_q512: {
14061 Function *F =
14062 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
14063 return Builder.CreateCall(F, {Ops[0]});
14064 }
14065 case X86::BI__builtin_ia32_reduce_and_d512:
14066 case X86::BI__builtin_ia32_reduce_and_q512: {
14067 Function *F =
14068 CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType());
14069 return Builder.CreateCall(F, {Ops[0]});
14070 }
14071 case X86::BI__builtin_ia32_reduce_fadd_pd512:
14072 case X86::BI__builtin_ia32_reduce_fadd_ps512: {
14073 Function *F =
14074 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14075 Builder.getFastMathFlags().setAllowReassoc();
14076 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14077 }
14078 case X86::BI__builtin_ia32_reduce_fmul_pd512:
14079 case X86::BI__builtin_ia32_reduce_fmul_ps512: {
14080 Function *F =
14081 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14082 Builder.getFastMathFlags().setAllowReassoc();
14083 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14084 }
14085 case X86::BI__builtin_ia32_reduce_fmax_pd512:
14086 case X86::BI__builtin_ia32_reduce_fmax_ps512: {
14087 Function *F =
14088 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14089 Builder.getFastMathFlags().setNoNaNs();
14090 return Builder.CreateCall(F, {Ops[0]});
14091 }
14092 case X86::BI__builtin_ia32_reduce_fmin_pd512:
14093 case X86::BI__builtin_ia32_reduce_fmin_ps512: {
14094 Function *F =
14095 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14096 Builder.getFastMathFlags().setNoNaNs();
14097 return Builder.CreateCall(F, {Ops[0]});
14098 }
14099 case X86::BI__builtin_ia32_reduce_mul_d512:
14100 case X86::BI__builtin_ia32_reduce_mul_q512: {
14101 Function *F =
14102 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
14103 return Builder.CreateCall(F, {Ops[0]});
14104 }
14105 case X86::BI__builtin_ia32_reduce_or_d512:
14106 case X86::BI__builtin_ia32_reduce_or_q512: {
14107 Function *F =
14108 CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType());
14109 return Builder.CreateCall(F, {Ops[0]});
14110 }
14111 case X86::BI__builtin_ia32_reduce_smax_d512:
14112 case X86::BI__builtin_ia32_reduce_smax_q512: {
14113 Function *F =
14114 CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType());
14115 return Builder.CreateCall(F, {Ops[0]});
14116 }
14117 case X86::BI__builtin_ia32_reduce_smin_d512:
14118 case X86::BI__builtin_ia32_reduce_smin_q512: {
14119 Function *F =
14120 CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType());
14121 return Builder.CreateCall(F, {Ops[0]});
14122 }
14123 case X86::BI__builtin_ia32_reduce_umax_d512:
14124 case X86::BI__builtin_ia32_reduce_umax_q512: {
14125 Function *F =
14126 CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType());
14127 return Builder.CreateCall(F, {Ops[0]});
14128 }
14129 case X86::BI__builtin_ia32_reduce_umin_d512:
14130 case X86::BI__builtin_ia32_reduce_umin_q512: {
14131 Function *F =
14132 CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType());
14133 return Builder.CreateCall(F, {Ops[0]});
14134 }
14135
14136 // 3DNow!
14137 case X86::BI__builtin_ia32_pswapdsf:
14138 case X86::BI__builtin_ia32_pswapdsi: {
14139 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14140 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14141 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14142 return Builder.CreateCall(F, Ops, "pswapd");
14143 }
14144 case X86::BI__builtin_ia32_rdrand16_step:
14145 case X86::BI__builtin_ia32_rdrand32_step:
14146 case X86::BI__builtin_ia32_rdrand64_step:
14147 case X86::BI__builtin_ia32_rdseed16_step:
14148 case X86::BI__builtin_ia32_rdseed32_step:
14149 case X86::BI__builtin_ia32_rdseed64_step: {
14150 Intrinsic::ID ID;
14151 switch (BuiltinID) {
14152 default: llvm_unreachable("Unsupported intrinsic!");
14153 case X86::BI__builtin_ia32_rdrand16_step:
14154 ID = Intrinsic::x86_rdrand_16;
14155 break;
14156 case X86::BI__builtin_ia32_rdrand32_step:
14157 ID = Intrinsic::x86_rdrand_32;
14158 break;
14159 case X86::BI__builtin_ia32_rdrand64_step:
14160 ID = Intrinsic::x86_rdrand_64;
14161 break;
14162 case X86::BI__builtin_ia32_rdseed16_step:
14163 ID = Intrinsic::x86_rdseed_16;
14164 break;
14165 case X86::BI__builtin_ia32_rdseed32_step:
14166 ID = Intrinsic::x86_rdseed_32;
14167 break;
14168 case X86::BI__builtin_ia32_rdseed64_step:
14169 ID = Intrinsic::x86_rdseed_64;
14170 break;
14171 }
14172
14173 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14174 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14175 Ops[0]);
14176 return Builder.CreateExtractValue(Call, 1);
14177 }
14178 case X86::BI__builtin_ia32_addcarryx_u32:
14179 case X86::BI__builtin_ia32_addcarryx_u64:
14180 case X86::BI__builtin_ia32_subborrow_u32:
14181 case X86::BI__builtin_ia32_subborrow_u64: {
14182 Intrinsic::ID IID;
14183 switch (BuiltinID) {
14184 default: llvm_unreachable("Unsupported intrinsic!");
14185 case X86::BI__builtin_ia32_addcarryx_u32:
14186 IID = Intrinsic::x86_addcarry_32;
14187 break;
14188 case X86::BI__builtin_ia32_addcarryx_u64:
14189 IID = Intrinsic::x86_addcarry_64;
14190 break;
14191 case X86::BI__builtin_ia32_subborrow_u32:
14192 IID = Intrinsic::x86_subborrow_32;
14193 break;
14194 case X86::BI__builtin_ia32_subborrow_u64:
14195 IID = Intrinsic::x86_subborrow_64;
14196 break;
14197 }
14198
14199 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14200 { Ops[0], Ops[1], Ops[2] });
14201 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14202 Ops[3]);
14203 return Builder.CreateExtractValue(Call, 0);
14204 }
14205
14206 case X86::BI__builtin_ia32_fpclassps128_mask:
14207 case X86::BI__builtin_ia32_fpclassps256_mask:
14208 case X86::BI__builtin_ia32_fpclassps512_mask:
14209 case X86::BI__builtin_ia32_fpclasspd128_mask:
14210 case X86::BI__builtin_ia32_fpclasspd256_mask:
14211 case X86::BI__builtin_ia32_fpclasspd512_mask: {
14212 unsigned NumElts =
14213 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14214 Value *MaskIn = Ops[2];
14215 Ops.erase(&Ops[2]);
14216
14217 Intrinsic::ID ID;
14218 switch (BuiltinID) {
14219 default: llvm_unreachable("Unsupported intrinsic!");
14220 case X86::BI__builtin_ia32_fpclassps128_mask:
14221 ID = Intrinsic::x86_avx512_fpclass_ps_128;
14222 break;
14223 case X86::BI__builtin_ia32_fpclassps256_mask:
14224 ID = Intrinsic::x86_avx512_fpclass_ps_256;
14225 break;
14226 case X86::BI__builtin_ia32_fpclassps512_mask:
14227 ID = Intrinsic::x86_avx512_fpclass_ps_512;
14228 break;
14229 case X86::BI__builtin_ia32_fpclasspd128_mask:
14230 ID = Intrinsic::x86_avx512_fpclass_pd_128;
14231 break;
14232 case X86::BI__builtin_ia32_fpclasspd256_mask:
14233 ID = Intrinsic::x86_avx512_fpclass_pd_256;
14234 break;
14235 case X86::BI__builtin_ia32_fpclasspd512_mask:
14236 ID = Intrinsic::x86_avx512_fpclass_pd_512;
14237 break;
14238 }
14239
14240 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14241 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14242 }
14243
14244 case X86::BI__builtin_ia32_vp2intersect_q_512:
14245 case X86::BI__builtin_ia32_vp2intersect_q_256:
14246 case X86::BI__builtin_ia32_vp2intersect_q_128:
14247 case X86::BI__builtin_ia32_vp2intersect_d_512:
14248 case X86::BI__builtin_ia32_vp2intersect_d_256:
14249 case X86::BI__builtin_ia32_vp2intersect_d_128: {
14250 unsigned NumElts =
14251 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14252 Intrinsic::ID ID;
14253
14254 switch (BuiltinID) {
14255 default: llvm_unreachable("Unsupported intrinsic!");
14256 case X86::BI__builtin_ia32_vp2intersect_q_512:
14257 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14258 break;
14259 case X86::BI__builtin_ia32_vp2intersect_q_256:
14260 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14261 break;
14262 case X86::BI__builtin_ia32_vp2intersect_q_128:
14263 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14264 break;
14265 case X86::BI__builtin_ia32_vp2intersect_d_512:
14266 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14267 break;
14268 case X86::BI__builtin_ia32_vp2intersect_d_256:
14269 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14270 break;
14271 case X86::BI__builtin_ia32_vp2intersect_d_128:
14272 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14273 break;
14274 }
14275
14276 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14277 Value *Result = Builder.CreateExtractValue(Call, 0);
14278 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14279 Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14280
14281 Result = Builder.CreateExtractValue(Call, 1);
14282 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14283 return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14284 }
14285
14286 case X86::BI__builtin_ia32_vpmultishiftqb128:
14287 case X86::BI__builtin_ia32_vpmultishiftqb256:
14288 case X86::BI__builtin_ia32_vpmultishiftqb512: {
14289 Intrinsic::ID ID;
14290 switch (BuiltinID) {
14291 default: llvm_unreachable("Unsupported intrinsic!");
14292 case X86::BI__builtin_ia32_vpmultishiftqb128:
14293 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14294 break;
14295 case X86::BI__builtin_ia32_vpmultishiftqb256:
14296 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14297 break;
14298 case X86::BI__builtin_ia32_vpmultishiftqb512:
14299 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14300 break;
14301 }
14302
14303 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14304 }
14305
14306 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14307 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14308 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14309 unsigned NumElts =
14310 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14311 Value *MaskIn = Ops[2];
14312 Ops.erase(&Ops[2]);
14313
14314 Intrinsic::ID ID;
14315 switch (BuiltinID) {
14316 default: llvm_unreachable("Unsupported intrinsic!");
14317 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14318 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14319 break;
14320 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14321 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14322 break;
14323 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14324 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14325 break;
14326 }
14327
14328 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14329 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14330 }
14331
14332 // packed comparison intrinsics
14333 case X86::BI__builtin_ia32_cmpeqps:
14334 case X86::BI__builtin_ia32_cmpeqpd:
14335 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14336 case X86::BI__builtin_ia32_cmpltps:
14337 case X86::BI__builtin_ia32_cmpltpd:
14338 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14339 case X86::BI__builtin_ia32_cmpleps:
14340 case X86::BI__builtin_ia32_cmplepd:
14341 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14342 case X86::BI__builtin_ia32_cmpunordps:
14343 case X86::BI__builtin_ia32_cmpunordpd:
14344 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14345 case X86::BI__builtin_ia32_cmpneqps:
14346 case X86::BI__builtin_ia32_cmpneqpd:
14347 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14348 case X86::BI__builtin_ia32_cmpnltps:
14349 case X86::BI__builtin_ia32_cmpnltpd:
14350 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14351 case X86::BI__builtin_ia32_cmpnleps:
14352 case X86::BI__builtin_ia32_cmpnlepd:
14353 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14354 case X86::BI__builtin_ia32_cmpordps:
14355 case X86::BI__builtin_ia32_cmpordpd:
14356 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14357 case X86::BI__builtin_ia32_cmpps128_mask:
14358 case X86::BI__builtin_ia32_cmpps256_mask:
14359 case X86::BI__builtin_ia32_cmpps512_mask:
14360 case X86::BI__builtin_ia32_cmppd128_mask:
14361 case X86::BI__builtin_ia32_cmppd256_mask:
14362 case X86::BI__builtin_ia32_cmppd512_mask:
14363 IsMaskFCmp = true;
14364 LLVM_FALLTHROUGH;
14365 case X86::BI__builtin_ia32_cmpps:
14366 case X86::BI__builtin_ia32_cmpps256:
14367 case X86::BI__builtin_ia32_cmppd:
14368 case X86::BI__builtin_ia32_cmppd256: {
14369 // Lowering vector comparisons to fcmp instructions, while
14370 // ignoring signalling behaviour requested
14371 // ignoring rounding mode requested
14372 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14373
14374 // The third argument is the comparison condition, and integer in the
14375 // range [0, 31]
14376 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14377
14378 // Lowering to IR fcmp instruction.
14379 // Ignoring requested signaling behaviour,
14380 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14381 FCmpInst::Predicate Pred;
14382 bool IsSignaling;
14383 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14384 // behavior is inverted. We'll handle that after the switch.
14385 switch (CC & 0xf) {
14386 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
14387 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
14388 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
14389 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
14390 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
14391 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
14392 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
14393 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
14394 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
14395 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
14396 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
14397 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14398 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
14399 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
14400 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
14401 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
14402 default: llvm_unreachable("Unhandled CC");
14403 }
14404
14405 // Invert the signalling behavior for 16-31.
14406 if (CC & 0x10)
14407 IsSignaling = !IsSignaling;
14408
14409 // If the predicate is true or false and we're using constrained intrinsics,
14410 // we don't have a compare intrinsic we can use. Just use the legacy X86
14411 // specific intrinsic.
14412 // If the intrinsic is mask enabled and we're using constrained intrinsics,
14413 // use the legacy X86 specific intrinsic.
14414 if (Builder.getIsFPConstrained() &&
14415 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14416 IsMaskFCmp)) {
14417
14418 Intrinsic::ID IID;
14419 switch (BuiltinID) {
14420 default: llvm_unreachable("Unexpected builtin");
14421 case X86::BI__builtin_ia32_cmpps:
14422 IID = Intrinsic::x86_sse_cmp_ps;
14423 break;
14424 case X86::BI__builtin_ia32_cmpps256:
14425 IID = Intrinsic::x86_avx_cmp_ps_256;
14426 break;
14427 case X86::BI__builtin_ia32_cmppd:
14428 IID = Intrinsic::x86_sse2_cmp_pd;
14429 break;
14430 case X86::BI__builtin_ia32_cmppd256:
14431 IID = Intrinsic::x86_avx_cmp_pd_256;
14432 break;
14433 case X86::BI__builtin_ia32_cmpps512_mask:
14434 IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14435 break;
14436 case X86::BI__builtin_ia32_cmppd512_mask:
14437 IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14438 break;
14439 case X86::BI__builtin_ia32_cmpps128_mask:
14440 IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14441 break;
14442 case X86::BI__builtin_ia32_cmpps256_mask:
14443 IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14444 break;
14445 case X86::BI__builtin_ia32_cmppd128_mask:
14446 IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14447 break;
14448 case X86::BI__builtin_ia32_cmppd256_mask:
14449 IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14450 break;
14451 }
14452
14453 Function *Intr = CGM.getIntrinsic(IID);
14454 if (IsMaskFCmp) {
14455 unsigned NumElts =
14456 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14457 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14458 Value *Cmp = Builder.CreateCall(Intr, Ops);
14459 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14460 }
14461
14462 return Builder.CreateCall(Intr, Ops);
14463 }
14464
14465 // Builtins without the _mask suffix return a vector of integers
14466 // of the same width as the input vectors
14467 if (IsMaskFCmp) {
14468 // We ignore SAE if strict FP is disabled. We only keep precise
14469 // exception behavior under strict FP.
14470 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14471 // object will be required.
14472 unsigned NumElts =
14473 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14474 Value *Cmp;
14475 if (IsSignaling)
14476 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14477 else
14478 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14479 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14480 }
14481
14482 return getVectorFCmpIR(Pred, IsSignaling);
14483 }
14484
14485 // SSE scalar comparison intrinsics
14486 case X86::BI__builtin_ia32_cmpeqss:
14487 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14488 case X86::BI__builtin_ia32_cmpltss:
14489 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14490 case X86::BI__builtin_ia32_cmpless:
14491 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14492 case X86::BI__builtin_ia32_cmpunordss:
14493 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14494 case X86::BI__builtin_ia32_cmpneqss:
14495 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14496 case X86::BI__builtin_ia32_cmpnltss:
14497 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14498 case X86::BI__builtin_ia32_cmpnless:
14499 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14500 case X86::BI__builtin_ia32_cmpordss:
14501 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14502 case X86::BI__builtin_ia32_cmpeqsd:
14503 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14504 case X86::BI__builtin_ia32_cmpltsd:
14505 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14506 case X86::BI__builtin_ia32_cmplesd:
14507 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14508 case X86::BI__builtin_ia32_cmpunordsd:
14509 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14510 case X86::BI__builtin_ia32_cmpneqsd:
14511 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14512 case X86::BI__builtin_ia32_cmpnltsd:
14513 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14514 case X86::BI__builtin_ia32_cmpnlesd:
14515 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14516 case X86::BI__builtin_ia32_cmpordsd:
14517 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14518
14519 // f16c half2float intrinsics
14520 case X86::BI__builtin_ia32_vcvtph2ps:
14521 case X86::BI__builtin_ia32_vcvtph2ps256:
14522 case X86::BI__builtin_ia32_vcvtph2ps_mask:
14523 case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14524 case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14525 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14526 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14527 }
14528
14529 // AVX512 bf16 intrinsics
14530 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14531 Ops[2] = getMaskVecValue(
14532 *this, Ops[2],
14533 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14534 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14535 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14536 }
14537 case X86::BI__builtin_ia32_cvtsbf162ss_32:
14538 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14539
14540 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14541 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14542 Intrinsic::ID IID;
14543 switch (BuiltinID) {
14544 default: llvm_unreachable("Unsupported intrinsic!");
14545 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14546 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14547 break;
14548 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14549 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14550 break;
14551 }
14552 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14553 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14554 }
14555
14556 case X86::BI__emul:
14557 case X86::BI__emulu: {
14558 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14559 bool isSigned = (BuiltinID == X86::BI__emul);
14560 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14561 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14562 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14563 }
14564 case X86::BI__mulh:
14565 case X86::BI__umulh:
14566 case X86::BI_mul128:
14567 case X86::BI_umul128: {
14568 llvm::Type *ResType = ConvertType(E->getType());
14569 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14570
14571 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14572 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14573 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14574
14575 Value *MulResult, *HigherBits;
14576 if (IsSigned) {
14577 MulResult = Builder.CreateNSWMul(LHS, RHS);
14578 HigherBits = Builder.CreateAShr(MulResult, 64);
14579 } else {
14580 MulResult = Builder.CreateNUWMul(LHS, RHS);
14581 HigherBits = Builder.CreateLShr(MulResult, 64);
14582 }
14583 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14584
14585 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14586 return HigherBits;
14587
14588 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14589 Builder.CreateStore(HigherBits, HighBitsAddress);
14590 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14591 }
14592
14593 case X86::BI__faststorefence: {
14594 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14595 llvm::SyncScope::System);
14596 }
14597 case X86::BI__shiftleft128:
14598 case X86::BI__shiftright128: {
14599 llvm::Function *F = CGM.getIntrinsic(
14600 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
14601 Int64Ty);
14602 // Flip low/high ops and zero-extend amount to matching type.
14603 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
14604 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
14605 std::swap(Ops[0], Ops[1]);
14606 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
14607 return Builder.CreateCall(F, Ops);
14608 }
14609 case X86::BI_ReadWriteBarrier:
14610 case X86::BI_ReadBarrier:
14611 case X86::BI_WriteBarrier: {
14612 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14613 llvm::SyncScope::SingleThread);
14614 }
14615
14616 case X86::BI_AddressOfReturnAddress: {
14617 Function *F =
14618 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14619 return Builder.CreateCall(F);
14620 }
14621 case X86::BI__stosb: {
14622 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14623 // instruction, but it will create a memset that won't be optimized away.
14624 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14625 }
14626 case X86::BI__ud2:
14627 // llvm.trap makes a ud2a instruction on x86.
14628 return EmitTrapCall(Intrinsic::trap);
14629 case X86::BI__int2c: {
14630 // This syscall signals a driver assertion failure in x86 NT kernels.
14631 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14632 llvm::InlineAsm *IA =
14633 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14634 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14635 getLLVMContext(), llvm::AttributeList::FunctionIndex,
14636 llvm::Attribute::NoReturn);
14637 llvm::CallInst *CI = Builder.CreateCall(IA);
14638 CI->setAttributes(NoReturnAttr);
14639 return CI;
14640 }
14641 case X86::BI__readfsbyte:
14642 case X86::BI__readfsword:
14643 case X86::BI__readfsdword:
14644 case X86::BI__readfsqword: {
14645 llvm::Type *IntTy = ConvertType(E->getType());
14646 Value *Ptr =
14647 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14648 LoadInst *Load = Builder.CreateAlignedLoad(
14649 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14650 Load->setVolatile(true);
14651 return Load;
14652 }
14653 case X86::BI__readgsbyte:
14654 case X86::BI__readgsword:
14655 case X86::BI__readgsdword:
14656 case X86::BI__readgsqword: {
14657 llvm::Type *IntTy = ConvertType(E->getType());
14658 Value *Ptr =
14659 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14660 LoadInst *Load = Builder.CreateAlignedLoad(
14661 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14662 Load->setVolatile(true);
14663 return Load;
14664 }
14665 case X86::BI__builtin_ia32_paddsb512:
14666 case X86::BI__builtin_ia32_paddsw512:
14667 case X86::BI__builtin_ia32_paddsb256:
14668 case X86::BI__builtin_ia32_paddsw256:
14669 case X86::BI__builtin_ia32_paddsb128:
14670 case X86::BI__builtin_ia32_paddsw128:
14671 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat);
14672 case X86::BI__builtin_ia32_paddusb512:
14673 case X86::BI__builtin_ia32_paddusw512:
14674 case X86::BI__builtin_ia32_paddusb256:
14675 case X86::BI__builtin_ia32_paddusw256:
14676 case X86::BI__builtin_ia32_paddusb128:
14677 case X86::BI__builtin_ia32_paddusw128:
14678 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat);
14679 case X86::BI__builtin_ia32_psubsb512:
14680 case X86::BI__builtin_ia32_psubsw512:
14681 case X86::BI__builtin_ia32_psubsb256:
14682 case X86::BI__builtin_ia32_psubsw256:
14683 case X86::BI__builtin_ia32_psubsb128:
14684 case X86::BI__builtin_ia32_psubsw128:
14685 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat);
14686 case X86::BI__builtin_ia32_psubusb512:
14687 case X86::BI__builtin_ia32_psubusw512:
14688 case X86::BI__builtin_ia32_psubusb256:
14689 case X86::BI__builtin_ia32_psubusw256:
14690 case X86::BI__builtin_ia32_psubusb128:
14691 case X86::BI__builtin_ia32_psubusw128:
14692 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat);
14693 case X86::BI__builtin_ia32_encodekey128_u32: {
14694 Intrinsic::ID IID = Intrinsic::x86_encodekey128;
14695
14696 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
14697
14698 for (int i = 0; i < 6; ++i) {
14699 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14700 Value *Ptr = Builder.CreateConstGEP1_32(Ops[2], i * 16);
14701 Ptr = Builder.CreateBitCast(
14702 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14703 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14704 }
14705
14706 return Builder.CreateExtractValue(Call, 0);
14707 }
14708 case X86::BI__builtin_ia32_encodekey256_u32: {
14709 Intrinsic::ID IID = Intrinsic::x86_encodekey256;
14710
14711 Value *Call =
14712 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
14713
14714 for (int i = 0; i < 7; ++i) {
14715 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14716 Value *Ptr = Builder.CreateConstGEP1_32(Ops[3], i * 16);
14717 Ptr = Builder.CreateBitCast(
14718 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14719 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14720 }
14721
14722 return Builder.CreateExtractValue(Call, 0);
14723 }
14724 case X86::BI__builtin_ia32_aesenc128kl_u8:
14725 case X86::BI__builtin_ia32_aesdec128kl_u8:
14726 case X86::BI__builtin_ia32_aesenc256kl_u8:
14727 case X86::BI__builtin_ia32_aesdec256kl_u8: {
14728 Intrinsic::ID IID;
14729 switch (BuiltinID) {
14730 default: llvm_unreachable("Unexpected builtin");
14731 case X86::BI__builtin_ia32_aesenc128kl_u8:
14732 IID = Intrinsic::x86_aesenc128kl;
14733 break;
14734 case X86::BI__builtin_ia32_aesdec128kl_u8:
14735 IID = Intrinsic::x86_aesdec128kl;
14736 break;
14737 case X86::BI__builtin_ia32_aesenc256kl_u8:
14738 IID = Intrinsic::x86_aesenc256kl;
14739 break;
14740 case X86::BI__builtin_ia32_aesdec256kl_u8:
14741 IID = Intrinsic::x86_aesdec256kl;
14742 break;
14743 }
14744
14745 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
14746
14747 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14748 Ops[0]);
14749
14750 return Builder.CreateExtractValue(Call, 0);
14751 }
14752 case X86::BI__builtin_ia32_aesencwide128kl_u8:
14753 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14754 case X86::BI__builtin_ia32_aesencwide256kl_u8:
14755 case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
14756 Intrinsic::ID IID;
14757 switch (BuiltinID) {
14758 case X86::BI__builtin_ia32_aesencwide128kl_u8:
14759 IID = Intrinsic::x86_aesencwide128kl;
14760 break;
14761 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14762 IID = Intrinsic::x86_aesdecwide128kl;
14763 break;
14764 case X86::BI__builtin_ia32_aesencwide256kl_u8:
14765 IID = Intrinsic::x86_aesencwide256kl;
14766 break;
14767 case X86::BI__builtin_ia32_aesdecwide256kl_u8:
14768 IID = Intrinsic::x86_aesdecwide256kl;
14769 break;
14770 }
14771
14772 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
14773 Value *InOps[9];
14774 InOps[0] = Ops[2];
14775 for (int i = 0; i != 8; ++i) {
14776 Value *Ptr = Builder.CreateConstGEP1_32(Ops[1], i);
14777 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
14778 }
14779
14780 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
14781
14782 for (int i = 0; i != 8; ++i) {
14783 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14784 Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i);
14785 Builder.CreateAlignedStore(Extract, Ptr, Align(16));
14786 }
14787
14788 return Builder.CreateExtractValue(Call, 0);
14789 }
14790 }
14791 }
14792
EmitPPCBuiltinExpr(unsigned BuiltinID,const CallExpr * E)14793 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14794 const CallExpr *E) {
14795 SmallVector<Value*, 4> Ops;
14796
14797 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14798 Ops.push_back(EmitScalarExpr(E->getArg(i)));
14799
14800 Intrinsic::ID ID = Intrinsic::not_intrinsic;
14801
14802 switch (BuiltinID) {
14803 default: return nullptr;
14804
14805 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14806 // call __builtin_readcyclecounter.
14807 case PPC::BI__builtin_ppc_get_timebase:
14808 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14809
14810 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14811 case PPC::BI__builtin_altivec_lvx:
14812 case PPC::BI__builtin_altivec_lvxl:
14813 case PPC::BI__builtin_altivec_lvebx:
14814 case PPC::BI__builtin_altivec_lvehx:
14815 case PPC::BI__builtin_altivec_lvewx:
14816 case PPC::BI__builtin_altivec_lvsl:
14817 case PPC::BI__builtin_altivec_lvsr:
14818 case PPC::BI__builtin_vsx_lxvd2x:
14819 case PPC::BI__builtin_vsx_lxvw4x:
14820 case PPC::BI__builtin_vsx_lxvd2x_be:
14821 case PPC::BI__builtin_vsx_lxvw4x_be:
14822 case PPC::BI__builtin_vsx_lxvl:
14823 case PPC::BI__builtin_vsx_lxvll:
14824 {
14825 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14826 BuiltinID == PPC::BI__builtin_vsx_lxvll){
14827 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14828 }else {
14829 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14830 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14831 Ops.pop_back();
14832 }
14833
14834 switch (BuiltinID) {
14835 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
14836 case PPC::BI__builtin_altivec_lvx:
14837 ID = Intrinsic::ppc_altivec_lvx;
14838 break;
14839 case PPC::BI__builtin_altivec_lvxl:
14840 ID = Intrinsic::ppc_altivec_lvxl;
14841 break;
14842 case PPC::BI__builtin_altivec_lvebx:
14843 ID = Intrinsic::ppc_altivec_lvebx;
14844 break;
14845 case PPC::BI__builtin_altivec_lvehx:
14846 ID = Intrinsic::ppc_altivec_lvehx;
14847 break;
14848 case PPC::BI__builtin_altivec_lvewx:
14849 ID = Intrinsic::ppc_altivec_lvewx;
14850 break;
14851 case PPC::BI__builtin_altivec_lvsl:
14852 ID = Intrinsic::ppc_altivec_lvsl;
14853 break;
14854 case PPC::BI__builtin_altivec_lvsr:
14855 ID = Intrinsic::ppc_altivec_lvsr;
14856 break;
14857 case PPC::BI__builtin_vsx_lxvd2x:
14858 ID = Intrinsic::ppc_vsx_lxvd2x;
14859 break;
14860 case PPC::BI__builtin_vsx_lxvw4x:
14861 ID = Intrinsic::ppc_vsx_lxvw4x;
14862 break;
14863 case PPC::BI__builtin_vsx_lxvd2x_be:
14864 ID = Intrinsic::ppc_vsx_lxvd2x_be;
14865 break;
14866 case PPC::BI__builtin_vsx_lxvw4x_be:
14867 ID = Intrinsic::ppc_vsx_lxvw4x_be;
14868 break;
14869 case PPC::BI__builtin_vsx_lxvl:
14870 ID = Intrinsic::ppc_vsx_lxvl;
14871 break;
14872 case PPC::BI__builtin_vsx_lxvll:
14873 ID = Intrinsic::ppc_vsx_lxvll;
14874 break;
14875 }
14876 llvm::Function *F = CGM.getIntrinsic(ID);
14877 return Builder.CreateCall(F, Ops, "");
14878 }
14879
14880 // vec_st, vec_xst_be
14881 case PPC::BI__builtin_altivec_stvx:
14882 case PPC::BI__builtin_altivec_stvxl:
14883 case PPC::BI__builtin_altivec_stvebx:
14884 case PPC::BI__builtin_altivec_stvehx:
14885 case PPC::BI__builtin_altivec_stvewx:
14886 case PPC::BI__builtin_vsx_stxvd2x:
14887 case PPC::BI__builtin_vsx_stxvw4x:
14888 case PPC::BI__builtin_vsx_stxvd2x_be:
14889 case PPC::BI__builtin_vsx_stxvw4x_be:
14890 case PPC::BI__builtin_vsx_stxvl:
14891 case PPC::BI__builtin_vsx_stxvll:
14892 {
14893 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
14894 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
14895 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14896 }else {
14897 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14898 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14899 Ops.pop_back();
14900 }
14901
14902 switch (BuiltinID) {
14903 default: llvm_unreachable("Unsupported st intrinsic!");
14904 case PPC::BI__builtin_altivec_stvx:
14905 ID = Intrinsic::ppc_altivec_stvx;
14906 break;
14907 case PPC::BI__builtin_altivec_stvxl:
14908 ID = Intrinsic::ppc_altivec_stvxl;
14909 break;
14910 case PPC::BI__builtin_altivec_stvebx:
14911 ID = Intrinsic::ppc_altivec_stvebx;
14912 break;
14913 case PPC::BI__builtin_altivec_stvehx:
14914 ID = Intrinsic::ppc_altivec_stvehx;
14915 break;
14916 case PPC::BI__builtin_altivec_stvewx:
14917 ID = Intrinsic::ppc_altivec_stvewx;
14918 break;
14919 case PPC::BI__builtin_vsx_stxvd2x:
14920 ID = Intrinsic::ppc_vsx_stxvd2x;
14921 break;
14922 case PPC::BI__builtin_vsx_stxvw4x:
14923 ID = Intrinsic::ppc_vsx_stxvw4x;
14924 break;
14925 case PPC::BI__builtin_vsx_stxvd2x_be:
14926 ID = Intrinsic::ppc_vsx_stxvd2x_be;
14927 break;
14928 case PPC::BI__builtin_vsx_stxvw4x_be:
14929 ID = Intrinsic::ppc_vsx_stxvw4x_be;
14930 break;
14931 case PPC::BI__builtin_vsx_stxvl:
14932 ID = Intrinsic::ppc_vsx_stxvl;
14933 break;
14934 case PPC::BI__builtin_vsx_stxvll:
14935 ID = Intrinsic::ppc_vsx_stxvll;
14936 break;
14937 }
14938 llvm::Function *F = CGM.getIntrinsic(ID);
14939 return Builder.CreateCall(F, Ops, "");
14940 }
14941 // Square root
14942 case PPC::BI__builtin_vsx_xvsqrtsp:
14943 case PPC::BI__builtin_vsx_xvsqrtdp: {
14944 llvm::Type *ResultType = ConvertType(E->getType());
14945 Value *X = EmitScalarExpr(E->getArg(0));
14946 if (Builder.getIsFPConstrained()) {
14947 llvm::Function *F = CGM.getIntrinsic(
14948 Intrinsic::experimental_constrained_sqrt, ResultType);
14949 return Builder.CreateConstrainedFPCall(F, X);
14950 } else {
14951 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
14952 return Builder.CreateCall(F, X);
14953 }
14954 }
14955 // Count leading zeros
14956 case PPC::BI__builtin_altivec_vclzb:
14957 case PPC::BI__builtin_altivec_vclzh:
14958 case PPC::BI__builtin_altivec_vclzw:
14959 case PPC::BI__builtin_altivec_vclzd: {
14960 llvm::Type *ResultType = ConvertType(E->getType());
14961 Value *X = EmitScalarExpr(E->getArg(0));
14962 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14963 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
14964 return Builder.CreateCall(F, {X, Undef});
14965 }
14966 case PPC::BI__builtin_altivec_vctzb:
14967 case PPC::BI__builtin_altivec_vctzh:
14968 case PPC::BI__builtin_altivec_vctzw:
14969 case PPC::BI__builtin_altivec_vctzd: {
14970 llvm::Type *ResultType = ConvertType(E->getType());
14971 Value *X = EmitScalarExpr(E->getArg(0));
14972 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
14973 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
14974 return Builder.CreateCall(F, {X, Undef});
14975 }
14976 case PPC::BI__builtin_altivec_vec_replace_elt:
14977 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
14978 // The third argument of vec_replace_elt and vec_replace_unaligned must
14979 // be a compile time constant and will be emitted either to the vinsw
14980 // or vinsd instruction.
14981 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
14982 assert(ArgCI &&
14983 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
14984 llvm::Type *ResultType = ConvertType(E->getType());
14985 llvm::Function *F = nullptr;
14986 Value *Call = nullptr;
14987 int64_t ConstArg = ArgCI->getSExtValue();
14988 unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
14989 bool Is32Bit = false;
14990 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width");
14991 // The input to vec_replace_elt is an element index, not a byte index.
14992 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
14993 ConstArg *= ArgWidth / 8;
14994 if (ArgWidth == 32) {
14995 Is32Bit = true;
14996 // When the second argument is 32 bits, it can either be an integer or
14997 // a float. The vinsw intrinsic is used in this case.
14998 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
14999 // Fix the constant according to endianess.
15000 if (getTarget().isLittleEndian())
15001 ConstArg = 12 - ConstArg;
15002 } else {
15003 // When the second argument is 64 bits, it can either be a long long or
15004 // a double. The vinsd intrinsic is used in this case.
15005 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
15006 // Fix the constant for little endian.
15007 if (getTarget().isLittleEndian())
15008 ConstArg = 8 - ConstArg;
15009 }
15010 Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
15011 // Depending on ArgWidth, the input vector could be a float or a double.
15012 // If the input vector is a float type, bitcast the inputs to integers. Or,
15013 // if the input vector is a double, bitcast the inputs to 64-bit integers.
15014 if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
15015 Ops[0] = Builder.CreateBitCast(
15016 Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
15017 : llvm::FixedVectorType::get(Int64Ty, 2));
15018 Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
15019 }
15020 // Emit the call to vinsw or vinsd.
15021 Call = Builder.CreateCall(F, Ops);
15022 // Depending on the builtin, bitcast to the approriate result type.
15023 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15024 !Ops[1]->getType()->isIntegerTy())
15025 return Builder.CreateBitCast(Call, ResultType);
15026 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15027 Ops[1]->getType()->isIntegerTy())
15028 return Call;
15029 else
15030 return Builder.CreateBitCast(Call,
15031 llvm::FixedVectorType::get(Int8Ty, 16));
15032 }
15033 case PPC::BI__builtin_altivec_vpopcntb:
15034 case PPC::BI__builtin_altivec_vpopcnth:
15035 case PPC::BI__builtin_altivec_vpopcntw:
15036 case PPC::BI__builtin_altivec_vpopcntd: {
15037 llvm::Type *ResultType = ConvertType(E->getType());
15038 Value *X = EmitScalarExpr(E->getArg(0));
15039 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15040 return Builder.CreateCall(F, X);
15041 }
15042 case PPC::BI__builtin_altivec_vadduqm:
15043 case PPC::BI__builtin_altivec_vsubuqm: {
15044 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15045 Ops[0] =
15046 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1));
15047 Ops[1] =
15048 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1));
15049 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15050 return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm");
15051 else
15052 return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm");
15053 }
15054 // Copy sign
15055 case PPC::BI__builtin_vsx_xvcpsgnsp:
15056 case PPC::BI__builtin_vsx_xvcpsgndp: {
15057 llvm::Type *ResultType = ConvertType(E->getType());
15058 Value *X = EmitScalarExpr(E->getArg(0));
15059 Value *Y = EmitScalarExpr(E->getArg(1));
15060 ID = Intrinsic::copysign;
15061 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15062 return Builder.CreateCall(F, {X, Y});
15063 }
15064 // Rounding/truncation
15065 case PPC::BI__builtin_vsx_xvrspip:
15066 case PPC::BI__builtin_vsx_xvrdpip:
15067 case PPC::BI__builtin_vsx_xvrdpim:
15068 case PPC::BI__builtin_vsx_xvrspim:
15069 case PPC::BI__builtin_vsx_xvrdpi:
15070 case PPC::BI__builtin_vsx_xvrspi:
15071 case PPC::BI__builtin_vsx_xvrdpic:
15072 case PPC::BI__builtin_vsx_xvrspic:
15073 case PPC::BI__builtin_vsx_xvrdpiz:
15074 case PPC::BI__builtin_vsx_xvrspiz: {
15075 llvm::Type *ResultType = ConvertType(E->getType());
15076 Value *X = EmitScalarExpr(E->getArg(0));
15077 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15078 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15079 ID = Builder.getIsFPConstrained()
15080 ? Intrinsic::experimental_constrained_floor
15081 : Intrinsic::floor;
15082 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15083 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15084 ID = Builder.getIsFPConstrained()
15085 ? Intrinsic::experimental_constrained_round
15086 : Intrinsic::round;
15087 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15088 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15089 ID = Builder.getIsFPConstrained()
15090 ? Intrinsic::experimental_constrained_rint
15091 : Intrinsic::rint;
15092 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15093 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15094 ID = Builder.getIsFPConstrained()
15095 ? Intrinsic::experimental_constrained_ceil
15096 : Intrinsic::ceil;
15097 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15098 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15099 ID = Builder.getIsFPConstrained()
15100 ? Intrinsic::experimental_constrained_trunc
15101 : Intrinsic::trunc;
15102 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15103 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15104 : Builder.CreateCall(F, X);
15105 }
15106
15107 // Absolute value
15108 case PPC::BI__builtin_vsx_xvabsdp:
15109 case PPC::BI__builtin_vsx_xvabssp: {
15110 llvm::Type *ResultType = ConvertType(E->getType());
15111 Value *X = EmitScalarExpr(E->getArg(0));
15112 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15113 return Builder.CreateCall(F, X);
15114 }
15115
15116 // Fastmath by default
15117 case PPC::BI__builtin_ppc_recipdivf:
15118 case PPC::BI__builtin_ppc_recipdivd:
15119 case PPC::BI__builtin_ppc_rsqrtf:
15120 case PPC::BI__builtin_ppc_rsqrtd: {
15121 Builder.getFastMathFlags().setFast();
15122 llvm::Type *ResultType = ConvertType(E->getType());
15123 Value *X = EmitScalarExpr(E->getArg(0));
15124
15125 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15126 BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15127 Value *Y = EmitScalarExpr(E->getArg(1));
15128 return Builder.CreateFDiv(X, Y, "recipdiv");
15129 }
15130 auto *One = ConstantFP::get(ResultType, 1.0);
15131 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15132 return Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15133 }
15134
15135 // FMA variations
15136 case PPC::BI__builtin_vsx_xvmaddadp:
15137 case PPC::BI__builtin_vsx_xvmaddasp:
15138 case PPC::BI__builtin_vsx_xvnmaddadp:
15139 case PPC::BI__builtin_vsx_xvnmaddasp:
15140 case PPC::BI__builtin_vsx_xvmsubadp:
15141 case PPC::BI__builtin_vsx_xvmsubasp:
15142 case PPC::BI__builtin_vsx_xvnmsubadp:
15143 case PPC::BI__builtin_vsx_xvnmsubasp: {
15144 llvm::Type *ResultType = ConvertType(E->getType());
15145 Value *X = EmitScalarExpr(E->getArg(0));
15146 Value *Y = EmitScalarExpr(E->getArg(1));
15147 Value *Z = EmitScalarExpr(E->getArg(2));
15148 llvm::Function *F;
15149 if (Builder.getIsFPConstrained())
15150 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15151 else
15152 F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15153 switch (BuiltinID) {
15154 case PPC::BI__builtin_vsx_xvmaddadp:
15155 case PPC::BI__builtin_vsx_xvmaddasp:
15156 if (Builder.getIsFPConstrained())
15157 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15158 else
15159 return Builder.CreateCall(F, {X, Y, Z});
15160 case PPC::BI__builtin_vsx_xvnmaddadp:
15161 case PPC::BI__builtin_vsx_xvnmaddasp:
15162 if (Builder.getIsFPConstrained())
15163 return Builder.CreateFNeg(
15164 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15165 else
15166 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15167 case PPC::BI__builtin_vsx_xvmsubadp:
15168 case PPC::BI__builtin_vsx_xvmsubasp:
15169 if (Builder.getIsFPConstrained())
15170 return Builder.CreateConstrainedFPCall(
15171 F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15172 else
15173 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15174 case PPC::BI__builtin_vsx_xvnmsubadp:
15175 case PPC::BI__builtin_vsx_xvnmsubasp:
15176 if (Builder.getIsFPConstrained())
15177 return Builder.CreateFNeg(
15178 Builder.CreateConstrainedFPCall(
15179 F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15180 "neg");
15181 else
15182 return Builder.CreateFNeg(
15183 Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15184 "neg");
15185 }
15186 llvm_unreachable("Unknown FMA operation");
15187 return nullptr; // Suppress no-return warning
15188 }
15189
15190 case PPC::BI__builtin_vsx_insertword: {
15191 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15192
15193 // Third argument is a compile time constant int. It must be clamped to
15194 // to the range [0, 12].
15195 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15196 assert(ArgCI &&
15197 "Third arg to xxinsertw intrinsic must be constant integer");
15198 const int64_t MaxIndex = 12;
15199 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15200
15201 // The builtin semantics don't exactly match the xxinsertw instructions
15202 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15203 // word from the first argument, and inserts it in the second argument. The
15204 // instruction extracts the word from its second input register and inserts
15205 // it into its first input register, so swap the first and second arguments.
15206 std::swap(Ops[0], Ops[1]);
15207
15208 // Need to cast the second argument from a vector of unsigned int to a
15209 // vector of long long.
15210 Ops[1] =
15211 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15212
15213 if (getTarget().isLittleEndian()) {
15214 // Reverse the double words in the vector we will extract from.
15215 Ops[0] =
15216 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15217 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
15218
15219 // Reverse the index.
15220 Index = MaxIndex - Index;
15221 }
15222
15223 // Intrinsic expects the first arg to be a vector of int.
15224 Ops[0] =
15225 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15226 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
15227 return Builder.CreateCall(F, Ops);
15228 }
15229
15230 case PPC::BI__builtin_vsx_extractuword: {
15231 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
15232
15233 // Intrinsic expects the first argument to be a vector of doublewords.
15234 Ops[0] =
15235 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15236
15237 // The second argument is a compile time constant int that needs to
15238 // be clamped to the range [0, 12].
15239 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
15240 assert(ArgCI &&
15241 "Second Arg to xxextractuw intrinsic must be a constant integer!");
15242 const int64_t MaxIndex = 12;
15243 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15244
15245 if (getTarget().isLittleEndian()) {
15246 // Reverse the index.
15247 Index = MaxIndex - Index;
15248 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15249
15250 // Emit the call, then reverse the double words of the results vector.
15251 Value *Call = Builder.CreateCall(F, Ops);
15252
15253 Value *ShuffleCall =
15254 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
15255 return ShuffleCall;
15256 } else {
15257 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15258 return Builder.CreateCall(F, Ops);
15259 }
15260 }
15261
15262 case PPC::BI__builtin_vsx_xxpermdi: {
15263 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15264 assert(ArgCI && "Third arg must be constant integer!");
15265
15266 unsigned Index = ArgCI->getZExtValue();
15267 Ops[0] =
15268 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15269 Ops[1] =
15270 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15271
15272 // Account for endianness by treating this as just a shuffle. So we use the
15273 // same indices for both LE and BE in order to produce expected results in
15274 // both cases.
15275 int ElemIdx0 = (Index & 2) >> 1;
15276 int ElemIdx1 = 2 + (Index & 1);
15277
15278 int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
15279 Value *ShuffleCall =
15280 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15281 QualType BIRetType = E->getType();
15282 auto RetTy = ConvertType(BIRetType);
15283 return Builder.CreateBitCast(ShuffleCall, RetTy);
15284 }
15285
15286 case PPC::BI__builtin_vsx_xxsldwi: {
15287 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15288 assert(ArgCI && "Third argument must be a compile time constant");
15289 unsigned Index = ArgCI->getZExtValue() & 0x3;
15290 Ops[0] =
15291 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15292 Ops[1] =
15293 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
15294
15295 // Create a shuffle mask
15296 int ElemIdx0;
15297 int ElemIdx1;
15298 int ElemIdx2;
15299 int ElemIdx3;
15300 if (getTarget().isLittleEndian()) {
15301 // Little endian element N comes from element 8+N-Index of the
15302 // concatenated wide vector (of course, using modulo arithmetic on
15303 // the total number of elements).
15304 ElemIdx0 = (8 - Index) % 8;
15305 ElemIdx1 = (9 - Index) % 8;
15306 ElemIdx2 = (10 - Index) % 8;
15307 ElemIdx3 = (11 - Index) % 8;
15308 } else {
15309 // Big endian ElemIdx<N> = Index + N
15310 ElemIdx0 = Index;
15311 ElemIdx1 = Index + 1;
15312 ElemIdx2 = Index + 2;
15313 ElemIdx3 = Index + 3;
15314 }
15315
15316 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
15317 Value *ShuffleCall =
15318 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15319 QualType BIRetType = E->getType();
15320 auto RetTy = ConvertType(BIRetType);
15321 return Builder.CreateBitCast(ShuffleCall, RetTy);
15322 }
15323
15324 case PPC::BI__builtin_pack_vector_int128: {
15325 bool isLittleEndian = getTarget().isLittleEndian();
15326 Value *UndefValue =
15327 llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
15328 Value *Res = Builder.CreateInsertElement(
15329 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
15330 Res = Builder.CreateInsertElement(Res, Ops[1],
15331 (uint64_t)(isLittleEndian ? 0 : 1));
15332 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
15333 }
15334
15335 case PPC::BI__builtin_unpack_vector_int128: {
15336 ConstantInt *Index = cast<ConstantInt>(Ops[1]);
15337 Value *Unpacked = Builder.CreateBitCast(
15338 Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
15339
15340 if (getTarget().isLittleEndian())
15341 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
15342
15343 return Builder.CreateExtractElement(Unpacked, Index);
15344 }
15345
15346 // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
15347 // Some of the MMA instructions accumulate their result into an existing
15348 // accumulator whereas the others generate a new accumulator. So we need to
15349 // use custom code generation to expand a builtin call with a pointer to a
15350 // load (if the corresponding instruction accumulates its result) followed by
15351 // the call to the intrinsic and a store of the result.
15352 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
15353 case PPC::BI__builtin_##Name:
15354 #include "clang/Basic/BuiltinsPPC.def"
15355 {
15356 // The first argument of these two builtins is a pointer used to store their
15357 // result. However, the llvm intrinsics return their result in multiple
15358 // return values. So, here we emit code extracting these values from the
15359 // intrinsic results and storing them using that pointer.
15360 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
15361 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
15362 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
15363 unsigned NumVecs = 2;
15364 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
15365 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
15366 NumVecs = 4;
15367 Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
15368 }
15369 llvm::Function *F = CGM.getIntrinsic(Intrinsic);
15370 Address Addr = EmitPointerWithAlignment(E->getArg(1));
15371 Value *Vec = Builder.CreateLoad(Addr);
15372 Value *Call = Builder.CreateCall(F, {Vec});
15373 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
15374 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
15375 for (unsigned i=0; i<NumVecs; i++) {
15376 Value *Vec = Builder.CreateExtractValue(Call, i);
15377 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
15378 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
15379 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
15380 }
15381 return Call;
15382 }
15383 bool Accumulate;
15384 switch (BuiltinID) {
15385 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
15386 case PPC::BI__builtin_##Name: \
15387 ID = Intrinsic::ppc_##Intr; \
15388 Accumulate = Acc; \
15389 break;
15390 #include "clang/Basic/BuiltinsPPC.def"
15391 }
15392 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15393 BuiltinID == PPC::BI__builtin_vsx_stxvp ||
15394 BuiltinID == PPC::BI__builtin_mma_lxvp ||
15395 BuiltinID == PPC::BI__builtin_mma_stxvp) {
15396 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15397 BuiltinID == PPC::BI__builtin_mma_lxvp) {
15398 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15399 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
15400 } else {
15401 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15402 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
15403 }
15404 Ops.pop_back();
15405 llvm::Function *F = CGM.getIntrinsic(ID);
15406 return Builder.CreateCall(F, Ops, "");
15407 }
15408 SmallVector<Value*, 4> CallOps;
15409 if (Accumulate) {
15410 Address Addr = EmitPointerWithAlignment(E->getArg(0));
15411 Value *Acc = Builder.CreateLoad(Addr);
15412 CallOps.push_back(Acc);
15413 }
15414 for (unsigned i=1; i<Ops.size(); i++)
15415 CallOps.push_back(Ops[i]);
15416 llvm::Function *F = CGM.getIntrinsic(ID);
15417 Value *Call = Builder.CreateCall(F, CallOps);
15418 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
15419 }
15420 }
15421 }
15422
15423 namespace {
15424 // If \p E is not null pointer, insert address space cast to match return
15425 // type of \p E if necessary.
EmitAMDGPUDispatchPtr(CodeGenFunction & CGF,const CallExpr * E=nullptr)15426 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
15427 const CallExpr *E = nullptr) {
15428 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
15429 auto *Call = CGF.Builder.CreateCall(F);
15430 Call->addAttribute(
15431 AttributeList::ReturnIndex,
15432 Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
15433 Call->addAttribute(AttributeList::ReturnIndex,
15434 Attribute::getWithAlignment(Call->getContext(), Align(4)));
15435 if (!E)
15436 return Call;
15437 QualType BuiltinRetType = E->getType();
15438 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
15439 if (RetTy == Call->getType())
15440 return Call;
15441 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
15442 }
15443
15444 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUWorkGroupSize(CodeGenFunction & CGF,unsigned Index)15445 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
15446 const unsigned XOffset = 4;
15447 auto *DP = EmitAMDGPUDispatchPtr(CGF);
15448 // Indexing the HSA kernel_dispatch_packet struct.
15449 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
15450 auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
15451 auto *DstTy =
15452 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15453 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15454 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
15455 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
15456 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
15457 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
15458 LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
15459 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15460 llvm::MDNode::get(CGF.getLLVMContext(), None));
15461 return LD;
15462 }
15463
15464 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
EmitAMDGPUGridSize(CodeGenFunction & CGF,unsigned Index)15465 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
15466 const unsigned XOffset = 12;
15467 auto *DP = EmitAMDGPUDispatchPtr(CGF);
15468 // Indexing the HSA kernel_dispatch_packet struct.
15469 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
15470 auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
15471 auto *DstTy =
15472 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15473 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15474 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4)));
15475 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15476 llvm::MDNode::get(CGF.getLLVMContext(), None));
15477 return LD;
15478 }
15479 } // namespace
15480
15481 // For processing memory ordering and memory scope arguments of various
15482 // amdgcn builtins.
15483 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
15484 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
15485 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
15486 // specific SyncScopeID and writes it to \p SSID.
ProcessOrderScopeAMDGCN(Value * Order,Value * Scope,llvm::AtomicOrdering & AO,llvm::SyncScope::ID & SSID)15487 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
15488 llvm::AtomicOrdering &AO,
15489 llvm::SyncScope::ID &SSID) {
15490 if (isa<llvm::ConstantInt>(Order)) {
15491 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
15492
15493 // Map C11/C++11 memory ordering to LLVM memory ordering
15494 assert(llvm::isValidAtomicOrderingCABI(ord));
15495 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
15496 case llvm::AtomicOrderingCABI::acquire:
15497 case llvm::AtomicOrderingCABI::consume:
15498 AO = llvm::AtomicOrdering::Acquire;
15499 break;
15500 case llvm::AtomicOrderingCABI::release:
15501 AO = llvm::AtomicOrdering::Release;
15502 break;
15503 case llvm::AtomicOrderingCABI::acq_rel:
15504 AO = llvm::AtomicOrdering::AcquireRelease;
15505 break;
15506 case llvm::AtomicOrderingCABI::seq_cst:
15507 AO = llvm::AtomicOrdering::SequentiallyConsistent;
15508 break;
15509 case llvm::AtomicOrderingCABI::relaxed:
15510 AO = llvm::AtomicOrdering::Monotonic;
15511 break;
15512 }
15513
15514 StringRef scp;
15515 llvm::getConstantStringInfo(Scope, scp);
15516 SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
15517 return true;
15518 }
15519 return false;
15520 }
15521
EmitAMDGPUBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15522 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
15523 const CallExpr *E) {
15524 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
15525 llvm::SyncScope::ID SSID;
15526 switch (BuiltinID) {
15527 case AMDGPU::BI__builtin_amdgcn_div_scale:
15528 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
15529 // Translate from the intrinsics's struct return to the builtin's out
15530 // argument.
15531
15532 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
15533
15534 llvm::Value *X = EmitScalarExpr(E->getArg(0));
15535 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
15536 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
15537
15538 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
15539 X->getType());
15540
15541 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
15542
15543 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
15544 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
15545
15546 llvm::Type *RealFlagType
15547 = FlagOutPtr.getPointer()->getType()->getPointerElementType();
15548
15549 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
15550 Builder.CreateStore(FlagExt, FlagOutPtr);
15551 return Result;
15552 }
15553 case AMDGPU::BI__builtin_amdgcn_div_fmas:
15554 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
15555 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15556 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15557 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15558 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15559
15560 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
15561 Src0->getType());
15562 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
15563 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
15564 }
15565
15566 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
15567 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
15568 case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
15569 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
15570 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
15571 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
15572 llvm::SmallVector<llvm::Value *, 6> Args;
15573 for (unsigned I = 0; I != E->getNumArgs(); ++I)
15574 Args.push_back(EmitScalarExpr(E->getArg(I)));
15575 assert(Args.size() == 5 || Args.size() == 6);
15576 if (Args.size() == 5)
15577 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
15578 Function *F =
15579 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
15580 return Builder.CreateCall(F, Args);
15581 }
15582 case AMDGPU::BI__builtin_amdgcn_div_fixup:
15583 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
15584 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
15585 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
15586 case AMDGPU::BI__builtin_amdgcn_trig_preop:
15587 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
15588 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
15589 case AMDGPU::BI__builtin_amdgcn_rcp:
15590 case AMDGPU::BI__builtin_amdgcn_rcpf:
15591 case AMDGPU::BI__builtin_amdgcn_rcph:
15592 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
15593 case AMDGPU::BI__builtin_amdgcn_sqrt:
15594 case AMDGPU::BI__builtin_amdgcn_sqrtf:
15595 case AMDGPU::BI__builtin_amdgcn_sqrth:
15596 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
15597 case AMDGPU::BI__builtin_amdgcn_rsq:
15598 case AMDGPU::BI__builtin_amdgcn_rsqf:
15599 case AMDGPU::BI__builtin_amdgcn_rsqh:
15600 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
15601 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
15602 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
15603 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
15604 case AMDGPU::BI__builtin_amdgcn_sinf:
15605 case AMDGPU::BI__builtin_amdgcn_sinh:
15606 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
15607 case AMDGPU::BI__builtin_amdgcn_cosf:
15608 case AMDGPU::BI__builtin_amdgcn_cosh:
15609 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
15610 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
15611 return EmitAMDGPUDispatchPtr(*this, E);
15612 case AMDGPU::BI__builtin_amdgcn_log_clampf:
15613 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
15614 case AMDGPU::BI__builtin_amdgcn_ldexp:
15615 case AMDGPU::BI__builtin_amdgcn_ldexpf:
15616 case AMDGPU::BI__builtin_amdgcn_ldexph:
15617 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
15618 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
15619 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
15620 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
15621 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
15622 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
15623 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
15624 Value *Src0 = EmitScalarExpr(E->getArg(0));
15625 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15626 { Builder.getInt32Ty(), Src0->getType() });
15627 return Builder.CreateCall(F, Src0);
15628 }
15629 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
15630 Value *Src0 = EmitScalarExpr(E->getArg(0));
15631 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15632 { Builder.getInt16Ty(), Src0->getType() });
15633 return Builder.CreateCall(F, Src0);
15634 }
15635 case AMDGPU::BI__builtin_amdgcn_fract:
15636 case AMDGPU::BI__builtin_amdgcn_fractf:
15637 case AMDGPU::BI__builtin_amdgcn_fracth:
15638 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
15639 case AMDGPU::BI__builtin_amdgcn_lerp:
15640 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
15641 case AMDGPU::BI__builtin_amdgcn_ubfe:
15642 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
15643 case AMDGPU::BI__builtin_amdgcn_sbfe:
15644 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
15645 case AMDGPU::BI__builtin_amdgcn_uicmp:
15646 case AMDGPU::BI__builtin_amdgcn_uicmpl:
15647 case AMDGPU::BI__builtin_amdgcn_sicmp:
15648 case AMDGPU::BI__builtin_amdgcn_sicmpl: {
15649 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15650 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15651 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15652
15653 // FIXME-GFX10: How should 32 bit mask be handled?
15654 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
15655 { Builder.getInt64Ty(), Src0->getType() });
15656 return Builder.CreateCall(F, { Src0, Src1, Src2 });
15657 }
15658 case AMDGPU::BI__builtin_amdgcn_fcmp:
15659 case AMDGPU::BI__builtin_amdgcn_fcmpf: {
15660 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15661 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15662 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15663
15664 // FIXME-GFX10: How should 32 bit mask be handled?
15665 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
15666 { Builder.getInt64Ty(), Src0->getType() });
15667 return Builder.CreateCall(F, { Src0, Src1, Src2 });
15668 }
15669 case AMDGPU::BI__builtin_amdgcn_class:
15670 case AMDGPU::BI__builtin_amdgcn_classf:
15671 case AMDGPU::BI__builtin_amdgcn_classh:
15672 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
15673 case AMDGPU::BI__builtin_amdgcn_fmed3f:
15674 case AMDGPU::BI__builtin_amdgcn_fmed3h:
15675 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
15676 case AMDGPU::BI__builtin_amdgcn_ds_append:
15677 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
15678 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
15679 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
15680 Value *Src0 = EmitScalarExpr(E->getArg(0));
15681 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
15682 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
15683 }
15684 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15685 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15686 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
15687 Intrinsic::ID Intrin;
15688 switch (BuiltinID) {
15689 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15690 Intrin = Intrinsic::amdgcn_ds_fadd;
15691 break;
15692 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15693 Intrin = Intrinsic::amdgcn_ds_fmin;
15694 break;
15695 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
15696 Intrin = Intrinsic::amdgcn_ds_fmax;
15697 break;
15698 }
15699 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15700 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15701 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15702 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15703 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
15704 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
15705 llvm::FunctionType *FTy = F->getFunctionType();
15706 llvm::Type *PTy = FTy->getParamType(0);
15707 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
15708 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
15709 }
15710 case AMDGPU::BI__builtin_amdgcn_read_exec: {
15711 CallInst *CI = cast<CallInst>(
15712 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
15713 CI->setConvergent();
15714 return CI;
15715 }
15716 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
15717 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
15718 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
15719 "exec_lo" : "exec_hi";
15720 CallInst *CI = cast<CallInst>(
15721 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
15722 CI->setConvergent();
15723 return CI;
15724 }
15725 // amdgcn workitem
15726 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
15727 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
15728 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
15729 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
15730 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
15731 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
15732
15733 // amdgcn workgroup size
15734 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
15735 return EmitAMDGPUWorkGroupSize(*this, 0);
15736 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
15737 return EmitAMDGPUWorkGroupSize(*this, 1);
15738 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
15739 return EmitAMDGPUWorkGroupSize(*this, 2);
15740
15741 // amdgcn grid size
15742 case AMDGPU::BI__builtin_amdgcn_grid_size_x:
15743 return EmitAMDGPUGridSize(*this, 0);
15744 case AMDGPU::BI__builtin_amdgcn_grid_size_y:
15745 return EmitAMDGPUGridSize(*this, 1);
15746 case AMDGPU::BI__builtin_amdgcn_grid_size_z:
15747 return EmitAMDGPUGridSize(*this, 2);
15748
15749 // r600 intrinsics
15750 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
15751 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
15752 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
15753 case AMDGPU::BI__builtin_r600_read_tidig_x:
15754 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
15755 case AMDGPU::BI__builtin_r600_read_tidig_y:
15756 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
15757 case AMDGPU::BI__builtin_r600_read_tidig_z:
15758 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
15759 case AMDGPU::BI__builtin_amdgcn_alignbit: {
15760 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15761 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15762 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15763 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
15764 return Builder.CreateCall(F, { Src0, Src1, Src2 });
15765 }
15766
15767 case AMDGPU::BI__builtin_amdgcn_fence: {
15768 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
15769 EmitScalarExpr(E->getArg(1)), AO, SSID))
15770 return Builder.CreateFence(AO, SSID);
15771 LLVM_FALLTHROUGH;
15772 }
15773 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15774 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15775 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15776 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
15777 unsigned BuiltinAtomicOp;
15778 llvm::Type *ResultType = ConvertType(E->getType());
15779
15780 switch (BuiltinID) {
15781 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15782 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15783 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
15784 break;
15785 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15786 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
15787 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
15788 break;
15789 }
15790
15791 Value *Ptr = EmitScalarExpr(E->getArg(0));
15792 Value *Val = EmitScalarExpr(E->getArg(1));
15793
15794 llvm::Function *F =
15795 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
15796
15797 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
15798 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
15799
15800 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
15801 // scope as unsigned values
15802 Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
15803 Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
15804
15805 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
15806 bool Volatile =
15807 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
15808 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
15809
15810 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
15811 }
15812 LLVM_FALLTHROUGH;
15813 }
15814 default:
15815 return nullptr;
15816 }
15817 }
15818
15819 /// Handle a SystemZ function in which the final argument is a pointer
15820 /// to an int that receives the post-instruction CC value. At the LLVM level
15821 /// this is represented as a function that returns a {result, cc} pair.
EmitSystemZIntrinsicWithCC(CodeGenFunction & CGF,unsigned IntrinsicID,const CallExpr * E)15822 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
15823 unsigned IntrinsicID,
15824 const CallExpr *E) {
15825 unsigned NumArgs = E->getNumArgs() - 1;
15826 SmallVector<Value *, 8> Args(NumArgs);
15827 for (unsigned I = 0; I < NumArgs; ++I)
15828 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
15829 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
15830 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
15831 Value *Call = CGF.Builder.CreateCall(F, Args);
15832 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
15833 CGF.Builder.CreateStore(CC, CCPtr);
15834 return CGF.Builder.CreateExtractValue(Call, 0);
15835 }
15836
EmitSystemZBuiltinExpr(unsigned BuiltinID,const CallExpr * E)15837 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
15838 const CallExpr *E) {
15839 switch (BuiltinID) {
15840 case SystemZ::BI__builtin_tbegin: {
15841 Value *TDB = EmitScalarExpr(E->getArg(0));
15842 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15843 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
15844 return Builder.CreateCall(F, {TDB, Control});
15845 }
15846 case SystemZ::BI__builtin_tbegin_nofloat: {
15847 Value *TDB = EmitScalarExpr(E->getArg(0));
15848 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15849 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
15850 return Builder.CreateCall(F, {TDB, Control});
15851 }
15852 case SystemZ::BI__builtin_tbeginc: {
15853 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
15854 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
15855 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
15856 return Builder.CreateCall(F, {TDB, Control});
15857 }
15858 case SystemZ::BI__builtin_tabort: {
15859 Value *Data = EmitScalarExpr(E->getArg(0));
15860 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
15861 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
15862 }
15863 case SystemZ::BI__builtin_non_tx_store: {
15864 Value *Address = EmitScalarExpr(E->getArg(0));
15865 Value *Data = EmitScalarExpr(E->getArg(1));
15866 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
15867 return Builder.CreateCall(F, {Data, Address});
15868 }
15869
15870 // Vector builtins. Note that most vector builtins are mapped automatically
15871 // to target-specific LLVM intrinsics. The ones handled specially here can
15872 // be represented via standard LLVM IR, which is preferable to enable common
15873 // LLVM optimizations.
15874
15875 case SystemZ::BI__builtin_s390_vpopctb:
15876 case SystemZ::BI__builtin_s390_vpopcth:
15877 case SystemZ::BI__builtin_s390_vpopctf:
15878 case SystemZ::BI__builtin_s390_vpopctg: {
15879 llvm::Type *ResultType = ConvertType(E->getType());
15880 Value *X = EmitScalarExpr(E->getArg(0));
15881 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15882 return Builder.CreateCall(F, X);
15883 }
15884
15885 case SystemZ::BI__builtin_s390_vclzb:
15886 case SystemZ::BI__builtin_s390_vclzh:
15887 case SystemZ::BI__builtin_s390_vclzf:
15888 case SystemZ::BI__builtin_s390_vclzg: {
15889 llvm::Type *ResultType = ConvertType(E->getType());
15890 Value *X = EmitScalarExpr(E->getArg(0));
15891 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15892 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15893 return Builder.CreateCall(F, {X, Undef});
15894 }
15895
15896 case SystemZ::BI__builtin_s390_vctzb:
15897 case SystemZ::BI__builtin_s390_vctzh:
15898 case SystemZ::BI__builtin_s390_vctzf:
15899 case SystemZ::BI__builtin_s390_vctzg: {
15900 llvm::Type *ResultType = ConvertType(E->getType());
15901 Value *X = EmitScalarExpr(E->getArg(0));
15902 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15903 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15904 return Builder.CreateCall(F, {X, Undef});
15905 }
15906
15907 case SystemZ::BI__builtin_s390_vfsqsb:
15908 case SystemZ::BI__builtin_s390_vfsqdb: {
15909 llvm::Type *ResultType = ConvertType(E->getType());
15910 Value *X = EmitScalarExpr(E->getArg(0));
15911 if (Builder.getIsFPConstrained()) {
15912 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
15913 return Builder.CreateConstrainedFPCall(F, { X });
15914 } else {
15915 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15916 return Builder.CreateCall(F, X);
15917 }
15918 }
15919 case SystemZ::BI__builtin_s390_vfmasb:
15920 case SystemZ::BI__builtin_s390_vfmadb: {
15921 llvm::Type *ResultType = ConvertType(E->getType());
15922 Value *X = EmitScalarExpr(E->getArg(0));
15923 Value *Y = EmitScalarExpr(E->getArg(1));
15924 Value *Z = EmitScalarExpr(E->getArg(2));
15925 if (Builder.getIsFPConstrained()) {
15926 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15927 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15928 } else {
15929 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15930 return Builder.CreateCall(F, {X, Y, Z});
15931 }
15932 }
15933 case SystemZ::BI__builtin_s390_vfmssb:
15934 case SystemZ::BI__builtin_s390_vfmsdb: {
15935 llvm::Type *ResultType = ConvertType(E->getType());
15936 Value *X = EmitScalarExpr(E->getArg(0));
15937 Value *Y = EmitScalarExpr(E->getArg(1));
15938 Value *Z = EmitScalarExpr(E->getArg(2));
15939 if (Builder.getIsFPConstrained()) {
15940 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15941 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15942 } else {
15943 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15944 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15945 }
15946 }
15947 case SystemZ::BI__builtin_s390_vfnmasb:
15948 case SystemZ::BI__builtin_s390_vfnmadb: {
15949 llvm::Type *ResultType = ConvertType(E->getType());
15950 Value *X = EmitScalarExpr(E->getArg(0));
15951 Value *Y = EmitScalarExpr(E->getArg(1));
15952 Value *Z = EmitScalarExpr(E->getArg(2));
15953 if (Builder.getIsFPConstrained()) {
15954 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15955 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15956 } else {
15957 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15958 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15959 }
15960 }
15961 case SystemZ::BI__builtin_s390_vfnmssb:
15962 case SystemZ::BI__builtin_s390_vfnmsdb: {
15963 llvm::Type *ResultType = ConvertType(E->getType());
15964 Value *X = EmitScalarExpr(E->getArg(0));
15965 Value *Y = EmitScalarExpr(E->getArg(1));
15966 Value *Z = EmitScalarExpr(E->getArg(2));
15967 if (Builder.getIsFPConstrained()) {
15968 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15969 Value *NegZ = Builder.CreateFNeg(Z, "sub");
15970 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
15971 } else {
15972 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15973 Value *NegZ = Builder.CreateFNeg(Z, "neg");
15974 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
15975 }
15976 }
15977 case SystemZ::BI__builtin_s390_vflpsb:
15978 case SystemZ::BI__builtin_s390_vflpdb: {
15979 llvm::Type *ResultType = ConvertType(E->getType());
15980 Value *X = EmitScalarExpr(E->getArg(0));
15981 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15982 return Builder.CreateCall(F, X);
15983 }
15984 case SystemZ::BI__builtin_s390_vflnsb:
15985 case SystemZ::BI__builtin_s390_vflndb: {
15986 llvm::Type *ResultType = ConvertType(E->getType());
15987 Value *X = EmitScalarExpr(E->getArg(0));
15988 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15989 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
15990 }
15991 case SystemZ::BI__builtin_s390_vfisb:
15992 case SystemZ::BI__builtin_s390_vfidb: {
15993 llvm::Type *ResultType = ConvertType(E->getType());
15994 Value *X = EmitScalarExpr(E->getArg(0));
15995 // Constant-fold the M4 and M5 mask arguments.
15996 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
15997 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
15998 // Check whether this instance can be represented via a LLVM standard
15999 // intrinsic. We only support some combinations of M4 and M5.
16000 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16001 Intrinsic::ID CI;
16002 switch (M4.getZExtValue()) {
16003 default: break;
16004 case 0: // IEEE-inexact exception allowed
16005 switch (M5.getZExtValue()) {
16006 default: break;
16007 case 0: ID = Intrinsic::rint;
16008 CI = Intrinsic::experimental_constrained_rint; break;
16009 }
16010 break;
16011 case 4: // IEEE-inexact exception suppressed
16012 switch (M5.getZExtValue()) {
16013 default: break;
16014 case 0: ID = Intrinsic::nearbyint;
16015 CI = Intrinsic::experimental_constrained_nearbyint; break;
16016 case 1: ID = Intrinsic::round;
16017 CI = Intrinsic::experimental_constrained_round; break;
16018 case 5: ID = Intrinsic::trunc;
16019 CI = Intrinsic::experimental_constrained_trunc; break;
16020 case 6: ID = Intrinsic::ceil;
16021 CI = Intrinsic::experimental_constrained_ceil; break;
16022 case 7: ID = Intrinsic::floor;
16023 CI = Intrinsic::experimental_constrained_floor; break;
16024 }
16025 break;
16026 }
16027 if (ID != Intrinsic::not_intrinsic) {
16028 if (Builder.getIsFPConstrained()) {
16029 Function *F = CGM.getIntrinsic(CI, ResultType);
16030 return Builder.CreateConstrainedFPCall(F, X);
16031 } else {
16032 Function *F = CGM.getIntrinsic(ID, ResultType);
16033 return Builder.CreateCall(F, X);
16034 }
16035 }
16036 switch (BuiltinID) { // FIXME: constrained version?
16037 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
16038 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
16039 default: llvm_unreachable("Unknown BuiltinID");
16040 }
16041 Function *F = CGM.getIntrinsic(ID);
16042 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16043 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
16044 return Builder.CreateCall(F, {X, M4Value, M5Value});
16045 }
16046 case SystemZ::BI__builtin_s390_vfmaxsb:
16047 case SystemZ::BI__builtin_s390_vfmaxdb: {
16048 llvm::Type *ResultType = ConvertType(E->getType());
16049 Value *X = EmitScalarExpr(E->getArg(0));
16050 Value *Y = EmitScalarExpr(E->getArg(1));
16051 // Constant-fold the M4 mask argument.
16052 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16053 // Check whether this instance can be represented via a LLVM standard
16054 // intrinsic. We only support some values of M4.
16055 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16056 Intrinsic::ID CI;
16057 switch (M4.getZExtValue()) {
16058 default: break;
16059 case 4: ID = Intrinsic::maxnum;
16060 CI = Intrinsic::experimental_constrained_maxnum; break;
16061 }
16062 if (ID != Intrinsic::not_intrinsic) {
16063 if (Builder.getIsFPConstrained()) {
16064 Function *F = CGM.getIntrinsic(CI, ResultType);
16065 return Builder.CreateConstrainedFPCall(F, {X, Y});
16066 } else {
16067 Function *F = CGM.getIntrinsic(ID, ResultType);
16068 return Builder.CreateCall(F, {X, Y});
16069 }
16070 }
16071 switch (BuiltinID) {
16072 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
16073 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
16074 default: llvm_unreachable("Unknown BuiltinID");
16075 }
16076 Function *F = CGM.getIntrinsic(ID);
16077 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16078 return Builder.CreateCall(F, {X, Y, M4Value});
16079 }
16080 case SystemZ::BI__builtin_s390_vfminsb:
16081 case SystemZ::BI__builtin_s390_vfmindb: {
16082 llvm::Type *ResultType = ConvertType(E->getType());
16083 Value *X = EmitScalarExpr(E->getArg(0));
16084 Value *Y = EmitScalarExpr(E->getArg(1));
16085 // Constant-fold the M4 mask argument.
16086 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16087 // Check whether this instance can be represented via a LLVM standard
16088 // intrinsic. We only support some values of M4.
16089 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16090 Intrinsic::ID CI;
16091 switch (M4.getZExtValue()) {
16092 default: break;
16093 case 4: ID = Intrinsic::minnum;
16094 CI = Intrinsic::experimental_constrained_minnum; break;
16095 }
16096 if (ID != Intrinsic::not_intrinsic) {
16097 if (Builder.getIsFPConstrained()) {
16098 Function *F = CGM.getIntrinsic(CI, ResultType);
16099 return Builder.CreateConstrainedFPCall(F, {X, Y});
16100 } else {
16101 Function *F = CGM.getIntrinsic(ID, ResultType);
16102 return Builder.CreateCall(F, {X, Y});
16103 }
16104 }
16105 switch (BuiltinID) {
16106 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
16107 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
16108 default: llvm_unreachable("Unknown BuiltinID");
16109 }
16110 Function *F = CGM.getIntrinsic(ID);
16111 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16112 return Builder.CreateCall(F, {X, Y, M4Value});
16113 }
16114
16115 case SystemZ::BI__builtin_s390_vlbrh:
16116 case SystemZ::BI__builtin_s390_vlbrf:
16117 case SystemZ::BI__builtin_s390_vlbrg: {
16118 llvm::Type *ResultType = ConvertType(E->getType());
16119 Value *X = EmitScalarExpr(E->getArg(0));
16120 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
16121 return Builder.CreateCall(F, X);
16122 }
16123
16124 // Vector intrinsics that output the post-instruction CC value.
16125
16126 #define INTRINSIC_WITH_CC(NAME) \
16127 case SystemZ::BI__builtin_##NAME: \
16128 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
16129
16130 INTRINSIC_WITH_CC(s390_vpkshs);
16131 INTRINSIC_WITH_CC(s390_vpksfs);
16132 INTRINSIC_WITH_CC(s390_vpksgs);
16133
16134 INTRINSIC_WITH_CC(s390_vpklshs);
16135 INTRINSIC_WITH_CC(s390_vpklsfs);
16136 INTRINSIC_WITH_CC(s390_vpklsgs);
16137
16138 INTRINSIC_WITH_CC(s390_vceqbs);
16139 INTRINSIC_WITH_CC(s390_vceqhs);
16140 INTRINSIC_WITH_CC(s390_vceqfs);
16141 INTRINSIC_WITH_CC(s390_vceqgs);
16142
16143 INTRINSIC_WITH_CC(s390_vchbs);
16144 INTRINSIC_WITH_CC(s390_vchhs);
16145 INTRINSIC_WITH_CC(s390_vchfs);
16146 INTRINSIC_WITH_CC(s390_vchgs);
16147
16148 INTRINSIC_WITH_CC(s390_vchlbs);
16149 INTRINSIC_WITH_CC(s390_vchlhs);
16150 INTRINSIC_WITH_CC(s390_vchlfs);
16151 INTRINSIC_WITH_CC(s390_vchlgs);
16152
16153 INTRINSIC_WITH_CC(s390_vfaebs);
16154 INTRINSIC_WITH_CC(s390_vfaehs);
16155 INTRINSIC_WITH_CC(s390_vfaefs);
16156
16157 INTRINSIC_WITH_CC(s390_vfaezbs);
16158 INTRINSIC_WITH_CC(s390_vfaezhs);
16159 INTRINSIC_WITH_CC(s390_vfaezfs);
16160
16161 INTRINSIC_WITH_CC(s390_vfeebs);
16162 INTRINSIC_WITH_CC(s390_vfeehs);
16163 INTRINSIC_WITH_CC(s390_vfeefs);
16164
16165 INTRINSIC_WITH_CC(s390_vfeezbs);
16166 INTRINSIC_WITH_CC(s390_vfeezhs);
16167 INTRINSIC_WITH_CC(s390_vfeezfs);
16168
16169 INTRINSIC_WITH_CC(s390_vfenebs);
16170 INTRINSIC_WITH_CC(s390_vfenehs);
16171 INTRINSIC_WITH_CC(s390_vfenefs);
16172
16173 INTRINSIC_WITH_CC(s390_vfenezbs);
16174 INTRINSIC_WITH_CC(s390_vfenezhs);
16175 INTRINSIC_WITH_CC(s390_vfenezfs);
16176
16177 INTRINSIC_WITH_CC(s390_vistrbs);
16178 INTRINSIC_WITH_CC(s390_vistrhs);
16179 INTRINSIC_WITH_CC(s390_vistrfs);
16180
16181 INTRINSIC_WITH_CC(s390_vstrcbs);
16182 INTRINSIC_WITH_CC(s390_vstrchs);
16183 INTRINSIC_WITH_CC(s390_vstrcfs);
16184
16185 INTRINSIC_WITH_CC(s390_vstrczbs);
16186 INTRINSIC_WITH_CC(s390_vstrczhs);
16187 INTRINSIC_WITH_CC(s390_vstrczfs);
16188
16189 INTRINSIC_WITH_CC(s390_vfcesbs);
16190 INTRINSIC_WITH_CC(s390_vfcedbs);
16191 INTRINSIC_WITH_CC(s390_vfchsbs);
16192 INTRINSIC_WITH_CC(s390_vfchdbs);
16193 INTRINSIC_WITH_CC(s390_vfchesbs);
16194 INTRINSIC_WITH_CC(s390_vfchedbs);
16195
16196 INTRINSIC_WITH_CC(s390_vftcisb);
16197 INTRINSIC_WITH_CC(s390_vftcidb);
16198
16199 INTRINSIC_WITH_CC(s390_vstrsb);
16200 INTRINSIC_WITH_CC(s390_vstrsh);
16201 INTRINSIC_WITH_CC(s390_vstrsf);
16202
16203 INTRINSIC_WITH_CC(s390_vstrszb);
16204 INTRINSIC_WITH_CC(s390_vstrszh);
16205 INTRINSIC_WITH_CC(s390_vstrszf);
16206
16207 #undef INTRINSIC_WITH_CC
16208
16209 default:
16210 return nullptr;
16211 }
16212 }
16213
16214 namespace {
16215 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
16216 struct NVPTXMmaLdstInfo {
16217 unsigned NumResults; // Number of elements to load/store
16218 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
16219 unsigned IID_col;
16220 unsigned IID_row;
16221 };
16222
16223 #define MMA_INTR(geom_op_type, layout) \
16224 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
16225 #define MMA_LDST(n, geom_op_type) \
16226 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
16227
getNVPTXMmaLdstInfo(unsigned BuiltinID)16228 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
16229 switch (BuiltinID) {
16230 // FP MMA loads
16231 case NVPTX::BI__hmma_m16n16k16_ld_a:
16232 return MMA_LDST(8, m16n16k16_load_a_f16);
16233 case NVPTX::BI__hmma_m16n16k16_ld_b:
16234 return MMA_LDST(8, m16n16k16_load_b_f16);
16235 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16236 return MMA_LDST(4, m16n16k16_load_c_f16);
16237 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16238 return MMA_LDST(8, m16n16k16_load_c_f32);
16239 case NVPTX::BI__hmma_m32n8k16_ld_a:
16240 return MMA_LDST(8, m32n8k16_load_a_f16);
16241 case NVPTX::BI__hmma_m32n8k16_ld_b:
16242 return MMA_LDST(8, m32n8k16_load_b_f16);
16243 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16244 return MMA_LDST(4, m32n8k16_load_c_f16);
16245 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16246 return MMA_LDST(8, m32n8k16_load_c_f32);
16247 case NVPTX::BI__hmma_m8n32k16_ld_a:
16248 return MMA_LDST(8, m8n32k16_load_a_f16);
16249 case NVPTX::BI__hmma_m8n32k16_ld_b:
16250 return MMA_LDST(8, m8n32k16_load_b_f16);
16251 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16252 return MMA_LDST(4, m8n32k16_load_c_f16);
16253 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16254 return MMA_LDST(8, m8n32k16_load_c_f32);
16255
16256 // Integer MMA loads
16257 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16258 return MMA_LDST(2, m16n16k16_load_a_s8);
16259 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16260 return MMA_LDST(2, m16n16k16_load_a_u8);
16261 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16262 return MMA_LDST(2, m16n16k16_load_b_s8);
16263 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16264 return MMA_LDST(2, m16n16k16_load_b_u8);
16265 case NVPTX::BI__imma_m16n16k16_ld_c:
16266 return MMA_LDST(8, m16n16k16_load_c_s32);
16267 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16268 return MMA_LDST(4, m32n8k16_load_a_s8);
16269 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16270 return MMA_LDST(4, m32n8k16_load_a_u8);
16271 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16272 return MMA_LDST(1, m32n8k16_load_b_s8);
16273 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16274 return MMA_LDST(1, m32n8k16_load_b_u8);
16275 case NVPTX::BI__imma_m32n8k16_ld_c:
16276 return MMA_LDST(8, m32n8k16_load_c_s32);
16277 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16278 return MMA_LDST(1, m8n32k16_load_a_s8);
16279 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16280 return MMA_LDST(1, m8n32k16_load_a_u8);
16281 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16282 return MMA_LDST(4, m8n32k16_load_b_s8);
16283 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16284 return MMA_LDST(4, m8n32k16_load_b_u8);
16285 case NVPTX::BI__imma_m8n32k16_ld_c:
16286 return MMA_LDST(8, m8n32k16_load_c_s32);
16287
16288 // Sub-integer MMA loads.
16289 // Only row/col layout is supported by A/B fragments.
16290 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16291 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
16292 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16293 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
16294 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16295 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
16296 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16297 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
16298 case NVPTX::BI__imma_m8n8k32_ld_c:
16299 return MMA_LDST(2, m8n8k32_load_c_s32);
16300 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16301 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
16302 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16303 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
16304 case NVPTX::BI__bmma_m8n8k128_ld_c:
16305 return MMA_LDST(2, m8n8k128_load_c_s32);
16306
16307 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
16308 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
16309 // use fragment C for both loads and stores.
16310 // FP MMA stores.
16311 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16312 return MMA_LDST(4, m16n16k16_store_d_f16);
16313 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16314 return MMA_LDST(8, m16n16k16_store_d_f32);
16315 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16316 return MMA_LDST(4, m32n8k16_store_d_f16);
16317 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16318 return MMA_LDST(8, m32n8k16_store_d_f32);
16319 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16320 return MMA_LDST(4, m8n32k16_store_d_f16);
16321 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16322 return MMA_LDST(8, m8n32k16_store_d_f32);
16323
16324 // Integer and sub-integer MMA stores.
16325 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
16326 // name, integer loads/stores use LLVM's i32.
16327 case NVPTX::BI__imma_m16n16k16_st_c_i32:
16328 return MMA_LDST(8, m16n16k16_store_d_s32);
16329 case NVPTX::BI__imma_m32n8k16_st_c_i32:
16330 return MMA_LDST(8, m32n8k16_store_d_s32);
16331 case NVPTX::BI__imma_m8n32k16_st_c_i32:
16332 return MMA_LDST(8, m8n32k16_store_d_s32);
16333 case NVPTX::BI__imma_m8n8k32_st_c_i32:
16334 return MMA_LDST(2, m8n8k32_store_d_s32);
16335 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
16336 return MMA_LDST(2, m8n8k128_store_d_s32);
16337
16338 default:
16339 llvm_unreachable("Unknown MMA builtin");
16340 }
16341 }
16342 #undef MMA_LDST
16343 #undef MMA_INTR
16344
16345
16346 struct NVPTXMmaInfo {
16347 unsigned NumEltsA;
16348 unsigned NumEltsB;
16349 unsigned NumEltsC;
16350 unsigned NumEltsD;
16351 std::array<unsigned, 8> Variants;
16352
getMMAIntrinsic__anonc37ac5ca0e11::NVPTXMmaInfo16353 unsigned getMMAIntrinsic(int Layout, bool Satf) {
16354 unsigned Index = Layout * 2 + Satf;
16355 if (Index >= Variants.size())
16356 return 0;
16357 return Variants[Index];
16358 }
16359 };
16360
16361 // Returns an intrinsic that matches Layout and Satf for valid combinations of
16362 // Layout and Satf, 0 otherwise.
getNVPTXMmaInfo(unsigned BuiltinID)16363 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
16364 // clang-format off
16365 #define MMA_VARIANTS(geom, type) {{ \
16366 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
16367 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
16368 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
16369 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16370 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
16371 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
16372 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \
16373 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \
16374 }}
16375 // Sub-integer MMA only supports row.col layout.
16376 #define MMA_VARIANTS_I4(geom, type) {{ \
16377 0, \
16378 0, \
16379 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
16380 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16381 0, \
16382 0, \
16383 0, \
16384 0 \
16385 }}
16386 // b1 MMA does not support .satfinite.
16387 #define MMA_VARIANTS_B1(geom, type) {{ \
16388 0, \
16389 0, \
16390 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
16391 0, \
16392 0, \
16393 0, \
16394 0, \
16395 0 \
16396 }}
16397 // clang-format on
16398 switch (BuiltinID) {
16399 // FP MMA
16400 // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
16401 // NumEltsN of return value are ordered as A,B,C,D.
16402 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16403 return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
16404 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16405 return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
16406 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16407 return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
16408 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16409 return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
16410 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16411 return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
16412 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16413 return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
16414 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16415 return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
16416 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16417 return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
16418 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16419 return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
16420 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16421 return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
16422 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16423 return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
16424 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16425 return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
16426
16427 // Integer MMA
16428 case NVPTX::BI__imma_m16n16k16_mma_s8:
16429 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
16430 case NVPTX::BI__imma_m16n16k16_mma_u8:
16431 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
16432 case NVPTX::BI__imma_m32n8k16_mma_s8:
16433 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
16434 case NVPTX::BI__imma_m32n8k16_mma_u8:
16435 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
16436 case NVPTX::BI__imma_m8n32k16_mma_s8:
16437 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
16438 case NVPTX::BI__imma_m8n32k16_mma_u8:
16439 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
16440
16441 // Sub-integer MMA
16442 case NVPTX::BI__imma_m8n8k32_mma_s4:
16443 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
16444 case NVPTX::BI__imma_m8n8k32_mma_u4:
16445 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
16446 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
16447 return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
16448 default:
16449 llvm_unreachable("Unexpected builtin ID.");
16450 }
16451 #undef MMA_VARIANTS
16452 #undef MMA_VARIANTS_I4
16453 #undef MMA_VARIANTS_B1
16454 }
16455
16456 } // namespace
16457
16458 Value *
EmitNVPTXBuiltinExpr(unsigned BuiltinID,const CallExpr * E)16459 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
16460 auto MakeLdg = [&](unsigned IntrinsicID) {
16461 Value *Ptr = EmitScalarExpr(E->getArg(0));
16462 clang::CharUnits Align =
16463 CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
16464 return Builder.CreateCall(
16465 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
16466 Ptr->getType()}),
16467 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
16468 };
16469 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
16470 Value *Ptr = EmitScalarExpr(E->getArg(0));
16471 return Builder.CreateCall(
16472 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
16473 Ptr->getType()}),
16474 {Ptr, EmitScalarExpr(E->getArg(1))});
16475 };
16476 switch (BuiltinID) {
16477 case NVPTX::BI__nvvm_atom_add_gen_i:
16478 case NVPTX::BI__nvvm_atom_add_gen_l:
16479 case NVPTX::BI__nvvm_atom_add_gen_ll:
16480 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
16481
16482 case NVPTX::BI__nvvm_atom_sub_gen_i:
16483 case NVPTX::BI__nvvm_atom_sub_gen_l:
16484 case NVPTX::BI__nvvm_atom_sub_gen_ll:
16485 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
16486
16487 case NVPTX::BI__nvvm_atom_and_gen_i:
16488 case NVPTX::BI__nvvm_atom_and_gen_l:
16489 case NVPTX::BI__nvvm_atom_and_gen_ll:
16490 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
16491
16492 case NVPTX::BI__nvvm_atom_or_gen_i:
16493 case NVPTX::BI__nvvm_atom_or_gen_l:
16494 case NVPTX::BI__nvvm_atom_or_gen_ll:
16495 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
16496
16497 case NVPTX::BI__nvvm_atom_xor_gen_i:
16498 case NVPTX::BI__nvvm_atom_xor_gen_l:
16499 case NVPTX::BI__nvvm_atom_xor_gen_ll:
16500 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
16501
16502 case NVPTX::BI__nvvm_atom_xchg_gen_i:
16503 case NVPTX::BI__nvvm_atom_xchg_gen_l:
16504 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
16505 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
16506
16507 case NVPTX::BI__nvvm_atom_max_gen_i:
16508 case NVPTX::BI__nvvm_atom_max_gen_l:
16509 case NVPTX::BI__nvvm_atom_max_gen_ll:
16510 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
16511
16512 case NVPTX::BI__nvvm_atom_max_gen_ui:
16513 case NVPTX::BI__nvvm_atom_max_gen_ul:
16514 case NVPTX::BI__nvvm_atom_max_gen_ull:
16515 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
16516
16517 case NVPTX::BI__nvvm_atom_min_gen_i:
16518 case NVPTX::BI__nvvm_atom_min_gen_l:
16519 case NVPTX::BI__nvvm_atom_min_gen_ll:
16520 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
16521
16522 case NVPTX::BI__nvvm_atom_min_gen_ui:
16523 case NVPTX::BI__nvvm_atom_min_gen_ul:
16524 case NVPTX::BI__nvvm_atom_min_gen_ull:
16525 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
16526
16527 case NVPTX::BI__nvvm_atom_cas_gen_i:
16528 case NVPTX::BI__nvvm_atom_cas_gen_l:
16529 case NVPTX::BI__nvvm_atom_cas_gen_ll:
16530 // __nvvm_atom_cas_gen_* should return the old value rather than the
16531 // success flag.
16532 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
16533
16534 case NVPTX::BI__nvvm_atom_add_gen_f:
16535 case NVPTX::BI__nvvm_atom_add_gen_d: {
16536 Value *Ptr = EmitScalarExpr(E->getArg(0));
16537 Value *Val = EmitScalarExpr(E->getArg(1));
16538 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
16539 AtomicOrdering::SequentiallyConsistent);
16540 }
16541
16542 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
16543 Value *Ptr = EmitScalarExpr(E->getArg(0));
16544 Value *Val = EmitScalarExpr(E->getArg(1));
16545 Function *FnALI32 =
16546 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
16547 return Builder.CreateCall(FnALI32, {Ptr, Val});
16548 }
16549
16550 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
16551 Value *Ptr = EmitScalarExpr(E->getArg(0));
16552 Value *Val = EmitScalarExpr(E->getArg(1));
16553 Function *FnALD32 =
16554 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
16555 return Builder.CreateCall(FnALD32, {Ptr, Val});
16556 }
16557
16558 case NVPTX::BI__nvvm_ldg_c:
16559 case NVPTX::BI__nvvm_ldg_c2:
16560 case NVPTX::BI__nvvm_ldg_c4:
16561 case NVPTX::BI__nvvm_ldg_s:
16562 case NVPTX::BI__nvvm_ldg_s2:
16563 case NVPTX::BI__nvvm_ldg_s4:
16564 case NVPTX::BI__nvvm_ldg_i:
16565 case NVPTX::BI__nvvm_ldg_i2:
16566 case NVPTX::BI__nvvm_ldg_i4:
16567 case NVPTX::BI__nvvm_ldg_l:
16568 case NVPTX::BI__nvvm_ldg_ll:
16569 case NVPTX::BI__nvvm_ldg_ll2:
16570 case NVPTX::BI__nvvm_ldg_uc:
16571 case NVPTX::BI__nvvm_ldg_uc2:
16572 case NVPTX::BI__nvvm_ldg_uc4:
16573 case NVPTX::BI__nvvm_ldg_us:
16574 case NVPTX::BI__nvvm_ldg_us2:
16575 case NVPTX::BI__nvvm_ldg_us4:
16576 case NVPTX::BI__nvvm_ldg_ui:
16577 case NVPTX::BI__nvvm_ldg_ui2:
16578 case NVPTX::BI__nvvm_ldg_ui4:
16579 case NVPTX::BI__nvvm_ldg_ul:
16580 case NVPTX::BI__nvvm_ldg_ull:
16581 case NVPTX::BI__nvvm_ldg_ull2:
16582 // PTX Interoperability section 2.2: "For a vector with an even number of
16583 // elements, its alignment is set to number of elements times the alignment
16584 // of its member: n*alignof(t)."
16585 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
16586 case NVPTX::BI__nvvm_ldg_f:
16587 case NVPTX::BI__nvvm_ldg_f2:
16588 case NVPTX::BI__nvvm_ldg_f4:
16589 case NVPTX::BI__nvvm_ldg_d:
16590 case NVPTX::BI__nvvm_ldg_d2:
16591 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
16592
16593 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
16594 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
16595 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
16596 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
16597 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
16598 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
16599 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
16600 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
16601 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
16602 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
16603 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
16604 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
16605 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
16606 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
16607 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
16608 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
16609 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
16610 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
16611 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
16612 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
16613 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
16614 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
16615 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
16616 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
16617 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
16618 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
16619 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
16620 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
16621 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
16622 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
16623 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
16624 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
16625 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
16626 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
16627 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
16628 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
16629 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
16630 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
16631 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
16632 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
16633 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
16634 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
16635 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
16636 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
16637 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
16638 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
16639 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
16640 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
16641 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
16642 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
16643 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
16644 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
16645 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
16646 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
16647 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
16648 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
16649 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
16650 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
16651 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
16652 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
16653 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
16654 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
16655 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
16656 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
16657 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
16658 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
16659 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
16660 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
16661 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
16662 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
16663 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
16664 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
16665 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
16666 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
16667 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
16668 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
16669 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
16670 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
16671 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
16672 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
16673 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
16674 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
16675 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
16676 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
16677 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
16678 Value *Ptr = EmitScalarExpr(E->getArg(0));
16679 return Builder.CreateCall(
16680 CGM.getIntrinsic(
16681 Intrinsic::nvvm_atomic_cas_gen_i_cta,
16682 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16683 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16684 }
16685 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
16686 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
16687 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
16688 Value *Ptr = EmitScalarExpr(E->getArg(0));
16689 return Builder.CreateCall(
16690 CGM.getIntrinsic(
16691 Intrinsic::nvvm_atomic_cas_gen_i_sys,
16692 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16693 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16694 }
16695 case NVPTX::BI__nvvm_match_all_sync_i32p:
16696 case NVPTX::BI__nvvm_match_all_sync_i64p: {
16697 Value *Mask = EmitScalarExpr(E->getArg(0));
16698 Value *Val = EmitScalarExpr(E->getArg(1));
16699 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
16700 Value *ResultPair = Builder.CreateCall(
16701 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
16702 ? Intrinsic::nvvm_match_all_sync_i32p
16703 : Intrinsic::nvvm_match_all_sync_i64p),
16704 {Mask, Val});
16705 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
16706 PredOutPtr.getElementType());
16707 Builder.CreateStore(Pred, PredOutPtr);
16708 return Builder.CreateExtractValue(ResultPair, 0);
16709 }
16710
16711 // FP MMA loads
16712 case NVPTX::BI__hmma_m16n16k16_ld_a:
16713 case NVPTX::BI__hmma_m16n16k16_ld_b:
16714 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16715 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16716 case NVPTX::BI__hmma_m32n8k16_ld_a:
16717 case NVPTX::BI__hmma_m32n8k16_ld_b:
16718 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16719 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16720 case NVPTX::BI__hmma_m8n32k16_ld_a:
16721 case NVPTX::BI__hmma_m8n32k16_ld_b:
16722 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16723 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16724 // Integer MMA loads.
16725 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16726 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16727 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16728 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16729 case NVPTX::BI__imma_m16n16k16_ld_c:
16730 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16731 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16732 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16733 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16734 case NVPTX::BI__imma_m32n8k16_ld_c:
16735 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16736 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16737 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16738 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16739 case NVPTX::BI__imma_m8n32k16_ld_c:
16740 // Sub-integer MMA loads.
16741 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16742 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16743 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16744 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16745 case NVPTX::BI__imma_m8n8k32_ld_c:
16746 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16747 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16748 case NVPTX::BI__bmma_m8n8k128_ld_c:
16749 {
16750 Address Dst = EmitPointerWithAlignment(E->getArg(0));
16751 Value *Src = EmitScalarExpr(E->getArg(1));
16752 Value *Ldm = EmitScalarExpr(E->getArg(2));
16753 Optional<llvm::APSInt> isColMajorArg =
16754 E->getArg(3)->getIntegerConstantExpr(getContext());
16755 if (!isColMajorArg)
16756 return nullptr;
16757 bool isColMajor = isColMajorArg->getSExtValue();
16758 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16759 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16760 if (IID == 0)
16761 return nullptr;
16762
16763 Value *Result =
16764 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
16765
16766 // Save returned values.
16767 assert(II.NumResults);
16768 if (II.NumResults == 1) {
16769 Builder.CreateAlignedStore(Result, Dst.getPointer(),
16770 CharUnits::fromQuantity(4));
16771 } else {
16772 for (unsigned i = 0; i < II.NumResults; ++i) {
16773 Builder.CreateAlignedStore(
16774 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
16775 Dst.getElementType()),
16776 Builder.CreateGEP(Dst.getPointer(),
16777 llvm::ConstantInt::get(IntTy, i)),
16778 CharUnits::fromQuantity(4));
16779 }
16780 }
16781 return Result;
16782 }
16783
16784 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16785 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16786 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16787 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16788 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16789 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16790 case NVPTX::BI__imma_m16n16k16_st_c_i32:
16791 case NVPTX::BI__imma_m32n8k16_st_c_i32:
16792 case NVPTX::BI__imma_m8n32k16_st_c_i32:
16793 case NVPTX::BI__imma_m8n8k32_st_c_i32:
16794 case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
16795 Value *Dst = EmitScalarExpr(E->getArg(0));
16796 Address Src = EmitPointerWithAlignment(E->getArg(1));
16797 Value *Ldm = EmitScalarExpr(E->getArg(2));
16798 Optional<llvm::APSInt> isColMajorArg =
16799 E->getArg(3)->getIntegerConstantExpr(getContext());
16800 if (!isColMajorArg)
16801 return nullptr;
16802 bool isColMajor = isColMajorArg->getSExtValue();
16803 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16804 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16805 if (IID == 0)
16806 return nullptr;
16807 Function *Intrinsic =
16808 CGM.getIntrinsic(IID, Dst->getType());
16809 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
16810 SmallVector<Value *, 10> Values = {Dst};
16811 for (unsigned i = 0; i < II.NumResults; ++i) {
16812 Value *V = Builder.CreateAlignedLoad(
16813 Src.getElementType(),
16814 Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
16815 llvm::ConstantInt::get(IntTy, i)),
16816 CharUnits::fromQuantity(4));
16817 Values.push_back(Builder.CreateBitCast(V, ParamType));
16818 }
16819 Values.push_back(Ldm);
16820 Value *Result = Builder.CreateCall(Intrinsic, Values);
16821 return Result;
16822 }
16823
16824 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
16825 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
16826 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16827 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16828 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16829 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16830 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16831 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16832 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16833 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16834 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16835 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16836 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16837 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16838 case NVPTX::BI__imma_m16n16k16_mma_s8:
16839 case NVPTX::BI__imma_m16n16k16_mma_u8:
16840 case NVPTX::BI__imma_m32n8k16_mma_s8:
16841 case NVPTX::BI__imma_m32n8k16_mma_u8:
16842 case NVPTX::BI__imma_m8n32k16_mma_s8:
16843 case NVPTX::BI__imma_m8n32k16_mma_u8:
16844 case NVPTX::BI__imma_m8n8k32_mma_s4:
16845 case NVPTX::BI__imma_m8n8k32_mma_u4:
16846 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
16847 Address Dst = EmitPointerWithAlignment(E->getArg(0));
16848 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
16849 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
16850 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
16851 Optional<llvm::APSInt> LayoutArg =
16852 E->getArg(4)->getIntegerConstantExpr(getContext());
16853 if (!LayoutArg)
16854 return nullptr;
16855 int Layout = LayoutArg->getSExtValue();
16856 if (Layout < 0 || Layout > 3)
16857 return nullptr;
16858 llvm::APSInt SatfArg;
16859 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
16860 SatfArg = 0; // .b1 does not have satf argument.
16861 else if (Optional<llvm::APSInt> OptSatfArg =
16862 E->getArg(5)->getIntegerConstantExpr(getContext()))
16863 SatfArg = *OptSatfArg;
16864 else
16865 return nullptr;
16866 bool Satf = SatfArg.getSExtValue();
16867 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
16868 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
16869 if (IID == 0) // Unsupported combination of Layout/Satf.
16870 return nullptr;
16871
16872 SmallVector<Value *, 24> Values;
16873 Function *Intrinsic = CGM.getIntrinsic(IID);
16874 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
16875 // Load A
16876 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
16877 Value *V = Builder.CreateAlignedLoad(
16878 SrcA.getElementType(),
16879 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
16880 llvm::ConstantInt::get(IntTy, i)),
16881 CharUnits::fromQuantity(4));
16882 Values.push_back(Builder.CreateBitCast(V, AType));
16883 }
16884 // Load B
16885 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
16886 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
16887 Value *V = Builder.CreateAlignedLoad(
16888 SrcB.getElementType(),
16889 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
16890 llvm::ConstantInt::get(IntTy, i)),
16891 CharUnits::fromQuantity(4));
16892 Values.push_back(Builder.CreateBitCast(V, BType));
16893 }
16894 // Load C
16895 llvm::Type *CType =
16896 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
16897 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
16898 Value *V = Builder.CreateAlignedLoad(
16899 SrcC.getElementType(),
16900 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
16901 llvm::ConstantInt::get(IntTy, i)),
16902 CharUnits::fromQuantity(4));
16903 Values.push_back(Builder.CreateBitCast(V, CType));
16904 }
16905 Value *Result = Builder.CreateCall(Intrinsic, Values);
16906 llvm::Type *DType = Dst.getElementType();
16907 for (unsigned i = 0; i < MI.NumEltsD; ++i)
16908 Builder.CreateAlignedStore(
16909 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
16910 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
16911 CharUnits::fromQuantity(4));
16912 return Result;
16913 }
16914 default:
16915 return nullptr;
16916 }
16917 }
16918
16919 namespace {
16920 struct BuiltinAlignArgs {
16921 llvm::Value *Src = nullptr;
16922 llvm::Type *SrcType = nullptr;
16923 llvm::Value *Alignment = nullptr;
16924 llvm::Value *Mask = nullptr;
16925 llvm::IntegerType *IntType = nullptr;
16926
BuiltinAlignArgs__anonc37ac5ca1111::BuiltinAlignArgs16927 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
16928 QualType AstType = E->getArg(0)->getType();
16929 if (AstType->isArrayType())
16930 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
16931 else
16932 Src = CGF.EmitScalarExpr(E->getArg(0));
16933 SrcType = Src->getType();
16934 if (SrcType->isPointerTy()) {
16935 IntType = IntegerType::get(
16936 CGF.getLLVMContext(),
16937 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
16938 } else {
16939 assert(SrcType->isIntegerTy());
16940 IntType = cast<llvm::IntegerType>(SrcType);
16941 }
16942 Alignment = CGF.EmitScalarExpr(E->getArg(1));
16943 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
16944 auto *One = llvm::ConstantInt::get(IntType, 1);
16945 Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
16946 }
16947 };
16948 } // namespace
16949
16950 /// Generate (x & (y-1)) == 0.
EmitBuiltinIsAligned(const CallExpr * E)16951 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
16952 BuiltinAlignArgs Args(E, *this);
16953 llvm::Value *SrcAddress = Args.Src;
16954 if (Args.SrcType->isPointerTy())
16955 SrcAddress =
16956 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
16957 return RValue::get(Builder.CreateICmpEQ(
16958 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
16959 llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
16960 }
16961
16962 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
16963 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
16964 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
16965 /// TODO: actually use ptrmask once most optimization passes know about it.
EmitBuiltinAlignTo(const CallExpr * E,bool AlignUp)16966 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
16967 BuiltinAlignArgs Args(E, *this);
16968 llvm::Value *SrcAddr = Args.Src;
16969 if (Args.Src->getType()->isPointerTy())
16970 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
16971 llvm::Value *SrcForMask = SrcAddr;
16972 if (AlignUp) {
16973 // When aligning up we have to first add the mask to ensure we go over the
16974 // next alignment value and then align down to the next valid multiple.
16975 // By adding the mask, we ensure that align_up on an already aligned
16976 // value will not change the value.
16977 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
16978 }
16979 // Invert the mask to only clear the lower bits.
16980 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
16981 llvm::Value *Result =
16982 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
16983 if (Args.Src->getType()->isPointerTy()) {
16984 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
16985 // Result = Builder.CreateIntrinsic(
16986 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
16987 // {SrcForMask, NegatedMask}, nullptr, "aligned_result");
16988 Result->setName("aligned_intptr");
16989 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
16990 // The result must point to the same underlying allocation. This means we
16991 // can use an inbounds GEP to enable better optimization.
16992 Value *Base = EmitCastToVoidPtr(Args.Src);
16993 if (getLangOpts().isSignedOverflowDefined())
16994 Result = Builder.CreateGEP(Base, Difference, "aligned_result");
16995 else
16996 Result = EmitCheckedInBoundsGEP(Base, Difference,
16997 /*SignedIndices=*/true,
16998 /*isSubtraction=*/!AlignUp,
16999 E->getExprLoc(), "aligned_result");
17000 Result = Builder.CreatePointerCast(Result, Args.SrcType);
17001 // Emit an alignment assumption to ensure that the new alignment is
17002 // propagated to loads/stores, etc.
17003 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
17004 }
17005 assert(Result->getType() == Args.SrcType);
17006 return RValue::get(Result);
17007 }
17008
EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,const CallExpr * E)17009 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
17010 const CallExpr *E) {
17011 switch (BuiltinID) {
17012 case WebAssembly::BI__builtin_wasm_memory_size: {
17013 llvm::Type *ResultType = ConvertType(E->getType());
17014 Value *I = EmitScalarExpr(E->getArg(0));
17015 Function *Callee =
17016 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
17017 return Builder.CreateCall(Callee, I);
17018 }
17019 case WebAssembly::BI__builtin_wasm_memory_grow: {
17020 llvm::Type *ResultType = ConvertType(E->getType());
17021 Value *Args[] = {EmitScalarExpr(E->getArg(0)),
17022 EmitScalarExpr(E->getArg(1))};
17023 Function *Callee =
17024 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
17025 return Builder.CreateCall(Callee, Args);
17026 }
17027 case WebAssembly::BI__builtin_wasm_tls_size: {
17028 llvm::Type *ResultType = ConvertType(E->getType());
17029 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
17030 return Builder.CreateCall(Callee);
17031 }
17032 case WebAssembly::BI__builtin_wasm_tls_align: {
17033 llvm::Type *ResultType = ConvertType(E->getType());
17034 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
17035 return Builder.CreateCall(Callee);
17036 }
17037 case WebAssembly::BI__builtin_wasm_tls_base: {
17038 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
17039 return Builder.CreateCall(Callee);
17040 }
17041 case WebAssembly::BI__builtin_wasm_throw: {
17042 Value *Tag = EmitScalarExpr(E->getArg(0));
17043 Value *Obj = EmitScalarExpr(E->getArg(1));
17044 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
17045 return Builder.CreateCall(Callee, {Tag, Obj});
17046 }
17047 case WebAssembly::BI__builtin_wasm_rethrow: {
17048 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
17049 return Builder.CreateCall(Callee);
17050 }
17051 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
17052 Value *Addr = EmitScalarExpr(E->getArg(0));
17053 Value *Expected = EmitScalarExpr(E->getArg(1));
17054 Value *Timeout = EmitScalarExpr(E->getArg(2));
17055 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
17056 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17057 }
17058 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
17059 Value *Addr = EmitScalarExpr(E->getArg(0));
17060 Value *Expected = EmitScalarExpr(E->getArg(1));
17061 Value *Timeout = EmitScalarExpr(E->getArg(2));
17062 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
17063 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17064 }
17065 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
17066 Value *Addr = EmitScalarExpr(E->getArg(0));
17067 Value *Count = EmitScalarExpr(E->getArg(1));
17068 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
17069 return Builder.CreateCall(Callee, {Addr, Count});
17070 }
17071 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
17072 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
17073 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
17074 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
17075 Value *Src = EmitScalarExpr(E->getArg(0));
17076 llvm::Type *ResT = ConvertType(E->getType());
17077 Function *Callee =
17078 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
17079 return Builder.CreateCall(Callee, {Src});
17080 }
17081 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
17082 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
17083 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
17084 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
17085 Value *Src = EmitScalarExpr(E->getArg(0));
17086 llvm::Type *ResT = ConvertType(E->getType());
17087 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
17088 {ResT, Src->getType()});
17089 return Builder.CreateCall(Callee, {Src});
17090 }
17091 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
17092 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
17093 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
17094 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
17095 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
17096 Value *Src = EmitScalarExpr(E->getArg(0));
17097 llvm::Type *ResT = ConvertType(E->getType());
17098 Function *Callee =
17099 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
17100 return Builder.CreateCall(Callee, {Src});
17101 }
17102 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
17103 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
17104 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
17105 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
17106 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
17107 Value *Src = EmitScalarExpr(E->getArg(0));
17108 llvm::Type *ResT = ConvertType(E->getType());
17109 Function *Callee =
17110 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
17111 return Builder.CreateCall(Callee, {Src});
17112 }
17113 case WebAssembly::BI__builtin_wasm_min_f32:
17114 case WebAssembly::BI__builtin_wasm_min_f64:
17115 case WebAssembly::BI__builtin_wasm_min_f32x4:
17116 case WebAssembly::BI__builtin_wasm_min_f64x2: {
17117 Value *LHS = EmitScalarExpr(E->getArg(0));
17118 Value *RHS = EmitScalarExpr(E->getArg(1));
17119 Function *Callee =
17120 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
17121 return Builder.CreateCall(Callee, {LHS, RHS});
17122 }
17123 case WebAssembly::BI__builtin_wasm_max_f32:
17124 case WebAssembly::BI__builtin_wasm_max_f64:
17125 case WebAssembly::BI__builtin_wasm_max_f32x4:
17126 case WebAssembly::BI__builtin_wasm_max_f64x2: {
17127 Value *LHS = EmitScalarExpr(E->getArg(0));
17128 Value *RHS = EmitScalarExpr(E->getArg(1));
17129 Function *Callee =
17130 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
17131 return Builder.CreateCall(Callee, {LHS, RHS});
17132 }
17133 case WebAssembly::BI__builtin_wasm_pmin_f32x4:
17134 case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
17135 Value *LHS = EmitScalarExpr(E->getArg(0));
17136 Value *RHS = EmitScalarExpr(E->getArg(1));
17137 Function *Callee =
17138 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
17139 return Builder.CreateCall(Callee, {LHS, RHS});
17140 }
17141 case WebAssembly::BI__builtin_wasm_pmax_f32x4:
17142 case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
17143 Value *LHS = EmitScalarExpr(E->getArg(0));
17144 Value *RHS = EmitScalarExpr(E->getArg(1));
17145 Function *Callee =
17146 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
17147 return Builder.CreateCall(Callee, {LHS, RHS});
17148 }
17149 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17150 case WebAssembly::BI__builtin_wasm_floor_f32x4:
17151 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17152 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17153 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17154 case WebAssembly::BI__builtin_wasm_floor_f64x2:
17155 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17156 case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
17157 unsigned IntNo;
17158 switch (BuiltinID) {
17159 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17160 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17161 IntNo = Intrinsic::ceil;
17162 break;
17163 case WebAssembly::BI__builtin_wasm_floor_f32x4:
17164 case WebAssembly::BI__builtin_wasm_floor_f64x2:
17165 IntNo = Intrinsic::floor;
17166 break;
17167 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17168 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17169 IntNo = Intrinsic::trunc;
17170 break;
17171 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17172 case WebAssembly::BI__builtin_wasm_nearest_f64x2:
17173 IntNo = Intrinsic::nearbyint;
17174 break;
17175 default:
17176 llvm_unreachable("unexpected builtin ID");
17177 }
17178 Value *Value = EmitScalarExpr(E->getArg(0));
17179 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17180 return Builder.CreateCall(Callee, Value);
17181 }
17182 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
17183 Value *Src = EmitScalarExpr(E->getArg(0));
17184 Value *Indices = EmitScalarExpr(E->getArg(1));
17185 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
17186 return Builder.CreateCall(Callee, {Src, Indices});
17187 }
17188 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
17189 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
17190 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
17191 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
17192 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
17193 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
17194 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
17195 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
17196 llvm::APSInt LaneConst =
17197 *E->getArg(1)->getIntegerConstantExpr(getContext());
17198 Value *Vec = EmitScalarExpr(E->getArg(0));
17199 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
17200 Value *Extract = Builder.CreateExtractElement(Vec, Lane);
17201 switch (BuiltinID) {
17202 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
17203 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
17204 return Builder.CreateSExt(Extract, ConvertType(E->getType()));
17205 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
17206 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
17207 return Builder.CreateZExt(Extract, ConvertType(E->getType()));
17208 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
17209 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
17210 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
17211 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
17212 return Extract;
17213 default:
17214 llvm_unreachable("unexpected builtin ID");
17215 }
17216 }
17217 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
17218 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
17219 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
17220 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
17221 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
17222 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
17223 llvm::APSInt LaneConst =
17224 *E->getArg(1)->getIntegerConstantExpr(getContext());
17225 Value *Vec = EmitScalarExpr(E->getArg(0));
17226 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
17227 Value *Val = EmitScalarExpr(E->getArg(2));
17228 switch (BuiltinID) {
17229 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
17230 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
17231 llvm::Type *ElemType =
17232 cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType();
17233 Value *Trunc = Builder.CreateTrunc(Val, ElemType);
17234 return Builder.CreateInsertElement(Vec, Trunc, Lane);
17235 }
17236 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
17237 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
17238 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
17239 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
17240 return Builder.CreateInsertElement(Vec, Val, Lane);
17241 default:
17242 llvm_unreachable("unexpected builtin ID");
17243 }
17244 }
17245 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17246 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17247 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17248 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17249 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17250 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17251 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17252 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
17253 unsigned IntNo;
17254 switch (BuiltinID) {
17255 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17256 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17257 IntNo = Intrinsic::sadd_sat;
17258 break;
17259 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17260 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17261 IntNo = Intrinsic::uadd_sat;
17262 break;
17263 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17264 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17265 IntNo = Intrinsic::wasm_sub_sat_signed;
17266 break;
17267 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17268 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
17269 IntNo = Intrinsic::wasm_sub_sat_unsigned;
17270 break;
17271 default:
17272 llvm_unreachable("unexpected builtin ID");
17273 }
17274 Value *LHS = EmitScalarExpr(E->getArg(0));
17275 Value *RHS = EmitScalarExpr(E->getArg(1));
17276 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17277 return Builder.CreateCall(Callee, {LHS, RHS});
17278 }
17279 case WebAssembly::BI__builtin_wasm_abs_i8x16:
17280 case WebAssembly::BI__builtin_wasm_abs_i16x8:
17281 case WebAssembly::BI__builtin_wasm_abs_i32x4:
17282 case WebAssembly::BI__builtin_wasm_abs_i64x2: {
17283 Value *Vec = EmitScalarExpr(E->getArg(0));
17284 Value *Neg = Builder.CreateNeg(Vec, "neg");
17285 Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
17286 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
17287 return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
17288 }
17289 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
17290 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
17291 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
17292 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
17293 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
17294 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
17295 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
17296 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
17297 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
17298 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
17299 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
17300 case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
17301 Value *LHS = EmitScalarExpr(E->getArg(0));
17302 Value *RHS = EmitScalarExpr(E->getArg(1));
17303 Value *ICmp;
17304 switch (BuiltinID) {
17305 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
17306 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
17307 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
17308 ICmp = Builder.CreateICmpSLT(LHS, RHS);
17309 break;
17310 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
17311 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
17312 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
17313 ICmp = Builder.CreateICmpULT(LHS, RHS);
17314 break;
17315 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
17316 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
17317 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
17318 ICmp = Builder.CreateICmpSGT(LHS, RHS);
17319 break;
17320 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
17321 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
17322 case WebAssembly::BI__builtin_wasm_max_u_i32x4:
17323 ICmp = Builder.CreateICmpUGT(LHS, RHS);
17324 break;
17325 default:
17326 llvm_unreachable("unexpected builtin ID");
17327 }
17328 return Builder.CreateSelect(ICmp, LHS, RHS);
17329 }
17330 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
17331 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
17332 Value *LHS = EmitScalarExpr(E->getArg(0));
17333 Value *RHS = EmitScalarExpr(E->getArg(1));
17334 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
17335 ConvertType(E->getType()));
17336 return Builder.CreateCall(Callee, {LHS, RHS});
17337 }
17338 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
17339 Value *LHS = EmitScalarExpr(E->getArg(0));
17340 Value *RHS = EmitScalarExpr(E->getArg(1));
17341 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
17342 return Builder.CreateCall(Callee, {LHS, RHS});
17343 }
17344 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
17345 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
17346 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
17347 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
17348 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
17349 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
17350 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
17351 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
17352 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
17353 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
17354 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
17355 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: {
17356 Value *LHS = EmitScalarExpr(E->getArg(0));
17357 Value *RHS = EmitScalarExpr(E->getArg(1));
17358 unsigned IntNo;
17359 switch (BuiltinID) {
17360 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
17361 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
17362 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
17363 IntNo = Intrinsic::wasm_extmul_low_signed;
17364 break;
17365 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
17366 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
17367 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
17368 IntNo = Intrinsic::wasm_extmul_low_unsigned;
17369 break;
17370 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
17371 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
17372 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
17373 IntNo = Intrinsic::wasm_extmul_high_signed;
17374 break;
17375 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
17376 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
17377 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2:
17378 IntNo = Intrinsic::wasm_extmul_high_unsigned;
17379 break;
17380 default:
17381 llvm_unreachable("unexptected builtin ID");
17382 }
17383
17384 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17385 return Builder.CreateCall(Callee, {LHS, RHS});
17386 }
17387 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17388 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17389 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17390 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
17391 Value *Vec = EmitScalarExpr(E->getArg(0));
17392 unsigned IntNo;
17393 switch (BuiltinID) {
17394 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17395 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17396 IntNo = Intrinsic::wasm_extadd_pairwise_signed;
17397 break;
17398 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17399 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
17400 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
17401 break;
17402 default:
17403 llvm_unreachable("unexptected builtin ID");
17404 }
17405
17406 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17407 return Builder.CreateCall(Callee, Vec);
17408 }
17409 case WebAssembly::BI__builtin_wasm_bitselect: {
17410 Value *V1 = EmitScalarExpr(E->getArg(0));
17411 Value *V2 = EmitScalarExpr(E->getArg(1));
17412 Value *C = EmitScalarExpr(E->getArg(2));
17413 Function *Callee =
17414 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
17415 return Builder.CreateCall(Callee, {V1, V2, C});
17416 }
17417 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
17418 Value *LHS = EmitScalarExpr(E->getArg(0));
17419 Value *RHS = EmitScalarExpr(E->getArg(1));
17420 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
17421 return Builder.CreateCall(Callee, {LHS, RHS});
17422 }
17423 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
17424 Value *Vec = EmitScalarExpr(E->getArg(0));
17425 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_popcnt);
17426 return Builder.CreateCall(Callee, {Vec});
17427 }
17428 case WebAssembly::BI__builtin_wasm_any_true_v128:
17429 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17430 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17431 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17432 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
17433 unsigned IntNo;
17434 switch (BuiltinID) {
17435 case WebAssembly::BI__builtin_wasm_any_true_v128:
17436 IntNo = Intrinsic::wasm_anytrue;
17437 break;
17438 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17439 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17440 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17441 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
17442 IntNo = Intrinsic::wasm_alltrue;
17443 break;
17444 default:
17445 llvm_unreachable("unexpected builtin ID");
17446 }
17447 Value *Vec = EmitScalarExpr(E->getArg(0));
17448 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
17449 return Builder.CreateCall(Callee, {Vec});
17450 }
17451 case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
17452 case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
17453 case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
17454 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
17455 Value *Vec = EmitScalarExpr(E->getArg(0));
17456 Function *Callee =
17457 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
17458 return Builder.CreateCall(Callee, {Vec});
17459 }
17460 case WebAssembly::BI__builtin_wasm_abs_f32x4:
17461 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
17462 Value *Vec = EmitScalarExpr(E->getArg(0));
17463 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
17464 return Builder.CreateCall(Callee, {Vec});
17465 }
17466 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
17467 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
17468 Value *Vec = EmitScalarExpr(E->getArg(0));
17469 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
17470 return Builder.CreateCall(Callee, {Vec});
17471 }
17472 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17473 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17474 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17475 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
17476 Value *Low = EmitScalarExpr(E->getArg(0));
17477 Value *High = EmitScalarExpr(E->getArg(1));
17478 unsigned IntNo;
17479 switch (BuiltinID) {
17480 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17481 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17482 IntNo = Intrinsic::wasm_narrow_signed;
17483 break;
17484 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17485 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
17486 IntNo = Intrinsic::wasm_narrow_unsigned;
17487 break;
17488 default:
17489 llvm_unreachable("unexpected builtin ID");
17490 }
17491 Function *Callee =
17492 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
17493 return Builder.CreateCall(Callee, {Low, High});
17494 }
17495 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
17496 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: {
17497 Value *Vec = EmitScalarExpr(E->getArg(0));
17498 unsigned IntNo;
17499 switch (BuiltinID) {
17500 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
17501 IntNo = Intrinsic::fptosi_sat;
17502 break;
17503 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4:
17504 IntNo = Intrinsic::fptoui_sat;
17505 break;
17506 default:
17507 llvm_unreachable("unexpected builtin ID");
17508 }
17509 llvm::Type *SrcT = Vec->getType();
17510 llvm::Type *TruncT =
17511 SrcT->getWithNewType(llvm::IntegerType::get(getLLVMContext(), 32));
17512 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
17513 Value *Trunc = Builder.CreateCall(Callee, Vec);
17514 Value *Splat = Builder.CreateVectorSplat(2, Builder.getInt32(0));
17515 Value *ConcatMask =
17516 llvm::ConstantVector::get({Builder.getInt32(0), Builder.getInt32(1),
17517 Builder.getInt32(2), Builder.getInt32(3)});
17518 return Builder.CreateShuffleVector(Trunc, Splat, ConcatMask);
17519 }
17520 case WebAssembly::BI__builtin_wasm_demote_zero_f64x2_f32x4: {
17521 Value *Vec = EmitScalarExpr(E->getArg(0));
17522 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_demote_zero);
17523 return Builder.CreateCall(Callee, Vec);
17524 }
17525 case WebAssembly::BI__builtin_wasm_promote_low_f32x4_f64x2: {
17526 Value *Vec = EmitScalarExpr(E->getArg(0));
17527 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_promote_low);
17528 return Builder.CreateCall(Callee, Vec);
17529 }
17530 case WebAssembly::BI__builtin_wasm_load32_zero: {
17531 Value *Ptr = EmitScalarExpr(E->getArg(0));
17532 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load32_zero);
17533 return Builder.CreateCall(Callee, {Ptr});
17534 }
17535 case WebAssembly::BI__builtin_wasm_load64_zero: {
17536 Value *Ptr = EmitScalarExpr(E->getArg(0));
17537 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load64_zero);
17538 return Builder.CreateCall(Callee, {Ptr});
17539 }
17540 case WebAssembly::BI__builtin_wasm_load8_lane:
17541 case WebAssembly::BI__builtin_wasm_load16_lane:
17542 case WebAssembly::BI__builtin_wasm_load32_lane:
17543 case WebAssembly::BI__builtin_wasm_load64_lane:
17544 case WebAssembly::BI__builtin_wasm_store8_lane:
17545 case WebAssembly::BI__builtin_wasm_store16_lane:
17546 case WebAssembly::BI__builtin_wasm_store32_lane:
17547 case WebAssembly::BI__builtin_wasm_store64_lane: {
17548 Value *Ptr = EmitScalarExpr(E->getArg(0));
17549 Value *Vec = EmitScalarExpr(E->getArg(1));
17550 Optional<llvm::APSInt> LaneIdxConst =
17551 E->getArg(2)->getIntegerConstantExpr(getContext());
17552 assert(LaneIdxConst && "Constant arg isn't actually constant?");
17553 Value *LaneIdx = llvm::ConstantInt::get(getLLVMContext(), *LaneIdxConst);
17554 unsigned IntNo;
17555 switch (BuiltinID) {
17556 case WebAssembly::BI__builtin_wasm_load8_lane:
17557 IntNo = Intrinsic::wasm_load8_lane;
17558 break;
17559 case WebAssembly::BI__builtin_wasm_load16_lane:
17560 IntNo = Intrinsic::wasm_load16_lane;
17561 break;
17562 case WebAssembly::BI__builtin_wasm_load32_lane:
17563 IntNo = Intrinsic::wasm_load32_lane;
17564 break;
17565 case WebAssembly::BI__builtin_wasm_load64_lane:
17566 IntNo = Intrinsic::wasm_load64_lane;
17567 break;
17568 case WebAssembly::BI__builtin_wasm_store8_lane:
17569 IntNo = Intrinsic::wasm_store8_lane;
17570 break;
17571 case WebAssembly::BI__builtin_wasm_store16_lane:
17572 IntNo = Intrinsic::wasm_store16_lane;
17573 break;
17574 case WebAssembly::BI__builtin_wasm_store32_lane:
17575 IntNo = Intrinsic::wasm_store32_lane;
17576 break;
17577 case WebAssembly::BI__builtin_wasm_store64_lane:
17578 IntNo = Intrinsic::wasm_store64_lane;
17579 break;
17580 default:
17581 llvm_unreachable("unexpected builtin ID");
17582 }
17583 Function *Callee = CGM.getIntrinsic(IntNo);
17584 return Builder.CreateCall(Callee, {Ptr, Vec, LaneIdx});
17585 }
17586 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
17587 Value *Ops[18];
17588 size_t OpIdx = 0;
17589 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
17590 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
17591 while (OpIdx < 18) {
17592 Optional<llvm::APSInt> LaneConst =
17593 E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
17594 assert(LaneConst && "Constant arg isn't actually constant?");
17595 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
17596 }
17597 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
17598 return Builder.CreateCall(Callee, Ops);
17599 }
17600 default:
17601 return nullptr;
17602 }
17603 }
17604
17605 static std::pair<Intrinsic::ID, unsigned>
getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID)17606 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
17607 struct Info {
17608 unsigned BuiltinID;
17609 Intrinsic::ID IntrinsicID;
17610 unsigned VecLen;
17611 };
17612 Info Infos[] = {
17613 #define CUSTOM_BUILTIN_MAPPING(x,s) \
17614 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
17615 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
17616 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
17617 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
17618 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
17619 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
17620 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
17621 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
17622 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
17623 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
17624 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
17625 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
17626 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
17627 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
17628 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
17629 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
17630 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
17631 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
17632 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
17633 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
17634 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
17635 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
17636 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
17637 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
17638 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
17639 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
17640 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
17641 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
17642 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
17643 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
17644 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
17645 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
17646 #undef CUSTOM_BUILTIN_MAPPING
17647 };
17648
17649 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
17650 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
17651 (void)SortOnce;
17652
17653 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
17654 Info{BuiltinID, 0, 0}, CmpInfo);
17655 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
17656 return {Intrinsic::not_intrinsic, 0};
17657
17658 return {F->IntrinsicID, F->VecLen};
17659 }
17660
EmitHexagonBuiltinExpr(unsigned BuiltinID,const CallExpr * E)17661 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
17662 const CallExpr *E) {
17663 Intrinsic::ID ID;
17664 unsigned VecLen;
17665 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
17666
17667 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
17668 // The base pointer is passed by address, so it needs to be loaded.
17669 Address A = EmitPointerWithAlignment(E->getArg(0));
17670 Address BP = Address(
17671 Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
17672 llvm::Value *Base = Builder.CreateLoad(BP);
17673 // The treatment of both loads and stores is the same: the arguments for
17674 // the builtin are the same as the arguments for the intrinsic.
17675 // Load:
17676 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
17677 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
17678 // Store:
17679 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
17680 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
17681 SmallVector<llvm::Value*,5> Ops = { Base };
17682 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
17683 Ops.push_back(EmitScalarExpr(E->getArg(i)));
17684
17685 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
17686 // The load intrinsics generate two results (Value, NewBase), stores
17687 // generate one (NewBase). The new base address needs to be stored.
17688 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
17689 : Result;
17690 llvm::Value *LV = Builder.CreateBitCast(
17691 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
17692 Address Dest = EmitPointerWithAlignment(E->getArg(0));
17693 llvm::Value *RetVal =
17694 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
17695 if (IsLoad)
17696 RetVal = Builder.CreateExtractValue(Result, 0);
17697 return RetVal;
17698 };
17699
17700 // Handle the conversion of bit-reverse load intrinsics to bit code.
17701 // The intrinsic call after this function only reads from memory and the
17702 // write to memory is dealt by the store instruction.
17703 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
17704 // The intrinsic generates one result, which is the new value for the base
17705 // pointer. It needs to be returned. The result of the load instruction is
17706 // passed to intrinsic by address, so the value needs to be stored.
17707 llvm::Value *BaseAddress =
17708 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
17709
17710 // Expressions like &(*pt++) will be incremented per evaluation.
17711 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
17712 // per call.
17713 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
17714 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
17715 DestAddr.getAlignment());
17716 llvm::Value *DestAddress = DestAddr.getPointer();
17717
17718 // Operands are Base, Dest, Modifier.
17719 // The intrinsic format in LLVM IR is defined as
17720 // { ValueType, i8* } (i8*, i32).
17721 llvm::Value *Result = Builder.CreateCall(
17722 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
17723
17724 // The value needs to be stored as the variable is passed by reference.
17725 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
17726
17727 // The store needs to be truncated to fit the destination type.
17728 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
17729 // to be handled with stores of respective destination type.
17730 DestVal = Builder.CreateTrunc(DestVal, DestTy);
17731
17732 llvm::Value *DestForStore =
17733 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
17734 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
17735 // The updated value of the base pointer is returned.
17736 return Builder.CreateExtractValue(Result, 1);
17737 };
17738
17739 auto V2Q = [this, VecLen] (llvm::Value *Vec) {
17740 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
17741 : Intrinsic::hexagon_V6_vandvrt;
17742 return Builder.CreateCall(CGM.getIntrinsic(ID),
17743 {Vec, Builder.getInt32(-1)});
17744 };
17745 auto Q2V = [this, VecLen] (llvm::Value *Pred) {
17746 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
17747 : Intrinsic::hexagon_V6_vandqrt;
17748 return Builder.CreateCall(CGM.getIntrinsic(ID),
17749 {Pred, Builder.getInt32(-1)});
17750 };
17751
17752 switch (BuiltinID) {
17753 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
17754 // and the corresponding C/C++ builtins use loads/stores to update
17755 // the predicate.
17756 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
17757 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
17758 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
17759 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
17760 // Get the type from the 0-th argument.
17761 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
17762 Address PredAddr = Builder.CreateBitCast(
17763 EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
17764 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
17765 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
17766 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
17767
17768 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
17769 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
17770 PredAddr.getAlignment());
17771 return Builder.CreateExtractValue(Result, 0);
17772 }
17773
17774 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
17775 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
17776 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
17777 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
17778 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
17779 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
17780 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
17781 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
17782 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
17783 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
17784 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
17785 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
17786 return MakeCircOp(ID, /*IsLoad=*/true);
17787 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
17788 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
17789 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
17790 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
17791 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
17792 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
17793 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
17794 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
17795 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
17796 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
17797 return MakeCircOp(ID, /*IsLoad=*/false);
17798 case Hexagon::BI__builtin_brev_ldub:
17799 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
17800 case Hexagon::BI__builtin_brev_ldb:
17801 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
17802 case Hexagon::BI__builtin_brev_lduh:
17803 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
17804 case Hexagon::BI__builtin_brev_ldh:
17805 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
17806 case Hexagon::BI__builtin_brev_ldw:
17807 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
17808 case Hexagon::BI__builtin_brev_ldd:
17809 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
17810
17811 default: {
17812 if (ID == Intrinsic::not_intrinsic)
17813 return nullptr;
17814
17815 auto IsVectorPredTy = [](llvm::Type *T) {
17816 return T->isVectorTy() &&
17817 cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
17818 };
17819
17820 llvm::Function *IntrFn = CGM.getIntrinsic(ID);
17821 llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
17822 SmallVector<llvm::Value*,4> Ops;
17823 for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
17824 llvm::Type *T = IntrTy->getParamType(i);
17825 const Expr *A = E->getArg(i);
17826 if (IsVectorPredTy(T)) {
17827 // There will be an implicit cast to a boolean vector. Strip it.
17828 if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
17829 if (Cast->getCastKind() == CK_BitCast)
17830 A = Cast->getSubExpr();
17831 }
17832 Ops.push_back(V2Q(EmitScalarExpr(A)));
17833 } else {
17834 Ops.push_back(EmitScalarExpr(A));
17835 }
17836 }
17837
17838 llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
17839 if (IsVectorPredTy(IntrTy->getReturnType()))
17840 Call = Q2V(Call);
17841
17842 return Call;
17843 } // default
17844 } // switch
17845
17846 return nullptr;
17847 }
17848
EmitRISCVBuiltinExpr(unsigned BuiltinID,const CallExpr * E,ReturnValueSlot ReturnValue)17849 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
17850 const CallExpr *E,
17851 ReturnValueSlot ReturnValue) {
17852 SmallVector<Value *, 4> Ops;
17853 llvm::Type *ResultType = ConvertType(E->getType());
17854
17855 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
17856 Ops.push_back(EmitScalarExpr(E->getArg(i)));
17857
17858 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17859
17860 // Required for overloaded intrinsics.
17861 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
17862 switch (BuiltinID) {
17863 default: llvm_unreachable("unexpected builtin ID");
17864 case RISCV::BI__builtin_riscv_orc_b_32:
17865 case RISCV::BI__builtin_riscv_orc_b_64:
17866 case RISCV::BI__builtin_riscv_clmul:
17867 case RISCV::BI__builtin_riscv_clmulh:
17868 case RISCV::BI__builtin_riscv_clmulr:
17869 case RISCV::BI__builtin_riscv_bcompress_32:
17870 case RISCV::BI__builtin_riscv_bcompress_64:
17871 case RISCV::BI__builtin_riscv_bdecompress_32:
17872 case RISCV::BI__builtin_riscv_bdecompress_64:
17873 case RISCV::BI__builtin_riscv_grev_32:
17874 case RISCV::BI__builtin_riscv_grev_64:
17875 case RISCV::BI__builtin_riscv_gorc_32:
17876 case RISCV::BI__builtin_riscv_gorc_64:
17877 case RISCV::BI__builtin_riscv_shfl_32:
17878 case RISCV::BI__builtin_riscv_shfl_64:
17879 case RISCV::BI__builtin_riscv_unshfl_32:
17880 case RISCV::BI__builtin_riscv_unshfl_64:
17881 case RISCV::BI__builtin_riscv_xperm_n:
17882 case RISCV::BI__builtin_riscv_xperm_b:
17883 case RISCV::BI__builtin_riscv_xperm_h:
17884 case RISCV::BI__builtin_riscv_xperm_w:
17885 case RISCV::BI__builtin_riscv_crc32_b:
17886 case RISCV::BI__builtin_riscv_crc32_h:
17887 case RISCV::BI__builtin_riscv_crc32_w:
17888 case RISCV::BI__builtin_riscv_crc32_d:
17889 case RISCV::BI__builtin_riscv_crc32c_b:
17890 case RISCV::BI__builtin_riscv_crc32c_h:
17891 case RISCV::BI__builtin_riscv_crc32c_w:
17892 case RISCV::BI__builtin_riscv_crc32c_d: {
17893 switch (BuiltinID) {
17894 default: llvm_unreachable("unexpected builtin ID");
17895 // Zbb
17896 case RISCV::BI__builtin_riscv_orc_b_32:
17897 case RISCV::BI__builtin_riscv_orc_b_64:
17898 ID = Intrinsic::riscv_orc_b;
17899 break;
17900
17901 // Zbc
17902 case RISCV::BI__builtin_riscv_clmul:
17903 ID = Intrinsic::riscv_clmul;
17904 break;
17905 case RISCV::BI__builtin_riscv_clmulh:
17906 ID = Intrinsic::riscv_clmulh;
17907 break;
17908 case RISCV::BI__builtin_riscv_clmulr:
17909 ID = Intrinsic::riscv_clmulr;
17910 break;
17911
17912 // Zbe
17913 case RISCV::BI__builtin_riscv_bcompress_32:
17914 case RISCV::BI__builtin_riscv_bcompress_64:
17915 ID = Intrinsic::riscv_bcompress;
17916 break;
17917 case RISCV::BI__builtin_riscv_bdecompress_32:
17918 case RISCV::BI__builtin_riscv_bdecompress_64:
17919 ID = Intrinsic::riscv_bdecompress;
17920 break;
17921
17922 // Zbp
17923 case RISCV::BI__builtin_riscv_grev_32:
17924 case RISCV::BI__builtin_riscv_grev_64:
17925 ID = Intrinsic::riscv_grev;
17926 break;
17927 case RISCV::BI__builtin_riscv_gorc_32:
17928 case RISCV::BI__builtin_riscv_gorc_64:
17929 ID = Intrinsic::riscv_gorc;
17930 break;
17931 case RISCV::BI__builtin_riscv_shfl_32:
17932 case RISCV::BI__builtin_riscv_shfl_64:
17933 ID = Intrinsic::riscv_shfl;
17934 break;
17935 case RISCV::BI__builtin_riscv_unshfl_32:
17936 case RISCV::BI__builtin_riscv_unshfl_64:
17937 ID = Intrinsic::riscv_unshfl;
17938 break;
17939 case RISCV::BI__builtin_riscv_xperm_n:
17940 ID = Intrinsic::riscv_xperm_n;
17941 break;
17942 case RISCV::BI__builtin_riscv_xperm_b:
17943 ID = Intrinsic::riscv_xperm_b;
17944 break;
17945 case RISCV::BI__builtin_riscv_xperm_h:
17946 ID = Intrinsic::riscv_xperm_h;
17947 break;
17948 case RISCV::BI__builtin_riscv_xperm_w:
17949 ID = Intrinsic::riscv_xperm_w;
17950 break;
17951
17952 // Zbr
17953 case RISCV::BI__builtin_riscv_crc32_b:
17954 ID = Intrinsic::riscv_crc32_b;
17955 break;
17956 case RISCV::BI__builtin_riscv_crc32_h:
17957 ID = Intrinsic::riscv_crc32_h;
17958 break;
17959 case RISCV::BI__builtin_riscv_crc32_w:
17960 ID = Intrinsic::riscv_crc32_w;
17961 break;
17962 case RISCV::BI__builtin_riscv_crc32_d:
17963 ID = Intrinsic::riscv_crc32_d;
17964 break;
17965 case RISCV::BI__builtin_riscv_crc32c_b:
17966 ID = Intrinsic::riscv_crc32c_b;
17967 break;
17968 case RISCV::BI__builtin_riscv_crc32c_h:
17969 ID = Intrinsic::riscv_crc32c_h;
17970 break;
17971 case RISCV::BI__builtin_riscv_crc32c_w:
17972 ID = Intrinsic::riscv_crc32c_w;
17973 break;
17974 case RISCV::BI__builtin_riscv_crc32c_d:
17975 ID = Intrinsic::riscv_crc32c_d;
17976 break;
17977 }
17978
17979 IntrinsicTypes = {ResultType};
17980 break;
17981 }
17982 // Vector builtins are handled from here.
17983 #include "clang/Basic/riscv_vector_builtin_cg.inc"
17984 }
17985
17986 assert(ID != Intrinsic::not_intrinsic);
17987
17988 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
17989 return Builder.CreateCall(F, Ops, "");
17990 }
17991