1 //===- InlineFunction.cpp - Code to perform function inlining -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements inlining of a function into a call site, resolving
10 // parameters and the return value as appropriate.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BlockFrequencyInfo.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/EHPersonalities.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/ObjCARCAnalysisUtils.h"
31 #include "llvm/Analysis/ObjCARCUtil.h"
32 #include "llvm/Analysis/ProfileSummaryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfoMetadata.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/IRBuilder.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/MDBuilder.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
65 #include "llvm/Transforms/Utils/Cloning.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <iterator>
72 #include <limits>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 using namespace llvm;
78 using ProfileCount = Function::ProfileCount;
79
80 static cl::opt<bool>
81 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true),
82 cl::Hidden,
83 cl::desc("Convert noalias attributes to metadata during inlining."));
84
85 static cl::opt<bool>
86 UseNoAliasIntrinsic("use-noalias-intrinsic-during-inlining", cl::Hidden,
87 cl::ZeroOrMore, cl::init(true),
88 cl::desc("Use the llvm.experimental.noalias.scope.decl "
89 "intrinsic during inlining."));
90
91 // Disabled by default, because the added alignment assumptions may increase
92 // compile-time and block optimizations. This option is not suitable for use
93 // with frontends that emit comprehensive parameter alignment annotations.
94 static cl::opt<bool>
95 PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining",
96 cl::init(false), cl::Hidden,
97 cl::desc("Convert align attributes to assumptions during inlining."));
98
99 static cl::opt<bool> UpdateReturnAttributes(
100 "update-return-attrs", cl::init(true), cl::Hidden,
101 cl::desc("Update return attributes on calls within inlined body"));
102
103 static cl::opt<unsigned> InlinerAttributeWindow(
104 "max-inst-checked-for-throw-during-inlining", cl::Hidden,
105 cl::desc("the maximum number of instructions analyzed for may throw during "
106 "attribute inference in inlined body"),
107 cl::init(4));
108
109 namespace {
110
111 /// A class for recording information about inlining a landing pad.
112 class LandingPadInliningInfo {
113 /// Destination of the invoke's unwind.
114 BasicBlock *OuterResumeDest;
115
116 /// Destination for the callee's resume.
117 BasicBlock *InnerResumeDest = nullptr;
118
119 /// LandingPadInst associated with the invoke.
120 LandingPadInst *CallerLPad = nullptr;
121
122 /// PHI for EH values from landingpad insts.
123 PHINode *InnerEHValuesPHI = nullptr;
124
125 SmallVector<Value*, 8> UnwindDestPHIValues;
126
127 public:
LandingPadInliningInfo(InvokeInst * II)128 LandingPadInliningInfo(InvokeInst *II)
129 : OuterResumeDest(II->getUnwindDest()) {
130 // If there are PHI nodes in the unwind destination block, we need to keep
131 // track of which values came into them from the invoke before removing
132 // the edge from this block.
133 BasicBlock *InvokeBB = II->getParent();
134 BasicBlock::iterator I = OuterResumeDest->begin();
135 for (; isa<PHINode>(I); ++I) {
136 // Save the value to use for this edge.
137 PHINode *PHI = cast<PHINode>(I);
138 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
139 }
140
141 CallerLPad = cast<LandingPadInst>(I);
142 }
143
144 /// The outer unwind destination is the target of
145 /// unwind edges introduced for calls within the inlined function.
getOuterResumeDest() const146 BasicBlock *getOuterResumeDest() const {
147 return OuterResumeDest;
148 }
149
150 BasicBlock *getInnerResumeDest();
151
getLandingPadInst() const152 LandingPadInst *getLandingPadInst() const { return CallerLPad; }
153
154 /// Forward the 'resume' instruction to the caller's landing pad block.
155 /// When the landing pad block has only one predecessor, this is
156 /// a simple branch. When there is more than one predecessor, we need to
157 /// split the landing pad block after the landingpad instruction and jump
158 /// to there.
159 void forwardResume(ResumeInst *RI,
160 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads);
161
162 /// Add incoming-PHI values to the unwind destination block for the given
163 /// basic block, using the values for the original invoke's source block.
addIncomingPHIValuesFor(BasicBlock * BB) const164 void addIncomingPHIValuesFor(BasicBlock *BB) const {
165 addIncomingPHIValuesForInto(BB, OuterResumeDest);
166 }
167
addIncomingPHIValuesForInto(BasicBlock * src,BasicBlock * dest) const168 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
169 BasicBlock::iterator I = dest->begin();
170 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
171 PHINode *phi = cast<PHINode>(I);
172 phi->addIncoming(UnwindDestPHIValues[i], src);
173 }
174 }
175 };
176
177 } // end anonymous namespace
178
179 /// Get or create a target for the branch from ResumeInsts.
getInnerResumeDest()180 BasicBlock *LandingPadInliningInfo::getInnerResumeDest() {
181 if (InnerResumeDest) return InnerResumeDest;
182
183 // Split the landing pad.
184 BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator();
185 InnerResumeDest =
186 OuterResumeDest->splitBasicBlock(SplitPoint,
187 OuterResumeDest->getName() + ".body");
188
189 // The number of incoming edges we expect to the inner landing pad.
190 const unsigned PHICapacity = 2;
191
192 // Create corresponding new PHIs for all the PHIs in the outer landing pad.
193 Instruction *InsertPoint = &InnerResumeDest->front();
194 BasicBlock::iterator I = OuterResumeDest->begin();
195 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
196 PHINode *OuterPHI = cast<PHINode>(I);
197 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
198 OuterPHI->getName() + ".lpad-body",
199 InsertPoint);
200 OuterPHI->replaceAllUsesWith(InnerPHI);
201 InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
202 }
203
204 // Create a PHI for the exception values.
205 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
206 "eh.lpad-body", InsertPoint);
207 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
208 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
209
210 // All done.
211 return InnerResumeDest;
212 }
213
214 /// Forward the 'resume' instruction to the caller's landing pad block.
215 /// When the landing pad block has only one predecessor, this is a simple
216 /// branch. When there is more than one predecessor, we need to split the
217 /// landing pad block after the landingpad instruction and jump to there.
forwardResume(ResumeInst * RI,SmallPtrSetImpl<LandingPadInst * > & InlinedLPads)218 void LandingPadInliningInfo::forwardResume(
219 ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) {
220 BasicBlock *Dest = getInnerResumeDest();
221 BasicBlock *Src = RI->getParent();
222
223 BranchInst::Create(Dest, Src);
224
225 // Update the PHIs in the destination. They were inserted in an order which
226 // makes this work.
227 addIncomingPHIValuesForInto(Src, Dest);
228
229 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
230 RI->eraseFromParent();
231 }
232
233 /// Helper for getUnwindDestToken/getUnwindDestTokenHelper.
getParentPad(Value * EHPad)234 static Value *getParentPad(Value *EHPad) {
235 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
236 return FPI->getParentPad();
237 return cast<CatchSwitchInst>(EHPad)->getParentPad();
238 }
239
240 using UnwindDestMemoTy = DenseMap<Instruction *, Value *>;
241
242 /// Helper for getUnwindDestToken that does the descendant-ward part of
243 /// the search.
getUnwindDestTokenHelper(Instruction * EHPad,UnwindDestMemoTy & MemoMap)244 static Value *getUnwindDestTokenHelper(Instruction *EHPad,
245 UnwindDestMemoTy &MemoMap) {
246 SmallVector<Instruction *, 8> Worklist(1, EHPad);
247
248 while (!Worklist.empty()) {
249 Instruction *CurrentPad = Worklist.pop_back_val();
250 // We only put pads on the worklist that aren't in the MemoMap. When
251 // we find an unwind dest for a pad we may update its ancestors, but
252 // the queue only ever contains uncles/great-uncles/etc. of CurrentPad,
253 // so they should never get updated while queued on the worklist.
254 assert(!MemoMap.count(CurrentPad));
255 Value *UnwindDestToken = nullptr;
256 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) {
257 if (CatchSwitch->hasUnwindDest()) {
258 UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI();
259 } else {
260 // Catchswitch doesn't have a 'nounwind' variant, and one might be
261 // annotated as "unwinds to caller" when really it's nounwind (see
262 // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the
263 // parent's unwind dest from this. We can check its catchpads'
264 // descendants, since they might include a cleanuppad with an
265 // "unwinds to caller" cleanupret, which can be trusted.
266 for (auto HI = CatchSwitch->handler_begin(),
267 HE = CatchSwitch->handler_end();
268 HI != HE && !UnwindDestToken; ++HI) {
269 BasicBlock *HandlerBlock = *HI;
270 auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI());
271 for (User *Child : CatchPad->users()) {
272 // Intentionally ignore invokes here -- since the catchswitch is
273 // marked "unwind to caller", it would be a verifier error if it
274 // contained an invoke which unwinds out of it, so any invoke we'd
275 // encounter must unwind to some child of the catch.
276 if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child))
277 continue;
278
279 Instruction *ChildPad = cast<Instruction>(Child);
280 auto Memo = MemoMap.find(ChildPad);
281 if (Memo == MemoMap.end()) {
282 // Haven't figured out this child pad yet; queue it.
283 Worklist.push_back(ChildPad);
284 continue;
285 }
286 // We've already checked this child, but might have found that
287 // it offers no proof either way.
288 Value *ChildUnwindDestToken = Memo->second;
289 if (!ChildUnwindDestToken)
290 continue;
291 // We already know the child's unwind dest, which can either
292 // be ConstantTokenNone to indicate unwind to caller, or can
293 // be another child of the catchpad. Only the former indicates
294 // the unwind dest of the catchswitch.
295 if (isa<ConstantTokenNone>(ChildUnwindDestToken)) {
296 UnwindDestToken = ChildUnwindDestToken;
297 break;
298 }
299 assert(getParentPad(ChildUnwindDestToken) == CatchPad);
300 }
301 }
302 }
303 } else {
304 auto *CleanupPad = cast<CleanupPadInst>(CurrentPad);
305 for (User *U : CleanupPad->users()) {
306 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
307 if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest())
308 UnwindDestToken = RetUnwindDest->getFirstNonPHI();
309 else
310 UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext());
311 break;
312 }
313 Value *ChildUnwindDestToken;
314 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
315 ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI();
316 } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) {
317 Instruction *ChildPad = cast<Instruction>(U);
318 auto Memo = MemoMap.find(ChildPad);
319 if (Memo == MemoMap.end()) {
320 // Haven't resolved this child yet; queue it and keep searching.
321 Worklist.push_back(ChildPad);
322 continue;
323 }
324 // We've checked this child, but still need to ignore it if it
325 // had no proof either way.
326 ChildUnwindDestToken = Memo->second;
327 if (!ChildUnwindDestToken)
328 continue;
329 } else {
330 // Not a relevant user of the cleanuppad
331 continue;
332 }
333 // In a well-formed program, the child/invoke must either unwind to
334 // an(other) child of the cleanup, or exit the cleanup. In the
335 // first case, continue searching.
336 if (isa<Instruction>(ChildUnwindDestToken) &&
337 getParentPad(ChildUnwindDestToken) == CleanupPad)
338 continue;
339 UnwindDestToken = ChildUnwindDestToken;
340 break;
341 }
342 }
343 // If we haven't found an unwind dest for CurrentPad, we may have queued its
344 // children, so move on to the next in the worklist.
345 if (!UnwindDestToken)
346 continue;
347
348 // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits
349 // any ancestors of CurrentPad up to but not including UnwindDestToken's
350 // parent pad. Record this in the memo map, and check to see if the
351 // original EHPad being queried is one of the ones exited.
352 Value *UnwindParent;
353 if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken))
354 UnwindParent = getParentPad(UnwindPad);
355 else
356 UnwindParent = nullptr;
357 bool ExitedOriginalPad = false;
358 for (Instruction *ExitedPad = CurrentPad;
359 ExitedPad && ExitedPad != UnwindParent;
360 ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) {
361 // Skip over catchpads since they just follow their catchswitches.
362 if (isa<CatchPadInst>(ExitedPad))
363 continue;
364 MemoMap[ExitedPad] = UnwindDestToken;
365 ExitedOriginalPad |= (ExitedPad == EHPad);
366 }
367
368 if (ExitedOriginalPad)
369 return UnwindDestToken;
370
371 // Continue the search.
372 }
373
374 // No definitive information is contained within this funclet.
375 return nullptr;
376 }
377
378 /// Given an EH pad, find where it unwinds. If it unwinds to an EH pad,
379 /// return that pad instruction. If it unwinds to caller, return
380 /// ConstantTokenNone. If it does not have a definitive unwind destination,
381 /// return nullptr.
382 ///
383 /// This routine gets invoked for calls in funclets in inlinees when inlining
384 /// an invoke. Since many funclets don't have calls inside them, it's queried
385 /// on-demand rather than building a map of pads to unwind dests up front.
386 /// Determining a funclet's unwind dest may require recursively searching its
387 /// descendants, and also ancestors and cousins if the descendants don't provide
388 /// an answer. Since most funclets will have their unwind dest immediately
389 /// available as the unwind dest of a catchswitch or cleanupret, this routine
390 /// searches top-down from the given pad and then up. To avoid worst-case
391 /// quadratic run-time given that approach, it uses a memo map to avoid
392 /// re-processing funclet trees. The callers that rewrite the IR as they go
393 /// take advantage of this, for correctness, by checking/forcing rewritten
394 /// pads' entries to match the original callee view.
getUnwindDestToken(Instruction * EHPad,UnwindDestMemoTy & MemoMap)395 static Value *getUnwindDestToken(Instruction *EHPad,
396 UnwindDestMemoTy &MemoMap) {
397 // Catchpads unwind to the same place as their catchswitch;
398 // redirct any queries on catchpads so the code below can
399 // deal with just catchswitches and cleanuppads.
400 if (auto *CPI = dyn_cast<CatchPadInst>(EHPad))
401 EHPad = CPI->getCatchSwitch();
402
403 // Check if we've already determined the unwind dest for this pad.
404 auto Memo = MemoMap.find(EHPad);
405 if (Memo != MemoMap.end())
406 return Memo->second;
407
408 // Search EHPad and, if necessary, its descendants.
409 Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap);
410 assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0));
411 if (UnwindDestToken)
412 return UnwindDestToken;
413
414 // No information is available for this EHPad from itself or any of its
415 // descendants. An unwind all the way out to a pad in the caller would
416 // need also to agree with the unwind dest of the parent funclet, so
417 // search up the chain to try to find a funclet with information. Put
418 // null entries in the memo map to avoid re-processing as we go up.
419 MemoMap[EHPad] = nullptr;
420 #ifndef NDEBUG
421 SmallPtrSet<Instruction *, 4> TempMemos;
422 TempMemos.insert(EHPad);
423 #endif
424 Instruction *LastUselessPad = EHPad;
425 Value *AncestorToken;
426 for (AncestorToken = getParentPad(EHPad);
427 auto *AncestorPad = dyn_cast<Instruction>(AncestorToken);
428 AncestorToken = getParentPad(AncestorToken)) {
429 // Skip over catchpads since they just follow their catchswitches.
430 if (isa<CatchPadInst>(AncestorPad))
431 continue;
432 // If the MemoMap had an entry mapping AncestorPad to nullptr, since we
433 // haven't yet called getUnwindDestTokenHelper for AncestorPad in this
434 // call to getUnwindDestToken, that would mean that AncestorPad had no
435 // information in itself, its descendants, or its ancestors. If that
436 // were the case, then we should also have recorded the lack of information
437 // for the descendant that we're coming from. So assert that we don't
438 // find a null entry in the MemoMap for AncestorPad.
439 assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]);
440 auto AncestorMemo = MemoMap.find(AncestorPad);
441 if (AncestorMemo == MemoMap.end()) {
442 UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap);
443 } else {
444 UnwindDestToken = AncestorMemo->second;
445 }
446 if (UnwindDestToken)
447 break;
448 LastUselessPad = AncestorPad;
449 MemoMap[LastUselessPad] = nullptr;
450 #ifndef NDEBUG
451 TempMemos.insert(LastUselessPad);
452 #endif
453 }
454
455 // We know that getUnwindDestTokenHelper was called on LastUselessPad and
456 // returned nullptr (and likewise for EHPad and any of its ancestors up to
457 // LastUselessPad), so LastUselessPad has no information from below. Since
458 // getUnwindDestTokenHelper must investigate all downward paths through
459 // no-information nodes to prove that a node has no information like this,
460 // and since any time it finds information it records it in the MemoMap for
461 // not just the immediately-containing funclet but also any ancestors also
462 // exited, it must be the case that, walking downward from LastUselessPad,
463 // visiting just those nodes which have not been mapped to an unwind dest
464 // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since
465 // they are just used to keep getUnwindDestTokenHelper from repeating work),
466 // any node visited must have been exhaustively searched with no information
467 // for it found.
468 SmallVector<Instruction *, 8> Worklist(1, LastUselessPad);
469 while (!Worklist.empty()) {
470 Instruction *UselessPad = Worklist.pop_back_val();
471 auto Memo = MemoMap.find(UselessPad);
472 if (Memo != MemoMap.end() && Memo->second) {
473 // Here the name 'UselessPad' is a bit of a misnomer, because we've found
474 // that it is a funclet that does have information about unwinding to
475 // a particular destination; its parent was a useless pad.
476 // Since its parent has no information, the unwind edge must not escape
477 // the parent, and must target a sibling of this pad. This local unwind
478 // gives us no information about EHPad. Leave it and the subtree rooted
479 // at it alone.
480 assert(getParentPad(Memo->second) == getParentPad(UselessPad));
481 continue;
482 }
483 // We know we don't have information for UselesPad. If it has an entry in
484 // the MemoMap (mapping it to nullptr), it must be one of the TempMemos
485 // added on this invocation of getUnwindDestToken; if a previous invocation
486 // recorded nullptr, it would have had to prove that the ancestors of
487 // UselessPad, which include LastUselessPad, had no information, and that
488 // in turn would have required proving that the descendants of
489 // LastUselesPad, which include EHPad, have no information about
490 // LastUselessPad, which would imply that EHPad was mapped to nullptr in
491 // the MemoMap on that invocation, which isn't the case if we got here.
492 assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad));
493 // Assert as we enumerate users that 'UselessPad' doesn't have any unwind
494 // information that we'd be contradicting by making a map entry for it
495 // (which is something that getUnwindDestTokenHelper must have proved for
496 // us to get here). Just assert on is direct users here; the checks in
497 // this downward walk at its descendants will verify that they don't have
498 // any unwind edges that exit 'UselessPad' either (i.e. they either have no
499 // unwind edges or unwind to a sibling).
500 MemoMap[UselessPad] = UnwindDestToken;
501 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) {
502 assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad");
503 for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) {
504 auto *CatchPad = HandlerBlock->getFirstNonPHI();
505 for (User *U : CatchPad->users()) {
506 assert(
507 (!isa<InvokeInst>(U) ||
508 (getParentPad(
509 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
510 CatchPad)) &&
511 "Expected useless pad");
512 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
513 Worklist.push_back(cast<Instruction>(U));
514 }
515 }
516 } else {
517 assert(isa<CleanupPadInst>(UselessPad));
518 for (User *U : UselessPad->users()) {
519 assert(!isa<CleanupReturnInst>(U) && "Expected useless pad");
520 assert((!isa<InvokeInst>(U) ||
521 (getParentPad(
522 cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) ==
523 UselessPad)) &&
524 "Expected useless pad");
525 if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U))
526 Worklist.push_back(cast<Instruction>(U));
527 }
528 }
529 }
530
531 return UnwindDestToken;
532 }
533
534 /// When we inline a basic block into an invoke,
535 /// we have to turn all of the calls that can throw into invokes.
536 /// This function analyze BB to see if there are any calls, and if so,
537 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
538 /// nodes in that block with the values specified in InvokeDestPHIValues.
HandleCallsInBlockInlinedThroughInvoke(BasicBlock * BB,BasicBlock * UnwindEdge,UnwindDestMemoTy * FuncletUnwindMap=nullptr)539 static BasicBlock *HandleCallsInBlockInlinedThroughInvoke(
540 BasicBlock *BB, BasicBlock *UnwindEdge,
541 UnwindDestMemoTy *FuncletUnwindMap = nullptr) {
542 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
543 Instruction *I = &*BBI++;
544
545 // We only need to check for function calls: inlined invoke
546 // instructions require no special handling.
547 CallInst *CI = dyn_cast<CallInst>(I);
548
549 if (!CI || CI->doesNotThrow())
550 continue;
551
552 if (CI->isInlineAsm()) {
553 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
554 if (!IA->canThrow()) {
555 continue;
556 }
557 }
558
559 // We do not need to (and in fact, cannot) convert possibly throwing calls
560 // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into
561 // invokes. The caller's "segment" of the deoptimization continuation
562 // attached to the newly inlined @llvm.experimental_deoptimize
563 // (resp. @llvm.experimental.guard) call should contain the exception
564 // handling logic, if any.
565 if (auto *F = CI->getCalledFunction())
566 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize ||
567 F->getIntrinsicID() == Intrinsic::experimental_guard)
568 continue;
569
570 if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) {
571 // This call is nested inside a funclet. If that funclet has an unwind
572 // destination within the inlinee, then unwinding out of this call would
573 // be UB. Rewriting this call to an invoke which targets the inlined
574 // invoke's unwind dest would give the call's parent funclet multiple
575 // unwind destinations, which is something that subsequent EH table
576 // generation can't handle and that the veirifer rejects. So when we
577 // see such a call, leave it as a call.
578 auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]);
579 Value *UnwindDestToken =
580 getUnwindDestToken(FuncletPad, *FuncletUnwindMap);
581 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
582 continue;
583 #ifndef NDEBUG
584 Instruction *MemoKey;
585 if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
586 MemoKey = CatchPad->getCatchSwitch();
587 else
588 MemoKey = FuncletPad;
589 assert(FuncletUnwindMap->count(MemoKey) &&
590 (*FuncletUnwindMap)[MemoKey] == UnwindDestToken &&
591 "must get memoized to avoid confusing later searches");
592 #endif // NDEBUG
593 }
594
595 changeToInvokeAndSplitBasicBlock(CI, UnwindEdge);
596 return BB;
597 }
598 return nullptr;
599 }
600
601 /// If we inlined an invoke site, we need to convert calls
602 /// in the body of the inlined function into invokes.
603 ///
604 /// II is the invoke instruction being inlined. FirstNewBlock is the first
605 /// block of the inlined code (the last block is the end of the function),
606 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedLandingPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)607 static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock,
608 ClonedCodeInfo &InlinedCodeInfo) {
609 BasicBlock *InvokeDest = II->getUnwindDest();
610
611 Function *Caller = FirstNewBlock->getParent();
612
613 // The inlined code is currently at the end of the function, scan from the
614 // start of the inlined code to its end, checking for stuff we need to
615 // rewrite.
616 LandingPadInliningInfo Invoke(II);
617
618 // Get all of the inlined landing pad instructions.
619 SmallPtrSet<LandingPadInst*, 16> InlinedLPads;
620 for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end();
621 I != E; ++I)
622 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator()))
623 InlinedLPads.insert(II->getLandingPadInst());
624
625 // Append the clauses from the outer landing pad instruction into the inlined
626 // landing pad instructions.
627 LandingPadInst *OuterLPad = Invoke.getLandingPadInst();
628 for (LandingPadInst *InlinedLPad : InlinedLPads) {
629 unsigned OuterNum = OuterLPad->getNumClauses();
630 InlinedLPad->reserveClauses(OuterNum);
631 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx)
632 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx));
633 if (OuterLPad->isCleanup())
634 InlinedLPad->setCleanup(true);
635 }
636
637 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
638 BB != E; ++BB) {
639 if (InlinedCodeInfo.ContainsCalls)
640 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
641 &*BB, Invoke.getOuterResumeDest()))
642 // Update any PHI nodes in the exceptional block to indicate that there
643 // is now a new entry in them.
644 Invoke.addIncomingPHIValuesFor(NewBB);
645
646 // Forward any resumes that are remaining here.
647 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator()))
648 Invoke.forwardResume(RI, InlinedLPads);
649 }
650
651 // Now that everything is happy, we have one final detail. The PHI nodes in
652 // the exception destination block still have entries due to the original
653 // invoke instruction. Eliminate these entries (which might even delete the
654 // PHI node) now.
655 InvokeDest->removePredecessor(II->getParent());
656 }
657
658 /// If we inlined an invoke site, we need to convert calls
659 /// in the body of the inlined function into invokes.
660 ///
661 /// II is the invoke instruction being inlined. FirstNewBlock is the first
662 /// block of the inlined code (the last block is the end of the function),
663 /// and InlineCodeInfo is information about the code that got inlined.
HandleInlinedEHPad(InvokeInst * II,BasicBlock * FirstNewBlock,ClonedCodeInfo & InlinedCodeInfo)664 static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock,
665 ClonedCodeInfo &InlinedCodeInfo) {
666 BasicBlock *UnwindDest = II->getUnwindDest();
667 Function *Caller = FirstNewBlock->getParent();
668
669 assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!");
670
671 // If there are PHI nodes in the unwind destination block, we need to keep
672 // track of which values came into them from the invoke before removing the
673 // edge from this block.
674 SmallVector<Value *, 8> UnwindDestPHIValues;
675 BasicBlock *InvokeBB = II->getParent();
676 for (Instruction &I : *UnwindDest) {
677 // Save the value to use for this edge.
678 PHINode *PHI = dyn_cast<PHINode>(&I);
679 if (!PHI)
680 break;
681 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
682 }
683
684 // Add incoming-PHI values to the unwind destination block for the given basic
685 // block, using the values for the original invoke's source block.
686 auto UpdatePHINodes = [&](BasicBlock *Src) {
687 BasicBlock::iterator I = UnwindDest->begin();
688 for (Value *V : UnwindDestPHIValues) {
689 PHINode *PHI = cast<PHINode>(I);
690 PHI->addIncoming(V, Src);
691 ++I;
692 }
693 };
694
695 // This connects all the instructions which 'unwind to caller' to the invoke
696 // destination.
697 UnwindDestMemoTy FuncletUnwindMap;
698 for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end();
699 BB != E; ++BB) {
700 if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
701 if (CRI->unwindsToCaller()) {
702 auto *CleanupPad = CRI->getCleanupPad();
703 CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI);
704 CRI->eraseFromParent();
705 UpdatePHINodes(&*BB);
706 // Finding a cleanupret with an unwind destination would confuse
707 // subsequent calls to getUnwindDestToken, so map the cleanuppad
708 // to short-circuit any such calls and recognize this as an "unwind
709 // to caller" cleanup.
710 assert(!FuncletUnwindMap.count(CleanupPad) ||
711 isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad]));
712 FuncletUnwindMap[CleanupPad] =
713 ConstantTokenNone::get(Caller->getContext());
714 }
715 }
716
717 Instruction *I = BB->getFirstNonPHI();
718 if (!I->isEHPad())
719 continue;
720
721 Instruction *Replacement = nullptr;
722 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
723 if (CatchSwitch->unwindsToCaller()) {
724 Value *UnwindDestToken;
725 if (auto *ParentPad =
726 dyn_cast<Instruction>(CatchSwitch->getParentPad())) {
727 // This catchswitch is nested inside another funclet. If that
728 // funclet has an unwind destination within the inlinee, then
729 // unwinding out of this catchswitch would be UB. Rewriting this
730 // catchswitch to unwind to the inlined invoke's unwind dest would
731 // give the parent funclet multiple unwind destinations, which is
732 // something that subsequent EH table generation can't handle and
733 // that the veirifer rejects. So when we see such a call, leave it
734 // as "unwind to caller".
735 UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap);
736 if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken))
737 continue;
738 } else {
739 // This catchswitch has no parent to inherit constraints from, and
740 // none of its descendants can have an unwind edge that exits it and
741 // targets another funclet in the inlinee. It may or may not have a
742 // descendant that definitively has an unwind to caller. In either
743 // case, we'll have to assume that any unwinds out of it may need to
744 // be routed to the caller, so treat it as though it has a definitive
745 // unwind to caller.
746 UnwindDestToken = ConstantTokenNone::get(Caller->getContext());
747 }
748 auto *NewCatchSwitch = CatchSwitchInst::Create(
749 CatchSwitch->getParentPad(), UnwindDest,
750 CatchSwitch->getNumHandlers(), CatchSwitch->getName(),
751 CatchSwitch);
752 for (BasicBlock *PadBB : CatchSwitch->handlers())
753 NewCatchSwitch->addHandler(PadBB);
754 // Propagate info for the old catchswitch over to the new one in
755 // the unwind map. This also serves to short-circuit any subsequent
756 // checks for the unwind dest of this catchswitch, which would get
757 // confused if they found the outer handler in the callee.
758 FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken;
759 Replacement = NewCatchSwitch;
760 }
761 } else if (!isa<FuncletPadInst>(I)) {
762 llvm_unreachable("unexpected EHPad!");
763 }
764
765 if (Replacement) {
766 Replacement->takeName(I);
767 I->replaceAllUsesWith(Replacement);
768 I->eraseFromParent();
769 UpdatePHINodes(&*BB);
770 }
771 }
772
773 if (InlinedCodeInfo.ContainsCalls)
774 for (Function::iterator BB = FirstNewBlock->getIterator(),
775 E = Caller->end();
776 BB != E; ++BB)
777 if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke(
778 &*BB, UnwindDest, &FuncletUnwindMap))
779 // Update any PHI nodes in the exceptional block to indicate that there
780 // is now a new entry in them.
781 UpdatePHINodes(NewBB);
782
783 // Now that everything is happy, we have one final detail. The PHI nodes in
784 // the exception destination block still have entries due to the original
785 // invoke instruction. Eliminate these entries (which might even delete the
786 // PHI node) now.
787 UnwindDest->removePredecessor(InvokeBB);
788 }
789
790 /// When inlining a call site that has !llvm.mem.parallel_loop_access,
791 /// !llvm.access.group, !alias.scope or !noalias metadata, that metadata should
792 /// be propagated to all memory-accessing cloned instructions.
PropagateCallSiteMetadata(CallBase & CB,Function::iterator FStart,Function::iterator FEnd)793 static void PropagateCallSiteMetadata(CallBase &CB, Function::iterator FStart,
794 Function::iterator FEnd) {
795 MDNode *MemParallelLoopAccess =
796 CB.getMetadata(LLVMContext::MD_mem_parallel_loop_access);
797 MDNode *AccessGroup = CB.getMetadata(LLVMContext::MD_access_group);
798 MDNode *AliasScope = CB.getMetadata(LLVMContext::MD_alias_scope);
799 MDNode *NoAlias = CB.getMetadata(LLVMContext::MD_noalias);
800 if (!MemParallelLoopAccess && !AccessGroup && !AliasScope && !NoAlias)
801 return;
802
803 for (BasicBlock &BB : make_range(FStart, FEnd)) {
804 for (Instruction &I : BB) {
805 // This metadata is only relevant for instructions that access memory.
806 if (!I.mayReadOrWriteMemory())
807 continue;
808
809 if (MemParallelLoopAccess) {
810 // TODO: This probably should not overwrite MemParalleLoopAccess.
811 MemParallelLoopAccess = MDNode::concatenate(
812 I.getMetadata(LLVMContext::MD_mem_parallel_loop_access),
813 MemParallelLoopAccess);
814 I.setMetadata(LLVMContext::MD_mem_parallel_loop_access,
815 MemParallelLoopAccess);
816 }
817
818 if (AccessGroup)
819 I.setMetadata(LLVMContext::MD_access_group, uniteAccessGroups(
820 I.getMetadata(LLVMContext::MD_access_group), AccessGroup));
821
822 if (AliasScope)
823 I.setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate(
824 I.getMetadata(LLVMContext::MD_alias_scope), AliasScope));
825
826 if (NoAlias)
827 I.setMetadata(LLVMContext::MD_noalias, MDNode::concatenate(
828 I.getMetadata(LLVMContext::MD_noalias), NoAlias));
829 }
830 }
831 }
832
833 /// Utility for cloning !noalias and !alias.scope metadata. When a code region
834 /// using scoped alias metadata is inlined, the aliasing relationships may not
835 /// hold between the two version. It is necessary to create a deep clone of the
836 /// metadata, putting the two versions in separate scope domains.
837 class ScopedAliasMetadataDeepCloner {
838 using MetadataMap = DenseMap<const MDNode *, TrackingMDNodeRef>;
839 SetVector<const MDNode *> MD;
840 MetadataMap MDMap;
841 void addRecursiveMetadataUses();
842
843 public:
844 ScopedAliasMetadataDeepCloner(const Function *F);
845
846 /// Create a new clone of the scoped alias metadata, which will be used by
847 /// subsequent remap() calls.
848 void clone();
849
850 /// Remap instructions in the given range from the original to the cloned
851 /// metadata.
852 void remap(Function::iterator FStart, Function::iterator FEnd);
853 };
854
ScopedAliasMetadataDeepCloner(const Function * F)855 ScopedAliasMetadataDeepCloner::ScopedAliasMetadataDeepCloner(
856 const Function *F) {
857 for (const BasicBlock &BB : *F) {
858 for (const Instruction &I : BB) {
859 if (const MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
860 MD.insert(M);
861 if (const MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
862 MD.insert(M);
863
864 // We also need to clone the metadata in noalias intrinsics.
865 if (const auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
866 MD.insert(Decl->getScopeList());
867 }
868 }
869 addRecursiveMetadataUses();
870 }
871
addRecursiveMetadataUses()872 void ScopedAliasMetadataDeepCloner::addRecursiveMetadataUses() {
873 SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end());
874 while (!Queue.empty()) {
875 const MDNode *M = cast<MDNode>(Queue.pop_back_val());
876 for (const Metadata *Op : M->operands())
877 if (const MDNode *OpMD = dyn_cast<MDNode>(Op))
878 if (MD.insert(OpMD))
879 Queue.push_back(OpMD);
880 }
881 }
882
clone()883 void ScopedAliasMetadataDeepCloner::clone() {
884 assert(MDMap.empty() && "clone() already called ?");
885
886 SmallVector<TempMDTuple, 16> DummyNodes;
887 for (const MDNode *I : MD) {
888 DummyNodes.push_back(MDTuple::getTemporary(I->getContext(), None));
889 MDMap[I].reset(DummyNodes.back().get());
890 }
891
892 // Create new metadata nodes to replace the dummy nodes, replacing old
893 // metadata references with either a dummy node or an already-created new
894 // node.
895 SmallVector<Metadata *, 4> NewOps;
896 for (const MDNode *I : MD) {
897 for (const Metadata *Op : I->operands()) {
898 if (const MDNode *M = dyn_cast<MDNode>(Op))
899 NewOps.push_back(MDMap[M]);
900 else
901 NewOps.push_back(const_cast<Metadata *>(Op));
902 }
903
904 MDNode *NewM = MDNode::get(I->getContext(), NewOps);
905 MDTuple *TempM = cast<MDTuple>(MDMap[I]);
906 assert(TempM->isTemporary() && "Expected temporary node");
907
908 TempM->replaceAllUsesWith(NewM);
909 NewOps.clear();
910 }
911 }
912
remap(Function::iterator FStart,Function::iterator FEnd)913 void ScopedAliasMetadataDeepCloner::remap(Function::iterator FStart,
914 Function::iterator FEnd) {
915 if (MDMap.empty())
916 return; // Nothing to do.
917
918 for (BasicBlock &BB : make_range(FStart, FEnd)) {
919 for (Instruction &I : BB) {
920 // TODO: The null checks for the MDMap.lookup() results should no longer
921 // be necessary.
922 if (MDNode *M = I.getMetadata(LLVMContext::MD_alias_scope))
923 if (MDNode *MNew = MDMap.lookup(M))
924 I.setMetadata(LLVMContext::MD_alias_scope, MNew);
925
926 if (MDNode *M = I.getMetadata(LLVMContext::MD_noalias))
927 if (MDNode *MNew = MDMap.lookup(M))
928 I.setMetadata(LLVMContext::MD_noalias, MNew);
929
930 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
931 if (MDNode *MNew = MDMap.lookup(Decl->getScopeList()))
932 Decl->setScopeList(MNew);
933 }
934 }
935 }
936
937 /// If the inlined function has noalias arguments,
938 /// then add new alias scopes for each noalias argument, tag the mapped noalias
939 /// parameters with noalias metadata specifying the new scope, and tag all
940 /// non-derived loads, stores and memory intrinsics with the new alias scopes.
AddAliasScopeMetadata(CallBase & CB,ValueToValueMapTy & VMap,const DataLayout & DL,AAResults * CalleeAAR)941 static void AddAliasScopeMetadata(CallBase &CB, ValueToValueMapTy &VMap,
942 const DataLayout &DL, AAResults *CalleeAAR) {
943 if (!EnableNoAliasConversion)
944 return;
945
946 const Function *CalledFunc = CB.getCalledFunction();
947 SmallVector<const Argument *, 4> NoAliasArgs;
948
949 for (const Argument &Arg : CalledFunc->args())
950 if (CB.paramHasAttr(Arg.getArgNo(), Attribute::NoAlias) && !Arg.use_empty())
951 NoAliasArgs.push_back(&Arg);
952
953 if (NoAliasArgs.empty())
954 return;
955
956 // To do a good job, if a noalias variable is captured, we need to know if
957 // the capture point dominates the particular use we're considering.
958 DominatorTree DT;
959 DT.recalculate(const_cast<Function&>(*CalledFunc));
960
961 // noalias indicates that pointer values based on the argument do not alias
962 // pointer values which are not based on it. So we add a new "scope" for each
963 // noalias function argument. Accesses using pointers based on that argument
964 // become part of that alias scope, accesses using pointers not based on that
965 // argument are tagged as noalias with that scope.
966
967 DenseMap<const Argument *, MDNode *> NewScopes;
968 MDBuilder MDB(CalledFunc->getContext());
969
970 // Create a new scope domain for this function.
971 MDNode *NewDomain =
972 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName());
973 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) {
974 const Argument *A = NoAliasArgs[i];
975
976 std::string Name = std::string(CalledFunc->getName());
977 if (A->hasName()) {
978 Name += ": %";
979 Name += A->getName();
980 } else {
981 Name += ": argument ";
982 Name += utostr(i);
983 }
984
985 // Note: We always create a new anonymous root here. This is true regardless
986 // of the linkage of the callee because the aliasing "scope" is not just a
987 // property of the callee, but also all control dependencies in the caller.
988 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name);
989 NewScopes.insert(std::make_pair(A, NewScope));
990
991 if (UseNoAliasIntrinsic) {
992 // Introduce a llvm.experimental.noalias.scope.decl for the noalias
993 // argument.
994 MDNode *AScopeList = MDNode::get(CalledFunc->getContext(), NewScope);
995 auto *NoAliasDecl =
996 IRBuilder<>(&CB).CreateNoAliasScopeDeclaration(AScopeList);
997 // Ignore the result for now. The result will be used when the
998 // llvm.noalias intrinsic is introduced.
999 (void)NoAliasDecl;
1000 }
1001 }
1002
1003 // Iterate over all new instructions in the map; for all memory-access
1004 // instructions, add the alias scope metadata.
1005 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end();
1006 VMI != VMIE; ++VMI) {
1007 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) {
1008 if (!VMI->second)
1009 continue;
1010
1011 Instruction *NI = dyn_cast<Instruction>(VMI->second);
1012 if (!NI)
1013 continue;
1014
1015 bool IsArgMemOnlyCall = false, IsFuncCall = false;
1016 SmallVector<const Value *, 2> PtrArgs;
1017
1018 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
1019 PtrArgs.push_back(LI->getPointerOperand());
1020 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
1021 PtrArgs.push_back(SI->getPointerOperand());
1022 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I))
1023 PtrArgs.push_back(VAAI->getPointerOperand());
1024 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
1025 PtrArgs.push_back(CXI->getPointerOperand());
1026 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
1027 PtrArgs.push_back(RMWI->getPointerOperand());
1028 else if (const auto *Call = dyn_cast<CallBase>(I)) {
1029 // If we know that the call does not access memory, then we'll still
1030 // know that about the inlined clone of this call site, and we don't
1031 // need to add metadata.
1032 if (Call->doesNotAccessMemory())
1033 continue;
1034
1035 IsFuncCall = true;
1036 if (CalleeAAR) {
1037 FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call);
1038
1039 // We'll retain this knowledge without additional metadata.
1040 if (AAResults::onlyAccessesInaccessibleMem(MRB))
1041 continue;
1042
1043 if (AAResults::onlyAccessesArgPointees(MRB))
1044 IsArgMemOnlyCall = true;
1045 }
1046
1047 for (Value *Arg : Call->args()) {
1048 // We need to check the underlying objects of all arguments, not just
1049 // the pointer arguments, because we might be passing pointers as
1050 // integers, etc.
1051 // However, if we know that the call only accesses pointer arguments,
1052 // then we only need to check the pointer arguments.
1053 if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy())
1054 continue;
1055
1056 PtrArgs.push_back(Arg);
1057 }
1058 }
1059
1060 // If we found no pointers, then this instruction is not suitable for
1061 // pairing with an instruction to receive aliasing metadata.
1062 // However, if this is a call, this we might just alias with none of the
1063 // noalias arguments.
1064 if (PtrArgs.empty() && !IsFuncCall)
1065 continue;
1066
1067 // It is possible that there is only one underlying object, but you
1068 // need to go through several PHIs to see it, and thus could be
1069 // repeated in the Objects list.
1070 SmallPtrSet<const Value *, 4> ObjSet;
1071 SmallVector<Metadata *, 4> Scopes, NoAliases;
1072
1073 SmallSetVector<const Argument *, 4> NAPtrArgs;
1074 for (const Value *V : PtrArgs) {
1075 SmallVector<const Value *, 4> Objects;
1076 getUnderlyingObjects(V, Objects, /* LI = */ nullptr);
1077
1078 for (const Value *O : Objects)
1079 ObjSet.insert(O);
1080 }
1081
1082 // Figure out if we're derived from anything that is not a noalias
1083 // argument.
1084 bool CanDeriveViaCapture = false, UsesAliasingPtr = false;
1085 for (const Value *V : ObjSet) {
1086 // Is this value a constant that cannot be derived from any pointer
1087 // value (we need to exclude constant expressions, for example, that
1088 // are formed from arithmetic on global symbols).
1089 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) ||
1090 isa<ConstantPointerNull>(V) ||
1091 isa<ConstantDataVector>(V) || isa<UndefValue>(V);
1092 if (IsNonPtrConst)
1093 continue;
1094
1095 // If this is anything other than a noalias argument, then we cannot
1096 // completely describe the aliasing properties using alias.scope
1097 // metadata (and, thus, won't add any).
1098 if (const Argument *A = dyn_cast<Argument>(V)) {
1099 if (!CB.paramHasAttr(A->getArgNo(), Attribute::NoAlias))
1100 UsesAliasingPtr = true;
1101 } else {
1102 UsesAliasingPtr = true;
1103 }
1104
1105 // If this is not some identified function-local object (which cannot
1106 // directly alias a noalias argument), or some other argument (which,
1107 // by definition, also cannot alias a noalias argument), then we could
1108 // alias a noalias argument that has been captured).
1109 if (!isa<Argument>(V) &&
1110 !isIdentifiedFunctionLocal(const_cast<Value*>(V)))
1111 CanDeriveViaCapture = true;
1112 }
1113
1114 // A function call can always get captured noalias pointers (via other
1115 // parameters, globals, etc.).
1116 if (IsFuncCall && !IsArgMemOnlyCall)
1117 CanDeriveViaCapture = true;
1118
1119 // First, we want to figure out all of the sets with which we definitely
1120 // don't alias. Iterate over all noalias set, and add those for which:
1121 // 1. The noalias argument is not in the set of objects from which we
1122 // definitely derive.
1123 // 2. The noalias argument has not yet been captured.
1124 // An arbitrary function that might load pointers could see captured
1125 // noalias arguments via other noalias arguments or globals, and so we
1126 // must always check for prior capture.
1127 for (const Argument *A : NoAliasArgs) {
1128 if (!ObjSet.count(A) && (!CanDeriveViaCapture ||
1129 // It might be tempting to skip the
1130 // PointerMayBeCapturedBefore check if
1131 // A->hasNoCaptureAttr() is true, but this is
1132 // incorrect because nocapture only guarantees
1133 // that no copies outlive the function, not
1134 // that the value cannot be locally captured.
1135 !PointerMayBeCapturedBefore(A,
1136 /* ReturnCaptures */ false,
1137 /* StoreCaptures */ false, I, &DT)))
1138 NoAliases.push_back(NewScopes[A]);
1139 }
1140
1141 if (!NoAliases.empty())
1142 NI->setMetadata(LLVMContext::MD_noalias,
1143 MDNode::concatenate(
1144 NI->getMetadata(LLVMContext::MD_noalias),
1145 MDNode::get(CalledFunc->getContext(), NoAliases)));
1146
1147 // Next, we want to figure out all of the sets to which we might belong.
1148 // We might belong to a set if the noalias argument is in the set of
1149 // underlying objects. If there is some non-noalias argument in our list
1150 // of underlying objects, then we cannot add a scope because the fact
1151 // that some access does not alias with any set of our noalias arguments
1152 // cannot itself guarantee that it does not alias with this access
1153 // (because there is some pointer of unknown origin involved and the
1154 // other access might also depend on this pointer). We also cannot add
1155 // scopes to arbitrary functions unless we know they don't access any
1156 // non-parameter pointer-values.
1157 bool CanAddScopes = !UsesAliasingPtr;
1158 if (CanAddScopes && IsFuncCall)
1159 CanAddScopes = IsArgMemOnlyCall;
1160
1161 if (CanAddScopes)
1162 for (const Argument *A : NoAliasArgs) {
1163 if (ObjSet.count(A))
1164 Scopes.push_back(NewScopes[A]);
1165 }
1166
1167 if (!Scopes.empty())
1168 NI->setMetadata(
1169 LLVMContext::MD_alias_scope,
1170 MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope),
1171 MDNode::get(CalledFunc->getContext(), Scopes)));
1172 }
1173 }
1174 }
1175
MayContainThrowingOrExitingCall(Instruction * Begin,Instruction * End)1176 static bool MayContainThrowingOrExitingCall(Instruction *Begin,
1177 Instruction *End) {
1178
1179 assert(Begin->getParent() == End->getParent() &&
1180 "Expected to be in same basic block!");
1181 unsigned NumInstChecked = 0;
1182 // Check that all instructions in the range [Begin, End) are guaranteed to
1183 // transfer execution to successor.
1184 for (auto &I : make_range(Begin->getIterator(), End->getIterator()))
1185 if (NumInstChecked++ > InlinerAttributeWindow ||
1186 !isGuaranteedToTransferExecutionToSuccessor(&I))
1187 return true;
1188 return false;
1189 }
1190
IdentifyValidAttributes(CallBase & CB)1191 static AttrBuilder IdentifyValidAttributes(CallBase &CB) {
1192
1193 AttrBuilder AB(CB.getAttributes(), AttributeList::ReturnIndex);
1194 if (AB.empty())
1195 return AB;
1196 AttrBuilder Valid;
1197 // Only allow these white listed attributes to be propagated back to the
1198 // callee. This is because other attributes may only be valid on the call
1199 // itself, i.e. attributes such as signext and zeroext.
1200 if (auto DerefBytes = AB.getDereferenceableBytes())
1201 Valid.addDereferenceableAttr(DerefBytes);
1202 if (auto DerefOrNullBytes = AB.getDereferenceableOrNullBytes())
1203 Valid.addDereferenceableOrNullAttr(DerefOrNullBytes);
1204 if (AB.contains(Attribute::NoAlias))
1205 Valid.addAttribute(Attribute::NoAlias);
1206 if (AB.contains(Attribute::NonNull))
1207 Valid.addAttribute(Attribute::NonNull);
1208 return Valid;
1209 }
1210
AddReturnAttributes(CallBase & CB,ValueToValueMapTy & VMap)1211 static void AddReturnAttributes(CallBase &CB, ValueToValueMapTy &VMap) {
1212 if (!UpdateReturnAttributes)
1213 return;
1214
1215 AttrBuilder Valid = IdentifyValidAttributes(CB);
1216 if (Valid.empty())
1217 return;
1218 auto *CalledFunction = CB.getCalledFunction();
1219 auto &Context = CalledFunction->getContext();
1220
1221 for (auto &BB : *CalledFunction) {
1222 auto *RI = dyn_cast<ReturnInst>(BB.getTerminator());
1223 if (!RI || !isa<CallBase>(RI->getOperand(0)))
1224 continue;
1225 auto *RetVal = cast<CallBase>(RI->getOperand(0));
1226 // Sanity check that the cloned RetVal exists and is a call, otherwise we
1227 // cannot add the attributes on the cloned RetVal.
1228 // Simplification during inlining could have transformed the cloned
1229 // instruction.
1230 auto *NewRetVal = dyn_cast_or_null<CallBase>(VMap.lookup(RetVal));
1231 if (!NewRetVal)
1232 continue;
1233 // Backward propagation of attributes to the returned value may be incorrect
1234 // if it is control flow dependent.
1235 // Consider:
1236 // @callee {
1237 // %rv = call @foo()
1238 // %rv2 = call @bar()
1239 // if (%rv2 != null)
1240 // return %rv2
1241 // if (%rv == null)
1242 // exit()
1243 // return %rv
1244 // }
1245 // caller() {
1246 // %val = call nonnull @callee()
1247 // }
1248 // Here we cannot add the nonnull attribute on either foo or bar. So, we
1249 // limit the check to both RetVal and RI are in the same basic block and
1250 // there are no throwing/exiting instructions between these instructions.
1251 if (RI->getParent() != RetVal->getParent() ||
1252 MayContainThrowingOrExitingCall(RetVal, RI))
1253 continue;
1254 // Add to the existing attributes of NewRetVal, i.e. the cloned call
1255 // instruction.
1256 // NB! When we have the same attribute already existing on NewRetVal, but
1257 // with a differing value, the AttributeList's merge API honours the already
1258 // existing attribute value (i.e. attributes such as dereferenceable,
1259 // dereferenceable_or_null etc). See AttrBuilder::merge for more details.
1260 AttributeList AL = NewRetVal->getAttributes();
1261 AttributeList NewAL =
1262 AL.addAttributes(Context, AttributeList::ReturnIndex, Valid);
1263 NewRetVal->setAttributes(NewAL);
1264 }
1265 }
1266
1267 /// If the inlined function has non-byval align arguments, then
1268 /// add @llvm.assume-based alignment assumptions to preserve this information.
AddAlignmentAssumptions(CallBase & CB,InlineFunctionInfo & IFI)1269 static void AddAlignmentAssumptions(CallBase &CB, InlineFunctionInfo &IFI) {
1270 if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache)
1271 return;
1272
1273 AssumptionCache *AC = &IFI.GetAssumptionCache(*CB.getCaller());
1274 auto &DL = CB.getCaller()->getParent()->getDataLayout();
1275
1276 // To avoid inserting redundant assumptions, we should check for assumptions
1277 // already in the caller. To do this, we might need a DT of the caller.
1278 DominatorTree DT;
1279 bool DTCalculated = false;
1280
1281 Function *CalledFunc = CB.getCalledFunction();
1282 for (Argument &Arg : CalledFunc->args()) {
1283 unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0;
1284 if (Align && !Arg.hasPassPointeeByValueCopyAttr() && !Arg.hasNUses(0)) {
1285 if (!DTCalculated) {
1286 DT.recalculate(*CB.getCaller());
1287 DTCalculated = true;
1288 }
1289
1290 // If we can already prove the asserted alignment in the context of the
1291 // caller, then don't bother inserting the assumption.
1292 Value *ArgVal = CB.getArgOperand(Arg.getArgNo());
1293 if (getKnownAlignment(ArgVal, DL, &CB, AC, &DT) >= Align)
1294 continue;
1295
1296 CallInst *NewAsmp =
1297 IRBuilder<>(&CB).CreateAlignmentAssumption(DL, ArgVal, Align);
1298 AC->registerAssumption(cast<AssumeInst>(NewAsmp));
1299 }
1300 }
1301 }
1302
1303 /// Once we have cloned code over from a callee into the caller,
1304 /// update the specified callgraph to reflect the changes we made.
1305 /// Note that it's possible that not all code was copied over, so only
1306 /// some edges of the callgraph may remain.
UpdateCallGraphAfterInlining(CallBase & CB,Function::iterator FirstNewBlock,ValueToValueMapTy & VMap,InlineFunctionInfo & IFI)1307 static void UpdateCallGraphAfterInlining(CallBase &CB,
1308 Function::iterator FirstNewBlock,
1309 ValueToValueMapTy &VMap,
1310 InlineFunctionInfo &IFI) {
1311 CallGraph &CG = *IFI.CG;
1312 const Function *Caller = CB.getCaller();
1313 const Function *Callee = CB.getCalledFunction();
1314 CallGraphNode *CalleeNode = CG[Callee];
1315 CallGraphNode *CallerNode = CG[Caller];
1316
1317 // Since we inlined some uninlined call sites in the callee into the caller,
1318 // add edges from the caller to all of the callees of the callee.
1319 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
1320
1321 // Consider the case where CalleeNode == CallerNode.
1322 CallGraphNode::CalledFunctionsVector CallCache;
1323 if (CalleeNode == CallerNode) {
1324 CallCache.assign(I, E);
1325 I = CallCache.begin();
1326 E = CallCache.end();
1327 }
1328
1329 for (; I != E; ++I) {
1330 // Skip 'refererence' call records.
1331 if (!I->first)
1332 continue;
1333
1334 const Value *OrigCall = *I->first;
1335
1336 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
1337 // Only copy the edge if the call was inlined!
1338 if (VMI == VMap.end() || VMI->second == nullptr)
1339 continue;
1340
1341 // If the call was inlined, but then constant folded, there is no edge to
1342 // add. Check for this case.
1343 auto *NewCall = dyn_cast<CallBase>(VMI->second);
1344 if (!NewCall)
1345 continue;
1346
1347 // We do not treat intrinsic calls like real function calls because we
1348 // expect them to become inline code; do not add an edge for an intrinsic.
1349 if (NewCall->getCalledFunction() &&
1350 NewCall->getCalledFunction()->isIntrinsic())
1351 continue;
1352
1353 // Remember that this call site got inlined for the client of
1354 // InlineFunction.
1355 IFI.InlinedCalls.push_back(NewCall);
1356
1357 // It's possible that inlining the callsite will cause it to go from an
1358 // indirect to a direct call by resolving a function pointer. If this
1359 // happens, set the callee of the new call site to a more precise
1360 // destination. This can also happen if the call graph node of the caller
1361 // was just unnecessarily imprecise.
1362 if (!I->second->getFunction())
1363 if (Function *F = NewCall->getCalledFunction()) {
1364 // Indirect call site resolved to direct call.
1365 CallerNode->addCalledFunction(NewCall, CG[F]);
1366
1367 continue;
1368 }
1369
1370 CallerNode->addCalledFunction(NewCall, I->second);
1371 }
1372
1373 // Update the call graph by deleting the edge from Callee to Caller. We must
1374 // do this after the loop above in case Caller and Callee are the same.
1375 CallerNode->removeCallEdgeFor(*cast<CallBase>(&CB));
1376 }
1377
HandleByValArgumentInit(Value * Dst,Value * Src,Module * M,BasicBlock * InsertBlock,InlineFunctionInfo & IFI)1378 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M,
1379 BasicBlock *InsertBlock,
1380 InlineFunctionInfo &IFI) {
1381 Type *AggTy = cast<PointerType>(Src->getType())->getElementType();
1382 IRBuilder<> Builder(InsertBlock, InsertBlock->begin());
1383
1384 Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy));
1385
1386 // Always generate a memcpy of alignment 1 here because we don't know
1387 // the alignment of the src pointer. Other optimizations can infer
1388 // better alignment.
1389 Builder.CreateMemCpy(Dst, /*DstAlign*/ Align(1), Src,
1390 /*SrcAlign*/ Align(1), Size);
1391 }
1392
1393 /// When inlining a call site that has a byval argument,
1394 /// we have to make the implicit memcpy explicit by adding it.
HandleByValArgument(Value * Arg,Instruction * TheCall,const Function * CalledFunc,InlineFunctionInfo & IFI,unsigned ByValAlignment)1395 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
1396 const Function *CalledFunc,
1397 InlineFunctionInfo &IFI,
1398 unsigned ByValAlignment) {
1399 PointerType *ArgTy = cast<PointerType>(Arg->getType());
1400 Type *AggTy = ArgTy->getElementType();
1401
1402 Function *Caller = TheCall->getFunction();
1403 const DataLayout &DL = Caller->getParent()->getDataLayout();
1404
1405 // If the called function is readonly, then it could not mutate the caller's
1406 // copy of the byval'd memory. In this case, it is safe to elide the copy and
1407 // temporary.
1408 if (CalledFunc->onlyReadsMemory()) {
1409 // If the byval argument has a specified alignment that is greater than the
1410 // passed in pointer, then we either have to round up the input pointer or
1411 // give up on this transformation.
1412 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
1413 return Arg;
1414
1415 AssumptionCache *AC =
1416 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1417
1418 // If the pointer is already known to be sufficiently aligned, or if we can
1419 // round it up to a larger alignment, then we don't need a temporary.
1420 if (getOrEnforceKnownAlignment(Arg, Align(ByValAlignment), DL, TheCall,
1421 AC) >= ByValAlignment)
1422 return Arg;
1423
1424 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad
1425 // for code quality, but rarely happens and is required for correctness.
1426 }
1427
1428 // Create the alloca. If we have DataLayout, use nice alignment.
1429 Align Alignment(DL.getPrefTypeAlignment(AggTy));
1430
1431 // If the byval had an alignment specified, we *must* use at least that
1432 // alignment, as it is required by the byval argument (and uses of the
1433 // pointer inside the callee).
1434 Alignment = max(Alignment, MaybeAlign(ByValAlignment));
1435
1436 Value *NewAlloca =
1437 new AllocaInst(AggTy, DL.getAllocaAddrSpace(), nullptr, Alignment,
1438 Arg->getName(), &*Caller->begin()->begin());
1439 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca));
1440
1441 // Uses of the argument in the function should use our new alloca
1442 // instead.
1443 return NewAlloca;
1444 }
1445
1446 // Check whether this Value is used by a lifetime intrinsic.
isUsedByLifetimeMarker(Value * V)1447 static bool isUsedByLifetimeMarker(Value *V) {
1448 for (User *U : V->users())
1449 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U))
1450 if (II->isLifetimeStartOrEnd())
1451 return true;
1452 return false;
1453 }
1454
1455 // Check whether the given alloca already has
1456 // lifetime.start or lifetime.end intrinsics.
hasLifetimeMarkers(AllocaInst * AI)1457 static bool hasLifetimeMarkers(AllocaInst *AI) {
1458 Type *Ty = AI->getType();
1459 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(),
1460 Ty->getPointerAddressSpace());
1461 if (Ty == Int8PtrTy)
1462 return isUsedByLifetimeMarker(AI);
1463
1464 // Do a scan to find all the casts to i8*.
1465 for (User *U : AI->users()) {
1466 if (U->getType() != Int8PtrTy) continue;
1467 if (U->stripPointerCasts() != AI) continue;
1468 if (isUsedByLifetimeMarker(U))
1469 return true;
1470 }
1471 return false;
1472 }
1473
1474 /// Return the result of AI->isStaticAlloca() if AI were moved to the entry
1475 /// block. Allocas used in inalloca calls and allocas of dynamic array size
1476 /// cannot be static.
allocaWouldBeStaticInEntry(const AllocaInst * AI)1477 static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) {
1478 return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca();
1479 }
1480
1481 /// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL
1482 /// inlined at \p InlinedAt. \p IANodes is an inlined-at cache.
inlineDebugLoc(DebugLoc OrigDL,DILocation * InlinedAt,LLVMContext & Ctx,DenseMap<const MDNode *,MDNode * > & IANodes)1483 static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt,
1484 LLVMContext &Ctx,
1485 DenseMap<const MDNode *, MDNode *> &IANodes) {
1486 auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes);
1487 return DILocation::get(Ctx, OrigDL.getLine(), OrigDL.getCol(),
1488 OrigDL.getScope(), IA);
1489 }
1490
1491 /// Update inlined instructions' line numbers to
1492 /// to encode location where these instructions are inlined.
fixupLineNumbers(Function * Fn,Function::iterator FI,Instruction * TheCall,bool CalleeHasDebugInfo)1493 static void fixupLineNumbers(Function *Fn, Function::iterator FI,
1494 Instruction *TheCall, bool CalleeHasDebugInfo) {
1495 const DebugLoc &TheCallDL = TheCall->getDebugLoc();
1496 if (!TheCallDL)
1497 return;
1498
1499 auto &Ctx = Fn->getContext();
1500 DILocation *InlinedAtNode = TheCallDL;
1501
1502 // Create a unique call site, not to be confused with any other call from the
1503 // same location.
1504 InlinedAtNode = DILocation::getDistinct(
1505 Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(),
1506 InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt());
1507
1508 // Cache the inlined-at nodes as they're built so they are reused, without
1509 // this every instruction's inlined-at chain would become distinct from each
1510 // other.
1511 DenseMap<const MDNode *, MDNode *> IANodes;
1512
1513 // Check if we are not generating inline line tables and want to use
1514 // the call site location instead.
1515 bool NoInlineLineTables = Fn->hasFnAttribute("no-inline-line-tables");
1516
1517 for (; FI != Fn->end(); ++FI) {
1518 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
1519 BI != BE; ++BI) {
1520 // Loop metadata needs to be updated so that the start and end locs
1521 // reference inlined-at locations.
1522 auto updateLoopInfoLoc = [&Ctx, &InlinedAtNode, &IANodes](
1523 const DILocation &Loc) -> DILocation * {
1524 return inlineDebugLoc(&Loc, InlinedAtNode, Ctx, IANodes).get();
1525 };
1526 updateLoopMetadataDebugLocations(*BI, updateLoopInfoLoc);
1527
1528 if (!NoInlineLineTables)
1529 if (DebugLoc DL = BI->getDebugLoc()) {
1530 DebugLoc IDL =
1531 inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes);
1532 BI->setDebugLoc(IDL);
1533 continue;
1534 }
1535
1536 if (CalleeHasDebugInfo && !NoInlineLineTables)
1537 continue;
1538
1539 // If the inlined instruction has no line number, or if inline info
1540 // is not being generated, make it look as if it originates from the call
1541 // location. This is important for ((__always_inline, __nodebug__))
1542 // functions which must use caller location for all instructions in their
1543 // function body.
1544
1545 // Don't update static allocas, as they may get moved later.
1546 if (auto *AI = dyn_cast<AllocaInst>(BI))
1547 if (allocaWouldBeStaticInEntry(AI))
1548 continue;
1549
1550 BI->setDebugLoc(TheCallDL);
1551 }
1552
1553 // Remove debug info intrinsics if we're not keeping inline info.
1554 if (NoInlineLineTables) {
1555 BasicBlock::iterator BI = FI->begin();
1556 while (BI != FI->end()) {
1557 if (isa<DbgInfoIntrinsic>(BI)) {
1558 BI = BI->eraseFromParent();
1559 continue;
1560 }
1561 ++BI;
1562 }
1563 }
1564
1565 }
1566 }
1567
1568 /// Update the block frequencies of the caller after a callee has been inlined.
1569 ///
1570 /// Each block cloned into the caller has its block frequency scaled by the
1571 /// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of
1572 /// callee's entry block gets the same frequency as the callsite block and the
1573 /// relative frequencies of all cloned blocks remain the same after cloning.
updateCallerBFI(BasicBlock * CallSiteBlock,const ValueToValueMapTy & VMap,BlockFrequencyInfo * CallerBFI,BlockFrequencyInfo * CalleeBFI,const BasicBlock & CalleeEntryBlock)1574 static void updateCallerBFI(BasicBlock *CallSiteBlock,
1575 const ValueToValueMapTy &VMap,
1576 BlockFrequencyInfo *CallerBFI,
1577 BlockFrequencyInfo *CalleeBFI,
1578 const BasicBlock &CalleeEntryBlock) {
1579 SmallPtrSet<BasicBlock *, 16> ClonedBBs;
1580 for (auto Entry : VMap) {
1581 if (!isa<BasicBlock>(Entry.first) || !Entry.second)
1582 continue;
1583 auto *OrigBB = cast<BasicBlock>(Entry.first);
1584 auto *ClonedBB = cast<BasicBlock>(Entry.second);
1585 uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency();
1586 if (!ClonedBBs.insert(ClonedBB).second) {
1587 // Multiple blocks in the callee might get mapped to one cloned block in
1588 // the caller since we prune the callee as we clone it. When that happens,
1589 // we want to use the maximum among the original blocks' frequencies.
1590 uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency();
1591 if (NewFreq > Freq)
1592 Freq = NewFreq;
1593 }
1594 CallerBFI->setBlockFreq(ClonedBB, Freq);
1595 }
1596 BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock));
1597 CallerBFI->setBlockFreqAndScale(
1598 EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(),
1599 ClonedBBs);
1600 }
1601
1602 /// Update the branch metadata for cloned call instructions.
updateCallProfile(Function * Callee,const ValueToValueMapTy & VMap,const ProfileCount & CalleeEntryCount,const CallBase & TheCall,ProfileSummaryInfo * PSI,BlockFrequencyInfo * CallerBFI)1603 static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap,
1604 const ProfileCount &CalleeEntryCount,
1605 const CallBase &TheCall, ProfileSummaryInfo *PSI,
1606 BlockFrequencyInfo *CallerBFI) {
1607 if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() ||
1608 CalleeEntryCount.getCount() < 1)
1609 return;
1610 auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None;
1611 int64_t CallCount =
1612 std::min(CallSiteCount.getValueOr(0), CalleeEntryCount.getCount());
1613 updateProfileCallee(Callee, -CallCount, &VMap);
1614 }
1615
updateProfileCallee(Function * Callee,int64_t entryDelta,const ValueMap<const Value *,WeakTrackingVH> * VMap)1616 void llvm::updateProfileCallee(
1617 Function *Callee, int64_t entryDelta,
1618 const ValueMap<const Value *, WeakTrackingVH> *VMap) {
1619 auto CalleeCount = Callee->getEntryCount();
1620 if (!CalleeCount.hasValue())
1621 return;
1622
1623 uint64_t priorEntryCount = CalleeCount.getCount();
1624 uint64_t newEntryCount;
1625
1626 // Since CallSiteCount is an estimate, it could exceed the original callee
1627 // count and has to be set to 0 so guard against underflow.
1628 if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount)
1629 newEntryCount = 0;
1630 else
1631 newEntryCount = priorEntryCount + entryDelta;
1632
1633 // During inlining ?
1634 if (VMap) {
1635 uint64_t cloneEntryCount = priorEntryCount - newEntryCount;
1636 for (auto Entry : *VMap)
1637 if (isa<CallInst>(Entry.first))
1638 if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second))
1639 CI->updateProfWeight(cloneEntryCount, priorEntryCount);
1640 }
1641
1642 if (entryDelta) {
1643 Callee->setEntryCount(newEntryCount);
1644
1645 for (BasicBlock &BB : *Callee)
1646 // No need to update the callsite if it is pruned during inlining.
1647 if (!VMap || VMap->count(&BB))
1648 for (Instruction &I : BB)
1649 if (CallInst *CI = dyn_cast<CallInst>(&I))
1650 CI->updateProfWeight(newEntryCount, priorEntryCount);
1651 }
1652 }
1653
1654 /// An operand bundle "clang.arc.attachedcall" on a call indicates the call
1655 /// result is implicitly consumed by a call to retainRV or claimRV immediately
1656 /// after the call. This function inlines the retainRV/claimRV calls.
1657 ///
1658 /// There are three cases to consider:
1659 ///
1660 /// 1. If there is a call to autoreleaseRV that takes a pointer to the returned
1661 /// object in the callee return block, the autoreleaseRV call and the
1662 /// retainRV/claimRV call in the caller cancel out. If the call in the caller
1663 /// is a claimRV call, a call to objc_release is emitted.
1664 ///
1665 /// 2. If there is a call in the callee return block that doesn't have operand
1666 /// bundle "clang.arc.attachedcall", the operand bundle on the original call
1667 /// is transferred to the call in the callee.
1668 ///
1669 /// 3. Otherwise, a call to objc_retain is inserted if the call in the caller is
1670 /// a retainRV call.
1671 static void
inlineRetainOrClaimRVCalls(CallBase & CB,const SmallVectorImpl<ReturnInst * > & Returns)1672 inlineRetainOrClaimRVCalls(CallBase &CB,
1673 const SmallVectorImpl<ReturnInst *> &Returns) {
1674 Module *Mod = CB.getModule();
1675 bool IsRetainRV = objcarc::hasAttachedCallOpBundle(&CB, true),
1676 IsClaimRV = !IsRetainRV;
1677
1678 for (auto *RI : Returns) {
1679 Value *RetOpnd = objcarc::GetRCIdentityRoot(RI->getOperand(0));
1680 BasicBlock::reverse_iterator I = ++(RI->getIterator().getReverse());
1681 BasicBlock::reverse_iterator EI = RI->getParent()->rend();
1682 bool InsertRetainCall = IsRetainRV;
1683 IRBuilder<> Builder(RI->getContext());
1684
1685 // Walk backwards through the basic block looking for either a matching
1686 // autoreleaseRV call or an unannotated call.
1687 for (; I != EI;) {
1688 auto CurI = I++;
1689
1690 // Ignore casts.
1691 if (isa<CastInst>(*CurI))
1692 continue;
1693
1694 if (auto *II = dyn_cast<IntrinsicInst>(&*CurI)) {
1695 if (II->getIntrinsicID() == Intrinsic::objc_autoreleaseReturnValue &&
1696 II->hasNUses(0) &&
1697 objcarc::GetRCIdentityRoot(II->getOperand(0)) == RetOpnd) {
1698 // If we've found a matching authoreleaseRV call:
1699 // - If claimRV is attached to the call, insert a call to objc_release
1700 // and erase the autoreleaseRV call.
1701 // - If retainRV is attached to the call, just erase the autoreleaseRV
1702 // call.
1703 if (IsClaimRV) {
1704 Builder.SetInsertPoint(II);
1705 Function *IFn =
1706 Intrinsic::getDeclaration(Mod, Intrinsic::objc_release);
1707 Value *BC =
1708 Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1709 Builder.CreateCall(IFn, BC, "");
1710 }
1711 II->eraseFromParent();
1712 InsertRetainCall = false;
1713 }
1714 } else if (auto *CI = dyn_cast<CallInst>(&*CurI)) {
1715 if (objcarc::GetRCIdentityRoot(CI) == RetOpnd &&
1716 !objcarc::hasAttachedCallOpBundle(CI)) {
1717 // If we've found an unannotated call that defines RetOpnd, add a
1718 // "clang.arc.attachedcall" operand bundle.
1719 Value *BundleArgs[] = {ConstantInt::get(
1720 Builder.getInt64Ty(),
1721 objcarc::getAttachedCallOperandBundleEnum(IsRetainRV))};
1722 OperandBundleDef OB("clang.arc.attachedcall", BundleArgs);
1723 auto *NewCall = CallBase::addOperandBundle(
1724 CI, LLVMContext::OB_clang_arc_attachedcall, OB, CI);
1725 NewCall->copyMetadata(*CI);
1726 CI->replaceAllUsesWith(NewCall);
1727 CI->eraseFromParent();
1728 InsertRetainCall = false;
1729 }
1730 }
1731
1732 break;
1733 }
1734
1735 if (InsertRetainCall) {
1736 // The retainRV is attached to the call and we've failed to find a
1737 // matching autoreleaseRV or an annotated call in the callee. Emit a call
1738 // to objc_retain.
1739 Builder.SetInsertPoint(RI);
1740 Function *IFn = Intrinsic::getDeclaration(Mod, Intrinsic::objc_retain);
1741 Value *BC = Builder.CreateBitCast(RetOpnd, IFn->getArg(0)->getType());
1742 Builder.CreateCall(IFn, BC, "");
1743 }
1744 }
1745 }
1746
1747 /// This function inlines the called function into the basic block of the
1748 /// caller. This returns false if it is not possible to inline this call.
1749 /// The program is still in a well defined state if this occurs though.
1750 ///
1751 /// Note that this only does one level of inlining. For example, if the
1752 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
1753 /// exists in the instruction stream. Similarly this will inline a recursive
1754 /// function by one level.
InlineFunction(CallBase & CB,InlineFunctionInfo & IFI,AAResults * CalleeAAR,bool InsertLifetime,Function * ForwardVarArgsTo)1755 llvm::InlineResult llvm::InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
1756 AAResults *CalleeAAR,
1757 bool InsertLifetime,
1758 Function *ForwardVarArgsTo) {
1759 assert(CB.getParent() && CB.getFunction() && "Instruction not in function!");
1760
1761 // FIXME: we don't inline callbr yet.
1762 if (isa<CallBrInst>(CB))
1763 return InlineResult::failure("We don't inline callbr yet.");
1764
1765 // If IFI has any state in it, zap it before we fill it in.
1766 IFI.reset();
1767
1768 Function *CalledFunc = CB.getCalledFunction();
1769 if (!CalledFunc || // Can't inline external function or indirect
1770 CalledFunc->isDeclaration()) // call!
1771 return InlineResult::failure("external or indirect");
1772
1773 // The inliner does not know how to inline through calls with operand bundles
1774 // in general ...
1775 if (CB.hasOperandBundles()) {
1776 for (int i = 0, e = CB.getNumOperandBundles(); i != e; ++i) {
1777 uint32_t Tag = CB.getOperandBundleAt(i).getTagID();
1778 // ... but it knows how to inline through "deopt" operand bundles ...
1779 if (Tag == LLVMContext::OB_deopt)
1780 continue;
1781 // ... and "funclet" operand bundles.
1782 if (Tag == LLVMContext::OB_funclet)
1783 continue;
1784 if (Tag == LLVMContext::OB_clang_arc_attachedcall)
1785 continue;
1786
1787 return InlineResult::failure("unsupported operand bundle");
1788 }
1789 }
1790
1791 // If the call to the callee cannot throw, set the 'nounwind' flag on any
1792 // calls that we inline.
1793 bool MarkNoUnwind = CB.doesNotThrow();
1794
1795 BasicBlock *OrigBB = CB.getParent();
1796 Function *Caller = OrigBB->getParent();
1797
1798 // GC poses two hazards to inlining, which only occur when the callee has GC:
1799 // 1. If the caller has no GC, then the callee's GC must be propagated to the
1800 // caller.
1801 // 2. If the caller has a differing GC, it is invalid to inline.
1802 if (CalledFunc->hasGC()) {
1803 if (!Caller->hasGC())
1804 Caller->setGC(CalledFunc->getGC());
1805 else if (CalledFunc->getGC() != Caller->getGC())
1806 return InlineResult::failure("incompatible GC");
1807 }
1808
1809 // Get the personality function from the callee if it contains a landing pad.
1810 Constant *CalledPersonality =
1811 CalledFunc->hasPersonalityFn()
1812 ? CalledFunc->getPersonalityFn()->stripPointerCasts()
1813 : nullptr;
1814
1815 // Find the personality function used by the landing pads of the caller. If it
1816 // exists, then check to see that it matches the personality function used in
1817 // the callee.
1818 Constant *CallerPersonality =
1819 Caller->hasPersonalityFn()
1820 ? Caller->getPersonalityFn()->stripPointerCasts()
1821 : nullptr;
1822 if (CalledPersonality) {
1823 if (!CallerPersonality)
1824 Caller->setPersonalityFn(CalledPersonality);
1825 // If the personality functions match, then we can perform the
1826 // inlining. Otherwise, we can't inline.
1827 // TODO: This isn't 100% true. Some personality functions are proper
1828 // supersets of others and can be used in place of the other.
1829 else if (CalledPersonality != CallerPersonality)
1830 return InlineResult::failure("incompatible personality");
1831 }
1832
1833 // We need to figure out which funclet the callsite was in so that we may
1834 // properly nest the callee.
1835 Instruction *CallSiteEHPad = nullptr;
1836 if (CallerPersonality) {
1837 EHPersonality Personality = classifyEHPersonality(CallerPersonality);
1838 if (isScopedEHPersonality(Personality)) {
1839 Optional<OperandBundleUse> ParentFunclet =
1840 CB.getOperandBundle(LLVMContext::OB_funclet);
1841 if (ParentFunclet)
1842 CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front());
1843
1844 // OK, the inlining site is legal. What about the target function?
1845
1846 if (CallSiteEHPad) {
1847 if (Personality == EHPersonality::MSVC_CXX) {
1848 // The MSVC personality cannot tolerate catches getting inlined into
1849 // cleanup funclets.
1850 if (isa<CleanupPadInst>(CallSiteEHPad)) {
1851 // Ok, the call site is within a cleanuppad. Let's check the callee
1852 // for catchpads.
1853 for (const BasicBlock &CalledBB : *CalledFunc) {
1854 if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI()))
1855 return InlineResult::failure("catch in cleanup funclet");
1856 }
1857 }
1858 } else if (isAsynchronousEHPersonality(Personality)) {
1859 // SEH is even less tolerant, there may not be any sort of exceptional
1860 // funclet in the callee.
1861 for (const BasicBlock &CalledBB : *CalledFunc) {
1862 if (CalledBB.isEHPad())
1863 return InlineResult::failure("SEH in cleanup funclet");
1864 }
1865 }
1866 }
1867 }
1868 }
1869
1870 // Determine if we are dealing with a call in an EHPad which does not unwind
1871 // to caller.
1872 bool EHPadForCallUnwindsLocally = false;
1873 if (CallSiteEHPad && isa<CallInst>(CB)) {
1874 UnwindDestMemoTy FuncletUnwindMap;
1875 Value *CallSiteUnwindDestToken =
1876 getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap);
1877
1878 EHPadForCallUnwindsLocally =
1879 CallSiteUnwindDestToken &&
1880 !isa<ConstantTokenNone>(CallSiteUnwindDestToken);
1881 }
1882
1883 // Get an iterator to the last basic block in the function, which will have
1884 // the new function inlined after it.
1885 Function::iterator LastBlock = --Caller->end();
1886
1887 // Make sure to capture all of the return instructions from the cloned
1888 // function.
1889 SmallVector<ReturnInst*, 8> Returns;
1890 ClonedCodeInfo InlinedFunctionInfo;
1891 Function::iterator FirstNewBlock;
1892
1893 { // Scope to destroy VMap after cloning.
1894 ValueToValueMapTy VMap;
1895 // Keep a list of pair (dst, src) to emit byval initializations.
1896 SmallVector<std::pair<Value*, Value*>, 4> ByValInit;
1897
1898 // When inlining a function that contains noalias scope metadata,
1899 // this metadata needs to be cloned so that the inlined blocks
1900 // have different "unique scopes" at every call site.
1901 // Track the metadata that must be cloned. Do this before other changes to
1902 // the function, so that we do not get in trouble when inlining caller ==
1903 // callee.
1904 ScopedAliasMetadataDeepCloner SAMetadataCloner(CB.getCalledFunction());
1905
1906 auto &DL = Caller->getParent()->getDataLayout();
1907
1908 // Calculate the vector of arguments to pass into the function cloner, which
1909 // matches up the formal to the actual argument values.
1910 auto AI = CB.arg_begin();
1911 unsigned ArgNo = 0;
1912 for (Function::arg_iterator I = CalledFunc->arg_begin(),
1913 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
1914 Value *ActualArg = *AI;
1915
1916 // When byval arguments actually inlined, we need to make the copy implied
1917 // by them explicit. However, we don't do this if the callee is readonly
1918 // or readnone, because the copy would be unneeded: the callee doesn't
1919 // modify the struct.
1920 if (CB.isByValArgument(ArgNo)) {
1921 ActualArg = HandleByValArgument(ActualArg, &CB, CalledFunc, IFI,
1922 CalledFunc->getParamAlignment(ArgNo));
1923 if (ActualArg != *AI)
1924 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI));
1925 }
1926
1927 VMap[&*I] = ActualArg;
1928 }
1929
1930 // TODO: Remove this when users have been updated to the assume bundles.
1931 // Add alignment assumptions if necessary. We do this before the inlined
1932 // instructions are actually cloned into the caller so that we can easily
1933 // check what will be known at the start of the inlined code.
1934 AddAlignmentAssumptions(CB, IFI);
1935
1936 AssumptionCache *AC =
1937 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
1938
1939 /// Preserve all attributes on of the call and its parameters.
1940 salvageKnowledge(&CB, AC);
1941
1942 // We want the inliner to prune the code as it copies. We would LOVE to
1943 // have no dead or constant instructions leftover after inlining occurs
1944 // (which can happen, e.g., because an argument was constant), but we'll be
1945 // happy with whatever the cloner can do.
1946 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
1947 /*ModuleLevelChanges=*/false, Returns, ".i",
1948 &InlinedFunctionInfo, &CB);
1949 // Remember the first block that is newly cloned over.
1950 FirstNewBlock = LastBlock; ++FirstNewBlock;
1951
1952 // Insert retainRV/clainRV runtime calls.
1953 if (objcarc::hasAttachedCallOpBundle(&CB))
1954 inlineRetainOrClaimRVCalls(CB, Returns);
1955
1956 // Updated caller/callee profiles only when requested. For sample loader
1957 // inlining, the context-sensitive inlinee profile doesn't need to be
1958 // subtracted from callee profile, and the inlined clone also doesn't need
1959 // to be scaled based on call site count.
1960 if (IFI.UpdateProfile) {
1961 if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr)
1962 // Update the BFI of blocks cloned into the caller.
1963 updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI,
1964 CalledFunc->front());
1965
1966 updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), CB,
1967 IFI.PSI, IFI.CallerBFI);
1968 }
1969
1970 // Inject byval arguments initialization.
1971 for (std::pair<Value*, Value*> &Init : ByValInit)
1972 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(),
1973 &*FirstNewBlock, IFI);
1974
1975 Optional<OperandBundleUse> ParentDeopt =
1976 CB.getOperandBundle(LLVMContext::OB_deopt);
1977 if (ParentDeopt) {
1978 SmallVector<OperandBundleDef, 2> OpDefs;
1979
1980 for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) {
1981 CallBase *ICS = dyn_cast_or_null<CallBase>(VH);
1982 if (!ICS)
1983 continue; // instruction was DCE'd or RAUW'ed to undef
1984
1985 OpDefs.clear();
1986
1987 OpDefs.reserve(ICS->getNumOperandBundles());
1988
1989 for (unsigned COBi = 0, COBe = ICS->getNumOperandBundles(); COBi < COBe;
1990 ++COBi) {
1991 auto ChildOB = ICS->getOperandBundleAt(COBi);
1992 if (ChildOB.getTagID() != LLVMContext::OB_deopt) {
1993 // If the inlined call has other operand bundles, let them be
1994 OpDefs.emplace_back(ChildOB);
1995 continue;
1996 }
1997
1998 // It may be useful to separate this logic (of handling operand
1999 // bundles) out to a separate "policy" component if this gets crowded.
2000 // Prepend the parent's deoptimization continuation to the newly
2001 // inlined call's deoptimization continuation.
2002 std::vector<Value *> MergedDeoptArgs;
2003 MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() +
2004 ChildOB.Inputs.size());
2005
2006 llvm::append_range(MergedDeoptArgs, ParentDeopt->Inputs);
2007 llvm::append_range(MergedDeoptArgs, ChildOB.Inputs);
2008
2009 OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs));
2010 }
2011
2012 Instruction *NewI = CallBase::Create(ICS, OpDefs, ICS);
2013
2014 // Note: the RAUW does the appropriate fixup in VMap, so we need to do
2015 // this even if the call returns void.
2016 ICS->replaceAllUsesWith(NewI);
2017
2018 VH = nullptr;
2019 ICS->eraseFromParent();
2020 }
2021 }
2022
2023 // Update the callgraph if requested.
2024 if (IFI.CG)
2025 UpdateCallGraphAfterInlining(CB, FirstNewBlock, VMap, IFI);
2026
2027 // For 'nodebug' functions, the associated DISubprogram is always null.
2028 // Conservatively avoid propagating the callsite debug location to
2029 // instructions inlined from a function whose DISubprogram is not null.
2030 fixupLineNumbers(Caller, FirstNewBlock, &CB,
2031 CalledFunc->getSubprogram() != nullptr);
2032
2033 // Now clone the inlined noalias scope metadata.
2034 SAMetadataCloner.clone();
2035 SAMetadataCloner.remap(FirstNewBlock, Caller->end());
2036
2037 // Add noalias metadata if necessary.
2038 AddAliasScopeMetadata(CB, VMap, DL, CalleeAAR);
2039
2040 // Clone return attributes on the callsite into the calls within the inlined
2041 // function which feed into its return value.
2042 AddReturnAttributes(CB, VMap);
2043
2044 // Propagate metadata on the callsite if necessary.
2045 PropagateCallSiteMetadata(CB, FirstNewBlock, Caller->end());
2046
2047 // Register any cloned assumptions.
2048 if (IFI.GetAssumptionCache)
2049 for (BasicBlock &NewBlock :
2050 make_range(FirstNewBlock->getIterator(), Caller->end()))
2051 for (Instruction &I : NewBlock)
2052 if (auto *II = dyn_cast<AssumeInst>(&I))
2053 IFI.GetAssumptionCache(*Caller).registerAssumption(II);
2054 }
2055
2056 // If there are any alloca instructions in the block that used to be the entry
2057 // block for the callee, move them to the entry block of the caller. First
2058 // calculate which instruction they should be inserted before. We insert the
2059 // instructions at the end of the current alloca list.
2060 {
2061 BasicBlock::iterator InsertPoint = Caller->begin()->begin();
2062 for (BasicBlock::iterator I = FirstNewBlock->begin(),
2063 E = FirstNewBlock->end(); I != E; ) {
2064 AllocaInst *AI = dyn_cast<AllocaInst>(I++);
2065 if (!AI) continue;
2066
2067 // If the alloca is now dead, remove it. This often occurs due to code
2068 // specialization.
2069 if (AI->use_empty()) {
2070 AI->eraseFromParent();
2071 continue;
2072 }
2073
2074 if (!allocaWouldBeStaticInEntry(AI))
2075 continue;
2076
2077 // Keep track of the static allocas that we inline into the caller.
2078 IFI.StaticAllocas.push_back(AI);
2079
2080 // Scan for the block of allocas that we can move over, and move them
2081 // all at once.
2082 while (isa<AllocaInst>(I) &&
2083 !cast<AllocaInst>(I)->use_empty() &&
2084 allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) {
2085 IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
2086 ++I;
2087 }
2088
2089 // Transfer all of the allocas over in a block. Using splice means
2090 // that the instructions aren't removed from the symbol table, then
2091 // reinserted.
2092 Caller->getEntryBlock().getInstList().splice(
2093 InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I);
2094 }
2095 }
2096
2097 SmallVector<Value*,4> VarArgsToForward;
2098 SmallVector<AttributeSet, 4> VarArgsAttrs;
2099 for (unsigned i = CalledFunc->getFunctionType()->getNumParams();
2100 i < CB.getNumArgOperands(); i++) {
2101 VarArgsToForward.push_back(CB.getArgOperand(i));
2102 VarArgsAttrs.push_back(CB.getAttributes().getParamAttributes(i));
2103 }
2104
2105 bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false;
2106 if (InlinedFunctionInfo.ContainsCalls) {
2107 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None;
2108 if (CallInst *CI = dyn_cast<CallInst>(&CB))
2109 CallSiteTailKind = CI->getTailCallKind();
2110
2111 // For inlining purposes, the "notail" marker is the same as no marker.
2112 if (CallSiteTailKind == CallInst::TCK_NoTail)
2113 CallSiteTailKind = CallInst::TCK_None;
2114
2115 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E;
2116 ++BB) {
2117 for (auto II = BB->begin(); II != BB->end();) {
2118 Instruction &I = *II++;
2119 CallInst *CI = dyn_cast<CallInst>(&I);
2120 if (!CI)
2121 continue;
2122
2123 // Forward varargs from inlined call site to calls to the
2124 // ForwardVarArgsTo function, if requested, and to musttail calls.
2125 if (!VarArgsToForward.empty() &&
2126 ((ForwardVarArgsTo &&
2127 CI->getCalledFunction() == ForwardVarArgsTo) ||
2128 CI->isMustTailCall())) {
2129 // Collect attributes for non-vararg parameters.
2130 AttributeList Attrs = CI->getAttributes();
2131 SmallVector<AttributeSet, 8> ArgAttrs;
2132 if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) {
2133 for (unsigned ArgNo = 0;
2134 ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo)
2135 ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
2136 }
2137
2138 // Add VarArg attributes.
2139 ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end());
2140 Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(),
2141 Attrs.getRetAttributes(), ArgAttrs);
2142 // Add VarArgs to existing parameters.
2143 SmallVector<Value *, 6> Params(CI->arg_operands());
2144 Params.append(VarArgsToForward.begin(), VarArgsToForward.end());
2145 CallInst *NewCI = CallInst::Create(
2146 CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI);
2147 NewCI->setDebugLoc(CI->getDebugLoc());
2148 NewCI->setAttributes(Attrs);
2149 NewCI->setCallingConv(CI->getCallingConv());
2150 CI->replaceAllUsesWith(NewCI);
2151 CI->eraseFromParent();
2152 CI = NewCI;
2153 }
2154
2155 if (Function *F = CI->getCalledFunction())
2156 InlinedDeoptimizeCalls |=
2157 F->getIntrinsicID() == Intrinsic::experimental_deoptimize;
2158
2159 // We need to reduce the strength of any inlined tail calls. For
2160 // musttail, we have to avoid introducing potential unbounded stack
2161 // growth. For example, if functions 'f' and 'g' are mutually recursive
2162 // with musttail, we can inline 'g' into 'f' so long as we preserve
2163 // musttail on the cloned call to 'f'. If either the inlined call site
2164 // or the cloned call site is *not* musttail, the program already has
2165 // one frame of stack growth, so it's safe to remove musttail. Here is
2166 // a table of example transformations:
2167 //
2168 // f -> musttail g -> musttail f ==> f -> musttail f
2169 // f -> musttail g -> tail f ==> f -> tail f
2170 // f -> g -> musttail f ==> f -> f
2171 // f -> g -> tail f ==> f -> f
2172 //
2173 // Inlined notail calls should remain notail calls.
2174 CallInst::TailCallKind ChildTCK = CI->getTailCallKind();
2175 if (ChildTCK != CallInst::TCK_NoTail)
2176 ChildTCK = std::min(CallSiteTailKind, ChildTCK);
2177 CI->setTailCallKind(ChildTCK);
2178 InlinedMustTailCalls |= CI->isMustTailCall();
2179
2180 // Calls inlined through a 'nounwind' call site should be marked
2181 // 'nounwind'.
2182 if (MarkNoUnwind)
2183 CI->setDoesNotThrow();
2184 }
2185 }
2186 }
2187
2188 // Leave lifetime markers for the static alloca's, scoping them to the
2189 // function we just inlined.
2190 if (InsertLifetime && !IFI.StaticAllocas.empty()) {
2191 IRBuilder<> builder(&FirstNewBlock->front());
2192 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
2193 AllocaInst *AI = IFI.StaticAllocas[ai];
2194 // Don't mark swifterror allocas. They can't have bitcast uses.
2195 if (AI->isSwiftError())
2196 continue;
2197
2198 // If the alloca is already scoped to something smaller than the whole
2199 // function then there's no need to add redundant, less accurate markers.
2200 if (hasLifetimeMarkers(AI))
2201 continue;
2202
2203 // Try to determine the size of the allocation.
2204 ConstantInt *AllocaSize = nullptr;
2205 if (ConstantInt *AIArraySize =
2206 dyn_cast<ConstantInt>(AI->getArraySize())) {
2207 auto &DL = Caller->getParent()->getDataLayout();
2208 Type *AllocaType = AI->getAllocatedType();
2209 TypeSize AllocaTypeSize = DL.getTypeAllocSize(AllocaType);
2210 uint64_t AllocaArraySize = AIArraySize->getLimitedValue();
2211
2212 // Don't add markers for zero-sized allocas.
2213 if (AllocaArraySize == 0)
2214 continue;
2215
2216 // Check that array size doesn't saturate uint64_t and doesn't
2217 // overflow when it's multiplied by type size.
2218 if (!AllocaTypeSize.isScalable() &&
2219 AllocaArraySize != std::numeric_limits<uint64_t>::max() &&
2220 std::numeric_limits<uint64_t>::max() / AllocaArraySize >=
2221 AllocaTypeSize.getFixedSize()) {
2222 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()),
2223 AllocaArraySize * AllocaTypeSize);
2224 }
2225 }
2226
2227 builder.CreateLifetimeStart(AI, AllocaSize);
2228 for (ReturnInst *RI : Returns) {
2229 // Don't insert llvm.lifetime.end calls between a musttail or deoptimize
2230 // call and a return. The return kills all local allocas.
2231 if (InlinedMustTailCalls &&
2232 RI->getParent()->getTerminatingMustTailCall())
2233 continue;
2234 if (InlinedDeoptimizeCalls &&
2235 RI->getParent()->getTerminatingDeoptimizeCall())
2236 continue;
2237 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize);
2238 }
2239 }
2240 }
2241
2242 // If the inlined code contained dynamic alloca instructions, wrap the inlined
2243 // code with llvm.stacksave/llvm.stackrestore intrinsics.
2244 if (InlinedFunctionInfo.ContainsDynamicAllocas) {
2245 Module *M = Caller->getParent();
2246 // Get the two intrinsics we care about.
2247 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
2248 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
2249
2250 // Insert the llvm.stacksave.
2251 CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin())
2252 .CreateCall(StackSave, {}, "savedstack");
2253
2254 // Insert a call to llvm.stackrestore before any return instructions in the
2255 // inlined function.
2256 for (ReturnInst *RI : Returns) {
2257 // Don't insert llvm.stackrestore calls between a musttail or deoptimize
2258 // call and a return. The return will restore the stack pointer.
2259 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall())
2260 continue;
2261 if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall())
2262 continue;
2263 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr);
2264 }
2265 }
2266
2267 // If we are inlining for an invoke instruction, we must make sure to rewrite
2268 // any call instructions into invoke instructions. This is sensitive to which
2269 // funclet pads were top-level in the inlinee, so must be done before
2270 // rewriting the "parent pad" links.
2271 if (auto *II = dyn_cast<InvokeInst>(&CB)) {
2272 BasicBlock *UnwindDest = II->getUnwindDest();
2273 Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI();
2274 if (isa<LandingPadInst>(FirstNonPHI)) {
2275 HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2276 } else {
2277 HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo);
2278 }
2279 }
2280
2281 // Update the lexical scopes of the new funclets and callsites.
2282 // Anything that had 'none' as its parent is now nested inside the callsite's
2283 // EHPad.
2284
2285 if (CallSiteEHPad) {
2286 for (Function::iterator BB = FirstNewBlock->getIterator(),
2287 E = Caller->end();
2288 BB != E; ++BB) {
2289 // Add bundle operands to any top-level call sites.
2290 SmallVector<OperandBundleDef, 1> OpBundles;
2291 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) {
2292 CallBase *I = dyn_cast<CallBase>(&*BBI++);
2293 if (!I)
2294 continue;
2295
2296 // Skip call sites which are nounwind intrinsics.
2297 auto *CalledFn =
2298 dyn_cast<Function>(I->getCalledOperand()->stripPointerCasts());
2299 if (CalledFn && CalledFn->isIntrinsic() && I->doesNotThrow())
2300 continue;
2301
2302 // Skip call sites which already have a "funclet" bundle.
2303 if (I->getOperandBundle(LLVMContext::OB_funclet))
2304 continue;
2305
2306 I->getOperandBundlesAsDefs(OpBundles);
2307 OpBundles.emplace_back("funclet", CallSiteEHPad);
2308
2309 Instruction *NewInst = CallBase::Create(I, OpBundles, I);
2310 NewInst->takeName(I);
2311 I->replaceAllUsesWith(NewInst);
2312 I->eraseFromParent();
2313
2314 OpBundles.clear();
2315 }
2316
2317 // It is problematic if the inlinee has a cleanupret which unwinds to
2318 // caller and we inline it into a call site which doesn't unwind but into
2319 // an EH pad that does. Such an edge must be dynamically unreachable.
2320 // As such, we replace the cleanupret with unreachable.
2321 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator()))
2322 if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally)
2323 changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false);
2324
2325 Instruction *I = BB->getFirstNonPHI();
2326 if (!I->isEHPad())
2327 continue;
2328
2329 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) {
2330 if (isa<ConstantTokenNone>(CatchSwitch->getParentPad()))
2331 CatchSwitch->setParentPad(CallSiteEHPad);
2332 } else {
2333 auto *FPI = cast<FuncletPadInst>(I);
2334 if (isa<ConstantTokenNone>(FPI->getParentPad()))
2335 FPI->setParentPad(CallSiteEHPad);
2336 }
2337 }
2338 }
2339
2340 if (InlinedDeoptimizeCalls) {
2341 // We need to at least remove the deoptimizing returns from the Return set,
2342 // so that the control flow from those returns does not get merged into the
2343 // caller (but terminate it instead). If the caller's return type does not
2344 // match the callee's return type, we also need to change the return type of
2345 // the intrinsic.
2346 if (Caller->getReturnType() == CB.getType()) {
2347 llvm::erase_if(Returns, [](ReturnInst *RI) {
2348 return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr;
2349 });
2350 } else {
2351 SmallVector<ReturnInst *, 8> NormalReturns;
2352 Function *NewDeoptIntrinsic = Intrinsic::getDeclaration(
2353 Caller->getParent(), Intrinsic::experimental_deoptimize,
2354 {Caller->getReturnType()});
2355
2356 for (ReturnInst *RI : Returns) {
2357 CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall();
2358 if (!DeoptCall) {
2359 NormalReturns.push_back(RI);
2360 continue;
2361 }
2362
2363 // The calling convention on the deoptimize call itself may be bogus,
2364 // since the code we're inlining may have undefined behavior (and may
2365 // never actually execute at runtime); but all
2366 // @llvm.experimental.deoptimize declarations have to have the same
2367 // calling convention in a well-formed module.
2368 auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv();
2369 NewDeoptIntrinsic->setCallingConv(CallingConv);
2370 auto *CurBB = RI->getParent();
2371 RI->eraseFromParent();
2372
2373 SmallVector<Value *, 4> CallArgs(DeoptCall->args());
2374
2375 SmallVector<OperandBundleDef, 1> OpBundles;
2376 DeoptCall->getOperandBundlesAsDefs(OpBundles);
2377 auto DeoptAttributes = DeoptCall->getAttributes();
2378 DeoptCall->eraseFromParent();
2379 assert(!OpBundles.empty() &&
2380 "Expected at least the deopt operand bundle");
2381
2382 IRBuilder<> Builder(CurBB);
2383 CallInst *NewDeoptCall =
2384 Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles);
2385 NewDeoptCall->setCallingConv(CallingConv);
2386 NewDeoptCall->setAttributes(DeoptAttributes);
2387 if (NewDeoptCall->getType()->isVoidTy())
2388 Builder.CreateRetVoid();
2389 else
2390 Builder.CreateRet(NewDeoptCall);
2391 }
2392
2393 // Leave behind the normal returns so we can merge control flow.
2394 std::swap(Returns, NormalReturns);
2395 }
2396 }
2397
2398 // Handle any inlined musttail call sites. In order for a new call site to be
2399 // musttail, the source of the clone and the inlined call site must have been
2400 // musttail. Therefore it's safe to return without merging control into the
2401 // phi below.
2402 if (InlinedMustTailCalls) {
2403 // Check if we need to bitcast the result of any musttail calls.
2404 Type *NewRetTy = Caller->getReturnType();
2405 bool NeedBitCast = !CB.use_empty() && CB.getType() != NewRetTy;
2406
2407 // Handle the returns preceded by musttail calls separately.
2408 SmallVector<ReturnInst *, 8> NormalReturns;
2409 for (ReturnInst *RI : Returns) {
2410 CallInst *ReturnedMustTail =
2411 RI->getParent()->getTerminatingMustTailCall();
2412 if (!ReturnedMustTail) {
2413 NormalReturns.push_back(RI);
2414 continue;
2415 }
2416 if (!NeedBitCast)
2417 continue;
2418
2419 // Delete the old return and any preceding bitcast.
2420 BasicBlock *CurBB = RI->getParent();
2421 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue());
2422 RI->eraseFromParent();
2423 if (OldCast)
2424 OldCast->eraseFromParent();
2425
2426 // Insert a new bitcast and return with the right type.
2427 IRBuilder<> Builder(CurBB);
2428 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy));
2429 }
2430
2431 // Leave behind the normal returns so we can merge control flow.
2432 std::swap(Returns, NormalReturns);
2433 }
2434
2435 // Now that all of the transforms on the inlined code have taken place but
2436 // before we splice the inlined code into the CFG and lose track of which
2437 // blocks were actually inlined, collect the call sites. We only do this if
2438 // call graph updates weren't requested, as those provide value handle based
2439 // tracking of inlined call sites instead.
2440 if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) {
2441 // Otherwise just collect the raw call sites that were inlined.
2442 for (BasicBlock &NewBB :
2443 make_range(FirstNewBlock->getIterator(), Caller->end()))
2444 for (Instruction &I : NewBB)
2445 if (auto *CB = dyn_cast<CallBase>(&I))
2446 IFI.InlinedCallSites.push_back(CB);
2447 }
2448
2449 // If we cloned in _exactly one_ basic block, and if that block ends in a
2450 // return instruction, we splice the body of the inlined callee directly into
2451 // the calling basic block.
2452 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
2453 // Move all of the instructions right before the call.
2454 OrigBB->getInstList().splice(CB.getIterator(), FirstNewBlock->getInstList(),
2455 FirstNewBlock->begin(), FirstNewBlock->end());
2456 // Remove the cloned basic block.
2457 Caller->getBasicBlockList().pop_back();
2458
2459 // If the call site was an invoke instruction, add a branch to the normal
2460 // destination.
2461 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2462 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), &CB);
2463 NewBr->setDebugLoc(Returns[0]->getDebugLoc());
2464 }
2465
2466 // If the return instruction returned a value, replace uses of the call with
2467 // uses of the returned value.
2468 if (!CB.use_empty()) {
2469 ReturnInst *R = Returns[0];
2470 if (&CB == R->getReturnValue())
2471 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2472 else
2473 CB.replaceAllUsesWith(R->getReturnValue());
2474 }
2475 // Since we are now done with the Call/Invoke, we can delete it.
2476 CB.eraseFromParent();
2477
2478 // Since we are now done with the return instruction, delete it also.
2479 Returns[0]->eraseFromParent();
2480
2481 // We are now done with the inlining.
2482 return InlineResult::success();
2483 }
2484
2485 // Otherwise, we have the normal case, of more than one block to inline or
2486 // multiple return sites.
2487
2488 // We want to clone the entire callee function into the hole between the
2489 // "starter" and "ender" blocks. How we accomplish this depends on whether
2490 // this is an invoke instruction or a call instruction.
2491 BasicBlock *AfterCallBB;
2492 BranchInst *CreatedBranchToNormalDest = nullptr;
2493 if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
2494
2495 // Add an unconditional branch to make this look like the CallInst case...
2496 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), &CB);
2497
2498 // Split the basic block. This guarantees that no PHI nodes will have to be
2499 // updated due to new incoming edges, and make the invoke case more
2500 // symmetric to the call case.
2501 AfterCallBB =
2502 OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(),
2503 CalledFunc->getName() + ".exit");
2504
2505 } else { // It's a call
2506 // If this is a call instruction, we need to split the basic block that
2507 // the call lives in.
2508 //
2509 AfterCallBB = OrigBB->splitBasicBlock(CB.getIterator(),
2510 CalledFunc->getName() + ".exit");
2511 }
2512
2513 if (IFI.CallerBFI) {
2514 // Copy original BB's block frequency to AfterCallBB
2515 IFI.CallerBFI->setBlockFreq(
2516 AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency());
2517 }
2518
2519 // Change the branch that used to go to AfterCallBB to branch to the first
2520 // basic block of the inlined function.
2521 //
2522 Instruction *Br = OrigBB->getTerminator();
2523 assert(Br && Br->getOpcode() == Instruction::Br &&
2524 "splitBasicBlock broken!");
2525 Br->setOperand(0, &*FirstNewBlock);
2526
2527 // Now that the function is correct, make it a little bit nicer. In
2528 // particular, move the basic blocks inserted from the end of the function
2529 // into the space made by splitting the source basic block.
2530 Caller->getBasicBlockList().splice(AfterCallBB->getIterator(),
2531 Caller->getBasicBlockList(), FirstNewBlock,
2532 Caller->end());
2533
2534 // Handle all of the return instructions that we just cloned in, and eliminate
2535 // any users of the original call/invoke instruction.
2536 Type *RTy = CalledFunc->getReturnType();
2537
2538 PHINode *PHI = nullptr;
2539 if (Returns.size() > 1) {
2540 // The PHI node should go at the front of the new basic block to merge all
2541 // possible incoming values.
2542 if (!CB.use_empty()) {
2543 PHI = PHINode::Create(RTy, Returns.size(), CB.getName(),
2544 &AfterCallBB->front());
2545 // Anything that used the result of the function call should now use the
2546 // PHI node as their operand.
2547 CB.replaceAllUsesWith(PHI);
2548 }
2549
2550 // Loop over all of the return instructions adding entries to the PHI node
2551 // as appropriate.
2552 if (PHI) {
2553 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2554 ReturnInst *RI = Returns[i];
2555 assert(RI->getReturnValue()->getType() == PHI->getType() &&
2556 "Ret value not consistent in function!");
2557 PHI->addIncoming(RI->getReturnValue(), RI->getParent());
2558 }
2559 }
2560
2561 // Add a branch to the merge points and remove return instructions.
2562 DebugLoc Loc;
2563 for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
2564 ReturnInst *RI = Returns[i];
2565 BranchInst* BI = BranchInst::Create(AfterCallBB, RI);
2566 Loc = RI->getDebugLoc();
2567 BI->setDebugLoc(Loc);
2568 RI->eraseFromParent();
2569 }
2570 // We need to set the debug location to *somewhere* inside the
2571 // inlined function. The line number may be nonsensical, but the
2572 // instruction will at least be associated with the right
2573 // function.
2574 if (CreatedBranchToNormalDest)
2575 CreatedBranchToNormalDest->setDebugLoc(Loc);
2576 } else if (!Returns.empty()) {
2577 // Otherwise, if there is exactly one return value, just replace anything
2578 // using the return value of the call with the computed value.
2579 if (!CB.use_empty()) {
2580 if (&CB == Returns[0]->getReturnValue())
2581 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2582 else
2583 CB.replaceAllUsesWith(Returns[0]->getReturnValue());
2584 }
2585
2586 // Update PHI nodes that use the ReturnBB to use the AfterCallBB.
2587 BasicBlock *ReturnBB = Returns[0]->getParent();
2588 ReturnBB->replaceAllUsesWith(AfterCallBB);
2589
2590 // Splice the code from the return block into the block that it will return
2591 // to, which contains the code that was after the call.
2592 AfterCallBB->getInstList().splice(AfterCallBB->begin(),
2593 ReturnBB->getInstList());
2594
2595 if (CreatedBranchToNormalDest)
2596 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc());
2597
2598 // Delete the return instruction now and empty ReturnBB now.
2599 Returns[0]->eraseFromParent();
2600 ReturnBB->eraseFromParent();
2601 } else if (!CB.use_empty()) {
2602 // No returns, but something is using the return value of the call. Just
2603 // nuke the result.
2604 CB.replaceAllUsesWith(UndefValue::get(CB.getType()));
2605 }
2606
2607 // Since we are now done with the Call/Invoke, we can delete it.
2608 CB.eraseFromParent();
2609
2610 // If we inlined any musttail calls and the original return is now
2611 // unreachable, delete it. It can only contain a bitcast and ret.
2612 if (InlinedMustTailCalls && pred_empty(AfterCallBB))
2613 AfterCallBB->eraseFromParent();
2614
2615 // We should always be able to fold the entry block of the function into the
2616 // single predecessor of the block...
2617 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
2618 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
2619
2620 // Splice the code entry block into calling block, right before the
2621 // unconditional branch.
2622 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
2623 OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList());
2624
2625 // Remove the unconditional branch.
2626 OrigBB->getInstList().erase(Br);
2627
2628 // Now we can remove the CalleeEntry block, which is now empty.
2629 Caller->getBasicBlockList().erase(CalleeEntry);
2630
2631 // If we inserted a phi node, check to see if it has a single value (e.g. all
2632 // the entries are the same or undef). If so, remove the PHI so it doesn't
2633 // block other optimizations.
2634 if (PHI) {
2635 AssumptionCache *AC =
2636 IFI.GetAssumptionCache ? &IFI.GetAssumptionCache(*Caller) : nullptr;
2637 auto &DL = Caller->getParent()->getDataLayout();
2638 if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) {
2639 PHI->replaceAllUsesWith(V);
2640 PHI->eraseFromParent();
2641 }
2642 }
2643
2644 return InlineResult::success();
2645 }
2646