xref: /llvm-project/polly/include/polly/CodeGen/BlockGenerators.h (revision 49668d5efef19402effdad4d4d1d17732a1c6fdb)
1 //===-BlockGenerators.h - Helper to generate code for statements-*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the BlockGenerator and VectorBlockGenerator classes, which
10 // generate sequential code and vectorized code for a polyhedral statement,
11 // respectively.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef POLLY_BLOCK_GENERATORS_H
16 #define POLLY_BLOCK_GENERATORS_H
17 
18 #include "polly/CodeGen/IRBuilder.h"
19 #include "polly/Support/ScopHelper.h"
20 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
21 #include "isl/isl-noexceptions.h"
22 
23 namespace polly {
24 using llvm::AllocaInst;
25 using llvm::ArrayRef;
26 using llvm::AssertingVH;
27 using llvm::BasicBlock;
28 using llvm::BinaryOperator;
29 using llvm::CmpInst;
30 using llvm::DataLayout;
31 using llvm::DenseMap;
32 using llvm::DominatorTree;
33 using llvm::Function;
34 using llvm::Instruction;
35 using llvm::LoadInst;
36 using llvm::Loop;
37 using llvm::LoopInfo;
38 using llvm::LoopToScevMapT;
39 using llvm::MapVector;
40 using llvm::PHINode;
41 using llvm::ScalarEvolution;
42 using llvm::SetVector;
43 using llvm::SmallVector;
44 using llvm::StoreInst;
45 using llvm::StringRef;
46 using llvm::Type;
47 using llvm::UnaryInstruction;
48 using llvm::Value;
49 
50 class MemoryAccess;
51 class ScopArrayInfo;
52 class IslExprBuilder;
53 
54 /// Generate a new basic block for a polyhedral statement.
55 class BlockGenerator {
56 public:
57   typedef llvm::SmallVector<ValueMapT, 8> VectorValueMapT;
58 
59   /// Map types to resolve scalar dependences.
60   ///
61   ///@{
62   using AllocaMapTy = DenseMap<const ScopArrayInfo *, AssertingVH<AllocaInst>>;
63 
64   /// Simple vector of instructions to store escape users.
65   using EscapeUserVectorTy = SmallVector<Instruction *, 4>;
66 
67   /// Map type to resolve escaping users for scalar instructions.
68   ///
69   /// @see The EscapeMap member.
70   using EscapeUsersAllocaMapTy =
71       MapVector<Instruction *,
72                 std::pair<AssertingVH<Value>, EscapeUserVectorTy>>;
73 
74   ///@}
75 
76   /// Create a generator for basic blocks.
77   ///
78   /// @param Builder     The LLVM-IR Builder used to generate the statement. The
79   ///                    code is generated at the location, the Builder points
80   ///                    to.
81   /// @param LI          The loop info for the current function
82   /// @param SE          The scalar evolution info for the current function
83   /// @param DT          The dominator tree of this function.
84   /// @param ScalarMap   Map from scalars to their demoted location.
85   /// @param EscapeMap   Map from scalars to their escape users and locations.
86   /// @param GlobalMap   A mapping from llvm::Values used in the original scop
87   ///                    region to a new set of llvm::Values. Each reference to
88   ///                    an original value appearing in this mapping is replaced
89   ///                    with the new value it is mapped to.
90   /// @param ExprBuilder An expression builder to generate new access functions.
91   /// @param StartBlock  The first basic block after the RTC.
92   BlockGenerator(PollyIRBuilder &Builder, LoopInfo &LI, ScalarEvolution &SE,
93                  DominatorTree &DT, AllocaMapTy &ScalarMap,
94                  EscapeUsersAllocaMapTy &EscapeMap, ValueMapT &GlobalMap,
95                  IslExprBuilder *ExprBuilder, BasicBlock *StartBlock);
96 
97   /// Copy the basic block.
98   ///
99   /// This copies the entire basic block and updates references to old values
100   /// with references to new values, as defined by GlobalMap.
101   ///
102   /// @param Stmt        The block statement to code generate.
103   /// @param LTS         A map from old loops to new induction variables as
104   ///                    SCEVs.
105   /// @param NewAccesses A map from memory access ids to new ast expressions,
106   ///                    which may contain new access expressions for certain
107   ///                    memory accesses.
108   void copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
109                 isl_id_to_ast_expr *NewAccesses);
110 
111   /// Remove a ScopArrayInfo's allocation from the ScalarMap.
112   ///
113   /// This function allows to remove values from the ScalarMap. This is useful
114   /// if the corresponding alloca instruction will be deleted (or moved into
115   /// another module), as without removing these values the underlying
116   /// AssertingVH will trigger due to us still keeping reference to this
117   /// scalar.
118   ///
119   /// @param Array The array for which the alloca was generated.
120   void freeScalarAlloc(ScopArrayInfo *Array) { ScalarMap.erase(Array); }
121 
122   /// Return the alloca for @p Access.
123   ///
124   /// If no alloca was mapped for @p Access a new one is created.
125   ///
126   /// @param Access    The memory access for which to generate the alloca.
127   ///
128   /// @returns The alloca for @p Access or a replacement value taken from
129   ///          GlobalMap.
130   Value *getOrCreateAlloca(const MemoryAccess &Access);
131 
132   /// Return the alloca for @p Array.
133   ///
134   /// If no alloca was mapped for @p Array a new one is created.
135   ///
136   /// @param Array The array for which to generate the alloca.
137   ///
138   /// @returns The alloca for @p Array or a replacement value taken from
139   ///          GlobalMap.
140   Value *getOrCreateAlloca(const ScopArrayInfo *Array);
141 
142   /// Finalize the code generation for the SCoP @p S.
143   ///
144   /// This will initialize and finalize the scalar variables we demoted during
145   /// the code generation.
146   ///
147   /// @see createScalarInitialization(Scop &)
148   /// @see createScalarFinalization(Region &)
149   void finalizeSCoP(Scop &S);
150 
151   /// An empty destructor
152   virtual ~BlockGenerator() {}
153 
154   BlockGenerator(const BlockGenerator &) = default;
155 
156 protected:
157   PollyIRBuilder &Builder;
158   LoopInfo &LI;
159   ScalarEvolution &SE;
160   IslExprBuilder *ExprBuilder;
161 
162   /// The dominator tree of this function.
163   DominatorTree &DT;
164 
165   /// Relates to the region where the code is emitted into.
166   /// @{
167   DominatorTree *GenDT;
168   LoopInfo *GenLI;
169   ScalarEvolution *GenSE;
170   /// @}
171 
172 public:
173   /// Map to resolve scalar dependences for PHI operands and scalars.
174   ///
175   /// When translating code that contains scalar dependences as they result from
176   /// inter-block scalar dependences (including the use of data carrying PHI
177   /// nodes), we do not directly regenerate in-register SSA code, but instead
178   /// allocate some stack memory through which these scalar values are passed.
179   /// Only a later pass of -mem2reg will then (re)introduce in-register
180   /// computations.
181   ///
182   /// To keep track of the memory location(s) used to store the data computed by
183   /// a given SSA instruction, we use the map 'ScalarMap'. ScalarMap maps a
184   /// given ScopArrayInfo to the junk of stack allocated memory, that is
185   /// used for code generation.
186   ///
187   /// Up to two different ScopArrayInfo objects are associated with each
188   /// llvm::Value:
189   ///
190   /// MemoryType::Value objects are used for normal scalar dependences that go
191   /// from a scalar definition to its use. Such dependences are lowered by
192   /// directly writing the value an instruction computes into the corresponding
193   /// chunk of memory and reading it back from this chunk of memory right before
194   /// every use of this original scalar value. The memory allocations for
195   /// MemoryType::Value objects end with '.s2a'.
196   ///
197   /// MemoryType::PHI (and MemoryType::ExitPHI) objects are used to model PHI
198   /// nodes. For each PHI nodes we introduce, besides the Array of type
199   /// MemoryType::Value, a second chunk of memory into which we write at the end
200   /// of each basic block preceding the PHI instruction the value passed
201   /// through this basic block. At the place where the PHI node is executed, we
202   /// replace the PHI node with a load from the corresponding MemoryType::PHI
203   /// memory location. The memory allocations for MemoryType::PHI end with
204   /// '.phiops'.
205   ///
206   /// Example:
207   ///
208   ///                              Input C Code
209   ///                              ============
210   ///
211   ///                 S1:      x1 = ...
212   ///                          for (i=0...N) {
213   ///                 S2:           x2 = phi(x1, add)
214   ///                 S3:           add = x2 + 42;
215   ///                          }
216   ///                 S4:      print(x1)
217   ///                          print(x2)
218   ///                          print(add)
219   ///
220   ///
221   ///        Unmodified IR                         IR After expansion
222   ///        =============                         ==================
223   ///
224   /// S1:   x1 = ...                     S1:    x1 = ...
225   ///                                           x1.s2a = s1
226   ///                                           x2.phiops = s1
227   ///        |                                    |
228   ///        |   <--<--<--<--<                    |   <--<--<--<--<
229   ///        | /              \                   | /              \     .
230   ///        V V               \                  V V               \    .
231   /// S2:  x2 = phi (x1, add)   |        S2:    x2 = x2.phiops       |
232   ///                           |               x2.s2a = x2          |
233   ///                           |                                    |
234   /// S3:  add = x2 + 42        |        S3:    add = x2 + 42        |
235   ///                           |               add.s2a = add        |
236   ///                           |               x2.phiops = add      |
237   ///        | \               /                  | \               /
238   ///        |  \             /                   |  \             /
239   ///        |   >-->-->-->-->                    |   >-->-->-->-->
240   ///        V                                    V
241   ///
242   ///                                    S4:    x1 = x1.s2a
243   /// S4:  ... = x1                             ... = x1
244   ///                                           x2 = x2.s2a
245   ///      ... = x2                             ... = x2
246   ///                                           add = add.s2a
247   ///      ... = add                            ... = add
248   ///
249   ///      ScalarMap = { x1:Value -> x1.s2a, x2:Value -> x2.s2a,
250   ///                    add:Value -> add.s2a, x2:PHI -> x2.phiops }
251   ///
252   ///  ??? Why does a PHI-node require two memory chunks ???
253   ///
254   ///  One may wonder why a PHI node requires two memory chunks and not just
255   ///  all data is stored in a single location. The following example tries
256   ///  to store all data in .s2a and drops the .phiops location:
257   ///
258   ///      S1:    x1 = ...
259   ///             x1.s2a = s1
260   ///             x2.s2a = s1             // use .s2a instead of .phiops
261   ///               |
262   ///               |   <--<--<--<--<
263   ///               | /              \    .
264   ///               V V               \   .
265   ///      S2:    x2 = x2.s2a          |  // value is same as above, but read
266   ///                                  |  // from .s2a
267   ///                                  |
268   ///             x2.s2a = x2          |  // store into .s2a as normal
269   ///                                  |
270   ///      S3:    add = x2 + 42        |
271   ///             add.s2a = add        |
272   ///             x2.s2a = add         |  // use s2a instead of .phiops
273   ///               | \               /   // !!! This is wrong, as x2.s2a now
274   ///               |   >-->-->-->-->     // contains add instead of x2.
275   ///               V
276   ///
277   ///      S4:    x1 = x1.s2a
278   ///             ... = x1
279   ///             x2 = x2.s2a             // !!! We now read 'add' instead of
280   ///             ... = x2                // 'x2'
281   ///             add = add.s2a
282   ///             ... = add
283   ///
284   ///  As visible in the example, the SSA value of the PHI node may still be
285   ///  needed _after_ the basic block, which could conceptually branch to the
286   ///  PHI node, has been run and has overwritten the PHI's old value. Hence, a
287   ///  single memory location is not enough to code-generate a PHI node.
288   ///
289   /// Memory locations used for the special PHI node modeling.
290   AllocaMapTy &ScalarMap;
291 
292   /// Map from instructions to their escape users as well as the alloca.
293   EscapeUsersAllocaMapTy &EscapeMap;
294 
295   /// A map from llvm::Values referenced in the old code to a new set of
296   ///        llvm::Values, which is used to replace these old values during
297   ///        code generation.
298   ValueMapT &GlobalMap;
299 
300   /// The first basic block after the RTC.
301   BasicBlock *StartBlock;
302 
303   /// Split @p BB to create a new one we can use to clone @p BB in.
304   BasicBlock *splitBB(BasicBlock *BB);
305 
306   /// Change the function that code is emitted into.
307   void switchGeneratedFunc(Function *GenFn, DominatorTree *GenDT,
308                            LoopInfo *GenLI, ScalarEvolution *GenSE);
309 
310   /// Copy the given basic block.
311   ///
312   /// @param Stmt      The statement to code generate.
313   /// @param BB        The basic block to code generate.
314   /// @param BBMap     A mapping from old values to their new values in this
315   /// block.
316   /// @param LTS         A map from old loops to new induction variables as
317   ///                    SCEVs.
318   /// @param NewAccesses A map from memory access ids to new ast expressions,
319   ///                    which may contain new access expressions for certain
320   ///                    memory accesses.
321   ///
322   /// @returns The copy of the basic block.
323   BasicBlock *copyBB(ScopStmt &Stmt, BasicBlock *BB, ValueMapT &BBMap,
324                      LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);
325 
326   /// Copy the given basic block.
327   ///
328   /// @param Stmt      The statement to code generate.
329   /// @param BB        The basic block to code generate.
330   /// @param BBCopy    The new basic block to generate code in.
331   /// @param BBMap     A mapping from old values to their new values in this
332   /// block.
333   /// @param LTS         A map from old loops to new induction variables as
334   ///                    SCEVs.
335   /// @param NewAccesses A map from memory access ids to new ast expressions,
336   ///                    which may contain new access expressions for certain
337   ///                    memory accesses.
338   void copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *BBCopy,
339               ValueMapT &BBMap, LoopToScevMapT &LTS,
340               isl_id_to_ast_expr *NewAccesses);
341 
342   /// Generate reload of scalars demoted to memory and needed by @p Stmt.
343   ///
344   /// @param Stmt  The statement we generate code for.
345   /// @param LTS   A mapping from loops virtual canonical induction
346   ///              variable to their new values.
347   /// @param BBMap A mapping from old values to their new values in this block.
348   /// @param NewAccesses A map from memory access ids to new ast expressions.
349   void generateScalarLoads(ScopStmt &Stmt, LoopToScevMapT &LTS,
350                            ValueMapT &BBMap,
351                            __isl_keep isl_id_to_ast_expr *NewAccesses);
352 
353   /// When statement tracing is enabled, build the print instructions for
354   /// printing the current statement instance.
355   ///
356   /// The printed output looks like:
357   ///
358   ///     Stmt1(0)
359   ///
360   /// If printing of scalars is enabled, it also appends the value of each
361   /// scalar to the line:
362   ///
363   ///     Stmt1(0) %i=1 %sum=5
364   ///
365   /// @param Stmt  The statement we generate code for.
366   /// @param LTS   A mapping from loops virtual canonical induction
367   ///              variable to their new values.
368   /// @param BBMap A mapping from old values to their new values in this block.
369   void generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT &LTS,
370                               ValueMapT &BBMap);
371 
372   /// Generate instructions that compute whether one instance of @p Set is
373   /// executed.
374   ///
375   /// @param Stmt      The statement we generate code for.
376   /// @param Subdomain A set in the space of @p Stmt's domain. Elements not in
377   ///                  @p Stmt's domain are ignored.
378   ///
379   /// @return An expression of type i1, generated into the current builder
380   ///         position, that evaluates to 1 if the executed instance is part of
381   ///         @p Set.
382   Value *buildContainsCondition(ScopStmt &Stmt, const isl::set &Subdomain);
383 
384   /// Generate code that executes in a subset of @p Stmt's domain.
385   ///
386   /// @param Stmt        The statement we generate code for.
387   /// @param Subdomain   The condition for some code to be executed.
388   /// @param Subject     A name for the code that is executed
389   ///                    conditionally. Used to name new basic blocks and
390   ///                    instructions.
391   /// @param GenThenFunc Callback which generates the code to be executed
392   ///                    when the current executed instance is in @p Set. The
393   ///                    IRBuilder's position is moved to within the block that
394   ///                    executes conditionally for this callback.
395   void generateConditionalExecution(ScopStmt &Stmt, const isl::set &Subdomain,
396                                     StringRef Subject,
397                                     const std::function<void()> &GenThenFunc);
398 
399   /// Generate the scalar stores for the given statement.
400   ///
401   /// After the statement @p Stmt was copied all inner-SCoP scalar dependences
402   /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
403   /// be demoted to memory.
404   ///
405   /// @param Stmt  The statement we generate code for.
406   /// @param LTS   A mapping from loops virtual canonical induction
407   ///              variable to their new values
408   ///              (for values recalculated in the new ScoP, but not
409   ///               within this basic block)
410   /// @param BBMap A mapping from old values to their new values in this block.
411   /// @param NewAccesses A map from memory access ids to new ast expressions.
412   virtual void generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS,
413                                     ValueMapT &BBMap,
414                                     __isl_keep isl_id_to_ast_expr *NewAccesses);
415 
416   /// Handle users of @p Array outside the SCoP.
417   ///
418   /// @param S         The current SCoP.
419   /// @param Inst      The ScopArrayInfo to handle.
420   void handleOutsideUsers(const Scop &S, ScopArrayInfo *Array);
421 
422   /// Find scalar statements that have outside users.
423   ///
424   /// We register these scalar values to later update subsequent scalar uses of
425   /// these values to either use the newly computed value from within the scop
426   /// (if the scop was executed) or the unchanged original code (if the run-time
427   /// check failed).
428   ///
429   /// @param S The scop for which to find the outside users.
430   void findOutsideUsers(Scop &S);
431 
432   /// Initialize the memory of demoted scalars.
433   ///
434   /// @param S The scop for which to generate the scalar initializers.
435   void createScalarInitialization(Scop &S);
436 
437   /// Create exit PHI node merges for PHI nodes with more than two edges
438   ///        from inside the scop.
439   ///
440   /// For scops which have a PHI node in the exit block that has more than two
441   /// incoming edges from inside the scop region, we require some special
442   /// handling to understand which of the possible values will be passed to the
443   /// PHI node from inside the optimized version of the scop. To do so ScopInfo
444   /// models the possible incoming values as write accesses of the ScopStmts.
445   ///
446   /// This function creates corresponding code to reload the computed outgoing
447   /// value from the stack slot it has been stored into and to pass it on to the
448   /// PHI node in the original exit block.
449   ///
450   /// @param S The scop for which to generate the exiting PHI nodes.
451   void createExitPHINodeMerges(Scop &S);
452 
453   /// Promote the values of demoted scalars after the SCoP.
454   ///
455   /// If a scalar value was used outside the SCoP we need to promote the value
456   /// stored in the memory cell allocated for that scalar and combine it with
457   /// the original value in the non-optimized SCoP.
458   void createScalarFinalization(Scop &S);
459 
460   /// Try to synthesize a new value
461   ///
462   /// Given an old value, we try to synthesize it in a new context from its
463   /// original SCEV expression. We start from the original SCEV expression,
464   /// then replace outdated parameter and loop references, and finally
465   /// expand it to code that computes this updated expression.
466   ///
467   /// @param Stmt      The statement to code generate
468   /// @param Old       The old Value
469   /// @param BBMap     A mapping from old values to their new values
470   ///                  (for values recalculated within this basic block)
471   /// @param LTS       A mapping from loops virtual canonical induction
472   ///                  variable to their new values
473   ///                  (for values recalculated in the new ScoP, but not
474   ///                   within this basic block)
475   /// @param L         The loop that surrounded the instruction that referenced
476   ///                  this value in the original code. This loop is used to
477   ///                  evaluate the scalar evolution at the right scope.
478   ///
479   /// @returns  o A newly synthesized value.
480   ///           o NULL, if synthesizing the value failed.
481   Value *trySynthesizeNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
482                                LoopToScevMapT &LTS, Loop *L) const;
483 
484   /// Get the new version of a value.
485   ///
486   /// Given an old value, we first check if a new version of this value is
487   /// available in the BBMap or GlobalMap. In case it is not and the value can
488   /// be recomputed using SCEV, we do so. If we can not recompute a value
489   /// using SCEV, but we understand that the value is constant within the scop,
490   /// we return the old value.  If the value can still not be derived, this
491   /// function will assert.
492   ///
493   /// @param Stmt      The statement to code generate.
494   /// @param Old       The old Value.
495   /// @param BBMap     A mapping from old values to their new values
496   ///                  (for values recalculated within this basic block).
497   /// @param LTS       A mapping from loops virtual canonical induction
498   ///                  variable to their new values
499   ///                  (for values recalculated in the new ScoP, but not
500   ///                   within this basic block).
501   /// @param L         The loop that surrounded the instruction that referenced
502   ///                  this value in the original code. This loop is used to
503   ///                  evaluate the scalar evolution at the right scope.
504   ///
505   /// @returns  o The old value, if it is still valid.
506   ///           o The new value, if available.
507   ///           o NULL, if no value is found.
508   Value *getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
509                      LoopToScevMapT &LTS, Loop *L) const;
510 
511   void copyInstScalar(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap,
512                       LoopToScevMapT &LTS);
513 
514   /// Get the innermost loop that surrounds the statement @p Stmt.
515   Loop *getLoopForStmt(const ScopStmt &Stmt) const;
516 
517   /// Generate the operand address
518   /// @param NewAccesses A map from memory access ids to new ast expressions,
519   ///                    which may contain new access expressions for certain
520   ///                    memory accesses.
521   Value *generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
522                                   ValueMapT &BBMap, LoopToScevMapT &LTS,
523                                   isl_id_to_ast_expr *NewAccesses);
524 
525   /// Generate the operand address.
526   ///
527   /// @param Stmt         The statement to generate code for.
528   /// @param L            The innermost loop that surrounds the statement.
529   /// @param Pointer      If the access expression is not changed (ie. not found
530   ///                     in @p LTS), use this Pointer from the original code
531   ///                     instead.
532   /// @param BBMap        A mapping from old values to their new values.
533   /// @param LTS          A mapping from loops virtual canonical induction
534   ///                     variable to their new values.
535   /// @param NewAccesses  Ahead-of-time generated access expressions.
536   /// @param Id           Identifier of the MemoryAccess to generate.
537   /// @param ExpectedType The type the returned value should have.
538   ///
539   /// @return The generated address.
540   Value *generateLocationAccessed(ScopStmt &Stmt, Loop *L, Value *Pointer,
541                                   ValueMapT &BBMap, LoopToScevMapT &LTS,
542                                   isl_id_to_ast_expr *NewAccesses,
543                                   __isl_take isl_id *Id, Type *ExpectedType);
544 
545   /// Generate the pointer value that is accesses by @p Access.
546   ///
547   /// For write accesses, generate the target address. For read accesses,
548   /// generate the source address.
549   /// The access can be either an array access or a scalar access. In the first
550   /// case, the returned address will point to an element into that array. In
551   /// the scalar case, an alloca is used.
552   /// If a new AccessRelation is set for the MemoryAccess, the new relation will
553   /// be used.
554   ///
555   /// @param Access      The access to generate a pointer for.
556   /// @param L           The innermost loop that surrounds the statement.
557   /// @param LTS         A mapping from loops virtual canonical induction
558   ///                    variable to their new values.
559   /// @param BBMap       A mapping from old values to their new values.
560   /// @param NewAccesses A map from memory access ids to new ast expressions.
561   ///
562   /// @return The generated address.
563   Value *getImplicitAddress(MemoryAccess &Access, Loop *L, LoopToScevMapT &LTS,
564                             ValueMapT &BBMap,
565                             __isl_keep isl_id_to_ast_expr *NewAccesses);
566 
567   /// @param NewAccesses A map from memory access ids to new ast expressions,
568   ///                    which may contain new access expressions for certain
569   ///                    memory accesses.
570   Value *generateArrayLoad(ScopStmt &Stmt, LoadInst *load, ValueMapT &BBMap,
571                            LoopToScevMapT &LTS,
572                            isl_id_to_ast_expr *NewAccesses);
573 
574   /// @param NewAccesses A map from memory access ids to new ast expressions,
575   ///                    which may contain new access expressions for certain
576   ///                    memory accesses.
577   void generateArrayStore(ScopStmt &Stmt, StoreInst *store, ValueMapT &BBMap,
578                           LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);
579 
580   /// Copy a single PHI instruction.
581   ///
582   /// The implementation in the BlockGenerator is trivial, however it allows
583   /// subclasses to handle PHIs different.
584   virtual void copyPHIInstruction(ScopStmt &, PHINode *, ValueMapT &,
585                                   LoopToScevMapT &) {}
586 
587   /// Copy a single Instruction.
588   ///
589   /// This copies a single Instruction and updates references to old values
590   /// with references to new values, as defined by GlobalMap and BBMap.
591   ///
592   /// @param Stmt        The statement to code generate.
593   /// @param Inst        The instruction to copy.
594   /// @param BBMap       A mapping from old values to their new values
595   ///                    (for values recalculated within this basic block).
596   /// @param GlobalMap   A mapping from old values to their new values
597   ///                    (for values recalculated in the new ScoP, but not
598   ///                    within this basic block).
599   /// @param LTS         A mapping from loops virtual canonical induction
600   ///                    variable to their new values
601   ///                    (for values recalculated in the new ScoP, but not
602   ///                     within this basic block).
603   /// @param NewAccesses A map from memory access ids to new ast expressions,
604   ///                    which may contain new access expressions for certain
605   ///                    memory accesses.
606   void copyInstruction(ScopStmt &Stmt, Instruction *Inst, ValueMapT &BBMap,
607                        LoopToScevMapT &LTS, isl_id_to_ast_expr *NewAccesses);
608 
609   /// Helper to determine if @p Inst can be synthesized in @p Stmt.
610   ///
611   /// @returns false, iff @p Inst can be synthesized in @p Stmt.
612   bool canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst);
613 
614   /// Remove dead instructions generated for BB
615   ///
616   /// @param BB The basic block code for which code has been generated.
617   /// @param BBMap A local map from old to new instructions.
618   void removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap);
619 
620   /// Invalidate the scalar evolution expressions for a scop.
621   ///
622   /// This function invalidates the scalar evolution results for all
623   /// instructions that are part of a given scop, and the loops
624   /// surrounding the users of merge blocks. This is necessary to ensure that
625   /// later scops do not obtain scalar evolution expressions that reference
626   /// values that earlier dominated the later scop, but have been moved in the
627   /// conditional part of an earlier scop and consequently do not any more
628   /// dominate the later scop.
629   ///
630   /// @param S The scop to invalidate.
631   void invalidateScalarEvolution(Scop &S);
632 };
633 
634 /// Generator for new versions of polyhedral region statements.
635 class RegionGenerator final : public BlockGenerator {
636 public:
637   /// Create a generator for regions.
638   ///
639   /// @param BlockGen A generator for basic blocks.
640   RegionGenerator(BlockGenerator &BlockGen) : BlockGenerator(BlockGen) {}
641 
642   virtual ~RegionGenerator() {}
643 
644   /// Copy the region statement @p Stmt.
645   ///
646   /// This copies the entire region represented by @p Stmt and updates
647   /// references to old values with references to new values, as defined by
648   /// GlobalMap.
649   ///
650   /// @param Stmt      The statement to code generate.
651   /// @param LTS       A map from old loops to new induction variables as SCEVs.
652   void copyStmt(ScopStmt &Stmt, LoopToScevMapT &LTS,
653                 __isl_keep isl_id_to_ast_expr *IdToAstExp);
654 
655 private:
656   /// A map from old to the first new block in the region, that was created to
657   /// model the old basic block.
658   DenseMap<BasicBlock *, BasicBlock *> StartBlockMap;
659 
660   /// A map from old to the last new block in the region, that was created to
661   /// model the old basic block.
662   DenseMap<BasicBlock *, BasicBlock *> EndBlockMap;
663 
664   /// The "BBMaps" for the whole region (one for each block). In case a basic
665   /// block is code generated to multiple basic blocks (e.g., for partial
666   /// writes), the StartBasic is used as index for the RegionMap.
667   DenseMap<BasicBlock *, ValueMapT> RegionMaps;
668 
669   /// Mapping to remember PHI nodes that still need incoming values.
670   using PHINodePairTy = std::pair<PHINode *, PHINode *>;
671   DenseMap<BasicBlock *, SmallVector<PHINodePairTy, 4>> IncompletePHINodeMap;
672 
673   /// Repair the dominance tree after we created a copy block for @p BB.
674   ///
675   /// @returns The immediate dominator in the DT for @p BBCopy if in the region.
676   BasicBlock *repairDominance(BasicBlock *BB, BasicBlock *BBCopy);
677 
678   /// Add the new operand from the copy of @p IncomingBB to @p PHICopy.
679   ///
680   /// PHI nodes, which may have (multiple) edges that enter from outside the
681   /// non-affine subregion and even from outside the scop, are code generated as
682   /// follows:
683   ///
684   /// # Original
685   ///
686   ///   Region: %A-> %exit
687   ///   NonAffine Stmt: %nonaffB -> %D (includes %nonaffB, %nonaffC)
688   ///
689   ///     pre:
690   ///       %val = add i64 1, 1
691   ///
692   ///     A:
693   ///      br label %nonaff
694   ///
695   ///     nonaffB:
696   ///       %phi = phi i64 [%val, %A], [%valC, %nonAffC], [%valD, %D]
697   ///       %cmp = <nonaff>
698   ///       br i1 %cmp, label %C, label %nonaffC
699   ///
700   ///     nonaffC:
701   ///       %valC = add i64 1, 1
702   ///       br i1 undef, label %D, label %nonaffB
703   ///
704   ///     D:
705   ///       %valD = ...
706   ///       %exit_cond = <loopexit>
707   ///       br i1 %exit_cond, label %nonaffB, label %exit
708   ///
709   ///     exit:
710   ///       ...
711   ///
712   ///  - %start and %C enter from outside the non-affine region.
713   ///  - %nonaffC enters from within the non-affine region.
714   ///
715   ///  # New
716   ///
717   ///    polly.A:
718   ///       store i64 %val, i64* %phi.phiops
719   ///       br label %polly.nonaffA.entry
720   ///
721   ///    polly.nonaffB.entry:
722   ///       %phi.phiops.reload = load i64, i64* %phi.phiops
723   ///       br label %nonaffB
724   ///
725   ///    polly.nonaffB:
726   ///       %polly.phi = [%phi.phiops.reload, %nonaffB.entry],
727   ///                    [%p.valC, %polly.nonaffC]
728   ///
729   ///    polly.nonaffC:
730   ///       %p.valC = add i64 1, 1
731   ///       br i1 undef, label %polly.D, label %polly.nonaffB
732   ///
733   ///    polly.D:
734   ///        %p.valD = ...
735   ///        store i64 %p.valD, i64* %phi.phiops
736   ///        %p.exit_cond = <loopexit>
737   ///        br i1 %p.exit_cond, label %polly.nonaffB, label %exit
738   ///
739   /// Values that enter the PHI from outside the non-affine region are stored
740   /// into the stack slot %phi.phiops by statements %polly.A and %polly.D and
741   /// reloaded in %polly.nonaffB.entry, a basic block generated before the
742   /// actual non-affine region.
743   ///
744   /// When generating the PHI node of the non-affine region in %polly.nonaffB,
745   /// incoming edges from outside the region are combined into a single branch
746   /// from %polly.nonaffB.entry which has as incoming value the value reloaded
747   /// from the %phi.phiops stack slot. Incoming edges from within the region
748   /// refer to the copied instructions (%p.valC) and basic blocks
749   /// (%polly.nonaffC) of the non-affine region.
750   ///
751   /// @param Stmt       The statement to code generate.
752   /// @param PHI        The original PHI we copy.
753   /// @param PHICopy    The copy of @p PHI.
754   /// @param IncomingBB An incoming block of @p PHI.
755   /// @param LTS        A map from old loops to new induction variables as
756   /// SCEVs.
757   void addOperandToPHI(ScopStmt &Stmt, PHINode *PHI, PHINode *PHICopy,
758                        BasicBlock *IncomingBB, LoopToScevMapT &LTS);
759 
760   /// Create a PHI that combines the incoming values from all incoming blocks
761   /// that are in the subregion.
762   ///
763   /// PHIs in the subregion's exit block can have incoming edges from within and
764   /// outside the subregion. This function combines the incoming values from
765   /// within the subregion to appear as if there is only one incoming edge from
766   /// the subregion (an additional exit block is created by RegionGenerator).
767   /// This is to avoid that a value is written to the .phiops location without
768   /// leaving the subregion because the exiting block as an edge back into the
769   /// subregion.
770   ///
771   /// @param MA    The WRITE of MemoryKind::PHI/MemoryKind::ExitPHI for a PHI in
772   ///              the subregion's exit block.
773   /// @param LTS   Virtual induction variable mapping.
774   /// @param BBMap A mapping from old values to their new values in this block.
775   /// @param L     Loop surrounding this region statement.
776   ///
777   /// @returns The constructed PHI node.
778   PHINode *buildExitPHI(MemoryAccess *MA, LoopToScevMapT &LTS, ValueMapT &BBMap,
779                         Loop *L);
780 
781   /// @param Return the new value of a scalar write, creating a PHINode if
782   ///        necessary.
783   ///
784   /// @param MA    A scalar WRITE MemoryAccess.
785   /// @param LTS   Virtual induction variable mapping.
786   /// @param BBMap A mapping from old values to their new values in this block.
787   ///
788   /// @returns The effective value of @p MA's written value when leaving the
789   ///          subregion.
790   /// @see buildExitPHI
791   Value *getExitScalar(MemoryAccess *MA, LoopToScevMapT &LTS, ValueMapT &BBMap);
792 
793   /// Generate the scalar stores for the given statement.
794   ///
795   /// After the statement @p Stmt was copied all inner-SCoP scalar dependences
796   /// starting in @p Stmt (hence all scalar write accesses in @p Stmt) need to
797   /// be demoted to memory.
798   ///
799   /// @param Stmt  The statement we generate code for.
800   /// @param LTS   A mapping from loops virtual canonical induction variable to
801   ///              their new values (for values recalculated in the new ScoP,
802   ///              but not within this basic block)
803   /// @param BBMap A mapping from old values to their new values in this block.
804   /// @param LTS   A mapping from loops virtual canonical induction variable to
805   /// their new values.
806   void
807   generateScalarStores(ScopStmt &Stmt, LoopToScevMapT &LTS, ValueMapT &BBMAp,
808                        __isl_keep isl_id_to_ast_expr *NewAccesses) override;
809 
810   /// Copy a single PHI instruction.
811   ///
812   /// This copies a single PHI instruction and updates references to old values
813   /// with references to new values, as defined by GlobalMap and BBMap.
814   ///
815   /// @param Stmt      The statement to code generate.
816   /// @param PHI       The PHI instruction to copy.
817   /// @param BBMap     A mapping from old values to their new values
818   ///                  (for values recalculated within this basic block).
819   /// @param LTS       A map from old loops to new induction variables as SCEVs.
820   void copyPHIInstruction(ScopStmt &Stmt, PHINode *Inst, ValueMapT &BBMap,
821                           LoopToScevMapT &LTS) override;
822 };
823 } // namespace polly
824 #endif
825