1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into forms suitable for efficient execution 11 // on the target. 12 // 13 // This pass performs a strength reduction on array references inside loops that 14 // have as one or more of their components the loop induction variable, it 15 // rewrites expressions to take advantage of scaled-index addressing modes 16 // available on the target, and it performs a variety of other optimizations 17 // related to loop induction variables. 18 // 19 // Terminology note: this code has a lot of handling for "post-increment" or 20 // "post-inc" users. This is not talking about post-increment addressing modes; 21 // it is instead talking about code like this: 22 // 23 // %i = phi [ 0, %entry ], [ %i.next, %latch ] 24 // ... 25 // %i.next = add %i, 1 26 // %c = icmp eq %i.next, %n 27 // 28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however 29 // it's useful to think about these as the same register, with some uses using 30 // the value of the register before the add and some using it after. In this 31 // example, the icmp is a post-increment user, since it uses %i.next, which is 32 // the value of the induction variable after the increment. The other common 33 // case of post-increment users is users outside the loop. 34 // 35 // TODO: More sophistication in the way Formulae are generated and filtered. 36 // 37 // TODO: Handle multiple loops at a time. 38 // 39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead 40 // of a GlobalValue? 41 // 42 // TODO: When truncation is free, truncate ICmp users' operands to make it a 43 // smaller encoding (on x86 at least). 44 // 45 // TODO: When a negated register is used by an add (such as in a list of 46 // multiple base registers, or as the increment expression in an addrec), 47 // we may not actually need both reg and (-1 * reg) in registers; the 48 // negation can be implemented by using a sub instead of an add. The 49 // lack of support for taking this into consideration when making 50 // register pressure decisions is partly worked around by the "Special" 51 // use kind. 52 // 53 //===----------------------------------------------------------------------===// 54 55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h" 56 #include "llvm/ADT/APInt.h" 57 #include "llvm/ADT/DenseMap.h" 58 #include "llvm/ADT/DenseSet.h" 59 #include "llvm/ADT/Hashing.h" 60 #include "llvm/ADT/PointerIntPair.h" 61 #include "llvm/ADT/STLExtras.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallBitVector.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/SmallSet.h" 66 #include "llvm/ADT/SmallVector.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/ADT/iterator_range.h" 69 #include "llvm/Analysis/AssumptionCache.h" 70 #include "llvm/Analysis/DomTreeUpdater.h" 71 #include "llvm/Analysis/IVUsers.h" 72 #include "llvm/Analysis/LoopAnalysisManager.h" 73 #include "llvm/Analysis/LoopInfo.h" 74 #include "llvm/Analysis/LoopPass.h" 75 #include "llvm/Analysis/MemorySSA.h" 76 #include "llvm/Analysis/MemorySSAUpdater.h" 77 #include "llvm/Analysis/ScalarEvolution.h" 78 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 79 #include "llvm/Analysis/ScalarEvolutionNormalization.h" 80 #include "llvm/Analysis/TargetLibraryInfo.h" 81 #include "llvm/Analysis/TargetTransformInfo.h" 82 #include "llvm/Analysis/ValueTracking.h" 83 #include "llvm/BinaryFormat/Dwarf.h" 84 #include "llvm/Config/llvm-config.h" 85 #include "llvm/IR/BasicBlock.h" 86 #include "llvm/IR/Constant.h" 87 #include "llvm/IR/Constants.h" 88 #include "llvm/IR/DebugInfoMetadata.h" 89 #include "llvm/IR/DerivedTypes.h" 90 #include "llvm/IR/Dominators.h" 91 #include "llvm/IR/GlobalValue.h" 92 #include "llvm/IR/IRBuilder.h" 93 #include "llvm/IR/InstrTypes.h" 94 #include "llvm/IR/Instruction.h" 95 #include "llvm/IR/Instructions.h" 96 #include "llvm/IR/IntrinsicInst.h" 97 #include "llvm/IR/Module.h" 98 #include "llvm/IR/Operator.h" 99 #include "llvm/IR/Type.h" 100 #include "llvm/IR/Use.h" 101 #include "llvm/IR/User.h" 102 #include "llvm/IR/Value.h" 103 #include "llvm/IR/ValueHandle.h" 104 #include "llvm/InitializePasses.h" 105 #include "llvm/Pass.h" 106 #include "llvm/Support/Casting.h" 107 #include "llvm/Support/CommandLine.h" 108 #include "llvm/Support/Compiler.h" 109 #include "llvm/Support/Debug.h" 110 #include "llvm/Support/ErrorHandling.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Transforms/Scalar.h" 114 #include "llvm/Transforms/Utils.h" 115 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include "llvm/Transforms/Utils/LoopUtils.h" 118 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 119 #include <algorithm> 120 #include <cassert> 121 #include <cstddef> 122 #include <cstdint> 123 #include <iterator> 124 #include <limits> 125 #include <map> 126 #include <numeric> 127 #include <optional> 128 #include <utility> 129 130 using namespace llvm; 131 132 #define DEBUG_TYPE "loop-reduce" 133 134 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for 135 /// bail out. This threshold is far beyond the number of users that LSR can 136 /// conceivably solve, so it should not affect generated code, but catches the 137 /// worst cases before LSR burns too much compile time and stack space. 138 static const unsigned MaxIVUsers = 200; 139 140 /// Limit the size of expression that SCEV-based salvaging will attempt to 141 /// translate into a DIExpression. 142 /// Choose a maximum size such that debuginfo is not excessively increased and 143 /// the salvaging is not too expensive for the compiler. 144 static const unsigned MaxSCEVSalvageExpressionSize = 64; 145 146 // Cleanup congruent phis after LSR phi expansion. 147 static cl::opt<bool> EnablePhiElim( 148 "enable-lsr-phielim", cl::Hidden, cl::init(true), 149 cl::desc("Enable LSR phi elimination")); 150 151 // The flag adds instruction count to solutions cost comparison. 152 static cl::opt<bool> InsnsCost( 153 "lsr-insns-cost", cl::Hidden, cl::init(true), 154 cl::desc("Add instruction count to a LSR cost model")); 155 156 // Flag to choose how to narrow complex lsr solution 157 static cl::opt<bool> LSRExpNarrow( 158 "lsr-exp-narrow", cl::Hidden, cl::init(false), 159 cl::desc("Narrow LSR complex solution using" 160 " expectation of registers number")); 161 162 // Flag to narrow search space by filtering non-optimal formulae with 163 // the same ScaledReg and Scale. 164 static cl::opt<bool> FilterSameScaledReg( 165 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true), 166 cl::desc("Narrow LSR search space by filtering non-optimal formulae" 167 " with the same ScaledReg and Scale")); 168 169 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode( 170 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None), 171 cl::desc("A flag that overrides the target's preferred addressing mode."), 172 cl::values(clEnumValN(TTI::AMK_None, 173 "none", 174 "Don't prefer any addressing mode"), 175 clEnumValN(TTI::AMK_PreIndexed, 176 "preindexed", 177 "Prefer pre-indexed addressing mode"), 178 clEnumValN(TTI::AMK_PostIndexed, 179 "postindexed", 180 "Prefer post-indexed addressing mode"))); 181 182 static cl::opt<unsigned> ComplexityLimit( 183 "lsr-complexity-limit", cl::Hidden, 184 cl::init(std::numeric_limits<uint16_t>::max()), 185 cl::desc("LSR search space complexity limit")); 186 187 static cl::opt<unsigned> SetupCostDepthLimit( 188 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7), 189 cl::desc("The limit on recursion depth for LSRs setup cost")); 190 191 static cl::opt<cl::boolOrDefault> AllowDropSolutionIfLessProfitable( 192 "lsr-drop-solution", cl::Hidden, 193 cl::desc("Attempt to drop solution if it is less profitable")); 194 195 static cl::opt<bool> EnableVScaleImmediates( 196 "lsr-enable-vscale-immediates", cl::Hidden, cl::init(true), 197 cl::desc("Enable analysis of vscale-relative immediates in LSR")); 198 199 static cl::opt<bool> DropScaledForVScale( 200 "lsr-drop-scaled-reg-for-vscale", cl::Hidden, cl::init(true), 201 cl::desc("Avoid using scaled registers with vscale-relative addressing")); 202 203 #ifndef NDEBUG 204 // Stress test IV chain generation. 205 static cl::opt<bool> StressIVChain( 206 "stress-ivchain", cl::Hidden, cl::init(false), 207 cl::desc("Stress test LSR IV chains")); 208 #else 209 static bool StressIVChain = false; 210 #endif 211 212 namespace { 213 214 struct MemAccessTy { 215 /// Used in situations where the accessed memory type is unknown. 216 static const unsigned UnknownAddressSpace = 217 std::numeric_limits<unsigned>::max(); 218 219 Type *MemTy = nullptr; 220 unsigned AddrSpace = UnknownAddressSpace; 221 222 MemAccessTy() = default; 223 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {} 224 225 bool operator==(MemAccessTy Other) const { 226 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace; 227 } 228 229 bool operator!=(MemAccessTy Other) const { return !(*this == Other); } 230 231 static MemAccessTy getUnknown(LLVMContext &Ctx, 232 unsigned AS = UnknownAddressSpace) { 233 return MemAccessTy(Type::getVoidTy(Ctx), AS); 234 } 235 236 Type *getType() { return MemTy; } 237 }; 238 239 /// This class holds data which is used to order reuse candidates. 240 class RegSortData { 241 public: 242 /// This represents the set of LSRUse indices which reference 243 /// a particular register. 244 SmallBitVector UsedByIndices; 245 246 void print(raw_ostream &OS) const; 247 void dump() const; 248 }; 249 250 // An offset from an address that is either scalable or fixed. Used for 251 // per-target optimizations of addressing modes. 252 class Immediate : public details::FixedOrScalableQuantity<Immediate, int64_t> { 253 constexpr Immediate(ScalarTy MinVal, bool Scalable) 254 : FixedOrScalableQuantity(MinVal, Scalable) {} 255 256 constexpr Immediate(const FixedOrScalableQuantity<Immediate, int64_t> &V) 257 : FixedOrScalableQuantity(V) {} 258 259 public: 260 constexpr Immediate() = delete; 261 262 static constexpr Immediate getFixed(ScalarTy MinVal) { 263 return {MinVal, false}; 264 } 265 static constexpr Immediate getScalable(ScalarTy MinVal) { 266 return {MinVal, true}; 267 } 268 static constexpr Immediate get(ScalarTy MinVal, bool Scalable) { 269 return {MinVal, Scalable}; 270 } 271 static constexpr Immediate getZero() { return {0, false}; } 272 static constexpr Immediate getFixedMin() { 273 return {std::numeric_limits<int64_t>::min(), false}; 274 } 275 static constexpr Immediate getFixedMax() { 276 return {std::numeric_limits<int64_t>::max(), false}; 277 } 278 static constexpr Immediate getScalableMin() { 279 return {std::numeric_limits<int64_t>::min(), true}; 280 } 281 static constexpr Immediate getScalableMax() { 282 return {std::numeric_limits<int64_t>::max(), true}; 283 } 284 285 constexpr bool isLessThanZero() const { return Quantity < 0; } 286 287 constexpr bool isGreaterThanZero() const { return Quantity > 0; } 288 289 constexpr bool isCompatibleImmediate(const Immediate &Imm) const { 290 return isZero() || Imm.isZero() || Imm.Scalable == Scalable; 291 } 292 293 constexpr bool isMin() const { 294 return Quantity == std::numeric_limits<ScalarTy>::min(); 295 } 296 297 constexpr bool isMax() const { 298 return Quantity == std::numeric_limits<ScalarTy>::max(); 299 } 300 301 // Arithmetic 'operators' that cast to unsigned types first. 302 constexpr Immediate addUnsigned(const Immediate &RHS) const { 303 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 304 ScalarTy Value = (uint64_t)Quantity + RHS.getKnownMinValue(); 305 return {Value, Scalable || RHS.isScalable()}; 306 } 307 308 constexpr Immediate subUnsigned(const Immediate &RHS) const { 309 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates"); 310 ScalarTy Value = (uint64_t)Quantity - RHS.getKnownMinValue(); 311 return {Value, Scalable || RHS.isScalable()}; 312 } 313 314 // Scale the quantity by a constant without caring about runtime scalability. 315 constexpr Immediate mulUnsigned(const ScalarTy RHS) const { 316 ScalarTy Value = (uint64_t)Quantity * RHS; 317 return {Value, Scalable}; 318 } 319 320 // Helpers for generating SCEVs with vscale terms where needed. 321 const SCEV *getSCEV(ScalarEvolution &SE, Type *Ty) const { 322 const SCEV *S = SE.getConstant(Ty, Quantity); 323 if (Scalable) 324 S = SE.getMulExpr(S, SE.getVScale(S->getType())); 325 return S; 326 } 327 328 const SCEV *getNegativeSCEV(ScalarEvolution &SE, Type *Ty) const { 329 const SCEV *NegS = SE.getConstant(Ty, -(uint64_t)Quantity); 330 if (Scalable) 331 NegS = SE.getMulExpr(NegS, SE.getVScale(NegS->getType())); 332 return NegS; 333 } 334 335 const SCEV *getUnknownSCEV(ScalarEvolution &SE, Type *Ty) const { 336 const SCEV *SU = SE.getUnknown(ConstantInt::getSigned(Ty, Quantity)); 337 if (Scalable) 338 SU = SE.getMulExpr(SU, SE.getVScale(SU->getType())); 339 return SU; 340 } 341 }; 342 343 // This is needed for the Compare type of std::map when Immediate is used 344 // as a key. We don't need it to be fully correct against any value of vscale, 345 // just to make sure that vscale-related terms in the map are considered against 346 // each other rather than being mixed up and potentially missing opportunities. 347 struct KeyOrderTargetImmediate { 348 bool operator()(const Immediate &LHS, const Immediate &RHS) const { 349 if (LHS.isScalable() && !RHS.isScalable()) 350 return false; 351 if (!LHS.isScalable() && RHS.isScalable()) 352 return true; 353 return LHS.getKnownMinValue() < RHS.getKnownMinValue(); 354 } 355 }; 356 357 // This would be nicer if we could be generic instead of directly using size_t, 358 // but there doesn't seem to be a type trait for is_orderable or 359 // is_lessthan_comparable or similar. 360 struct KeyOrderSizeTAndImmediate { 361 bool operator()(const std::pair<size_t, Immediate> &LHS, 362 const std::pair<size_t, Immediate> &RHS) const { 363 size_t LSize = LHS.first; 364 size_t RSize = RHS.first; 365 if (LSize != RSize) 366 return LSize < RSize; 367 return KeyOrderTargetImmediate()(LHS.second, RHS.second); 368 } 369 }; 370 } // end anonymous namespace 371 372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 373 void RegSortData::print(raw_ostream &OS) const { 374 OS << "[NumUses=" << UsedByIndices.count() << ']'; 375 } 376 377 LLVM_DUMP_METHOD void RegSortData::dump() const { 378 print(errs()); errs() << '\n'; 379 } 380 #endif 381 382 namespace { 383 384 /// Map register candidates to information about how they are used. 385 class RegUseTracker { 386 using RegUsesTy = DenseMap<const SCEV *, RegSortData>; 387 388 RegUsesTy RegUsesMap; 389 SmallVector<const SCEV *, 16> RegSequence; 390 391 public: 392 void countRegister(const SCEV *Reg, size_t LUIdx); 393 void dropRegister(const SCEV *Reg, size_t LUIdx); 394 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx); 395 396 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const; 397 398 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const; 399 400 void clear(); 401 402 using iterator = SmallVectorImpl<const SCEV *>::iterator; 403 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator; 404 405 iterator begin() { return RegSequence.begin(); } 406 iterator end() { return RegSequence.end(); } 407 const_iterator begin() const { return RegSequence.begin(); } 408 const_iterator end() const { return RegSequence.end(); } 409 }; 410 411 } // end anonymous namespace 412 413 void 414 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) { 415 std::pair<RegUsesTy::iterator, bool> Pair = 416 RegUsesMap.insert(std::make_pair(Reg, RegSortData())); 417 RegSortData &RSD = Pair.first->second; 418 if (Pair.second) 419 RegSequence.push_back(Reg); 420 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1)); 421 RSD.UsedByIndices.set(LUIdx); 422 } 423 424 void 425 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) { 426 RegUsesTy::iterator It = RegUsesMap.find(Reg); 427 assert(It != RegUsesMap.end()); 428 RegSortData &RSD = It->second; 429 assert(RSD.UsedByIndices.size() > LUIdx); 430 RSD.UsedByIndices.reset(LUIdx); 431 } 432 433 void 434 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) { 435 assert(LUIdx <= LastLUIdx); 436 437 // Update RegUses. The data structure is not optimized for this purpose; 438 // we must iterate through it and update each of the bit vectors. 439 for (auto &Pair : RegUsesMap) { 440 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices; 441 if (LUIdx < UsedByIndices.size()) 442 UsedByIndices[LUIdx] = 443 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false; 444 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx)); 445 } 446 } 447 448 bool 449 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const { 450 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 451 if (I == RegUsesMap.end()) 452 return false; 453 const SmallBitVector &UsedByIndices = I->second.UsedByIndices; 454 int i = UsedByIndices.find_first(); 455 if (i == -1) return false; 456 if ((size_t)i != LUIdx) return true; 457 return UsedByIndices.find_next(i) != -1; 458 } 459 460 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const { 461 RegUsesTy::const_iterator I = RegUsesMap.find(Reg); 462 assert(I != RegUsesMap.end() && "Unknown register!"); 463 return I->second.UsedByIndices; 464 } 465 466 void RegUseTracker::clear() { 467 RegUsesMap.clear(); 468 RegSequence.clear(); 469 } 470 471 namespace { 472 473 /// This class holds information that describes a formula for computing 474 /// satisfying a use. It may include broken-out immediates and scaled registers. 475 struct Formula { 476 /// Global base address used for complex addressing. 477 GlobalValue *BaseGV = nullptr; 478 479 /// Base offset for complex addressing. 480 Immediate BaseOffset = Immediate::getZero(); 481 482 /// Whether any complex addressing has a base register. 483 bool HasBaseReg = false; 484 485 /// The scale of any complex addressing. 486 int64_t Scale = 0; 487 488 /// The list of "base" registers for this use. When this is non-empty. The 489 /// canonical representation of a formula is 490 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and 491 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty(). 492 /// 3. The reg containing recurrent expr related with currect loop in the 493 /// formula should be put in the ScaledReg. 494 /// #1 enforces that the scaled register is always used when at least two 495 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2. 496 /// #2 enforces that 1 * reg is reg. 497 /// #3 ensures invariant regs with respect to current loop can be combined 498 /// together in LSR codegen. 499 /// This invariant can be temporarily broken while building a formula. 500 /// However, every formula inserted into the LSRInstance must be in canonical 501 /// form. 502 SmallVector<const SCEV *, 4> BaseRegs; 503 504 /// The 'scaled' register for this use. This should be non-null when Scale is 505 /// not zero. 506 const SCEV *ScaledReg = nullptr; 507 508 /// An additional constant offset which added near the use. This requires a 509 /// temporary register, but the offset itself can live in an add immediate 510 /// field rather than a register. 511 Immediate UnfoldedOffset = Immediate::getZero(); 512 513 Formula() = default; 514 515 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE); 516 517 bool isCanonical(const Loop &L) const; 518 519 void canonicalize(const Loop &L); 520 521 bool unscale(); 522 523 bool hasZeroEnd() const; 524 525 size_t getNumRegs() const; 526 Type *getType() const; 527 528 void deleteBaseReg(const SCEV *&S); 529 530 bool referencesReg(const SCEV *S) const; 531 bool hasRegsUsedByUsesOtherThan(size_t LUIdx, 532 const RegUseTracker &RegUses) const; 533 534 void print(raw_ostream &OS) const; 535 void dump() const; 536 }; 537 538 } // end anonymous namespace 539 540 /// Recursion helper for initialMatch. 541 static void DoInitialMatch(const SCEV *S, Loop *L, 542 SmallVectorImpl<const SCEV *> &Good, 543 SmallVectorImpl<const SCEV *> &Bad, 544 ScalarEvolution &SE) { 545 // Collect expressions which properly dominate the loop header. 546 if (SE.properlyDominates(S, L->getHeader())) { 547 Good.push_back(S); 548 return; 549 } 550 551 // Look at add operands. 552 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 553 for (const SCEV *S : Add->operands()) 554 DoInitialMatch(S, L, Good, Bad, SE); 555 return; 556 } 557 558 // Look at addrec operands. 559 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 560 if (!AR->getStart()->isZero() && AR->isAffine()) { 561 DoInitialMatch(AR->getStart(), L, Good, Bad, SE); 562 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0), 563 AR->getStepRecurrence(SE), 564 // FIXME: AR->getNoWrapFlags() 565 AR->getLoop(), SCEV::FlagAnyWrap), 566 L, Good, Bad, SE); 567 return; 568 } 569 570 // Handle a multiplication by -1 (negation) if it didn't fold. 571 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) 572 if (Mul->getOperand(0)->isAllOnesValue()) { 573 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands())); 574 const SCEV *NewMul = SE.getMulExpr(Ops); 575 576 SmallVector<const SCEV *, 4> MyGood; 577 SmallVector<const SCEV *, 4> MyBad; 578 DoInitialMatch(NewMul, L, MyGood, MyBad, SE); 579 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue( 580 SE.getEffectiveSCEVType(NewMul->getType()))); 581 for (const SCEV *S : MyGood) 582 Good.push_back(SE.getMulExpr(NegOne, S)); 583 for (const SCEV *S : MyBad) 584 Bad.push_back(SE.getMulExpr(NegOne, S)); 585 return; 586 } 587 588 // Ok, we can't do anything interesting. Just stuff the whole thing into a 589 // register and hope for the best. 590 Bad.push_back(S); 591 } 592 593 /// Incorporate loop-variant parts of S into this Formula, attempting to keep 594 /// all loop-invariant and loop-computable values in a single base register. 595 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) { 596 SmallVector<const SCEV *, 4> Good; 597 SmallVector<const SCEV *, 4> Bad; 598 DoInitialMatch(S, L, Good, Bad, SE); 599 if (!Good.empty()) { 600 const SCEV *Sum = SE.getAddExpr(Good); 601 if (!Sum->isZero()) 602 BaseRegs.push_back(Sum); 603 HasBaseReg = true; 604 } 605 if (!Bad.empty()) { 606 const SCEV *Sum = SE.getAddExpr(Bad); 607 if (!Sum->isZero()) 608 BaseRegs.push_back(Sum); 609 HasBaseReg = true; 610 } 611 canonicalize(*L); 612 } 613 614 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) { 615 return SCEVExprContains(S, [&L](const SCEV *S) { 616 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L); 617 }); 618 } 619 620 /// Check whether or not this formula satisfies the canonical 621 /// representation. 622 /// \see Formula::BaseRegs. 623 bool Formula::isCanonical(const Loop &L) const { 624 assert((Scale == 0 || ScaledReg) && 625 "ScaledReg must be non-null if Scale is non-zero"); 626 627 if (!ScaledReg) 628 return BaseRegs.size() <= 1; 629 630 if (Scale != 1) 631 return true; 632 633 if (Scale == 1 && BaseRegs.empty()) 634 return false; 635 636 if (containsAddRecDependentOnLoop(ScaledReg, L)) 637 return true; 638 639 // If ScaledReg is not a recurrent expr, or it is but its loop is not current 640 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current 641 // loop, we want to swap the reg in BaseRegs with ScaledReg. 642 return none_of(BaseRegs, [&L](const SCEV *S) { 643 return containsAddRecDependentOnLoop(S, L); 644 }); 645 } 646 647 /// Helper method to morph a formula into its canonical representation. 648 /// \see Formula::BaseRegs. 649 /// Every formula having more than one base register, must use the ScaledReg 650 /// field. Otherwise, we would have to do special cases everywhere in LSR 651 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ... 652 /// On the other hand, 1*reg should be canonicalized into reg. 653 void Formula::canonicalize(const Loop &L) { 654 if (isCanonical(L)) 655 return; 656 657 if (BaseRegs.empty()) { 658 // No base reg? Use scale reg with scale = 1 as such. 659 assert(ScaledReg && "Expected 1*reg => reg"); 660 assert(Scale == 1 && "Expected 1*reg => reg"); 661 BaseRegs.push_back(ScaledReg); 662 Scale = 0; 663 ScaledReg = nullptr; 664 return; 665 } 666 667 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg. 668 if (!ScaledReg) { 669 ScaledReg = BaseRegs.pop_back_val(); 670 Scale = 1; 671 } 672 673 // If ScaledReg is an invariant with respect to L, find the reg from 674 // BaseRegs containing the recurrent expr related with Loop L. Swap the 675 // reg with ScaledReg. 676 if (!containsAddRecDependentOnLoop(ScaledReg, L)) { 677 auto I = find_if(BaseRegs, [&L](const SCEV *S) { 678 return containsAddRecDependentOnLoop(S, L); 679 }); 680 if (I != BaseRegs.end()) 681 std::swap(ScaledReg, *I); 682 } 683 assert(isCanonical(L) && "Failed to canonicalize?"); 684 } 685 686 /// Get rid of the scale in the formula. 687 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2. 688 /// \return true if it was possible to get rid of the scale, false otherwise. 689 /// \note After this operation the formula may not be in the canonical form. 690 bool Formula::unscale() { 691 if (Scale != 1) 692 return false; 693 Scale = 0; 694 BaseRegs.push_back(ScaledReg); 695 ScaledReg = nullptr; 696 return true; 697 } 698 699 bool Formula::hasZeroEnd() const { 700 if (UnfoldedOffset || BaseOffset) 701 return false; 702 if (BaseRegs.size() != 1 || ScaledReg) 703 return false; 704 return true; 705 } 706 707 /// Return the total number of register operands used by this formula. This does 708 /// not include register uses implied by non-constant addrec strides. 709 size_t Formula::getNumRegs() const { 710 return !!ScaledReg + BaseRegs.size(); 711 } 712 713 /// Return the type of this formula, if it has one, or null otherwise. This type 714 /// is meaningless except for the bit size. 715 Type *Formula::getType() const { 716 return !BaseRegs.empty() ? BaseRegs.front()->getType() : 717 ScaledReg ? ScaledReg->getType() : 718 BaseGV ? BaseGV->getType() : 719 nullptr; 720 } 721 722 /// Delete the given base reg from the BaseRegs list. 723 void Formula::deleteBaseReg(const SCEV *&S) { 724 if (&S != &BaseRegs.back()) 725 std::swap(S, BaseRegs.back()); 726 BaseRegs.pop_back(); 727 } 728 729 /// Test if this formula references the given register. 730 bool Formula::referencesReg(const SCEV *S) const { 731 return S == ScaledReg || is_contained(BaseRegs, S); 732 } 733 734 /// Test whether this formula uses registers which are used by uses other than 735 /// the use with the given index. 736 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx, 737 const RegUseTracker &RegUses) const { 738 if (ScaledReg) 739 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx)) 740 return true; 741 for (const SCEV *BaseReg : BaseRegs) 742 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx)) 743 return true; 744 return false; 745 } 746 747 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 748 void Formula::print(raw_ostream &OS) const { 749 bool First = true; 750 if (BaseGV) { 751 if (!First) OS << " + "; else First = false; 752 BaseGV->printAsOperand(OS, /*PrintType=*/false); 753 } 754 if (BaseOffset.isNonZero()) { 755 if (!First) OS << " + "; else First = false; 756 OS << BaseOffset; 757 } 758 for (const SCEV *BaseReg : BaseRegs) { 759 if (!First) OS << " + "; else First = false; 760 OS << "reg(" << *BaseReg << ')'; 761 } 762 if (HasBaseReg && BaseRegs.empty()) { 763 if (!First) OS << " + "; else First = false; 764 OS << "**error: HasBaseReg**"; 765 } else if (!HasBaseReg && !BaseRegs.empty()) { 766 if (!First) OS << " + "; else First = false; 767 OS << "**error: !HasBaseReg**"; 768 } 769 if (Scale != 0) { 770 if (!First) OS << " + "; else First = false; 771 OS << Scale << "*reg("; 772 if (ScaledReg) 773 OS << *ScaledReg; 774 else 775 OS << "<unknown>"; 776 OS << ')'; 777 } 778 if (UnfoldedOffset.isNonZero()) { 779 if (!First) OS << " + "; 780 OS << "imm(" << UnfoldedOffset << ')'; 781 } 782 } 783 784 LLVM_DUMP_METHOD void Formula::dump() const { 785 print(errs()); errs() << '\n'; 786 } 787 #endif 788 789 /// Return true if the given addrec can be sign-extended without changing its 790 /// value. 791 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 792 Type *WideTy = 793 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1); 794 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy)); 795 } 796 797 /// Return true if the given add can be sign-extended without changing its 798 /// value. 799 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) { 800 Type *WideTy = 801 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1); 802 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy)); 803 } 804 805 /// Return true if the given mul can be sign-extended without changing its 806 /// value. 807 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) { 808 Type *WideTy = 809 IntegerType::get(SE.getContext(), 810 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands()); 811 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy)); 812 } 813 814 /// Return an expression for LHS /s RHS, if it can be determined and if the 815 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits 816 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that 817 /// the multiplication may overflow, which is useful when the result will be 818 /// used in a context where the most significant bits are ignored. 819 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS, 820 ScalarEvolution &SE, 821 bool IgnoreSignificantBits = false) { 822 // Handle the trivial case, which works for any SCEV type. 823 if (LHS == RHS) 824 return SE.getConstant(LHS->getType(), 1); 825 826 // Handle a few RHS special cases. 827 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS); 828 if (RC) { 829 const APInt &RA = RC->getAPInt(); 830 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do 831 // some folding. 832 if (RA.isAllOnes()) { 833 if (LHS->getType()->isPointerTy()) 834 return nullptr; 835 return SE.getMulExpr(LHS, RC); 836 } 837 // Handle x /s 1 as x. 838 if (RA == 1) 839 return LHS; 840 } 841 842 // Check for a division of a constant by a constant. 843 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) { 844 if (!RC) 845 return nullptr; 846 const APInt &LA = C->getAPInt(); 847 const APInt &RA = RC->getAPInt(); 848 if (LA.srem(RA) != 0) 849 return nullptr; 850 return SE.getConstant(LA.sdiv(RA)); 851 } 852 853 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow. 854 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) { 855 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) { 856 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE, 857 IgnoreSignificantBits); 858 if (!Step) return nullptr; 859 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE, 860 IgnoreSignificantBits); 861 if (!Start) return nullptr; 862 // FlagNW is independent of the start value, step direction, and is 863 // preserved with smaller magnitude steps. 864 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 865 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap); 866 } 867 return nullptr; 868 } 869 870 // Distribute the sdiv over add operands, if the add doesn't overflow. 871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) { 872 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) { 873 SmallVector<const SCEV *, 8> Ops; 874 for (const SCEV *S : Add->operands()) { 875 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits); 876 if (!Op) return nullptr; 877 Ops.push_back(Op); 878 } 879 return SE.getAddExpr(Ops); 880 } 881 return nullptr; 882 } 883 884 // Check for a multiply operand that we can pull RHS out of. 885 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) { 886 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) { 887 // Handle special case C1*X*Y /s C2*X*Y. 888 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) { 889 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) { 890 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 891 const SCEVConstant *RC = 892 dyn_cast<SCEVConstant>(MulRHS->getOperand(0)); 893 if (LC && RC) { 894 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands())); 895 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands())); 896 if (LOps == ROps) 897 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits); 898 } 899 } 900 } 901 902 SmallVector<const SCEV *, 4> Ops; 903 bool Found = false; 904 for (const SCEV *S : Mul->operands()) { 905 if (!Found) 906 if (const SCEV *Q = getExactSDiv(S, RHS, SE, 907 IgnoreSignificantBits)) { 908 S = Q; 909 Found = true; 910 } 911 Ops.push_back(S); 912 } 913 return Found ? SE.getMulExpr(Ops) : nullptr; 914 } 915 return nullptr; 916 } 917 918 // Otherwise we don't know. 919 return nullptr; 920 } 921 922 /// If S involves the addition of a constant integer value, return that integer 923 /// value, and mutate S to point to a new SCEV with that value excluded. 924 static Immediate ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) { 925 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 926 if (C->getAPInt().getSignificantBits() <= 64) { 927 S = SE.getConstant(C->getType(), 0); 928 return Immediate::getFixed(C->getValue()->getSExtValue()); 929 } 930 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 931 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 932 Immediate Result = ExtractImmediate(NewOps.front(), SE); 933 if (Result.isNonZero()) 934 S = SE.getAddExpr(NewOps); 935 return Result; 936 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 937 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 938 Immediate Result = ExtractImmediate(NewOps.front(), SE); 939 if (Result.isNonZero()) 940 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 941 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 942 SCEV::FlagAnyWrap); 943 return Result; 944 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 945 if (EnableVScaleImmediates && M->getNumOperands() == 2) { 946 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 947 if (isa<SCEVVScale>(M->getOperand(1))) { 948 S = SE.getConstant(M->getType(), 0); 949 return Immediate::getScalable(C->getValue()->getSExtValue()); 950 } 951 } 952 } 953 return Immediate::getZero(); 954 } 955 956 /// If S involves the addition of a GlobalValue address, return that symbol, and 957 /// mutate S to point to a new SCEV with that value excluded. 958 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) { 959 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 960 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) { 961 S = SE.getConstant(GV->getType(), 0); 962 return GV; 963 } 964 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 965 SmallVector<const SCEV *, 8> NewOps(Add->operands()); 966 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE); 967 if (Result) 968 S = SE.getAddExpr(NewOps); 969 return Result; 970 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 971 SmallVector<const SCEV *, 8> NewOps(AR->operands()); 972 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE); 973 if (Result) 974 S = SE.getAddRecExpr(NewOps, AR->getLoop(), 975 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 976 SCEV::FlagAnyWrap); 977 return Result; 978 } 979 return nullptr; 980 } 981 982 /// Returns true if the specified instruction is using the specified value as an 983 /// address. 984 static bool isAddressUse(const TargetTransformInfo &TTI, 985 Instruction *Inst, Value *OperandVal) { 986 bool isAddress = isa<LoadInst>(Inst); 987 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 988 if (SI->getPointerOperand() == OperandVal) 989 isAddress = true; 990 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 991 // Addressing modes can also be folded into prefetches and a variety 992 // of intrinsics. 993 switch (II->getIntrinsicID()) { 994 case Intrinsic::memset: 995 case Intrinsic::prefetch: 996 case Intrinsic::masked_load: 997 if (II->getArgOperand(0) == OperandVal) 998 isAddress = true; 999 break; 1000 case Intrinsic::masked_store: 1001 if (II->getArgOperand(1) == OperandVal) 1002 isAddress = true; 1003 break; 1004 case Intrinsic::memmove: 1005 case Intrinsic::memcpy: 1006 if (II->getArgOperand(0) == OperandVal || 1007 II->getArgOperand(1) == OperandVal) 1008 isAddress = true; 1009 break; 1010 default: { 1011 MemIntrinsicInfo IntrInfo; 1012 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) { 1013 if (IntrInfo.PtrVal == OperandVal) 1014 isAddress = true; 1015 } 1016 } 1017 } 1018 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1019 if (RMW->getPointerOperand() == OperandVal) 1020 isAddress = true; 1021 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1022 if (CmpX->getPointerOperand() == OperandVal) 1023 isAddress = true; 1024 } 1025 return isAddress; 1026 } 1027 1028 /// Return the type of the memory being accessed. 1029 static MemAccessTy getAccessType(const TargetTransformInfo &TTI, 1030 Instruction *Inst, Value *OperandVal) { 1031 MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext()); 1032 1033 // First get the type of memory being accessed. 1034 if (Type *Ty = Inst->getAccessType()) 1035 AccessTy.MemTy = Ty; 1036 1037 // Then get the pointer address space. 1038 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 1039 AccessTy.AddrSpace = SI->getPointerAddressSpace(); 1040 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 1041 AccessTy.AddrSpace = LI->getPointerAddressSpace(); 1042 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) { 1043 AccessTy.AddrSpace = RMW->getPointerAddressSpace(); 1044 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) { 1045 AccessTy.AddrSpace = CmpX->getPointerAddressSpace(); 1046 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1047 switch (II->getIntrinsicID()) { 1048 case Intrinsic::prefetch: 1049 case Intrinsic::memset: 1050 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1051 AccessTy.MemTy = OperandVal->getType(); 1052 break; 1053 case Intrinsic::memmove: 1054 case Intrinsic::memcpy: 1055 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace(); 1056 AccessTy.MemTy = OperandVal->getType(); 1057 break; 1058 case Intrinsic::masked_load: 1059 AccessTy.AddrSpace = 1060 II->getArgOperand(0)->getType()->getPointerAddressSpace(); 1061 break; 1062 case Intrinsic::masked_store: 1063 AccessTy.AddrSpace = 1064 II->getArgOperand(1)->getType()->getPointerAddressSpace(); 1065 break; 1066 default: { 1067 MemIntrinsicInfo IntrInfo; 1068 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) { 1069 AccessTy.AddrSpace 1070 = IntrInfo.PtrVal->getType()->getPointerAddressSpace(); 1071 } 1072 1073 break; 1074 } 1075 } 1076 } 1077 1078 return AccessTy; 1079 } 1080 1081 /// Return true if this AddRec is already a phi in its loop. 1082 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) { 1083 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) { 1084 if (SE.isSCEVable(PN.getType()) && 1085 (SE.getEffectiveSCEVType(PN.getType()) == 1086 SE.getEffectiveSCEVType(AR->getType())) && 1087 SE.getSCEV(&PN) == AR) 1088 return true; 1089 } 1090 return false; 1091 } 1092 1093 /// Check if expanding this expression is likely to incur significant cost. This 1094 /// is tricky because SCEV doesn't track which expressions are actually computed 1095 /// by the current IR. 1096 /// 1097 /// We currently allow expansion of IV increments that involve adds, 1098 /// multiplication by constants, and AddRecs from existing phis. 1099 /// 1100 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an 1101 /// obvious multiple of the UDivExpr. 1102 static bool isHighCostExpansion(const SCEV *S, 1103 SmallPtrSetImpl<const SCEV*> &Processed, 1104 ScalarEvolution &SE) { 1105 // Zero/One operand expressions 1106 switch (S->getSCEVType()) { 1107 case scUnknown: 1108 case scConstant: 1109 case scVScale: 1110 return false; 1111 case scTruncate: 1112 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(), 1113 Processed, SE); 1114 case scZeroExtend: 1115 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(), 1116 Processed, SE); 1117 case scSignExtend: 1118 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(), 1119 Processed, SE); 1120 default: 1121 break; 1122 } 1123 1124 if (!Processed.insert(S).second) 1125 return false; 1126 1127 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1128 for (const SCEV *S : Add->operands()) { 1129 if (isHighCostExpansion(S, Processed, SE)) 1130 return true; 1131 } 1132 return false; 1133 } 1134 1135 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 1136 if (Mul->getNumOperands() == 2) { 1137 // Multiplication by a constant is ok 1138 if (isa<SCEVConstant>(Mul->getOperand(0))) 1139 return isHighCostExpansion(Mul->getOperand(1), Processed, SE); 1140 1141 // If we have the value of one operand, check if an existing 1142 // multiplication already generates this expression. 1143 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) { 1144 Value *UVal = U->getValue(); 1145 for (User *UR : UVal->users()) { 1146 // If U is a constant, it may be used by a ConstantExpr. 1147 Instruction *UI = dyn_cast<Instruction>(UR); 1148 if (UI && UI->getOpcode() == Instruction::Mul && 1149 SE.isSCEVable(UI->getType())) { 1150 return SE.getSCEV(UI) == Mul; 1151 } 1152 } 1153 } 1154 } 1155 } 1156 1157 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 1158 if (isExistingPhi(AR, SE)) 1159 return false; 1160 } 1161 1162 // Fow now, consider any other type of expression (div/mul/min/max) high cost. 1163 return true; 1164 } 1165 1166 namespace { 1167 1168 class LSRUse; 1169 1170 } // end anonymous namespace 1171 1172 /// Check if the addressing mode defined by \p F is completely 1173 /// folded in \p LU at isel time. 1174 /// This includes address-mode folding and special icmp tricks. 1175 /// This function returns true if \p LU can accommodate what \p F 1176 /// defines and up to 1 base + 1 scaled + offset. 1177 /// In other words, if \p F has several base registers, this function may 1178 /// still return true. Therefore, users still need to account for 1179 /// additional base registers and/or unfolded offsets to derive an 1180 /// accurate cost model. 1181 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1182 const LSRUse &LU, const Formula &F); 1183 1184 // Get the cost of the scaling factor used in F for LU. 1185 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1186 const LSRUse &LU, const Formula &F, 1187 const Loop &L); 1188 1189 namespace { 1190 1191 /// This class is used to measure and compare candidate formulae. 1192 class Cost { 1193 const Loop *L = nullptr; 1194 ScalarEvolution *SE = nullptr; 1195 const TargetTransformInfo *TTI = nullptr; 1196 TargetTransformInfo::LSRCost C; 1197 TTI::AddressingModeKind AMK = TTI::AMK_None; 1198 1199 public: 1200 Cost() = delete; 1201 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, 1202 TTI::AddressingModeKind AMK) : 1203 L(L), SE(&SE), TTI(&TTI), AMK(AMK) { 1204 C.Insns = 0; 1205 C.NumRegs = 0; 1206 C.AddRecCost = 0; 1207 C.NumIVMuls = 0; 1208 C.NumBaseAdds = 0; 1209 C.ImmCost = 0; 1210 C.SetupCost = 0; 1211 C.ScaleCost = 0; 1212 } 1213 1214 bool isLess(const Cost &Other) const; 1215 1216 void Lose(); 1217 1218 #ifndef NDEBUG 1219 // Once any of the metrics loses, they must all remain losers. 1220 bool isValid() { 1221 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds 1222 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u) 1223 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds 1224 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u); 1225 } 1226 #endif 1227 1228 bool isLoser() { 1229 assert(isValid() && "invalid cost"); 1230 return C.NumRegs == ~0u; 1231 } 1232 1233 void RateFormula(const Formula &F, 1234 SmallPtrSetImpl<const SCEV *> &Regs, 1235 const DenseSet<const SCEV *> &VisitedRegs, 1236 const LSRUse &LU, 1237 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr); 1238 1239 void print(raw_ostream &OS) const; 1240 void dump() const; 1241 1242 private: 1243 void RateRegister(const Formula &F, const SCEV *Reg, 1244 SmallPtrSetImpl<const SCEV *> &Regs); 1245 void RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1246 SmallPtrSetImpl<const SCEV *> &Regs, 1247 SmallPtrSetImpl<const SCEV *> *LoserRegs); 1248 }; 1249 1250 /// An operand value in an instruction which is to be replaced with some 1251 /// equivalent, possibly strength-reduced, replacement. 1252 struct LSRFixup { 1253 /// The instruction which will be updated. 1254 Instruction *UserInst = nullptr; 1255 1256 /// The operand of the instruction which will be replaced. The operand may be 1257 /// used more than once; every instance will be replaced. 1258 Value *OperandValToReplace = nullptr; 1259 1260 /// If this user is to use the post-incremented value of an induction 1261 /// variable, this set is non-empty and holds the loops associated with the 1262 /// induction variable. 1263 PostIncLoopSet PostIncLoops; 1264 1265 /// A constant offset to be added to the LSRUse expression. This allows 1266 /// multiple fixups to share the same LSRUse with different offsets, for 1267 /// example in an unrolled loop. 1268 Immediate Offset = Immediate::getZero(); 1269 1270 LSRFixup() = default; 1271 1272 bool isUseFullyOutsideLoop(const Loop *L) const; 1273 1274 void print(raw_ostream &OS) const; 1275 void dump() const; 1276 }; 1277 1278 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted 1279 /// SmallVectors of const SCEV*. 1280 struct UniquifierDenseMapInfo { 1281 static SmallVector<const SCEV *, 4> getEmptyKey() { 1282 SmallVector<const SCEV *, 4> V; 1283 V.push_back(reinterpret_cast<const SCEV *>(-1)); 1284 return V; 1285 } 1286 1287 static SmallVector<const SCEV *, 4> getTombstoneKey() { 1288 SmallVector<const SCEV *, 4> V; 1289 V.push_back(reinterpret_cast<const SCEV *>(-2)); 1290 return V; 1291 } 1292 1293 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) { 1294 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); 1295 } 1296 1297 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS, 1298 const SmallVector<const SCEV *, 4> &RHS) { 1299 return LHS == RHS; 1300 } 1301 }; 1302 1303 /// This class holds the state that LSR keeps for each use in IVUsers, as well 1304 /// as uses invented by LSR itself. It includes information about what kinds of 1305 /// things can be folded into the user, information about the user itself, and 1306 /// information about how the use may be satisfied. TODO: Represent multiple 1307 /// users of the same expression in common? 1308 class LSRUse { 1309 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier; 1310 1311 public: 1312 /// An enum for a kind of use, indicating what types of scaled and immediate 1313 /// operands it might support. 1314 enum KindType { 1315 Basic, ///< A normal use, with no folding. 1316 Special, ///< A special case of basic, allowing -1 scales. 1317 Address, ///< An address use; folding according to TargetLowering 1318 ICmpZero ///< An equality icmp with both operands folded into one. 1319 // TODO: Add a generic icmp too? 1320 }; 1321 1322 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>; 1323 1324 KindType Kind; 1325 MemAccessTy AccessTy; 1326 1327 /// The list of operands which are to be replaced. 1328 SmallVector<LSRFixup, 8> Fixups; 1329 1330 /// Keep track of the min and max offsets of the fixups. 1331 Immediate MinOffset = Immediate::getFixedMax(); 1332 Immediate MaxOffset = Immediate::getFixedMin(); 1333 1334 /// This records whether all of the fixups using this LSRUse are outside of 1335 /// the loop, in which case some special-case heuristics may be used. 1336 bool AllFixupsOutsideLoop = true; 1337 1338 /// RigidFormula is set to true to guarantee that this use will be associated 1339 /// with a single formula--the one that initially matched. Some SCEV 1340 /// expressions cannot be expanded. This allows LSR to consider the registers 1341 /// used by those expressions without the need to expand them later after 1342 /// changing the formula. 1343 bool RigidFormula = false; 1344 1345 /// This records the widest use type for any fixup using this 1346 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max 1347 /// fixup widths to be equivalent, because the narrower one may be relying on 1348 /// the implicit truncation to truncate away bogus bits. 1349 Type *WidestFixupType = nullptr; 1350 1351 /// A list of ways to build a value that can satisfy this user. After the 1352 /// list is populated, one of these is selected heuristically and used to 1353 /// formulate a replacement for OperandValToReplace in UserInst. 1354 SmallVector<Formula, 12> Formulae; 1355 1356 /// The set of register candidates used by all formulae in this LSRUse. 1357 SmallPtrSet<const SCEV *, 4> Regs; 1358 1359 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {} 1360 1361 LSRFixup &getNewFixup() { 1362 Fixups.push_back(LSRFixup()); 1363 return Fixups.back(); 1364 } 1365 1366 void pushFixup(LSRFixup &f) { 1367 Fixups.push_back(f); 1368 if (Immediate::isKnownGT(f.Offset, MaxOffset)) 1369 MaxOffset = f.Offset; 1370 if (Immediate::isKnownLT(f.Offset, MinOffset)) 1371 MinOffset = f.Offset; 1372 } 1373 1374 bool HasFormulaWithSameRegs(const Formula &F) const; 1375 float getNotSelectedProbability(const SCEV *Reg) const; 1376 bool InsertFormula(const Formula &F, const Loop &L); 1377 void DeleteFormula(Formula &F); 1378 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses); 1379 1380 void print(raw_ostream &OS) const; 1381 void dump() const; 1382 }; 1383 1384 } // end anonymous namespace 1385 1386 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1387 LSRUse::KindType Kind, MemAccessTy AccessTy, 1388 GlobalValue *BaseGV, Immediate BaseOffset, 1389 bool HasBaseReg, int64_t Scale, 1390 Instruction *Fixup = nullptr); 1391 1392 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) { 1393 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg)) 1394 return 1; 1395 if (Depth == 0) 1396 return 0; 1397 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg)) 1398 return getSetupCost(S->getStart(), Depth - 1); 1399 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg)) 1400 return getSetupCost(S->getOperand(), Depth - 1); 1401 if (auto S = dyn_cast<SCEVNAryExpr>(Reg)) 1402 return std::accumulate(S->operands().begin(), S->operands().end(), 0, 1403 [&](unsigned i, const SCEV *Reg) { 1404 return i + getSetupCost(Reg, Depth - 1); 1405 }); 1406 if (auto S = dyn_cast<SCEVUDivExpr>(Reg)) 1407 return getSetupCost(S->getLHS(), Depth - 1) + 1408 getSetupCost(S->getRHS(), Depth - 1); 1409 return 0; 1410 } 1411 1412 /// Tally up interesting quantities from the given register. 1413 void Cost::RateRegister(const Formula &F, const SCEV *Reg, 1414 SmallPtrSetImpl<const SCEV *> &Regs) { 1415 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) { 1416 // If this is an addrec for another loop, it should be an invariant 1417 // with respect to L since L is the innermost loop (at least 1418 // for now LSR only handles innermost loops). 1419 if (AR->getLoop() != L) { 1420 // If the AddRec exists, consider it's register free and leave it alone. 1421 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed) 1422 return; 1423 1424 // It is bad to allow LSR for current loop to add induction variables 1425 // for its sibling loops. 1426 if (!AR->getLoop()->contains(L)) { 1427 Lose(); 1428 return; 1429 } 1430 1431 // Otherwise, it will be an invariant with respect to Loop L. 1432 ++C.NumRegs; 1433 return; 1434 } 1435 1436 unsigned LoopCost = 1; 1437 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) || 1438 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) { 1439 1440 // If the step size matches the base offset, we could use pre-indexed 1441 // addressing. 1442 if (AMK == TTI::AMK_PreIndexed && F.BaseOffset.isFixed()) { 1443 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE))) 1444 if (Step->getAPInt() == F.BaseOffset.getFixedValue()) 1445 LoopCost = 0; 1446 } else if (AMK == TTI::AMK_PostIndexed) { 1447 const SCEV *LoopStep = AR->getStepRecurrence(*SE); 1448 if (isa<SCEVConstant>(LoopStep)) { 1449 const SCEV *LoopStart = AR->getStart(); 1450 if (!isa<SCEVConstant>(LoopStart) && 1451 SE->isLoopInvariant(LoopStart, L)) 1452 LoopCost = 0; 1453 } 1454 } 1455 } 1456 C.AddRecCost += LoopCost; 1457 1458 // Add the step value register, if it needs one. 1459 // TODO: The non-affine case isn't precisely modeled here. 1460 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) { 1461 if (!Regs.count(AR->getOperand(1))) { 1462 RateRegister(F, AR->getOperand(1), Regs); 1463 if (isLoser()) 1464 return; 1465 } 1466 } 1467 } 1468 ++C.NumRegs; 1469 1470 // Rough heuristic; favor registers which don't require extra setup 1471 // instructions in the preheader. 1472 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit); 1473 // Ensure we don't, even with the recusion limit, produce invalid costs. 1474 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16); 1475 1476 C.NumIVMuls += isa<SCEVMulExpr>(Reg) && 1477 SE->hasComputableLoopEvolution(Reg, L); 1478 } 1479 1480 /// Record this register in the set. If we haven't seen it before, rate 1481 /// it. Optional LoserRegs provides a way to declare any formula that refers to 1482 /// one of those regs an instant loser. 1483 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg, 1484 SmallPtrSetImpl<const SCEV *> &Regs, 1485 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1486 if (LoserRegs && LoserRegs->count(Reg)) { 1487 Lose(); 1488 return; 1489 } 1490 if (Regs.insert(Reg).second) { 1491 RateRegister(F, Reg, Regs); 1492 if (LoserRegs && isLoser()) 1493 LoserRegs->insert(Reg); 1494 } 1495 } 1496 1497 void Cost::RateFormula(const Formula &F, 1498 SmallPtrSetImpl<const SCEV *> &Regs, 1499 const DenseSet<const SCEV *> &VisitedRegs, 1500 const LSRUse &LU, 1501 SmallPtrSetImpl<const SCEV *> *LoserRegs) { 1502 if (isLoser()) 1503 return; 1504 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula"); 1505 // Tally up the registers. 1506 unsigned PrevAddRecCost = C.AddRecCost; 1507 unsigned PrevNumRegs = C.NumRegs; 1508 unsigned PrevNumBaseAdds = C.NumBaseAdds; 1509 if (const SCEV *ScaledReg = F.ScaledReg) { 1510 if (VisitedRegs.count(ScaledReg)) { 1511 Lose(); 1512 return; 1513 } 1514 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs); 1515 if (isLoser()) 1516 return; 1517 } 1518 for (const SCEV *BaseReg : F.BaseRegs) { 1519 if (VisitedRegs.count(BaseReg)) { 1520 Lose(); 1521 return; 1522 } 1523 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs); 1524 if (isLoser()) 1525 return; 1526 } 1527 1528 // Determine how many (unfolded) adds we'll need inside the loop. 1529 size_t NumBaseParts = F.getNumRegs(); 1530 if (NumBaseParts > 1) 1531 // Do not count the base and a possible second register if the target 1532 // allows to fold 2 registers. 1533 C.NumBaseAdds += 1534 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F))); 1535 C.NumBaseAdds += (F.UnfoldedOffset.isNonZero()); 1536 1537 // Accumulate non-free scaling amounts. 1538 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue(); 1539 1540 // Tally up the non-zero immediates. 1541 for (const LSRFixup &Fixup : LU.Fixups) { 1542 if (Fixup.Offset.isCompatibleImmediate(F.BaseOffset)) { 1543 Immediate Offset = Fixup.Offset.addUnsigned(F.BaseOffset); 1544 if (F.BaseGV) 1545 C.ImmCost += 64; // Handle symbolic values conservatively. 1546 // TODO: This should probably be the pointer size. 1547 else if (Offset.isNonZero()) 1548 C.ImmCost += 1549 APInt(64, Offset.getKnownMinValue(), true).getSignificantBits(); 1550 1551 // Check with target if this offset with this instruction is 1552 // specifically not supported. 1553 if (LU.Kind == LSRUse::Address && Offset.isNonZero() && 1554 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1555 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst)) 1556 C.NumBaseAdds++; 1557 } else { 1558 // Incompatible immediate type, increase cost to avoid using 1559 C.ImmCost += 2048; 1560 } 1561 } 1562 1563 // If we don't count instruction cost exit here. 1564 if (!InsnsCost) { 1565 assert(isValid() && "invalid cost"); 1566 return; 1567 } 1568 1569 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as 1570 // additional instruction (at least fill). 1571 // TODO: Need distinguish register class? 1572 unsigned TTIRegNum = TTI->getNumberOfRegisters( 1573 TTI->getRegisterClassForType(false, F.getType())) - 1; 1574 if (C.NumRegs > TTIRegNum) { 1575 // Cost already exceeded TTIRegNum, then only newly added register can add 1576 // new instructions. 1577 if (PrevNumRegs > TTIRegNum) 1578 C.Insns += (C.NumRegs - PrevNumRegs); 1579 else 1580 C.Insns += (C.NumRegs - TTIRegNum); 1581 } 1582 1583 // If ICmpZero formula ends with not 0, it could not be replaced by 1584 // just add or sub. We'll need to compare final result of AddRec. 1585 // That means we'll need an additional instruction. But if the target can 1586 // macro-fuse a compare with a branch, don't count this extra instruction. 1587 // For -10 + {0, +, 1}: 1588 // i = i + 1; 1589 // cmp i, 10 1590 // 1591 // For {-10, +, 1}: 1592 // i = i + 1; 1593 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() && 1594 !TTI->canMacroFuseCmp()) 1595 C.Insns++; 1596 // Each new AddRec adds 1 instruction to calculation. 1597 C.Insns += (C.AddRecCost - PrevAddRecCost); 1598 1599 // BaseAdds adds instructions for unfolded registers. 1600 if (LU.Kind != LSRUse::ICmpZero) 1601 C.Insns += C.NumBaseAdds - PrevNumBaseAdds; 1602 assert(isValid() && "invalid cost"); 1603 } 1604 1605 /// Set this cost to a losing value. 1606 void Cost::Lose() { 1607 C.Insns = std::numeric_limits<unsigned>::max(); 1608 C.NumRegs = std::numeric_limits<unsigned>::max(); 1609 C.AddRecCost = std::numeric_limits<unsigned>::max(); 1610 C.NumIVMuls = std::numeric_limits<unsigned>::max(); 1611 C.NumBaseAdds = std::numeric_limits<unsigned>::max(); 1612 C.ImmCost = std::numeric_limits<unsigned>::max(); 1613 C.SetupCost = std::numeric_limits<unsigned>::max(); 1614 C.ScaleCost = std::numeric_limits<unsigned>::max(); 1615 } 1616 1617 /// Choose the lower cost. 1618 bool Cost::isLess(const Cost &Other) const { 1619 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost && 1620 C.Insns != Other.C.Insns) 1621 return C.Insns < Other.C.Insns; 1622 return TTI->isLSRCostLess(C, Other.C); 1623 } 1624 1625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1626 void Cost::print(raw_ostream &OS) const { 1627 if (InsnsCost) 1628 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s "); 1629 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s"); 1630 if (C.AddRecCost != 0) 1631 OS << ", with addrec cost " << C.AddRecCost; 1632 if (C.NumIVMuls != 0) 1633 OS << ", plus " << C.NumIVMuls << " IV mul" 1634 << (C.NumIVMuls == 1 ? "" : "s"); 1635 if (C.NumBaseAdds != 0) 1636 OS << ", plus " << C.NumBaseAdds << " base add" 1637 << (C.NumBaseAdds == 1 ? "" : "s"); 1638 if (C.ScaleCost != 0) 1639 OS << ", plus " << C.ScaleCost << " scale cost"; 1640 if (C.ImmCost != 0) 1641 OS << ", plus " << C.ImmCost << " imm cost"; 1642 if (C.SetupCost != 0) 1643 OS << ", plus " << C.SetupCost << " setup cost"; 1644 } 1645 1646 LLVM_DUMP_METHOD void Cost::dump() const { 1647 print(errs()); errs() << '\n'; 1648 } 1649 #endif 1650 1651 /// Test whether this fixup always uses its value outside of the given loop. 1652 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const { 1653 // PHI nodes use their value in their incoming blocks. 1654 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) { 1655 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1656 if (PN->getIncomingValue(i) == OperandValToReplace && 1657 L->contains(PN->getIncomingBlock(i))) 1658 return false; 1659 return true; 1660 } 1661 1662 return !L->contains(UserInst); 1663 } 1664 1665 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1666 void LSRFixup::print(raw_ostream &OS) const { 1667 OS << "UserInst="; 1668 // Store is common and interesting enough to be worth special-casing. 1669 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) { 1670 OS << "store "; 1671 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false); 1672 } else if (UserInst->getType()->isVoidTy()) 1673 OS << UserInst->getOpcodeName(); 1674 else 1675 UserInst->printAsOperand(OS, /*PrintType=*/false); 1676 1677 OS << ", OperandValToReplace="; 1678 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false); 1679 1680 for (const Loop *PIL : PostIncLoops) { 1681 OS << ", PostIncLoop="; 1682 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 1683 } 1684 1685 if (Offset.isNonZero()) 1686 OS << ", Offset=" << Offset; 1687 } 1688 1689 LLVM_DUMP_METHOD void LSRFixup::dump() const { 1690 print(errs()); errs() << '\n'; 1691 } 1692 #endif 1693 1694 /// Test whether this use as a formula which has the same registers as the given 1695 /// formula. 1696 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const { 1697 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1698 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1699 // Unstable sort by host order ok, because this is only used for uniquifying. 1700 llvm::sort(Key); 1701 return Uniquifier.count(Key); 1702 } 1703 1704 /// The function returns a probability of selecting formula without Reg. 1705 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const { 1706 unsigned FNum = 0; 1707 for (const Formula &F : Formulae) 1708 if (F.referencesReg(Reg)) 1709 FNum++; 1710 return ((float)(Formulae.size() - FNum)) / Formulae.size(); 1711 } 1712 1713 /// If the given formula has not yet been inserted, add it to the list, and 1714 /// return true. Return false otherwise. The formula must be in canonical form. 1715 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) { 1716 assert(F.isCanonical(L) && "Invalid canonical representation"); 1717 1718 if (!Formulae.empty() && RigidFormula) 1719 return false; 1720 1721 SmallVector<const SCEV *, 4> Key = F.BaseRegs; 1722 if (F.ScaledReg) Key.push_back(F.ScaledReg); 1723 // Unstable sort by host order ok, because this is only used for uniquifying. 1724 llvm::sort(Key); 1725 1726 if (!Uniquifier.insert(Key).second) 1727 return false; 1728 1729 // Using a register to hold the value of 0 is not profitable. 1730 assert((!F.ScaledReg || !F.ScaledReg->isZero()) && 1731 "Zero allocated in a scaled register!"); 1732 #ifndef NDEBUG 1733 for (const SCEV *BaseReg : F.BaseRegs) 1734 assert(!BaseReg->isZero() && "Zero allocated in a base register!"); 1735 #endif 1736 1737 // Add the formula to the list. 1738 Formulae.push_back(F); 1739 1740 // Record registers now being used by this use. 1741 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1742 if (F.ScaledReg) 1743 Regs.insert(F.ScaledReg); 1744 1745 return true; 1746 } 1747 1748 /// Remove the given formula from this use's list. 1749 void LSRUse::DeleteFormula(Formula &F) { 1750 if (&F != &Formulae.back()) 1751 std::swap(F, Formulae.back()); 1752 Formulae.pop_back(); 1753 } 1754 1755 /// Recompute the Regs field, and update RegUses. 1756 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) { 1757 // Now that we've filtered out some formulae, recompute the Regs set. 1758 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs); 1759 Regs.clear(); 1760 for (const Formula &F : Formulae) { 1761 if (F.ScaledReg) Regs.insert(F.ScaledReg); 1762 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 1763 } 1764 1765 // Update the RegTracker. 1766 for (const SCEV *S : OldRegs) 1767 if (!Regs.count(S)) 1768 RegUses.dropRegister(S, LUIdx); 1769 } 1770 1771 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 1772 void LSRUse::print(raw_ostream &OS) const { 1773 OS << "LSR Use: Kind="; 1774 switch (Kind) { 1775 case Basic: OS << "Basic"; break; 1776 case Special: OS << "Special"; break; 1777 case ICmpZero: OS << "ICmpZero"; break; 1778 case Address: 1779 OS << "Address of "; 1780 if (AccessTy.MemTy->isPointerTy()) 1781 OS << "pointer"; // the full pointer type could be really verbose 1782 else { 1783 OS << *AccessTy.MemTy; 1784 } 1785 1786 OS << " in addrspace(" << AccessTy.AddrSpace << ')'; 1787 } 1788 1789 OS << ", Offsets={"; 1790 bool NeedComma = false; 1791 for (const LSRFixup &Fixup : Fixups) { 1792 if (NeedComma) OS << ','; 1793 OS << Fixup.Offset; 1794 NeedComma = true; 1795 } 1796 OS << '}'; 1797 1798 if (AllFixupsOutsideLoop) 1799 OS << ", all-fixups-outside-loop"; 1800 1801 if (WidestFixupType) 1802 OS << ", widest fixup type: " << *WidestFixupType; 1803 } 1804 1805 LLVM_DUMP_METHOD void LSRUse::dump() const { 1806 print(errs()); errs() << '\n'; 1807 } 1808 #endif 1809 1810 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1811 LSRUse::KindType Kind, MemAccessTy AccessTy, 1812 GlobalValue *BaseGV, Immediate BaseOffset, 1813 bool HasBaseReg, int64_t Scale, 1814 Instruction *Fixup /* = nullptr */) { 1815 switch (Kind) { 1816 case LSRUse::Address: { 1817 int64_t FixedOffset = 1818 BaseOffset.isScalable() ? 0 : BaseOffset.getFixedValue(); 1819 int64_t ScalableOffset = 1820 BaseOffset.isScalable() ? BaseOffset.getKnownMinValue() : 0; 1821 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, FixedOffset, 1822 HasBaseReg, Scale, AccessTy.AddrSpace, 1823 Fixup, ScalableOffset); 1824 } 1825 case LSRUse::ICmpZero: 1826 // There's not even a target hook for querying whether it would be legal to 1827 // fold a GV into an ICmp. 1828 if (BaseGV) 1829 return false; 1830 1831 // ICmp only has two operands; don't allow more than two non-trivial parts. 1832 if (Scale != 0 && HasBaseReg && BaseOffset.isNonZero()) 1833 return false; 1834 1835 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by 1836 // putting the scaled register in the other operand of the icmp. 1837 if (Scale != 0 && Scale != -1) 1838 return false; 1839 1840 // If we have low-level target information, ask the target if it can fold an 1841 // integer immediate on an icmp. 1842 if (BaseOffset.isNonZero()) { 1843 // We don't have an interface to query whether the target supports 1844 // icmpzero against scalable quantities yet. 1845 if (BaseOffset.isScalable()) 1846 return false; 1847 1848 // We have one of: 1849 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset 1850 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset 1851 // Offs is the ICmp immediate. 1852 if (Scale == 0) 1853 // The cast does the right thing with 1854 // std::numeric_limits<int64_t>::min(). 1855 BaseOffset = BaseOffset.getFixed(-(uint64_t)BaseOffset.getFixedValue()); 1856 return TTI.isLegalICmpImmediate(BaseOffset.getFixedValue()); 1857 } 1858 1859 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg 1860 return true; 1861 1862 case LSRUse::Basic: 1863 // Only handle single-register values. 1864 return !BaseGV && Scale == 0 && BaseOffset.isZero(); 1865 1866 case LSRUse::Special: 1867 // Special case Basic to handle -1 scales. 1868 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset.isZero(); 1869 } 1870 1871 llvm_unreachable("Invalid LSRUse Kind!"); 1872 } 1873 1874 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1875 Immediate MinOffset, Immediate MaxOffset, 1876 LSRUse::KindType Kind, MemAccessTy AccessTy, 1877 GlobalValue *BaseGV, Immediate BaseOffset, 1878 bool HasBaseReg, int64_t Scale) { 1879 if (BaseOffset.isNonZero() && 1880 (BaseOffset.isScalable() != MinOffset.isScalable() || 1881 BaseOffset.isScalable() != MaxOffset.isScalable())) 1882 return false; 1883 // Check for overflow. 1884 int64_t Base = BaseOffset.getKnownMinValue(); 1885 int64_t Min = MinOffset.getKnownMinValue(); 1886 int64_t Max = MaxOffset.getKnownMinValue(); 1887 if (((int64_t)((uint64_t)Base + Min) > Base) != (Min > 0)) 1888 return false; 1889 MinOffset = Immediate::get((uint64_t)Base + Min, MinOffset.isScalable()); 1890 if (((int64_t)((uint64_t)Base + Max) > Base) != (Max > 0)) 1891 return false; 1892 MaxOffset = Immediate::get((uint64_t)Base + Max, MaxOffset.isScalable()); 1893 1894 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset, 1895 HasBaseReg, Scale) && 1896 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset, 1897 HasBaseReg, Scale); 1898 } 1899 1900 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1901 Immediate MinOffset, Immediate MaxOffset, 1902 LSRUse::KindType Kind, MemAccessTy AccessTy, 1903 const Formula &F, const Loop &L) { 1904 // For the purpose of isAMCompletelyFolded either having a canonical formula 1905 // or a scale not equal to zero is correct. 1906 // Problems may arise from non canonical formulae having a scale == 0. 1907 // Strictly speaking it would best to just rely on canonical formulae. 1908 // However, when we generate the scaled formulae, we first check that the 1909 // scaling factor is profitable before computing the actual ScaledReg for 1910 // compile time sake. 1911 assert((F.isCanonical(L) || F.Scale != 0)); 1912 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1913 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale); 1914 } 1915 1916 /// Test whether we know how to expand the current formula. 1917 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1918 Immediate MaxOffset, LSRUse::KindType Kind, 1919 MemAccessTy AccessTy, GlobalValue *BaseGV, 1920 Immediate BaseOffset, bool HasBaseReg, int64_t Scale) { 1921 // We know how to expand completely foldable formulae. 1922 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 1923 BaseOffset, HasBaseReg, Scale) || 1924 // Or formulae that use a base register produced by a sum of base 1925 // registers. 1926 (Scale == 1 && 1927 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, 1928 BaseGV, BaseOffset, true, 0)); 1929 } 1930 1931 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset, 1932 Immediate MaxOffset, LSRUse::KindType Kind, 1933 MemAccessTy AccessTy, const Formula &F) { 1934 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV, 1935 F.BaseOffset, F.HasBaseReg, F.Scale); 1936 } 1937 1938 static bool isLegalAddImmediate(const TargetTransformInfo &TTI, 1939 Immediate Offset) { 1940 if (Offset.isScalable()) 1941 return TTI.isLegalAddScalableImmediate(Offset.getKnownMinValue()); 1942 1943 return TTI.isLegalAddImmediate(Offset.getFixedValue()); 1944 } 1945 1946 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI, 1947 const LSRUse &LU, const Formula &F) { 1948 // Target may want to look at the user instructions. 1949 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) { 1950 for (const LSRFixup &Fixup : LU.Fixups) 1951 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV, 1952 (F.BaseOffset + Fixup.Offset), F.HasBaseReg, 1953 F.Scale, Fixup.UserInst)) 1954 return false; 1955 return true; 1956 } 1957 1958 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1959 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg, 1960 F.Scale); 1961 } 1962 1963 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI, 1964 const LSRUse &LU, const Formula &F, 1965 const Loop &L) { 1966 if (!F.Scale) 1967 return 0; 1968 1969 // If the use is not completely folded in that instruction, we will have to 1970 // pay an extra cost only for scale != 1. 1971 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, 1972 LU.AccessTy, F, L)) 1973 return F.Scale != 1; 1974 1975 switch (LU.Kind) { 1976 case LSRUse::Address: { 1977 // Check the scaling factor cost with both the min and max offsets. 1978 int64_t ScalableMin = 0, ScalableMax = 0, FixedMin = 0, FixedMax = 0; 1979 if (F.BaseOffset.isScalable()) { 1980 ScalableMin = (F.BaseOffset + LU.MinOffset).getKnownMinValue(); 1981 ScalableMax = (F.BaseOffset + LU.MaxOffset).getKnownMinValue(); 1982 } else { 1983 FixedMin = (F.BaseOffset + LU.MinOffset).getFixedValue(); 1984 FixedMax = (F.BaseOffset + LU.MaxOffset).getFixedValue(); 1985 } 1986 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost( 1987 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMin, ScalableMin), 1988 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1989 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost( 1990 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMax, ScalableMax), 1991 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace); 1992 1993 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && 1994 "Legal addressing mode has an illegal cost!"); 1995 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset); 1996 } 1997 case LSRUse::ICmpZero: 1998 case LSRUse::Basic: 1999 case LSRUse::Special: 2000 // The use is completely folded, i.e., everything is folded into the 2001 // instruction. 2002 return 0; 2003 } 2004 2005 llvm_unreachable("Invalid LSRUse Kind!"); 2006 } 2007 2008 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2009 LSRUse::KindType Kind, MemAccessTy AccessTy, 2010 GlobalValue *BaseGV, Immediate BaseOffset, 2011 bool HasBaseReg) { 2012 // Fast-path: zero is always foldable. 2013 if (BaseOffset.isZero() && !BaseGV) 2014 return true; 2015 2016 // Conservatively, create an address with an immediate and a 2017 // base and a scale. 2018 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2019 2020 // Canonicalize a scale of 1 to a base register if the formula doesn't 2021 // already have a base register. 2022 if (!HasBaseReg && Scale == 1) { 2023 Scale = 0; 2024 HasBaseReg = true; 2025 } 2026 2027 // FIXME: Try with + without a scale? Maybe based on TTI? 2028 // I think basereg + scaledreg + immediateoffset isn't a good 'conservative' 2029 // default for many architectures, not just AArch64 SVE. More investigation 2030 // needed later to determine if this should be used more widely than just 2031 // on scalable types. 2032 if (HasBaseReg && BaseOffset.isNonZero() && Kind != LSRUse::ICmpZero && 2033 AccessTy.MemTy && AccessTy.MemTy->isScalableTy() && DropScaledForVScale) 2034 Scale = 0; 2035 2036 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset, 2037 HasBaseReg, Scale); 2038 } 2039 2040 static bool isAlwaysFoldable(const TargetTransformInfo &TTI, 2041 ScalarEvolution &SE, Immediate MinOffset, 2042 Immediate MaxOffset, LSRUse::KindType Kind, 2043 MemAccessTy AccessTy, const SCEV *S, 2044 bool HasBaseReg) { 2045 // Fast-path: zero is always foldable. 2046 if (S->isZero()) return true; 2047 2048 // Conservatively, create an address with an immediate and a 2049 // base and a scale. 2050 Immediate BaseOffset = ExtractImmediate(S, SE); 2051 GlobalValue *BaseGV = ExtractSymbol(S, SE); 2052 2053 // If there's anything else involved, it's not foldable. 2054 if (!S->isZero()) return false; 2055 2056 // Fast-path: zero is always foldable. 2057 if (BaseOffset.isZero() && !BaseGV) 2058 return true; 2059 2060 if (BaseOffset.isScalable()) 2061 return false; 2062 2063 // Conservatively, create an address with an immediate and a 2064 // base and a scale. 2065 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1; 2066 2067 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV, 2068 BaseOffset, HasBaseReg, Scale); 2069 } 2070 2071 namespace { 2072 2073 /// An individual increment in a Chain of IV increments. Relate an IV user to 2074 /// an expression that computes the IV it uses from the IV used by the previous 2075 /// link in the Chain. 2076 /// 2077 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the 2078 /// original IVOperand. The head of the chain's IVOperand is only valid during 2079 /// chain collection, before LSR replaces IV users. During chain generation, 2080 /// IncExpr can be used to find the new IVOperand that computes the same 2081 /// expression. 2082 struct IVInc { 2083 Instruction *UserInst; 2084 Value* IVOperand; 2085 const SCEV *IncExpr; 2086 2087 IVInc(Instruction *U, Value *O, const SCEV *E) 2088 : UserInst(U), IVOperand(O), IncExpr(E) {} 2089 }; 2090 2091 // The list of IV increments in program order. We typically add the head of a 2092 // chain without finding subsequent links. 2093 struct IVChain { 2094 SmallVector<IVInc, 1> Incs; 2095 const SCEV *ExprBase = nullptr; 2096 2097 IVChain() = default; 2098 IVChain(const IVInc &Head, const SCEV *Base) 2099 : Incs(1, Head), ExprBase(Base) {} 2100 2101 using const_iterator = SmallVectorImpl<IVInc>::const_iterator; 2102 2103 // Return the first increment in the chain. 2104 const_iterator begin() const { 2105 assert(!Incs.empty()); 2106 return std::next(Incs.begin()); 2107 } 2108 const_iterator end() const { 2109 return Incs.end(); 2110 } 2111 2112 // Returns true if this chain contains any increments. 2113 bool hasIncs() const { return Incs.size() >= 2; } 2114 2115 // Add an IVInc to the end of this chain. 2116 void add(const IVInc &X) { Incs.push_back(X); } 2117 2118 // Returns the last UserInst in the chain. 2119 Instruction *tailUserInst() const { return Incs.back().UserInst; } 2120 2121 // Returns true if IncExpr can be profitably added to this chain. 2122 bool isProfitableIncrement(const SCEV *OperExpr, 2123 const SCEV *IncExpr, 2124 ScalarEvolution&); 2125 }; 2126 2127 /// Helper for CollectChains to track multiple IV increment uses. Distinguish 2128 /// between FarUsers that definitely cross IV increments and NearUsers that may 2129 /// be used between IV increments. 2130 struct ChainUsers { 2131 SmallPtrSet<Instruction*, 4> FarUsers; 2132 SmallPtrSet<Instruction*, 4> NearUsers; 2133 }; 2134 2135 /// This class holds state for the main loop strength reduction logic. 2136 class LSRInstance { 2137 IVUsers &IU; 2138 ScalarEvolution &SE; 2139 DominatorTree &DT; 2140 LoopInfo &LI; 2141 AssumptionCache &AC; 2142 TargetLibraryInfo &TLI; 2143 const TargetTransformInfo &TTI; 2144 Loop *const L; 2145 MemorySSAUpdater *MSSAU; 2146 TTI::AddressingModeKind AMK; 2147 mutable SCEVExpander Rewriter; 2148 bool Changed = false; 2149 2150 /// This is the insert position that the current loop's induction variable 2151 /// increment should be placed. In simple loops, this is the latch block's 2152 /// terminator. But in more complicated cases, this is a position which will 2153 /// dominate all the in-loop post-increment users. 2154 Instruction *IVIncInsertPos = nullptr; 2155 2156 /// Interesting factors between use strides. 2157 /// 2158 /// We explicitly use a SetVector which contains a SmallSet, instead of the 2159 /// default, a SmallDenseSet, because we need to use the full range of 2160 /// int64_ts, and there's currently no good way of doing that with 2161 /// SmallDenseSet. 2162 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors; 2163 2164 /// The cost of the current SCEV, the best solution by LSR will be dropped if 2165 /// the solution is not profitable. 2166 Cost BaselineCost; 2167 2168 /// Interesting use types, to facilitate truncation reuse. 2169 SmallSetVector<Type *, 4> Types; 2170 2171 /// The list of interesting uses. 2172 mutable SmallVector<LSRUse, 16> Uses; 2173 2174 /// Track which uses use which register candidates. 2175 RegUseTracker RegUses; 2176 2177 // Limit the number of chains to avoid quadratic behavior. We don't expect to 2178 // have more than a few IV increment chains in a loop. Missing a Chain falls 2179 // back to normal LSR behavior for those uses. 2180 static const unsigned MaxChains = 8; 2181 2182 /// IV users can form a chain of IV increments. 2183 SmallVector<IVChain, MaxChains> IVChainVec; 2184 2185 /// IV users that belong to profitable IVChains. 2186 SmallPtrSet<Use*, MaxChains> IVIncSet; 2187 2188 /// Induction variables that were generated and inserted by the SCEV Expander. 2189 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs; 2190 2191 // Inserting instructions in the loop and using them as PHI's input could 2192 // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the 2193 // corresponding incoming block is not loop exiting). So collect all such 2194 // instructions to form LCSSA for them later. 2195 SmallSetVector<Instruction *, 4> InsertedNonLCSSAInsts; 2196 2197 void OptimizeShadowIV(); 2198 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse); 2199 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse); 2200 void OptimizeLoopTermCond(); 2201 2202 void ChainInstruction(Instruction *UserInst, Instruction *IVOper, 2203 SmallVectorImpl<ChainUsers> &ChainUsersVec); 2204 void FinalizeChain(IVChain &Chain); 2205 void CollectChains(); 2206 void GenerateIVChain(const IVChain &Chain, 2207 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2208 2209 void CollectInterestingTypesAndFactors(); 2210 void CollectFixupsAndInitialFormulae(); 2211 2212 // Support for sharing of LSRUses between LSRFixups. 2213 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>; 2214 UseMapTy UseMap; 2215 2216 bool reconcileNewOffset(LSRUse &LU, Immediate NewOffset, bool HasBaseReg, 2217 LSRUse::KindType Kind, MemAccessTy AccessTy); 2218 2219 std::pair<size_t, Immediate> getUse(const SCEV *&Expr, LSRUse::KindType Kind, 2220 MemAccessTy AccessTy); 2221 2222 void DeleteUse(LSRUse &LU, size_t LUIdx); 2223 2224 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU); 2225 2226 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2227 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx); 2228 void CountRegisters(const Formula &F, size_t LUIdx); 2229 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F); 2230 2231 void CollectLoopInvariantFixupsAndFormulae(); 2232 2233 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base, 2234 unsigned Depth = 0); 2235 2236 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 2237 const Formula &Base, unsigned Depth, 2238 size_t Idx, bool IsScaledReg = false); 2239 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base); 2240 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2241 const Formula &Base, size_t Idx, 2242 bool IsScaledReg = false); 2243 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2244 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx, 2245 const Formula &Base, 2246 const SmallVectorImpl<Immediate> &Worklist, 2247 size_t Idx, bool IsScaledReg = false); 2248 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base); 2249 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2250 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base); 2251 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base); 2252 void GenerateCrossUseConstantOffsets(); 2253 void GenerateAllReuseFormulae(); 2254 2255 void FilterOutUndesirableDedicatedRegisters(); 2256 2257 size_t EstimateSearchSpaceComplexity() const; 2258 void NarrowSearchSpaceByDetectingSupersets(); 2259 void NarrowSearchSpaceByCollapsingUnrolledCode(); 2260 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 2261 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 2262 void NarrowSearchSpaceByFilterPostInc(); 2263 void NarrowSearchSpaceByDeletingCostlyFormulas(); 2264 void NarrowSearchSpaceByPickingWinnerRegs(); 2265 void NarrowSearchSpaceUsingHeuristics(); 2266 2267 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 2268 Cost &SolutionCost, 2269 SmallVectorImpl<const Formula *> &Workspace, 2270 const Cost &CurCost, 2271 const SmallPtrSet<const SCEV *, 16> &CurRegs, 2272 DenseSet<const SCEV *> &VisitedRegs) const; 2273 void Solve(SmallVectorImpl<const Formula *> &Solution) const; 2274 2275 BasicBlock::iterator 2276 HoistInsertPosition(BasicBlock::iterator IP, 2277 const SmallVectorImpl<Instruction *> &Inputs) const; 2278 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP, 2279 const LSRFixup &LF, 2280 const LSRUse &LU) const; 2281 2282 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2283 BasicBlock::iterator IP, 2284 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const; 2285 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF, 2286 const Formula &F, 2287 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2288 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F, 2289 SmallVectorImpl<WeakTrackingVH> &DeadInsts); 2290 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution); 2291 2292 public: 2293 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT, 2294 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC, 2295 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU); 2296 2297 bool getChanged() const { return Changed; } 2298 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const { 2299 return ScalarEvolutionIVs; 2300 } 2301 2302 void print_factors_and_types(raw_ostream &OS) const; 2303 void print_fixups(raw_ostream &OS) const; 2304 void print_uses(raw_ostream &OS) const; 2305 void print(raw_ostream &OS) const; 2306 void dump() const; 2307 }; 2308 2309 } // end anonymous namespace 2310 2311 /// If IV is used in a int-to-float cast inside the loop then try to eliminate 2312 /// the cast operation. 2313 void LSRInstance::OptimizeShadowIV() { 2314 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2315 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2316 return; 2317 2318 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); 2319 UI != E; /* empty */) { 2320 IVUsers::const_iterator CandidateUI = UI; 2321 ++UI; 2322 Instruction *ShadowUse = CandidateUI->getUser(); 2323 Type *DestTy = nullptr; 2324 bool IsSigned = false; 2325 2326 /* If shadow use is a int->float cast then insert a second IV 2327 to eliminate this cast. 2328 2329 for (unsigned i = 0; i < n; ++i) 2330 foo((double)i); 2331 2332 is transformed into 2333 2334 double d = 0.0; 2335 for (unsigned i = 0; i < n; ++i, ++d) 2336 foo(d); 2337 */ 2338 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) { 2339 IsSigned = false; 2340 DestTy = UCast->getDestTy(); 2341 } 2342 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) { 2343 IsSigned = true; 2344 DestTy = SCast->getDestTy(); 2345 } 2346 if (!DestTy) continue; 2347 2348 // If target does not support DestTy natively then do not apply 2349 // this transformation. 2350 if (!TTI.isTypeLegal(DestTy)) continue; 2351 2352 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0)); 2353 if (!PH) continue; 2354 if (PH->getNumIncomingValues() != 2) continue; 2355 2356 // If the calculation in integers overflows, the result in FP type will 2357 // differ. So we only can do this transformation if we are guaranteed to not 2358 // deal with overflowing values 2359 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH)); 2360 if (!AR) continue; 2361 if (IsSigned && !AR->hasNoSignedWrap()) continue; 2362 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue; 2363 2364 Type *SrcTy = PH->getType(); 2365 int Mantissa = DestTy->getFPMantissaWidth(); 2366 if (Mantissa == -1) continue; 2367 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa) 2368 continue; 2369 2370 unsigned Entry, Latch; 2371 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) { 2372 Entry = 0; 2373 Latch = 1; 2374 } else { 2375 Entry = 1; 2376 Latch = 0; 2377 } 2378 2379 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry)); 2380 if (!Init) continue; 2381 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ? 2382 (double)Init->getSExtValue() : 2383 (double)Init->getZExtValue()); 2384 2385 BinaryOperator *Incr = 2386 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch)); 2387 if (!Incr) continue; 2388 if (Incr->getOpcode() != Instruction::Add 2389 && Incr->getOpcode() != Instruction::Sub) 2390 continue; 2391 2392 /* Initialize new IV, double d = 0.0 in above example. */ 2393 ConstantInt *C = nullptr; 2394 if (Incr->getOperand(0) == PH) 2395 C = dyn_cast<ConstantInt>(Incr->getOperand(1)); 2396 else if (Incr->getOperand(1) == PH) 2397 C = dyn_cast<ConstantInt>(Incr->getOperand(0)); 2398 else 2399 continue; 2400 2401 if (!C) continue; 2402 2403 // Ignore negative constants, as the code below doesn't handle them 2404 // correctly. TODO: Remove this restriction. 2405 if (!C->getValue().isStrictlyPositive()) 2406 continue; 2407 2408 /* Add new PHINode. */ 2409 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH->getIterator()); 2410 NewPH->setDebugLoc(PH->getDebugLoc()); 2411 2412 /* create new increment. '++d' in above example. */ 2413 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue()); 2414 BinaryOperator *NewIncr = BinaryOperator::Create( 2415 Incr->getOpcode() == Instruction::Add ? Instruction::FAdd 2416 : Instruction::FSub, 2417 NewPH, CFP, "IV.S.next.", Incr->getIterator()); 2418 NewIncr->setDebugLoc(Incr->getDebugLoc()); 2419 2420 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry)); 2421 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch)); 2422 2423 /* Remove cast operation */ 2424 ShadowUse->replaceAllUsesWith(NewPH); 2425 ShadowUse->eraseFromParent(); 2426 Changed = true; 2427 break; 2428 } 2429 } 2430 2431 /// If Cond has an operand that is an expression of an IV, set the IV user and 2432 /// stride information and return true, otherwise return false. 2433 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) { 2434 for (IVStrideUse &U : IU) 2435 if (U.getUser() == Cond) { 2436 // NOTE: we could handle setcc instructions with multiple uses here, but 2437 // InstCombine does it as well for simple uses, it's not clear that it 2438 // occurs enough in real life to handle. 2439 CondUse = &U; 2440 return true; 2441 } 2442 return false; 2443 } 2444 2445 /// Rewrite the loop's terminating condition if it uses a max computation. 2446 /// 2447 /// This is a narrow solution to a specific, but acute, problem. For loops 2448 /// like this: 2449 /// 2450 /// i = 0; 2451 /// do { 2452 /// p[i] = 0.0; 2453 /// } while (++i < n); 2454 /// 2455 /// the trip count isn't just 'n', because 'n' might not be positive. And 2456 /// unfortunately this can come up even for loops where the user didn't use 2457 /// a C do-while loop. For example, seemingly well-behaved top-test loops 2458 /// will commonly be lowered like this: 2459 /// 2460 /// if (n > 0) { 2461 /// i = 0; 2462 /// do { 2463 /// p[i] = 0.0; 2464 /// } while (++i < n); 2465 /// } 2466 /// 2467 /// and then it's possible for subsequent optimization to obscure the if 2468 /// test in such a way that indvars can't find it. 2469 /// 2470 /// When indvars can't find the if test in loops like this, it creates a 2471 /// max expression, which allows it to give the loop a canonical 2472 /// induction variable: 2473 /// 2474 /// i = 0; 2475 /// max = n < 1 ? 1 : n; 2476 /// do { 2477 /// p[i] = 0.0; 2478 /// } while (++i != max); 2479 /// 2480 /// Canonical induction variables are necessary because the loop passes 2481 /// are designed around them. The most obvious example of this is the 2482 /// LoopInfo analysis, which doesn't remember trip count values. It 2483 /// expects to be able to rediscover the trip count each time it is 2484 /// needed, and it does this using a simple analysis that only succeeds if 2485 /// the loop has a canonical induction variable. 2486 /// 2487 /// However, when it comes time to generate code, the maximum operation 2488 /// can be quite costly, especially if it's inside of an outer loop. 2489 /// 2490 /// This function solves this problem by detecting this type of loop and 2491 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting 2492 /// the instructions for the maximum computation. 2493 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) { 2494 // Check that the loop matches the pattern we're looking for. 2495 if (Cond->getPredicate() != CmpInst::ICMP_EQ && 2496 Cond->getPredicate() != CmpInst::ICMP_NE) 2497 return Cond; 2498 2499 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1)); 2500 if (!Sel || !Sel->hasOneUse()) return Cond; 2501 2502 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L); 2503 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2504 return Cond; 2505 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1); 2506 2507 // Add one to the backedge-taken count to get the trip count. 2508 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount); 2509 if (IterationCount != SE.getSCEV(Sel)) return Cond; 2510 2511 // Check for a max calculation that matches the pattern. There's no check 2512 // for ICMP_ULE here because the comparison would be with zero, which 2513 // isn't interesting. 2514 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 2515 const SCEVNAryExpr *Max = nullptr; 2516 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) { 2517 Pred = ICmpInst::ICMP_SLE; 2518 Max = S; 2519 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) { 2520 Pred = ICmpInst::ICMP_SLT; 2521 Max = S; 2522 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) { 2523 Pred = ICmpInst::ICMP_ULT; 2524 Max = U; 2525 } else { 2526 // No match; bail. 2527 return Cond; 2528 } 2529 2530 // To handle a max with more than two operands, this optimization would 2531 // require additional checking and setup. 2532 if (Max->getNumOperands() != 2) 2533 return Cond; 2534 2535 const SCEV *MaxLHS = Max->getOperand(0); 2536 const SCEV *MaxRHS = Max->getOperand(1); 2537 2538 // ScalarEvolution canonicalizes constants to the left. For < and >, look 2539 // for a comparison with 1. For <= and >=, a comparison with zero. 2540 if (!MaxLHS || 2541 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One))) 2542 return Cond; 2543 2544 // Check the relevant induction variable for conformance to 2545 // the pattern. 2546 const SCEV *IV = SE.getSCEV(Cond->getOperand(0)); 2547 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV); 2548 if (!AR || !AR->isAffine() || 2549 AR->getStart() != One || 2550 AR->getStepRecurrence(SE) != One) 2551 return Cond; 2552 2553 assert(AR->getLoop() == L && 2554 "Loop condition operand is an addrec in a different loop!"); 2555 2556 // Check the right operand of the select, and remember it, as it will 2557 // be used in the new comparison instruction. 2558 Value *NewRHS = nullptr; 2559 if (ICmpInst::isTrueWhenEqual(Pred)) { 2560 // Look for n+1, and grab n. 2561 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1))) 2562 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2563 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2564 NewRHS = BO->getOperand(0); 2565 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2))) 2566 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1))) 2567 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS) 2568 NewRHS = BO->getOperand(0); 2569 if (!NewRHS) 2570 return Cond; 2571 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS) 2572 NewRHS = Sel->getOperand(1); 2573 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS) 2574 NewRHS = Sel->getOperand(2); 2575 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS)) 2576 NewRHS = SU->getValue(); 2577 else 2578 // Max doesn't match expected pattern. 2579 return Cond; 2580 2581 // Determine the new comparison opcode. It may be signed or unsigned, 2582 // and the original comparison may be either equality or inequality. 2583 if (Cond->getPredicate() == CmpInst::ICMP_EQ) 2584 Pred = CmpInst::getInversePredicate(Pred); 2585 2586 // Ok, everything looks ok to change the condition into an SLT or SGE and 2587 // delete the max calculation. 2588 ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred, 2589 Cond->getOperand(0), NewRHS, "scmp"); 2590 2591 // Delete the max calculation instructions. 2592 NewCond->setDebugLoc(Cond->getDebugLoc()); 2593 Cond->replaceAllUsesWith(NewCond); 2594 CondUse->setUser(NewCond); 2595 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0)); 2596 Cond->eraseFromParent(); 2597 Sel->eraseFromParent(); 2598 if (Cmp->use_empty()) 2599 Cmp->eraseFromParent(); 2600 return NewCond; 2601 } 2602 2603 /// Change loop terminating condition to use the postinc iv when possible. 2604 void 2605 LSRInstance::OptimizeLoopTermCond() { 2606 SmallPtrSet<Instruction *, 4> PostIncs; 2607 2608 // We need a different set of heuristics for rotated and non-rotated loops. 2609 // If a loop is rotated then the latch is also the backedge, so inserting 2610 // post-inc expressions just before the latch is ideal. To reduce live ranges 2611 // it also makes sense to rewrite terminating conditions to use post-inc 2612 // expressions. 2613 // 2614 // If the loop is not rotated then the latch is not a backedge; the latch 2615 // check is done in the loop head. Adding post-inc expressions before the 2616 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions 2617 // in the loop body. In this case we do *not* want to use post-inc expressions 2618 // in the latch check, and we want to insert post-inc expressions before 2619 // the backedge. 2620 BasicBlock *LatchBlock = L->getLoopLatch(); 2621 SmallVector<BasicBlock*, 8> ExitingBlocks; 2622 L->getExitingBlocks(ExitingBlocks); 2623 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) { 2624 // The backedge doesn't exit the loop; treat this as a head-tested loop. 2625 IVIncInsertPos = LatchBlock->getTerminator(); 2626 return; 2627 } 2628 2629 // Otherwise treat this as a rotated loop. 2630 for (BasicBlock *ExitingBlock : ExitingBlocks) { 2631 // Get the terminating condition for the loop if possible. If we 2632 // can, we want to change it to use a post-incremented version of its 2633 // induction variable, to allow coalescing the live ranges for the IV into 2634 // one register value. 2635 2636 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); 2637 if (!TermBr) 2638 continue; 2639 // FIXME: Overly conservative, termination condition could be an 'or' etc.. 2640 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition())) 2641 continue; 2642 2643 // Search IVUsesByStride to find Cond's IVUse if there is one. 2644 IVStrideUse *CondUse = nullptr; 2645 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition()); 2646 if (!FindIVUserForCond(Cond, CondUse)) 2647 continue; 2648 2649 // If the trip count is computed in terms of a max (due to ScalarEvolution 2650 // being unable to find a sufficient guard, for example), change the loop 2651 // comparison to use SLT or ULT instead of NE. 2652 // One consequence of doing this now is that it disrupts the count-down 2653 // optimization. That's not always a bad thing though, because in such 2654 // cases it may still be worthwhile to avoid a max. 2655 Cond = OptimizeMax(Cond, CondUse); 2656 2657 // If this exiting block dominates the latch block, it may also use 2658 // the post-inc value if it won't be shared with other uses. 2659 // Check for dominance. 2660 if (!DT.dominates(ExitingBlock, LatchBlock)) 2661 continue; 2662 2663 // Conservatively avoid trying to use the post-inc value in non-latch 2664 // exits if there may be pre-inc users in intervening blocks. 2665 if (LatchBlock != ExitingBlock) 2666 for (const IVStrideUse &UI : IU) 2667 // Test if the use is reachable from the exiting block. This dominator 2668 // query is a conservative approximation of reachability. 2669 if (&UI != CondUse && 2670 !DT.properlyDominates(UI.getUser()->getParent(), ExitingBlock)) { 2671 // Conservatively assume there may be reuse if the quotient of their 2672 // strides could be a legal scale. 2673 const SCEV *A = IU.getStride(*CondUse, L); 2674 const SCEV *B = IU.getStride(UI, L); 2675 if (!A || !B) continue; 2676 if (SE.getTypeSizeInBits(A->getType()) != 2677 SE.getTypeSizeInBits(B->getType())) { 2678 if (SE.getTypeSizeInBits(A->getType()) > 2679 SE.getTypeSizeInBits(B->getType())) 2680 B = SE.getSignExtendExpr(B, A->getType()); 2681 else 2682 A = SE.getSignExtendExpr(A, B->getType()); 2683 } 2684 if (const SCEVConstant *D = 2685 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) { 2686 const ConstantInt *C = D->getValue(); 2687 // Stride of one or negative one can have reuse with non-addresses. 2688 if (C->isOne() || C->isMinusOne()) 2689 goto decline_post_inc; 2690 // Avoid weird situations. 2691 if (C->getValue().getSignificantBits() >= 64 || 2692 C->getValue().isMinSignedValue()) 2693 goto decline_post_inc; 2694 // Check for possible scaled-address reuse. 2695 if (isAddressUse(TTI, UI.getUser(), UI.getOperandValToReplace())) { 2696 MemAccessTy AccessTy = 2697 getAccessType(TTI, UI.getUser(), UI.getOperandValToReplace()); 2698 int64_t Scale = C->getSExtValue(); 2699 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2700 /*BaseOffset=*/0, 2701 /*HasBaseReg=*/true, Scale, 2702 AccessTy.AddrSpace)) 2703 goto decline_post_inc; 2704 Scale = -Scale; 2705 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr, 2706 /*BaseOffset=*/0, 2707 /*HasBaseReg=*/true, Scale, 2708 AccessTy.AddrSpace)) 2709 goto decline_post_inc; 2710 } 2711 } 2712 } 2713 2714 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: " 2715 << *Cond << '\n'); 2716 2717 // It's possible for the setcc instruction to be anywhere in the loop, and 2718 // possible for it to have multiple users. If it is not immediately before 2719 // the exiting block branch, move it. 2720 if (Cond->getNextNonDebugInstruction() != TermBr) { 2721 if (Cond->hasOneUse()) { 2722 Cond->moveBefore(TermBr->getIterator()); 2723 } else { 2724 // Clone the terminating condition and insert into the loopend. 2725 ICmpInst *OldCond = Cond; 2726 Cond = cast<ICmpInst>(Cond->clone()); 2727 Cond->setName(L->getHeader()->getName() + ".termcond"); 2728 Cond->insertInto(ExitingBlock, TermBr->getIterator()); 2729 2730 // Clone the IVUse, as the old use still exists! 2731 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace()); 2732 TermBr->replaceUsesOfWith(OldCond, Cond); 2733 } 2734 } 2735 2736 // If we get to here, we know that we can transform the setcc instruction to 2737 // use the post-incremented version of the IV, allowing us to coalesce the 2738 // live ranges for the IV correctly. 2739 CondUse->transformToPostInc(L); 2740 Changed = true; 2741 2742 PostIncs.insert(Cond); 2743 decline_post_inc:; 2744 } 2745 2746 // Determine an insertion point for the loop induction variable increment. It 2747 // must dominate all the post-inc comparisons we just set up, and it must 2748 // dominate the loop latch edge. 2749 IVIncInsertPos = L->getLoopLatch()->getTerminator(); 2750 for (Instruction *Inst : PostIncs) 2751 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst); 2752 } 2753 2754 /// Determine if the given use can accommodate a fixup at the given offset and 2755 /// other details. If so, update the use and return true. 2756 bool LSRInstance::reconcileNewOffset(LSRUse &LU, Immediate NewOffset, 2757 bool HasBaseReg, LSRUse::KindType Kind, 2758 MemAccessTy AccessTy) { 2759 Immediate NewMinOffset = LU.MinOffset; 2760 Immediate NewMaxOffset = LU.MaxOffset; 2761 MemAccessTy NewAccessTy = AccessTy; 2762 2763 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to 2764 // something conservative, however this can pessimize in the case that one of 2765 // the uses will have all its uses outside the loop, for example. 2766 if (LU.Kind != Kind) 2767 return false; 2768 2769 // Check for a mismatched access type, and fall back conservatively as needed. 2770 // TODO: Be less conservative when the type is similar and can use the same 2771 // addressing modes. 2772 if (Kind == LSRUse::Address) { 2773 if (AccessTy.MemTy != LU.AccessTy.MemTy) { 2774 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(), 2775 AccessTy.AddrSpace); 2776 } 2777 } 2778 2779 // Conservatively assume HasBaseReg is true for now. 2780 if (Immediate::isKnownLT(NewOffset, LU.MinOffset)) { 2781 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2782 LU.MaxOffset - NewOffset, HasBaseReg)) 2783 return false; 2784 NewMinOffset = NewOffset; 2785 } else if (Immediate::isKnownGT(NewOffset, LU.MaxOffset)) { 2786 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr, 2787 NewOffset - LU.MinOffset, HasBaseReg)) 2788 return false; 2789 NewMaxOffset = NewOffset; 2790 } 2791 2792 // FIXME: We should be able to handle some level of scalable offset support 2793 // for 'void', but in order to get basic support up and running this is 2794 // being left out. 2795 if (NewAccessTy.MemTy && NewAccessTy.MemTy->isVoidTy() && 2796 (NewMinOffset.isScalable() || NewMaxOffset.isScalable())) 2797 return false; 2798 2799 // Update the use. 2800 LU.MinOffset = NewMinOffset; 2801 LU.MaxOffset = NewMaxOffset; 2802 LU.AccessTy = NewAccessTy; 2803 return true; 2804 } 2805 2806 /// Return an LSRUse index and an offset value for a fixup which needs the given 2807 /// expression, with the given kind and optional access type. Either reuse an 2808 /// existing use or create a new one, as needed. 2809 std::pair<size_t, Immediate> LSRInstance::getUse(const SCEV *&Expr, 2810 LSRUse::KindType Kind, 2811 MemAccessTy AccessTy) { 2812 const SCEV *Copy = Expr; 2813 Immediate Offset = ExtractImmediate(Expr, SE); 2814 2815 // Basic uses can't accept any offset, for example. 2816 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr, 2817 Offset, /*HasBaseReg=*/ true)) { 2818 Expr = Copy; 2819 Offset = Immediate::getFixed(0); 2820 } 2821 2822 std::pair<UseMapTy::iterator, bool> P = 2823 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0)); 2824 if (!P.second) { 2825 // A use already existed with this base. 2826 size_t LUIdx = P.first->second; 2827 LSRUse &LU = Uses[LUIdx]; 2828 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy)) 2829 // Reuse this use. 2830 return std::make_pair(LUIdx, Offset); 2831 } 2832 2833 // Create a new use. 2834 size_t LUIdx = Uses.size(); 2835 P.first->second = LUIdx; 2836 Uses.push_back(LSRUse(Kind, AccessTy)); 2837 LSRUse &LU = Uses[LUIdx]; 2838 2839 LU.MinOffset = Offset; 2840 LU.MaxOffset = Offset; 2841 return std::make_pair(LUIdx, Offset); 2842 } 2843 2844 /// Delete the given use from the Uses list. 2845 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) { 2846 if (&LU != &Uses.back()) 2847 std::swap(LU, Uses.back()); 2848 Uses.pop_back(); 2849 2850 // Update RegUses. 2851 RegUses.swapAndDropUse(LUIdx, Uses.size()); 2852 } 2853 2854 /// Look for a use distinct from OrigLU which is has a formula that has the same 2855 /// registers as the given formula. 2856 LSRUse * 2857 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF, 2858 const LSRUse &OrigLU) { 2859 // Search all uses for the formula. This could be more clever. 2860 for (LSRUse &LU : Uses) { 2861 // Check whether this use is close enough to OrigLU, to see whether it's 2862 // worthwhile looking through its formulae. 2863 // Ignore ICmpZero uses because they may contain formulae generated by 2864 // GenerateICmpZeroScales, in which case adding fixup offsets may 2865 // be invalid. 2866 if (&LU != &OrigLU && 2867 LU.Kind != LSRUse::ICmpZero && 2868 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy && 2869 LU.WidestFixupType == OrigLU.WidestFixupType && 2870 LU.HasFormulaWithSameRegs(OrigF)) { 2871 // Scan through this use's formulae. 2872 for (const Formula &F : LU.Formulae) { 2873 // Check to see if this formula has the same registers and symbols 2874 // as OrigF. 2875 if (F.BaseRegs == OrigF.BaseRegs && 2876 F.ScaledReg == OrigF.ScaledReg && 2877 F.BaseGV == OrigF.BaseGV && 2878 F.Scale == OrigF.Scale && 2879 F.UnfoldedOffset == OrigF.UnfoldedOffset) { 2880 if (F.BaseOffset.isZero()) 2881 return &LU; 2882 // This is the formula where all the registers and symbols matched; 2883 // there aren't going to be any others. Since we declined it, we 2884 // can skip the rest of the formulae and proceed to the next LSRUse. 2885 break; 2886 } 2887 } 2888 } 2889 } 2890 2891 // Nothing looked good. 2892 return nullptr; 2893 } 2894 2895 void LSRInstance::CollectInterestingTypesAndFactors() { 2896 SmallSetVector<const SCEV *, 4> Strides; 2897 2898 // Collect interesting types and strides. 2899 SmallVector<const SCEV *, 4> Worklist; 2900 for (const IVStrideUse &U : IU) { 2901 const SCEV *Expr = IU.getExpr(U); 2902 if (!Expr) 2903 continue; 2904 2905 // Collect interesting types. 2906 Types.insert(SE.getEffectiveSCEVType(Expr->getType())); 2907 2908 // Add strides for mentioned loops. 2909 Worklist.push_back(Expr); 2910 do { 2911 const SCEV *S = Worklist.pop_back_val(); 2912 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 2913 if (AR->getLoop() == L) 2914 Strides.insert(AR->getStepRecurrence(SE)); 2915 Worklist.push_back(AR->getStart()); 2916 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 2917 append_range(Worklist, Add->operands()); 2918 } 2919 } while (!Worklist.empty()); 2920 } 2921 2922 // Compute interesting factors from the set of interesting strides. 2923 for (SmallSetVector<const SCEV *, 4>::const_iterator 2924 I = Strides.begin(), E = Strides.end(); I != E; ++I) 2925 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter = 2926 std::next(I); NewStrideIter != E; ++NewStrideIter) { 2927 const SCEV *OldStride = *I; 2928 const SCEV *NewStride = *NewStrideIter; 2929 2930 if (SE.getTypeSizeInBits(OldStride->getType()) != 2931 SE.getTypeSizeInBits(NewStride->getType())) { 2932 if (SE.getTypeSizeInBits(OldStride->getType()) > 2933 SE.getTypeSizeInBits(NewStride->getType())) 2934 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType()); 2935 else 2936 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType()); 2937 } 2938 if (const SCEVConstant *Factor = 2939 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride, 2940 SE, true))) { 2941 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2942 Factors.insert(Factor->getAPInt().getSExtValue()); 2943 } else if (const SCEVConstant *Factor = 2944 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride, 2945 NewStride, 2946 SE, true))) { 2947 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero()) 2948 Factors.insert(Factor->getAPInt().getSExtValue()); 2949 } 2950 } 2951 2952 // If all uses use the same type, don't bother looking for truncation-based 2953 // reuse. 2954 if (Types.size() == 1) 2955 Types.clear(); 2956 2957 LLVM_DEBUG(print_factors_and_types(dbgs())); 2958 } 2959 2960 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in 2961 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to 2962 /// IVStrideUses, we could partially skip this. 2963 static User::op_iterator 2964 findIVOperand(User::op_iterator OI, User::op_iterator OE, 2965 Loop *L, ScalarEvolution &SE) { 2966 for(; OI != OE; ++OI) { 2967 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) { 2968 if (!SE.isSCEVable(Oper->getType())) 2969 continue; 2970 2971 if (const SCEVAddRecExpr *AR = 2972 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) { 2973 if (AR->getLoop() == L) 2974 break; 2975 } 2976 } 2977 } 2978 return OI; 2979 } 2980 2981 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in 2982 /// a convenient helper. 2983 static Value *getWideOperand(Value *Oper) { 2984 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper)) 2985 return Trunc->getOperand(0); 2986 return Oper; 2987 } 2988 2989 /// Return an approximation of this SCEV expression's "base", or NULL for any 2990 /// constant. Returning the expression itself is conservative. Returning a 2991 /// deeper subexpression is more precise and valid as long as it isn't less 2992 /// complex than another subexpression. For expressions involving multiple 2993 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids 2994 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i], 2995 /// IVInc==b-a. 2996 /// 2997 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost 2998 /// SCEVUnknown, we simply return the rightmost SCEV operand. 2999 static const SCEV *getExprBase(const SCEV *S) { 3000 switch (S->getSCEVType()) { 3001 default: // including scUnknown. 3002 return S; 3003 case scConstant: 3004 case scVScale: 3005 return nullptr; 3006 case scTruncate: 3007 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand()); 3008 case scZeroExtend: 3009 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand()); 3010 case scSignExtend: 3011 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand()); 3012 case scAddExpr: { 3013 // Skip over scaled operands (scMulExpr) to follow add operands as long as 3014 // there's nothing more complex. 3015 // FIXME: not sure if we want to recognize negation. 3016 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S); 3017 for (const SCEV *SubExpr : reverse(Add->operands())) { 3018 if (SubExpr->getSCEVType() == scAddExpr) 3019 return getExprBase(SubExpr); 3020 3021 if (SubExpr->getSCEVType() != scMulExpr) 3022 return SubExpr; 3023 } 3024 return S; // all operands are scaled, be conservative. 3025 } 3026 case scAddRecExpr: 3027 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart()); 3028 } 3029 llvm_unreachable("Unknown SCEV kind!"); 3030 } 3031 3032 /// Return true if the chain increment is profitable to expand into a loop 3033 /// invariant value, which may require its own register. A profitable chain 3034 /// increment will be an offset relative to the same base. We allow such offsets 3035 /// to potentially be used as chain increment as long as it's not obviously 3036 /// expensive to expand using real instructions. 3037 bool IVChain::isProfitableIncrement(const SCEV *OperExpr, 3038 const SCEV *IncExpr, 3039 ScalarEvolution &SE) { 3040 // Aggressively form chains when -stress-ivchain. 3041 if (StressIVChain) 3042 return true; 3043 3044 // Do not replace a constant offset from IV head with a nonconstant IV 3045 // increment. 3046 if (!isa<SCEVConstant>(IncExpr)) { 3047 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand)); 3048 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr))) 3049 return false; 3050 } 3051 3052 SmallPtrSet<const SCEV*, 8> Processed; 3053 return !isHighCostExpansion(IncExpr, Processed, SE); 3054 } 3055 3056 /// Return true if the number of registers needed for the chain is estimated to 3057 /// be less than the number required for the individual IV users. First prohibit 3058 /// any IV users that keep the IV live across increments (the Users set should 3059 /// be empty). Next count the number and type of increments in the chain. 3060 /// 3061 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't 3062 /// effectively use postinc addressing modes. Only consider it profitable it the 3063 /// increments can be computed in fewer registers when chained. 3064 /// 3065 /// TODO: Consider IVInc free if it's already used in another chains. 3066 static bool isProfitableChain(IVChain &Chain, 3067 SmallPtrSetImpl<Instruction *> &Users, 3068 ScalarEvolution &SE, 3069 const TargetTransformInfo &TTI) { 3070 if (StressIVChain) 3071 return true; 3072 3073 if (!Chain.hasIncs()) 3074 return false; 3075 3076 if (!Users.empty()) { 3077 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n"; 3078 for (Instruction *Inst 3079 : Users) { dbgs() << " " << *Inst << "\n"; }); 3080 return false; 3081 } 3082 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3083 3084 // The chain itself may require a register, so intialize cost to 1. 3085 int cost = 1; 3086 3087 // A complete chain likely eliminates the need for keeping the original IV in 3088 // a register. LSR does not currently know how to form a complete chain unless 3089 // the header phi already exists. 3090 if (isa<PHINode>(Chain.tailUserInst()) 3091 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) { 3092 --cost; 3093 } 3094 const SCEV *LastIncExpr = nullptr; 3095 unsigned NumConstIncrements = 0; 3096 unsigned NumVarIncrements = 0; 3097 unsigned NumReusedIncrements = 0; 3098 3099 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst)) 3100 return true; 3101 3102 for (const IVInc &Inc : Chain) { 3103 if (TTI.isProfitableLSRChainElement(Inc.UserInst)) 3104 return true; 3105 if (Inc.IncExpr->isZero()) 3106 continue; 3107 3108 // Incrementing by zero or some constant is neutral. We assume constants can 3109 // be folded into an addressing mode or an add's immediate operand. 3110 if (isa<SCEVConstant>(Inc.IncExpr)) { 3111 ++NumConstIncrements; 3112 continue; 3113 } 3114 3115 if (Inc.IncExpr == LastIncExpr) 3116 ++NumReusedIncrements; 3117 else 3118 ++NumVarIncrements; 3119 3120 LastIncExpr = Inc.IncExpr; 3121 } 3122 // An IV chain with a single increment is handled by LSR's postinc 3123 // uses. However, a chain with multiple increments requires keeping the IV's 3124 // value live longer than it needs to be if chained. 3125 if (NumConstIncrements > 1) 3126 --cost; 3127 3128 // Materializing increment expressions in the preheader that didn't exist in 3129 // the original code may cost a register. For example, sign-extended array 3130 // indices can produce ridiculous increments like this: 3131 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64))) 3132 cost += NumVarIncrements; 3133 3134 // Reusing variable increments likely saves a register to hold the multiple of 3135 // the stride. 3136 cost -= NumReusedIncrements; 3137 3138 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost 3139 << "\n"); 3140 3141 return cost < 0; 3142 } 3143 3144 /// Add this IV user to an existing chain or make it the head of a new chain. 3145 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper, 3146 SmallVectorImpl<ChainUsers> &ChainUsersVec) { 3147 // When IVs are used as types of varying widths, they are generally converted 3148 // to a wider type with some uses remaining narrow under a (free) trunc. 3149 Value *const NextIV = getWideOperand(IVOper); 3150 const SCEV *const OperExpr = SE.getSCEV(NextIV); 3151 const SCEV *const OperExprBase = getExprBase(OperExpr); 3152 3153 // Visit all existing chains. Check if its IVOper can be computed as a 3154 // profitable loop invariant increment from the last link in the Chain. 3155 unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3156 const SCEV *LastIncExpr = nullptr; 3157 for (; ChainIdx < NChains; ++ChainIdx) { 3158 IVChain &Chain = IVChainVec[ChainIdx]; 3159 3160 // Prune the solution space aggressively by checking that both IV operands 3161 // are expressions that operate on the same unscaled SCEVUnknown. This 3162 // "base" will be canceled by the subsequent getMinusSCEV call. Checking 3163 // first avoids creating extra SCEV expressions. 3164 if (!StressIVChain && Chain.ExprBase != OperExprBase) 3165 continue; 3166 3167 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand); 3168 if (PrevIV->getType() != NextIV->getType()) 3169 continue; 3170 3171 // A phi node terminates a chain. 3172 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst())) 3173 continue; 3174 3175 // The increment must be loop-invariant so it can be kept in a register. 3176 const SCEV *PrevExpr = SE.getSCEV(PrevIV); 3177 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr); 3178 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L)) 3179 continue; 3180 3181 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) { 3182 LastIncExpr = IncExpr; 3183 break; 3184 } 3185 } 3186 // If we haven't found a chain, create a new one, unless we hit the max. Don't 3187 // bother for phi nodes, because they must be last in the chain. 3188 if (ChainIdx == NChains) { 3189 if (isa<PHINode>(UserInst)) 3190 return; 3191 if (NChains >= MaxChains && !StressIVChain) { 3192 LLVM_DEBUG(dbgs() << "IV Chain Limit\n"); 3193 return; 3194 } 3195 LastIncExpr = OperExpr; 3196 // IVUsers may have skipped over sign/zero extensions. We don't currently 3197 // attempt to form chains involving extensions unless they can be hoisted 3198 // into this loop's AddRec. 3199 if (!isa<SCEVAddRecExpr>(LastIncExpr)) 3200 return; 3201 ++NChains; 3202 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr), 3203 OperExprBase)); 3204 ChainUsersVec.resize(NChains); 3205 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst 3206 << ") IV=" << *LastIncExpr << "\n"); 3207 } else { 3208 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst 3209 << ") IV+" << *LastIncExpr << "\n"); 3210 // Add this IV user to the end of the chain. 3211 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr)); 3212 } 3213 IVChain &Chain = IVChainVec[ChainIdx]; 3214 3215 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers; 3216 // This chain's NearUsers become FarUsers. 3217 if (!LastIncExpr->isZero()) { 3218 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(), 3219 NearUsers.end()); 3220 NearUsers.clear(); 3221 } 3222 3223 // All other uses of IVOperand become near uses of the chain. 3224 // We currently ignore intermediate values within SCEV expressions, assuming 3225 // they will eventually be used be the current chain, or can be computed 3226 // from one of the chain increments. To be more precise we could 3227 // transitively follow its user and only add leaf IV users to the set. 3228 for (User *U : IVOper->users()) { 3229 Instruction *OtherUse = dyn_cast<Instruction>(U); 3230 if (!OtherUse) 3231 continue; 3232 // Uses in the chain will no longer be uses if the chain is formed. 3233 // Include the head of the chain in this iteration (not Chain.begin()). 3234 IVChain::const_iterator IncIter = Chain.Incs.begin(); 3235 IVChain::const_iterator IncEnd = Chain.Incs.end(); 3236 for( ; IncIter != IncEnd; ++IncIter) { 3237 if (IncIter->UserInst == OtherUse) 3238 break; 3239 } 3240 if (IncIter != IncEnd) 3241 continue; 3242 3243 if (SE.isSCEVable(OtherUse->getType()) 3244 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse)) 3245 && IU.isIVUserOrOperand(OtherUse)) { 3246 continue; 3247 } 3248 NearUsers.insert(OtherUse); 3249 } 3250 3251 // Since this user is part of the chain, it's no longer considered a use 3252 // of the chain. 3253 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst); 3254 } 3255 3256 /// Populate the vector of Chains. 3257 /// 3258 /// This decreases ILP at the architecture level. Targets with ample registers, 3259 /// multiple memory ports, and no register renaming probably don't want 3260 /// this. However, such targets should probably disable LSR altogether. 3261 /// 3262 /// The job of LSR is to make a reasonable choice of induction variables across 3263 /// the loop. Subsequent passes can easily "unchain" computation exposing more 3264 /// ILP *within the loop* if the target wants it. 3265 /// 3266 /// Finding the best IV chain is potentially a scheduling problem. Since LSR 3267 /// will not reorder memory operations, it will recognize this as a chain, but 3268 /// will generate redundant IV increments. Ideally this would be corrected later 3269 /// by a smart scheduler: 3270 /// = A[i] 3271 /// = A[i+x] 3272 /// A[i] = 3273 /// A[i+x] = 3274 /// 3275 /// TODO: Walk the entire domtree within this loop, not just the path to the 3276 /// loop latch. This will discover chains on side paths, but requires 3277 /// maintaining multiple copies of the Chains state. 3278 void LSRInstance::CollectChains() { 3279 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n"); 3280 SmallVector<ChainUsers, 8> ChainUsersVec; 3281 3282 SmallVector<BasicBlock *,8> LatchPath; 3283 BasicBlock *LoopHeader = L->getHeader(); 3284 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch()); 3285 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) { 3286 LatchPath.push_back(Rung->getBlock()); 3287 } 3288 LatchPath.push_back(LoopHeader); 3289 3290 // Walk the instruction stream from the loop header to the loop latch. 3291 for (BasicBlock *BB : reverse(LatchPath)) { 3292 for (Instruction &I : *BB) { 3293 // Skip instructions that weren't seen by IVUsers analysis. 3294 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I)) 3295 continue; 3296 3297 // Ignore users that are part of a SCEV expression. This way we only 3298 // consider leaf IV Users. This effectively rediscovers a portion of 3299 // IVUsers analysis but in program order this time. 3300 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I))) 3301 continue; 3302 3303 // Remove this instruction from any NearUsers set it may be in. 3304 for (unsigned ChainIdx = 0, NChains = IVChainVec.size(); 3305 ChainIdx < NChains; ++ChainIdx) { 3306 ChainUsersVec[ChainIdx].NearUsers.erase(&I); 3307 } 3308 // Search for operands that can be chained. 3309 SmallPtrSet<Instruction*, 4> UniqueOperands; 3310 User::op_iterator IVOpEnd = I.op_end(); 3311 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE); 3312 while (IVOpIter != IVOpEnd) { 3313 Instruction *IVOpInst = cast<Instruction>(*IVOpIter); 3314 if (UniqueOperands.insert(IVOpInst).second) 3315 ChainInstruction(&I, IVOpInst, ChainUsersVec); 3316 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3317 } 3318 } // Continue walking down the instructions. 3319 } // Continue walking down the domtree. 3320 // Visit phi backedges to determine if the chain can generate the IV postinc. 3321 for (PHINode &PN : L->getHeader()->phis()) { 3322 if (!SE.isSCEVable(PN.getType())) 3323 continue; 3324 3325 Instruction *IncV = 3326 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch())); 3327 if (IncV) 3328 ChainInstruction(&PN, IncV, ChainUsersVec); 3329 } 3330 // Remove any unprofitable chains. 3331 unsigned ChainIdx = 0; 3332 for (unsigned UsersIdx = 0, NChains = IVChainVec.size(); 3333 UsersIdx < NChains; ++UsersIdx) { 3334 if (!isProfitableChain(IVChainVec[UsersIdx], 3335 ChainUsersVec[UsersIdx].FarUsers, SE, TTI)) 3336 continue; 3337 // Preserve the chain at UsesIdx. 3338 if (ChainIdx != UsersIdx) 3339 IVChainVec[ChainIdx] = IVChainVec[UsersIdx]; 3340 FinalizeChain(IVChainVec[ChainIdx]); 3341 ++ChainIdx; 3342 } 3343 IVChainVec.resize(ChainIdx); 3344 } 3345 3346 void LSRInstance::FinalizeChain(IVChain &Chain) { 3347 assert(!Chain.Incs.empty() && "empty IV chains are not allowed"); 3348 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n"); 3349 3350 for (const IVInc &Inc : Chain) { 3351 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n"); 3352 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand); 3353 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand"); 3354 IVIncSet.insert(UseI); 3355 } 3356 } 3357 3358 /// Return true if the IVInc can be folded into an addressing mode. 3359 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst, 3360 Value *Operand, const TargetTransformInfo &TTI) { 3361 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr); 3362 Immediate IncOffset = Immediate::getZero(); 3363 if (IncConst) { 3364 if (IncConst && IncConst->getAPInt().getSignificantBits() > 64) 3365 return false; 3366 IncOffset = Immediate::getFixed(IncConst->getValue()->getSExtValue()); 3367 } else { 3368 // Look for mul(vscale, constant), to detect a scalable offset. 3369 auto *IncVScale = dyn_cast<SCEVMulExpr>(IncExpr); 3370 if (!IncVScale || IncVScale->getNumOperands() != 2 || 3371 !isa<SCEVVScale>(IncVScale->getOperand(1))) 3372 return false; 3373 auto *Scale = dyn_cast<SCEVConstant>(IncVScale->getOperand(0)); 3374 if (!Scale || Scale->getType()->getScalarSizeInBits() > 64) 3375 return false; 3376 IncOffset = Immediate::getScalable(Scale->getValue()->getSExtValue()); 3377 } 3378 3379 if (!isAddressUse(TTI, UserInst, Operand)) 3380 return false; 3381 3382 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand); 3383 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr, 3384 IncOffset, /*HasBaseReg=*/false)) 3385 return false; 3386 3387 return true; 3388 } 3389 3390 /// Generate an add or subtract for each IVInc in a chain to materialize the IV 3391 /// user's operand from the previous IV user's operand. 3392 void LSRInstance::GenerateIVChain(const IVChain &Chain, 3393 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 3394 // Find the new IVOperand for the head of the chain. It may have been replaced 3395 // by LSR. 3396 const IVInc &Head = Chain.Incs[0]; 3397 User::op_iterator IVOpEnd = Head.UserInst->op_end(); 3398 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user. 3399 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(), 3400 IVOpEnd, L, SE); 3401 Value *IVSrc = nullptr; 3402 while (IVOpIter != IVOpEnd) { 3403 IVSrc = getWideOperand(*IVOpIter); 3404 3405 // If this operand computes the expression that the chain needs, we may use 3406 // it. (Check this after setting IVSrc which is used below.) 3407 // 3408 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too 3409 // narrow for the chain, so we can no longer use it. We do allow using a 3410 // wider phi, assuming the LSR checked for free truncation. In that case we 3411 // should already have a truncate on this operand such that 3412 // getSCEV(IVSrc) == IncExpr. 3413 if (SE.getSCEV(*IVOpIter) == Head.IncExpr 3414 || SE.getSCEV(IVSrc) == Head.IncExpr) { 3415 break; 3416 } 3417 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE); 3418 } 3419 if (IVOpIter == IVOpEnd) { 3420 // Gracefully give up on this chain. 3421 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n"); 3422 return; 3423 } 3424 assert(IVSrc && "Failed to find IV chain source"); 3425 3426 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n"); 3427 Type *IVTy = IVSrc->getType(); 3428 Type *IntTy = SE.getEffectiveSCEVType(IVTy); 3429 const SCEV *LeftOverExpr = nullptr; 3430 const SCEV *Accum = SE.getZero(IntTy); 3431 SmallVector<std::pair<const SCEV *, Value *>> Bases; 3432 Bases.emplace_back(Accum, IVSrc); 3433 3434 for (const IVInc &Inc : Chain) { 3435 Instruction *InsertPt = Inc.UserInst; 3436 if (isa<PHINode>(InsertPt)) 3437 InsertPt = L->getLoopLatch()->getTerminator(); 3438 3439 // IVOper will replace the current IV User's operand. IVSrc is the IV 3440 // value currently held in a register. 3441 Value *IVOper = IVSrc; 3442 if (!Inc.IncExpr->isZero()) { 3443 // IncExpr was the result of subtraction of two narrow values, so must 3444 // be signed. 3445 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy); 3446 Accum = SE.getAddExpr(Accum, IncExpr); 3447 LeftOverExpr = LeftOverExpr ? 3448 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr; 3449 } 3450 3451 // Look through each base to see if any can produce a nice addressing mode. 3452 bool FoundBase = false; 3453 for (auto [MapScev, MapIVOper] : reverse(Bases)) { 3454 const SCEV *Remainder = SE.getMinusSCEV(Accum, MapScev); 3455 if (canFoldIVIncExpr(Remainder, Inc.UserInst, Inc.IVOperand, TTI)) { 3456 if (!Remainder->isZero()) { 3457 Rewriter.clearPostInc(); 3458 Value *IncV = Rewriter.expandCodeFor(Remainder, IntTy, InsertPt); 3459 const SCEV *IVOperExpr = 3460 SE.getAddExpr(SE.getUnknown(MapIVOper), SE.getUnknown(IncV)); 3461 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3462 } else { 3463 IVOper = MapIVOper; 3464 } 3465 3466 FoundBase = true; 3467 break; 3468 } 3469 } 3470 if (!FoundBase && LeftOverExpr && !LeftOverExpr->isZero()) { 3471 // Expand the IV increment. 3472 Rewriter.clearPostInc(); 3473 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt); 3474 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc), 3475 SE.getUnknown(IncV)); 3476 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt); 3477 3478 // If an IV increment can't be folded, use it as the next IV value. 3479 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) { 3480 assert(IVTy == IVOper->getType() && "inconsistent IV increment type"); 3481 Bases.emplace_back(Accum, IVOper); 3482 IVSrc = IVOper; 3483 LeftOverExpr = nullptr; 3484 } 3485 } 3486 Type *OperTy = Inc.IVOperand->getType(); 3487 if (IVTy != OperTy) { 3488 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && 3489 "cannot extend a chained IV"); 3490 IRBuilder<> Builder(InsertPt); 3491 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain"); 3492 } 3493 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper); 3494 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand)) 3495 DeadInsts.emplace_back(OperandIsInstr); 3496 } 3497 // If LSR created a new, wider phi, we may also replace its postinc. We only 3498 // do this if we also found a wide value for the head of the chain. 3499 if (isa<PHINode>(Chain.tailUserInst())) { 3500 for (PHINode &Phi : L->getHeader()->phis()) { 3501 if (Phi.getType() != IVSrc->getType()) 3502 continue; 3503 Instruction *PostIncV = dyn_cast<Instruction>( 3504 Phi.getIncomingValueForBlock(L->getLoopLatch())); 3505 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc))) 3506 continue; 3507 Value *IVOper = IVSrc; 3508 Type *PostIncTy = PostIncV->getType(); 3509 if (IVTy != PostIncTy) { 3510 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types"); 3511 IRBuilder<> Builder(L->getLoopLatch()->getTerminator()); 3512 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc()); 3513 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain"); 3514 } 3515 Phi.replaceUsesOfWith(PostIncV, IVOper); 3516 DeadInsts.emplace_back(PostIncV); 3517 } 3518 } 3519 } 3520 3521 void LSRInstance::CollectFixupsAndInitialFormulae() { 3522 BranchInst *ExitBranch = nullptr; 3523 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI); 3524 3525 // For calculating baseline cost 3526 SmallPtrSet<const SCEV *, 16> Regs; 3527 DenseSet<const SCEV *> VisitedRegs; 3528 DenseSet<size_t> VisitedLSRUse; 3529 3530 for (const IVStrideUse &U : IU) { 3531 Instruction *UserInst = U.getUser(); 3532 // Skip IV users that are part of profitable IV Chains. 3533 User::op_iterator UseI = 3534 find(UserInst->operands(), U.getOperandValToReplace()); 3535 assert(UseI != UserInst->op_end() && "cannot find IV operand"); 3536 if (IVIncSet.count(UseI)) { 3537 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n'); 3538 continue; 3539 } 3540 3541 LSRUse::KindType Kind = LSRUse::Basic; 3542 MemAccessTy AccessTy; 3543 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) { 3544 Kind = LSRUse::Address; 3545 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace()); 3546 } 3547 3548 const SCEV *S = IU.getExpr(U); 3549 if (!S) 3550 continue; 3551 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops(); 3552 3553 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as 3554 // (N - i == 0), and this allows (N - i) to be the expression that we work 3555 // with rather than just N or i, so we can consider the register 3556 // requirements for both N and i at the same time. Limiting this code to 3557 // equality icmps is not a problem because all interesting loops use 3558 // equality icmps, thanks to IndVarSimplify. 3559 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) { 3560 // If CI can be saved in some target, like replaced inside hardware loop 3561 // in PowerPC, no need to generate initial formulae for it. 3562 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition())) 3563 continue; 3564 if (CI->isEquality()) { 3565 // Swap the operands if needed to put the OperandValToReplace on the 3566 // left, for consistency. 3567 Value *NV = CI->getOperand(1); 3568 if (NV == U.getOperandValToReplace()) { 3569 CI->setOperand(1, CI->getOperand(0)); 3570 CI->setOperand(0, NV); 3571 NV = CI->getOperand(1); 3572 Changed = true; 3573 } 3574 3575 // x == y --> x - y == 0 3576 const SCEV *N = SE.getSCEV(NV); 3577 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) && 3578 (!NV->getType()->isPointerTy() || 3579 SE.getPointerBase(N) == SE.getPointerBase(S))) { 3580 // S is normalized, so normalize N before folding it into S 3581 // to keep the result normalized. 3582 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3583 if (!N) 3584 continue; 3585 Kind = LSRUse::ICmpZero; 3586 S = SE.getMinusSCEV(N, S); 3587 } else if (L->isLoopInvariant(NV) && 3588 (!isa<Instruction>(NV) || 3589 DT.dominates(cast<Instruction>(NV), L->getHeader())) && 3590 !NV->getType()->isPointerTy()) { 3591 // If we can't generally expand the expression (e.g. it contains 3592 // a divide), but it is already at a loop invariant point before the 3593 // loop, wrap it in an unknown (to prevent the expander from trying 3594 // to re-expand in a potentially unsafe way.) The restriction to 3595 // integer types is required because the unknown hides the base, and 3596 // SCEV can't compute the difference of two unknown pointers. 3597 N = SE.getUnknown(NV); 3598 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE); 3599 if (!N) 3600 continue; 3601 Kind = LSRUse::ICmpZero; 3602 S = SE.getMinusSCEV(N, S); 3603 assert(!isa<SCEVCouldNotCompute>(S)); 3604 } 3605 3606 // -1 and the negations of all interesting strides (except the negation 3607 // of -1) are now also interesting. 3608 for (size_t i = 0, e = Factors.size(); i != e; ++i) 3609 if (Factors[i] != -1) 3610 Factors.insert(-(uint64_t)Factors[i]); 3611 Factors.insert(-1); 3612 } 3613 } 3614 3615 // Get or create an LSRUse. 3616 std::pair<size_t, Immediate> P = getUse(S, Kind, AccessTy); 3617 size_t LUIdx = P.first; 3618 Immediate Offset = P.second; 3619 LSRUse &LU = Uses[LUIdx]; 3620 3621 // Record the fixup. 3622 LSRFixup &LF = LU.getNewFixup(); 3623 LF.UserInst = UserInst; 3624 LF.OperandValToReplace = U.getOperandValToReplace(); 3625 LF.PostIncLoops = TmpPostIncLoops; 3626 LF.Offset = Offset; 3627 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3628 3629 // Create SCEV as Formula for calculating baseline cost 3630 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) { 3631 Formula F; 3632 F.initialMatch(S, L, SE); 3633 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU); 3634 VisitedLSRUse.insert(LUIdx); 3635 } 3636 3637 if (!LU.WidestFixupType || 3638 SE.getTypeSizeInBits(LU.WidestFixupType) < 3639 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3640 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3641 3642 // If this is the first use of this LSRUse, give it a formula. 3643 if (LU.Formulae.empty()) { 3644 InsertInitialFormula(S, LU, LUIdx); 3645 CountRegisters(LU.Formulae.back(), LUIdx); 3646 } 3647 } 3648 3649 LLVM_DEBUG(print_fixups(dbgs())); 3650 } 3651 3652 /// Insert a formula for the given expression into the given use, separating out 3653 /// loop-variant portions from loop-invariant and loop-computable portions. 3654 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, 3655 size_t LUIdx) { 3656 // Mark uses whose expressions cannot be expanded. 3657 if (!Rewriter.isSafeToExpand(S)) 3658 LU.RigidFormula = true; 3659 3660 Formula F; 3661 F.initialMatch(S, L, SE); 3662 bool Inserted = InsertFormula(LU, LUIdx, F); 3663 assert(Inserted && "Initial formula already exists!"); (void)Inserted; 3664 } 3665 3666 /// Insert a simple single-register formula for the given expression into the 3667 /// given use. 3668 void 3669 LSRInstance::InsertSupplementalFormula(const SCEV *S, 3670 LSRUse &LU, size_t LUIdx) { 3671 Formula F; 3672 F.BaseRegs.push_back(S); 3673 F.HasBaseReg = true; 3674 bool Inserted = InsertFormula(LU, LUIdx, F); 3675 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted; 3676 } 3677 3678 /// Note which registers are used by the given formula, updating RegUses. 3679 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) { 3680 if (F.ScaledReg) 3681 RegUses.countRegister(F.ScaledReg, LUIdx); 3682 for (const SCEV *BaseReg : F.BaseRegs) 3683 RegUses.countRegister(BaseReg, LUIdx); 3684 } 3685 3686 /// If the given formula has not yet been inserted, add it to the list, and 3687 /// return true. Return false otherwise. 3688 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) { 3689 // Do not insert formula that we will not be able to expand. 3690 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && 3691 "Formula is illegal"); 3692 3693 if (!LU.InsertFormula(F, *L)) 3694 return false; 3695 3696 CountRegisters(F, LUIdx); 3697 return true; 3698 } 3699 3700 /// Check for other uses of loop-invariant values which we're tracking. These 3701 /// other uses will pin these values in registers, making them less profitable 3702 /// for elimination. 3703 /// TODO: This currently misses non-constant addrec step registers. 3704 /// TODO: Should this give more weight to users inside the loop? 3705 void 3706 LSRInstance::CollectLoopInvariantFixupsAndFormulae() { 3707 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end()); 3708 SmallPtrSet<const SCEV *, 32> Visited; 3709 3710 // Don't collect outside uses if we are favoring postinc - the instructions in 3711 // the loop are more important than the ones outside of it. 3712 if (AMK == TTI::AMK_PostIndexed) 3713 return; 3714 3715 while (!Worklist.empty()) { 3716 const SCEV *S = Worklist.pop_back_val(); 3717 3718 // Don't process the same SCEV twice 3719 if (!Visited.insert(S).second) 3720 continue; 3721 3722 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) 3723 append_range(Worklist, N->operands()); 3724 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S)) 3725 Worklist.push_back(C->getOperand()); 3726 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 3727 Worklist.push_back(D->getLHS()); 3728 Worklist.push_back(D->getRHS()); 3729 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) { 3730 const Value *V = US->getValue(); 3731 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 3732 // Look for instructions defined outside the loop. 3733 if (L->contains(Inst)) continue; 3734 } else if (isa<Constant>(V)) 3735 // Constants can be re-materialized. 3736 continue; 3737 for (const Use &U : V->uses()) { 3738 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser()); 3739 // Ignore non-instructions. 3740 if (!UserInst) 3741 continue; 3742 // Don't bother if the instruction is an EHPad. 3743 if (UserInst->isEHPad()) 3744 continue; 3745 // Ignore instructions in other functions (as can happen with 3746 // Constants). 3747 if (UserInst->getParent()->getParent() != L->getHeader()->getParent()) 3748 continue; 3749 // Ignore instructions not dominated by the loop. 3750 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ? 3751 UserInst->getParent() : 3752 cast<PHINode>(UserInst)->getIncomingBlock( 3753 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 3754 if (!DT.dominates(L->getHeader(), UseBB)) 3755 continue; 3756 // Don't bother if the instruction is in a BB which ends in an EHPad. 3757 if (UseBB->getTerminator()->isEHPad()) 3758 continue; 3759 3760 // Ignore cases in which the currently-examined value could come from 3761 // a basic block terminated with an EHPad. This checks all incoming 3762 // blocks of the phi node since it is possible that the same incoming 3763 // value comes from multiple basic blocks, only some of which may end 3764 // in an EHPad. If any of them do, a subsequent rewrite attempt by this 3765 // pass would try to insert instructions into an EHPad, hitting an 3766 // assertion. 3767 if (isa<PHINode>(UserInst)) { 3768 const auto *PhiNode = cast<PHINode>(UserInst); 3769 bool HasIncompatibleEHPTerminatedBlock = false; 3770 llvm::Value *ExpectedValue = U; 3771 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) { 3772 if (PhiNode->getIncomingValue(I) == ExpectedValue) { 3773 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) { 3774 HasIncompatibleEHPTerminatedBlock = true; 3775 break; 3776 } 3777 } 3778 } 3779 if (HasIncompatibleEHPTerminatedBlock) { 3780 continue; 3781 } 3782 } 3783 3784 // Don't bother rewriting PHIs in catchswitch blocks. 3785 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator())) 3786 continue; 3787 // Ignore uses which are part of other SCEV expressions, to avoid 3788 // analyzing them multiple times. 3789 if (SE.isSCEVable(UserInst->getType())) { 3790 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst)); 3791 // If the user is a no-op, look through to its uses. 3792 if (!isa<SCEVUnknown>(UserS)) 3793 continue; 3794 if (UserS == US) { 3795 Worklist.push_back( 3796 SE.getUnknown(const_cast<Instruction *>(UserInst))); 3797 continue; 3798 } 3799 } 3800 // Ignore icmp instructions which are already being analyzed. 3801 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) { 3802 unsigned OtherIdx = !U.getOperandNo(); 3803 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx)); 3804 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L)) 3805 continue; 3806 } 3807 3808 std::pair<size_t, Immediate> P = 3809 getUse(S, LSRUse::Basic, MemAccessTy()); 3810 size_t LUIdx = P.first; 3811 Immediate Offset = P.second; 3812 LSRUse &LU = Uses[LUIdx]; 3813 LSRFixup &LF = LU.getNewFixup(); 3814 LF.UserInst = const_cast<Instruction *>(UserInst); 3815 LF.OperandValToReplace = U; 3816 LF.Offset = Offset; 3817 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L); 3818 if (!LU.WidestFixupType || 3819 SE.getTypeSizeInBits(LU.WidestFixupType) < 3820 SE.getTypeSizeInBits(LF.OperandValToReplace->getType())) 3821 LU.WidestFixupType = LF.OperandValToReplace->getType(); 3822 InsertSupplementalFormula(US, LU, LUIdx); 3823 CountRegisters(LU.Formulae.back(), Uses.size() - 1); 3824 break; 3825 } 3826 } 3827 } 3828 } 3829 3830 /// Split S into subexpressions which can be pulled out into separate 3831 /// registers. If C is non-null, multiply each subexpression by C. 3832 /// 3833 /// Return remainder expression after factoring the subexpressions captured by 3834 /// Ops. If Ops is complete, return NULL. 3835 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C, 3836 SmallVectorImpl<const SCEV *> &Ops, 3837 const Loop *L, 3838 ScalarEvolution &SE, 3839 unsigned Depth = 0) { 3840 // Arbitrarily cap recursion to protect compile time. 3841 if (Depth >= 3) 3842 return S; 3843 3844 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3845 // Break out add operands. 3846 for (const SCEV *S : Add->operands()) { 3847 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1); 3848 if (Remainder) 3849 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3850 } 3851 return nullptr; 3852 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { 3853 // Split a non-zero base out of an addrec. 3854 if (AR->getStart()->isZero() || !AR->isAffine()) 3855 return S; 3856 3857 const SCEV *Remainder = CollectSubexprs(AR->getStart(), 3858 C, Ops, L, SE, Depth+1); 3859 // Split the non-zero AddRec unless it is part of a nested recurrence that 3860 // does not pertain to this loop. 3861 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) { 3862 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder); 3863 Remainder = nullptr; 3864 } 3865 if (Remainder != AR->getStart()) { 3866 if (!Remainder) 3867 Remainder = SE.getConstant(AR->getType(), 0); 3868 return SE.getAddRecExpr(Remainder, 3869 AR->getStepRecurrence(SE), 3870 AR->getLoop(), 3871 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW) 3872 SCEV::FlagAnyWrap); 3873 } 3874 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3875 // Break (C * (a + b + c)) into C*a + C*b + C*c. 3876 if (Mul->getNumOperands() != 2) 3877 return S; 3878 if (const SCEVConstant *Op0 = 3879 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3880 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0; 3881 const SCEV *Remainder = 3882 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1); 3883 if (Remainder) 3884 Ops.push_back(SE.getMulExpr(C, Remainder)); 3885 return nullptr; 3886 } 3887 } 3888 return S; 3889 } 3890 3891 /// Return true if the SCEV represents a value that may end up as a 3892 /// post-increment operation. 3893 static bool mayUsePostIncMode(const TargetTransformInfo &TTI, 3894 LSRUse &LU, const SCEV *S, const Loop *L, 3895 ScalarEvolution &SE) { 3896 if (LU.Kind != LSRUse::Address || 3897 !LU.AccessTy.getType()->isIntOrIntVectorTy()) 3898 return false; 3899 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 3900 if (!AR) 3901 return false; 3902 const SCEV *LoopStep = AR->getStepRecurrence(SE); 3903 if (!isa<SCEVConstant>(LoopStep)) 3904 return false; 3905 // Check if a post-indexed load/store can be used. 3906 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) || 3907 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) { 3908 const SCEV *LoopStart = AR->getStart(); 3909 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L)) 3910 return true; 3911 } 3912 return false; 3913 } 3914 3915 /// Helper function for LSRInstance::GenerateReassociations. 3916 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx, 3917 const Formula &Base, 3918 unsigned Depth, size_t Idx, 3919 bool IsScaledReg) { 3920 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 3921 // Don't generate reassociations for the base register of a value that 3922 // may generate a post-increment operator. The reason is that the 3923 // reassociations cause extra base+register formula to be created, 3924 // and possibly chosen, but the post-increment is more efficient. 3925 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE)) 3926 return; 3927 SmallVector<const SCEV *, 8> AddOps; 3928 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE); 3929 if (Remainder) 3930 AddOps.push_back(Remainder); 3931 3932 if (AddOps.size() == 1) 3933 return; 3934 3935 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(), 3936 JE = AddOps.end(); 3937 J != JE; ++J) { 3938 // Loop-variant "unknown" values are uninteresting; we won't be able to 3939 // do anything meaningful with them. 3940 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L)) 3941 continue; 3942 3943 // Don't pull a constant into a register if the constant could be folded 3944 // into an immediate field. 3945 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3946 LU.AccessTy, *J, Base.getNumRegs() > 1)) 3947 continue; 3948 3949 // Collect all operands except *J. 3950 SmallVector<const SCEV *, 8> InnerAddOps( 3951 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J); 3952 InnerAddOps.append(std::next(J), 3953 ((const SmallVector<const SCEV *, 8> &)AddOps).end()); 3954 3955 // Don't leave just a constant behind in a register if the constant could 3956 // be folded into an immediate field. 3957 if (InnerAddOps.size() == 1 && 3958 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind, 3959 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1)) 3960 continue; 3961 3962 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps); 3963 if (InnerSum->isZero()) 3964 continue; 3965 Formula F = Base; 3966 3967 if (F.UnfoldedOffset.isNonZero() && F.UnfoldedOffset.isScalable()) 3968 continue; 3969 3970 // Add the remaining pieces of the add back into the new formula. 3971 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum); 3972 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 && 3973 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3974 InnerSumSC->getValue()->getZExtValue())) { 3975 F.UnfoldedOffset = 3976 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3977 InnerSumSC->getValue()->getZExtValue()); 3978 if (IsScaledReg) { 3979 F.ScaledReg = nullptr; 3980 F.Scale = 0; 3981 } else 3982 F.BaseRegs.erase(F.BaseRegs.begin() + Idx); 3983 } else if (IsScaledReg) 3984 F.ScaledReg = InnerSum; 3985 else 3986 F.BaseRegs[Idx] = InnerSum; 3987 3988 // Add J as its own register, or an unfolded immediate. 3989 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J); 3990 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 && 3991 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() + 3992 SC->getValue()->getZExtValue())) 3993 F.UnfoldedOffset = 3994 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() + 3995 SC->getValue()->getZExtValue()); 3996 else 3997 F.BaseRegs.push_back(*J); 3998 // We may have changed the number of register in base regs, adjust the 3999 // formula accordingly. 4000 F.canonicalize(*L); 4001 4002 if (InsertFormula(LU, LUIdx, F)) 4003 // If that formula hadn't been seen before, recurse to find more like 4004 // it. 4005 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2) 4006 // Because just Depth is not enough to bound compile time. 4007 // This means that every time AddOps.size() is greater 16^x we will add 4008 // x to Depth. 4009 GenerateReassociations(LU, LUIdx, LU.Formulae.back(), 4010 Depth + 1 + (Log2_32(AddOps.size()) >> 2)); 4011 } 4012 } 4013 4014 /// Split out subexpressions from adds and the bases of addrecs. 4015 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx, 4016 Formula Base, unsigned Depth) { 4017 assert(Base.isCanonical(*L) && "Input must be in the canonical form"); 4018 // Arbitrarily cap recursion to protect compile time. 4019 if (Depth >= 3) 4020 return; 4021 4022 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4023 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i); 4024 4025 if (Base.Scale == 1) 4026 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, 4027 /* Idx */ -1, /* IsScaledReg */ true); 4028 } 4029 4030 /// Generate a formula consisting of all of the loop-dominating registers added 4031 /// into a single register. 4032 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx, 4033 Formula Base) { 4034 // This method is only interesting on a plurality of registers. 4035 if (Base.BaseRegs.size() + (Base.Scale == 1) + 4036 (Base.UnfoldedOffset.isNonZero()) <= 4037 1) 4038 return; 4039 4040 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before 4041 // processing the formula. 4042 Base.unscale(); 4043 SmallVector<const SCEV *, 4> Ops; 4044 Formula NewBase = Base; 4045 NewBase.BaseRegs.clear(); 4046 Type *CombinedIntegerType = nullptr; 4047 for (const SCEV *BaseReg : Base.BaseRegs) { 4048 if (SE.properlyDominates(BaseReg, L->getHeader()) && 4049 !SE.hasComputableLoopEvolution(BaseReg, L)) { 4050 if (!CombinedIntegerType) 4051 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType()); 4052 Ops.push_back(BaseReg); 4053 } 4054 else 4055 NewBase.BaseRegs.push_back(BaseReg); 4056 } 4057 4058 // If no register is relevant, we're done. 4059 if (Ops.size() == 0) 4060 return; 4061 4062 // Utility function for generating the required variants of the combined 4063 // registers. 4064 auto GenerateFormula = [&](const SCEV *Sum) { 4065 Formula F = NewBase; 4066 4067 // TODO: If Sum is zero, it probably means ScalarEvolution missed an 4068 // opportunity to fold something. For now, just ignore such cases 4069 // rather than proceed with zero in a register. 4070 if (Sum->isZero()) 4071 return; 4072 4073 F.BaseRegs.push_back(Sum); 4074 F.canonicalize(*L); 4075 (void)InsertFormula(LU, LUIdx, F); 4076 }; 4077 4078 // If we collected at least two registers, generate a formula combining them. 4079 if (Ops.size() > 1) { 4080 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops. 4081 GenerateFormula(SE.getAddExpr(OpsCopy)); 4082 } 4083 4084 // If we have an unfolded offset, generate a formula combining it with the 4085 // registers collected. 4086 if (NewBase.UnfoldedOffset.isNonZero() && NewBase.UnfoldedOffset.isFixed()) { 4087 assert(CombinedIntegerType && "Missing a type for the unfolded offset"); 4088 Ops.push_back(SE.getConstant(CombinedIntegerType, 4089 NewBase.UnfoldedOffset.getFixedValue(), true)); 4090 NewBase.UnfoldedOffset = Immediate::getFixed(0); 4091 GenerateFormula(SE.getAddExpr(Ops)); 4092 } 4093 } 4094 4095 /// Helper function for LSRInstance::GenerateSymbolicOffsets. 4096 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx, 4097 const Formula &Base, size_t Idx, 4098 bool IsScaledReg) { 4099 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4100 GlobalValue *GV = ExtractSymbol(G, SE); 4101 if (G->isZero() || !GV) 4102 return; 4103 Formula F = Base; 4104 F.BaseGV = GV; 4105 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4106 return; 4107 if (IsScaledReg) 4108 F.ScaledReg = G; 4109 else 4110 F.BaseRegs[Idx] = G; 4111 (void)InsertFormula(LU, LUIdx, F); 4112 } 4113 4114 /// Generate reuse formulae using symbolic offsets. 4115 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, 4116 Formula Base) { 4117 // We can't add a symbolic offset if the address already contains one. 4118 if (Base.BaseGV) return; 4119 4120 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4121 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i); 4122 if (Base.Scale == 1) 4123 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1, 4124 /* IsScaledReg */ true); 4125 } 4126 4127 /// Helper function for LSRInstance::GenerateConstantOffsets. 4128 void LSRInstance::GenerateConstantOffsetsImpl( 4129 LSRUse &LU, unsigned LUIdx, const Formula &Base, 4130 const SmallVectorImpl<Immediate> &Worklist, size_t Idx, bool IsScaledReg) { 4131 4132 auto GenerateOffset = [&](const SCEV *G, Immediate Offset) { 4133 Formula F = Base; 4134 if (!Base.BaseOffset.isCompatibleImmediate(Offset)) 4135 return; 4136 F.BaseOffset = Base.BaseOffset.subUnsigned(Offset); 4137 4138 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) { 4139 // Add the offset to the base register. 4140 const SCEV *NewOffset = Offset.getSCEV(SE, G->getType()); 4141 const SCEV *NewG = SE.getAddExpr(NewOffset, G); 4142 // If it cancelled out, drop the base register, otherwise update it. 4143 if (NewG->isZero()) { 4144 if (IsScaledReg) { 4145 F.Scale = 0; 4146 F.ScaledReg = nullptr; 4147 } else 4148 F.deleteBaseReg(F.BaseRegs[Idx]); 4149 F.canonicalize(*L); 4150 } else if (IsScaledReg) 4151 F.ScaledReg = NewG; 4152 else 4153 F.BaseRegs[Idx] = NewG; 4154 4155 (void)InsertFormula(LU, LUIdx, F); 4156 } 4157 }; 4158 4159 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx]; 4160 4161 // With constant offsets and constant steps, we can generate pre-inc 4162 // accesses by having the offset equal the step. So, for access #0 with a 4163 // step of 8, we generate a G - 8 base which would require the first access 4164 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer 4165 // for itself and hopefully becomes the base for other accesses. This means 4166 // means that a single pre-indexed access can be generated to become the new 4167 // base pointer for each iteration of the loop, resulting in no extra add/sub 4168 // instructions for pointer updating. 4169 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) { 4170 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) { 4171 if (auto *StepRec = 4172 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) { 4173 const APInt &StepInt = StepRec->getAPInt(); 4174 int64_t Step = StepInt.isNegative() ? 4175 StepInt.getSExtValue() : StepInt.getZExtValue(); 4176 4177 for (Immediate Offset : Worklist) { 4178 if (Offset.isFixed()) { 4179 Offset = Immediate::getFixed(Offset.getFixedValue() - Step); 4180 GenerateOffset(G, Offset); 4181 } 4182 } 4183 } 4184 } 4185 } 4186 for (Immediate Offset : Worklist) 4187 GenerateOffset(G, Offset); 4188 4189 Immediate Imm = ExtractImmediate(G, SE); 4190 if (G->isZero() || Imm.isZero() || 4191 !Base.BaseOffset.isCompatibleImmediate(Imm)) 4192 return; 4193 Formula F = Base; 4194 F.BaseOffset = F.BaseOffset.addUnsigned(Imm); 4195 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) 4196 return; 4197 if (IsScaledReg) { 4198 F.ScaledReg = G; 4199 } else { 4200 F.BaseRegs[Idx] = G; 4201 // We may generate non canonical Formula if G is a recurrent expr reg 4202 // related with current loop while F.ScaledReg is not. 4203 F.canonicalize(*L); 4204 } 4205 (void)InsertFormula(LU, LUIdx, F); 4206 } 4207 4208 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets. 4209 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, 4210 Formula Base) { 4211 // TODO: For now, just add the min and max offset, because it usually isn't 4212 // worthwhile looking at everything inbetween. 4213 SmallVector<Immediate, 2> Worklist; 4214 Worklist.push_back(LU.MinOffset); 4215 if (LU.MaxOffset != LU.MinOffset) 4216 Worklist.push_back(LU.MaxOffset); 4217 4218 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) 4219 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i); 4220 if (Base.Scale == 1) 4221 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1, 4222 /* IsScaledReg */ true); 4223 } 4224 4225 /// For ICmpZero, check to see if we can scale up the comparison. For example, x 4226 /// == y -> x*c == y*c. 4227 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, 4228 Formula Base) { 4229 if (LU.Kind != LSRUse::ICmpZero) return; 4230 4231 // Determine the integer type for the base formula. 4232 Type *IntTy = Base.getType(); 4233 if (!IntTy) return; 4234 if (SE.getTypeSizeInBits(IntTy) > 64) return; 4235 4236 // Don't do this if there is more than one offset. 4237 if (LU.MinOffset != LU.MaxOffset) return; 4238 4239 // Check if transformation is valid. It is illegal to multiply pointer. 4240 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4241 return; 4242 for (const SCEV *BaseReg : Base.BaseRegs) 4243 if (BaseReg->getType()->isPointerTy()) 4244 return; 4245 assert(!Base.BaseGV && "ICmpZero use is not legal!"); 4246 4247 // Check each interesting stride. 4248 for (int64_t Factor : Factors) { 4249 // Check that Factor can be represented by IntTy 4250 if (!ConstantInt::isValueValidForType(IntTy, Factor)) 4251 continue; 4252 // Check that the multiplication doesn't overflow. 4253 if (Base.BaseOffset.isMin() && Factor == -1) 4254 continue; 4255 // Not supporting scalable immediates. 4256 if (Base.BaseOffset.isNonZero() && Base.BaseOffset.isScalable()) 4257 continue; 4258 Immediate NewBaseOffset = Base.BaseOffset.mulUnsigned(Factor); 4259 assert(Factor != 0 && "Zero factor not expected!"); 4260 if (NewBaseOffset.getFixedValue() / Factor != 4261 Base.BaseOffset.getFixedValue()) 4262 continue; 4263 // If the offset will be truncated at this use, check that it is in bounds. 4264 if (!IntTy->isPointerTy() && 4265 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset.getFixedValue())) 4266 continue; 4267 4268 // Check that multiplying with the use offset doesn't overflow. 4269 Immediate Offset = LU.MinOffset; 4270 if (Offset.isMin() && Factor == -1) 4271 continue; 4272 Offset = Offset.mulUnsigned(Factor); 4273 if (Offset.getFixedValue() / Factor != LU.MinOffset.getFixedValue()) 4274 continue; 4275 // If the offset will be truncated at this use, check that it is in bounds. 4276 if (!IntTy->isPointerTy() && 4277 !ConstantInt::isValueValidForType(IntTy, Offset.getFixedValue())) 4278 continue; 4279 4280 Formula F = Base; 4281 F.BaseOffset = NewBaseOffset; 4282 4283 // Check that this scale is legal. 4284 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F)) 4285 continue; 4286 4287 // Compensate for the use having MinOffset built into it. 4288 F.BaseOffset = F.BaseOffset.addUnsigned(Offset).subUnsigned(LU.MinOffset); 4289 4290 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4291 4292 // Check that multiplying with each base register doesn't overflow. 4293 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) { 4294 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS); 4295 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i]) 4296 goto next; 4297 } 4298 4299 // Check that multiplying with the scaled register doesn't overflow. 4300 if (F.ScaledReg) { 4301 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS); 4302 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg) 4303 continue; 4304 } 4305 4306 // Check that multiplying with the unfolded offset doesn't overflow. 4307 if (F.UnfoldedOffset.isNonZero()) { 4308 if (F.UnfoldedOffset.isMin() && Factor == -1) 4309 continue; 4310 F.UnfoldedOffset = F.UnfoldedOffset.mulUnsigned(Factor); 4311 if (F.UnfoldedOffset.getFixedValue() / Factor != 4312 Base.UnfoldedOffset.getFixedValue()) 4313 continue; 4314 // If the offset will be truncated, check that it is in bounds. 4315 if (!IntTy->isPointerTy() && !ConstantInt::isValueValidForType( 4316 IntTy, F.UnfoldedOffset.getFixedValue())) 4317 continue; 4318 } 4319 4320 // If we make it here and it's legal, add it. 4321 (void)InsertFormula(LU, LUIdx, F); 4322 next:; 4323 } 4324 } 4325 4326 /// Generate stride factor reuse formulae by making use of scaled-offset address 4327 /// modes, for example. 4328 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) { 4329 // Determine the integer type for the base formula. 4330 Type *IntTy = Base.getType(); 4331 if (!IntTy) return; 4332 4333 // If this Formula already has a scaled register, we can't add another one. 4334 // Try to unscale the formula to generate a better scale. 4335 if (Base.Scale != 0 && !Base.unscale()) 4336 return; 4337 4338 assert(Base.Scale == 0 && "unscale did not did its job!"); 4339 4340 // Check each interesting stride. 4341 for (int64_t Factor : Factors) { 4342 Base.Scale = Factor; 4343 Base.HasBaseReg = Base.BaseRegs.size() > 1; 4344 // Check whether this scale is going to be legal. 4345 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4346 Base)) { 4347 // As a special-case, handle special out-of-loop Basic users specially. 4348 // TODO: Reconsider this special case. 4349 if (LU.Kind == LSRUse::Basic && 4350 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special, 4351 LU.AccessTy, Base) && 4352 LU.AllFixupsOutsideLoop) 4353 LU.Kind = LSRUse::Special; 4354 else 4355 continue; 4356 } 4357 // For an ICmpZero, negating a solitary base register won't lead to 4358 // new solutions. 4359 if (LU.Kind == LSRUse::ICmpZero && !Base.HasBaseReg && 4360 Base.BaseOffset.isZero() && !Base.BaseGV) 4361 continue; 4362 // For each addrec base reg, if its loop is current loop, apply the scale. 4363 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) { 4364 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]); 4365 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) { 4366 const SCEV *FactorS = SE.getConstant(IntTy, Factor); 4367 if (FactorS->isZero()) 4368 continue; 4369 // Divide out the factor, ignoring high bits, since we'll be 4370 // scaling the value back up in the end. 4371 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) 4372 if (!Quotient->isZero()) { 4373 // TODO: This could be optimized to avoid all the copying. 4374 Formula F = Base; 4375 F.ScaledReg = Quotient; 4376 F.deleteBaseReg(F.BaseRegs[i]); 4377 // The canonical representation of 1*reg is reg, which is already in 4378 // Base. In that case, do not try to insert the formula, it will be 4379 // rejected anyway. 4380 if (F.Scale == 1 && (F.BaseRegs.empty() || 4381 (AR->getLoop() != L && LU.AllFixupsOutsideLoop))) 4382 continue; 4383 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate 4384 // non canonical Formula with ScaledReg's loop not being L. 4385 if (F.Scale == 1 && LU.AllFixupsOutsideLoop) 4386 F.canonicalize(*L); 4387 (void)InsertFormula(LU, LUIdx, F); 4388 } 4389 } 4390 } 4391 } 4392 } 4393 4394 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops. 4395 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then 4396 /// perform the extension/truncate and normalize again, as the normalized form 4397 /// can result in folds that are not valid in the post-inc use contexts. The 4398 /// expressions for all PostIncLoopSets must match, otherwise return nullptr. 4399 static const SCEV * 4400 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops, 4401 const SCEV *Expr, Type *ToTy, 4402 ScalarEvolution &SE) { 4403 const SCEV *Result = nullptr; 4404 for (auto &L : Loops) { 4405 auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE); 4406 const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy); 4407 const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE); 4408 if (!New || (Result && New != Result)) 4409 return nullptr; 4410 Result = New; 4411 } 4412 4413 assert(Result && "failed to create expression"); 4414 return Result; 4415 } 4416 4417 /// Generate reuse formulae from different IV types. 4418 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) { 4419 // Don't bother truncating symbolic values. 4420 if (Base.BaseGV) return; 4421 4422 // Determine the integer type for the base formula. 4423 Type *DstTy = Base.getType(); 4424 if (!DstTy) return; 4425 if (DstTy->isPointerTy()) 4426 return; 4427 4428 // It is invalid to extend a pointer type so exit early if ScaledReg or 4429 // any of the BaseRegs are pointers. 4430 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy()) 4431 return; 4432 if (any_of(Base.BaseRegs, 4433 [](const SCEV *S) { return S->getType()->isPointerTy(); })) 4434 return; 4435 4436 SmallVector<PostIncLoopSet> Loops; 4437 for (auto &LF : LU.Fixups) 4438 Loops.push_back(LF.PostIncLoops); 4439 4440 for (Type *SrcTy : Types) { 4441 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) { 4442 Formula F = Base; 4443 4444 // Sometimes SCEV is able to prove zero during ext transform. It may 4445 // happen if SCEV did not do all possible transforms while creating the 4446 // initial node (maybe due to depth limitations), but it can do them while 4447 // taking ext. 4448 if (F.ScaledReg) { 4449 const SCEV *NewScaledReg = 4450 getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE); 4451 if (!NewScaledReg || NewScaledReg->isZero()) 4452 continue; 4453 F.ScaledReg = NewScaledReg; 4454 } 4455 bool HasZeroBaseReg = false; 4456 for (const SCEV *&BaseReg : F.BaseRegs) { 4457 const SCEV *NewBaseReg = 4458 getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE); 4459 if (!NewBaseReg || NewBaseReg->isZero()) { 4460 HasZeroBaseReg = true; 4461 break; 4462 } 4463 BaseReg = NewBaseReg; 4464 } 4465 if (HasZeroBaseReg) 4466 continue; 4467 4468 // TODO: This assumes we've done basic processing on all uses and 4469 // have an idea what the register usage is. 4470 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses)) 4471 continue; 4472 4473 F.canonicalize(*L); 4474 (void)InsertFormula(LU, LUIdx, F); 4475 } 4476 } 4477 } 4478 4479 namespace { 4480 4481 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer 4482 /// modifications so that the search phase doesn't have to worry about the data 4483 /// structures moving underneath it. 4484 struct WorkItem { 4485 size_t LUIdx; 4486 Immediate Imm; 4487 const SCEV *OrigReg; 4488 4489 WorkItem(size_t LI, Immediate I, const SCEV *R) 4490 : LUIdx(LI), Imm(I), OrigReg(R) {} 4491 4492 void print(raw_ostream &OS) const; 4493 void dump() const; 4494 }; 4495 4496 } // end anonymous namespace 4497 4498 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 4499 void WorkItem::print(raw_ostream &OS) const { 4500 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx 4501 << " , add offset " << Imm; 4502 } 4503 4504 LLVM_DUMP_METHOD void WorkItem::dump() const { 4505 print(errs()); errs() << '\n'; 4506 } 4507 #endif 4508 4509 /// Look for registers which are a constant distance apart and try to form reuse 4510 /// opportunities between them. 4511 void LSRInstance::GenerateCrossUseConstantOffsets() { 4512 // Group the registers by their value without any added constant offset. 4513 using ImmMapTy = std::map<Immediate, const SCEV *, KeyOrderTargetImmediate>; 4514 4515 DenseMap<const SCEV *, ImmMapTy> Map; 4516 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap; 4517 SmallVector<const SCEV *, 8> Sequence; 4518 for (const SCEV *Use : RegUses) { 4519 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify. 4520 Immediate Imm = ExtractImmediate(Reg, SE); 4521 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy())); 4522 if (Pair.second) 4523 Sequence.push_back(Reg); 4524 Pair.first->second.insert(std::make_pair(Imm, Use)); 4525 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use); 4526 } 4527 4528 // Now examine each set of registers with the same base value. Build up 4529 // a list of work to do and do the work in a separate step so that we're 4530 // not adding formulae and register counts while we're searching. 4531 SmallVector<WorkItem, 32> WorkItems; 4532 SmallSet<std::pair<size_t, Immediate>, 32, KeyOrderSizeTAndImmediate> 4533 UniqueItems; 4534 for (const SCEV *Reg : Sequence) { 4535 const ImmMapTy &Imms = Map.find(Reg)->second; 4536 4537 // It's not worthwhile looking for reuse if there's only one offset. 4538 if (Imms.size() == 1) 4539 continue; 4540 4541 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':'; 4542 for (const auto &Entry 4543 : Imms) dbgs() 4544 << ' ' << Entry.first; 4545 dbgs() << '\n'); 4546 4547 // Examine each offset. 4548 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end(); 4549 J != JE; ++J) { 4550 const SCEV *OrigReg = J->second; 4551 4552 Immediate JImm = J->first; 4553 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg); 4554 4555 if (!isa<SCEVConstant>(OrigReg) && 4556 UsedByIndicesMap[Reg].count() == 1) { 4557 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4558 << '\n'); 4559 continue; 4560 } 4561 4562 // Conservatively examine offsets between this orig reg a few selected 4563 // other orig regs. 4564 Immediate First = Imms.begin()->first; 4565 Immediate Last = std::prev(Imms.end())->first; 4566 if (!First.isCompatibleImmediate(Last)) { 4567 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg 4568 << "\n"); 4569 continue; 4570 } 4571 // Only scalable if both terms are scalable, or if one is scalable and 4572 // the other is 0. 4573 bool Scalable = First.isScalable() || Last.isScalable(); 4574 int64_t FI = First.getKnownMinValue(); 4575 int64_t LI = Last.getKnownMinValue(); 4576 // Compute (First + Last) / 2 without overflow using the fact that 4577 // First + Last = 2 * (First + Last) + (First ^ Last). 4578 int64_t Avg = (FI & LI) + ((FI ^ LI) >> 1); 4579 // If the result is negative and FI is odd and LI even (or vice versa), 4580 // we rounded towards -inf. Add 1 in that case, to round towards 0. 4581 Avg = Avg + ((FI ^ LI) & ((uint64_t)Avg >> 63)); 4582 ImmMapTy::const_iterator OtherImms[] = { 4583 Imms.begin(), std::prev(Imms.end()), 4584 Imms.lower_bound(Immediate::get(Avg, Scalable))}; 4585 for (const auto &M : OtherImms) { 4586 if (M == J || M == JE) continue; 4587 if (!JImm.isCompatibleImmediate(M->first)) 4588 continue; 4589 4590 // Compute the difference between the two. 4591 Immediate Imm = JImm.subUnsigned(M->first); 4592 for (unsigned LUIdx : UsedByIndices.set_bits()) 4593 // Make a memo of this use, offset, and register tuple. 4594 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second) 4595 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg)); 4596 } 4597 } 4598 } 4599 4600 Map.clear(); 4601 Sequence.clear(); 4602 UsedByIndicesMap.clear(); 4603 UniqueItems.clear(); 4604 4605 // Now iterate through the worklist and add new formulae. 4606 for (const WorkItem &WI : WorkItems) { 4607 size_t LUIdx = WI.LUIdx; 4608 LSRUse &LU = Uses[LUIdx]; 4609 Immediate Imm = WI.Imm; 4610 const SCEV *OrigReg = WI.OrigReg; 4611 4612 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType()); 4613 const SCEV *NegImmS = Imm.getNegativeSCEV(SE, IntTy); 4614 unsigned BitWidth = SE.getTypeSizeInBits(IntTy); 4615 4616 // TODO: Use a more targeted data structure. 4617 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) { 4618 Formula F = LU.Formulae[L]; 4619 // FIXME: The code for the scaled and unscaled registers looks 4620 // very similar but slightly different. Investigate if they 4621 // could be merged. That way, we would not have to unscale the 4622 // Formula. 4623 F.unscale(); 4624 // Use the immediate in the scaled register. 4625 if (F.ScaledReg == OrigReg) { 4626 if (!F.BaseOffset.isCompatibleImmediate(Imm)) 4627 continue; 4628 Immediate Offset = F.BaseOffset.addUnsigned(Imm.mulUnsigned(F.Scale)); 4629 // Don't create 50 + reg(-50). 4630 const SCEV *S = Offset.getNegativeSCEV(SE, IntTy); 4631 if (F.referencesReg(S)) 4632 continue; 4633 Formula NewF = F; 4634 NewF.BaseOffset = Offset; 4635 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 4636 NewF)) 4637 continue; 4638 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg); 4639 4640 // If the new scale is a constant in a register, and adding the constant 4641 // value to the immediate would produce a value closer to zero than the 4642 // immediate itself, then the formula isn't worthwhile. 4643 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) { 4644 // FIXME: Do we need to do something for scalable immediates here? 4645 // A scalable SCEV won't be constant, but we might still have 4646 // something in the offset? Bail out for now to be safe. 4647 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4648 continue; 4649 if (C->getValue()->isNegative() != 4650 (NewF.BaseOffset.isLessThanZero()) && 4651 (C->getAPInt().abs() * APInt(BitWidth, F.Scale)) 4652 .ule(std::abs(NewF.BaseOffset.getFixedValue()))) 4653 continue; 4654 } 4655 4656 // OK, looks good. 4657 NewF.canonicalize(*this->L); 4658 (void)InsertFormula(LU, LUIdx, NewF); 4659 } else { 4660 // Use the immediate in a base register. 4661 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) { 4662 const SCEV *BaseReg = F.BaseRegs[N]; 4663 if (BaseReg != OrigReg) 4664 continue; 4665 Formula NewF = F; 4666 if (!NewF.BaseOffset.isCompatibleImmediate(Imm) || 4667 !NewF.UnfoldedOffset.isCompatibleImmediate(Imm) || 4668 !NewF.BaseOffset.isCompatibleImmediate(NewF.UnfoldedOffset)) 4669 continue; 4670 NewF.BaseOffset = NewF.BaseOffset.addUnsigned(Imm); 4671 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, 4672 LU.Kind, LU.AccessTy, NewF)) { 4673 if (AMK == TTI::AMK_PostIndexed && 4674 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE)) 4675 continue; 4676 Immediate NewUnfoldedOffset = NewF.UnfoldedOffset.addUnsigned(Imm); 4677 if (!isLegalAddImmediate(TTI, NewUnfoldedOffset)) 4678 continue; 4679 NewF = F; 4680 NewF.UnfoldedOffset = NewUnfoldedOffset; 4681 } 4682 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg); 4683 4684 // If the new formula has a constant in a register, and adding the 4685 // constant value to the immediate would produce a value closer to 4686 // zero than the immediate itself, then the formula isn't worthwhile. 4687 for (const SCEV *NewReg : NewF.BaseRegs) 4688 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) { 4689 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable()) 4690 goto skip_formula; 4691 if ((C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4692 .abs() 4693 .slt(std::abs(NewF.BaseOffset.getFixedValue())) && 4694 (C->getAPInt() + NewF.BaseOffset.getFixedValue()) 4695 .countr_zero() >= 4696 (unsigned)llvm::countr_zero<uint64_t>( 4697 NewF.BaseOffset.getFixedValue())) 4698 goto skip_formula; 4699 } 4700 4701 // Ok, looks good. 4702 NewF.canonicalize(*this->L); 4703 (void)InsertFormula(LU, LUIdx, NewF); 4704 break; 4705 skip_formula:; 4706 } 4707 } 4708 } 4709 } 4710 } 4711 4712 /// Generate formulae for each use. 4713 void 4714 LSRInstance::GenerateAllReuseFormulae() { 4715 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan 4716 // queries are more precise. 4717 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4718 LSRUse &LU = Uses[LUIdx]; 4719 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4720 GenerateReassociations(LU, LUIdx, LU.Formulae[i]); 4721 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4722 GenerateCombinations(LU, LUIdx, LU.Formulae[i]); 4723 } 4724 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4725 LSRUse &LU = Uses[LUIdx]; 4726 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4727 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]); 4728 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4729 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]); 4730 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4731 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]); 4732 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4733 GenerateScales(LU, LUIdx, LU.Formulae[i]); 4734 } 4735 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4736 LSRUse &LU = Uses[LUIdx]; 4737 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i) 4738 GenerateTruncates(LU, LUIdx, LU.Formulae[i]); 4739 } 4740 4741 GenerateCrossUseConstantOffsets(); 4742 4743 LLVM_DEBUG(dbgs() << "\n" 4744 "After generating reuse formulae:\n"; 4745 print_uses(dbgs())); 4746 } 4747 4748 /// If there are multiple formulae with the same set of registers used 4749 /// by other uses, pick the best one and delete the others. 4750 void LSRInstance::FilterOutUndesirableDedicatedRegisters() { 4751 DenseSet<const SCEV *> VisitedRegs; 4752 SmallPtrSet<const SCEV *, 16> Regs; 4753 SmallPtrSet<const SCEV *, 16> LoserRegs; 4754 #ifndef NDEBUG 4755 bool ChangedFormulae = false; 4756 #endif 4757 4758 // Collect the best formula for each unique set of shared registers. This 4759 // is reset for each use. 4760 using BestFormulaeTy = 4761 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>; 4762 4763 BestFormulaeTy BestFormulae; 4764 4765 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4766 LSRUse &LU = Uses[LUIdx]; 4767 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 4768 dbgs() << '\n'); 4769 4770 bool Any = false; 4771 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); 4772 FIdx != NumForms; ++FIdx) { 4773 Formula &F = LU.Formulae[FIdx]; 4774 4775 // Some formulas are instant losers. For example, they may depend on 4776 // nonexistent AddRecs from other loops. These need to be filtered 4777 // immediately, otherwise heuristics could choose them over others leading 4778 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here 4779 // avoids the need to recompute this information across formulae using the 4780 // same bad AddRec. Passing LoserRegs is also essential unless we remove 4781 // the corresponding bad register from the Regs set. 4782 Cost CostF(L, SE, TTI, AMK); 4783 Regs.clear(); 4784 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs); 4785 if (CostF.isLoser()) { 4786 // During initial formula generation, undesirable formulae are generated 4787 // by uses within other loops that have some non-trivial address mode or 4788 // use the postinc form of the IV. LSR needs to provide these formulae 4789 // as the basis of rediscovering the desired formula that uses an AddRec 4790 // corresponding to the existing phi. Once all formulae have been 4791 // generated, these initial losers may be pruned. 4792 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs()); 4793 dbgs() << "\n"); 4794 } 4795 else { 4796 SmallVector<const SCEV *, 4> Key; 4797 for (const SCEV *Reg : F.BaseRegs) { 4798 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx)) 4799 Key.push_back(Reg); 4800 } 4801 if (F.ScaledReg && 4802 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx)) 4803 Key.push_back(F.ScaledReg); 4804 // Unstable sort by host order ok, because this is only used for 4805 // uniquifying. 4806 llvm::sort(Key); 4807 4808 std::pair<BestFormulaeTy::const_iterator, bool> P = 4809 BestFormulae.insert(std::make_pair(Key, FIdx)); 4810 if (P.second) 4811 continue; 4812 4813 Formula &Best = LU.Formulae[P.first->second]; 4814 4815 Cost CostBest(L, SE, TTI, AMK); 4816 Regs.clear(); 4817 CostBest.RateFormula(Best, Regs, VisitedRegs, LU); 4818 if (CostF.isLess(CostBest)) 4819 std::swap(F, Best); 4820 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 4821 dbgs() << "\n" 4822 " in favor of formula "; 4823 Best.print(dbgs()); dbgs() << '\n'); 4824 } 4825 #ifndef NDEBUG 4826 ChangedFormulae = true; 4827 #endif 4828 LU.DeleteFormula(F); 4829 --FIdx; 4830 --NumForms; 4831 Any = true; 4832 } 4833 4834 // Now that we've filtered out some formulae, recompute the Regs set. 4835 if (Any) 4836 LU.RecomputeRegs(LUIdx, RegUses); 4837 4838 // Reset this to prepare for the next use. 4839 BestFormulae.clear(); 4840 } 4841 4842 LLVM_DEBUG(if (ChangedFormulae) { 4843 dbgs() << "\n" 4844 "After filtering out undesirable candidates:\n"; 4845 print_uses(dbgs()); 4846 }); 4847 } 4848 4849 /// Estimate the worst-case number of solutions the solver might have to 4850 /// consider. It almost never considers this many solutions because it prune the 4851 /// search space, but the pruning isn't always sufficient. 4852 size_t LSRInstance::EstimateSearchSpaceComplexity() const { 4853 size_t Power = 1; 4854 for (const LSRUse &LU : Uses) { 4855 size_t FSize = LU.Formulae.size(); 4856 if (FSize >= ComplexityLimit) { 4857 Power = ComplexityLimit; 4858 break; 4859 } 4860 Power *= FSize; 4861 if (Power >= ComplexityLimit) 4862 break; 4863 } 4864 return Power; 4865 } 4866 4867 /// When one formula uses a superset of the registers of another formula, it 4868 /// won't help reduce register pressure (though it may not necessarily hurt 4869 /// register pressure); remove it to simplify the system. 4870 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() { 4871 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 4872 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 4873 4874 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae " 4875 "which use a superset of registers used by other " 4876 "formulae.\n"); 4877 4878 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4879 LSRUse &LU = Uses[LUIdx]; 4880 bool Any = false; 4881 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 4882 Formula &F = LU.Formulae[i]; 4883 if (F.BaseOffset.isNonZero() && F.BaseOffset.isScalable()) 4884 continue; 4885 // Look for a formula with a constant or GV in a register. If the use 4886 // also has a formula with that same value in an immediate field, 4887 // delete the one that uses a register. 4888 for (SmallVectorImpl<const SCEV *>::const_iterator 4889 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) { 4890 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) { 4891 Formula NewF = F; 4892 //FIXME: Formulas should store bitwidth to do wrapping properly. 4893 // See PR41034. 4894 NewF.BaseOffset = 4895 Immediate::getFixed(NewF.BaseOffset.getFixedValue() + 4896 (uint64_t)C->getValue()->getSExtValue()); 4897 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4898 (I - F.BaseRegs.begin())); 4899 if (LU.HasFormulaWithSameRegs(NewF)) { 4900 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4901 dbgs() << '\n'); 4902 LU.DeleteFormula(F); 4903 --i; 4904 --e; 4905 Any = true; 4906 break; 4907 } 4908 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) { 4909 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) 4910 if (!F.BaseGV) { 4911 Formula NewF = F; 4912 NewF.BaseGV = GV; 4913 NewF.BaseRegs.erase(NewF.BaseRegs.begin() + 4914 (I - F.BaseRegs.begin())); 4915 if (LU.HasFormulaWithSameRegs(NewF)) { 4916 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); 4917 dbgs() << '\n'); 4918 LU.DeleteFormula(F); 4919 --i; 4920 --e; 4921 Any = true; 4922 break; 4923 } 4924 } 4925 } 4926 } 4927 } 4928 if (Any) 4929 LU.RecomputeRegs(LUIdx, RegUses); 4930 } 4931 4932 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 4933 } 4934 } 4935 4936 /// When there are many registers for expressions like A, A+1, A+2, etc., 4937 /// allocate a single register for them. 4938 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() { 4939 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 4940 return; 4941 4942 LLVM_DEBUG( 4943 dbgs() << "The search space is too complex.\n" 4944 "Narrowing the search space by assuming that uses separated " 4945 "by a constant offset will use the same registers.\n"); 4946 4947 // This is especially useful for unrolled loops. 4948 4949 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 4950 LSRUse &LU = Uses[LUIdx]; 4951 for (const Formula &F : LU.Formulae) { 4952 if (F.BaseOffset.isZero() || (F.Scale != 0 && F.Scale != 1)) 4953 continue; 4954 4955 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU); 4956 if (!LUThatHas) 4957 continue; 4958 4959 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false, 4960 LU.Kind, LU.AccessTy)) 4961 continue; 4962 4963 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n'); 4964 4965 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop; 4966 4967 // Transfer the fixups of LU to LUThatHas. 4968 for (LSRFixup &Fixup : LU.Fixups) { 4969 Fixup.Offset += F.BaseOffset; 4970 LUThatHas->pushFixup(Fixup); 4971 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n'); 4972 } 4973 4974 // Delete formulae from the new use which are no longer legal. 4975 bool Any = false; 4976 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) { 4977 Formula &F = LUThatHas->Formulae[i]; 4978 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset, 4979 LUThatHas->Kind, LUThatHas->AccessTy, F)) { 4980 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 4981 LUThatHas->DeleteFormula(F); 4982 --i; 4983 --e; 4984 Any = true; 4985 } 4986 } 4987 4988 if (Any) 4989 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses); 4990 4991 // Delete the old use. 4992 DeleteUse(LU, LUIdx); 4993 --LUIdx; 4994 --NumUses; 4995 break; 4996 } 4997 } 4998 4999 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5000 } 5001 5002 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that 5003 /// we've done more filtering, as it may be able to find more formulae to 5004 /// eliminate. 5005 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){ 5006 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5007 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5008 5009 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out " 5010 "undesirable dedicated registers.\n"); 5011 5012 FilterOutUndesirableDedicatedRegisters(); 5013 5014 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5015 } 5016 } 5017 5018 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale. 5019 /// Pick the best one and delete the others. 5020 /// This narrowing heuristic is to keep as many formulae with different 5021 /// Scale and ScaledReg pair as possible while narrowing the search space. 5022 /// The benefit is that it is more likely to find out a better solution 5023 /// from a formulae set with more Scale and ScaledReg variations than 5024 /// a formulae set with the same Scale and ScaledReg. The picking winner 5025 /// reg heuristic will often keep the formulae with the same Scale and 5026 /// ScaledReg and filter others, and we want to avoid that if possible. 5027 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() { 5028 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5029 return; 5030 5031 LLVM_DEBUG( 5032 dbgs() << "The search space is too complex.\n" 5033 "Narrowing the search space by choosing the best Formula " 5034 "from the Formulae with the same Scale and ScaledReg.\n"); 5035 5036 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse. 5037 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>; 5038 5039 BestFormulaeTy BestFormulae; 5040 #ifndef NDEBUG 5041 bool ChangedFormulae = false; 5042 #endif 5043 DenseSet<const SCEV *> VisitedRegs; 5044 SmallPtrSet<const SCEV *, 16> Regs; 5045 5046 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5047 LSRUse &LU = Uses[LUIdx]; 5048 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); 5049 dbgs() << '\n'); 5050 5051 // Return true if Formula FA is better than Formula FB. 5052 auto IsBetterThan = [&](Formula &FA, Formula &FB) { 5053 // First we will try to choose the Formula with fewer new registers. 5054 // For a register used by current Formula, the more the register is 5055 // shared among LSRUses, the less we increase the register number 5056 // counter of the formula. 5057 size_t FARegNum = 0; 5058 for (const SCEV *Reg : FA.BaseRegs) { 5059 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5060 FARegNum += (NumUses - UsedByIndices.count() + 1); 5061 } 5062 size_t FBRegNum = 0; 5063 for (const SCEV *Reg : FB.BaseRegs) { 5064 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg); 5065 FBRegNum += (NumUses - UsedByIndices.count() + 1); 5066 } 5067 if (FARegNum != FBRegNum) 5068 return FARegNum < FBRegNum; 5069 5070 // If the new register numbers are the same, choose the Formula with 5071 // less Cost. 5072 Cost CostFA(L, SE, TTI, AMK); 5073 Cost CostFB(L, SE, TTI, AMK); 5074 Regs.clear(); 5075 CostFA.RateFormula(FA, Regs, VisitedRegs, LU); 5076 Regs.clear(); 5077 CostFB.RateFormula(FB, Regs, VisitedRegs, LU); 5078 return CostFA.isLess(CostFB); 5079 }; 5080 5081 bool Any = false; 5082 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5083 ++FIdx) { 5084 Formula &F = LU.Formulae[FIdx]; 5085 if (!F.ScaledReg) 5086 continue; 5087 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx}); 5088 if (P.second) 5089 continue; 5090 5091 Formula &Best = LU.Formulae[P.first->second]; 5092 if (IsBetterThan(F, Best)) 5093 std::swap(F, Best); 5094 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5095 dbgs() << "\n" 5096 " in favor of formula "; 5097 Best.print(dbgs()); dbgs() << '\n'); 5098 #ifndef NDEBUG 5099 ChangedFormulae = true; 5100 #endif 5101 LU.DeleteFormula(F); 5102 --FIdx; 5103 --NumForms; 5104 Any = true; 5105 } 5106 if (Any) 5107 LU.RecomputeRegs(LUIdx, RegUses); 5108 5109 // Reset this to prepare for the next use. 5110 BestFormulae.clear(); 5111 } 5112 5113 LLVM_DEBUG(if (ChangedFormulae) { 5114 dbgs() << "\n" 5115 "After filtering out undesirable candidates:\n"; 5116 print_uses(dbgs()); 5117 }); 5118 } 5119 5120 /// If we are over the complexity limit, filter out any post-inc prefering 5121 /// variables to only post-inc values. 5122 void LSRInstance::NarrowSearchSpaceByFilterPostInc() { 5123 if (AMK != TTI::AMK_PostIndexed) 5124 return; 5125 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5126 return; 5127 5128 LLVM_DEBUG(dbgs() << "The search space is too complex.\n" 5129 "Narrowing the search space by choosing the lowest " 5130 "register Formula for PostInc Uses.\n"); 5131 5132 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5133 LSRUse &LU = Uses[LUIdx]; 5134 5135 if (LU.Kind != LSRUse::Address) 5136 continue; 5137 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) && 5138 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType())) 5139 continue; 5140 5141 size_t MinRegs = std::numeric_limits<size_t>::max(); 5142 for (const Formula &F : LU.Formulae) 5143 MinRegs = std::min(F.getNumRegs(), MinRegs); 5144 5145 bool Any = false; 5146 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms; 5147 ++FIdx) { 5148 Formula &F = LU.Formulae[FIdx]; 5149 if (F.getNumRegs() > MinRegs) { 5150 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs()); 5151 dbgs() << "\n"); 5152 LU.DeleteFormula(F); 5153 --FIdx; 5154 --NumForms; 5155 Any = true; 5156 } 5157 } 5158 if (Any) 5159 LU.RecomputeRegs(LUIdx, RegUses); 5160 5161 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5162 break; 5163 } 5164 5165 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5166 } 5167 5168 /// The function delete formulas with high registers number expectation. 5169 /// Assuming we don't know the value of each formula (already delete 5170 /// all inefficient), generate probability of not selecting for each 5171 /// register. 5172 /// For example, 5173 /// Use1: 5174 /// reg(a) + reg({0,+,1}) 5175 /// reg(a) + reg({-1,+,1}) + 1 5176 /// reg({a,+,1}) 5177 /// Use2: 5178 /// reg(b) + reg({0,+,1}) 5179 /// reg(b) + reg({-1,+,1}) + 1 5180 /// reg({b,+,1}) 5181 /// Use3: 5182 /// reg(c) + reg(b) + reg({0,+,1}) 5183 /// reg(c) + reg({b,+,1}) 5184 /// 5185 /// Probability of not selecting 5186 /// Use1 Use2 Use3 5187 /// reg(a) (1/3) * 1 * 1 5188 /// reg(b) 1 * (1/3) * (1/2) 5189 /// reg({0,+,1}) (2/3) * (2/3) * (1/2) 5190 /// reg({-1,+,1}) (2/3) * (2/3) * 1 5191 /// reg({a,+,1}) (2/3) * 1 * 1 5192 /// reg({b,+,1}) 1 * (2/3) * (2/3) 5193 /// reg(c) 1 * 1 * 0 5194 /// 5195 /// Now count registers number mathematical expectation for each formula: 5196 /// Note that for each use we exclude probability if not selecting for the use. 5197 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding 5198 /// probabilty 1/3 of not selecting for Use1). 5199 /// Use1: 5200 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted 5201 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted 5202 /// reg({a,+,1}) 1 5203 /// Use2: 5204 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted 5205 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted 5206 /// reg({b,+,1}) 2/3 5207 /// Use3: 5208 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted 5209 /// reg(c) + reg({b,+,1}) 1 + 2/3 5210 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() { 5211 if (EstimateSearchSpaceComplexity() < ComplexityLimit) 5212 return; 5213 // Ok, we have too many of formulae on our hands to conveniently handle. 5214 // Use a rough heuristic to thin out the list. 5215 5216 // Set of Regs wich will be 100% used in final solution. 5217 // Used in each formula of a solution (in example above this is reg(c)). 5218 // We can skip them in calculations. 5219 SmallPtrSet<const SCEV *, 4> UniqRegs; 5220 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5221 5222 // Map each register to probability of not selecting 5223 DenseMap <const SCEV *, float> RegNumMap; 5224 for (const SCEV *Reg : RegUses) { 5225 if (UniqRegs.count(Reg)) 5226 continue; 5227 float PNotSel = 1; 5228 for (const LSRUse &LU : Uses) { 5229 if (!LU.Regs.count(Reg)) 5230 continue; 5231 float P = LU.getNotSelectedProbability(Reg); 5232 if (P != 0.0) 5233 PNotSel *= P; 5234 else 5235 UniqRegs.insert(Reg); 5236 } 5237 RegNumMap.insert(std::make_pair(Reg, PNotSel)); 5238 } 5239 5240 LLVM_DEBUG( 5241 dbgs() << "Narrowing the search space by deleting costly formulas\n"); 5242 5243 // Delete formulas where registers number expectation is high. 5244 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5245 LSRUse &LU = Uses[LUIdx]; 5246 // If nothing to delete - continue. 5247 if (LU.Formulae.size() < 2) 5248 continue; 5249 // This is temporary solution to test performance. Float should be 5250 // replaced with round independent type (based on integers) to avoid 5251 // different results for different target builds. 5252 float FMinRegNum = LU.Formulae[0].getNumRegs(); 5253 float FMinARegNum = LU.Formulae[0].getNumRegs(); 5254 size_t MinIdx = 0; 5255 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5256 Formula &F = LU.Formulae[i]; 5257 float FRegNum = 0; 5258 float FARegNum = 0; 5259 for (const SCEV *BaseReg : F.BaseRegs) { 5260 if (UniqRegs.count(BaseReg)) 5261 continue; 5262 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5263 if (isa<SCEVAddRecExpr>(BaseReg)) 5264 FARegNum += 5265 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg); 5266 } 5267 if (const SCEV *ScaledReg = F.ScaledReg) { 5268 if (!UniqRegs.count(ScaledReg)) { 5269 FRegNum += 5270 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5271 if (isa<SCEVAddRecExpr>(ScaledReg)) 5272 FARegNum += 5273 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg); 5274 } 5275 } 5276 if (FMinRegNum > FRegNum || 5277 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) { 5278 FMinRegNum = FRegNum; 5279 FMinARegNum = FARegNum; 5280 MinIdx = i; 5281 } 5282 } 5283 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs()); 5284 dbgs() << " with min reg num " << FMinRegNum << '\n'); 5285 if (MinIdx != 0) 5286 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]); 5287 while (LU.Formulae.size() != 1) { 5288 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs()); 5289 dbgs() << '\n'); 5290 LU.Formulae.pop_back(); 5291 } 5292 LU.RecomputeRegs(LUIdx, RegUses); 5293 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula"); 5294 Formula &F = LU.Formulae[0]; 5295 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n'); 5296 // When we choose the formula, the regs become unique. 5297 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end()); 5298 if (F.ScaledReg) 5299 UniqRegs.insert(F.ScaledReg); 5300 } 5301 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5302 } 5303 5304 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so 5305 // would the addressing offset +C would be legal where the negative offset -C is 5306 // not. 5307 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI, 5308 ScalarEvolution &SE, const SCEV *Best, 5309 const SCEV *Reg, 5310 MemAccessTy AccessType) { 5311 if (Best->getType() != Reg->getType() || 5312 (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) && 5313 cast<SCEVAddRecExpr>(Best)->getLoop() != 5314 cast<SCEVAddRecExpr>(Reg)->getLoop())) 5315 return false; 5316 std::optional<APInt> Diff = SE.computeConstantDifference(Best, Reg); 5317 if (!Diff) 5318 return false; 5319 5320 return TTI.isLegalAddressingMode( 5321 AccessType.MemTy, /*BaseGV=*/nullptr, 5322 /*BaseOffset=*/Diff->getSExtValue(), 5323 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) && 5324 !TTI.isLegalAddressingMode( 5325 AccessType.MemTy, /*BaseGV=*/nullptr, 5326 /*BaseOffset=*/-Diff->getSExtValue(), 5327 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace); 5328 } 5329 5330 /// Pick a register which seems likely to be profitable, and then in any use 5331 /// which has any reference to that register, delete all formulae which do not 5332 /// reference that register. 5333 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() { 5334 // With all other options exhausted, loop until the system is simple 5335 // enough to handle. 5336 SmallPtrSet<const SCEV *, 4> Taken; 5337 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) { 5338 // Ok, we have too many of formulae on our hands to conveniently handle. 5339 // Use a rough heuristic to thin out the list. 5340 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"); 5341 5342 // Pick the register which is used by the most LSRUses, which is likely 5343 // to be a good reuse register candidate. 5344 const SCEV *Best = nullptr; 5345 unsigned BestNum = 0; 5346 for (const SCEV *Reg : RegUses) { 5347 if (Taken.count(Reg)) 5348 continue; 5349 if (!Best) { 5350 Best = Reg; 5351 BestNum = RegUses.getUsedByIndices(Reg).count(); 5352 } else { 5353 unsigned Count = RegUses.getUsedByIndices(Reg).count(); 5354 if (Count > BestNum) { 5355 Best = Reg; 5356 BestNum = Count; 5357 } 5358 5359 // If the scores are the same, but the Reg is simpler for the target 5360 // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can 5361 // handle +C but not -C), opt for the simpler formula. 5362 if (Count == BestNum) { 5363 int LUIdx = RegUses.getUsedByIndices(Reg).find_first(); 5364 if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address && 5365 IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg, 5366 Uses[LUIdx].AccessTy)) { 5367 Best = Reg; 5368 BestNum = Count; 5369 } 5370 } 5371 } 5372 } 5373 assert(Best && "Failed to find best LSRUse candidate"); 5374 5375 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best 5376 << " will yield profitable reuse.\n"); 5377 Taken.insert(Best); 5378 5379 // In any use with formulae which references this register, delete formulae 5380 // which don't reference it. 5381 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) { 5382 LSRUse &LU = Uses[LUIdx]; 5383 if (!LU.Regs.count(Best)) continue; 5384 5385 bool Any = false; 5386 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) { 5387 Formula &F = LU.Formulae[i]; 5388 if (!F.referencesReg(Best)) { 5389 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n'); 5390 LU.DeleteFormula(F); 5391 --e; 5392 --i; 5393 Any = true; 5394 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?"); 5395 continue; 5396 } 5397 } 5398 5399 if (Any) 5400 LU.RecomputeRegs(LUIdx, RegUses); 5401 } 5402 5403 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs())); 5404 } 5405 } 5406 5407 /// If there are an extraordinary number of formulae to choose from, use some 5408 /// rough heuristics to prune down the number of formulae. This keeps the main 5409 /// solver from taking an extraordinary amount of time in some worst-case 5410 /// scenarios. 5411 void LSRInstance::NarrowSearchSpaceUsingHeuristics() { 5412 NarrowSearchSpaceByDetectingSupersets(); 5413 NarrowSearchSpaceByCollapsingUnrolledCode(); 5414 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(); 5415 if (FilterSameScaledReg) 5416 NarrowSearchSpaceByFilterFormulaWithSameScaledReg(); 5417 NarrowSearchSpaceByFilterPostInc(); 5418 if (LSRExpNarrow) 5419 NarrowSearchSpaceByDeletingCostlyFormulas(); 5420 else 5421 NarrowSearchSpaceByPickingWinnerRegs(); 5422 } 5423 5424 /// This is the recursive solver. 5425 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution, 5426 Cost &SolutionCost, 5427 SmallVectorImpl<const Formula *> &Workspace, 5428 const Cost &CurCost, 5429 const SmallPtrSet<const SCEV *, 16> &CurRegs, 5430 DenseSet<const SCEV *> &VisitedRegs) const { 5431 // Some ideas: 5432 // - prune more: 5433 // - use more aggressive filtering 5434 // - sort the formula so that the most profitable solutions are found first 5435 // - sort the uses too 5436 // - search faster: 5437 // - don't compute a cost, and then compare. compare while computing a cost 5438 // and bail early. 5439 // - track register sets with SmallBitVector 5440 5441 const LSRUse &LU = Uses[Workspace.size()]; 5442 5443 // If this use references any register that's already a part of the 5444 // in-progress solution, consider it a requirement that a formula must 5445 // reference that register in order to be considered. This prunes out 5446 // unprofitable searching. 5447 SmallSetVector<const SCEV *, 4> ReqRegs; 5448 for (const SCEV *S : CurRegs) 5449 if (LU.Regs.count(S)) 5450 ReqRegs.insert(S); 5451 5452 SmallPtrSet<const SCEV *, 16> NewRegs; 5453 Cost NewCost(L, SE, TTI, AMK); 5454 for (const Formula &F : LU.Formulae) { 5455 // Ignore formulae which may not be ideal in terms of register reuse of 5456 // ReqRegs. The formula should use all required registers before 5457 // introducing new ones. 5458 // This can sometimes (notably when trying to favour postinc) lead to 5459 // sub-optimial decisions. There it is best left to the cost modelling to 5460 // get correct. 5461 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) { 5462 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size()); 5463 for (const SCEV *Reg : ReqRegs) { 5464 if ((F.ScaledReg && F.ScaledReg == Reg) || 5465 is_contained(F.BaseRegs, Reg)) { 5466 --NumReqRegsToFind; 5467 if (NumReqRegsToFind == 0) 5468 break; 5469 } 5470 } 5471 if (NumReqRegsToFind != 0) { 5472 // If none of the formulae satisfied the required registers, then we could 5473 // clear ReqRegs and try again. Currently, we simply give up in this case. 5474 continue; 5475 } 5476 } 5477 5478 // Evaluate the cost of the current formula. If it's already worse than 5479 // the current best, prune the search at that point. 5480 NewCost = CurCost; 5481 NewRegs = CurRegs; 5482 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU); 5483 if (NewCost.isLess(SolutionCost)) { 5484 Workspace.push_back(&F); 5485 if (Workspace.size() != Uses.size()) { 5486 SolveRecurse(Solution, SolutionCost, Workspace, NewCost, 5487 NewRegs, VisitedRegs); 5488 if (F.getNumRegs() == 1 && Workspace.size() == 1) 5489 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]); 5490 } else { 5491 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs()); 5492 dbgs() << ".\nRegs:\n"; 5493 for (const SCEV *S : NewRegs) dbgs() 5494 << "- " << *S << "\n"; 5495 dbgs() << '\n'); 5496 5497 SolutionCost = NewCost; 5498 Solution = Workspace; 5499 } 5500 Workspace.pop_back(); 5501 } 5502 } 5503 } 5504 5505 /// Choose one formula from each use. Return the results in the given Solution 5506 /// vector. 5507 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const { 5508 SmallVector<const Formula *, 8> Workspace; 5509 Cost SolutionCost(L, SE, TTI, AMK); 5510 SolutionCost.Lose(); 5511 Cost CurCost(L, SE, TTI, AMK); 5512 SmallPtrSet<const SCEV *, 16> CurRegs; 5513 DenseSet<const SCEV *> VisitedRegs; 5514 Workspace.reserve(Uses.size()); 5515 5516 // SolveRecurse does all the work. 5517 SolveRecurse(Solution, SolutionCost, Workspace, CurCost, 5518 CurRegs, VisitedRegs); 5519 if (Solution.empty()) { 5520 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n"); 5521 return; 5522 } 5523 5524 // Ok, we've now made all our decisions. 5525 LLVM_DEBUG(dbgs() << "\n" 5526 "The chosen solution requires "; 5527 SolutionCost.print(dbgs()); dbgs() << ":\n"; 5528 for (size_t i = 0, e = Uses.size(); i != e; ++i) { 5529 dbgs() << " "; 5530 Uses[i].print(dbgs()); 5531 dbgs() << "\n" 5532 " "; 5533 Solution[i]->print(dbgs()); 5534 dbgs() << '\n'; 5535 }); 5536 5537 assert(Solution.size() == Uses.size() && "Malformed solution!"); 5538 5539 const bool EnableDropUnprofitableSolution = [&] { 5540 switch (AllowDropSolutionIfLessProfitable) { 5541 case cl::BOU_TRUE: 5542 return true; 5543 case cl::BOU_FALSE: 5544 return false; 5545 case cl::BOU_UNSET: 5546 return TTI.shouldDropLSRSolutionIfLessProfitable(); 5547 } 5548 llvm_unreachable("Unhandled cl::boolOrDefault enum"); 5549 }(); 5550 5551 if (BaselineCost.isLess(SolutionCost)) { 5552 if (!EnableDropUnprofitableSolution) 5553 LLVM_DEBUG( 5554 dbgs() << "Baseline is more profitable than chosen solution, " 5555 "add option 'lsr-drop-solution' to drop LSR solution.\n"); 5556 else { 5557 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen " 5558 "solution, dropping LSR solution.\n";); 5559 Solution.clear(); 5560 } 5561 } 5562 } 5563 5564 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as 5565 /// we can go while still being dominated by the input positions. This helps 5566 /// canonicalize the insert position, which encourages sharing. 5567 BasicBlock::iterator 5568 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP, 5569 const SmallVectorImpl<Instruction *> &Inputs) 5570 const { 5571 Instruction *Tentative = &*IP; 5572 while (true) { 5573 bool AllDominate = true; 5574 Instruction *BetterPos = nullptr; 5575 // Don't bother attempting to insert before a catchswitch, their basic block 5576 // cannot have other non-PHI instructions. 5577 if (isa<CatchSwitchInst>(Tentative)) 5578 return IP; 5579 5580 for (Instruction *Inst : Inputs) { 5581 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) { 5582 AllDominate = false; 5583 break; 5584 } 5585 // Attempt to find an insert position in the middle of the block, 5586 // instead of at the end, so that it can be used for other expansions. 5587 if (Tentative->getParent() == Inst->getParent() && 5588 (!BetterPos || !DT.dominates(Inst, BetterPos))) 5589 BetterPos = &*std::next(BasicBlock::iterator(Inst)); 5590 } 5591 if (!AllDominate) 5592 break; 5593 if (BetterPos) 5594 IP = BetterPos->getIterator(); 5595 else 5596 IP = Tentative->getIterator(); 5597 5598 const Loop *IPLoop = LI.getLoopFor(IP->getParent()); 5599 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0; 5600 5601 BasicBlock *IDom; 5602 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) { 5603 if (!Rung) return IP; 5604 Rung = Rung->getIDom(); 5605 if (!Rung) return IP; 5606 IDom = Rung->getBlock(); 5607 5608 // Don't climb into a loop though. 5609 const Loop *IDomLoop = LI.getLoopFor(IDom); 5610 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0; 5611 if (IDomDepth <= IPLoopDepth && 5612 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop)) 5613 break; 5614 } 5615 5616 Tentative = IDom->getTerminator(); 5617 } 5618 5619 return IP; 5620 } 5621 5622 /// Determine an input position which will be dominated by the operands and 5623 /// which will dominate the result. 5624 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand( 5625 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const { 5626 // Collect some instructions which must be dominated by the 5627 // expanding replacement. These must be dominated by any operands that 5628 // will be required in the expansion. 5629 SmallVector<Instruction *, 4> Inputs; 5630 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace)) 5631 Inputs.push_back(I); 5632 if (LU.Kind == LSRUse::ICmpZero) 5633 if (Instruction *I = 5634 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1))) 5635 Inputs.push_back(I); 5636 if (LF.PostIncLoops.count(L)) { 5637 if (LF.isUseFullyOutsideLoop(L)) 5638 Inputs.push_back(L->getLoopLatch()->getTerminator()); 5639 else 5640 Inputs.push_back(IVIncInsertPos); 5641 } 5642 // The expansion must also be dominated by the increment positions of any 5643 // loops it for which it is using post-inc mode. 5644 for (const Loop *PIL : LF.PostIncLoops) { 5645 if (PIL == L) continue; 5646 5647 // Be dominated by the loop exit. 5648 SmallVector<BasicBlock *, 4> ExitingBlocks; 5649 PIL->getExitingBlocks(ExitingBlocks); 5650 if (!ExitingBlocks.empty()) { 5651 BasicBlock *BB = ExitingBlocks[0]; 5652 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i) 5653 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]); 5654 Inputs.push_back(BB->getTerminator()); 5655 } 5656 } 5657 5658 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() 5659 && !isa<DbgInfoIntrinsic>(LowestIP) && 5660 "Insertion point must be a normal instruction"); 5661 5662 // Then, climb up the immediate dominator tree as far as we can go while 5663 // still being dominated by the input positions. 5664 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs); 5665 5666 // Don't insert instructions before PHI nodes. 5667 while (isa<PHINode>(IP)) ++IP; 5668 5669 // Ignore landingpad instructions. 5670 while (IP->isEHPad()) ++IP; 5671 5672 // Ignore debug intrinsics. 5673 while (isa<DbgInfoIntrinsic>(IP)) ++IP; 5674 5675 // Set IP below instructions recently inserted by SCEVExpander. This keeps the 5676 // IP consistent across expansions and allows the previously inserted 5677 // instructions to be reused by subsequent expansion. 5678 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP) 5679 ++IP; 5680 5681 return IP; 5682 } 5683 5684 /// Emit instructions for the leading candidate expression for this LSRUse (this 5685 /// is called "expanding"). 5686 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF, 5687 const Formula &F, BasicBlock::iterator IP, 5688 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const { 5689 if (LU.RigidFormula) 5690 return LF.OperandValToReplace; 5691 5692 // Determine an input position which will be dominated by the operands and 5693 // which will dominate the result. 5694 IP = AdjustInsertPositionForExpand(IP, LF, LU); 5695 Rewriter.setInsertPoint(&*IP); 5696 5697 // Inform the Rewriter if we have a post-increment use, so that it can 5698 // perform an advantageous expansion. 5699 Rewriter.setPostInc(LF.PostIncLoops); 5700 5701 // This is the type that the user actually needs. 5702 Type *OpTy = LF.OperandValToReplace->getType(); 5703 // This will be the type that we'll initially expand to. 5704 Type *Ty = F.getType(); 5705 if (!Ty) 5706 // No type known; just expand directly to the ultimate type. 5707 Ty = OpTy; 5708 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy)) 5709 // Expand directly to the ultimate type if it's the right size. 5710 Ty = OpTy; 5711 // This is the type to do integer arithmetic in. 5712 Type *IntTy = SE.getEffectiveSCEVType(Ty); 5713 5714 // Build up a list of operands to add together to form the full base. 5715 SmallVector<const SCEV *, 8> Ops; 5716 5717 // Expand the BaseRegs portion. 5718 for (const SCEV *Reg : F.BaseRegs) { 5719 assert(!Reg->isZero() && "Zero allocated in a base register!"); 5720 5721 // If we're expanding for a post-inc user, make the post-inc adjustment. 5722 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE); 5723 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr))); 5724 } 5725 5726 // Expand the ScaledReg portion. 5727 Value *ICmpScaledV = nullptr; 5728 if (F.Scale != 0) { 5729 const SCEV *ScaledS = F.ScaledReg; 5730 5731 // If we're expanding for a post-inc user, make the post-inc adjustment. 5732 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops); 5733 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE); 5734 5735 if (LU.Kind == LSRUse::ICmpZero) { 5736 // Expand ScaleReg as if it was part of the base regs. 5737 if (F.Scale == 1) 5738 Ops.push_back( 5739 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr))); 5740 else { 5741 // An interesting way of "folding" with an icmp is to use a negated 5742 // scale, which we'll implement by inserting it into the other operand 5743 // of the icmp. 5744 assert(F.Scale == -1 && 5745 "The only scale supported by ICmpZero uses is -1!"); 5746 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr); 5747 } 5748 } else { 5749 // Otherwise just expand the scaled register and an explicit scale, 5750 // which is expected to be matched as part of the address. 5751 5752 // Flush the operand list to suppress SCEVExpander hoisting address modes. 5753 // Unless the addressing mode will not be folded. 5754 if (!Ops.empty() && LU.Kind == LSRUse::Address && 5755 isAMCompletelyFolded(TTI, LU, F)) { 5756 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr); 5757 Ops.clear(); 5758 Ops.push_back(SE.getUnknown(FullV)); 5759 } 5760 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)); 5761 if (F.Scale != 1) 5762 ScaledS = 5763 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale)); 5764 Ops.push_back(ScaledS); 5765 } 5766 } 5767 5768 // Expand the GV portion. 5769 if (F.BaseGV) { 5770 // Flush the operand list to suppress SCEVExpander hoisting. 5771 if (!Ops.empty()) { 5772 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy); 5773 Ops.clear(); 5774 Ops.push_back(SE.getUnknown(FullV)); 5775 } 5776 Ops.push_back(SE.getUnknown(F.BaseGV)); 5777 } 5778 5779 // Flush the operand list to suppress SCEVExpander hoisting of both folded and 5780 // unfolded offsets. LSR assumes they both live next to their uses. 5781 if (!Ops.empty()) { 5782 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty); 5783 Ops.clear(); 5784 Ops.push_back(SE.getUnknown(FullV)); 5785 } 5786 5787 // FIXME: Are we sure we won't get a mismatch here? Is there a way to bail 5788 // out at this point, or should we generate a SCEV adding together mixed 5789 // offsets? 5790 assert(F.BaseOffset.isCompatibleImmediate(LF.Offset) && 5791 "Expanding mismatched offsets\n"); 5792 // Expand the immediate portion. 5793 Immediate Offset = F.BaseOffset.addUnsigned(LF.Offset); 5794 if (Offset.isNonZero()) { 5795 if (LU.Kind == LSRUse::ICmpZero) { 5796 // The other interesting way of "folding" with an ICmpZero is to use a 5797 // negated immediate. 5798 if (!ICmpScaledV) 5799 ICmpScaledV = 5800 ConstantInt::get(IntTy, -(uint64_t)Offset.getFixedValue()); 5801 else { 5802 Ops.push_back(SE.getUnknown(ICmpScaledV)); 5803 ICmpScaledV = ConstantInt::get(IntTy, Offset.getFixedValue()); 5804 } 5805 } else { 5806 // Just add the immediate values. These again are expected to be matched 5807 // as part of the address. 5808 Ops.push_back(Offset.getUnknownSCEV(SE, IntTy)); 5809 } 5810 } 5811 5812 // Expand the unfolded offset portion. 5813 Immediate UnfoldedOffset = F.UnfoldedOffset; 5814 if (UnfoldedOffset.isNonZero()) { 5815 // Just add the immediate values. 5816 Ops.push_back(UnfoldedOffset.getUnknownSCEV(SE, IntTy)); 5817 } 5818 5819 // Emit instructions summing all the operands. 5820 const SCEV *FullS = Ops.empty() ? 5821 SE.getConstant(IntTy, 0) : 5822 SE.getAddExpr(Ops); 5823 Value *FullV = Rewriter.expandCodeFor(FullS, Ty); 5824 5825 // We're done expanding now, so reset the rewriter. 5826 Rewriter.clearPostInc(); 5827 5828 // An ICmpZero Formula represents an ICmp which we're handling as a 5829 // comparison against zero. Now that we've expanded an expression for that 5830 // form, update the ICmp's other operand. 5831 if (LU.Kind == LSRUse::ICmpZero) { 5832 ICmpInst *CI = cast<ICmpInst>(LF.UserInst); 5833 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1))) 5834 DeadInsts.emplace_back(OperandIsInstr); 5835 assert(!F.BaseGV && "ICmp does not support folding a global value and " 5836 "a scale at the same time!"); 5837 if (F.Scale == -1) { 5838 if (ICmpScaledV->getType() != OpTy) { 5839 Instruction *Cast = CastInst::Create( 5840 CastInst::getCastOpcode(ICmpScaledV, false, OpTy, false), 5841 ICmpScaledV, OpTy, "tmp", CI->getIterator()); 5842 ICmpScaledV = Cast; 5843 } 5844 CI->setOperand(1, ICmpScaledV); 5845 } else { 5846 // A scale of 1 means that the scale has been expanded as part of the 5847 // base regs. 5848 assert((F.Scale == 0 || F.Scale == 1) && 5849 "ICmp does not support folding a global value and " 5850 "a scale at the same time!"); 5851 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy), 5852 -(uint64_t)Offset.getFixedValue()); 5853 if (C->getType() != OpTy) { 5854 C = ConstantFoldCastOperand( 5855 CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy, 5856 CI->getDataLayout()); 5857 assert(C && "Cast of ConstantInt should have folded"); 5858 } 5859 5860 CI->setOperand(1, C); 5861 } 5862 } 5863 5864 return FullV; 5865 } 5866 5867 /// Helper for Rewrite. PHI nodes are special because the use of their operands 5868 /// effectively happens in their predecessor blocks, so the expression may need 5869 /// to be expanded in multiple places. 5870 void LSRInstance::RewriteForPHI(PHINode *PN, const LSRUse &LU, 5871 const LSRFixup &LF, const Formula &F, 5872 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 5873 DenseMap<BasicBlock *, Value *> Inserted; 5874 5875 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5876 if (PN->getIncomingValue(i) == LF.OperandValToReplace) { 5877 bool needUpdateFixups = false; 5878 BasicBlock *BB = PN->getIncomingBlock(i); 5879 5880 // If this is a critical edge, split the edge so that we do not insert 5881 // the code on all predecessor/successor paths. We do this unless this 5882 // is the canonical backedge for this loop, which complicates post-inc 5883 // users. 5884 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 && 5885 !isa<IndirectBrInst>(BB->getTerminator()) && 5886 !isa<CatchSwitchInst>(BB->getTerminator())) { 5887 BasicBlock *Parent = PN->getParent(); 5888 Loop *PNLoop = LI.getLoopFor(Parent); 5889 if (!PNLoop || Parent != PNLoop->getHeader()) { 5890 // Split the critical edge. 5891 BasicBlock *NewBB = nullptr; 5892 if (!Parent->isLandingPad()) { 5893 NewBB = 5894 SplitCriticalEdge(BB, Parent, 5895 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU) 5896 .setMergeIdenticalEdges() 5897 .setKeepOneInputPHIs()); 5898 } else { 5899 SmallVector<BasicBlock*, 2> NewBBs; 5900 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); 5901 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI); 5902 NewBB = NewBBs[0]; 5903 } 5904 // If NewBB==NULL, then SplitCriticalEdge refused to split because all 5905 // phi predecessors are identical. The simple thing to do is skip 5906 // splitting in this case rather than complicate the API. 5907 if (NewBB) { 5908 // If PN is outside of the loop and BB is in the loop, we want to 5909 // move the block to be immediately before the PHI block, not 5910 // immediately after BB. 5911 if (L->contains(BB) && !L->contains(PN)) 5912 NewBB->moveBefore(PN->getParent()); 5913 5914 // Splitting the edge can reduce the number of PHI entries we have. 5915 e = PN->getNumIncomingValues(); 5916 BB = NewBB; 5917 i = PN->getBasicBlockIndex(BB); 5918 5919 needUpdateFixups = true; 5920 } 5921 } 5922 } 5923 5924 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair = 5925 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr))); 5926 if (!Pair.second) 5927 PN->setIncomingValue(i, Pair.first->second); 5928 else { 5929 Value *FullV = 5930 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts); 5931 5932 // If this is reuse-by-noop-cast, insert the noop cast. 5933 Type *OpTy = LF.OperandValToReplace->getType(); 5934 if (FullV->getType() != OpTy) 5935 FullV = CastInst::Create( 5936 CastInst::getCastOpcode(FullV, false, OpTy, false), FullV, 5937 LF.OperandValToReplace->getType(), "tmp", 5938 BB->getTerminator()->getIterator()); 5939 5940 // If the incoming block for this value is not in the loop, it means the 5941 // current PHI is not in a loop exit, so we must create a LCSSA PHI for 5942 // the inserted value. 5943 if (auto *I = dyn_cast<Instruction>(FullV)) 5944 if (L->contains(I) && !L->contains(BB)) 5945 InsertedNonLCSSAInsts.insert(I); 5946 5947 PN->setIncomingValue(i, FullV); 5948 Pair.first->second = FullV; 5949 } 5950 5951 // If LSR splits critical edge and phi node has other pending 5952 // fixup operands, we need to update those pending fixups. Otherwise 5953 // formulae will not be implemented completely and some instructions 5954 // will not be eliminated. 5955 if (needUpdateFixups) { 5956 for (LSRUse &LU : Uses) 5957 for (LSRFixup &Fixup : LU.Fixups) 5958 // If fixup is supposed to rewrite some operand in the phi 5959 // that was just updated, it may be already moved to 5960 // another phi node. Such fixup requires update. 5961 if (Fixup.UserInst == PN) { 5962 // Check if the operand we try to replace still exists in the 5963 // original phi. 5964 bool foundInOriginalPHI = false; 5965 for (const auto &val : PN->incoming_values()) 5966 if (val == Fixup.OperandValToReplace) { 5967 foundInOriginalPHI = true; 5968 break; 5969 } 5970 5971 // If fixup operand found in original PHI - nothing to do. 5972 if (foundInOriginalPHI) 5973 continue; 5974 5975 // Otherwise it might be moved to another PHI and requires update. 5976 // If fixup operand not found in any of the incoming blocks that 5977 // means we have already rewritten it - nothing to do. 5978 for (const auto &Block : PN->blocks()) 5979 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I); 5980 ++I) { 5981 PHINode *NewPN = cast<PHINode>(I); 5982 for (const auto &val : NewPN->incoming_values()) 5983 if (val == Fixup.OperandValToReplace) 5984 Fixup.UserInst = NewPN; 5985 } 5986 } 5987 } 5988 } 5989 } 5990 5991 /// Emit instructions for the leading candidate expression for this LSRUse (this 5992 /// is called "expanding"), and update the UserInst to reference the newly 5993 /// expanded value. 5994 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF, 5995 const Formula &F, 5996 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 5997 // First, find an insertion point that dominates UserInst. For PHI nodes, 5998 // find the nearest block which dominates all the relevant uses. 5999 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) { 6000 RewriteForPHI(PN, LU, LF, F, DeadInsts); 6001 } else { 6002 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts); 6003 6004 // If this is reuse-by-noop-cast, insert the noop cast. 6005 Type *OpTy = LF.OperandValToReplace->getType(); 6006 if (FullV->getType() != OpTy) { 6007 Instruction *Cast = 6008 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false), 6009 FullV, OpTy, "tmp", LF.UserInst->getIterator()); 6010 FullV = Cast; 6011 } 6012 6013 // Update the user. ICmpZero is handled specially here (for now) because 6014 // Expand may have updated one of the operands of the icmp already, and 6015 // its new value may happen to be equal to LF.OperandValToReplace, in 6016 // which case doing replaceUsesOfWith leads to replacing both operands 6017 // with the same value. TODO: Reorganize this. 6018 if (LU.Kind == LSRUse::ICmpZero) 6019 LF.UserInst->setOperand(0, FullV); 6020 else 6021 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV); 6022 } 6023 6024 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace)) 6025 DeadInsts.emplace_back(OperandIsInstr); 6026 } 6027 6028 // Trying to hoist the IVInc to loop header if all IVInc users are in 6029 // the loop header. It will help backend to generate post index load/store 6030 // when the latch block is different from loop header block. 6031 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup, 6032 const LSRUse &LU, Instruction *IVIncInsertPos, 6033 Loop *L) { 6034 if (LU.Kind != LSRUse::Address) 6035 return false; 6036 6037 // For now this code do the conservative optimization, only work for 6038 // the header block. Later we can hoist the IVInc to the block post 6039 // dominate all users. 6040 BasicBlock *LHeader = L->getHeader(); 6041 if (IVIncInsertPos->getParent() == LHeader) 6042 return false; 6043 6044 if (!Fixup.OperandValToReplace || 6045 any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) { 6046 Instruction *UI = cast<Instruction>(U); 6047 return UI->getParent() != LHeader; 6048 })) 6049 return false; 6050 6051 Instruction *I = Fixup.UserInst; 6052 Type *Ty = I->getType(); 6053 return Ty->isIntegerTy() && 6054 ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) || 6055 (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty))); 6056 } 6057 6058 /// Rewrite all the fixup locations with new values, following the chosen 6059 /// solution. 6060 void LSRInstance::ImplementSolution( 6061 const SmallVectorImpl<const Formula *> &Solution) { 6062 // Keep track of instructions we may have made dead, so that 6063 // we can remove them after we are done working. 6064 SmallVector<WeakTrackingVH, 16> DeadInsts; 6065 6066 // Mark phi nodes that terminate chains so the expander tries to reuse them. 6067 for (const IVChain &Chain : IVChainVec) { 6068 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst())) 6069 Rewriter.setChainedPhi(PN); 6070 } 6071 6072 // Expand the new value definitions and update the users. 6073 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) 6074 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) { 6075 Instruction *InsertPos = 6076 canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L) 6077 ? L->getHeader()->getTerminator() 6078 : IVIncInsertPos; 6079 Rewriter.setIVIncInsertPos(L, InsertPos); 6080 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts); 6081 Changed = true; 6082 } 6083 6084 auto InsertedInsts = InsertedNonLCSSAInsts.takeVector(); 6085 formLCSSAForInstructions(InsertedInsts, DT, LI, &SE); 6086 6087 for (const IVChain &Chain : IVChainVec) { 6088 GenerateIVChain(Chain, DeadInsts); 6089 Changed = true; 6090 } 6091 6092 for (const WeakVH &IV : Rewriter.getInsertedIVs()) 6093 if (IV && dyn_cast<Instruction>(&*IV)->getParent()) 6094 ScalarEvolutionIVs.push_back(IV); 6095 6096 // Clean up after ourselves. This must be done before deleting any 6097 // instructions. 6098 Rewriter.clear(); 6099 6100 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, 6101 &TLI, MSSAU); 6102 6103 // In our cost analysis above, we assume that each addrec consumes exactly 6104 // one register, and arrange to have increments inserted just before the 6105 // latch to maximimize the chance this is true. However, if we reused 6106 // existing IVs, we now need to move the increments to match our 6107 // expectations. Otherwise, our cost modeling results in us having a 6108 // chosen a non-optimal result for the actual schedule. (And yes, this 6109 // scheduling decision does impact later codegen.) 6110 for (PHINode &PN : L->getHeader()->phis()) { 6111 BinaryOperator *BO = nullptr; 6112 Value *Start = nullptr, *Step = nullptr; 6113 if (!matchSimpleRecurrence(&PN, BO, Start, Step)) 6114 continue; 6115 6116 switch (BO->getOpcode()) { 6117 case Instruction::Sub: 6118 if (BO->getOperand(0) != &PN) 6119 // sub is non-commutative - match handling elsewhere in LSR 6120 continue; 6121 break; 6122 case Instruction::Add: 6123 break; 6124 default: 6125 continue; 6126 }; 6127 6128 if (!isa<Constant>(Step)) 6129 // If not a constant step, might increase register pressure 6130 // (We assume constants have been canonicalized to RHS) 6131 continue; 6132 6133 if (BO->getParent() == IVIncInsertPos->getParent()) 6134 // Only bother moving across blocks. Isel can handle block local case. 6135 continue; 6136 6137 // Can we legally schedule inc at the desired point? 6138 if (!llvm::all_of(BO->uses(), 6139 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);})) 6140 continue; 6141 BO->moveBefore(IVIncInsertPos->getIterator()); 6142 Changed = true; 6143 } 6144 6145 6146 } 6147 6148 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, 6149 DominatorTree &DT, LoopInfo &LI, 6150 const TargetTransformInfo &TTI, AssumptionCache &AC, 6151 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU) 6152 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L), 6153 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0 6154 ? PreferredAddresingMode 6155 : TTI.getPreferredAddressingMode(L, &SE)), 6156 Rewriter(SE, L->getHeader()->getDataLayout(), "lsr", false), 6157 BaselineCost(L, SE, TTI, AMK) { 6158 // If LoopSimplify form is not available, stay out of trouble. 6159 if (!L->isLoopSimplifyForm()) 6160 return; 6161 6162 // If there's no interesting work to be done, bail early. 6163 if (IU.empty()) return; 6164 6165 // If there's too much analysis to be done, bail early. We won't be able to 6166 // model the problem anyway. 6167 unsigned NumUsers = 0; 6168 for (const IVStrideUse &U : IU) { 6169 if (++NumUsers > MaxIVUsers) { 6170 (void)U; 6171 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U 6172 << "\n"); 6173 return; 6174 } 6175 // Bail out if we have a PHI on an EHPad that gets a value from a 6176 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is 6177 // no good place to stick any instructions. 6178 if (auto *PN = dyn_cast<PHINode>(U.getUser())) { 6179 auto FirstNonPHI = PN->getParent()->getFirstNonPHIIt(); 6180 if (isa<FuncletPadInst>(FirstNonPHI) || 6181 isa<CatchSwitchInst>(FirstNonPHI)) 6182 for (BasicBlock *PredBB : PN->blocks()) 6183 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHIIt())) 6184 return; 6185 } 6186 } 6187 6188 LLVM_DEBUG(dbgs() << "\nLSR on loop "; 6189 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false); 6190 dbgs() << ":\n"); 6191 6192 // Configure SCEVExpander already now, so the correct mode is used for 6193 // isSafeToExpand() checks. 6194 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 6195 Rewriter.setDebugType(DEBUG_TYPE); 6196 #endif 6197 Rewriter.disableCanonicalMode(); 6198 Rewriter.enableLSRMode(); 6199 6200 // First, perform some low-level loop optimizations. 6201 OptimizeShadowIV(); 6202 OptimizeLoopTermCond(); 6203 6204 // If loop preparation eliminates all interesting IV users, bail. 6205 if (IU.empty()) return; 6206 6207 // Skip nested loops until we can model them better with formulae. 6208 if (!L->isInnermost()) { 6209 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n"); 6210 return; 6211 } 6212 6213 // Start collecting data and preparing for the solver. 6214 // If number of registers is not the major cost, we cannot benefit from the 6215 // current profitable chain optimization which is based on number of 6216 // registers. 6217 // FIXME: add profitable chain optimization for other kinds major cost, for 6218 // example number of instructions. 6219 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain) 6220 CollectChains(); 6221 CollectInterestingTypesAndFactors(); 6222 CollectFixupsAndInitialFormulae(); 6223 CollectLoopInvariantFixupsAndFormulae(); 6224 6225 if (Uses.empty()) 6226 return; 6227 6228 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n"; 6229 print_uses(dbgs())); 6230 LLVM_DEBUG(dbgs() << "The baseline solution requires "; 6231 BaselineCost.print(dbgs()); dbgs() << "\n"); 6232 6233 // Now use the reuse data to generate a bunch of interesting ways 6234 // to formulate the values needed for the uses. 6235 GenerateAllReuseFormulae(); 6236 6237 FilterOutUndesirableDedicatedRegisters(); 6238 NarrowSearchSpaceUsingHeuristics(); 6239 6240 SmallVector<const Formula *, 8> Solution; 6241 Solve(Solution); 6242 6243 // Release memory that is no longer needed. 6244 Factors.clear(); 6245 Types.clear(); 6246 RegUses.clear(); 6247 6248 if (Solution.empty()) 6249 return; 6250 6251 #ifndef NDEBUG 6252 // Formulae should be legal. 6253 for (const LSRUse &LU : Uses) { 6254 for (const Formula &F : LU.Formulae) 6255 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, 6256 F) && "Illegal formula generated!"); 6257 }; 6258 #endif 6259 6260 // Now that we've decided what we want, make it so. 6261 ImplementSolution(Solution); 6262 } 6263 6264 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 6265 void LSRInstance::print_factors_and_types(raw_ostream &OS) const { 6266 if (Factors.empty() && Types.empty()) return; 6267 6268 OS << "LSR has identified the following interesting factors and types: "; 6269 bool First = true; 6270 6271 for (int64_t Factor : Factors) { 6272 if (!First) OS << ", "; 6273 First = false; 6274 OS << '*' << Factor; 6275 } 6276 6277 for (Type *Ty : Types) { 6278 if (!First) OS << ", "; 6279 First = false; 6280 OS << '(' << *Ty << ')'; 6281 } 6282 OS << '\n'; 6283 } 6284 6285 void LSRInstance::print_fixups(raw_ostream &OS) const { 6286 OS << "LSR is examining the following fixup sites:\n"; 6287 for (const LSRUse &LU : Uses) 6288 for (const LSRFixup &LF : LU.Fixups) { 6289 dbgs() << " "; 6290 LF.print(OS); 6291 OS << '\n'; 6292 } 6293 } 6294 6295 void LSRInstance::print_uses(raw_ostream &OS) const { 6296 OS << "LSR is examining the following uses:\n"; 6297 for (const LSRUse &LU : Uses) { 6298 dbgs() << " "; 6299 LU.print(OS); 6300 OS << '\n'; 6301 for (const Formula &F : LU.Formulae) { 6302 OS << " "; 6303 F.print(OS); 6304 OS << '\n'; 6305 } 6306 } 6307 } 6308 6309 void LSRInstance::print(raw_ostream &OS) const { 6310 print_factors_and_types(OS); 6311 print_fixups(OS); 6312 print_uses(OS); 6313 } 6314 6315 LLVM_DUMP_METHOD void LSRInstance::dump() const { 6316 print(errs()); errs() << '\n'; 6317 } 6318 #endif 6319 6320 namespace { 6321 6322 class LoopStrengthReduce : public LoopPass { 6323 public: 6324 static char ID; // Pass ID, replacement for typeid 6325 6326 LoopStrengthReduce(); 6327 6328 private: 6329 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 6330 void getAnalysisUsage(AnalysisUsage &AU) const override; 6331 }; 6332 6333 } // end anonymous namespace 6334 6335 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) { 6336 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry()); 6337 } 6338 6339 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const { 6340 // We split critical edges, so we change the CFG. However, we do update 6341 // many analyses if they are around. 6342 AU.addPreservedID(LoopSimplifyID); 6343 6344 AU.addRequired<LoopInfoWrapperPass>(); 6345 AU.addPreserved<LoopInfoWrapperPass>(); 6346 AU.addRequiredID(LoopSimplifyID); 6347 AU.addRequired<DominatorTreeWrapperPass>(); 6348 AU.addPreserved<DominatorTreeWrapperPass>(); 6349 AU.addRequired<ScalarEvolutionWrapperPass>(); 6350 AU.addPreserved<ScalarEvolutionWrapperPass>(); 6351 AU.addRequired<AssumptionCacheTracker>(); 6352 AU.addRequired<TargetLibraryInfoWrapperPass>(); 6353 // Requiring LoopSimplify a second time here prevents IVUsers from running 6354 // twice, since LoopSimplify was invalidated by running ScalarEvolution. 6355 AU.addRequiredID(LoopSimplifyID); 6356 AU.addRequired<IVUsersWrapperPass>(); 6357 AU.addPreserved<IVUsersWrapperPass>(); 6358 AU.addRequired<TargetTransformInfoWrapperPass>(); 6359 AU.addPreserved<MemorySSAWrapperPass>(); 6360 } 6361 6362 namespace { 6363 6364 /// Enables more convenient iteration over a DWARF expression vector. 6365 static iterator_range<llvm::DIExpression::expr_op_iterator> 6366 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) { 6367 llvm::DIExpression::expr_op_iterator Begin = 6368 llvm::DIExpression::expr_op_iterator(Expr.begin()); 6369 llvm::DIExpression::expr_op_iterator End = 6370 llvm::DIExpression::expr_op_iterator(Expr.end()); 6371 return {Begin, End}; 6372 } 6373 6374 struct SCEVDbgValueBuilder { 6375 SCEVDbgValueBuilder() = default; 6376 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); } 6377 6378 void clone(const SCEVDbgValueBuilder &Base) { 6379 LocationOps = Base.LocationOps; 6380 Expr = Base.Expr; 6381 } 6382 6383 void clear() { 6384 LocationOps.clear(); 6385 Expr.clear(); 6386 } 6387 6388 /// The DIExpression as we translate the SCEV. 6389 SmallVector<uint64_t, 6> Expr; 6390 /// The location ops of the DIExpression. 6391 SmallVector<Value *, 2> LocationOps; 6392 6393 void pushOperator(uint64_t Op) { Expr.push_back(Op); } 6394 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); } 6395 6396 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value 6397 /// in the set of values referenced by the expression. 6398 void pushLocation(llvm::Value *V) { 6399 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg); 6400 auto *It = llvm::find(LocationOps, V); 6401 unsigned ArgIndex = 0; 6402 if (It != LocationOps.end()) { 6403 ArgIndex = std::distance(LocationOps.begin(), It); 6404 } else { 6405 ArgIndex = LocationOps.size(); 6406 LocationOps.push_back(V); 6407 } 6408 Expr.push_back(ArgIndex); 6409 } 6410 6411 void pushValue(const SCEVUnknown *U) { 6412 llvm::Value *V = cast<SCEVUnknown>(U)->getValue(); 6413 pushLocation(V); 6414 } 6415 6416 bool pushConst(const SCEVConstant *C) { 6417 if (C->getAPInt().getSignificantBits() > 64) 6418 return false; 6419 Expr.push_back(llvm::dwarf::DW_OP_consts); 6420 Expr.push_back(C->getAPInt().getSExtValue()); 6421 return true; 6422 } 6423 6424 // Iterating the expression as DWARF ops is convenient when updating 6425 // DWARF_OP_LLVM_args. 6426 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() { 6427 return ToDwarfOpIter(Expr); 6428 } 6429 6430 /// Several SCEV types are sequences of the same arithmetic operator applied 6431 /// to constants and values that may be extended or truncated. 6432 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr, 6433 uint64_t DwarfOp) { 6434 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && 6435 "Expected arithmetic SCEV type"); 6436 bool Success = true; 6437 unsigned EmitOperator = 0; 6438 for (const auto &Op : CommExpr->operands()) { 6439 Success &= pushSCEV(Op); 6440 6441 if (EmitOperator >= 1) 6442 pushOperator(DwarfOp); 6443 ++EmitOperator; 6444 } 6445 return Success; 6446 } 6447 6448 // TODO: Identify and omit noop casts. 6449 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) { 6450 const llvm::SCEV *Inner = C->getOperand(0); 6451 const llvm::Type *Type = C->getType(); 6452 uint64_t ToWidth = Type->getIntegerBitWidth(); 6453 bool Success = pushSCEV(Inner); 6454 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth, 6455 IsSigned ? llvm::dwarf::DW_ATE_signed 6456 : llvm::dwarf::DW_ATE_unsigned}; 6457 for (const auto &Op : CastOps) 6458 pushOperator(Op); 6459 return Success; 6460 } 6461 6462 // TODO: MinMax - although these haven't been encountered in the test suite. 6463 bool pushSCEV(const llvm::SCEV *S) { 6464 bool Success = true; 6465 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) { 6466 Success &= pushConst(StartInt); 6467 6468 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6469 if (!U->getValue()) 6470 return false; 6471 pushLocation(U->getValue()); 6472 6473 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) { 6474 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul); 6475 6476 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6477 Success &= pushSCEV(UDiv->getLHS()); 6478 Success &= pushSCEV(UDiv->getRHS()); 6479 pushOperator(llvm::dwarf::DW_OP_div); 6480 6481 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) { 6482 // Assert if a new and unknown SCEVCastEXpr type is encountered. 6483 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || 6484 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && 6485 "Unexpected cast type in SCEV."); 6486 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast))); 6487 6488 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) { 6489 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus); 6490 6491 } else if (isa<SCEVAddRecExpr>(S)) { 6492 // Nested SCEVAddRecExpr are generated by nested loops and are currently 6493 // unsupported. 6494 return false; 6495 6496 } else { 6497 return false; 6498 } 6499 return Success; 6500 } 6501 6502 /// Return true if the combination of arithmetic operator and underlying 6503 /// SCEV constant value is an identity function. 6504 bool isIdentityFunction(uint64_t Op, const SCEV *S) { 6505 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 6506 if (C->getAPInt().getSignificantBits() > 64) 6507 return false; 6508 int64_t I = C->getAPInt().getSExtValue(); 6509 switch (Op) { 6510 case llvm::dwarf::DW_OP_plus: 6511 case llvm::dwarf::DW_OP_minus: 6512 return I == 0; 6513 case llvm::dwarf::DW_OP_mul: 6514 case llvm::dwarf::DW_OP_div: 6515 return I == 1; 6516 } 6517 } 6518 return false; 6519 } 6520 6521 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6522 /// builder's expression stack. The stack should already contain an 6523 /// expression for the iteration count, so that it can be multiplied by 6524 /// the stride and added to the start. 6525 /// Components of the expression are omitted if they are an identity function. 6526 /// Chain (non-affine) SCEVs are not supported. 6527 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) { 6528 assert(SAR.isAffine() && "Expected affine SCEV"); 6529 // TODO: Is this check needed? 6530 if (isa<SCEVAddRecExpr>(SAR.getStart())) 6531 return false; 6532 6533 const SCEV *Start = SAR.getStart(); 6534 const SCEV *Stride = SAR.getStepRecurrence(SE); 6535 6536 // Skip pushing arithmetic noops. 6537 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) { 6538 if (!pushSCEV(Stride)) 6539 return false; 6540 pushOperator(llvm::dwarf::DW_OP_mul); 6541 } 6542 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) { 6543 if (!pushSCEV(Start)) 6544 return false; 6545 pushOperator(llvm::dwarf::DW_OP_plus); 6546 } 6547 return true; 6548 } 6549 6550 /// Create an expression that is an offset from a value (usually the IV). 6551 void createOffsetExpr(int64_t Offset, Value *OffsetValue) { 6552 pushLocation(OffsetValue); 6553 DIExpression::appendOffset(Expr, Offset); 6554 LLVM_DEBUG( 6555 dbgs() << "scev-salvage: Generated IV offset expression. Offset: " 6556 << std::to_string(Offset) << "\n"); 6557 } 6558 6559 /// Combine a translation of the SCEV and the IV to create an expression that 6560 /// recovers a location's value. 6561 /// returns true if an expression was created. 6562 bool createIterCountExpr(const SCEV *S, 6563 const SCEVDbgValueBuilder &IterationCount, 6564 ScalarEvolution &SE) { 6565 // SCEVs for SSA values are most frquently of the form 6566 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..). 6567 // This is because %a is a PHI node that is not the IV. However, these 6568 // SCEVs have not been observed to result in debuginfo-lossy optimisations, 6569 // so its not expected this point will be reached. 6570 if (!isa<SCEVAddRecExpr>(S)) 6571 return false; 6572 6573 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S 6574 << '\n'); 6575 6576 const auto *Rec = cast<SCEVAddRecExpr>(S); 6577 if (!Rec->isAffine()) 6578 return false; 6579 6580 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6581 return false; 6582 6583 // Initialise a new builder with the iteration count expression. In 6584 // combination with the value's SCEV this enables recovery. 6585 clone(IterationCount); 6586 if (!SCEVToValueExpr(*Rec, SE)) 6587 return false; 6588 6589 return true; 6590 } 6591 6592 /// Convert a SCEV of a value to a DIExpression that is pushed onto the 6593 /// builder's expression stack. The stack should already contain an 6594 /// expression for the iteration count, so that it can be multiplied by 6595 /// the stride and added to the start. 6596 /// Components of the expression are omitted if they are an identity function. 6597 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR, 6598 ScalarEvolution &SE) { 6599 assert(SAR.isAffine() && "Expected affine SCEV"); 6600 if (isa<SCEVAddRecExpr>(SAR.getStart())) { 6601 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: " 6602 << SAR << '\n'); 6603 return false; 6604 } 6605 const SCEV *Start = SAR.getStart(); 6606 const SCEV *Stride = SAR.getStepRecurrence(SE); 6607 6608 // Skip pushing arithmetic noops. 6609 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) { 6610 if (!pushSCEV(Start)) 6611 return false; 6612 pushOperator(llvm::dwarf::DW_OP_minus); 6613 } 6614 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) { 6615 if (!pushSCEV(Stride)) 6616 return false; 6617 pushOperator(llvm::dwarf::DW_OP_div); 6618 } 6619 return true; 6620 } 6621 6622 // Append the current expression and locations to a location list and an 6623 // expression list. Modify the DW_OP_LLVM_arg indexes to account for 6624 // the locations already present in the destination list. 6625 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr, 6626 SmallVectorImpl<Value *> &DestLocations) { 6627 assert(!DestLocations.empty() && 6628 "Expected the locations vector to contain the IV"); 6629 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be 6630 // modified to account for the locations already in the destination vector. 6631 // All builders contain the IV as the first location op. 6632 assert(!LocationOps.empty() && 6633 "Expected the location ops to contain the IV."); 6634 // DestIndexMap[n] contains the index in DestLocations for the nth 6635 // location in this SCEVDbgValueBuilder. 6636 SmallVector<uint64_t, 2> DestIndexMap; 6637 for (const auto &Op : LocationOps) { 6638 auto It = find(DestLocations, Op); 6639 if (It != DestLocations.end()) { 6640 // Location already exists in DestLocations, reuse existing ArgIndex. 6641 DestIndexMap.push_back(std::distance(DestLocations.begin(), It)); 6642 continue; 6643 } 6644 // Location is not in DestLocations, add it. 6645 DestIndexMap.push_back(DestLocations.size()); 6646 DestLocations.push_back(Op); 6647 } 6648 6649 for (const auto &Op : expr_ops()) { 6650 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6651 Op.appendToVector(DestExpr); 6652 continue; 6653 } 6654 6655 DestExpr.push_back(dwarf::DW_OP_LLVM_arg); 6656 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV, 6657 // DestIndexMap[n] contains its new index in DestLocations. 6658 uint64_t NewIndex = DestIndexMap[Op.getArg(0)]; 6659 DestExpr.push_back(NewIndex); 6660 } 6661 } 6662 }; 6663 6664 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs 6665 /// and DIExpression. 6666 struct DVIRecoveryRec { 6667 DVIRecoveryRec(DbgValueInst *DbgValue) 6668 : DbgRef(DbgValue), Expr(DbgValue->getExpression()), 6669 HadLocationArgList(false) {} 6670 DVIRecoveryRec(DbgVariableRecord *DVR) 6671 : DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {} 6672 6673 PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef; 6674 DIExpression *Expr; 6675 bool HadLocationArgList; 6676 SmallVector<WeakVH, 2> LocationOps; 6677 SmallVector<const llvm::SCEV *, 2> SCEVs; 6678 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs; 6679 6680 void clear() { 6681 for (auto &RE : RecoveryExprs) 6682 RE.reset(); 6683 RecoveryExprs.clear(); 6684 } 6685 6686 ~DVIRecoveryRec() { clear(); } 6687 }; 6688 } // namespace 6689 6690 /// Returns the total number of DW_OP_llvm_arg operands in the expression. 6691 /// This helps in determining if a DIArglist is necessary or can be omitted from 6692 /// the dbg.value. 6693 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) { 6694 auto expr_ops = ToDwarfOpIter(Expr); 6695 unsigned Count = 0; 6696 for (auto Op : expr_ops) 6697 if (Op.getOp() == dwarf::DW_OP_LLVM_arg) 6698 Count++; 6699 return Count; 6700 } 6701 6702 /// Overwrites DVI with the location and Ops as the DIExpression. This will 6703 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands, 6704 /// because a DIArglist is not created for the first argument of the dbg.value. 6705 template <typename T> 6706 static void updateDVIWithLocation(T &DbgVal, Value *Location, 6707 SmallVectorImpl<uint64_t> &Ops) { 6708 assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not " 6709 "contain any DW_OP_llvm_arg operands."); 6710 DbgVal.setRawLocation(ValueAsMetadata::get(Location)); 6711 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6712 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6713 } 6714 6715 /// Overwrite DVI with locations placed into a DIArglist. 6716 template <typename T> 6717 static void updateDVIWithLocations(T &DbgVal, 6718 SmallVectorImpl<Value *> &Locations, 6719 SmallVectorImpl<uint64_t> &Ops) { 6720 assert(numLLVMArgOps(Ops) != 0 && 6721 "Expected expression that references DIArglist locations using " 6722 "DW_OP_llvm_arg operands."); 6723 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6724 for (Value *V : Locations) 6725 MetadataLocs.push_back(ValueAsMetadata::get(V)); 6726 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6727 DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef)); 6728 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops)); 6729 } 6730 6731 /// Write the new expression and new location ops for the dbg.value. If possible 6732 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This 6733 /// can be omitted if: 6734 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg. 6735 /// 2. The DW_OP_LLVM_arg is the first operand in the expression. 6736 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec, 6737 SmallVectorImpl<Value *> &NewLocationOps, 6738 SmallVectorImpl<uint64_t> &NewExpr) { 6739 auto UpdateDbgValueInstImpl = [&](auto *DbgVal) { 6740 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr); 6741 if (NumLLVMArgs == 0) { 6742 // Location assumed to be on the stack. 6743 updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr); 6744 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) { 6745 // There is only a single DW_OP_llvm_arg at the start of the expression, 6746 // so it can be omitted along with DIArglist. 6747 assert(NewExpr[1] == 0 && 6748 "Lone LLVM_arg in a DIExpression should refer to location-op 0."); 6749 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2)); 6750 updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps); 6751 } else { 6752 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary. 6753 updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr); 6754 } 6755 6756 // If the DIExpression was previously empty then add the stack terminator. 6757 // Non-empty expressions have only had elements inserted into them and so 6758 // the terminator should already be present e.g. stack_value or fragment. 6759 DIExpression *SalvageExpr = DbgVal->getExpression(); 6760 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) { 6761 SalvageExpr = 6762 DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value}); 6763 DbgVal->setExpression(SalvageExpr); 6764 } 6765 }; 6766 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6767 UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6768 else 6769 UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6770 } 6771 6772 /// Cached location ops may be erased during LSR, in which case a poison is 6773 /// required when restoring from the cache. The type of that location is no 6774 /// longer available, so just use int8. The poison will be replaced by one or 6775 /// more locations later when a SCEVDbgValueBuilder selects alternative 6776 /// locations to use for the salvage. 6777 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) { 6778 return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C)); 6779 } 6780 6781 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values. 6782 static void restorePreTransformState(DVIRecoveryRec &DVIRec) { 6783 auto RestorePreTransformStateImpl = [&](auto *DbgVal) { 6784 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n" 6785 << "scev-salvage: post-LSR: " << *DbgVal << '\n'); 6786 assert(DVIRec.Expr && "Expected an expression"); 6787 DbgVal->setExpression(DVIRec.Expr); 6788 6789 // Even a single location-op may be inside a DIArgList and referenced with 6790 // DW_OP_LLVM_arg, which is valid only with a DIArgList. 6791 if (!DVIRec.HadLocationArgList) { 6792 assert(DVIRec.LocationOps.size() == 1 && 6793 "Unexpected number of location ops."); 6794 // LSR's unsuccessful salvage attempt may have added DIArgList, which in 6795 // this case was not present before, so force the location back to a 6796 // single uncontained Value. 6797 Value *CachedValue = 6798 getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext()); 6799 DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue)); 6800 } else { 6801 SmallVector<ValueAsMetadata *, 3> MetadataLocs; 6802 for (WeakVH VH : DVIRec.LocationOps) { 6803 Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext()); 6804 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue)); 6805 } 6806 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs); 6807 DbgVal->setRawLocation( 6808 llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef)); 6809 } 6810 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n'); 6811 }; 6812 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6813 RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef)); 6814 else 6815 RestorePreTransformStateImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef)); 6816 } 6817 6818 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE, 6819 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec, 6820 const SCEV *SCEVInductionVar, 6821 SCEVDbgValueBuilder IterCountExpr) { 6822 6823 if (isa<DbgValueInst *>(DVIRec.DbgRef) 6824 ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation() 6825 : !cast<DbgVariableRecord *>(DVIRec.DbgRef)->isKillLocation()) 6826 return false; 6827 6828 // LSR may have caused several changes to the dbg.value in the failed salvage 6829 // attempt. So restore the DIExpression, the location ops and also the 6830 // location ops format, which is always DIArglist for multiple ops, but only 6831 // sometimes for a single op. 6832 restorePreTransformState(DVIRec); 6833 6834 // LocationOpIndexMap[i] will store the post-LSR location index of 6835 // the non-optimised out location at pre-LSR index i. 6836 SmallVector<int64_t, 2> LocationOpIndexMap; 6837 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1); 6838 SmallVector<Value *, 2> NewLocationOps; 6839 NewLocationOps.push_back(LSRInductionVar); 6840 6841 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) { 6842 WeakVH VH = DVIRec.LocationOps[i]; 6843 // Place the locations not optimised out in the list first, avoiding 6844 // inserts later. The map is used to update the DIExpression's 6845 // DW_OP_LLVM_arg arguments as the expression is updated. 6846 if (VH && !isa<UndefValue>(VH)) { 6847 NewLocationOps.push_back(VH); 6848 LocationOpIndexMap[i] = NewLocationOps.size() - 1; 6849 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i 6850 << " now at index " << LocationOpIndexMap[i] << "\n"); 6851 continue; 6852 } 6853 6854 // It's possible that a value referred to in the SCEV may have been 6855 // optimised out by LSR. 6856 if (SE.containsErasedValue(DVIRec.SCEVs[i]) || 6857 SE.containsUndefs(DVIRec.SCEVs[i])) { 6858 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i 6859 << " refers to a location that is now undef or erased. " 6860 "Salvage abandoned.\n"); 6861 return false; 6862 } 6863 6864 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i 6865 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n"); 6866 6867 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>(); 6868 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get(); 6869 6870 // Create an offset-based salvage expression if possible, as it requires 6871 // less DWARF ops than an iteration count-based expression. 6872 if (std::optional<APInt> Offset = 6873 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) { 6874 if (Offset->getSignificantBits() <= 64) 6875 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar); 6876 else 6877 return false; 6878 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr, 6879 SE)) 6880 return false; 6881 } 6882 6883 // Merge the DbgValueBuilder generated expressions and the original 6884 // DIExpression, place the result into an new vector. 6885 SmallVector<uint64_t, 3> NewExpr; 6886 if (DVIRec.Expr->getNumElements() == 0) { 6887 assert(DVIRec.RecoveryExprs.size() == 1 && 6888 "Expected only a single recovery expression for an empty " 6889 "DIExpression."); 6890 assert(DVIRec.RecoveryExprs[0] && 6891 "Expected a SCEVDbgSalvageBuilder for location 0"); 6892 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get(); 6893 B->appendToVectors(NewExpr, NewLocationOps); 6894 } 6895 for (const auto &Op : DVIRec.Expr->expr_ops()) { 6896 // Most Ops needn't be updated. 6897 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) { 6898 Op.appendToVector(NewExpr); 6899 continue; 6900 } 6901 6902 uint64_t LocationArgIndex = Op.getArg(0); 6903 SCEVDbgValueBuilder *DbgBuilder = 6904 DVIRec.RecoveryExprs[LocationArgIndex].get(); 6905 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not 6906 // optimise it away. So just translate the argument to the updated 6907 // location index. 6908 if (!DbgBuilder) { 6909 NewExpr.push_back(dwarf::DW_OP_LLVM_arg); 6910 assert(LocationOpIndexMap[Op.getArg(0)] != -1 && 6911 "Expected a positive index for the location-op position."); 6912 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]); 6913 continue; 6914 } 6915 // The location has a recovery expression. 6916 DbgBuilder->appendToVectors(NewExpr, NewLocationOps); 6917 } 6918 6919 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr); 6920 if (isa<DbgValueInst *>(DVIRec.DbgRef)) 6921 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6922 << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n"); 6923 else 6924 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " 6925 << *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n"); 6926 return true; 6927 } 6928 6929 /// Obtain an expression for the iteration count, then attempt to salvage the 6930 /// dbg.value intrinsics. 6931 static void DbgRewriteSalvageableDVIs( 6932 llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar, 6933 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) { 6934 if (DVIToUpdate.empty()) 6935 return; 6936 6937 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar); 6938 assert(SCEVInductionVar && 6939 "Anticipated a SCEV for the post-LSR induction variable"); 6940 6941 if (const SCEVAddRecExpr *IVAddRec = 6942 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) { 6943 if (!IVAddRec->isAffine()) 6944 return; 6945 6946 // Prevent translation using excessive resources. 6947 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize) 6948 return; 6949 6950 // The iteration count is required to recover location values. 6951 SCEVDbgValueBuilder IterCountExpr; 6952 IterCountExpr.pushLocation(LSRInductionVar); 6953 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE)) 6954 return; 6955 6956 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar 6957 << '\n'); 6958 6959 for (auto &DVIRec : DVIToUpdate) { 6960 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar, 6961 IterCountExpr); 6962 } 6963 } 6964 } 6965 6966 /// Identify and cache salvageable DVI locations and expressions along with the 6967 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between 6968 /// cacheing and salvaging. 6969 static void DbgGatherSalvagableDVI( 6970 Loop *L, ScalarEvolution &SE, 6971 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs, 6972 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) { 6973 for (const auto &B : L->getBlocks()) { 6974 for (auto &I : *B) { 6975 auto ProcessDbgValue = [&](auto *DbgVal) -> bool { 6976 // Ensure that if any location op is undef that the dbg.vlue is not 6977 // cached. 6978 if (DbgVal->isKillLocation()) 6979 return false; 6980 6981 // Check that the location op SCEVs are suitable for translation to 6982 // DIExpression. 6983 const auto &HasTranslatableLocationOps = 6984 [&](const auto *DbgValToTranslate) -> bool { 6985 for (const auto LocOp : DbgValToTranslate->location_ops()) { 6986 if (!LocOp) 6987 return false; 6988 6989 if (!SE.isSCEVable(LocOp->getType())) 6990 return false; 6991 6992 const SCEV *S = SE.getSCEV(LocOp); 6993 if (SE.containsUndefs(S)) 6994 return false; 6995 } 6996 return true; 6997 }; 6998 6999 if (!HasTranslatableLocationOps(DbgVal)) 7000 return false; 7001 7002 std::unique_ptr<DVIRecoveryRec> NewRec = 7003 std::make_unique<DVIRecoveryRec>(DbgVal); 7004 // Each location Op may need a SCEVDbgValueBuilder in order to recover 7005 // it. Pre-allocating a vector will enable quick lookups of the builder 7006 // later during the salvage. 7007 NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps()); 7008 for (const auto LocOp : DbgVal->location_ops()) { 7009 NewRec->SCEVs.push_back(SE.getSCEV(LocOp)); 7010 NewRec->LocationOps.push_back(LocOp); 7011 NewRec->HadLocationArgList = DbgVal->hasArgList(); 7012 } 7013 SalvageableDVISCEVs.push_back(std::move(NewRec)); 7014 return true; 7015 }; 7016 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) { 7017 if (DVR.isDbgValue() || DVR.isDbgAssign()) 7018 ProcessDbgValue(&DVR); 7019 } 7020 auto DVI = dyn_cast<DbgValueInst>(&I); 7021 if (!DVI) 7022 continue; 7023 if (ProcessDbgValue(DVI)) 7024 DVIHandles.insert(DVI); 7025 } 7026 } 7027 } 7028 7029 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback 7030 /// any PHi from the loop header is usable, but may have less chance of 7031 /// surviving subsequent transforms. 7032 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE, 7033 const LSRInstance &LSR) { 7034 7035 auto IsSuitableIV = [&](PHINode *P) { 7036 if (!SE.isSCEVable(P->getType())) 7037 return false; 7038 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P))) 7039 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P)); 7040 return false; 7041 }; 7042 7043 // For now, just pick the first IV that was generated and inserted by 7044 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away 7045 // by subsequent transforms. 7046 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) { 7047 if (!IV) 7048 continue; 7049 7050 // There should only be PHI node IVs. 7051 PHINode *P = cast<PHINode>(&*IV); 7052 7053 if (IsSuitableIV(P)) 7054 return P; 7055 } 7056 7057 for (PHINode &P : L.getHeader()->phis()) { 7058 if (IsSuitableIV(&P)) 7059 return &P; 7060 } 7061 return nullptr; 7062 } 7063 7064 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE, 7065 DominatorTree &DT, LoopInfo &LI, 7066 const TargetTransformInfo &TTI, 7067 AssumptionCache &AC, TargetLibraryInfo &TLI, 7068 MemorySSA *MSSA) { 7069 7070 // Debug preservation - before we start removing anything identify which DVI 7071 // meet the salvageable criteria and store their DIExpression and SCEVs. 7072 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords; 7073 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles; 7074 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles); 7075 7076 bool Changed = false; 7077 std::unique_ptr<MemorySSAUpdater> MSSAU; 7078 if (MSSA) 7079 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 7080 7081 // Run the main LSR transformation. 7082 const LSRInstance &Reducer = 7083 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get()); 7084 Changed |= Reducer.getChanged(); 7085 7086 // Remove any extra phis created by processing inner loops. 7087 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7088 if (EnablePhiElim && L->isLoopSimplifyForm()) { 7089 SmallVector<WeakTrackingVH, 16> DeadInsts; 7090 const DataLayout &DL = L->getHeader()->getDataLayout(); 7091 SCEVExpander Rewriter(SE, DL, "lsr", false); 7092 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 7093 Rewriter.setDebugType(DEBUG_TYPE); 7094 #endif 7095 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI); 7096 Rewriter.clear(); 7097 if (numFolded) { 7098 Changed = true; 7099 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7100 MSSAU.get()); 7101 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7102 } 7103 } 7104 // LSR may at times remove all uses of an induction variable from a loop. 7105 // The only remaining use is the PHI in the exit block. 7106 // When this is the case, if the exit value of the IV can be calculated using 7107 // SCEV, we can replace the exit block PHI with the final value of the IV and 7108 // skip the updates in each loop iteration. 7109 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) { 7110 SmallVector<WeakTrackingVH, 16> DeadInsts; 7111 const DataLayout &DL = L->getHeader()->getDataLayout(); 7112 SCEVExpander Rewriter(SE, DL, "lsr", true); 7113 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT, 7114 UnusedIndVarInLoop, DeadInsts); 7115 Rewriter.clear(); 7116 if (Rewrites) { 7117 Changed = true; 7118 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI, 7119 MSSAU.get()); 7120 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get()); 7121 } 7122 } 7123 7124 if (SalvageableDVIRecords.empty()) 7125 return Changed; 7126 7127 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with 7128 // expressions composed using the derived iteration count. 7129 // TODO: Allow for multiple IV references for nested AddRecSCEVs 7130 for (const auto &L : LI) { 7131 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer)) 7132 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords); 7133 else { 7134 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV " 7135 "could not be identified.\n"); 7136 } 7137 } 7138 7139 for (auto &Rec : SalvageableDVIRecords) 7140 Rec->clear(); 7141 SalvageableDVIRecords.clear(); 7142 DVIHandles.clear(); 7143 return Changed; 7144 } 7145 7146 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) { 7147 if (skipLoop(L)) 7148 return false; 7149 7150 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU(); 7151 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 7152 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 7153 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 7154 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 7155 *L->getHeader()->getParent()); 7156 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 7157 *L->getHeader()->getParent()); 7158 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 7159 *L->getHeader()->getParent()); 7160 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 7161 MemorySSA *MSSA = nullptr; 7162 if (MSSAAnalysis) 7163 MSSA = &MSSAAnalysis->getMSSA(); 7164 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA); 7165 } 7166 7167 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM, 7168 LoopStandardAnalysisResults &AR, 7169 LPMUpdater &) { 7170 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE, 7171 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA)) 7172 return PreservedAnalyses::all(); 7173 7174 auto PA = getLoopPassPreservedAnalyses(); 7175 if (AR.MSSA) 7176 PA.preserve<MemorySSAAnalysis>(); 7177 return PA; 7178 } 7179 7180 char LoopStrengthReduce::ID = 0; 7181 7182 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce", 7183 "Loop Strength Reduction", false, false) 7184 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7185 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7186 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7187 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass) 7188 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7189 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 7190 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce", 7191 "Loop Strength Reduction", false, false) 7192 7193 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); } 7194