xref: /llvm-project/llvm/lib/Target/AMDGPU/MCTargetDesc/R600MCCodeEmitter.cpp (revision be187369a03bf2df8bdbc76ecd381377b3bb6074)
1 //===- R600MCCodeEmitter.cpp - Code Emitter for R600->Cayman GPU families -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// The R600 code emitter produces machine code that can be executed
12 /// directly on the GPU device.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "MCTargetDesc/R600MCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "llvm/MC/MCCodeEmitter.h"
19 #include "llvm/MC/MCContext.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstrInfo.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/Support/EndianStream.h"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 class R600MCCodeEmitter : public MCCodeEmitter {
31   const MCRegisterInfo &MRI;
32   const MCInstrInfo &MCII;
33 
34 public:
35   R600MCCodeEmitter(const MCInstrInfo &mcii, const MCRegisterInfo &mri)
36     : MRI(mri), MCII(mcii) {}
37   R600MCCodeEmitter(const R600MCCodeEmitter &) = delete;
38   R600MCCodeEmitter &operator=(const R600MCCodeEmitter &) = delete;
39 
40   /// Encode the instruction and write it to the OS.
41   void encodeInstruction(const MCInst &MI, SmallVectorImpl<char> &CB,
42                          SmallVectorImpl<MCFixup> &Fixups,
43                          const MCSubtargetInfo &STI) const override;
44 
45   /// \returns the encoding for an MCOperand.
46   uint64_t getMachineOpValue(const MCInst &MI, const MCOperand &MO,
47                              SmallVectorImpl<MCFixup> &Fixups,
48                              const MCSubtargetInfo &STI) const;
49 
50 private:
51   void emit(uint32_t value, SmallVectorImpl<char> &CB) const;
52   void emit(uint64_t value, SmallVectorImpl<char> &CB) const;
53 
54   unsigned getHWReg(MCRegister Reg) const;
55 
56   uint64_t getBinaryCodeForInstr(const MCInst &MI,
57                                  SmallVectorImpl<MCFixup> &Fixups,
58                                  const MCSubtargetInfo &STI) const;
59 };
60 
61 } // end anonymous namespace
62 
63 enum RegElement {
64   ELEMENT_X = 0,
65   ELEMENT_Y,
66   ELEMENT_Z,
67   ELEMENT_W
68 };
69 
70 enum FCInstr {
71   FC_IF_PREDICATE = 0,
72   FC_ELSE,
73   FC_ENDIF,
74   FC_BGNLOOP,
75   FC_ENDLOOP,
76   FC_BREAK_PREDICATE,
77   FC_CONTINUE
78 };
79 
80 MCCodeEmitter *llvm::createR600MCCodeEmitter(const MCInstrInfo &MCII,
81                                              MCContext &Ctx) {
82   return new R600MCCodeEmitter(MCII, *Ctx.getRegisterInfo());
83 }
84 
85 void R600MCCodeEmitter::encodeInstruction(const MCInst &MI,
86                                           SmallVectorImpl<char> &CB,
87                                           SmallVectorImpl<MCFixup> &Fixups,
88                                           const MCSubtargetInfo &STI) const {
89   const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
90   if (MI.getOpcode() == R600::RETURN ||
91     MI.getOpcode() == R600::FETCH_CLAUSE ||
92     MI.getOpcode() == R600::ALU_CLAUSE ||
93     MI.getOpcode() == R600::BUNDLE ||
94     MI.getOpcode() == R600::KILL) {
95     return;
96   }
97   if (IS_VTX(Desc)) {
98     uint64_t InstWord01 = getBinaryCodeForInstr(MI, Fixups, STI);
99     uint32_t InstWord2 = MI.getOperand(2).getImm(); // Offset
100     if (!(STI.hasFeature(R600::FeatureCaymanISA))) {
101       InstWord2 |= 1 << 19; // Mega-Fetch bit
102     }
103 
104     emit(InstWord01, CB);
105     emit(InstWord2, CB);
106     emit((uint32_t)0, CB);
107   } else if (IS_TEX(Desc)) {
108     int64_t Sampler = MI.getOperand(14).getImm();
109 
110     int64_t SrcSelect[4] = {
111         MI.getOperand(2).getImm(), MI.getOperand(3).getImm(),
112         MI.getOperand(4).getImm(), MI.getOperand(5).getImm()};
113     int64_t Offsets[3] = {MI.getOperand(6).getImm() & 0x1F,
114                           MI.getOperand(7).getImm() & 0x1F,
115                           MI.getOperand(8).getImm() & 0x1F};
116 
117     uint64_t Word01 = getBinaryCodeForInstr(MI, Fixups, STI);
118     uint32_t Word2 = Sampler << 15 | SrcSelect[ELEMENT_X] << 20 |
119                      SrcSelect[ELEMENT_Y] << 23 | SrcSelect[ELEMENT_Z] << 26 |
120                      SrcSelect[ELEMENT_W] << 29 | Offsets[0] << 0 |
121                      Offsets[1] << 5 | Offsets[2] << 10;
122 
123     emit(Word01, CB);
124     emit(Word2, CB);
125     emit((uint32_t)0, CB);
126   } else {
127     uint64_t Inst = getBinaryCodeForInstr(MI, Fixups, STI);
128     if ((STI.hasFeature(R600::FeatureR600ALUInst)) &&
129        ((Desc.TSFlags & R600_InstFlag::OP1) ||
130          Desc.TSFlags & R600_InstFlag::OP2)) {
131       uint64_t ISAOpCode = Inst & (0x3FFULL << 39);
132       Inst &= ~(0x3FFULL << 39);
133       Inst |= ISAOpCode << 1;
134     }
135     emit(Inst, CB);
136   }
137 }
138 
139 void R600MCCodeEmitter::emit(uint32_t Value, SmallVectorImpl<char> &CB) const {
140   support::endian::write(CB, Value, llvm::endianness::little);
141 }
142 
143 void R600MCCodeEmitter::emit(uint64_t Value, SmallVectorImpl<char> &CB) const {
144   support::endian::write(CB, Value, llvm::endianness::little);
145 }
146 
147 unsigned R600MCCodeEmitter::getHWReg(MCRegister Reg) const {
148   return MRI.getEncodingValue(Reg) & HW_REG_MASK;
149 }
150 
151 uint64_t R600MCCodeEmitter::getMachineOpValue(const MCInst &MI,
152                                               const MCOperand &MO,
153                                         SmallVectorImpl<MCFixup> &Fixups,
154                                         const MCSubtargetInfo &STI) const {
155   if (MO.isReg()) {
156     if (HAS_NATIVE_OPERANDS(MCII.get(MI.getOpcode()).TSFlags))
157       return MRI.getEncodingValue(MO.getReg());
158     return getHWReg(MO.getReg());
159   }
160 
161   if (MO.isExpr()) {
162     // We put rodata at the end of code section, then map the entire
163     // code secetion as vtx buf. Thus the section relative address is the
164     // correct one.
165     // Each R600 literal instruction has two operands
166     // We can't easily get the order of the current one, so compare against
167     // the first one and adjust offset.
168     const unsigned offset = (&MO == &MI.getOperand(0)) ? 0 : 4;
169     Fixups.push_back(MCFixup::create(offset, MO.getExpr(), FK_SecRel_4, MI.getLoc()));
170     return 0;
171   }
172 
173   assert(MO.isImm());
174   return MO.getImm();
175 }
176 
177 #include "R600GenMCCodeEmitter.inc"
178