xref: /llvm-project/llvm/include/llvm/Support/GenericDomTreeConstruction.h (revision 6c7a3f80e75de36f2642110a077664e948d9e7e3)
1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - this file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 ///   [1] Linear-Time Algorithms for Dominators and Related Problems
15 ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm
24 /// that uses SLT to perform full constructions and SemiNCA for incremental
25 /// updates.
26 ///
27 /// The file uses the Depth Based Search algorithm to perform incremental
28 /// updates (insertion and deletions). The implemented algorithm is based on
29 /// this publication:
30 ///
31 ///   [2] An Experimental Study of Dynamic Dominators
32 ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
33 ///   https://arxiv.org/pdf/1604.02711.pdf
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
38 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
39 
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/GenericDomTree.h"
46 #include <optional>
47 #include <queue>
48 
49 #define DEBUG_TYPE "dom-tree-builder"
50 
51 namespace llvm {
52 namespace DomTreeBuilder {
53 
54 template <typename DomTreeT>
55 struct SemiNCAInfo {
56   using NodePtr = typename DomTreeT::NodePtr;
57   using NodeT = typename DomTreeT::NodeType;
58   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
59   using RootsT = decltype(DomTreeT::Roots);
60   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
61   using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
62 
63   // Information record used by Semi-NCA during tree construction.
64   struct InfoRec {
65     unsigned DFSNum = 0;
66     unsigned Parent = 0;
67     unsigned Semi = 0;
68     unsigned Label = 0;
69     NodePtr IDom = nullptr;
70     SmallVector<unsigned, 4> ReverseChildren;
71   };
72 
73   // Number to node mapping is 1-based. Initialize the mapping to start with
74   // a dummy element.
75   SmallVector<NodePtr, 64> NumToNode = {nullptr};
76   // If blocks have numbers (e.g., BasicBlock, MachineBasicBlock), store node
77   // infos in a vector. Otherwise, store them in a map.
78   std::conditional_t<GraphHasNodeNumbers<NodePtr>, SmallVector<InfoRec, 64>,
79                      DenseMap<NodePtr, InfoRec>>
80       NodeInfos;
81 
82   using UpdateT = typename DomTreeT::UpdateType;
83   using UpdateKind = typename DomTreeT::UpdateKind;
84   struct BatchUpdateInfo {
85     // Note: Updates inside PreViewCFG are already legalized.
86     BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
87         : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
88           NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
89 
90     // Remembers if the whole tree was recalculated at some point during the
91     // current batch update.
92     bool IsRecalculated = false;
93     GraphDiffT &PreViewCFG;
94     GraphDiffT *PostViewCFG;
95     const size_t NumLegalized;
96   };
97 
98   BatchUpdateInfo *BatchUpdates;
99   using BatchUpdatePtr = BatchUpdateInfo *;
100 
101   // If BUI is a nullptr, then there's no batch update in progress.
102   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
103 
104   void clear() {
105     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
106     NodeInfos.clear();
107     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
108     // in progress, we need this information to continue it.
109   }
110 
111   template <bool Inversed>
112   static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
113     if (BUI)
114       return BUI->PreViewCFG.template getChildren<Inversed>(N);
115     return getChildren<Inversed>(N);
116   }
117 
118   template <bool Inversed>
119   static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
120     using DirectedNodeT =
121         std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
122     auto R = children<DirectedNodeT>(N);
123     SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
124 
125     // Remove nullptr children for clang.
126     llvm::erase(Res, nullptr);
127     return Res;
128   }
129 
130   InfoRec &getNodeInfo(NodePtr BB) {
131     if constexpr (GraphHasNodeNumbers<NodePtr>) {
132       unsigned Idx = BB ? GraphTraits<NodePtr>::getNumber(BB) + 1 : 0;
133       if (Idx >= NodeInfos.size()) {
134         unsigned Max = 0;
135         if (BB)
136           Max = GraphTraits<decltype(BB->getParent())>::getMaxNumber(
137               BB->getParent());
138         // Max might be zero, graphs might not support getMaxNumber().
139         NodeInfos.resize(Max ? Max + 1 : Idx + 1);
140       }
141       return NodeInfos[Idx];
142     } else {
143       return NodeInfos[BB];
144     }
145   }
146 
147   NodePtr getIDom(NodePtr BB) { return getNodeInfo(BB).IDom; }
148 
149   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
150     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
151 
152     // Haven't calculated this node yet?  Get or calculate the node for the
153     // immediate dominator.
154     NodePtr IDom = getIDom(BB);
155 
156     assert(IDom || DT.getNode(nullptr));
157     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
158 
159     // Add a new tree node for this NodeT, and link it as a child of
160     // IDomNode
161     return DT.createNode(BB, IDomNode);
162   }
163 
164   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
165 
166   struct BlockNamePrinter {
167     NodePtr N;
168 
169     BlockNamePrinter(NodePtr Block) : N(Block) {}
170     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
171 
172     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
173       if (!BP.N)
174         O << "nullptr";
175       else
176         BP.N->printAsOperand(O, false);
177 
178       return O;
179     }
180   };
181 
182   using NodeOrderMap = DenseMap<NodePtr, unsigned>;
183 
184   // Custom DFS implementation which can skip nodes based on a provided
185   // predicate. It also collects ReverseChildren so that we don't have to spend
186   // time getting predecessors in SemiNCA.
187   //
188   // If IsReverse is set to true, the DFS walk will be performed backwards
189   // relative to IsPostDom -- using reverse edges for dominators and forward
190   // edges for postdominators.
191   //
192   // If SuccOrder is specified then in this order the DFS traverses the children
193   // otherwise the order is implied by the results of getChildren().
194   template <bool IsReverse = false, typename DescendCondition>
195   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
196                   unsigned AttachToNum,
197                   const NodeOrderMap *SuccOrder = nullptr) {
198     assert(V);
199     SmallVector<std::pair<NodePtr, unsigned>, 64> WorkList = {{V, AttachToNum}};
200     getNodeInfo(V).Parent = AttachToNum;
201 
202     while (!WorkList.empty()) {
203       const auto [BB, ParentNum] = WorkList.pop_back_val();
204       auto &BBInfo = getNodeInfo(BB);
205       BBInfo.ReverseChildren.push_back(ParentNum);
206 
207       // Visited nodes always have positive DFS numbers.
208       if (BBInfo.DFSNum != 0) continue;
209       BBInfo.Parent = ParentNum;
210       BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = ++LastNum;
211       NumToNode.push_back(BB);
212 
213       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
214       auto Successors = getChildren<Direction>(BB, BatchUpdates);
215       if (SuccOrder && Successors.size() > 1)
216         llvm::sort(
217             Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
218               return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
219             });
220 
221       for (const NodePtr Succ : Successors) {
222         if (!Condition(BB, Succ)) continue;
223 
224         WorkList.push_back({Succ, LastNum});
225       }
226     }
227 
228     return LastNum;
229   }
230 
231   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
232   // of sdom(U), where U > W and there is a virtual forest path from U to V. The
233   // virtual forest consists of linked edges of processed vertices.
234   //
235   // We can follow Parent pointers (virtual forest edges) to determine the
236   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
237   // compression technique to speed up to O(m*log(n)). Theoretically the virtual
238   // forest can be organized as balanced trees to achieve almost linear
239   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
240   // and Child) and is unlikely to be faster than the simple implementation.
241   //
242   // For each vertex V, its Label points to the vertex with the minimal sdom(U)
243   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
244   unsigned eval(unsigned V, unsigned LastLinked,
245                 SmallVectorImpl<InfoRec *> &Stack,
246                 ArrayRef<InfoRec *> NumToInfo) {
247     InfoRec *VInfo = NumToInfo[V];
248     if (VInfo->Parent < LastLinked)
249       return VInfo->Label;
250 
251     // Store ancestors except the last (root of a virtual tree) into a stack.
252     assert(Stack.empty());
253     do {
254       Stack.push_back(VInfo);
255       VInfo = NumToInfo[VInfo->Parent];
256     } while (VInfo->Parent >= LastLinked);
257 
258     // Path compression. Point each vertex's Parent to the root and update its
259     // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
260     const InfoRec *PInfo = VInfo;
261     const InfoRec *PLabelInfo = NumToInfo[PInfo->Label];
262     do {
263       VInfo = Stack.pop_back_val();
264       VInfo->Parent = PInfo->Parent;
265       const InfoRec *VLabelInfo = NumToInfo[VInfo->Label];
266       if (PLabelInfo->Semi < VLabelInfo->Semi)
267         VInfo->Label = PInfo->Label;
268       else
269         PLabelInfo = VLabelInfo;
270       PInfo = VInfo;
271     } while (!Stack.empty());
272     return VInfo->Label;
273   }
274 
275   // This function requires DFS to be run before calling it.
276   void runSemiNCA() {
277     const unsigned NextDFSNum(NumToNode.size());
278     SmallVector<InfoRec *, 8> NumToInfo = {nullptr};
279     NumToInfo.reserve(NextDFSNum);
280     // Initialize IDoms to spanning tree parents.
281     for (unsigned i = 1; i < NextDFSNum; ++i) {
282       const NodePtr V = NumToNode[i];
283       auto &VInfo = getNodeInfo(V);
284       VInfo.IDom = NumToNode[VInfo.Parent];
285       NumToInfo.push_back(&VInfo);
286     }
287 
288     // Step #1: Calculate the semidominators of all vertices.
289     SmallVector<InfoRec *, 32> EvalStack;
290     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
291       auto &WInfo = *NumToInfo[i];
292 
293       // Initialize the semi dominator to point to the parent node.
294       WInfo.Semi = WInfo.Parent;
295       for (unsigned N : WInfo.ReverseChildren) {
296         unsigned SemiU = NumToInfo[eval(N, i + 1, EvalStack, NumToInfo)]->Semi;
297         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
298       }
299     }
300 
301     // Step #2: Explicitly define the immediate dominator of each vertex.
302     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
303     // Note that the parents were stored in IDoms and later got invalidated
304     // during path compression in Eval.
305     for (unsigned i = 2; i < NextDFSNum; ++i) {
306       auto &WInfo = *NumToInfo[i];
307       assert(WInfo.Semi != 0);
308       const unsigned SDomNum = NumToInfo[WInfo.Semi]->DFSNum;
309       NodePtr WIDomCandidate = WInfo.IDom;
310       while (true) {
311         auto &WIDomCandidateInfo = getNodeInfo(WIDomCandidate);
312         if (WIDomCandidateInfo.DFSNum <= SDomNum)
313           break;
314         WIDomCandidate = WIDomCandidateInfo.IDom;
315       }
316 
317       WInfo.IDom = WIDomCandidate;
318     }
319   }
320 
321   // PostDominatorTree always has a virtual root that represents a virtual CFG
322   // node that serves as a single exit from the function. All the other exits
323   // (CFG nodes with terminators and nodes in infinite loops are logically
324   // connected to this virtual CFG exit node).
325   // This functions maps a nullptr CFG node to the virtual root tree node.
326   void addVirtualRoot() {
327     assert(IsPostDom && "Only postdominators have a virtual root");
328     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
329 
330     auto &BBInfo = getNodeInfo(nullptr);
331     BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = 1;
332 
333     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
334   }
335 
336   // For postdominators, nodes with no forward successors are trivial roots that
337   // are always selected as tree roots. Roots with forward successors correspond
338   // to CFG nodes within infinite loops.
339   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
340     assert(N && "N must be a valid node");
341     return !getChildren<false>(N, BUI).empty();
342   }
343 
344   static NodePtr GetEntryNode(const DomTreeT &DT) {
345     assert(DT.Parent && "Parent not set");
346     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
347   }
348 
349   // Finds all roots without relaying on the set of roots already stored in the
350   // tree.
351   // We define roots to be some non-redundant set of the CFG nodes
352   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
353     assert(DT.Parent && "Parent pointer is not set");
354     RootsT Roots;
355 
356     // For dominators, function entry CFG node is always a tree root node.
357     if (!IsPostDom) {
358       Roots.push_back(GetEntryNode(DT));
359       return Roots;
360     }
361 
362     SemiNCAInfo SNCA(BUI);
363 
364     // PostDominatorTree always has a virtual root.
365     SNCA.addVirtualRoot();
366     unsigned Num = 1;
367 
368     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
369 
370     // Step #1: Find all the trivial roots that are going to will definitely
371     // remain tree roots.
372     unsigned Total = 0;
373     // It may happen that there are some new nodes in the CFG that are result of
374     // the ongoing batch update, but we cannot really pretend that they don't
375     // exist -- we won't see any outgoing or incoming edges to them, so it's
376     // fine to discover them here, as they would end up appearing in the CFG at
377     // some point anyway.
378     for (const NodePtr N : nodes(DT.Parent)) {
379       ++Total;
380       // If it has no *successors*, it is definitely a root.
381       if (!HasForwardSuccessors(N, BUI)) {
382         Roots.push_back(N);
383         // Run DFS not to walk this part of CFG later.
384         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
385         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
386                           << "\n");
387         LLVM_DEBUG(dbgs() << "Last visited node: "
388                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
389       }
390     }
391 
392     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
393 
394     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
395     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
396     // nodes in infinite loops).
397     bool HasNonTrivialRoots = false;
398     // Accounting for the virtual exit, see if we had any reverse-unreachable
399     // nodes.
400     if (Total + 1 != Num) {
401       HasNonTrivialRoots = true;
402 
403       // SuccOrder is the order of blocks in the function. It is needed to make
404       // the calculation of the FurthestAway node and the whole PostDomTree
405       // immune to swap successors transformation (e.g. canonicalizing branch
406       // predicates). SuccOrder is initialized lazily only for successors of
407       // reverse unreachable nodes.
408       std::optional<NodeOrderMap> SuccOrder;
409       auto InitSuccOrderOnce = [&]() {
410         SuccOrder = NodeOrderMap();
411         for (const auto Node : nodes(DT.Parent))
412           if (SNCA.getNodeInfo(Node).DFSNum == 0)
413             for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
414               SuccOrder->try_emplace(Succ, 0);
415 
416         // Add mapping for all entries of SuccOrder.
417         unsigned NodeNum = 0;
418         for (const auto Node : nodes(DT.Parent)) {
419           ++NodeNum;
420           auto Order = SuccOrder->find(Node);
421           if (Order != SuccOrder->end()) {
422             assert(Order->second == 0);
423             Order->second = NodeNum;
424           }
425         }
426       };
427 
428       // Make another DFS pass over all other nodes to find the
429       // reverse-unreachable blocks, and find the furthest paths we'll be able
430       // to make.
431       // Note that this looks N^2, but it's really 2N worst case, if every node
432       // is unreachable. This is because we are still going to only visit each
433       // unreachable node once, we may just visit it in two directions,
434       // depending on how lucky we get.
435       for (const NodePtr I : nodes(DT.Parent)) {
436         if (SNCA.getNodeInfo(I).DFSNum == 0) {
437           LLVM_DEBUG(dbgs()
438                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
439           // Find the furthest away we can get by following successors, then
440           // follow them in reverse.  This gives us some reasonable answer about
441           // the post-dom tree inside any infinite loop. In particular, it
442           // guarantees we get to the farthest away point along *some*
443           // path. This also matches the GCC's behavior.
444           // If we really wanted a totally complete picture of dominance inside
445           // this infinite loop, we could do it with SCC-like algorithms to find
446           // the lowest and highest points in the infinite loop.  In theory, it
447           // would be nice to give the canonical backedge for the loop, but it's
448           // expensive and does not always lead to a minimal set of roots.
449           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
450 
451           if (!SuccOrder)
452             InitSuccOrderOnce();
453           assert(SuccOrder);
454 
455           const unsigned NewNum =
456               SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
457           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
458           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
459                             << "(non-trivial root): "
460                             << BlockNamePrinter(FurthestAway) << "\n");
461           Roots.push_back(FurthestAway);
462           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
463                             << NewNum << "\n\t\t\tRemoving DFS info\n");
464           for (unsigned i = NewNum; i > Num; --i) {
465             const NodePtr N = SNCA.NumToNode[i];
466             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
467                               << BlockNamePrinter(N) << "\n");
468             SNCA.getNodeInfo(N) = {};
469             SNCA.NumToNode.pop_back();
470           }
471           const unsigned PrevNum = Num;
472           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
473           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
474           for (unsigned i = PrevNum + 1; i <= Num; ++i)
475             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
476                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
477         }
478       }
479     }
480 
481     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
482     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
483     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
484                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
485 
486     assert((Total + 1 == Num) && "Everything should have been visited");
487 
488     // Step #3: If we found some non-trivial roots, make them non-redundant.
489     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
490 
491     LLVM_DEBUG(dbgs() << "Found roots: ");
492     LLVM_DEBUG(for (auto *Root
493                     : Roots) dbgs()
494                << BlockNamePrinter(Root) << " ");
495     LLVM_DEBUG(dbgs() << "\n");
496 
497     return Roots;
498   }
499 
500   // This function only makes sense for postdominators.
501   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
502   // to start in order to visit all the CFG nodes (including the
503   // reverse-unreachable ones).
504   // When the search for non-trivial roots is done it may happen that some of
505   // the non-trivial roots are reverse-reachable from other non-trivial roots,
506   // which makes them redundant. This function removes them from the set of
507   // input roots.
508   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
509                                    RootsT &Roots) {
510     assert(IsPostDom && "This function is for postdominators only");
511     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
512 
513     SemiNCAInfo SNCA(BUI);
514 
515     for (unsigned i = 0; i < Roots.size(); ++i) {
516       auto &Root = Roots[i];
517       // Trivial roots are always non-redundant.
518       if (!HasForwardSuccessors(Root, BUI)) continue;
519       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
520                         << " remains a root\n");
521       SNCA.clear();
522       // Do a forward walk looking for the other roots.
523       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
524       // Skip the start node and begin from the second one (note that DFS uses
525       // 1-based indexing).
526       for (unsigned x = 2; x <= Num; ++x) {
527         const NodePtr N = SNCA.NumToNode[x];
528         // If we wound another root in a (forward) DFS walk, remove the current
529         // root from the set of roots, as it is reverse-reachable from the other
530         // one.
531         if (llvm::is_contained(Roots, N)) {
532           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
533                             << BlockNamePrinter(N) << "\n\tRemoving root "
534                             << BlockNamePrinter(Root) << "\n");
535           std::swap(Root, Roots.back());
536           Roots.pop_back();
537 
538           // Root at the back takes the current root's place.
539           // Start the next loop iteration with the same index.
540           --i;
541           break;
542         }
543       }
544     }
545   }
546 
547   template <typename DescendCondition>
548   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
549     if (!IsPostDom) {
550       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
551       runDFS(DT.Roots[0], 0, DC, 0);
552       return;
553     }
554 
555     addVirtualRoot();
556     unsigned Num = 1;
557     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 1);
558   }
559 
560   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
561     auto *Parent = DT.Parent;
562     DT.reset();
563     DT.Parent = Parent;
564     // If the update is using the actual CFG, BUI is null. If it's using a view,
565     // BUI is non-null and the PreCFGView is used. When calculating from
566     // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
567     BatchUpdatePtr PostViewBUI = nullptr;
568     if (BUI && BUI->PostViewCFG) {
569       BUI->PreViewCFG = *BUI->PostViewCFG;
570       PostViewBUI = BUI;
571     }
572     // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
573     // used in case the caller needs a DT update with a CFGView.
574     SemiNCAInfo SNCA(PostViewBUI);
575 
576     // Step #0: Number blocks in depth-first order and initialize variables used
577     // in later stages of the algorithm.
578     DT.Roots = FindRoots(DT, PostViewBUI);
579     SNCA.doFullDFSWalk(DT, AlwaysDescend);
580 
581     SNCA.runSemiNCA();
582     if (BUI) {
583       BUI->IsRecalculated = true;
584       LLVM_DEBUG(
585           dbgs() << "DomTree recalculated, skipping future batch updates\n");
586     }
587 
588     if (DT.Roots.empty()) return;
589 
590     // Add a node for the root. If the tree is a PostDominatorTree it will be
591     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
592     // all real exits (including multiple exit blocks, infinite loops).
593     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
594 
595     DT.RootNode = DT.createNode(Root);
596     SNCA.attachNewSubtree(DT, DT.RootNode);
597   }
598 
599   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
600     // Attach the first unreachable block to AttachTo.
601     getNodeInfo(NumToNode[1]).IDom = AttachTo->getBlock();
602     // Loop over all of the discovered blocks in the function...
603     for (NodePtr W : llvm::drop_begin(NumToNode)) {
604       if (DT.getNode(W))
605         continue; // Already calculated the node before
606 
607       NodePtr ImmDom = getIDom(W);
608 
609       // Get or calculate the node for the immediate dominator.
610       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
611 
612       // Add a new tree node for this BasicBlock, and link it as a child of
613       // IDomNode.
614       DT.createNode(W, IDomNode);
615     }
616   }
617 
618   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
619     getNodeInfo(NumToNode[1]).IDom = AttachTo->getBlock();
620     for (const NodePtr N : llvm::drop_begin(NumToNode)) {
621       const TreeNodePtr TN = DT.getNode(N);
622       assert(TN);
623       const TreeNodePtr NewIDom = DT.getNode(getNodeInfo(N).IDom);
624       TN->setIDom(NewIDom);
625     }
626   }
627 
628   // Helper struct used during edge insertions.
629   struct InsertionInfo {
630     struct Compare {
631       bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
632         return LHS->getLevel() < RHS->getLevel();
633       }
634     };
635 
636     // Bucket queue of tree nodes ordered by descending level. For simplicity,
637     // we use a priority_queue here.
638     std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
639                         Compare>
640         Bucket;
641     SmallDenseSet<TreeNodePtr, 8> Visited;
642     SmallVector<TreeNodePtr, 8> Affected;
643 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
644     SmallVector<TreeNodePtr, 8> VisitedUnaffected;
645 #endif
646   };
647 
648   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
649                          const NodePtr From, const NodePtr To) {
650     assert((From || IsPostDom) &&
651            "From has to be a valid CFG node or a virtual root");
652     assert(To && "Cannot be a nullptr");
653     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
654                       << BlockNamePrinter(To) << "\n");
655     TreeNodePtr FromTN = DT.getNode(From);
656 
657     if (!FromTN) {
658       // Ignore edges from unreachable nodes for (forward) dominators.
659       if (!IsPostDom) return;
660 
661       // The unreachable node becomes a new root -- a tree node for it.
662       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
663       FromTN = DT.createNode(From, VirtualRoot);
664       DT.Roots.push_back(From);
665     }
666 
667     DT.DFSInfoValid = false;
668 
669     const TreeNodePtr ToTN = DT.getNode(To);
670     if (!ToTN)
671       InsertUnreachable(DT, BUI, FromTN, To);
672     else
673       InsertReachable(DT, BUI, FromTN, ToTN);
674   }
675 
676   // Determines if some existing root becomes reverse-reachable after the
677   // insertion. Rebuilds the whole tree if that situation happens.
678   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
679                                          const TreeNodePtr From,
680                                          const TreeNodePtr To) {
681     assert(IsPostDom && "This function is only for postdominators");
682     // Destination node is not attached to the virtual root, so it cannot be a
683     // root.
684     if (!DT.isVirtualRoot(To->getIDom())) return false;
685 
686     if (!llvm::is_contained(DT.Roots, To->getBlock()))
687       return false;  // To is not a root, nothing to update.
688 
689     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
690                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
691 
692     CalculateFromScratch(DT, BUI);
693     return true;
694   }
695 
696   static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
697                             const SmallVectorImpl<NodePtr> &B) {
698     if (A.size() != B.size())
699       return false;
700     SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
701     for (NodePtr N : B)
702       if (Set.count(N) == 0)
703         return false;
704     return true;
705   }
706 
707   // Updates the set of roots after insertion or deletion. This ensures that
708   // roots are the same when after a series of updates and when the tree would
709   // be built from scratch.
710   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
711     assert(IsPostDom && "This function is only for postdominators");
712 
713     // The tree has only trivial roots -- nothing to update.
714     if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) {
715           return HasForwardSuccessors(N, BUI);
716         }))
717       return;
718 
719     // Recalculate the set of roots.
720     RootsT Roots = FindRoots(DT, BUI);
721     if (!isPermutation(DT.Roots, Roots)) {
722       // The roots chosen in the CFG have changed. This is because the
723       // incremental algorithm does not really know or use the set of roots and
724       // can make a different (implicit) decision about which node within an
725       // infinite loop becomes a root.
726 
727       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
728                         << "The entire tree needs to be rebuilt\n");
729       // It may be possible to update the tree without recalculating it, but
730       // we do not know yet how to do it, and it happens rarely in practice.
731       CalculateFromScratch(DT, BUI);
732     }
733   }
734 
735   // Handles insertion to a node already in the dominator tree.
736   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
737                               const TreeNodePtr From, const TreeNodePtr To) {
738     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
739                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
740     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
741     // DT.findNCD expects both pointers to be valid. When From is a virtual
742     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
743     // the NCD manually.
744     const NodePtr NCDBlock =
745         (From->getBlock() && To->getBlock())
746             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
747             : nullptr;
748     assert(NCDBlock || DT.isPostDominator());
749     const TreeNodePtr NCD = DT.getNode(NCDBlock);
750     assert(NCD);
751 
752     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
753     const unsigned NCDLevel = NCD->getLevel();
754 
755     // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
756     // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
757     // w on P s.t. depth(v) <= depth(w)
758     //
759     // This reduces to a widest path problem (maximizing the depth of the
760     // minimum vertex in the path) which can be solved by a modified version of
761     // Dijkstra with a bucket queue (named depth-based search in [2]).
762 
763     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
764     // affected if this does not hold.
765     if (NCDLevel + 1 >= To->getLevel())
766       return;
767 
768     InsertionInfo II;
769     SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
770     II.Bucket.push(To);
771     II.Visited.insert(To);
772 
773     while (!II.Bucket.empty()) {
774       TreeNodePtr TN = II.Bucket.top();
775       II.Bucket.pop();
776       II.Affected.push_back(TN);
777 
778       const unsigned CurrentLevel = TN->getLevel();
779       LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
780                  "as affected, CurrentLevel " << CurrentLevel << "\n");
781 
782       assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
783 
784       while (true) {
785         // Unlike regular Dijkstra, we have an inner loop to expand more
786         // vertices. The first iteration is for the (affected) vertex popped
787         // from II.Bucket and the rest are for vertices in
788         // UnaffectedOnCurrentLevel, which may eventually expand to affected
789         // vertices.
790         //
791         // Invariant: there is an optimal path from `To` to TN with the minimum
792         // depth being CurrentLevel.
793         for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
794           const TreeNodePtr SuccTN = DT.getNode(Succ);
795           assert(SuccTN &&
796                  "Unreachable successor found at reachable insertion");
797           const unsigned SuccLevel = SuccTN->getLevel();
798 
799           LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
800                             << ", level = " << SuccLevel << "\n");
801 
802           // There is an optimal path from `To` to Succ with the minimum depth
803           // being min(CurrentLevel, SuccLevel).
804           //
805           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
806           // and no affected vertex may be reached by a path passing through it.
807           // Stop here. Also, Succ may be visited by other predecessors but the
808           // first visit has the optimal path. Stop if Succ has been visited.
809           if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
810             continue;
811 
812           if (SuccLevel > CurrentLevel) {
813             // Succ is unaffected but it may (transitively) expand to affected
814             // vertices. Store it in UnaffectedOnCurrentLevel.
815             LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
816                               << BlockNamePrinter(Succ) << "\n");
817             UnaffectedOnCurrentLevel.push_back(SuccTN);
818 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
819             II.VisitedUnaffected.push_back(SuccTN);
820 #endif
821           } else {
822             // The condition is satisfied (Succ is affected). Add Succ to the
823             // bucket queue.
824             LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
825                               << " to a Bucket\n");
826             II.Bucket.push(SuccTN);
827           }
828         }
829 
830         if (UnaffectedOnCurrentLevel.empty())
831           break;
832         TN = UnaffectedOnCurrentLevel.pop_back_val();
833         LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
834       }
835     }
836 
837     // Finish by updating immediate dominators and levels.
838     UpdateInsertion(DT, BUI, NCD, II);
839   }
840 
841   // Updates immediate dominators and levels after insertion.
842   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
843                               const TreeNodePtr NCD, InsertionInfo &II) {
844     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
845 
846     for (const TreeNodePtr TN : II.Affected) {
847       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
848                         << ") = " << BlockNamePrinter(NCD) << "\n");
849       TN->setIDom(NCD);
850     }
851 
852 #if LLVM_ENABLE_ABI_BREAKING_CHECKS && !defined(NDEBUG)
853     for (const TreeNodePtr TN : II.VisitedUnaffected)
854       assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
855              "TN should have been updated by an affected ancestor");
856 #endif
857 
858     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
859   }
860 
861   // Handles insertion to previously unreachable nodes.
862   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
863                                 const TreeNodePtr From, const NodePtr To) {
864     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
865                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
866 
867     // Collect discovered edges to already reachable nodes.
868     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
869     // Discover and connect nodes that became reachable with the insertion.
870     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
871 
872     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
873                       << " -> (prev unreachable) " << BlockNamePrinter(To)
874                       << "\n");
875 
876     // Used the discovered edges and inset discovered connecting (incoming)
877     // edges.
878     for (const auto &Edge : DiscoveredEdgesToReachable) {
879       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
880                         << BlockNamePrinter(Edge.first) << " -> "
881                         << BlockNamePrinter(Edge.second) << "\n");
882       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
883     }
884   }
885 
886   // Connects nodes that become reachable with an insertion.
887   static void ComputeUnreachableDominators(
888       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
889       const TreeNodePtr Incoming,
890       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
891           &DiscoveredConnectingEdges) {
892     assert(!DT.getNode(Root) && "Root must not be reachable");
893 
894     // Visit only previously unreachable nodes.
895     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
896                                                                   NodePtr To) {
897       const TreeNodePtr ToTN = DT.getNode(To);
898       if (!ToTN) return true;
899 
900       DiscoveredConnectingEdges.push_back({From, ToTN});
901       return false;
902     };
903 
904     SemiNCAInfo SNCA(BUI);
905     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
906     SNCA.runSemiNCA();
907     SNCA.attachNewSubtree(DT, Incoming);
908 
909     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
910   }
911 
912   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
913                          const NodePtr From, const NodePtr To) {
914     assert(From && To && "Cannot disconnect nullptrs");
915     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
916                       << BlockNamePrinter(To) << "\n");
917 
918 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
919     // Ensure that the edge was in fact deleted from the CFG before informing
920     // the DomTree about it.
921     // The check is O(N), so run it only in debug configuration.
922     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
923       auto Successors = getChildren<IsPostDom>(Of, BUI);
924       return llvm::is_contained(Successors, SuccCandidate);
925     };
926     (void)IsSuccessor;
927     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
928 #endif
929 
930     const TreeNodePtr FromTN = DT.getNode(From);
931     // Deletion in an unreachable subtree -- nothing to do.
932     if (!FromTN) return;
933 
934     const TreeNodePtr ToTN = DT.getNode(To);
935     if (!ToTN) {
936       LLVM_DEBUG(
937           dbgs() << "\tTo (" << BlockNamePrinter(To)
938                  << ") already unreachable -- there is no edge to delete\n");
939       return;
940     }
941 
942     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
943     const TreeNodePtr NCD = DT.getNode(NCDBlock);
944 
945     // If To dominates From -- nothing to do.
946     if (ToTN != NCD) {
947       DT.DFSInfoValid = false;
948 
949       const TreeNodePtr ToIDom = ToTN->getIDom();
950       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
951                         << BlockNamePrinter(ToIDom) << "\n");
952 
953       // To remains reachable after deletion.
954       // (Based on the caption under Figure 4. from [2].)
955       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
956         DeleteReachable(DT, BUI, FromTN, ToTN);
957       else
958         DeleteUnreachable(DT, BUI, ToTN);
959     }
960 
961     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
962   }
963 
964   // Handles deletions that leave destination nodes reachable.
965   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
966                               const TreeNodePtr FromTN,
967                               const TreeNodePtr ToTN) {
968     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
969                       << " -> " << BlockNamePrinter(ToTN) << "\n");
970     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
971 
972     // Find the top of the subtree that needs to be rebuilt.
973     // (Based on the lemma 2.6 from [2].)
974     const NodePtr ToIDom =
975         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
976     assert(ToIDom || DT.isPostDominator());
977     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
978     assert(ToIDomTN);
979     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
980     // Top of the subtree to rebuild is the root node. Rebuild the tree from
981     // scratch.
982     if (!PrevIDomSubTree) {
983       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
984       CalculateFromScratch(DT, BUI);
985       return;
986     }
987 
988     // Only visit nodes in the subtree starting at To.
989     const unsigned Level = ToIDomTN->getLevel();
990     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
991       return DT.getNode(To)->getLevel() > Level;
992     };
993 
994     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
995                       << "\n");
996 
997     SemiNCAInfo SNCA(BUI);
998     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
999     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1000     SNCA.runSemiNCA();
1001     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1002   }
1003 
1004   // Checks if a node has proper support, as defined on the page 3 and later
1005   // explained on the page 7 of [2].
1006   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1007                                const TreeNodePtr TN) {
1008     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1009                       << "\n");
1010     auto TNB = TN->getBlock();
1011     for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
1012       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1013       if (!DT.getNode(Pred)) continue;
1014 
1015       const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
1016       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1017       if (Support != TNB) {
1018         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1019                           << " is reachable from support "
1020                           << BlockNamePrinter(Support) << "\n");
1021         return true;
1022       }
1023     }
1024 
1025     return false;
1026   }
1027 
1028   // Handle deletions that make destination node unreachable.
1029   // (Based on the lemma 2.7 from the [2].)
1030   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1031                                 const TreeNodePtr ToTN) {
1032     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1033                       << BlockNamePrinter(ToTN) << "\n");
1034     assert(ToTN);
1035     assert(ToTN->getBlock());
1036 
1037     if (IsPostDom) {
1038       // Deletion makes a region reverse-unreachable and creates a new root.
1039       // Simulate that by inserting an edge from the virtual root to ToTN and
1040       // adding it as a new root.
1041       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1042       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1043                         << "\n");
1044       DT.Roots.push_back(ToTN->getBlock());
1045       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1046       return;
1047     }
1048 
1049     SmallVector<NodePtr, 16> AffectedQueue;
1050     const unsigned Level = ToTN->getLevel();
1051 
1052     // Traverse destination node's descendants with greater level in the tree
1053     // and collect visited nodes.
1054     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1055       const TreeNodePtr TN = DT.getNode(To);
1056       assert(TN);
1057       if (TN->getLevel() > Level) return true;
1058       if (!llvm::is_contained(AffectedQueue, To))
1059         AffectedQueue.push_back(To);
1060 
1061       return false;
1062     };
1063 
1064     SemiNCAInfo SNCA(BUI);
1065     unsigned LastDFSNum =
1066         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1067 
1068     TreeNodePtr MinNode = ToTN;
1069 
1070     // Identify the top of the subtree to rebuild by finding the NCD of all
1071     // the affected nodes.
1072     for (const NodePtr N : AffectedQueue) {
1073       const TreeNodePtr TN = DT.getNode(N);
1074       const NodePtr NCDBlock =
1075           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1076       assert(NCDBlock || DT.isPostDominator());
1077       const TreeNodePtr NCD = DT.getNode(NCDBlock);
1078       assert(NCD);
1079 
1080       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1081                         << " with NCD = " << BlockNamePrinter(NCD)
1082                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1083       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1084     }
1085 
1086     // Root reached, rebuild the whole tree from scratch.
1087     if (!MinNode->getIDom()) {
1088       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1089       CalculateFromScratch(DT, BUI);
1090       return;
1091     }
1092 
1093     // Erase the unreachable subtree in reverse preorder to process all children
1094     // before deleting their parent.
1095     for (unsigned i = LastDFSNum; i > 0; --i) {
1096       const NodePtr N = SNCA.NumToNode[i];
1097       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(DT.getNode(N))
1098                         << "\n");
1099       DT.eraseNode(N);
1100     }
1101 
1102     // The affected subtree start at the To node -- there's no extra work to do.
1103     if (MinNode == ToTN) return;
1104 
1105     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1106                       << BlockNamePrinter(MinNode) << "\n");
1107     const unsigned MinLevel = MinNode->getLevel();
1108     const TreeNodePtr PrevIDom = MinNode->getIDom();
1109     assert(PrevIDom);
1110     SNCA.clear();
1111 
1112     // Identify nodes that remain in the affected subtree.
1113     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1114       const TreeNodePtr ToTN = DT.getNode(To);
1115       return ToTN && ToTN->getLevel() > MinLevel;
1116     };
1117     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1118 
1119     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1120                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1121 
1122     // Rebuild the remaining part of affected subtree.
1123     SNCA.runSemiNCA();
1124     SNCA.reattachExistingSubtree(DT, PrevIDom);
1125   }
1126 
1127   //~~
1128   //===--------------------- DomTree Batch Updater --------------------------===
1129   //~~
1130 
1131   static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
1132                            GraphDiffT *PostViewCFG) {
1133     // Note: the PostViewCFG is only used when computing from scratch. It's data
1134     // should already included in the PreViewCFG for incremental updates.
1135     const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
1136     if (NumUpdates == 0)
1137       return;
1138 
1139     // Take the fast path for a single update and avoid running the batch update
1140     // machinery.
1141     if (NumUpdates == 1) {
1142       UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
1143       if (!PostViewCFG) {
1144         if (Update.getKind() == UpdateKind::Insert)
1145           InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1146         else
1147           DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1148       } else {
1149         BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
1150         if (Update.getKind() == UpdateKind::Insert)
1151           InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1152         else
1153           DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1154       }
1155       return;
1156     }
1157 
1158     BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
1159     // Recalculate the DominatorTree when the number of updates
1160     // exceeds a threshold, which usually makes direct updating slower than
1161     // recalculation. We select this threshold proportional to the
1162     // size of the DominatorTree. The constant is selected
1163     // by choosing the one with an acceptable performance on some real-world
1164     // inputs.
1165 
1166     // Make unittests of the incremental algorithm work
1167     if (DT.DomTreeNodes.size() <= 100) {
1168       if (BUI.NumLegalized > DT.DomTreeNodes.size())
1169         CalculateFromScratch(DT, &BUI);
1170     } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
1171       CalculateFromScratch(DT, &BUI);
1172 
1173     // If the DominatorTree was recalculated at some point, stop the batch
1174     // updates. Full recalculations ignore batch updates and look at the actual
1175     // CFG.
1176     for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
1177       ApplyNextUpdate(DT, BUI);
1178   }
1179 
1180   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1181     // Popping the next update, will move the PreViewCFG to the next snapshot.
1182     UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
1183 #if 0
1184     // FIXME: The LLVM_DEBUG macro only plays well with a modular
1185     // build of LLVM when the header is marked as textual, but doing
1186     // so causes redefinition errors.
1187     LLVM_DEBUG(dbgs() << "Applying update: ");
1188     LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1189 #endif
1190 
1191     if (CurrentUpdate.getKind() == UpdateKind::Insert)
1192       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1193     else
1194       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1195   }
1196 
1197   //~~
1198   //===--------------- DomTree correctness verification ---------------------===
1199   //~~
1200 
1201   // Check if the tree has correct roots. A DominatorTree always has a single
1202   // root which is the function's entry node. A PostDominatorTree can have
1203   // multiple roots - one for each node with no successors and for infinite
1204   // loops.
1205   // Running time: O(N).
1206   bool verifyRoots(const DomTreeT &DT) {
1207     if (!DT.Parent && !DT.Roots.empty()) {
1208       errs() << "Tree has no parent but has roots!\n";
1209       errs().flush();
1210       return false;
1211     }
1212 
1213     if (!IsPostDom) {
1214       if (DT.Roots.empty()) {
1215         errs() << "Tree doesn't have a root!\n";
1216         errs().flush();
1217         return false;
1218       }
1219 
1220       if (DT.getRoot() != GetEntryNode(DT)) {
1221         errs() << "Tree's root is not its parent's entry node!\n";
1222         errs().flush();
1223         return false;
1224       }
1225     }
1226 
1227     RootsT ComputedRoots = FindRoots(DT, nullptr);
1228     if (!isPermutation(DT.Roots, ComputedRoots)) {
1229       errs() << "Tree has different roots than freshly computed ones!\n";
1230       errs() << "\tPDT roots: ";
1231       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1232       errs() << "\n\tComputed roots: ";
1233       for (const NodePtr N : ComputedRoots)
1234         errs() << BlockNamePrinter(N) << ", ";
1235       errs() << "\n";
1236       errs().flush();
1237       return false;
1238     }
1239 
1240     return true;
1241   }
1242 
1243   // Checks if the tree contains all reachable nodes in the input graph.
1244   // Running time: O(N).
1245   bool verifyReachability(const DomTreeT &DT) {
1246     clear();
1247     doFullDFSWalk(DT, AlwaysDescend);
1248 
1249     for (auto &NodeToTN : DT.DomTreeNodes) {
1250       const TreeNodePtr TN = NodeToTN.get();
1251       if (!TN)
1252         continue;
1253       const NodePtr BB = TN->getBlock();
1254 
1255       // Virtual root has a corresponding virtual CFG node.
1256       if (DT.isVirtualRoot(TN)) continue;
1257 
1258       if (getNodeInfo(BB).DFSNum == 0) {
1259         errs() << "DomTree node " << BlockNamePrinter(BB)
1260                << " not found by DFS walk!\n";
1261         errs().flush();
1262 
1263         return false;
1264       }
1265     }
1266 
1267     for (const NodePtr N : NumToNode) {
1268       if (N && !DT.getNode(N)) {
1269         errs() << "CFG node " << BlockNamePrinter(N)
1270                << " not found in the DomTree!\n";
1271         errs().flush();
1272 
1273         return false;
1274       }
1275     }
1276 
1277     return true;
1278   }
1279 
1280   // Check if for every parent with a level L in the tree all of its children
1281   // have level L + 1.
1282   // Running time: O(N).
1283   static bool VerifyLevels(const DomTreeT &DT) {
1284     for (auto &NodeToTN : DT.DomTreeNodes) {
1285       const TreeNodePtr TN = NodeToTN.get();
1286       if (!TN)
1287         continue;
1288       const NodePtr BB = TN->getBlock();
1289       if (!BB) continue;
1290 
1291       const TreeNodePtr IDom = TN->getIDom();
1292       if (!IDom && TN->getLevel() != 0) {
1293         errs() << "Node without an IDom " << BlockNamePrinter(BB)
1294                << " has a nonzero level " << TN->getLevel() << "!\n";
1295         errs().flush();
1296 
1297         return false;
1298       }
1299 
1300       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1301         errs() << "Node " << BlockNamePrinter(BB) << " has level "
1302                << TN->getLevel() << " while its IDom "
1303                << BlockNamePrinter(IDom->getBlock()) << " has level "
1304                << IDom->getLevel() << "!\n";
1305         errs().flush();
1306 
1307         return false;
1308       }
1309     }
1310 
1311     return true;
1312   }
1313 
1314   // Check if the computed DFS numbers are correct. Note that DFS info may not
1315   // be valid, and when that is the case, we don't verify the numbers.
1316   // Running time: O(N log(N)).
1317   static bool VerifyDFSNumbers(const DomTreeT &DT) {
1318     if (!DT.DFSInfoValid || !DT.Parent)
1319       return true;
1320 
1321     const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
1322     const TreeNodePtr Root = DT.getNode(RootBB);
1323 
1324     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1325       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1326              << TN->getDFSNumOut() << '}';
1327     };
1328 
1329     // Verify the root's DFS In number. Although DFS numbering would also work
1330     // if we started from some other value, we assume 0-based numbering.
1331     if (Root->getDFSNumIn() != 0) {
1332       errs() << "DFSIn number for the tree root is not:\n\t";
1333       PrintNodeAndDFSNums(Root);
1334       errs() << '\n';
1335       errs().flush();
1336       return false;
1337     }
1338 
1339     // For each tree node verify if children's DFS numbers cover their parent's
1340     // DFS numbers with no gaps.
1341     for (const auto &NodeToTN : DT.DomTreeNodes) {
1342       const TreeNodePtr Node = NodeToTN.get();
1343       if (!Node)
1344         continue;
1345 
1346       // Handle tree leaves.
1347       if (Node->isLeaf()) {
1348         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1349           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1350           PrintNodeAndDFSNums(Node);
1351           errs() << '\n';
1352           errs().flush();
1353           return false;
1354         }
1355 
1356         continue;
1357       }
1358 
1359       // Make a copy and sort it such that it is possible to check if there are
1360       // no gaps between DFS numbers of adjacent children.
1361       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1362       llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1363         return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1364       });
1365 
1366       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1367           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1368         assert(FirstCh);
1369 
1370         errs() << "Incorrect DFS numbers for:\n\tParent ";
1371         PrintNodeAndDFSNums(Node);
1372 
1373         errs() << "\n\tChild ";
1374         PrintNodeAndDFSNums(FirstCh);
1375 
1376         if (SecondCh) {
1377           errs() << "\n\tSecond child ";
1378           PrintNodeAndDFSNums(SecondCh);
1379         }
1380 
1381         errs() << "\nAll children: ";
1382         for (const TreeNodePtr Ch : Children) {
1383           PrintNodeAndDFSNums(Ch);
1384           errs() << ", ";
1385         }
1386 
1387         errs() << '\n';
1388         errs().flush();
1389       };
1390 
1391       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1392         PrintChildrenError(Children.front(), nullptr);
1393         return false;
1394       }
1395 
1396       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1397         PrintChildrenError(Children.back(), nullptr);
1398         return false;
1399       }
1400 
1401       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1402         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1403           PrintChildrenError(Children[i], Children[i + 1]);
1404           return false;
1405         }
1406       }
1407     }
1408 
1409     return true;
1410   }
1411 
1412   // The below routines verify the correctness of the dominator tree relative to
1413   // the CFG it's coming from.  A tree is a dominator tree iff it has two
1414   // properties, called the parent property and the sibling property.  Tarjan
1415   // and Lengauer prove (but don't explicitly name) the properties as part of
1416   // the proofs in their 1972 paper, but the proofs are mostly part of proving
1417   // things about semidominators and idoms, and some of them are simply asserted
1418   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1419   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1420   // directed bipolar orders, and independent spanning trees" by Loukas
1421   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1422   // and Vertex-Disjoint Paths " by the same authors.
1423 
1424   // A very simple and direct explanation of these properties can be found in
1425   // "An Experimental Study of Dynamic Dominators", found at
1426   // https://arxiv.org/abs/1604.02711
1427 
1428   // The easiest way to think of the parent property is that it's a requirement
1429   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1430   // be an immediate dominator of CHILD, all paths in the CFG must go through
1431   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1432   // out of the CFG, there should be no paths to CHILD that are reachable.  If
1433   // there are, then you now have a path from PARENT to CHILD that goes around
1434   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1435   // a dominator of CHILD (let alone an immediate one).
1436 
1437   // The sibling property is similar.  It says that for each pair of sibling
1438   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1439   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1440   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1441   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1442   // RIGHT, not a sibling.
1443 
1444   // It is possible to verify the parent and sibling properties in linear time,
1445   // but the algorithms are complex. Instead, we do it in a straightforward
1446   // N^2 and N^3 way below, using direct path reachability.
1447 
1448   // Checks if the tree has the parent property: if for all edges from V to W in
1449   // the input graph, such that V is reachable, the parent of W in the tree is
1450   // an ancestor of V in the tree.
1451   // Running time: O(N^2).
1452   //
1453   // This means that if a node gets disconnected from the graph, then all of
1454   // the nodes it dominated previously will now become unreachable.
1455   bool verifyParentProperty(const DomTreeT &DT) {
1456     for (auto &NodeToTN : DT.DomTreeNodes) {
1457       const TreeNodePtr TN = NodeToTN.get();
1458       if (!TN)
1459         continue;
1460       const NodePtr BB = TN->getBlock();
1461       if (!BB || TN->isLeaf())
1462         continue;
1463 
1464       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1465                         << BlockNamePrinter(TN) << "\n");
1466       clear();
1467       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1468         return From != BB && To != BB;
1469       });
1470 
1471       for (TreeNodePtr Child : TN->children())
1472         if (getNodeInfo(Child->getBlock()).DFSNum != 0) {
1473           errs() << "Child " << BlockNamePrinter(Child)
1474                  << " reachable after its parent " << BlockNamePrinter(BB)
1475                  << " is removed!\n";
1476           errs().flush();
1477 
1478           return false;
1479         }
1480     }
1481 
1482     return true;
1483   }
1484 
1485   // Check if the tree has sibling property: if a node V does not dominate a
1486   // node W for all siblings V and W in the tree.
1487   // Running time: O(N^3).
1488   //
1489   // This means that if a node gets disconnected from the graph, then all of its
1490   // siblings will now still be reachable.
1491   bool verifySiblingProperty(const DomTreeT &DT) {
1492     for (auto &NodeToTN : DT.DomTreeNodes) {
1493       const TreeNodePtr TN = NodeToTN.get();
1494       if (!TN)
1495         continue;
1496       const NodePtr BB = TN->getBlock();
1497       if (!BB || TN->isLeaf())
1498         continue;
1499 
1500       for (const TreeNodePtr N : TN->children()) {
1501         clear();
1502         NodePtr BBN = N->getBlock();
1503         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1504           return From != BBN && To != BBN;
1505         });
1506 
1507         for (const TreeNodePtr S : TN->children()) {
1508           if (S == N) continue;
1509 
1510           if (getNodeInfo(S->getBlock()).DFSNum == 0) {
1511             errs() << "Node " << BlockNamePrinter(S)
1512                    << " not reachable when its sibling " << BlockNamePrinter(N)
1513                    << " is removed!\n";
1514             errs().flush();
1515 
1516             return false;
1517           }
1518         }
1519       }
1520     }
1521 
1522     return true;
1523   }
1524 
1525   // Check if the given tree is the same as a freshly computed one for the same
1526   // Parent.
1527   // Running time: O(N^2), but faster in practice (same as tree construction).
1528   //
1529   // Note that this does not check if that the tree construction algorithm is
1530   // correct and should be only used for fast (but possibly unsound)
1531   // verification.
1532   static bool IsSameAsFreshTree(const DomTreeT &DT) {
1533     DomTreeT FreshTree;
1534     FreshTree.recalculate(*DT.Parent);
1535     const bool Different = DT.compare(FreshTree);
1536 
1537     if (Different) {
1538       errs() << (DT.isPostDominator() ? "Post" : "")
1539              << "DominatorTree is different than a freshly computed one!\n"
1540              << "\tCurrent:\n";
1541       DT.print(errs());
1542       errs() << "\n\tFreshly computed tree:\n";
1543       FreshTree.print(errs());
1544       errs().flush();
1545     }
1546 
1547     return !Different;
1548   }
1549 };
1550 
1551 template <class DomTreeT>
1552 void Calculate(DomTreeT &DT) {
1553   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1554 }
1555 
1556 template <typename DomTreeT>
1557 void CalculateWithUpdates(DomTreeT &DT,
1558                           ArrayRef<typename DomTreeT::UpdateType> Updates) {
1559   // FIXME: Updated to use the PreViewCFG and behave the same as until now.
1560   // This behavior is however incorrect; this actually needs the PostViewCFG.
1561   GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
1562       Updates, /*ReverseApplyUpdates=*/true);
1563   typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
1564   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1565 }
1566 
1567 template <class DomTreeT>
1568 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1569                 typename DomTreeT::NodePtr To) {
1570   if (DT.isPostDominator()) std::swap(From, To);
1571   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1572 }
1573 
1574 template <class DomTreeT>
1575 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1576                 typename DomTreeT::NodePtr To) {
1577   if (DT.isPostDominator()) std::swap(From, To);
1578   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1579 }
1580 
1581 template <class DomTreeT>
1582 void ApplyUpdates(DomTreeT &DT,
1583                   GraphDiff<typename DomTreeT::NodePtr,
1584                             DomTreeT::IsPostDominator> &PreViewCFG,
1585                   GraphDiff<typename DomTreeT::NodePtr,
1586                             DomTreeT::IsPostDominator> *PostViewCFG) {
1587   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
1588 }
1589 
1590 template <class DomTreeT>
1591 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1592   SemiNCAInfo<DomTreeT> SNCA(nullptr);
1593 
1594   // Simplist check is to compare against a new tree. This will also
1595   // usefully print the old and new trees, if they are different.
1596   if (!SNCA.IsSameAsFreshTree(DT))
1597     return false;
1598 
1599   // Common checks to verify the properties of the tree. O(N log N) at worst.
1600   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1601       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1602     return false;
1603 
1604   // Extra checks depending on VerificationLevel. Up to O(N^3).
1605   if (VL == DomTreeT::VerificationLevel::Basic ||
1606       VL == DomTreeT::VerificationLevel::Full)
1607     if (!SNCA.verifyParentProperty(DT))
1608       return false;
1609   if (VL == DomTreeT::VerificationLevel::Full)
1610     if (!SNCA.verifySiblingProperty(DT))
1611       return false;
1612 
1613   return true;
1614 }
1615 
1616 }  // namespace DomTreeBuilder
1617 }  // namespace llvm
1618 
1619 #undef DEBUG_TYPE
1620 
1621 #endif
1622