xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/Target/AMDGPU/GCNHazardRecognizer.cpp (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- GCNHazardRecognizers.cpp - GCN Hazard Recognizer Impls ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements hazard recognizers for scheduling on GCN processors.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "GCNHazardRecognizer.h"
14 #include "GCNSubtarget.h"
15 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/ScheduleDAG.h"
18 #include "llvm/Support/TargetParser.h"
19 
20 using namespace llvm;
21 
22 //===----------------------------------------------------------------------===//
23 // Hazard Recoginizer Implementation
24 //===----------------------------------------------------------------------===//
25 
GCNHazardRecognizer(const MachineFunction & MF)26 GCNHazardRecognizer::GCNHazardRecognizer(const MachineFunction &MF) :
27   IsHazardRecognizerMode(false),
28   CurrCycleInstr(nullptr),
29   MF(MF),
30   ST(MF.getSubtarget<GCNSubtarget>()),
31   TII(*ST.getInstrInfo()),
32   TRI(TII.getRegisterInfo()),
33   ClauseUses(TRI.getNumRegUnits()),
34   ClauseDefs(TRI.getNumRegUnits()) {
35   MaxLookAhead = MF.getRegInfo().isPhysRegUsed(AMDGPU::AGPR0) ? 19 : 5;
36   TSchedModel.init(&ST);
37 }
38 
Reset()39 void GCNHazardRecognizer::Reset() {
40   EmittedInstrs.clear();
41 }
42 
EmitInstruction(SUnit * SU)43 void GCNHazardRecognizer::EmitInstruction(SUnit *SU) {
44   EmitInstruction(SU->getInstr());
45 }
46 
EmitInstruction(MachineInstr * MI)47 void GCNHazardRecognizer::EmitInstruction(MachineInstr *MI) {
48   CurrCycleInstr = MI;
49 }
50 
isDivFMas(unsigned Opcode)51 static bool isDivFMas(unsigned Opcode) {
52   return Opcode == AMDGPU::V_DIV_FMAS_F32_e64 || Opcode == AMDGPU::V_DIV_FMAS_F64_e64;
53 }
54 
isSGetReg(unsigned Opcode)55 static bool isSGetReg(unsigned Opcode) {
56   return Opcode == AMDGPU::S_GETREG_B32;
57 }
58 
isSSetReg(unsigned Opcode)59 static bool isSSetReg(unsigned Opcode) {
60   switch (Opcode) {
61   case AMDGPU::S_SETREG_B32:
62   case AMDGPU::S_SETREG_B32_mode:
63   case AMDGPU::S_SETREG_IMM32_B32:
64   case AMDGPU::S_SETREG_IMM32_B32_mode:
65     return true;
66   }
67   return false;
68 }
69 
isRWLane(unsigned Opcode)70 static bool isRWLane(unsigned Opcode) {
71   return Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32;
72 }
73 
isRFE(unsigned Opcode)74 static bool isRFE(unsigned Opcode) {
75   return Opcode == AMDGPU::S_RFE_B64;
76 }
77 
isSMovRel(unsigned Opcode)78 static bool isSMovRel(unsigned Opcode) {
79   switch (Opcode) {
80   case AMDGPU::S_MOVRELS_B32:
81   case AMDGPU::S_MOVRELS_B64:
82   case AMDGPU::S_MOVRELD_B32:
83   case AMDGPU::S_MOVRELD_B64:
84     return true;
85   default:
86     return false;
87   }
88 }
89 
isDGEMM(unsigned Opcode)90 static bool isDGEMM(unsigned Opcode) {
91   return Opcode == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
92          Opcode == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64 ||
93          Opcode == AMDGPU::V_MFMA_F64_16X16X4F64_e64 ||
94          Opcode == AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64;
95 }
96 
isXDL(const GCNSubtarget & ST,const MachineInstr & MI)97 static bool isXDL(const GCNSubtarget &ST, const MachineInstr &MI) {
98   unsigned Opcode = MI.getOpcode();
99 
100   if (!SIInstrInfo::isMAI(MI) ||
101       isDGEMM(Opcode) ||
102       Opcode == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
103       Opcode == AMDGPU::V_ACCVGPR_READ_B32_e64)
104     return false;
105 
106   return true;
107 }
108 
isSendMsgTraceDataOrGDS(const SIInstrInfo & TII,const MachineInstr & MI)109 static bool isSendMsgTraceDataOrGDS(const SIInstrInfo &TII,
110                                     const MachineInstr &MI) {
111   if (TII.isAlwaysGDS(MI.getOpcode()))
112     return true;
113 
114   switch (MI.getOpcode()) {
115   case AMDGPU::S_SENDMSG:
116   case AMDGPU::S_SENDMSGHALT:
117   case AMDGPU::S_TTRACEDATA:
118     return true;
119   // These DS opcodes don't support GDS.
120   case AMDGPU::DS_NOP:
121   case AMDGPU::DS_PERMUTE_B32:
122   case AMDGPU::DS_BPERMUTE_B32:
123     return false;
124   default:
125     if (TII.isDS(MI.getOpcode())) {
126       int GDS = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
127                                            AMDGPU::OpName::gds);
128       if (MI.getOperand(GDS).getImm())
129         return true;
130     }
131     return false;
132   }
133 }
134 
isPermlane(const MachineInstr & MI)135 static bool isPermlane(const MachineInstr &MI) {
136   unsigned Opcode = MI.getOpcode();
137   return Opcode == AMDGPU::V_PERMLANE16_B32_e64 ||
138          Opcode == AMDGPU::V_PERMLANEX16_B32_e64;
139 }
140 
getHWReg(const SIInstrInfo * TII,const MachineInstr & RegInstr)141 static unsigned getHWReg(const SIInstrInfo *TII, const MachineInstr &RegInstr) {
142   const MachineOperand *RegOp = TII->getNamedOperand(RegInstr,
143                                                      AMDGPU::OpName::simm16);
144   return RegOp->getImm() & AMDGPU::Hwreg::ID_MASK_;
145 }
146 
147 ScheduleHazardRecognizer::HazardType
getHazardType(SUnit * SU,int Stalls)148 GCNHazardRecognizer::getHazardType(SUnit *SU, int Stalls) {
149   MachineInstr *MI = SU->getInstr();
150   // If we are not in "HazardRecognizerMode" and therefore not being run from
151   // the scheduler, track possible stalls from hazards but don't insert noops.
152   auto HazardType = IsHazardRecognizerMode ? NoopHazard : Hazard;
153 
154   if (MI->isBundle())
155    return NoHazard;
156 
157   if (SIInstrInfo::isSMRD(*MI) && checkSMRDHazards(MI) > 0)
158     return HazardType;
159 
160   if (ST.hasNSAtoVMEMBug() && checkNSAtoVMEMHazard(MI) > 0)
161     return HazardType;
162 
163   if (checkFPAtomicToDenormModeHazard(MI) > 0)
164     return HazardType;
165 
166   if (ST.hasNoDataDepHazard())
167     return NoHazard;
168 
169   // FIXME: Should flat be considered vmem?
170   if ((SIInstrInfo::isVMEM(*MI) ||
171        SIInstrInfo::isFLAT(*MI))
172       && checkVMEMHazards(MI) > 0)
173     return HazardType;
174 
175   if (SIInstrInfo::isVALU(*MI) && checkVALUHazards(MI) > 0)
176     return HazardType;
177 
178   if (SIInstrInfo::isDPP(*MI) && checkDPPHazards(MI) > 0)
179     return HazardType;
180 
181   if (isDivFMas(MI->getOpcode()) && checkDivFMasHazards(MI) > 0)
182     return HazardType;
183 
184   if (isRWLane(MI->getOpcode()) && checkRWLaneHazards(MI) > 0)
185     return HazardType;
186 
187   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
188        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
189        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
190     return HazardType;
191 
192   if (isSGetReg(MI->getOpcode()) && checkGetRegHazards(MI) > 0)
193     return HazardType;
194 
195   if (isSSetReg(MI->getOpcode()) && checkSetRegHazards(MI) > 0)
196     return HazardType;
197 
198   if (isRFE(MI->getOpcode()) && checkRFEHazards(MI) > 0)
199     return HazardType;
200 
201   if (ST.hasReadM0MovRelInterpHazard() &&
202       (TII.isVINTRP(*MI) || isSMovRel(MI->getOpcode())) &&
203       checkReadM0Hazards(MI) > 0)
204     return HazardType;
205 
206   if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI) &&
207       checkReadM0Hazards(MI) > 0)
208     return HazardType;
209 
210   if (SIInstrInfo::isMAI(*MI) && checkMAIHazards(MI) > 0)
211     return HazardType;
212 
213   if ((SIInstrInfo::isVMEM(*MI) ||
214        SIInstrInfo::isFLAT(*MI) ||
215        SIInstrInfo::isDS(*MI)) && checkMAILdStHazards(MI) > 0)
216     return HazardType;
217 
218   if (MI->isInlineAsm() && checkInlineAsmHazards(MI) > 0)
219     return HazardType;
220 
221   return NoHazard;
222 }
223 
insertNoopsInBundle(MachineInstr * MI,const SIInstrInfo & TII,unsigned Quantity)224 static void insertNoopsInBundle(MachineInstr *MI, const SIInstrInfo &TII,
225                                 unsigned Quantity) {
226   while (Quantity > 0) {
227     unsigned Arg = std::min(Quantity, 8u);
228     Quantity -= Arg;
229     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), TII.get(AMDGPU::S_NOP))
230         .addImm(Arg - 1);
231   }
232 }
233 
processBundle()234 void GCNHazardRecognizer::processBundle() {
235   MachineBasicBlock::instr_iterator MI = std::next(CurrCycleInstr->getIterator());
236   MachineBasicBlock::instr_iterator E = CurrCycleInstr->getParent()->instr_end();
237   // Check bundled MachineInstr's for hazards.
238   for (; MI != E && MI->isInsideBundle(); ++MI) {
239     CurrCycleInstr = &*MI;
240     unsigned WaitStates = PreEmitNoopsCommon(CurrCycleInstr);
241 
242     if (IsHazardRecognizerMode) {
243       fixHazards(CurrCycleInstr);
244 
245       insertNoopsInBundle(CurrCycleInstr, TII, WaitStates);
246     }
247 
248     // It’s unnecessary to track more than MaxLookAhead instructions. Since we
249     // include the bundled MI directly after, only add a maximum of
250     // (MaxLookAhead - 1) noops to EmittedInstrs.
251     for (unsigned i = 0, e = std::min(WaitStates, MaxLookAhead - 1); i < e; ++i)
252       EmittedInstrs.push_front(nullptr);
253 
254     EmittedInstrs.push_front(CurrCycleInstr);
255     EmittedInstrs.resize(MaxLookAhead);
256   }
257   CurrCycleInstr = nullptr;
258 }
259 
PreEmitNoops(MachineInstr * MI)260 unsigned GCNHazardRecognizer::PreEmitNoops(MachineInstr *MI) {
261   IsHazardRecognizerMode = true;
262   CurrCycleInstr = MI;
263   unsigned W = PreEmitNoopsCommon(MI);
264   fixHazards(MI);
265   CurrCycleInstr = nullptr;
266   return W;
267 }
268 
PreEmitNoopsCommon(MachineInstr * MI)269 unsigned GCNHazardRecognizer::PreEmitNoopsCommon(MachineInstr *MI) {
270   if (MI->isBundle())
271     return 0;
272 
273   int WaitStates = 0;
274 
275   if (SIInstrInfo::isSMRD(*MI))
276     return std::max(WaitStates, checkSMRDHazards(MI));
277 
278   if (ST.hasNSAtoVMEMBug())
279     WaitStates = std::max(WaitStates, checkNSAtoVMEMHazard(MI));
280 
281   WaitStates = std::max(WaitStates, checkFPAtomicToDenormModeHazard(MI));
282 
283   if (ST.hasNoDataDepHazard())
284     return WaitStates;
285 
286   if (SIInstrInfo::isVMEM(*MI) || SIInstrInfo::isFLAT(*MI))
287     WaitStates = std::max(WaitStates, checkVMEMHazards(MI));
288 
289   if (SIInstrInfo::isVALU(*MI))
290     WaitStates = std::max(WaitStates, checkVALUHazards(MI));
291 
292   if (SIInstrInfo::isDPP(*MI))
293     WaitStates = std::max(WaitStates, checkDPPHazards(MI));
294 
295   if (isDivFMas(MI->getOpcode()))
296     WaitStates = std::max(WaitStates, checkDivFMasHazards(MI));
297 
298   if (isRWLane(MI->getOpcode()))
299     WaitStates = std::max(WaitStates, checkRWLaneHazards(MI));
300 
301   if ((SIInstrInfo::isVALU(*MI) || SIInstrInfo::isVMEM(*MI) ||
302        SIInstrInfo::isFLAT(*MI) || SIInstrInfo::isDS(*MI) ||
303        SIInstrInfo::isEXP(*MI)) && checkMAIVALUHazards(MI) > 0)
304     WaitStates = std::max(WaitStates, checkMAIVALUHazards(MI));
305 
306   if (MI->isInlineAsm())
307     return std::max(WaitStates, checkInlineAsmHazards(MI));
308 
309   if (isSGetReg(MI->getOpcode()))
310     return std::max(WaitStates, checkGetRegHazards(MI));
311 
312   if (isSSetReg(MI->getOpcode()))
313     return std::max(WaitStates, checkSetRegHazards(MI));
314 
315   if (isRFE(MI->getOpcode()))
316     return std::max(WaitStates, checkRFEHazards(MI));
317 
318   if (ST.hasReadM0MovRelInterpHazard() && (TII.isVINTRP(*MI) ||
319                                            isSMovRel(MI->getOpcode())))
320     return std::max(WaitStates, checkReadM0Hazards(MI));
321 
322   if (ST.hasReadM0SendMsgHazard() && isSendMsgTraceDataOrGDS(TII, *MI))
323     return std::max(WaitStates, checkReadM0Hazards(MI));
324 
325   if (SIInstrInfo::isMAI(*MI))
326     return std::max(WaitStates, checkMAIHazards(MI));
327 
328   if (SIInstrInfo::isVMEM(*MI) ||
329       SIInstrInfo::isFLAT(*MI) ||
330       SIInstrInfo::isDS(*MI))
331     return std::max(WaitStates, checkMAILdStHazards(MI));
332 
333   return WaitStates;
334 }
335 
EmitNoop()336 void GCNHazardRecognizer::EmitNoop() {
337   EmittedInstrs.push_front(nullptr);
338 }
339 
AdvanceCycle()340 void GCNHazardRecognizer::AdvanceCycle() {
341   // When the scheduler detects a stall, it will call AdvanceCycle() without
342   // emitting any instructions.
343   if (!CurrCycleInstr) {
344     EmittedInstrs.push_front(nullptr);
345     return;
346   }
347 
348   // Do not track non-instructions which do not affect the wait states.
349   // If included, these instructions can lead to buffer overflow such that
350   // detectable hazards are missed.
351   if (CurrCycleInstr->isMetaInstruction()) {
352     CurrCycleInstr = nullptr;
353     return;
354   }
355 
356   if (CurrCycleInstr->isBundle()) {
357     processBundle();
358     return;
359   }
360 
361   unsigned NumWaitStates = TII.getNumWaitStates(*CurrCycleInstr);
362 
363   // Keep track of emitted instructions
364   EmittedInstrs.push_front(CurrCycleInstr);
365 
366   // Add a nullptr for each additional wait state after the first.  Make sure
367   // not to add more than getMaxLookAhead() items to the list, since we
368   // truncate the list to that size right after this loop.
369   for (unsigned i = 1, e = std::min(NumWaitStates, getMaxLookAhead());
370        i < e; ++i) {
371     EmittedInstrs.push_front(nullptr);
372   }
373 
374   // getMaxLookahead() is the largest number of wait states we will ever need
375   // to insert, so there is no point in keeping track of more than that many
376   // wait states.
377   EmittedInstrs.resize(getMaxLookAhead());
378 
379   CurrCycleInstr = nullptr;
380 }
381 
RecedeCycle()382 void GCNHazardRecognizer::RecedeCycle() {
383   llvm_unreachable("hazard recognizer does not support bottom-up scheduling.");
384 }
385 
386 //===----------------------------------------------------------------------===//
387 // Helper Functions
388 //===----------------------------------------------------------------------===//
389 
390 typedef function_ref<bool(const MachineInstr &, int WaitStates)> IsExpiredFn;
391 
392 // Returns a minimum wait states since \p I walking all predecessors.
393 // Only scans until \p IsExpired does not return true.
394 // Can only be run in a hazard recognizer mode.
getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,const MachineBasicBlock * MBB,MachineBasicBlock::const_reverse_instr_iterator I,int WaitStates,IsExpiredFn IsExpired,DenseSet<const MachineBasicBlock * > & Visited)395 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
396                               const MachineBasicBlock *MBB,
397                               MachineBasicBlock::const_reverse_instr_iterator I,
398                               int WaitStates, IsExpiredFn IsExpired,
399                               DenseSet<const MachineBasicBlock *> &Visited) {
400   for (auto E = MBB->instr_rend(); I != E; ++I) {
401     // Don't add WaitStates for parent BUNDLE instructions.
402     if (I->isBundle())
403       continue;
404 
405     if (IsHazard(*I))
406       return WaitStates;
407 
408     if (I->isInlineAsm() || I->isMetaInstruction())
409       continue;
410 
411     WaitStates += SIInstrInfo::getNumWaitStates(*I);
412 
413     if (IsExpired(*I, WaitStates))
414       return std::numeric_limits<int>::max();
415   }
416 
417   int MinWaitStates = std::numeric_limits<int>::max();
418   for (MachineBasicBlock *Pred : MBB->predecessors()) {
419     if (!Visited.insert(Pred).second)
420       continue;
421 
422     int W = getWaitStatesSince(IsHazard, Pred, Pred->instr_rbegin(),
423                                WaitStates, IsExpired, Visited);
424 
425     MinWaitStates = std::min(MinWaitStates, W);
426   }
427 
428   return MinWaitStates;
429 }
430 
getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,const MachineInstr * MI,IsExpiredFn IsExpired)431 static int getWaitStatesSince(GCNHazardRecognizer::IsHazardFn IsHazard,
432                               const MachineInstr *MI, IsExpiredFn IsExpired) {
433   DenseSet<const MachineBasicBlock *> Visited;
434   return getWaitStatesSince(IsHazard, MI->getParent(),
435                             std::next(MI->getReverseIterator()),
436                             0, IsExpired, Visited);
437 }
438 
getWaitStatesSince(IsHazardFn IsHazard,int Limit)439 int GCNHazardRecognizer::getWaitStatesSince(IsHazardFn IsHazard, int Limit) {
440   if (IsHazardRecognizerMode) {
441     auto IsExpiredFn = [Limit](const MachineInstr &, int WaitStates) {
442       return WaitStates >= Limit;
443     };
444     return ::getWaitStatesSince(IsHazard, CurrCycleInstr, IsExpiredFn);
445   }
446 
447   int WaitStates = 0;
448   for (MachineInstr *MI : EmittedInstrs) {
449     if (MI) {
450       if (IsHazard(*MI))
451         return WaitStates;
452 
453       if (MI->isInlineAsm())
454         continue;
455     }
456     ++WaitStates;
457 
458     if (WaitStates >= Limit)
459       break;
460   }
461   return std::numeric_limits<int>::max();
462 }
463 
getWaitStatesSinceDef(unsigned Reg,IsHazardFn IsHazardDef,int Limit)464 int GCNHazardRecognizer::getWaitStatesSinceDef(unsigned Reg,
465                                                IsHazardFn IsHazardDef,
466                                                int Limit) {
467   const SIRegisterInfo *TRI = ST.getRegisterInfo();
468 
469   auto IsHazardFn = [IsHazardDef, TRI, Reg](const MachineInstr &MI) {
470     return IsHazardDef(MI) && MI.modifiesRegister(Reg, TRI);
471   };
472 
473   return getWaitStatesSince(IsHazardFn, Limit);
474 }
475 
getWaitStatesSinceSetReg(IsHazardFn IsHazard,int Limit)476 int GCNHazardRecognizer::getWaitStatesSinceSetReg(IsHazardFn IsHazard,
477                                                   int Limit) {
478   auto IsHazardFn = [IsHazard](const MachineInstr &MI) {
479     return isSSetReg(MI.getOpcode()) && IsHazard(MI);
480   };
481 
482   return getWaitStatesSince(IsHazardFn, Limit);
483 }
484 
485 //===----------------------------------------------------------------------===//
486 // No-op Hazard Detection
487 //===----------------------------------------------------------------------===//
488 
addRegUnits(const SIRegisterInfo & TRI,BitVector & BV,MCRegister Reg)489 static void addRegUnits(const SIRegisterInfo &TRI, BitVector &BV,
490                         MCRegister Reg) {
491   for (MCRegUnitIterator RUI(Reg, &TRI); RUI.isValid(); ++RUI)
492     BV.set(*RUI);
493 }
494 
addRegsToSet(const SIRegisterInfo & TRI,iterator_range<MachineInstr::const_mop_iterator> Ops,BitVector & Set)495 static void addRegsToSet(const SIRegisterInfo &TRI,
496                          iterator_range<MachineInstr::const_mop_iterator> Ops,
497                          BitVector &Set) {
498   for (const MachineOperand &Op : Ops) {
499     if (Op.isReg())
500       addRegUnits(TRI, Set, Op.getReg().asMCReg());
501   }
502 }
503 
addClauseInst(const MachineInstr & MI)504 void GCNHazardRecognizer::addClauseInst(const MachineInstr &MI) {
505   // XXX: Do we need to worry about implicit operands
506   addRegsToSet(TRI, MI.defs(), ClauseDefs);
507   addRegsToSet(TRI, MI.uses(), ClauseUses);
508 }
509 
breaksSMEMSoftClause(MachineInstr * MI)510 static bool breaksSMEMSoftClause(MachineInstr *MI) {
511   return !SIInstrInfo::isSMRD(*MI);
512 }
513 
breaksVMEMSoftClause(MachineInstr * MI)514 static bool breaksVMEMSoftClause(MachineInstr *MI) {
515   return !SIInstrInfo::isVMEM(*MI) && !SIInstrInfo::isFLAT(*MI);
516 }
517 
checkSoftClauseHazards(MachineInstr * MEM)518 int GCNHazardRecognizer::checkSoftClauseHazards(MachineInstr *MEM) {
519   // SMEM soft clause are only present on VI+, and only matter if xnack is
520   // enabled.
521   if (!ST.isXNACKEnabled())
522     return 0;
523 
524   bool IsSMRD = TII.isSMRD(*MEM);
525 
526   resetClause();
527 
528   // A soft-clause is any group of consecutive SMEM instructions.  The
529   // instructions in this group may return out of order and/or may be
530   // replayed (i.e. the same instruction issued more than once).
531   //
532   // In order to handle these situations correctly we need to make sure that
533   // when a clause has more than one instruction, no instruction in the clause
534   // writes to a register that is read by another instruction in the clause
535   // (including itself). If we encounter this situaion, we need to break the
536   // clause by inserting a non SMEM instruction.
537 
538   for (MachineInstr *MI : EmittedInstrs) {
539     // When we hit a non-SMEM instruction then we have passed the start of the
540     // clause and we can stop.
541     if (!MI)
542       break;
543 
544     if (IsSMRD ? breaksSMEMSoftClause(MI) : breaksVMEMSoftClause(MI))
545       break;
546 
547     addClauseInst(*MI);
548   }
549 
550   if (ClauseDefs.none())
551     return 0;
552 
553   // We need to make sure not to put loads and stores in the same clause if they
554   // use the same address. For now, just start a new clause whenever we see a
555   // store.
556   if (MEM->mayStore())
557     return 1;
558 
559   addClauseInst(*MEM);
560 
561   // If the set of defs and uses intersect then we cannot add this instruction
562   // to the clause, so we have a hazard.
563   return ClauseDefs.anyCommon(ClauseUses) ? 1 : 0;
564 }
565 
checkSMRDHazards(MachineInstr * SMRD)566 int GCNHazardRecognizer::checkSMRDHazards(MachineInstr *SMRD) {
567   int WaitStatesNeeded = 0;
568 
569   WaitStatesNeeded = checkSoftClauseHazards(SMRD);
570 
571   // This SMRD hazard only affects SI.
572   if (!ST.hasSMRDReadVALUDefHazard())
573     return WaitStatesNeeded;
574 
575   // A read of an SGPR by SMRD instruction requires 4 wait states when the
576   // SGPR was written by a VALU instruction.
577   int SmrdSgprWaitStates = 4;
578   auto IsHazardDefFn = [this](const MachineInstr &MI) {
579     return TII.isVALU(MI);
580   };
581   auto IsBufferHazardDefFn = [this](const MachineInstr &MI) {
582     return TII.isSALU(MI);
583   };
584 
585   bool IsBufferSMRD = TII.isBufferSMRD(*SMRD);
586 
587   for (const MachineOperand &Use : SMRD->uses()) {
588     if (!Use.isReg())
589       continue;
590     int WaitStatesNeededForUse =
591         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
592                                                    SmrdSgprWaitStates);
593     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
594 
595     // This fixes what appears to be undocumented hardware behavior in SI where
596     // s_mov writing a descriptor and s_buffer_load_dword reading the descriptor
597     // needs some number of nops in between. We don't know how many we need, but
598     // let's use 4. This wasn't discovered before probably because the only
599     // case when this happens is when we expand a 64-bit pointer into a full
600     // descriptor and use s_buffer_load_dword instead of s_load_dword, which was
601     // probably never encountered in the closed-source land.
602     if (IsBufferSMRD) {
603       int WaitStatesNeededForUse =
604         SmrdSgprWaitStates - getWaitStatesSinceDef(Use.getReg(),
605                                                    IsBufferHazardDefFn,
606                                                    SmrdSgprWaitStates);
607       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
608     }
609   }
610 
611   return WaitStatesNeeded;
612 }
613 
checkVMEMHazards(MachineInstr * VMEM)614 int GCNHazardRecognizer::checkVMEMHazards(MachineInstr* VMEM) {
615   if (!ST.hasVMEMReadSGPRVALUDefHazard())
616     return 0;
617 
618   int WaitStatesNeeded = checkSoftClauseHazards(VMEM);
619 
620   // A read of an SGPR by a VMEM instruction requires 5 wait states when the
621   // SGPR was written by a VALU Instruction.
622   const int VmemSgprWaitStates = 5;
623   auto IsHazardDefFn = [this](const MachineInstr &MI) {
624     return TII.isVALU(MI);
625   };
626   for (const MachineOperand &Use : VMEM->uses()) {
627     if (!Use.isReg() || TRI.isVectorRegister(MF.getRegInfo(), Use.getReg()))
628       continue;
629 
630     int WaitStatesNeededForUse =
631         VmemSgprWaitStates - getWaitStatesSinceDef(Use.getReg(), IsHazardDefFn,
632                                                    VmemSgprWaitStates);
633     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
634   }
635   return WaitStatesNeeded;
636 }
637 
checkDPPHazards(MachineInstr * DPP)638 int GCNHazardRecognizer::checkDPPHazards(MachineInstr *DPP) {
639   const SIRegisterInfo *TRI = ST.getRegisterInfo();
640   const SIInstrInfo *TII = ST.getInstrInfo();
641 
642   // Check for DPP VGPR read after VALU VGPR write and EXEC write.
643   int DppVgprWaitStates = 2;
644   int DppExecWaitStates = 5;
645   int WaitStatesNeeded = 0;
646   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
647     return TII->isVALU(MI);
648   };
649 
650   for (const MachineOperand &Use : DPP->uses()) {
651     if (!Use.isReg() || !TRI->isVGPR(MF.getRegInfo(), Use.getReg()))
652       continue;
653     int WaitStatesNeededForUse =
654         DppVgprWaitStates - getWaitStatesSinceDef(
655                                 Use.getReg(),
656                                 [](const MachineInstr &) { return true; },
657                                 DppVgprWaitStates);
658     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
659   }
660 
661   WaitStatesNeeded = std::max(
662       WaitStatesNeeded,
663       DppExecWaitStates - getWaitStatesSinceDef(AMDGPU::EXEC, IsHazardDefFn,
664                                                 DppExecWaitStates));
665 
666   return WaitStatesNeeded;
667 }
668 
checkDivFMasHazards(MachineInstr * DivFMas)669 int GCNHazardRecognizer::checkDivFMasHazards(MachineInstr *DivFMas) {
670   const SIInstrInfo *TII = ST.getInstrInfo();
671 
672   // v_div_fmas requires 4 wait states after a write to vcc from a VALU
673   // instruction.
674   const int DivFMasWaitStates = 4;
675   auto IsHazardDefFn = [TII](const MachineInstr &MI) {
676     return TII->isVALU(MI);
677   };
678   int WaitStatesNeeded = getWaitStatesSinceDef(AMDGPU::VCC, IsHazardDefFn,
679                                                DivFMasWaitStates);
680 
681   return DivFMasWaitStates - WaitStatesNeeded;
682 }
683 
checkGetRegHazards(MachineInstr * GetRegInstr)684 int GCNHazardRecognizer::checkGetRegHazards(MachineInstr *GetRegInstr) {
685   const SIInstrInfo *TII = ST.getInstrInfo();
686   unsigned GetRegHWReg = getHWReg(TII, *GetRegInstr);
687 
688   const int GetRegWaitStates = 2;
689   auto IsHazardFn = [TII, GetRegHWReg](const MachineInstr &MI) {
690     return GetRegHWReg == getHWReg(TII, MI);
691   };
692   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, GetRegWaitStates);
693 
694   return GetRegWaitStates - WaitStatesNeeded;
695 }
696 
checkSetRegHazards(MachineInstr * SetRegInstr)697 int GCNHazardRecognizer::checkSetRegHazards(MachineInstr *SetRegInstr) {
698   const SIInstrInfo *TII = ST.getInstrInfo();
699   unsigned HWReg = getHWReg(TII, *SetRegInstr);
700 
701   const int SetRegWaitStates = ST.getSetRegWaitStates();
702   auto IsHazardFn = [TII, HWReg](const MachineInstr &MI) {
703     return HWReg == getHWReg(TII, MI);
704   };
705   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, SetRegWaitStates);
706   return SetRegWaitStates - WaitStatesNeeded;
707 }
708 
createsVALUHazard(const MachineInstr & MI)709 int GCNHazardRecognizer::createsVALUHazard(const MachineInstr &MI) {
710   if (!MI.mayStore())
711     return -1;
712 
713   const SIInstrInfo *TII = ST.getInstrInfo();
714   unsigned Opcode = MI.getOpcode();
715   const MCInstrDesc &Desc = MI.getDesc();
716 
717   int VDataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
718   int VDataRCID = -1;
719   if (VDataIdx != -1)
720     VDataRCID = Desc.OpInfo[VDataIdx].RegClass;
721 
722   if (TII->isMUBUF(MI) || TII->isMTBUF(MI)) {
723     // There is no hazard if the instruction does not use vector regs
724     // (like wbinvl1)
725     if (VDataIdx == -1)
726       return -1;
727     // For MUBUF/MTBUF instructions this hazard only exists if the
728     // instruction is not using a register in the soffset field.
729     const MachineOperand *SOffset =
730         TII->getNamedOperand(MI, AMDGPU::OpName::soffset);
731     // If we have no soffset operand, then assume this field has been
732     // hardcoded to zero.
733     if (AMDGPU::getRegBitWidth(VDataRCID) > 64 &&
734         (!SOffset || !SOffset->isReg()))
735       return VDataIdx;
736   }
737 
738   // MIMG instructions create a hazard if they don't use a 256-bit T# and
739   // the store size is greater than 8 bytes and they have more than two bits
740   // of their dmask set.
741   // All our MIMG definitions use a 256-bit T#, so we can skip checking for them.
742   if (TII->isMIMG(MI)) {
743     int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
744     assert(SRsrcIdx != -1 &&
745            AMDGPU::getRegBitWidth(Desc.OpInfo[SRsrcIdx].RegClass) == 256);
746     (void)SRsrcIdx;
747   }
748 
749   if (TII->isFLAT(MI)) {
750     int DataIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdata);
751     if (AMDGPU::getRegBitWidth(Desc.OpInfo[DataIdx].RegClass) > 64)
752       return DataIdx;
753   }
754 
755   return -1;
756 }
757 
758 int
checkVALUHazardsHelper(const MachineOperand & Def,const MachineRegisterInfo & MRI)759 GCNHazardRecognizer::checkVALUHazardsHelper(const MachineOperand &Def,
760                                             const MachineRegisterInfo &MRI) {
761   // Helper to check for the hazard where VMEM instructions that store more than
762   // 8 bytes can have there store data over written by the next instruction.
763   const SIRegisterInfo *TRI = ST.getRegisterInfo();
764 
765   const int VALUWaitStates = 1;
766   int WaitStatesNeeded = 0;
767 
768   if (!TRI->isVectorRegister(MRI, Def.getReg()))
769     return WaitStatesNeeded;
770   Register Reg = Def.getReg();
771   auto IsHazardFn = [this, Reg, TRI](const MachineInstr &MI) {
772     int DataIdx = createsVALUHazard(MI);
773     return DataIdx >= 0 &&
774            TRI->regsOverlap(MI.getOperand(DataIdx).getReg(), Reg);
775   };
776   int WaitStatesNeededForDef =
777     VALUWaitStates - getWaitStatesSince(IsHazardFn, VALUWaitStates);
778   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForDef);
779 
780   return WaitStatesNeeded;
781 }
782 
checkVALUHazards(MachineInstr * VALU)783 int GCNHazardRecognizer::checkVALUHazards(MachineInstr *VALU) {
784   // This checks for the hazard where VMEM instructions that store more than
785   // 8 bytes can have there store data over written by the next instruction.
786   if (!ST.has12DWordStoreHazard())
787     return 0;
788 
789   const MachineRegisterInfo &MRI = MF.getRegInfo();
790   int WaitStatesNeeded = 0;
791 
792   for (const MachineOperand &Def : VALU->defs()) {
793     WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Def, MRI));
794   }
795 
796   return WaitStatesNeeded;
797 }
798 
checkInlineAsmHazards(MachineInstr * IA)799 int GCNHazardRecognizer::checkInlineAsmHazards(MachineInstr *IA) {
800   // This checks for hazards associated with inline asm statements.
801   // Since inline asms can contain just about anything, we use this
802   // to call/leverage other check*Hazard routines. Note that
803   // this function doesn't attempt to address all possible inline asm
804   // hazards (good luck), but is a collection of what has been
805   // problematic thus far.
806 
807   // see checkVALUHazards()
808   if (!ST.has12DWordStoreHazard())
809     return 0;
810 
811   const MachineRegisterInfo &MRI = MF.getRegInfo();
812   int WaitStatesNeeded = 0;
813 
814   for (unsigned I = InlineAsm::MIOp_FirstOperand, E = IA->getNumOperands();
815        I != E; ++I) {
816     const MachineOperand &Op = IA->getOperand(I);
817     if (Op.isReg() && Op.isDef()) {
818       WaitStatesNeeded = std::max(WaitStatesNeeded, checkVALUHazardsHelper(Op, MRI));
819     }
820   }
821 
822   return WaitStatesNeeded;
823 }
824 
checkRWLaneHazards(MachineInstr * RWLane)825 int GCNHazardRecognizer::checkRWLaneHazards(MachineInstr *RWLane) {
826   const SIInstrInfo *TII = ST.getInstrInfo();
827   const SIRegisterInfo *TRI = ST.getRegisterInfo();
828   const MachineRegisterInfo &MRI = MF.getRegInfo();
829 
830   const MachineOperand *LaneSelectOp =
831       TII->getNamedOperand(*RWLane, AMDGPU::OpName::src1);
832 
833   if (!LaneSelectOp->isReg() || !TRI->isSGPRReg(MRI, LaneSelectOp->getReg()))
834     return 0;
835 
836   Register LaneSelectReg = LaneSelectOp->getReg();
837   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVALU(MI); };
838 
839   const int RWLaneWaitStates = 4;
840   int WaitStatesSince = getWaitStatesSinceDef(LaneSelectReg, IsHazardFn,
841                                               RWLaneWaitStates);
842   return RWLaneWaitStates - WaitStatesSince;
843 }
844 
checkRFEHazards(MachineInstr * RFE)845 int GCNHazardRecognizer::checkRFEHazards(MachineInstr *RFE) {
846   if (!ST.hasRFEHazards())
847     return 0;
848 
849   const SIInstrInfo *TII = ST.getInstrInfo();
850 
851   const int RFEWaitStates = 1;
852 
853   auto IsHazardFn = [TII](const MachineInstr &MI) {
854     return getHWReg(TII, MI) == AMDGPU::Hwreg::ID_TRAPSTS;
855   };
856   int WaitStatesNeeded = getWaitStatesSinceSetReg(IsHazardFn, RFEWaitStates);
857   return RFEWaitStates - WaitStatesNeeded;
858 }
859 
checkReadM0Hazards(MachineInstr * MI)860 int GCNHazardRecognizer::checkReadM0Hazards(MachineInstr *MI) {
861   const SIInstrInfo *TII = ST.getInstrInfo();
862   const int SMovRelWaitStates = 1;
863   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isSALU(MI); };
864   return SMovRelWaitStates - getWaitStatesSinceDef(AMDGPU::M0, IsHazardFn,
865                                                    SMovRelWaitStates);
866 }
867 
fixHazards(MachineInstr * MI)868 void GCNHazardRecognizer::fixHazards(MachineInstr *MI) {
869   fixVMEMtoScalarWriteHazards(MI);
870   fixVcmpxPermlaneHazards(MI);
871   fixSMEMtoVectorWriteHazards(MI);
872   fixVcmpxExecWARHazard(MI);
873   fixLdsBranchVmemWARHazard(MI);
874 }
875 
fixVcmpxPermlaneHazards(MachineInstr * MI)876 bool GCNHazardRecognizer::fixVcmpxPermlaneHazards(MachineInstr *MI) {
877   if (!ST.hasVcmpxPermlaneHazard() || !isPermlane(*MI))
878     return false;
879 
880   const SIInstrInfo *TII = ST.getInstrInfo();
881   auto IsHazardFn = [TII](const MachineInstr &MI) { return TII->isVOPC(MI); };
882 
883   auto IsExpiredFn = [](const MachineInstr &MI, int) {
884     unsigned Opc = MI.getOpcode();
885     return SIInstrInfo::isVALU(MI) && Opc != AMDGPU::V_NOP_e32 &&
886            Opc != AMDGPU::V_NOP_e64 && Opc != AMDGPU::V_NOP_sdwa;
887   };
888 
889   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
890       std::numeric_limits<int>::max())
891     return false;
892 
893   // V_NOP will be discarded by SQ.
894   // Use V_MOB_B32 v?, v?. Register must be alive so use src0 of V_PERMLANE*
895   // which is always a VGPR and available.
896   auto *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
897   Register Reg = Src0->getReg();
898   bool IsUndef = Src0->isUndef();
899   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
900           TII->get(AMDGPU::V_MOV_B32_e32))
901     .addReg(Reg, RegState::Define | (IsUndef ? RegState::Dead : 0))
902     .addReg(Reg, IsUndef ? RegState::Undef : RegState::Kill);
903 
904   return true;
905 }
906 
fixVMEMtoScalarWriteHazards(MachineInstr * MI)907 bool GCNHazardRecognizer::fixVMEMtoScalarWriteHazards(MachineInstr *MI) {
908   if (!ST.hasVMEMtoScalarWriteHazard())
909     return false;
910 
911   if (!SIInstrInfo::isSALU(*MI) && !SIInstrInfo::isSMRD(*MI))
912     return false;
913 
914   if (MI->getNumDefs() == 0)
915     return false;
916 
917   const SIRegisterInfo *TRI = ST.getRegisterInfo();
918 
919   auto IsHazardFn = [TRI, MI](const MachineInstr &I) {
920     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isDS(I) &&
921         !SIInstrInfo::isFLAT(I))
922       return false;
923 
924     for (const MachineOperand &Def : MI->defs()) {
925       const MachineOperand *Op =
926           I.findRegisterUseOperand(Def.getReg(), false, TRI);
927       if (!Op)
928         continue;
929       return true;
930     }
931     return false;
932   };
933 
934   auto IsExpiredFn = [](const MachineInstr &MI, int) {
935     return SIInstrInfo::isVALU(MI) ||
936            (MI.getOpcode() == AMDGPU::S_WAITCNT &&
937             !MI.getOperand(0).getImm()) ||
938            (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
939             MI.getOperand(0).getImm() == 0xffe3);
940   };
941 
942   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
943       std::numeric_limits<int>::max())
944     return false;
945 
946   const SIInstrInfo *TII = ST.getInstrInfo();
947   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
948           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
949       .addImm(0xffe3);
950   return true;
951 }
952 
fixSMEMtoVectorWriteHazards(MachineInstr * MI)953 bool GCNHazardRecognizer::fixSMEMtoVectorWriteHazards(MachineInstr *MI) {
954   if (!ST.hasSMEMtoVectorWriteHazard())
955     return false;
956 
957   if (!SIInstrInfo::isVALU(*MI))
958     return false;
959 
960   unsigned SDSTName;
961   switch (MI->getOpcode()) {
962   case AMDGPU::V_READLANE_B32:
963   case AMDGPU::V_READFIRSTLANE_B32:
964     SDSTName = AMDGPU::OpName::vdst;
965     break;
966   default:
967     SDSTName = AMDGPU::OpName::sdst;
968     break;
969   }
970 
971   const SIInstrInfo *TII = ST.getInstrInfo();
972   const SIRegisterInfo *TRI = ST.getRegisterInfo();
973   const AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
974   const MachineOperand *SDST = TII->getNamedOperand(*MI, SDSTName);
975   if (!SDST) {
976     for (const auto &MO : MI->implicit_operands()) {
977       if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg()))) {
978         SDST = &MO;
979         break;
980       }
981     }
982   }
983 
984   if (!SDST)
985     return false;
986 
987   const Register SDSTReg = SDST->getReg();
988   auto IsHazardFn = [SDSTReg, TRI](const MachineInstr &I) {
989     return SIInstrInfo::isSMRD(I) && I.readsRegister(SDSTReg, TRI);
990   };
991 
992   auto IsExpiredFn = [TII, IV](const MachineInstr &MI, int) {
993     if (TII->isSALU(MI)) {
994       switch (MI.getOpcode()) {
995       case AMDGPU::S_SETVSKIP:
996       case AMDGPU::S_VERSION:
997       case AMDGPU::S_WAITCNT_VSCNT:
998       case AMDGPU::S_WAITCNT_VMCNT:
999       case AMDGPU::S_WAITCNT_EXPCNT:
1000         // These instructions cannot not mitigate the hazard.
1001         return false;
1002       case AMDGPU::S_WAITCNT_LGKMCNT:
1003         // Reducing lgkmcnt count to 0 always mitigates the hazard.
1004         return (MI.getOperand(1).getImm() == 0) &&
1005                (MI.getOperand(0).getReg() == AMDGPU::SGPR_NULL);
1006       case AMDGPU::S_WAITCNT: {
1007         const int64_t Imm = MI.getOperand(0).getImm();
1008         AMDGPU::Waitcnt Decoded = AMDGPU::decodeWaitcnt(IV, Imm);
1009         return (Decoded.LgkmCnt == 0);
1010       }
1011       default:
1012         // SOPP instructions cannot mitigate the hazard.
1013         if (TII->isSOPP(MI))
1014           return false;
1015         // At this point the SALU can be assumed to mitigate the hazard
1016         // because either:
1017         // (a) it is independent of the at risk SMEM (breaking chain),
1018         // or
1019         // (b) it is dependent on the SMEM, in which case an appropriate
1020         //     s_waitcnt lgkmcnt _must_ exist between it and the at risk
1021         //     SMEM instruction.
1022         return true;
1023       }
1024     }
1025     return false;
1026   };
1027 
1028   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1029       std::numeric_limits<int>::max())
1030     return false;
1031 
1032   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1033           TII->get(AMDGPU::S_MOV_B32), AMDGPU::SGPR_NULL)
1034       .addImm(0);
1035   return true;
1036 }
1037 
fixVcmpxExecWARHazard(MachineInstr * MI)1038 bool GCNHazardRecognizer::fixVcmpxExecWARHazard(MachineInstr *MI) {
1039   if (!ST.hasVcmpxExecWARHazard() || !SIInstrInfo::isVALU(*MI))
1040     return false;
1041 
1042   const SIRegisterInfo *TRI = ST.getRegisterInfo();
1043   if (!MI->modifiesRegister(AMDGPU::EXEC, TRI))
1044     return false;
1045 
1046   auto IsHazardFn = [TRI](const MachineInstr &I) {
1047     if (SIInstrInfo::isVALU(I))
1048       return false;
1049     return I.readsRegister(AMDGPU::EXEC, TRI);
1050   };
1051 
1052   const SIInstrInfo *TII = ST.getInstrInfo();
1053   auto IsExpiredFn = [TII, TRI](const MachineInstr &MI, int) {
1054     if (SIInstrInfo::isVALU(MI)) {
1055       if (TII->getNamedOperand(MI, AMDGPU::OpName::sdst))
1056         return true;
1057       for (auto MO : MI.implicit_operands())
1058         if (MO.isDef() && TRI->isSGPRClass(TRI->getPhysRegClass(MO.getReg())))
1059           return true;
1060     }
1061     if (MI.getOpcode() == AMDGPU::S_WAITCNT_DEPCTR &&
1062         (MI.getOperand(0).getImm() & 0xfffe) == 0xfffe)
1063       return true;
1064     return false;
1065   };
1066 
1067   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1068       std::numeric_limits<int>::max())
1069     return false;
1070 
1071   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1072           TII->get(AMDGPU::S_WAITCNT_DEPCTR))
1073     .addImm(0xfffe);
1074   return true;
1075 }
1076 
fixLdsBranchVmemWARHazard(MachineInstr * MI)1077 bool GCNHazardRecognizer::fixLdsBranchVmemWARHazard(MachineInstr *MI) {
1078   if (!ST.hasLdsBranchVmemWARHazard())
1079     return false;
1080 
1081   auto IsHazardInst = [](const MachineInstr &MI) {
1082     if (SIInstrInfo::isDS(MI))
1083       return 1;
1084     if (SIInstrInfo::isVMEM(MI) || SIInstrInfo::isSegmentSpecificFLAT(MI))
1085       return 2;
1086     return 0;
1087   };
1088 
1089   auto InstType = IsHazardInst(*MI);
1090   if (!InstType)
1091     return false;
1092 
1093   auto IsExpiredFn = [&IsHazardInst](const MachineInstr &I, int) {
1094     return IsHazardInst(I) || (I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1095                                I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1096                                !I.getOperand(1).getImm());
1097   };
1098 
1099   auto IsHazardFn = [InstType, &IsHazardInst](const MachineInstr &I) {
1100     if (!I.isBranch())
1101       return false;
1102 
1103     auto IsHazardFn = [InstType, IsHazardInst](const MachineInstr &I) {
1104       auto InstType2 = IsHazardInst(I);
1105       return InstType2 && InstType != InstType2;
1106     };
1107 
1108     auto IsExpiredFn = [InstType, &IsHazardInst](const MachineInstr &I, int) {
1109       auto InstType2 = IsHazardInst(I);
1110       if (InstType == InstType2)
1111         return true;
1112 
1113       return I.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1114              I.getOperand(0).getReg() == AMDGPU::SGPR_NULL &&
1115              !I.getOperand(1).getImm();
1116     };
1117 
1118     return ::getWaitStatesSince(IsHazardFn, &I, IsExpiredFn) !=
1119            std::numeric_limits<int>::max();
1120   };
1121 
1122   if (::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn) ==
1123       std::numeric_limits<int>::max())
1124     return false;
1125 
1126   const SIInstrInfo *TII = ST.getInstrInfo();
1127   BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1128           TII->get(AMDGPU::S_WAITCNT_VSCNT))
1129     .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1130     .addImm(0);
1131 
1132   return true;
1133 }
1134 
checkNSAtoVMEMHazard(MachineInstr * MI)1135 int GCNHazardRecognizer::checkNSAtoVMEMHazard(MachineInstr *MI) {
1136   int NSAtoVMEMWaitStates = 1;
1137 
1138   if (!ST.hasNSAtoVMEMBug())
1139     return 0;
1140 
1141   if (!SIInstrInfo::isMUBUF(*MI) && !SIInstrInfo::isMTBUF(*MI))
1142     return 0;
1143 
1144   const SIInstrInfo *TII = ST.getInstrInfo();
1145   const auto *Offset = TII->getNamedOperand(*MI, AMDGPU::OpName::offset);
1146   if (!Offset || (Offset->getImm() & 6) == 0)
1147     return 0;
1148 
1149   auto IsHazardFn = [TII](const MachineInstr &I) {
1150     if (!SIInstrInfo::isMIMG(I))
1151       return false;
1152     const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(I.getOpcode());
1153     return Info->MIMGEncoding == AMDGPU::MIMGEncGfx10NSA &&
1154            TII->getInstSizeInBytes(I) >= 16;
1155   };
1156 
1157   return NSAtoVMEMWaitStates - getWaitStatesSince(IsHazardFn, 1);
1158 }
1159 
checkFPAtomicToDenormModeHazard(MachineInstr * MI)1160 int GCNHazardRecognizer::checkFPAtomicToDenormModeHazard(MachineInstr *MI) {
1161   int FPAtomicToDenormModeWaitStates = 3;
1162 
1163   if (MI->getOpcode() != AMDGPU::S_DENORM_MODE)
1164     return 0;
1165 
1166   auto IsHazardFn = [](const MachineInstr &I) {
1167     if (!SIInstrInfo::isVMEM(I) && !SIInstrInfo::isFLAT(I))
1168       return false;
1169     return SIInstrInfo::isFPAtomic(I);
1170   };
1171 
1172   auto IsExpiredFn = [](const MachineInstr &MI, int WaitStates) {
1173     if (WaitStates >= 3 || SIInstrInfo::isVALU(MI))
1174       return true;
1175 
1176     switch (MI.getOpcode()) {
1177     case AMDGPU::S_WAITCNT:
1178     case AMDGPU::S_WAITCNT_VSCNT:
1179     case AMDGPU::S_WAITCNT_VMCNT:
1180     case AMDGPU::S_WAITCNT_EXPCNT:
1181     case AMDGPU::S_WAITCNT_LGKMCNT:
1182     case AMDGPU::S_WAIT_IDLE:
1183       return true;
1184     default:
1185       break;
1186     }
1187 
1188     return false;
1189   };
1190 
1191   return FPAtomicToDenormModeWaitStates -
1192          ::getWaitStatesSince(IsHazardFn, MI, IsExpiredFn);
1193 }
1194 
checkMAIHazards(MachineInstr * MI)1195 int GCNHazardRecognizer::checkMAIHazards(MachineInstr *MI) {
1196   assert(SIInstrInfo::isMAI(*MI));
1197 
1198   return ST.hasGFX90AInsts() ? checkMAIHazards90A(MI) : checkMAIHazards908(MI);
1199 }
1200 
checkMAIHazards908(MachineInstr * MI)1201 int GCNHazardRecognizer::checkMAIHazards908(MachineInstr *MI) {
1202   int WaitStatesNeeded = 0;
1203   unsigned Opc = MI->getOpcode();
1204 
1205   auto IsVALUFn = [](const MachineInstr &MI) {
1206     return SIInstrInfo::isVALU(MI);
1207   };
1208 
1209   if (Opc != AMDGPU::V_ACCVGPR_READ_B32_e64) { // MFMA or v_accvgpr_write
1210     const int LegacyVALUWritesVGPRWaitStates = 2;
1211     const int VALUWritesExecWaitStates = 4;
1212     const int MaxWaitStates = 4;
1213 
1214     int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1215       getWaitStatesSinceDef(AMDGPU::EXEC, IsVALUFn, MaxWaitStates);
1216     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1217 
1218     if (WaitStatesNeeded < MaxWaitStates) {
1219       for (const MachineOperand &Use : MI->explicit_uses()) {
1220         const int MaxWaitStates = 2;
1221 
1222         if (!Use.isReg() || !TRI.isVGPR(MF.getRegInfo(), Use.getReg()))
1223           continue;
1224 
1225         int WaitStatesNeededForUse = LegacyVALUWritesVGPRWaitStates -
1226           getWaitStatesSinceDef(Use.getReg(), IsVALUFn, MaxWaitStates);
1227         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1228 
1229         if (WaitStatesNeeded == MaxWaitStates)
1230           break;
1231       }
1232     }
1233   }
1234 
1235   auto IsMFMAFn = [](const MachineInstr &MI) {
1236     return SIInstrInfo::isMAI(MI) &&
1237            MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
1238            MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
1239   };
1240 
1241   for (const MachineOperand &Op : MI->explicit_operands()) {
1242     if (!Op.isReg() || !TRI.isAGPR(MF.getRegInfo(), Op.getReg()))
1243       continue;
1244 
1245     if (Op.isDef() && Opc != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1246       continue;
1247 
1248     const int MFMAWritesAGPROverlappedSrcABWaitStates = 4;
1249     const int MFMAWritesAGPROverlappedSrcCWaitStates = 2;
1250     const int MFMA4x4WritesAGPRAccVgprReadWaitStates = 4;
1251     const int MFMA16x16WritesAGPRAccVgprReadWaitStates = 10;
1252     const int MFMA32x32WritesAGPRAccVgprReadWaitStates = 18;
1253     const int MFMA4x4WritesAGPRAccVgprWriteWaitStates = 1;
1254     const int MFMA16x16WritesAGPRAccVgprWriteWaitStates = 7;
1255     const int MFMA32x32WritesAGPRAccVgprWriteWaitStates = 15;
1256     const int MaxWaitStates = 18;
1257     Register Reg = Op.getReg();
1258     unsigned HazardDefLatency = 0;
1259 
1260     auto IsOverlappedMFMAFn = [Reg, &IsMFMAFn, &HazardDefLatency,
1261                                this](const MachineInstr &MI) {
1262       if (!IsMFMAFn(MI))
1263         return false;
1264       Register DstReg = MI.getOperand(0).getReg();
1265       if (DstReg == Reg)
1266         return false;
1267       HazardDefLatency =
1268           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
1269       return TRI.regsOverlap(DstReg, Reg);
1270     };
1271 
1272     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsOverlappedMFMAFn,
1273                                                    MaxWaitStates);
1274     int NeedWaitStates = MFMAWritesAGPROverlappedSrcABWaitStates;
1275     int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1276     int OpNo = MI->getOperandNo(&Op);
1277     if (OpNo == SrcCIdx) {
1278       NeedWaitStates = MFMAWritesAGPROverlappedSrcCWaitStates;
1279     } else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64) {
1280       switch (HazardDefLatency) {
1281       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprReadWaitStates;
1282                break;
1283       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprReadWaitStates;
1284                break;
1285       case 16: LLVM_FALLTHROUGH;
1286       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprReadWaitStates;
1287                break;
1288       }
1289     } else if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
1290       switch (HazardDefLatency) {
1291       case 2:  NeedWaitStates = MFMA4x4WritesAGPRAccVgprWriteWaitStates;
1292                break;
1293       case 8:  NeedWaitStates = MFMA16x16WritesAGPRAccVgprWriteWaitStates;
1294                break;
1295       case 16: LLVM_FALLTHROUGH;
1296       default: NeedWaitStates = MFMA32x32WritesAGPRAccVgprWriteWaitStates;
1297                break;
1298       }
1299     }
1300 
1301     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1302     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1303 
1304     if (WaitStatesNeeded == MaxWaitStates)
1305       return WaitStatesNeeded; // Early exit.
1306 
1307     auto IsAccVgprWriteFn = [Reg, this](const MachineInstr &MI) {
1308       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1309         return false;
1310       Register DstReg = MI.getOperand(0).getReg();
1311       return TRI.regsOverlap(Reg, DstReg);
1312     };
1313 
1314     const int AccVGPRWriteMFMAReadSrcCWaitStates = 1;
1315     const int AccVGPRWriteMFMAReadSrcABWaitStates = 3;
1316     const int AccVGPRWriteAccVgprReadWaitStates = 3;
1317     NeedWaitStates = AccVGPRWriteMFMAReadSrcABWaitStates;
1318     if (OpNo == SrcCIdx)
1319       NeedWaitStates = AccVGPRWriteMFMAReadSrcCWaitStates;
1320     else if (Opc == AMDGPU::V_ACCVGPR_READ_B32_e64)
1321       NeedWaitStates = AccVGPRWriteAccVgprReadWaitStates;
1322 
1323     WaitStatesNeededForUse = NeedWaitStates -
1324       getWaitStatesSinceDef(Reg, IsAccVgprWriteFn, MaxWaitStates);
1325     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1326 
1327     if (WaitStatesNeeded == MaxWaitStates)
1328       return WaitStatesNeeded; // Early exit.
1329   }
1330 
1331   if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64) {
1332     const int MFMA4x4ReadSrcCAccVgprWriteWaitStates = 0;
1333     const int MFMA16x16ReadSrcCAccVgprWriteWaitStates = 5;
1334     const int MFMA32x32ReadSrcCAccVgprWriteWaitStates = 13;
1335     const int MaxWaitStates = 13;
1336     Register DstReg = MI->getOperand(0).getReg();
1337     unsigned HazardDefLatency = 0;
1338 
1339     auto IsSrcCMFMAFn = [DstReg, &IsMFMAFn, &HazardDefLatency,
1340                          this](const MachineInstr &MI) {
1341       if (!IsMFMAFn(MI))
1342         return false;
1343       Register Reg = TII.getNamedOperand(MI, AMDGPU::OpName::src2)->getReg();
1344       HazardDefLatency =
1345           std::max(HazardDefLatency, TSchedModel.computeInstrLatency(&MI));
1346       return TRI.regsOverlap(Reg, DstReg);
1347     };
1348 
1349     int WaitStatesSince = getWaitStatesSince(IsSrcCMFMAFn, MaxWaitStates);
1350     int NeedWaitStates;
1351     switch (HazardDefLatency) {
1352     case 2:  NeedWaitStates = MFMA4x4ReadSrcCAccVgprWriteWaitStates;
1353              break;
1354     case 8:  NeedWaitStates = MFMA16x16ReadSrcCAccVgprWriteWaitStates;
1355              break;
1356     case 16: LLVM_FALLTHROUGH;
1357     default: NeedWaitStates = MFMA32x32ReadSrcCAccVgprWriteWaitStates;
1358              break;
1359     }
1360 
1361     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSince;
1362     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1363   }
1364 
1365   return WaitStatesNeeded;
1366 }
1367 
checkMAIHazards90A(MachineInstr * MI)1368 int GCNHazardRecognizer::checkMAIHazards90A(MachineInstr *MI) {
1369   int WaitStatesNeeded = 0;
1370   unsigned Opc = MI->getOpcode();
1371 
1372   auto IsMFMAFn = [](const MachineInstr &MI) {
1373     return SIInstrInfo::isMAI(MI) &&
1374            MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
1375            MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
1376   };
1377 
1378   auto IsLegacyVALUFn = [&IsMFMAFn](const MachineInstr &MI) {
1379     return SIInstrInfo::isVALU(MI) && !IsMFMAFn(MI);
1380   };
1381 
1382   auto IsLegacyVALUNotDotFn = [&IsMFMAFn](const MachineInstr &MI) {
1383     return SIInstrInfo::isVALU(MI) && !IsMFMAFn(MI) && !SIInstrInfo::isDOT(MI);
1384   };
1385 
1386   if (!IsMFMAFn(*MI))
1387     return WaitStatesNeeded;
1388 
1389   const int VALUWritesExecWaitStates = 4;
1390   int WaitStatesNeededForUse = VALUWritesExecWaitStates -
1391     getWaitStatesSinceDef(AMDGPU::EXEC, IsLegacyVALUFn,
1392                           VALUWritesExecWaitStates);
1393   WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1394 
1395   int SrcCIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
1396 
1397   // Loop for both DGEMM and S/HGEMM 2nd instruction.
1398   for (const MachineOperand &Use : MI->explicit_uses()) {
1399     const int LegacyVALUNotDotWritesVGPRWaitStates = 2;
1400     const int SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates = 2;
1401     const int SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates = 8;
1402     const int SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates = 16;
1403     const int SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates = 3;
1404     const int SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates = 9;
1405     const int SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates = 17;
1406     const int DMFMA16x16WritesVGPROverlappedSrcCWaitStates = 9;
1407     const int DMFMA4x4WritesVGPROverlappedSrcCWaitStates = 4;
1408     const int SMFMA4x4WritesVGPROverlappedSrcABWaitStates = 5;
1409     const int SMFMA16x16WritesVGPROverlappedSrcABWaitStates = 11;
1410     const int SMFMA32x32WritesVGPROverlappedSrcABWaitStates = 19;
1411     const int DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates = 6;
1412     const int DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates = 11;
1413     const int DMFMA4x4WritesVGPRFullSrcCWaitStates = 4;
1414     const int MaxWaitStates = 19;
1415 
1416     if (!Use.isReg())
1417       continue;
1418     unsigned Reg = Use.getReg();
1419     bool FullReg;
1420     const MachineInstr *MI1;
1421 
1422     auto IsOverlappedDGEMMorXDLFn = [Reg, &IsMFMAFn, &FullReg, &MI1,
1423                                      this](const MachineInstr &MI) {
1424       if (!IsMFMAFn(MI))
1425         return false;
1426       if (!isDGEMM(MI.getOpcode()) && !isXDL(ST, MI))
1427         return false;
1428       Register DstReg = MI.getOperand(0).getReg();
1429       FullReg = (DstReg == Reg);
1430       MI1 = &MI;
1431       return TRI.regsOverlap(DstReg, Reg);
1432     };
1433 
1434     WaitStatesNeededForUse = LegacyVALUNotDotWritesVGPRWaitStates -
1435       getWaitStatesSinceDef(Reg, IsLegacyVALUNotDotFn, MaxWaitStates);
1436     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1437 
1438     int NumWaitStates = getWaitStatesSinceDef(Reg, IsOverlappedDGEMMorXDLFn,
1439                                               MaxWaitStates);
1440     if (NumWaitStates == std::numeric_limits<int>::max())
1441       continue;
1442 
1443     int OpNo = MI->getOperandNo(&Use);
1444     unsigned Opc1 = MI1->getOpcode();
1445     int NeedWaitStates = 0;
1446     if (OpNo == SrcCIdx) {
1447       if (!isDGEMM(Opc) && isDGEMM(Opc1)) {
1448         NeedWaitStates = 0;
1449       } else if (FullReg) {
1450         if ((Opc == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
1451              Opc == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64) &&
1452             (Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_e64 ||
1453              Opc1 == AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64))
1454           NeedWaitStates = DMFMA4x4WritesVGPRFullSrcCWaitStates;
1455       } else {
1456         switch (Opc1) {
1457         case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
1458         case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
1459           if (!isXDL(ST, *MI))
1460             NeedWaitStates = DMFMA16x16WritesVGPROverlappedSrcCWaitStates;
1461           break;
1462         case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
1463         case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
1464           if (!isXDL(ST, *MI))
1465             NeedWaitStates = DMFMA4x4WritesVGPROverlappedSrcCWaitStates;
1466           break;
1467         default:
1468           switch (TSchedModel.computeInstrLatency(MI1)) {
1469           case 2:
1470             NeedWaitStates = isDGEMM(Opc)
1471               ? SMFMA4x4WritesVGPROverlappedDMFMASrcCWaitStates
1472               : SMFMA4x4WritesVGPROverlappedSMFMASrcCWaitStates;
1473             break;
1474           case 8:
1475             NeedWaitStates = isDGEMM(Opc)
1476               ? SMFMA16x16WritesVGPROverlappedDMFMASrcCWaitStates
1477               : SMFMA16x16WritesVGPROverlappedSMFMASrcCWaitStates;
1478             break;
1479           case 16: LLVM_FALLTHROUGH;
1480           default:
1481             NeedWaitStates = isDGEMM(Opc)
1482               ? SMFMA32x32WritesVGPROverlappedDMFMASrcCWaitStates
1483               : SMFMA32x32WritesVGPROverlappedSMFMASrcCWaitStates;
1484           }
1485         }
1486       }
1487     } else {
1488       switch (Opc1) {
1489       case AMDGPU::V_MFMA_F64_16X16X4F64_e64:
1490       case AMDGPU::V_MFMA_F64_16X16X4F64_vgprcd_e64:
1491         NeedWaitStates = DMFMA16x16WritesVGPROverlappedMFMASrcABWaitStates;
1492         break;
1493       case AMDGPU::V_MFMA_F64_4X4X4F64_e64:
1494       case AMDGPU::V_MFMA_F64_4X4X4F64_vgprcd_e64:
1495         NeedWaitStates = DMFMA4x4WritesVGPROverlappedMFMASrcABWaitStates;
1496         break;
1497       default:
1498         switch (TSchedModel.computeInstrLatency(MI1)) {
1499         case 2:
1500           NeedWaitStates = SMFMA4x4WritesVGPROverlappedSrcABWaitStates;
1501           break;
1502         case 8:
1503           NeedWaitStates = SMFMA16x16WritesVGPROverlappedSrcABWaitStates;
1504           break;
1505         case 16: LLVM_FALLTHROUGH;
1506         default:
1507           NeedWaitStates = SMFMA32x32WritesVGPROverlappedSrcABWaitStates;
1508         }
1509       }
1510     }
1511     if (WaitStatesNeeded >= NeedWaitStates)
1512       continue;
1513 
1514     WaitStatesNeededForUse = NeedWaitStates - NumWaitStates;
1515     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1516 
1517     if (WaitStatesNeeded == MaxWaitStates)
1518       break;
1519   }
1520 
1521   return WaitStatesNeeded;
1522 }
1523 
checkMAILdStHazards(MachineInstr * MI)1524 int GCNHazardRecognizer::checkMAILdStHazards(MachineInstr *MI) {
1525   // On gfx90a+ releveant hazards are checked in checkMAIVALUHazards()
1526   if (!ST.hasMAIInsts() || ST.hasGFX90AInsts())
1527     return 0;
1528 
1529   int WaitStatesNeeded = 0;
1530 
1531   auto IsAccVgprReadFn = [](const MachineInstr &MI) {
1532     return MI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64;
1533   };
1534 
1535   for (const MachineOperand &Op : MI->explicit_uses()) {
1536     if (!Op.isReg() || !TRI.isVGPR(MF.getRegInfo(), Op.getReg()))
1537       continue;
1538 
1539     Register Reg = Op.getReg();
1540 
1541     const int AccVgprReadLdStWaitStates = 2;
1542     const int VALUWriteAccVgprRdWrLdStDepVALUWaitStates = 1;
1543     const int MaxWaitStates = 2;
1544 
1545     int WaitStatesNeededForUse = AccVgprReadLdStWaitStates -
1546       getWaitStatesSinceDef(Reg, IsAccVgprReadFn, MaxWaitStates);
1547     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1548 
1549     if (WaitStatesNeeded == MaxWaitStates)
1550       return WaitStatesNeeded; // Early exit.
1551 
1552     auto IsVALUAccVgprRdWrCheckFn = [Reg, this](const MachineInstr &MI) {
1553       if (MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64 &&
1554           MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
1555         return false;
1556       auto IsVALUFn = [](const MachineInstr &MI) {
1557         return SIInstrInfo::isVALU(MI) && !SIInstrInfo::isMAI(MI);
1558       };
1559       return getWaitStatesSinceDef(Reg, IsVALUFn, 2 /*MaxWaitStates*/) <
1560              std::numeric_limits<int>::max();
1561     };
1562 
1563     WaitStatesNeededForUse = VALUWriteAccVgprRdWrLdStDepVALUWaitStates -
1564       getWaitStatesSince(IsVALUAccVgprRdWrCheckFn, MaxWaitStates);
1565     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1566   }
1567 
1568   return WaitStatesNeeded;
1569 }
1570 
checkMAIVALUHazards(MachineInstr * MI)1571 int GCNHazardRecognizer::checkMAIVALUHazards(MachineInstr *MI) {
1572   if (!ST.hasGFX90AInsts())
1573     return 0;
1574 
1575   auto IsMFMAFn = [](const MachineInstr &MI) -> bool {
1576     return SIInstrInfo::isMAI(MI) &&
1577            MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
1578            MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64;
1579   };
1580 
1581   auto IsDGEMMFn = [](const MachineInstr &MI) -> bool {
1582     return isDGEMM(MI.getOpcode());
1583   };
1584 
1585   // This is checked in checkMAIHazards90A()
1586   if (IsMFMAFn(*MI))
1587     return 0;
1588 
1589   int WaitStatesNeeded = 0;
1590 
1591   bool IsMemOrExport = SIInstrInfo::isVMEM(*MI) ||
1592                        SIInstrInfo::isFLAT(*MI) ||
1593                        SIInstrInfo::isDS(*MI) ||
1594                        SIInstrInfo::isEXP(*MI);
1595   bool IsVALU = SIInstrInfo::isVALU(*MI);
1596 
1597   const MachineInstr *MFMA = nullptr;
1598   unsigned Reg;
1599   auto IsDGEMMorXDLWriteFn = [&Reg, &IsMFMAFn, &MFMA,
1600                               this](const MachineInstr &MI) {
1601     if (!IsMFMAFn(MI) || !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
1602       return false;
1603     if (!isDGEMM(MI.getOpcode()) && !isXDL(ST, MI))
1604       return false;
1605     MFMA = &MI;
1606     return true;
1607   };
1608 
1609   const MachineInstr *DOT = nullptr;
1610   auto IsDotWriteFn = [&Reg, &DOT, this](const MachineInstr &MI) {
1611     if (!SIInstrInfo::isDOT(MI) ||
1612         !TRI.regsOverlap(MI.getOperand(0).getReg(), Reg))
1613       return false;
1614     DOT = &MI;
1615     return true;
1616   };
1617 
1618   int SrcCIdx = AMDGPU::getNamedOperandIdx(MI->getOpcode(),
1619                                            AMDGPU::OpName::src2);
1620 
1621   if (IsMemOrExport || IsVALU) {
1622     const int SMFMA4x4WriteVgprVALUMemExpReadWaitStates = 5;
1623     const int SMFMA16x16WriteVgprVALUMemExpReadWaitStates = 11;
1624     const int SMFMA32x32WriteVgprVALUMemExpReadWaitStates = 19;
1625     const int DMFMA4x4WriteVgprMemExpReadWaitStates = 9;
1626     const int DMFMA16x16WriteVgprMemExpReadWaitStates = 18;
1627     const int DMFMA4x4WriteVgprVALUReadWaitStates = 6;
1628     const int DMFMA16x16WriteVgprVALUReadWaitStates = 11;
1629     const int DotWriteSameDotReadSrcAB = 3;
1630     const int DotWriteDifferentVALURead = 3;
1631     const int MaxWaitStates = 19;
1632 
1633     for (const MachineOperand &Use : MI->explicit_uses()) {
1634       if (!Use.isReg())
1635         continue;
1636       Reg = Use.getReg();
1637 
1638       DOT = nullptr;
1639       int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
1640                                                      MaxWaitStates);
1641       if (DOT) {
1642         int NeedWaitStates = 0;
1643         if (DOT->getOpcode() == MI->getOpcode()) {
1644           if (&Use - &MI->getOperand(0) != SrcCIdx)
1645             NeedWaitStates = DotWriteSameDotReadSrcAB;
1646         } else {
1647           NeedWaitStates = DotWriteDifferentVALURead;
1648         }
1649 
1650         int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1651         WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1652       }
1653 
1654       MFMA = nullptr;
1655       WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDGEMMorXDLWriteFn,
1656                                                  MaxWaitStates);
1657       if (!MFMA)
1658         continue;
1659 
1660       unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
1661       int NeedWaitStates = MaxWaitStates;
1662       switch (HazardDefLatency) {
1663       case 2:
1664         NeedWaitStates = SMFMA4x4WriteVgprVALUMemExpReadWaitStates;
1665         break;
1666       case 4:
1667         assert(isDGEMM(MFMA->getOpcode()));
1668         NeedWaitStates =
1669             IsMemOrExport ? DMFMA4x4WriteVgprMemExpReadWaitStates
1670                           : DMFMA4x4WriteVgprVALUReadWaitStates;
1671         break;
1672       case 8:
1673         NeedWaitStates = SMFMA16x16WriteVgprVALUMemExpReadWaitStates;
1674         break;
1675       case 16: LLVM_FALLTHROUGH;
1676       default:
1677         NeedWaitStates =
1678           isDGEMM(MFMA->getOpcode())
1679             ? IsMemOrExport ? DMFMA16x16WriteVgprMemExpReadWaitStates
1680                             : DMFMA16x16WriteVgprVALUReadWaitStates
1681             : SMFMA32x32WriteVgprVALUMemExpReadWaitStates;
1682         break;
1683       }
1684 
1685       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1686       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1687 
1688       if (WaitStatesNeeded == MaxWaitStates)
1689         break;
1690     }
1691   }
1692 
1693   unsigned Opc = MI->getOpcode();
1694   const int DMFMAToFMA64WaitStates = 2;
1695   if ((Opc == AMDGPU::V_FMA_F64_e64 ||
1696        Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64 ||
1697        Opc == AMDGPU::V_FMAC_F64_dpp) &&
1698       WaitStatesNeeded < DMFMAToFMA64WaitStates) {
1699     int WaitStatesNeededForUse = DMFMAToFMA64WaitStates -
1700       getWaitStatesSince(IsDGEMMFn, DMFMAToFMA64WaitStates);
1701     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1702   }
1703 
1704   if (!IsVALU && !IsMemOrExport)
1705     return WaitStatesNeeded;
1706 
1707   for (const MachineOperand &Def : MI->defs()) {
1708     const int SMFMA4x4WriteVgprVALUWawWaitStates = 5;
1709     const int SMFMA16x16WriteVgprVALUWawWaitStates = 11;
1710     const int SMFMA32x32WriteVgprVALUWawWaitStates = 19;
1711     const int SMFMA4x4ReadVgprVALUWarWaitStates = 1;
1712     const int SMFMA16x16ReadVgprVALUWarWaitStates = 7;
1713     const int SMFMA32x32ReadVgprVALUWarWaitStates = 15;
1714     const int DMFMA4x4WriteVgprVALUWriteWaitStates = 6;
1715     const int DMFMA16x16WriteVgprVALUWriteWaitStates = 11;
1716     const int DotWriteDifferentVALUWrite = 3;
1717     const int MaxWaitStates = 19;
1718     const int MaxWarWaitStates = 15;
1719 
1720     Reg = Def.getReg();
1721 
1722     DOT = nullptr;
1723     int WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDotWriteFn,
1724                                                    MaxWaitStates);
1725     if (DOT && DOT->getOpcode() != MI->getOpcode())
1726       WaitStatesNeeded = std::max(WaitStatesNeeded, DotWriteDifferentVALUWrite -
1727                                                     WaitStatesSinceDef);
1728 
1729     MFMA = nullptr;
1730     WaitStatesSinceDef = getWaitStatesSinceDef(Reg, IsDGEMMorXDLWriteFn,
1731                                                MaxWaitStates);
1732     if (MFMA) {
1733       int NeedWaitStates = MaxWaitStates;
1734       switch (TSchedModel.computeInstrLatency(MFMA)) {
1735       case 2:
1736         NeedWaitStates = SMFMA4x4WriteVgprVALUWawWaitStates;
1737         break;
1738       case 4:
1739         assert(isDGEMM(MFMA->getOpcode()));
1740         NeedWaitStates = DMFMA4x4WriteVgprVALUWriteWaitStates;
1741         break;
1742       case 8:
1743         NeedWaitStates = SMFMA16x16WriteVgprVALUWawWaitStates;
1744         break;
1745       case 16: LLVM_FALLTHROUGH;
1746       default:
1747         NeedWaitStates = isDGEMM(MFMA->getOpcode())
1748                    ? DMFMA16x16WriteVgprVALUWriteWaitStates
1749                    : SMFMA32x32WriteVgprVALUWawWaitStates;
1750         break;
1751       }
1752 
1753       int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceDef;
1754       WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1755 
1756       if (WaitStatesNeeded == MaxWaitStates)
1757         break;
1758     }
1759 
1760     auto IsSMFMAReadAsCFn = [&Reg, &IsMFMAFn, &MFMA,
1761                              this](const MachineInstr &MI) {
1762       if (!IsMFMAFn(MI) || isDGEMM(MI.getOpcode()) ||
1763           !MI.readsRegister(Reg, &TRI))
1764         return false;
1765 
1766       const MachineOperand *SrcC =
1767           TII.getNamedOperand(MI, AMDGPU::OpName::src2);
1768       assert(SrcC);
1769       if (!SrcC->isReg() || !TRI.regsOverlap(SrcC->getReg(), Reg))
1770         return false;
1771 
1772       MFMA = &MI;
1773       return true;
1774     };
1775 
1776     MFMA = nullptr;
1777     int WaitStatesSinceUse = getWaitStatesSince(IsSMFMAReadAsCFn,
1778                                                 MaxWarWaitStates);
1779     if (!MFMA)
1780       continue;
1781 
1782     unsigned HazardDefLatency = TSchedModel.computeInstrLatency(MFMA);
1783     int NeedWaitStates = MaxWaitStates;
1784     switch (HazardDefLatency) {
1785     case 2:  NeedWaitStates = SMFMA4x4ReadVgprVALUWarWaitStates;
1786              break;
1787     case 8:  NeedWaitStates = SMFMA16x16ReadVgprVALUWarWaitStates;
1788              break;
1789     case 16: LLVM_FALLTHROUGH;
1790     default: NeedWaitStates = SMFMA32x32ReadVgprVALUWarWaitStates;
1791              break;
1792     }
1793 
1794     int WaitStatesNeededForUse = NeedWaitStates - WaitStatesSinceUse;
1795     WaitStatesNeeded = std::max(WaitStatesNeeded, WaitStatesNeededForUse);
1796   }
1797 
1798   return WaitStatesNeeded;
1799 }
1800 
ShouldPreferAnother(SUnit * SU)1801 bool GCNHazardRecognizer::ShouldPreferAnother(SUnit *SU) {
1802   if (!SU->isInstr())
1803     return false;
1804 
1805   const MachineInstr *MAI = nullptr;
1806   auto IsMFMAFn = [&MAI](const MachineInstr &MI) {
1807     MAI = nullptr;
1808     if (SIInstrInfo::isMAI(MI) &&
1809         MI.getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
1810         MI.getOpcode() != AMDGPU::V_ACCVGPR_READ_B32_e64)
1811       MAI = &MI;
1812     return MAI != nullptr;
1813   };
1814 
1815   MachineInstr *MI = SU->getInstr();
1816   if (IsMFMAFn(*MI)) {
1817     int W = getWaitStatesSince(IsMFMAFn, 16);
1818     if (MAI)
1819       return W < (int)TSchedModel.computeInstrLatency(MAI);
1820   }
1821 
1822   return false;
1823 }
1824