xref: /netbsd-src/external/apache2/llvm/dist/llvm/lib/CodeGen/SelectionDAG/LegalizeTypes.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the DAGTypeLegalizer class.  This is a private interface
10 // shared between the code that implements the SelectionDAG::LegalizeTypes
11 // method.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
16 #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H
17 
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/CodeGen/SelectionDAG.h"
20 #include "llvm/CodeGen/TargetLowering.h"
21 #include "llvm/Support/Compiler.h"
22 #include "llvm/Support/Debug.h"
23 
24 namespace llvm {
25 
26 //===----------------------------------------------------------------------===//
27 /// This takes an arbitrary SelectionDAG as input and hacks on it until only
28 /// value types the target machine can handle are left. This involves promoting
29 /// small sizes to large sizes or splitting up large values into small values.
30 ///
31 class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer {
32   const TargetLowering &TLI;
33   SelectionDAG &DAG;
34 public:
35   /// This pass uses the NodeId on the SDNodes to hold information about the
36   /// state of the node. The enum has all the values.
37   enum NodeIdFlags {
38     /// All operands have been processed, so this node is ready to be handled.
39     ReadyToProcess = 0,
40 
41     /// This is a new node, not before seen, that was created in the process of
42     /// legalizing some other node.
43     NewNode = -1,
44 
45     /// This node's ID needs to be set to the number of its unprocessed
46     /// operands.
47     Unanalyzed = -2,
48 
49     /// This is a node that has already been processed.
50     Processed = -3
51 
52     // 1+ - This is a node which has this many unprocessed operands.
53   };
54 private:
55 
56   /// This is a bitvector that contains two bits for each simple value type,
57   /// where the two bits correspond to the LegalizeAction enum from
58   /// TargetLowering. This can be queried with "getTypeAction(VT)".
59   TargetLowering::ValueTypeActionImpl ValueTypeActions;
60 
61   /// Return how we should legalize values of this type.
getTypeAction(EVT VT)62   TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const {
63     return TLI.getTypeAction(*DAG.getContext(), VT);
64   }
65 
66   /// Return true if this type is legal on this target.
isTypeLegal(EVT VT)67   bool isTypeLegal(EVT VT) const {
68     return TLI.getTypeAction(*DAG.getContext(), VT) == TargetLowering::TypeLegal;
69   }
70 
71   /// Return true if this is a simple legal type.
isSimpleLegalType(EVT VT)72   bool isSimpleLegalType(EVT VT) const {
73     return VT.isSimple() && TLI.isTypeLegal(VT);
74   }
75 
getSetCCResultType(EVT VT)76   EVT getSetCCResultType(EVT VT) const {
77     return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
78   }
79 
80   /// Pretend all of this node's results are legal.
IgnoreNodeResults(SDNode * N)81   bool IgnoreNodeResults(SDNode *N) const {
82     return N->getOpcode() == ISD::TargetConstant ||
83            N->getOpcode() == ISD::Register;
84   }
85 
86   // Bijection from SDValue to unique id. As each created node gets a
87   // new id we do not need to worry about reuse expunging.  Should we
88   // run out of ids, we can do a one time expensive compactifcation.
89   typedef unsigned TableId;
90 
91   TableId NextValueId = 1;
92 
93   SmallDenseMap<SDValue, TableId, 8> ValueToIdMap;
94   SmallDenseMap<TableId, SDValue, 8> IdToValueMap;
95 
96   /// For integer nodes that are below legal width, this map indicates what
97   /// promoted value to use.
98   SmallDenseMap<TableId, TableId, 8> PromotedIntegers;
99 
100   /// For integer nodes that need to be expanded this map indicates which
101   /// operands are the expanded version of the input.
102   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers;
103 
104   /// For floating-point nodes converted to integers of the same size, this map
105   /// indicates the converted value to use.
106   SmallDenseMap<TableId, TableId, 8> SoftenedFloats;
107 
108   /// For floating-point nodes that have a smaller precision than the smallest
109   /// supported precision, this map indicates what promoted value to use.
110   SmallDenseMap<TableId, TableId, 8> PromotedFloats;
111 
112   /// For floating-point nodes that have a smaller precision than the smallest
113   /// supported precision, this map indicates the converted value to use.
114   SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs;
115 
116   /// For float nodes that need to be expanded this map indicates which operands
117   /// are the expanded version of the input.
118   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats;
119 
120   /// For nodes that are <1 x ty>, this map indicates the scalar value of type
121   /// 'ty' to use.
122   SmallDenseMap<TableId, TableId, 8> ScalarizedVectors;
123 
124   /// For nodes that need to be split this map indicates which operands are the
125   /// expanded version of the input.
126   SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors;
127 
128   /// For vector nodes that need to be widened, indicates the widened value to
129   /// use.
130   SmallDenseMap<TableId, TableId, 8> WidenedVectors;
131 
132   /// For values that have been replaced with another, indicates the replacement
133   /// value to use.
134   SmallDenseMap<TableId, TableId, 8> ReplacedValues;
135 
136   /// This defines a worklist of nodes to process. In order to be pushed onto
137   /// this worklist, all operands of a node must have already been processed.
138   SmallVector<SDNode*, 128> Worklist;
139 
getTableId(SDValue V)140   TableId getTableId(SDValue V) {
141     assert(V.getNode() && "Getting TableId on SDValue()");
142 
143     auto I = ValueToIdMap.find(V);
144     if (I != ValueToIdMap.end()) {
145       // replace if there's been a shift.
146       RemapId(I->second);
147       assert(I->second && "All Ids should be nonzero");
148       return I->second;
149     }
150     // Add if it's not there.
151     ValueToIdMap.insert(std::make_pair(V, NextValueId));
152     IdToValueMap.insert(std::make_pair(NextValueId, V));
153     ++NextValueId;
154     assert(NextValueId != 0 &&
155            "Ran out of Ids. Increase id type size or add compactification");
156     return NextValueId - 1;
157   }
158 
getSDValue(TableId & Id)159   const SDValue &getSDValue(TableId &Id) {
160     RemapId(Id);
161     assert(Id && "TableId should be non-zero");
162     auto I = IdToValueMap.find(Id);
163     assert(I != IdToValueMap.end() && "cannot find Id in map");
164     return I->second;
165   }
166 
167 public:
DAGTypeLegalizer(SelectionDAG & dag)168   explicit DAGTypeLegalizer(SelectionDAG &dag)
169     : TLI(dag.getTargetLoweringInfo()), DAG(dag),
170     ValueTypeActions(TLI.getValueTypeActions()) {
171     static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
172                   "Too many value types for ValueTypeActions to hold!");
173   }
174 
175   /// This is the main entry point for the type legalizer.  This does a
176   /// top-down traversal of the dag, legalizing types as it goes.  Returns
177   /// "true" if it made any changes.
178   bool run();
179 
NoteDeletion(SDNode * Old,SDNode * New)180   void NoteDeletion(SDNode *Old, SDNode *New) {
181     assert(Old != New && "node replaced with self");
182     for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) {
183       TableId NewId = getTableId(SDValue(New, i));
184       TableId OldId = getTableId(SDValue(Old, i));
185 
186       if (OldId != NewId) {
187         ReplacedValues[OldId] = NewId;
188 
189         // Delete Node from tables.  We cannot do this when OldId == NewId,
190         // because NewId can still have table references to it in
191         // ReplacedValues.
192         IdToValueMap.erase(OldId);
193         PromotedIntegers.erase(OldId);
194         ExpandedIntegers.erase(OldId);
195         SoftenedFloats.erase(OldId);
196         PromotedFloats.erase(OldId);
197         SoftPromotedHalfs.erase(OldId);
198         ExpandedFloats.erase(OldId);
199         ScalarizedVectors.erase(OldId);
200         SplitVectors.erase(OldId);
201         WidenedVectors.erase(OldId);
202       }
203 
204       ValueToIdMap.erase(SDValue(Old, i));
205     }
206   }
207 
getDAG()208   SelectionDAG &getDAG() const { return DAG; }
209 
210 private:
211   SDNode *AnalyzeNewNode(SDNode *N);
212   void AnalyzeNewValue(SDValue &Val);
213   void PerformExpensiveChecks();
214   void RemapId(TableId &Id);
215   void RemapValue(SDValue &V);
216 
217   // Common routines.
218   SDValue BitConvertToInteger(SDValue Op);
219   SDValue BitConvertVectorToIntegerVector(SDValue Op);
220   SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT);
221   bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult);
222   bool CustomWidenLowerNode(SDNode *N, EVT VT);
223 
224   /// Replace each result of the given MERGE_VALUES node with the corresponding
225   /// input operand, except for the result 'ResNo', for which the corresponding
226   /// input operand is returned.
227   SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo);
228 
229   SDValue JoinIntegers(SDValue Lo, SDValue Hi);
230 
231   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
232 
233   SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT);
234 
235   void ReplaceValueWith(SDValue From, SDValue To);
236   void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
237   void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT,
238                     SDValue &Lo, SDValue &Hi);
239 
240   //===--------------------------------------------------------------------===//
241   // Integer Promotion Support: LegalizeIntegerTypes.cpp
242   //===--------------------------------------------------------------------===//
243 
244   /// Given a processed operand Op which was promoted to a larger integer type,
245   /// this returns the promoted value. The low bits of the promoted value
246   /// corresponding to the original type are exactly equal to Op.
247   /// The extra bits contain rubbish, so the promoted value may need to be zero-
248   /// or sign-extended from the original type before it is usable (the helpers
249   /// SExtPromotedInteger and ZExtPromotedInteger can do this for you).
250   /// For example, if Op is an i16 and was promoted to an i32, then this method
251   /// returns an i32, the lower 16 bits of which coincide with Op, and the upper
252   /// 16 bits of which contain rubbish.
GetPromotedInteger(SDValue Op)253   SDValue GetPromotedInteger(SDValue Op) {
254     TableId &PromotedId = PromotedIntegers[getTableId(Op)];
255     SDValue PromotedOp = getSDValue(PromotedId);
256     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
257     return PromotedOp;
258   }
259   void SetPromotedInteger(SDValue Op, SDValue Result);
260 
261   /// Get a promoted operand and sign extend it to the final size.
SExtPromotedInteger(SDValue Op)262   SDValue SExtPromotedInteger(SDValue Op) {
263     EVT OldVT = Op.getValueType();
264     SDLoc dl(Op);
265     Op = GetPromotedInteger(Op);
266     return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, Op.getValueType(), Op,
267                        DAG.getValueType(OldVT));
268   }
269 
270   /// Get a promoted operand and zero extend it to the final size.
ZExtPromotedInteger(SDValue Op)271   SDValue ZExtPromotedInteger(SDValue Op) {
272     EVT OldVT = Op.getValueType();
273     SDLoc dl(Op);
274     Op = GetPromotedInteger(Op);
275     return DAG.getZeroExtendInReg(Op, dl, OldVT);
276   }
277 
278   // Get a promoted operand and sign or zero extend it to the final size
279   // (depending on TargetLoweringInfo::isSExtCheaperThanZExt). For a given
280   // subtarget and type, the choice of sign or zero-extension will be
281   // consistent.
SExtOrZExtPromotedInteger(SDValue Op)282   SDValue SExtOrZExtPromotedInteger(SDValue Op) {
283     EVT OldVT = Op.getValueType();
284     SDLoc DL(Op);
285     Op = GetPromotedInteger(Op);
286     if (TLI.isSExtCheaperThanZExt(OldVT, Op.getValueType()))
287       return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, Op.getValueType(), Op,
288                          DAG.getValueType(OldVT));
289     return DAG.getZeroExtendInReg(Op, DL, OldVT);
290   }
291 
292   // Integer Result Promotion.
293   void PromoteIntegerResult(SDNode *N, unsigned ResNo);
294   SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
295   SDValue PromoteIntRes_AssertSext(SDNode *N);
296   SDValue PromoteIntRes_AssertZext(SDNode *N);
297   SDValue PromoteIntRes_Atomic0(AtomicSDNode *N);
298   SDValue PromoteIntRes_Atomic1(AtomicSDNode *N);
299   SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo);
300   SDValue PromoteIntRes_EXTRACT_SUBVECTOR(SDNode *N);
301   SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N);
302   SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N);
303   SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N);
304   SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N);
305   SDValue PromoteIntRes_SCALAR_TO_VECTOR(SDNode *N);
306   SDValue PromoteIntRes_SPLAT_VECTOR(SDNode *N);
307   SDValue PromoteIntRes_STEP_VECTOR(SDNode *N);
308   SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N);
309   SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N);
310   SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N);
311   SDValue PromoteIntRes_BITCAST(SDNode *N);
312   SDValue PromoteIntRes_BSWAP(SDNode *N);
313   SDValue PromoteIntRes_BITREVERSE(SDNode *N);
314   SDValue PromoteIntRes_BUILD_PAIR(SDNode *N);
315   SDValue PromoteIntRes_Constant(SDNode *N);
316   SDValue PromoteIntRes_CTLZ(SDNode *N);
317   SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N);
318   SDValue PromoteIntRes_CTTZ(SDNode *N);
319   SDValue PromoteIntRes_EXTRACT_VECTOR_ELT(SDNode *N);
320   SDValue PromoteIntRes_FP_TO_XINT(SDNode *N);
321   SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N);
322   SDValue PromoteIntRes_FP_TO_FP16(SDNode *N);
323   SDValue PromoteIntRes_FREEZE(SDNode *N);
324   SDValue PromoteIntRes_INT_EXTEND(SDNode *N);
325   SDValue PromoteIntRes_LOAD(LoadSDNode *N);
326   SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N);
327   SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N);
328   SDValue PromoteIntRes_Overflow(SDNode *N);
329   SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo);
330   SDValue PromoteIntRes_SELECT(SDNode *N);
331   SDValue PromoteIntRes_VSELECT(SDNode *N);
332   SDValue PromoteIntRes_SELECT_CC(SDNode *N);
333   SDValue PromoteIntRes_SETCC(SDNode *N);
334   SDValue PromoteIntRes_SHL(SDNode *N);
335   SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N);
336   SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N);
337   SDValue PromoteIntRes_SExtIntBinOp(SDNode *N);
338   SDValue PromoteIntRes_UMINUMAX(SDNode *N);
339   SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N);
340   SDValue PromoteIntRes_SRA(SDNode *N);
341   SDValue PromoteIntRes_SRL(SDNode *N);
342   SDValue PromoteIntRes_TRUNCATE(SDNode *N);
343   SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo);
344   SDValue PromoteIntRes_ADDSUBCARRY(SDNode *N, unsigned ResNo);
345   SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo);
346   SDValue PromoteIntRes_UNDEF(SDNode *N);
347   SDValue PromoteIntRes_VAARG(SDNode *N);
348   SDValue PromoteIntRes_VSCALE(SDNode *N);
349   SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo);
350   SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N);
351   SDValue PromoteIntRes_MULFIX(SDNode *N);
352   SDValue PromoteIntRes_DIVFIX(SDNode *N);
353   SDValue PromoteIntRes_FLT_ROUNDS(SDNode *N);
354   SDValue PromoteIntRes_VECREDUCE(SDNode *N);
355   SDValue PromoteIntRes_ABS(SDNode *N);
356   SDValue PromoteIntRes_Rotate(SDNode *N);
357   SDValue PromoteIntRes_FunnelShift(SDNode *N);
358 
359   // Integer Operand Promotion.
360   bool PromoteIntegerOperand(SDNode *N, unsigned OpNo);
361   SDValue PromoteIntOp_ANY_EXTEND(SDNode *N);
362   SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N);
363   SDValue PromoteIntOp_BITCAST(SDNode *N);
364   SDValue PromoteIntOp_BUILD_PAIR(SDNode *N);
365   SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo);
366   SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo);
367   SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N);
368   SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo);
369   SDValue PromoteIntOp_EXTRACT_VECTOR_ELT(SDNode *N);
370   SDValue PromoteIntOp_EXTRACT_SUBVECTOR(SDNode *N);
371   SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N);
372   SDValue PromoteIntOp_SCALAR_TO_VECTOR(SDNode *N);
373   SDValue PromoteIntOp_SPLAT_VECTOR(SDNode *N);
374   SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo);
375   SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo);
376   SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo);
377   SDValue PromoteIntOp_Shift(SDNode *N);
378   SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N);
379   SDValue PromoteIntOp_SINT_TO_FP(SDNode *N);
380   SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N);
381   SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo);
382   SDValue PromoteIntOp_TRUNCATE(SDNode *N);
383   SDValue PromoteIntOp_UINT_TO_FP(SDNode *N);
384   SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N);
385   SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N);
386   SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
387   SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo);
388   SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
389   SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo);
390   SDValue PromoteIntOp_ADDSUBCARRY(SDNode *N, unsigned OpNo);
391   SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N);
392   SDValue PromoteIntOp_PREFETCH(SDNode *N, unsigned OpNo);
393   SDValue PromoteIntOp_FIX(SDNode *N);
394   SDValue PromoteIntOp_FPOWI(SDNode *N);
395   SDValue PromoteIntOp_VECREDUCE(SDNode *N);
396   SDValue PromoteIntOp_SET_ROUNDING(SDNode *N);
397 
398   void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code);
399 
400   //===--------------------------------------------------------------------===//
401   // Integer Expansion Support: LegalizeIntegerTypes.cpp
402   //===--------------------------------------------------------------------===//
403 
404   /// Given a processed operand Op which was expanded into two integers of half
405   /// the size, this returns the two halves. The low bits of Op are exactly
406   /// equal to the bits of Lo; the high bits exactly equal Hi.
407   /// For example, if Op is an i64 which was expanded into two i32's, then this
408   /// method returns the two i32's, with Lo being equal to the lower 32 bits of
409   /// Op, and Hi being equal to the upper 32 bits.
410   void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi);
411   void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi);
412 
413   // Integer Result Expansion.
414   void ExpandIntegerResult(SDNode *N, unsigned ResNo);
415   void ExpandIntRes_ANY_EXTEND        (SDNode *N, SDValue &Lo, SDValue &Hi);
416   void ExpandIntRes_AssertSext        (SDNode *N, SDValue &Lo, SDValue &Hi);
417   void ExpandIntRes_AssertZext        (SDNode *N, SDValue &Lo, SDValue &Hi);
418   void ExpandIntRes_Constant          (SDNode *N, SDValue &Lo, SDValue &Hi);
419   void ExpandIntRes_ABS               (SDNode *N, SDValue &Lo, SDValue &Hi);
420   void ExpandIntRes_CTLZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
421   void ExpandIntRes_CTPOP             (SDNode *N, SDValue &Lo, SDValue &Hi);
422   void ExpandIntRes_CTTZ              (SDNode *N, SDValue &Lo, SDValue &Hi);
423   void ExpandIntRes_LOAD          (LoadSDNode *N, SDValue &Lo, SDValue &Hi);
424   void ExpandIntRes_READCYCLECOUNTER  (SDNode *N, SDValue &Lo, SDValue &Hi);
425   void ExpandIntRes_SIGN_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
426   void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi);
427   void ExpandIntRes_TRUNCATE          (SDNode *N, SDValue &Lo, SDValue &Hi);
428   void ExpandIntRes_ZERO_EXTEND       (SDNode *N, SDValue &Lo, SDValue &Hi);
429   void ExpandIntRes_FLT_ROUNDS        (SDNode *N, SDValue &Lo, SDValue &Hi);
430   void ExpandIntRes_FP_TO_SINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
431   void ExpandIntRes_FP_TO_UINT        (SDNode *N, SDValue &Lo, SDValue &Hi);
432   void ExpandIntRes_FP_TO_XINT_SAT    (SDNode *N, SDValue &Lo, SDValue &Hi);
433   void ExpandIntRes_LLROUND_LLRINT    (SDNode *N, SDValue &Lo, SDValue &Hi);
434 
435   void ExpandIntRes_Logical           (SDNode *N, SDValue &Lo, SDValue &Hi);
436   void ExpandIntRes_ADDSUB            (SDNode *N, SDValue &Lo, SDValue &Hi);
437   void ExpandIntRes_ADDSUBC           (SDNode *N, SDValue &Lo, SDValue &Hi);
438   void ExpandIntRes_ADDSUBE           (SDNode *N, SDValue &Lo, SDValue &Hi);
439   void ExpandIntRes_ADDSUBCARRY       (SDNode *N, SDValue &Lo, SDValue &Hi);
440   void ExpandIntRes_SADDSUBO_CARRY    (SDNode *N, SDValue &Lo, SDValue &Hi);
441   void ExpandIntRes_BITREVERSE        (SDNode *N, SDValue &Lo, SDValue &Hi);
442   void ExpandIntRes_BSWAP             (SDNode *N, SDValue &Lo, SDValue &Hi);
443   void ExpandIntRes_PARITY            (SDNode *N, SDValue &Lo, SDValue &Hi);
444   void ExpandIntRes_MUL               (SDNode *N, SDValue &Lo, SDValue &Hi);
445   void ExpandIntRes_SDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
446   void ExpandIntRes_SREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
447   void ExpandIntRes_UDIV              (SDNode *N, SDValue &Lo, SDValue &Hi);
448   void ExpandIntRes_UREM              (SDNode *N, SDValue &Lo, SDValue &Hi);
449   void ExpandIntRes_Shift             (SDNode *N, SDValue &Lo, SDValue &Hi);
450 
451   void ExpandIntRes_MINMAX            (SDNode *N, SDValue &Lo, SDValue &Hi);
452 
453   void ExpandIntRes_SADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
454   void ExpandIntRes_UADDSUBO          (SDNode *N, SDValue &Lo, SDValue &Hi);
455   void ExpandIntRes_XMULO             (SDNode *N, SDValue &Lo, SDValue &Hi);
456   void ExpandIntRes_ADDSUBSAT         (SDNode *N, SDValue &Lo, SDValue &Hi);
457   void ExpandIntRes_SHLSAT            (SDNode *N, SDValue &Lo, SDValue &Hi);
458   void ExpandIntRes_MULFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
459   void ExpandIntRes_DIVFIX            (SDNode *N, SDValue &Lo, SDValue &Hi);
460 
461   void ExpandIntRes_ATOMIC_LOAD       (SDNode *N, SDValue &Lo, SDValue &Hi);
462   void ExpandIntRes_VECREDUCE         (SDNode *N, SDValue &Lo, SDValue &Hi);
463 
464   void ExpandIntRes_Rotate            (SDNode *N, SDValue &Lo, SDValue &Hi);
465   void ExpandIntRes_FunnelShift       (SDNode *N, SDValue &Lo, SDValue &Hi);
466 
467   void ExpandShiftByConstant(SDNode *N, const APInt &Amt,
468                              SDValue &Lo, SDValue &Hi);
469   bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
470   bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi);
471 
472   // Integer Operand Expansion.
473   bool ExpandIntegerOperand(SDNode *N, unsigned OpNo);
474   SDValue ExpandIntOp_BR_CC(SDNode *N);
475   SDValue ExpandIntOp_SELECT_CC(SDNode *N);
476   SDValue ExpandIntOp_SETCC(SDNode *N);
477   SDValue ExpandIntOp_SETCCCARRY(SDNode *N);
478   SDValue ExpandIntOp_Shift(SDNode *N);
479   SDValue ExpandIntOp_SINT_TO_FP(SDNode *N);
480   SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo);
481   SDValue ExpandIntOp_TRUNCATE(SDNode *N);
482   SDValue ExpandIntOp_UINT_TO_FP(SDNode *N);
483   SDValue ExpandIntOp_RETURNADDR(SDNode *N);
484   SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N);
485   SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N);
486 
487   void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
488                                   ISD::CondCode &CCCode, const SDLoc &dl);
489 
490   //===--------------------------------------------------------------------===//
491   // Float to Integer Conversion Support: LegalizeFloatTypes.cpp
492   //===--------------------------------------------------------------------===//
493 
494   /// GetSoftenedFloat - Given a processed operand Op which was converted to an
495   /// integer of the same size, this returns the integer.  The integer contains
496   /// exactly the same bits as Op - only the type changed.  For example, if Op
497   /// is an f32 which was softened to an i32, then this method returns an i32,
498   /// the bits of which coincide with those of Op
GetSoftenedFloat(SDValue Op)499   SDValue GetSoftenedFloat(SDValue Op) {
500     TableId Id = getTableId(Op);
501     auto Iter = SoftenedFloats.find(Id);
502     if (Iter == SoftenedFloats.end()) {
503       assert(isSimpleLegalType(Op.getValueType()) &&
504              "Operand wasn't converted to integer?");
505       return Op;
506     }
507     SDValue SoftenedOp = getSDValue(Iter->second);
508     assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?");
509     return SoftenedOp;
510   }
511   void SetSoftenedFloat(SDValue Op, SDValue Result);
512 
513   // Convert Float Results to Integer.
514   void SoftenFloatResult(SDNode *N, unsigned ResNo);
515   SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC);
516   SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC);
517   SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
518   SDValue SoftenFloatRes_BITCAST(SDNode *N);
519   SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N);
520   SDValue SoftenFloatRes_ConstantFP(SDNode *N);
521   SDValue SoftenFloatRes_EXTRACT_VECTOR_ELT(SDNode *N, unsigned ResNo);
522   SDValue SoftenFloatRes_FABS(SDNode *N);
523   SDValue SoftenFloatRes_FMINNUM(SDNode *N);
524   SDValue SoftenFloatRes_FMAXNUM(SDNode *N);
525   SDValue SoftenFloatRes_FADD(SDNode *N);
526   SDValue SoftenFloatRes_FCBRT(SDNode *N);
527   SDValue SoftenFloatRes_FCEIL(SDNode *N);
528   SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N);
529   SDValue SoftenFloatRes_FCOS(SDNode *N);
530   SDValue SoftenFloatRes_FDIV(SDNode *N);
531   SDValue SoftenFloatRes_FEXP(SDNode *N);
532   SDValue SoftenFloatRes_FEXP2(SDNode *N);
533   SDValue SoftenFloatRes_FFLOOR(SDNode *N);
534   SDValue SoftenFloatRes_FLOG(SDNode *N);
535   SDValue SoftenFloatRes_FLOG2(SDNode *N);
536   SDValue SoftenFloatRes_FLOG10(SDNode *N);
537   SDValue SoftenFloatRes_FMA(SDNode *N);
538   SDValue SoftenFloatRes_FMUL(SDNode *N);
539   SDValue SoftenFloatRes_FNEARBYINT(SDNode *N);
540   SDValue SoftenFloatRes_FNEG(SDNode *N);
541   SDValue SoftenFloatRes_FP_EXTEND(SDNode *N);
542   SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N);
543   SDValue SoftenFloatRes_FP_ROUND(SDNode *N);
544   SDValue SoftenFloatRes_FPOW(SDNode *N);
545   SDValue SoftenFloatRes_FPOWI(SDNode *N);
546   SDValue SoftenFloatRes_FREEZE(SDNode *N);
547   SDValue SoftenFloatRes_FREM(SDNode *N);
548   SDValue SoftenFloatRes_FRINT(SDNode *N);
549   SDValue SoftenFloatRes_FROUND(SDNode *N);
550   SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N);
551   SDValue SoftenFloatRes_FSIN(SDNode *N);
552   SDValue SoftenFloatRes_FSQRT(SDNode *N);
553   SDValue SoftenFloatRes_FSUB(SDNode *N);
554   SDValue SoftenFloatRes_FTRUNC(SDNode *N);
555   SDValue SoftenFloatRes_LOAD(SDNode *N);
556   SDValue SoftenFloatRes_SELECT(SDNode *N);
557   SDValue SoftenFloatRes_SELECT_CC(SDNode *N);
558   SDValue SoftenFloatRes_UNDEF(SDNode *N);
559   SDValue SoftenFloatRes_VAARG(SDNode *N);
560   SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N);
561   SDValue SoftenFloatRes_VECREDUCE(SDNode *N);
562   SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N);
563 
564   // Convert Float Operand to Integer.
565   bool SoftenFloatOperand(SDNode *N, unsigned OpNo);
566   SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC);
567   SDValue SoftenFloatOp_BITCAST(SDNode *N);
568   SDValue SoftenFloatOp_BR_CC(SDNode *N);
569   SDValue SoftenFloatOp_FP_ROUND(SDNode *N);
570   SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N);
571   SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N);
572   SDValue SoftenFloatOp_LROUND(SDNode *N);
573   SDValue SoftenFloatOp_LLROUND(SDNode *N);
574   SDValue SoftenFloatOp_LRINT(SDNode *N);
575   SDValue SoftenFloatOp_LLRINT(SDNode *N);
576   SDValue SoftenFloatOp_SELECT_CC(SDNode *N);
577   SDValue SoftenFloatOp_SETCC(SDNode *N);
578   SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo);
579   SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N);
580 
581   //===--------------------------------------------------------------------===//
582   // Float Expansion Support: LegalizeFloatTypes.cpp
583   //===--------------------------------------------------------------------===//
584 
585   /// Given a processed operand Op which was expanded into two floating-point
586   /// values of half the size, this returns the two halves.
587   /// The low bits of Op are exactly equal to the bits of Lo; the high bits
588   /// exactly equal Hi.  For example, if Op is a ppcf128 which was expanded
589   /// into two f64's, then this method returns the two f64's, with Lo being
590   /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits.
591   void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi);
592   void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi);
593 
594   // Float Result Expansion.
595   void ExpandFloatResult(SDNode *N, unsigned ResNo);
596   void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi);
597   void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC,
598                             SDValue &Lo, SDValue &Hi);
599   void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC,
600                              SDValue &Lo, SDValue &Hi);
601   void ExpandFloatRes_FABS      (SDNode *N, SDValue &Lo, SDValue &Hi);
602   void ExpandFloatRes_FMINNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
603   void ExpandFloatRes_FMAXNUM   (SDNode *N, SDValue &Lo, SDValue &Hi);
604   void ExpandFloatRes_FADD      (SDNode *N, SDValue &Lo, SDValue &Hi);
605   void ExpandFloatRes_FCBRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
606   void ExpandFloatRes_FCEIL     (SDNode *N, SDValue &Lo, SDValue &Hi);
607   void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi);
608   void ExpandFloatRes_FCOS      (SDNode *N, SDValue &Lo, SDValue &Hi);
609   void ExpandFloatRes_FDIV      (SDNode *N, SDValue &Lo, SDValue &Hi);
610   void ExpandFloatRes_FEXP      (SDNode *N, SDValue &Lo, SDValue &Hi);
611   void ExpandFloatRes_FEXP2     (SDNode *N, SDValue &Lo, SDValue &Hi);
612   void ExpandFloatRes_FFLOOR    (SDNode *N, SDValue &Lo, SDValue &Hi);
613   void ExpandFloatRes_FLOG      (SDNode *N, SDValue &Lo, SDValue &Hi);
614   void ExpandFloatRes_FLOG2     (SDNode *N, SDValue &Lo, SDValue &Hi);
615   void ExpandFloatRes_FLOG10    (SDNode *N, SDValue &Lo, SDValue &Hi);
616   void ExpandFloatRes_FMA       (SDNode *N, SDValue &Lo, SDValue &Hi);
617   void ExpandFloatRes_FMUL      (SDNode *N, SDValue &Lo, SDValue &Hi);
618   void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi);
619   void ExpandFloatRes_FNEG      (SDNode *N, SDValue &Lo, SDValue &Hi);
620   void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi);
621   void ExpandFloatRes_FPOW      (SDNode *N, SDValue &Lo, SDValue &Hi);
622   void ExpandFloatRes_FPOWI     (SDNode *N, SDValue &Lo, SDValue &Hi);
623   void ExpandFloatRes_FREEZE    (SDNode *N, SDValue &Lo, SDValue &Hi);
624   void ExpandFloatRes_FREM      (SDNode *N, SDValue &Lo, SDValue &Hi);
625   void ExpandFloatRes_FRINT     (SDNode *N, SDValue &Lo, SDValue &Hi);
626   void ExpandFloatRes_FROUND    (SDNode *N, SDValue &Lo, SDValue &Hi);
627   void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi);
628   void ExpandFloatRes_FSIN      (SDNode *N, SDValue &Lo, SDValue &Hi);
629   void ExpandFloatRes_FSQRT     (SDNode *N, SDValue &Lo, SDValue &Hi);
630   void ExpandFloatRes_FSUB      (SDNode *N, SDValue &Lo, SDValue &Hi);
631   void ExpandFloatRes_FTRUNC    (SDNode *N, SDValue &Lo, SDValue &Hi);
632   void ExpandFloatRes_LOAD      (SDNode *N, SDValue &Lo, SDValue &Hi);
633   void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi);
634 
635   // Float Operand Expansion.
636   bool ExpandFloatOperand(SDNode *N, unsigned OpNo);
637   SDValue ExpandFloatOp_BR_CC(SDNode *N);
638   SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N);
639   SDValue ExpandFloatOp_FP_ROUND(SDNode *N);
640   SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N);
641   SDValue ExpandFloatOp_LROUND(SDNode *N);
642   SDValue ExpandFloatOp_LLROUND(SDNode *N);
643   SDValue ExpandFloatOp_LRINT(SDNode *N);
644   SDValue ExpandFloatOp_LLRINT(SDNode *N);
645   SDValue ExpandFloatOp_SELECT_CC(SDNode *N);
646   SDValue ExpandFloatOp_SETCC(SDNode *N);
647   SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo);
648 
649   void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS,
650                                 ISD::CondCode &CCCode, const SDLoc &dl,
651                                 SDValue &Chain, bool IsSignaling = false);
652 
653   //===--------------------------------------------------------------------===//
654   // Float promotion support: LegalizeFloatTypes.cpp
655   //===--------------------------------------------------------------------===//
656 
GetPromotedFloat(SDValue Op)657   SDValue GetPromotedFloat(SDValue Op) {
658     TableId &PromotedId = PromotedFloats[getTableId(Op)];
659     SDValue PromotedOp = getSDValue(PromotedId);
660     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
661     return PromotedOp;
662   }
663   void SetPromotedFloat(SDValue Op, SDValue Result);
664 
665   void PromoteFloatResult(SDNode *N, unsigned ResNo);
666   SDValue PromoteFloatRes_BITCAST(SDNode *N);
667   SDValue PromoteFloatRes_BinOp(SDNode *N);
668   SDValue PromoteFloatRes_ConstantFP(SDNode *N);
669   SDValue PromoteFloatRes_EXTRACT_VECTOR_ELT(SDNode *N);
670   SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N);
671   SDValue PromoteFloatRes_FMAD(SDNode *N);
672   SDValue PromoteFloatRes_FPOWI(SDNode *N);
673   SDValue PromoteFloatRes_FP_ROUND(SDNode *N);
674   SDValue PromoteFloatRes_LOAD(SDNode *N);
675   SDValue PromoteFloatRes_SELECT(SDNode *N);
676   SDValue PromoteFloatRes_SELECT_CC(SDNode *N);
677   SDValue PromoteFloatRes_UnaryOp(SDNode *N);
678   SDValue PromoteFloatRes_UNDEF(SDNode *N);
679   SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N);
680   SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N);
681   SDValue PromoteFloatRes_VECREDUCE(SDNode *N);
682   SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N);
683 
684   bool PromoteFloatOperand(SDNode *N, unsigned OpNo);
685   SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo);
686   SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
687   SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo);
688   SDValue PromoteFloatOp_FP_TO_XINT(SDNode *N, unsigned OpNo);
689   SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo);
690   SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo);
691   SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo);
692   SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo);
693 
694   //===--------------------------------------------------------------------===//
695   // Half soft promotion support: LegalizeFloatTypes.cpp
696   //===--------------------------------------------------------------------===//
697 
GetSoftPromotedHalf(SDValue Op)698   SDValue GetSoftPromotedHalf(SDValue Op) {
699     TableId &PromotedId = SoftPromotedHalfs[getTableId(Op)];
700     SDValue PromotedOp = getSDValue(PromotedId);
701     assert(PromotedOp.getNode() && "Operand wasn't promoted?");
702     return PromotedOp;
703   }
704   void SetSoftPromotedHalf(SDValue Op, SDValue Result);
705 
706   void SoftPromoteHalfResult(SDNode *N, unsigned ResNo);
707   SDValue SoftPromoteHalfRes_BinOp(SDNode *N);
708   SDValue SoftPromoteHalfRes_BITCAST(SDNode *N);
709   SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N);
710   SDValue SoftPromoteHalfRes_EXTRACT_VECTOR_ELT(SDNode *N);
711   SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N);
712   SDValue SoftPromoteHalfRes_FMAD(SDNode *N);
713   SDValue SoftPromoteHalfRes_FPOWI(SDNode *N);
714   SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N);
715   SDValue SoftPromoteHalfRes_LOAD(SDNode *N);
716   SDValue SoftPromoteHalfRes_SELECT(SDNode *N);
717   SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N);
718   SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N);
719   SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N);
720   SDValue SoftPromoteHalfRes_UNDEF(SDNode *N);
721   SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N);
722   SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N);
723 
724   bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo);
725   SDValue SoftPromoteHalfOp_BITCAST(SDNode *N);
726   SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo);
727   SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N);
728   SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N);
729   SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N);
730   SDValue SoftPromoteHalfOp_SETCC(SDNode *N);
731   SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo);
732   SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo);
733 
734   //===--------------------------------------------------------------------===//
735   // Scalarization Support: LegalizeVectorTypes.cpp
736   //===--------------------------------------------------------------------===//
737 
738   /// Given a processed one-element vector Op which was scalarized to its
739   /// element type, this returns the element. For example, if Op is a v1i32,
740   /// Op = < i32 val >, this method returns val, an i32.
GetScalarizedVector(SDValue Op)741   SDValue GetScalarizedVector(SDValue Op) {
742     TableId &ScalarizedId = ScalarizedVectors[getTableId(Op)];
743     SDValue ScalarizedOp = getSDValue(ScalarizedId);
744     assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?");
745     return ScalarizedOp;
746   }
747   void SetScalarizedVector(SDValue Op, SDValue Result);
748 
749   // Vector Result Scalarization: <1 x ty> -> ty.
750   void ScalarizeVectorResult(SDNode *N, unsigned ResNo);
751   SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo);
752   SDValue ScalarizeVecRes_BinOp(SDNode *N);
753   SDValue ScalarizeVecRes_TernaryOp(SDNode *N);
754   SDValue ScalarizeVecRes_UnaryOp(SDNode *N);
755   SDValue ScalarizeVecRes_StrictFPOp(SDNode *N);
756   SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo);
757   SDValue ScalarizeVecRes_InregOp(SDNode *N);
758   SDValue ScalarizeVecRes_VecInregOp(SDNode *N);
759 
760   SDValue ScalarizeVecRes_BITCAST(SDNode *N);
761   SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N);
762   SDValue ScalarizeVecRes_EXTRACT_SUBVECTOR(SDNode *N);
763   SDValue ScalarizeVecRes_FP_ROUND(SDNode *N);
764   SDValue ScalarizeVecRes_FPOWI(SDNode *N);
765   SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N);
766   SDValue ScalarizeVecRes_LOAD(LoadSDNode *N);
767   SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N);
768   SDValue ScalarizeVecRes_VSELECT(SDNode *N);
769   SDValue ScalarizeVecRes_SELECT(SDNode *N);
770   SDValue ScalarizeVecRes_SELECT_CC(SDNode *N);
771   SDValue ScalarizeVecRes_SETCC(SDNode *N);
772   SDValue ScalarizeVecRes_UNDEF(SDNode *N);
773   SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N);
774   SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N);
775 
776   SDValue ScalarizeVecRes_FIX(SDNode *N);
777 
778   // Vector Operand Scalarization: <1 x ty> -> ty.
779   bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo);
780   SDValue ScalarizeVecOp_BITCAST(SDNode *N);
781   SDValue ScalarizeVecOp_UnaryOp(SDNode *N);
782   SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N);
783   SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N);
784   SDValue ScalarizeVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
785   SDValue ScalarizeVecOp_VSELECT(SDNode *N);
786   SDValue ScalarizeVecOp_VSETCC(SDNode *N);
787   SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo);
788   SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo);
789   SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo);
790   SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N);
791   SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N);
792   SDValue ScalarizeVecOp_VECREDUCE(SDNode *N);
793   SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N);
794 
795   //===--------------------------------------------------------------------===//
796   // Vector Splitting Support: LegalizeVectorTypes.cpp
797   //===--------------------------------------------------------------------===//
798 
799   /// Given a processed vector Op which was split into vectors of half the size,
800   /// this method returns the halves. The first elements of Op coincide with the
801   /// elements of Lo; the remaining elements of Op coincide with the elements of
802   /// Hi: Op is what you would get by concatenating Lo and Hi.
803   /// For example, if Op is a v8i32 that was split into two v4i32's, then this
804   /// method returns the two v4i32's, with Lo corresponding to the first 4
805   /// elements of Op, and Hi to the last 4 elements.
806   void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi);
807   void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi);
808 
809   // Helper function for incrementing the pointer when splitting
810   // memory operations
811   void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI,
812                         SDValue &Ptr, uint64_t *ScaledOffset = nullptr);
813 
814   // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>.
815   void SplitVectorResult(SDNode *N, unsigned ResNo);
816   void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi);
817   void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
818   void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi);
819   void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi);
820   void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi);
821   void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi);
822   void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi);
823   void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo,
824                               SDValue &Lo, SDValue &Hi);
825 
826   void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi);
827 
828   void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi);
829   void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
830   void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi);
831   void SplitVecRes_EXTRACT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
832   void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
833   void SplitVecRes_FPOWI(SDNode *N, SDValue &Lo, SDValue &Hi);
834   void SplitVecRes_FCOPYSIGN(SDNode *N, SDValue &Lo, SDValue &Hi);
835   void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
836   void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi);
837   void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi);
838   void SplitVecRes_MGATHER(MaskedGatherSDNode *MGT, SDValue &Lo, SDValue &Hi);
839   void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi);
840   void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi);
841   void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi);
842   void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi);
843   void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo,
844                                   SDValue &Hi);
845   void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi);
846   void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi);
847   void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi);
848 
849   // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>.
850   bool SplitVectorOperand(SDNode *N, unsigned OpNo);
851   SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo);
852   SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo);
853   SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N);
854   SDValue SplitVecOp_UnaryOp(SDNode *N);
855   SDValue SplitVecOp_TruncateHelper(SDNode *N);
856 
857   SDValue SplitVecOp_BITCAST(SDNode *N);
858   SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo);
859   SDValue SplitVecOp_EXTRACT_SUBVECTOR(SDNode *N);
860   SDValue SplitVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
861   SDValue SplitVecOp_ExtVecInRegOp(SDNode *N);
862   SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo);
863   SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo);
864   SDValue SplitVecOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo);
865   SDValue SplitVecOp_MGATHER(MaskedGatherSDNode *MGT, unsigned OpNo);
866   SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N);
867   SDValue SplitVecOp_VSETCC(SDNode *N);
868   SDValue SplitVecOp_FP_ROUND(SDNode *N);
869   SDValue SplitVecOp_FCOPYSIGN(SDNode *N);
870   SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N);
871 
872   //===--------------------------------------------------------------------===//
873   // Vector Widening Support: LegalizeVectorTypes.cpp
874   //===--------------------------------------------------------------------===//
875 
876   /// Given a processed vector Op which was widened into a larger vector, this
877   /// method returns the larger vector. The elements of the returned vector
878   /// consist of the elements of Op followed by elements containing rubbish.
879   /// For example, if Op is a v2i32 that was widened to a v4i32, then this
880   /// method returns a v4i32 for which the first two elements are the same as
881   /// those of Op, while the last two elements contain rubbish.
GetWidenedVector(SDValue Op)882   SDValue GetWidenedVector(SDValue Op) {
883     TableId &WidenedId = WidenedVectors[getTableId(Op)];
884     SDValue WidenedOp = getSDValue(WidenedId);
885     assert(WidenedOp.getNode() && "Operand wasn't widened?");
886     return WidenedOp;
887   }
888   void SetWidenedVector(SDValue Op, SDValue Result);
889 
890   // Widen Vector Result Promotion.
891   void WidenVectorResult(SDNode *N, unsigned ResNo);
892   SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo);
893   SDValue WidenVecRes_BITCAST(SDNode* N);
894   SDValue WidenVecRes_BUILD_VECTOR(SDNode* N);
895   SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N);
896   SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N);
897   SDValue WidenVecRes_EXTRACT_SUBVECTOR(SDNode* N);
898   SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N);
899   SDValue WidenVecRes_LOAD(SDNode* N);
900   SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N);
901   SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N);
902   SDValue WidenVecRes_ScalarOp(SDNode* N);
903   SDValue WidenVecRes_SELECT(SDNode* N);
904   SDValue WidenVSELECTMask(SDNode *N);
905   SDValue WidenVecRes_SELECT_CC(SDNode* N);
906   SDValue WidenVecRes_SETCC(SDNode* N);
907   SDValue WidenVecRes_STRICT_FSETCC(SDNode* N);
908   SDValue WidenVecRes_UNDEF(SDNode *N);
909   SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N);
910 
911   SDValue WidenVecRes_Ternary(SDNode *N);
912   SDValue WidenVecRes_Binary(SDNode *N);
913   SDValue WidenVecRes_BinaryCanTrap(SDNode *N);
914   SDValue WidenVecRes_BinaryWithExtraScalarOp(SDNode *N);
915   SDValue WidenVecRes_StrictFP(SDNode *N);
916   SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo);
917   SDValue WidenVecRes_Convert(SDNode *N);
918   SDValue WidenVecRes_Convert_StrictFP(SDNode *N);
919   SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N);
920   SDValue WidenVecRes_FCOPYSIGN(SDNode *N);
921   SDValue WidenVecRes_POWI(SDNode *N);
922   SDValue WidenVecRes_Unary(SDNode *N);
923   SDValue WidenVecRes_InregOp(SDNode *N);
924 
925   // Widen Vector Operand.
926   bool WidenVectorOperand(SDNode *N, unsigned OpNo);
927   SDValue WidenVecOp_BITCAST(SDNode *N);
928   SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N);
929   SDValue WidenVecOp_EXTEND(SDNode *N);
930   SDValue WidenVecOp_EXTRACT_VECTOR_ELT(SDNode *N);
931   SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N);
932   SDValue WidenVecOp_EXTRACT_SUBVECTOR(SDNode *N);
933   SDValue WidenVecOp_STORE(SDNode* N);
934   SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo);
935   SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo);
936   SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo);
937   SDValue WidenVecOp_SETCC(SDNode* N);
938   SDValue WidenVecOp_STRICT_FSETCC(SDNode* N);
939   SDValue WidenVecOp_VSELECT(SDNode *N);
940 
941   SDValue WidenVecOp_Convert(SDNode *N);
942   SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N);
943   SDValue WidenVecOp_FCOPYSIGN(SDNode *N);
944   SDValue WidenVecOp_VECREDUCE(SDNode *N);
945   SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N);
946 
947   /// Helper function to generate a set of operations to perform
948   /// a vector operation for a wider type.
949   ///
950   SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE);
951 
952   //===--------------------------------------------------------------------===//
953   // Vector Widening Utilities Support: LegalizeVectorTypes.cpp
954   //===--------------------------------------------------------------------===//
955 
956   /// Helper function to generate a set of loads to load a vector with a
957   /// resulting wider type. It takes:
958   ///   LdChain: list of chains for the load to be generated.
959   ///   Ld:      load to widen
960   SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain,
961                               LoadSDNode *LD);
962 
963   /// Helper function to generate a set of extension loads to load a vector with
964   /// a resulting wider type. It takes:
965   ///   LdChain: list of chains for the load to be generated.
966   ///   Ld:      load to widen
967   ///   ExtType: extension element type
968   SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain,
969                                  LoadSDNode *LD, ISD::LoadExtType ExtType);
970 
971   /// Helper function to generate a set of stores to store a widen vector into
972   /// non-widen memory.
973   ///   StChain: list of chains for the stores we have generated
974   ///   ST:      store of a widen value
975   void GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST);
976 
977   /// Modifies a vector input (widen or narrows) to a vector of NVT.  The
978   /// input vector must have the same element type as NVT.
979   /// When FillWithZeroes is "on" the vector will be widened with zeroes.
980   /// By default, the vector will be widened with undefined values.
981   SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false);
982 
983   /// Return a mask of vector type MaskVT to replace InMask. Also adjust
984   /// MaskVT to ToMaskVT if needed with vector extension or truncation.
985   SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT);
986 
987   //===--------------------------------------------------------------------===//
988   // Generic Splitting: LegalizeTypesGeneric.cpp
989   //===--------------------------------------------------------------------===//
990 
991   // Legalization methods which only use that the illegal type is split into two
992   // not necessarily identical types.  As such they can be used for splitting
993   // vectors and expanding integers and floats.
994 
GetSplitOp(SDValue Op,SDValue & Lo,SDValue & Hi)995   void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
996     if (Op.getValueType().isVector())
997       GetSplitVector(Op, Lo, Hi);
998     else if (Op.getValueType().isInteger())
999       GetExpandedInteger(Op, Lo, Hi);
1000     else
1001       GetExpandedFloat(Op, Lo, Hi);
1002   }
1003 
1004   /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the
1005   /// given value.
1006   void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi);
1007 
1008   // Generic Result Splitting.
1009   void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo,
1010                              SDValue &Lo, SDValue &Hi);
1011   void SplitRes_SELECT      (SDNode *N, SDValue &Lo, SDValue &Hi);
1012   void SplitRes_SELECT_CC   (SDNode *N, SDValue &Lo, SDValue &Hi);
1013   void SplitRes_UNDEF       (SDNode *N, SDValue &Lo, SDValue &Hi);
1014   void SplitRes_FREEZE      (SDNode *N, SDValue &Lo, SDValue &Hi);
1015 
1016   //===--------------------------------------------------------------------===//
1017   // Generic Expansion: LegalizeTypesGeneric.cpp
1018   //===--------------------------------------------------------------------===//
1019 
1020   // Legalization methods which only use that the illegal type is split into two
1021   // identical types of half the size, and that the Lo/Hi part is stored first
1022   // in memory on little/big-endian machines, followed by the Hi/Lo part.  As
1023   // such they can be used for expanding integers and floats.
1024 
GetExpandedOp(SDValue Op,SDValue & Lo,SDValue & Hi)1025   void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) {
1026     if (Op.getValueType().isInteger())
1027       GetExpandedInteger(Op, Lo, Hi);
1028     else
1029       GetExpandedFloat(Op, Lo, Hi);
1030   }
1031 
1032 
1033   /// This function will split the integer \p Op into \p NumElements
1034   /// operations of type \p EltVT and store them in \p Ops.
1035   void IntegerToVector(SDValue Op, unsigned NumElements,
1036                        SmallVectorImpl<SDValue> &Ops, EVT EltVT);
1037 
1038   // Generic Result Expansion.
1039   void ExpandRes_MERGE_VALUES      (SDNode *N, unsigned ResNo,
1040                                     SDValue &Lo, SDValue &Hi);
1041   void ExpandRes_BITCAST           (SDNode *N, SDValue &Lo, SDValue &Hi);
1042   void ExpandRes_BUILD_PAIR        (SDNode *N, SDValue &Lo, SDValue &Hi);
1043   void ExpandRes_EXTRACT_ELEMENT   (SDNode *N, SDValue &Lo, SDValue &Hi);
1044   void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi);
1045   void ExpandRes_NormalLoad        (SDNode *N, SDValue &Lo, SDValue &Hi);
1046   void ExpandRes_VAARG             (SDNode *N, SDValue &Lo, SDValue &Hi);
1047 
1048   // Generic Operand Expansion.
1049   SDValue ExpandOp_BITCAST          (SDNode *N);
1050   SDValue ExpandOp_BUILD_VECTOR     (SDNode *N);
1051   SDValue ExpandOp_EXTRACT_ELEMENT  (SDNode *N);
1052   SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N);
1053   SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N);
1054   SDValue ExpandOp_NormalStore      (SDNode *N, unsigned OpNo);
1055 };
1056 
1057 } // end namespace llvm.
1058 
1059 #endif
1060