xref: /netbsd-src/external/gpl3/gcc/dist/libsanitizer/hwasan/hwasan_allocator.cpp (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 //===-- hwasan_allocator.cpp ------------------------ ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of HWAddressSanitizer.
10 //
11 // HWAddressSanitizer allocator.
12 //===----------------------------------------------------------------------===//
13 
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_stackdepot.h"
17 #include "hwasan.h"
18 #include "hwasan_allocator.h"
19 #include "hwasan_checks.h"
20 #include "hwasan_mapping.h"
21 #include "hwasan_malloc_bisect.h"
22 #include "hwasan_thread.h"
23 #include "hwasan_report.h"
24 
25 namespace __hwasan {
26 
27 static Allocator allocator;
28 static AllocatorCache fallback_allocator_cache;
29 static SpinMutex fallback_mutex;
30 static atomic_uint8_t hwasan_allocator_tagging_enabled;
31 
32 static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask;
33 static constexpr tag_t kFallbackFreeTag = 0xBC;
34 
35 enum RightAlignMode {
36   kRightAlignNever,
37   kRightAlignSometimes,
38   kRightAlignAlways
39 };
40 
41 // Initialized in HwasanAllocatorInit, an never changed.
42 static ALIGNED(16) u8 tail_magic[kShadowAlignment - 1];
43 
IsAllocated() const44 bool HwasanChunkView::IsAllocated() const {
45   return metadata_ && metadata_->alloc_context_id &&
46          metadata_->get_requested_size();
47 }
48 
49 // Aligns the 'addr' right to the granule boundary.
AlignRight(uptr addr,uptr requested_size)50 static uptr AlignRight(uptr addr, uptr requested_size) {
51   uptr tail_size = requested_size % kShadowAlignment;
52   if (!tail_size) return addr;
53   return addr + kShadowAlignment - tail_size;
54 }
55 
Beg() const56 uptr HwasanChunkView::Beg() const {
57   if (metadata_ && metadata_->right_aligned)
58     return AlignRight(block_, metadata_->get_requested_size());
59   return block_;
60 }
End() const61 uptr HwasanChunkView::End() const {
62   return Beg() + UsedSize();
63 }
UsedSize() const64 uptr HwasanChunkView::UsedSize() const {
65   return metadata_->get_requested_size();
66 }
GetAllocStackId() const67 u32 HwasanChunkView::GetAllocStackId() const {
68   return metadata_->alloc_context_id;
69 }
70 
ActualSize() const71 uptr HwasanChunkView::ActualSize() const {
72   return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
73 }
74 
FromSmallHeap() const75 bool HwasanChunkView::FromSmallHeap() const {
76   return allocator.FromPrimary(reinterpret_cast<void *>(block_));
77 }
78 
GetAllocatorStats(AllocatorStatCounters s)79 void GetAllocatorStats(AllocatorStatCounters s) {
80   allocator.GetStats(s);
81 }
82 
GetAliasRegionStart()83 uptr GetAliasRegionStart() {
84 #if defined(HWASAN_ALIASING_MODE)
85   constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1);
86   uptr AliasRegionStart =
87       __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset;
88 
89   CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift,
90            __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
91   CHECK_EQ(
92       (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift,
93       __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
94   return AliasRegionStart;
95 #else
96   return 0;
97 #endif
98 }
99 
HwasanAllocatorInit()100 void HwasanAllocatorInit() {
101   atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
102                        !flags()->disable_allocator_tagging);
103   SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
104   allocator.Init(common_flags()->allocator_release_to_os_interval_ms,
105                  GetAliasRegionStart());
106   for (uptr i = 0; i < sizeof(tail_magic); i++)
107     tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
108 }
109 
HwasanAllocatorLock()110 void HwasanAllocatorLock() { allocator.ForceLock(); }
111 
HwasanAllocatorUnlock()112 void HwasanAllocatorUnlock() { allocator.ForceUnlock(); }
113 
AllocatorSwallowThreadLocalCache(AllocatorCache * cache)114 void AllocatorSwallowThreadLocalCache(AllocatorCache *cache) {
115   allocator.SwallowCache(cache);
116 }
117 
TaggedSize(uptr size)118 static uptr TaggedSize(uptr size) {
119   if (!size) size = 1;
120   uptr new_size = RoundUpTo(size, kShadowAlignment);
121   CHECK_GE(new_size, size);
122   return new_size;
123 }
124 
HwasanAllocate(StackTrace * stack,uptr orig_size,uptr alignment,bool zeroise)125 static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
126                             bool zeroise) {
127   if (orig_size > kMaxAllowedMallocSize) {
128     if (AllocatorMayReturnNull()) {
129       Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
130              orig_size);
131       return nullptr;
132     }
133     ReportAllocationSizeTooBig(orig_size, kMaxAllowedMallocSize, stack);
134   }
135 
136   alignment = Max(alignment, kShadowAlignment);
137   uptr size = TaggedSize(orig_size);
138   Thread *t = GetCurrentThread();
139   void *allocated;
140   if (t) {
141     allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
142   } else {
143     SpinMutexLock l(&fallback_mutex);
144     AllocatorCache *cache = &fallback_allocator_cache;
145     allocated = allocator.Allocate(cache, size, alignment);
146   }
147   if (UNLIKELY(!allocated)) {
148     SetAllocatorOutOfMemory();
149     if (AllocatorMayReturnNull())
150       return nullptr;
151     ReportOutOfMemory(size, stack);
152   }
153   Metadata *meta =
154       reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
155   meta->set_requested_size(orig_size);
156   meta->alloc_context_id = StackDepotPut(*stack);
157   meta->right_aligned = false;
158   if (zeroise) {
159     internal_memset(allocated, 0, size);
160   } else if (flags()->max_malloc_fill_size > 0) {
161     uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
162     internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
163   }
164   if (size != orig_size) {
165     u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size;
166     uptr tail_length = size - orig_size;
167     internal_memcpy(tail, tail_magic, tail_length - 1);
168     // Short granule is excluded from magic tail, so we explicitly untag.
169     tail[tail_length - 1] = 0;
170   }
171 
172   void *user_ptr = allocated;
173   // Tagging can only be skipped when both tag_in_malloc and tag_in_free are
174   // false. When tag_in_malloc = false and tag_in_free = true malloc needs to
175   // retag to 0.
176   if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) &&
177       (flags()->tag_in_malloc || flags()->tag_in_free) &&
178       atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
179     if (flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
180       tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
181       uptr tag_size = orig_size ? orig_size : 1;
182       uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
183       user_ptr =
184           (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
185       if (full_granule_size != tag_size) {
186         u8 *short_granule =
187             reinterpret_cast<u8 *>(allocated) + full_granule_size;
188         TagMemoryAligned((uptr)short_granule, kShadowAlignment,
189                          tag_size % kShadowAlignment);
190         short_granule[kShadowAlignment - 1] = tag;
191       }
192     } else {
193       user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
194     }
195   }
196 
197   HWASAN_MALLOC_HOOK(user_ptr, size);
198   return user_ptr;
199 }
200 
PointerAndMemoryTagsMatch(void * tagged_ptr)201 static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
202   CHECK(tagged_ptr);
203   uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
204   if (!InTaggableRegion(tagged_uptr))
205     return true;
206   tag_t mem_tag = *reinterpret_cast<tag_t *>(
207       MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
208   return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
209 }
210 
CheckInvalidFree(StackTrace * stack,void * untagged_ptr,void * tagged_ptr)211 static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr,
212                              void *tagged_ptr) {
213   // This function can return true if halt_on_error is false.
214   if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) ||
215       !PointerAndMemoryTagsMatch(tagged_ptr)) {
216     ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
217     return true;
218   }
219   return false;
220 }
221 
HwasanDeallocate(StackTrace * stack,void * tagged_ptr)222 static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
223   CHECK(tagged_ptr);
224   HWASAN_FREE_HOOK(tagged_ptr);
225 
226   bool in_taggable_region =
227       InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr));
228   void *untagged_ptr = in_taggable_region ? UntagPtr(tagged_ptr) : tagged_ptr;
229 
230   if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr))
231     return;
232 
233   void *aligned_ptr = reinterpret_cast<void *>(
234       RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
235   tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
236   Metadata *meta =
237       reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
238   if (!meta) {
239     ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
240     return;
241   }
242   uptr orig_size = meta->get_requested_size();
243   u32 free_context_id = StackDepotPut(*stack);
244   u32 alloc_context_id = meta->alloc_context_id;
245 
246   // Check tail magic.
247   uptr tagged_size = TaggedSize(orig_size);
248   if (flags()->free_checks_tail_magic && orig_size &&
249       tagged_size != orig_size) {
250     uptr tail_size = tagged_size - orig_size - 1;
251     CHECK_LT(tail_size, kShadowAlignment);
252     void *tail_beg = reinterpret_cast<void *>(
253         reinterpret_cast<uptr>(aligned_ptr) + orig_size);
254     tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>(
255         reinterpret_cast<uptr>(tail_beg) + tail_size));
256     if (tail_size &&
257         (internal_memcmp(tail_beg, tail_magic, tail_size) ||
258          (in_taggable_region && pointer_tag != short_granule_memtag)))
259       ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
260                             orig_size, tail_magic);
261   }
262 
263   meta->set_requested_size(0);
264   meta->alloc_context_id = 0;
265   // This memory will not be reused by anyone else, so we are free to keep it
266   // poisoned.
267   Thread *t = GetCurrentThread();
268   if (flags()->max_free_fill_size > 0) {
269     uptr fill_size =
270         Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
271     internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
272   }
273   if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) &&
274       atomic_load_relaxed(&hwasan_allocator_tagging_enabled)) {
275     // Always store full 8-bit tags on free to maximize UAF detection.
276     tag_t tag;
277     if (t) {
278       // Make sure we are not using a short granule tag as a poison tag. This
279       // would make us attempt to read the memory on a UaF.
280       // The tag can be zero if tagging is disabled on this thread.
281       do {
282         tag = t->GenerateRandomTag(/*num_bits=*/8);
283       } while (
284           UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0));
285     } else {
286       static_assert(kFallbackFreeTag >= kShadowAlignment,
287                     "fallback tag must not be a short granule tag.");
288       tag = kFallbackFreeTag;
289     }
290     TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
291                      tag);
292   }
293   if (t) {
294     allocator.Deallocate(t->allocator_cache(), aligned_ptr);
295     if (auto *ha = t->heap_allocations())
296       ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_context_id,
297                 free_context_id, static_cast<u32>(orig_size)});
298   } else {
299     SpinMutexLock l(&fallback_mutex);
300     AllocatorCache *cache = &fallback_allocator_cache;
301     allocator.Deallocate(cache, aligned_ptr);
302   }
303 }
304 
HwasanReallocate(StackTrace * stack,void * tagged_ptr_old,uptr new_size,uptr alignment)305 static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
306                               uptr new_size, uptr alignment) {
307   void *untagged_ptr_old =
308       InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr_old))
309           ? UntagPtr(tagged_ptr_old)
310           : tagged_ptr_old;
311   if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old))
312     return nullptr;
313   void *tagged_ptr_new =
314       HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
315   if (tagged_ptr_old && tagged_ptr_new) {
316     Metadata *meta =
317         reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
318     internal_memcpy(
319         UntagPtr(tagged_ptr_new), untagged_ptr_old,
320         Min(new_size, static_cast<uptr>(meta->get_requested_size())));
321     HwasanDeallocate(stack, tagged_ptr_old);
322   }
323   return tagged_ptr_new;
324 }
325 
HwasanCalloc(StackTrace * stack,uptr nmemb,uptr size)326 static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
327   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
328     if (AllocatorMayReturnNull())
329       return nullptr;
330     ReportCallocOverflow(nmemb, size, stack);
331   }
332   return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
333 }
334 
FindHeapChunkByAddress(uptr address)335 HwasanChunkView FindHeapChunkByAddress(uptr address) {
336   if (!allocator.PointerIsMine(reinterpret_cast<void *>(address)))
337     return HwasanChunkView();
338   void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
339   if (!block)
340     return HwasanChunkView();
341   Metadata *metadata =
342       reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
343   return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
344 }
345 
AllocationSize(const void * tagged_ptr)346 static uptr AllocationSize(const void *tagged_ptr) {
347   const void *untagged_ptr = UntagPtr(tagged_ptr);
348   if (!untagged_ptr) return 0;
349   const void *beg = allocator.GetBlockBegin(untagged_ptr);
350   Metadata *b = (Metadata *)allocator.GetMetaData(untagged_ptr);
351   if (b->right_aligned) {
352     if (beg != reinterpret_cast<void *>(RoundDownTo(
353                    reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment)))
354       return 0;
355   } else {
356     if (beg != untagged_ptr) return 0;
357   }
358   return b->get_requested_size();
359 }
360 
hwasan_malloc(uptr size,StackTrace * stack)361 void *hwasan_malloc(uptr size, StackTrace *stack) {
362   return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
363 }
364 
hwasan_calloc(uptr nmemb,uptr size,StackTrace * stack)365 void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
366   return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
367 }
368 
hwasan_realloc(void * ptr,uptr size,StackTrace * stack)369 void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
370   if (!ptr)
371     return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
372   if (size == 0) {
373     HwasanDeallocate(stack, ptr);
374     return nullptr;
375   }
376   return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
377 }
378 
hwasan_reallocarray(void * ptr,uptr nmemb,uptr size,StackTrace * stack)379 void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
380   if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
381     errno = errno_ENOMEM;
382     if (AllocatorMayReturnNull())
383       return nullptr;
384     ReportReallocArrayOverflow(nmemb, size, stack);
385   }
386   return hwasan_realloc(ptr, nmemb * size, stack);
387 }
388 
hwasan_valloc(uptr size,StackTrace * stack)389 void *hwasan_valloc(uptr size, StackTrace *stack) {
390   return SetErrnoOnNull(
391       HwasanAllocate(stack, size, GetPageSizeCached(), false));
392 }
393 
hwasan_pvalloc(uptr size,StackTrace * stack)394 void *hwasan_pvalloc(uptr size, StackTrace *stack) {
395   uptr PageSize = GetPageSizeCached();
396   if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
397     errno = errno_ENOMEM;
398     if (AllocatorMayReturnNull())
399       return nullptr;
400     ReportPvallocOverflow(size, stack);
401   }
402   // pvalloc(0) should allocate one page.
403   size = size ? RoundUpTo(size, PageSize) : PageSize;
404   return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
405 }
406 
hwasan_aligned_alloc(uptr alignment,uptr size,StackTrace * stack)407 void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
408   if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
409     errno = errno_EINVAL;
410     if (AllocatorMayReturnNull())
411       return nullptr;
412     ReportInvalidAlignedAllocAlignment(size, alignment, stack);
413   }
414   return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
415 }
416 
hwasan_memalign(uptr alignment,uptr size,StackTrace * stack)417 void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
418   if (UNLIKELY(!IsPowerOfTwo(alignment))) {
419     errno = errno_EINVAL;
420     if (AllocatorMayReturnNull())
421       return nullptr;
422     ReportInvalidAllocationAlignment(alignment, stack);
423   }
424   return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
425 }
426 
hwasan_posix_memalign(void ** memptr,uptr alignment,uptr size,StackTrace * stack)427 int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
428                         StackTrace *stack) {
429   if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
430     if (AllocatorMayReturnNull())
431       return errno_EINVAL;
432     ReportInvalidPosixMemalignAlignment(alignment, stack);
433   }
434   void *ptr = HwasanAllocate(stack, size, alignment, false);
435   if (UNLIKELY(!ptr))
436     // OOM error is already taken care of by HwasanAllocate.
437     return errno_ENOMEM;
438   CHECK(IsAligned((uptr)ptr, alignment));
439   *memptr = ptr;
440   return 0;
441 }
442 
hwasan_free(void * ptr,StackTrace * stack)443 void hwasan_free(void *ptr, StackTrace *stack) {
444   return HwasanDeallocate(stack, ptr);
445 }
446 
447 }  // namespace __hwasan
448 
449 using namespace __hwasan;
450 
__hwasan_enable_allocator_tagging()451 void __hwasan_enable_allocator_tagging() {
452   atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
453 }
454 
__hwasan_disable_allocator_tagging()455 void __hwasan_disable_allocator_tagging() {
456   atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
457 }
458 
__sanitizer_get_current_allocated_bytes()459 uptr __sanitizer_get_current_allocated_bytes() {
460   uptr stats[AllocatorStatCount];
461   allocator.GetStats(stats);
462   return stats[AllocatorStatAllocated];
463 }
464 
__sanitizer_get_heap_size()465 uptr __sanitizer_get_heap_size() {
466   uptr stats[AllocatorStatCount];
467   allocator.GetStats(stats);
468   return stats[AllocatorStatMapped];
469 }
470 
__sanitizer_get_free_bytes()471 uptr __sanitizer_get_free_bytes() { return 1; }
472 
__sanitizer_get_unmapped_bytes()473 uptr __sanitizer_get_unmapped_bytes() { return 1; }
474 
__sanitizer_get_estimated_allocated_size(uptr size)475 uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
476 
__sanitizer_get_ownership(const void * p)477 int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
478 
__sanitizer_get_allocated_size(const void * p)479 uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
480